linux/arch/x86/kernel/process.c
<<
>>
Prefs
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/errno.h>
   4#include <linux/kernel.h>
   5#include <linux/mm.h>
   6#include <linux/smp.h>
   7#include <linux/prctl.h>
   8#include <linux/slab.h>
   9#include <linux/sched.h>
  10#include <linux/module.h>
  11#include <linux/pm.h>
  12#include <linux/tick.h>
  13#include <linux/random.h>
  14#include <linux/user-return-notifier.h>
  15#include <linux/dmi.h>
  16#include <linux/utsname.h>
  17#include <linux/stackprotector.h>
  18#include <linux/tick.h>
  19#include <linux/cpuidle.h>
  20#include <trace/events/power.h>
  21#include <linux/hw_breakpoint.h>
  22#include <asm/cpu.h>
  23#include <asm/apic.h>
  24#include <asm/syscalls.h>
  25#include <asm/idle.h>
  26#include <asm/uaccess.h>
  27#include <asm/mwait.h>
  28#include <asm/fpu/internal.h>
  29#include <asm/debugreg.h>
  30#include <asm/nmi.h>
  31#include <asm/tlbflush.h>
  32#include <asm/mce.h>
  33#include <asm/vm86.h>
  34
  35/*
  36 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  37 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  38 * so they are allowed to end up in the .data..cacheline_aligned
  39 * section. Since TSS's are completely CPU-local, we want them
  40 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  41 */
  42__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
  43        .x86_tss = {
  44                .sp0 = TOP_OF_INIT_STACK,
  45#ifdef CONFIG_X86_32
  46                .ss0 = __KERNEL_DS,
  47                .ss1 = __KERNEL_CS,
  48                .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  49#endif
  50         },
  51#ifdef CONFIG_X86_32
  52         /*
  53          * Note that the .io_bitmap member must be extra-big. This is because
  54          * the CPU will access an additional byte beyond the end of the IO
  55          * permission bitmap. The extra byte must be all 1 bits, and must
  56          * be within the limit.
  57          */
  58        .io_bitmap              = { [0 ... IO_BITMAP_LONGS] = ~0 },
  59#endif
  60#ifdef CONFIG_X86_32
  61        .SYSENTER_stack_canary  = STACK_END_MAGIC,
  62#endif
  63};
  64EXPORT_PER_CPU_SYMBOL(cpu_tss);
  65
  66#ifdef CONFIG_X86_64
  67static DEFINE_PER_CPU(unsigned char, is_idle);
  68static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  69
  70void idle_notifier_register(struct notifier_block *n)
  71{
  72        atomic_notifier_chain_register(&idle_notifier, n);
  73}
  74EXPORT_SYMBOL_GPL(idle_notifier_register);
  75
  76void idle_notifier_unregister(struct notifier_block *n)
  77{
  78        atomic_notifier_chain_unregister(&idle_notifier, n);
  79}
  80EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  81#endif
  82
  83/*
  84 * this gets called so that we can store lazy state into memory and copy the
  85 * current task into the new thread.
  86 */
  87int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  88{
  89        memcpy(dst, src, arch_task_struct_size);
  90#ifdef CONFIG_VM86
  91        dst->thread.vm86 = NULL;
  92#endif
  93
  94        return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  95}
  96
  97/*
  98 * Free current thread data structures etc..
  99 */
 100void exit_thread(struct task_struct *tsk)
 101{
 102        struct thread_struct *t = &tsk->thread;
 103        unsigned long *bp = t->io_bitmap_ptr;
 104        struct fpu *fpu = &t->fpu;
 105
 106        if (bp) {
 107                struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
 108
 109                t->io_bitmap_ptr = NULL;
 110                clear_thread_flag(TIF_IO_BITMAP);
 111                /*
 112                 * Careful, clear this in the TSS too:
 113                 */
 114                memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 115                t->io_bitmap_max = 0;
 116                put_cpu();
 117                kfree(bp);
 118        }
 119
 120        free_vm86(t);
 121
 122        fpu__drop(fpu);
 123}
 124
 125void flush_thread(void)
 126{
 127        struct task_struct *tsk = current;
 128
 129        flush_ptrace_hw_breakpoint(tsk);
 130        memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 131
 132        fpu__clear(&tsk->thread.fpu);
 133}
 134
 135static void hard_disable_TSC(void)
 136{
 137        cr4_set_bits(X86_CR4_TSD);
 138}
 139
 140void disable_TSC(void)
 141{
 142        preempt_disable();
 143        if (!test_and_set_thread_flag(TIF_NOTSC))
 144                /*
 145                 * Must flip the CPU state synchronously with
 146                 * TIF_NOTSC in the current running context.
 147                 */
 148                hard_disable_TSC();
 149        preempt_enable();
 150}
 151
 152static void hard_enable_TSC(void)
 153{
 154        cr4_clear_bits(X86_CR4_TSD);
 155}
 156
 157static void enable_TSC(void)
 158{
 159        preempt_disable();
 160        if (test_and_clear_thread_flag(TIF_NOTSC))
 161                /*
 162                 * Must flip the CPU state synchronously with
 163                 * TIF_NOTSC in the current running context.
 164                 */
 165                hard_enable_TSC();
 166        preempt_enable();
 167}
 168
 169int get_tsc_mode(unsigned long adr)
 170{
 171        unsigned int val;
 172
 173        if (test_thread_flag(TIF_NOTSC))
 174                val = PR_TSC_SIGSEGV;
 175        else
 176                val = PR_TSC_ENABLE;
 177
 178        return put_user(val, (unsigned int __user *)adr);
 179}
 180
 181int set_tsc_mode(unsigned int val)
 182{
 183        if (val == PR_TSC_SIGSEGV)
 184                disable_TSC();
 185        else if (val == PR_TSC_ENABLE)
 186                enable_TSC();
 187        else
 188                return -EINVAL;
 189
 190        return 0;
 191}
 192
 193void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 194                      struct tss_struct *tss)
 195{
 196        struct thread_struct *prev, *next;
 197
 198        prev = &prev_p->thread;
 199        next = &next_p->thread;
 200
 201        if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
 202            test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
 203                unsigned long debugctl = get_debugctlmsr();
 204
 205                debugctl &= ~DEBUGCTLMSR_BTF;
 206                if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
 207                        debugctl |= DEBUGCTLMSR_BTF;
 208
 209                update_debugctlmsr(debugctl);
 210        }
 211
 212        if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
 213            test_tsk_thread_flag(next_p, TIF_NOTSC)) {
 214                /* prev and next are different */
 215                if (test_tsk_thread_flag(next_p, TIF_NOTSC))
 216                        hard_disable_TSC();
 217                else
 218                        hard_enable_TSC();
 219        }
 220
 221        if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 222                /*
 223                 * Copy the relevant range of the IO bitmap.
 224                 * Normally this is 128 bytes or less:
 225                 */
 226                memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 227                       max(prev->io_bitmap_max, next->io_bitmap_max));
 228        } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 229                /*
 230                 * Clear any possible leftover bits:
 231                 */
 232                memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 233        }
 234        propagate_user_return_notify(prev_p, next_p);
 235}
 236
 237/*
 238 * Idle related variables and functions
 239 */
 240unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 241EXPORT_SYMBOL(boot_option_idle_override);
 242
 243static void (*x86_idle)(void);
 244
 245#ifndef CONFIG_SMP
 246static inline void play_dead(void)
 247{
 248        BUG();
 249}
 250#endif
 251
 252#ifdef CONFIG_X86_64
 253void enter_idle(void)
 254{
 255        this_cpu_write(is_idle, 1);
 256        atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 257}
 258
 259static void __exit_idle(void)
 260{
 261        if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
 262                return;
 263        atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
 264}
 265
 266/* Called from interrupts to signify idle end */
 267void exit_idle(void)
 268{
 269        /* idle loop has pid 0 */
 270        if (current->pid)
 271                return;
 272        __exit_idle();
 273}
 274#endif
 275
 276void arch_cpu_idle_enter(void)
 277{
 278        local_touch_nmi();
 279        enter_idle();
 280}
 281
 282void arch_cpu_idle_exit(void)
 283{
 284        __exit_idle();
 285}
 286
 287void arch_cpu_idle_dead(void)
 288{
 289        play_dead();
 290}
 291
 292/*
 293 * Called from the generic idle code.
 294 */
 295void arch_cpu_idle(void)
 296{
 297        x86_idle();
 298}
 299
 300/*
 301 * We use this if we don't have any better idle routine..
 302 */
 303void default_idle(void)
 304{
 305        trace_cpu_idle_rcuidle(1, smp_processor_id());
 306        safe_halt();
 307        trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 308}
 309#ifdef CONFIG_APM_MODULE
 310EXPORT_SYMBOL(default_idle);
 311#endif
 312
 313#ifdef CONFIG_XEN
 314bool xen_set_default_idle(void)
 315{
 316        bool ret = !!x86_idle;
 317
 318        x86_idle = default_idle;
 319
 320        return ret;
 321}
 322#endif
 323void stop_this_cpu(void *dummy)
 324{
 325        local_irq_disable();
 326        /*
 327         * Remove this CPU:
 328         */
 329        set_cpu_online(smp_processor_id(), false);
 330        disable_local_APIC();
 331        mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 332
 333        for (;;)
 334                halt();
 335}
 336
 337bool amd_e400_c1e_detected;
 338EXPORT_SYMBOL(amd_e400_c1e_detected);
 339
 340static cpumask_var_t amd_e400_c1e_mask;
 341
 342void amd_e400_remove_cpu(int cpu)
 343{
 344        if (amd_e400_c1e_mask != NULL)
 345                cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
 346}
 347
 348/*
 349 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
 350 * pending message MSR. If we detect C1E, then we handle it the same
 351 * way as C3 power states (local apic timer and TSC stop)
 352 */
 353static void amd_e400_idle(void)
 354{
 355        if (!amd_e400_c1e_detected) {
 356                u32 lo, hi;
 357
 358                rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 359
 360                if (lo & K8_INTP_C1E_ACTIVE_MASK) {
 361                        amd_e400_c1e_detected = true;
 362                        if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 363                                mark_tsc_unstable("TSC halt in AMD C1E");
 364                        pr_info("System has AMD C1E enabled\n");
 365                }
 366        }
 367
 368        if (amd_e400_c1e_detected) {
 369                int cpu = smp_processor_id();
 370
 371                if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
 372                        cpumask_set_cpu(cpu, amd_e400_c1e_mask);
 373                        /* Force broadcast so ACPI can not interfere. */
 374                        tick_broadcast_force();
 375                        pr_info("Switch to broadcast mode on CPU%d\n", cpu);
 376                }
 377                tick_broadcast_enter();
 378
 379                default_idle();
 380
 381                /*
 382                 * The switch back from broadcast mode needs to be
 383                 * called with interrupts disabled.
 384                 */
 385                local_irq_disable();
 386                tick_broadcast_exit();
 387                local_irq_enable();
 388        } else
 389                default_idle();
 390}
 391
 392/*
 393 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 394 * We can't rely on cpuidle installing MWAIT, because it will not load
 395 * on systems that support only C1 -- so the boot default must be MWAIT.
 396 *
 397 * Some AMD machines are the opposite, they depend on using HALT.
 398 *
 399 * So for default C1, which is used during boot until cpuidle loads,
 400 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 401 */
 402static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 403{
 404        if (c->x86_vendor != X86_VENDOR_INTEL)
 405                return 0;
 406
 407        if (!cpu_has(c, X86_FEATURE_MWAIT))
 408                return 0;
 409
 410        return 1;
 411}
 412
 413/*
 414 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 415 * with interrupts enabled and no flags, which is backwards compatible with the
 416 * original MWAIT implementation.
 417 */
 418static void mwait_idle(void)
 419{
 420        if (!current_set_polling_and_test()) {
 421                trace_cpu_idle_rcuidle(1, smp_processor_id());
 422                if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 423                        mb(); /* quirk */
 424                        clflush((void *)&current_thread_info()->flags);
 425                        mb(); /* quirk */
 426                }
 427
 428                __monitor((void *)&current_thread_info()->flags, 0, 0);
 429                if (!need_resched())
 430                        __sti_mwait(0, 0);
 431                else
 432                        local_irq_enable();
 433                trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 434        } else {
 435                local_irq_enable();
 436        }
 437        __current_clr_polling();
 438}
 439
 440void select_idle_routine(const struct cpuinfo_x86 *c)
 441{
 442#ifdef CONFIG_SMP
 443        if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 444                pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 445#endif
 446        if (x86_idle || boot_option_idle_override == IDLE_POLL)
 447                return;
 448
 449        if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
 450                /* E400: APIC timer interrupt does not wake up CPU from C1e */
 451                pr_info("using AMD E400 aware idle routine\n");
 452                x86_idle = amd_e400_idle;
 453        } else if (prefer_mwait_c1_over_halt(c)) {
 454                pr_info("using mwait in idle threads\n");
 455                x86_idle = mwait_idle;
 456        } else
 457                x86_idle = default_idle;
 458}
 459
 460void __init init_amd_e400_c1e_mask(void)
 461{
 462        /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
 463        if (x86_idle == amd_e400_idle)
 464                zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 465}
 466
 467static int __init idle_setup(char *str)
 468{
 469        if (!str)
 470                return -EINVAL;
 471
 472        if (!strcmp(str, "poll")) {
 473                pr_info("using polling idle threads\n");
 474                boot_option_idle_override = IDLE_POLL;
 475                cpu_idle_poll_ctrl(true);
 476        } else if (!strcmp(str, "halt")) {
 477                /*
 478                 * When the boot option of idle=halt is added, halt is
 479                 * forced to be used for CPU idle. In such case CPU C2/C3
 480                 * won't be used again.
 481                 * To continue to load the CPU idle driver, don't touch
 482                 * the boot_option_idle_override.
 483                 */
 484                x86_idle = default_idle;
 485                boot_option_idle_override = IDLE_HALT;
 486        } else if (!strcmp(str, "nomwait")) {
 487                /*
 488                 * If the boot option of "idle=nomwait" is added,
 489                 * it means that mwait will be disabled for CPU C2/C3
 490                 * states. In such case it won't touch the variable
 491                 * of boot_option_idle_override.
 492                 */
 493                boot_option_idle_override = IDLE_NOMWAIT;
 494        } else
 495                return -1;
 496
 497        return 0;
 498}
 499early_param("idle", idle_setup);
 500
 501unsigned long arch_align_stack(unsigned long sp)
 502{
 503        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 504                sp -= get_random_int() % 8192;
 505        return sp & ~0xf;
 506}
 507
 508unsigned long arch_randomize_brk(struct mm_struct *mm)
 509{
 510        unsigned long range_end = mm->brk + 0x02000000;
 511        return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 512}
 513
 514/*
 515 * Called from fs/proc with a reference on @p to find the function
 516 * which called into schedule(). This needs to be done carefully
 517 * because the task might wake up and we might look at a stack
 518 * changing under us.
 519 */
 520unsigned long get_wchan(struct task_struct *p)
 521{
 522        unsigned long start, bottom, top, sp, fp, ip;
 523        int count = 0;
 524
 525        if (!p || p == current || p->state == TASK_RUNNING)
 526                return 0;
 527
 528        start = (unsigned long)task_stack_page(p);
 529        if (!start)
 530                return 0;
 531
 532        /*
 533         * Layout of the stack page:
 534         *
 535         * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
 536         * PADDING
 537         * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
 538         * stack
 539         * ----------- bottom = start + sizeof(thread_info)
 540         * thread_info
 541         * ----------- start
 542         *
 543         * The tasks stack pointer points at the location where the
 544         * framepointer is stored. The data on the stack is:
 545         * ... IP FP ... IP FP
 546         *
 547         * We need to read FP and IP, so we need to adjust the upper
 548         * bound by another unsigned long.
 549         */
 550        top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
 551        top -= 2 * sizeof(unsigned long);
 552        bottom = start + sizeof(struct thread_info);
 553
 554        sp = READ_ONCE(p->thread.sp);
 555        if (sp < bottom || sp > top)
 556                return 0;
 557
 558        fp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
 559        do {
 560                if (fp < bottom || fp > top)
 561                        return 0;
 562                ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
 563                if (!in_sched_functions(ip))
 564                        return ip;
 565                fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
 566        } while (count++ < 16 && p->state != TASK_RUNNING);
 567        return 0;
 568}
 569