linux/arch/xtensa/kernel/stacktrace.c
<<
>>
Prefs
   1/*
   2 * Kernel and userspace stack tracing.
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 2001 - 2013 Tensilica Inc.
   9 * Copyright (C) 2015 Cadence Design Systems Inc.
  10 */
  11#include <linux/export.h>
  12#include <linux/sched.h>
  13#include <linux/stacktrace.h>
  14
  15#include <asm/stacktrace.h>
  16#include <asm/traps.h>
  17#include <asm/uaccess.h>
  18
  19#if IS_ENABLED(CONFIG_OPROFILE) || IS_ENABLED(CONFIG_PERF_EVENTS)
  20
  21/* Address of common_exception_return, used to check the
  22 * transition from kernel to user space.
  23 */
  24extern int common_exception_return;
  25
  26/* A struct that maps to the part of the frame containing the a0 and
  27 * a1 registers.
  28 */
  29struct frame_start {
  30        unsigned long a0;
  31        unsigned long a1;
  32};
  33
  34void xtensa_backtrace_user(struct pt_regs *regs, unsigned int depth,
  35                           int (*ufn)(struct stackframe *frame, void *data),
  36                           void *data)
  37{
  38        unsigned long windowstart = regs->windowstart;
  39        unsigned long windowbase = regs->windowbase;
  40        unsigned long a0 = regs->areg[0];
  41        unsigned long a1 = regs->areg[1];
  42        unsigned long pc = regs->pc;
  43        struct stackframe frame;
  44        int index;
  45
  46        if (!depth--)
  47                return;
  48
  49        frame.pc = pc;
  50        frame.sp = a1;
  51
  52        if (pc == 0 || pc >= TASK_SIZE || ufn(&frame, data))
  53                return;
  54
  55        /* Two steps:
  56         *
  57         * 1. Look through the register window for the
  58         * previous PCs in the call trace.
  59         *
  60         * 2. Look on the stack.
  61         */
  62
  63        /* Step 1.  */
  64        /* Rotate WINDOWSTART to move the bit corresponding to
  65         * the current window to the bit #0.
  66         */
  67        windowstart = (windowstart << WSBITS | windowstart) >> windowbase;
  68
  69        /* Look for bits that are set, they correspond to
  70         * valid windows.
  71         */
  72        for (index = WSBITS - 1; (index > 0) && depth; depth--, index--)
  73                if (windowstart & (1 << index)) {
  74                        /* Get the PC from a0 and a1. */
  75                        pc = MAKE_PC_FROM_RA(a0, pc);
  76                        /* Read a0 and a1 from the
  77                         * corresponding position in AREGs.
  78                         */
  79                        a0 = regs->areg[index * 4];
  80                        a1 = regs->areg[index * 4 + 1];
  81
  82                        frame.pc = pc;
  83                        frame.sp = a1;
  84
  85                        if (pc == 0 || pc >= TASK_SIZE || ufn(&frame, data))
  86                                return;
  87                }
  88
  89        /* Step 2. */
  90        /* We are done with the register window, we need to
  91         * look through the stack.
  92         */
  93        if (!depth)
  94                return;
  95
  96        /* Start from the a1 register. */
  97        /* a1 = regs->areg[1]; */
  98        while (a0 != 0 && depth--) {
  99                struct frame_start frame_start;
 100                /* Get the location for a1, a0 for the
 101                 * previous frame from the current a1.
 102                 */
 103                unsigned long *psp = (unsigned long *)a1;
 104
 105                psp -= 4;
 106
 107                /* Check if the region is OK to access. */
 108                if (!access_ok(VERIFY_READ, psp, sizeof(frame_start)))
 109                        return;
 110                /* Copy a1, a0 from user space stack frame. */
 111                if (__copy_from_user_inatomic(&frame_start, psp,
 112                                              sizeof(frame_start)))
 113                        return;
 114
 115                pc = MAKE_PC_FROM_RA(a0, pc);
 116                a0 = frame_start.a0;
 117                a1 = frame_start.a1;
 118
 119                frame.pc = pc;
 120                frame.sp = a1;
 121
 122                if (pc == 0 || pc >= TASK_SIZE || ufn(&frame, data))
 123                        return;
 124        }
 125}
 126EXPORT_SYMBOL(xtensa_backtrace_user);
 127
 128void xtensa_backtrace_kernel(struct pt_regs *regs, unsigned int depth,
 129                             int (*kfn)(struct stackframe *frame, void *data),
 130                             int (*ufn)(struct stackframe *frame, void *data),
 131                             void *data)
 132{
 133        unsigned long pc = regs->depc > VALID_DOUBLE_EXCEPTION_ADDRESS ?
 134                regs->depc : regs->pc;
 135        unsigned long sp_start, sp_end;
 136        unsigned long a0 = regs->areg[0];
 137        unsigned long a1 = regs->areg[1];
 138
 139        sp_start = a1 & ~(THREAD_SIZE - 1);
 140        sp_end = sp_start + THREAD_SIZE;
 141
 142        /* Spill the register window to the stack first. */
 143        spill_registers();
 144
 145        /* Read the stack frames one by one and create the PC
 146         * from the a0 and a1 registers saved there.
 147         */
 148        while (a1 > sp_start && a1 < sp_end && depth--) {
 149                struct stackframe frame;
 150                unsigned long *psp = (unsigned long *)a1;
 151
 152                frame.pc = pc;
 153                frame.sp = a1;
 154
 155                if (kernel_text_address(pc) && kfn(&frame, data))
 156                        return;
 157
 158                if (pc == (unsigned long)&common_exception_return) {
 159                        regs = (struct pt_regs *)a1;
 160                        if (user_mode(regs)) {
 161                                if (ufn == NULL)
 162                                        return;
 163                                xtensa_backtrace_user(regs, depth, ufn, data);
 164                                return;
 165                        }
 166                        a0 = regs->areg[0];
 167                        a1 = regs->areg[1];
 168                        continue;
 169                }
 170
 171                sp_start = a1;
 172
 173                pc = MAKE_PC_FROM_RA(a0, pc);
 174                a0 = *(psp - 4);
 175                a1 = *(psp - 3);
 176        }
 177}
 178EXPORT_SYMBOL(xtensa_backtrace_kernel);
 179
 180#endif
 181
 182void walk_stackframe(unsigned long *sp,
 183                int (*fn)(struct stackframe *frame, void *data),
 184                void *data)
 185{
 186        unsigned long a0, a1;
 187        unsigned long sp_end;
 188
 189        a1 = (unsigned long)sp;
 190        sp_end = ALIGN(a1, THREAD_SIZE);
 191
 192        spill_registers();
 193
 194        while (a1 < sp_end) {
 195                struct stackframe frame;
 196
 197                sp = (unsigned long *)a1;
 198
 199                a0 = *(sp - 4);
 200                a1 = *(sp - 3);
 201
 202                if (a1 <= (unsigned long)sp)
 203                        break;
 204
 205                frame.pc = MAKE_PC_FROM_RA(a0, a1);
 206                frame.sp = a1;
 207
 208                if (fn(&frame, data))
 209                        return;
 210        }
 211}
 212
 213#ifdef CONFIG_STACKTRACE
 214
 215struct stack_trace_data {
 216        struct stack_trace *trace;
 217        unsigned skip;
 218};
 219
 220static int stack_trace_cb(struct stackframe *frame, void *data)
 221{
 222        struct stack_trace_data *trace_data = data;
 223        struct stack_trace *trace = trace_data->trace;
 224
 225        if (trace_data->skip) {
 226                --trace_data->skip;
 227                return 0;
 228        }
 229        if (!kernel_text_address(frame->pc))
 230                return 0;
 231
 232        trace->entries[trace->nr_entries++] = frame->pc;
 233        return trace->nr_entries >= trace->max_entries;
 234}
 235
 236void save_stack_trace_tsk(struct task_struct *task, struct stack_trace *trace)
 237{
 238        struct stack_trace_data trace_data = {
 239                .trace = trace,
 240                .skip = trace->skip,
 241        };
 242        walk_stackframe(stack_pointer(task), stack_trace_cb, &trace_data);
 243}
 244EXPORT_SYMBOL_GPL(save_stack_trace_tsk);
 245
 246void save_stack_trace(struct stack_trace *trace)
 247{
 248        save_stack_trace_tsk(current, trace);
 249}
 250EXPORT_SYMBOL_GPL(save_stack_trace);
 251
 252#endif
 253
 254#ifdef CONFIG_FRAME_POINTER
 255
 256struct return_addr_data {
 257        unsigned long addr;
 258        unsigned skip;
 259};
 260
 261static int return_address_cb(struct stackframe *frame, void *data)
 262{
 263        struct return_addr_data *r = data;
 264
 265        if (r->skip) {
 266                --r->skip;
 267                return 0;
 268        }
 269        if (!kernel_text_address(frame->pc))
 270                return 0;
 271        r->addr = frame->pc;
 272        return 1;
 273}
 274
 275unsigned long return_address(unsigned level)
 276{
 277        struct return_addr_data r = {
 278                .skip = level + 1,
 279        };
 280        walk_stackframe(stack_pointer(NULL), return_address_cb, &r);
 281        return r.addr;
 282}
 283EXPORT_SYMBOL(return_address);
 284
 285#endif
 286