linux/block/blk-core.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *      -  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-mq.h>
  20#include <linux/highmem.h>
  21#include <linux/mm.h>
  22#include <linux/kernel_stat.h>
  23#include <linux/string.h>
  24#include <linux/init.h>
  25#include <linux/completion.h>
  26#include <linux/slab.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/task_io_accounting_ops.h>
  30#include <linux/fault-inject.h>
  31#include <linux/list_sort.h>
  32#include <linux/delay.h>
  33#include <linux/ratelimit.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/blk-cgroup.h>
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/block.h>
  39
  40#include "blk.h"
  41#include "blk-mq.h"
  42
  43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  44EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  45EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  46EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  47EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  48
  49DEFINE_IDA(blk_queue_ida);
  50
  51/*
  52 * For the allocated request tables
  53 */
  54struct kmem_cache *request_cachep;
  55
  56/*
  57 * For queue allocation
  58 */
  59struct kmem_cache *blk_requestq_cachep;
  60
  61/*
  62 * Controlling structure to kblockd
  63 */
  64static struct workqueue_struct *kblockd_workqueue;
  65
  66static void blk_clear_congested(struct request_list *rl, int sync)
  67{
  68#ifdef CONFIG_CGROUP_WRITEBACK
  69        clear_wb_congested(rl->blkg->wb_congested, sync);
  70#else
  71        /*
  72         * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
  73         * flip its congestion state for events on other blkcgs.
  74         */
  75        if (rl == &rl->q->root_rl)
  76                clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
  77#endif
  78}
  79
  80static void blk_set_congested(struct request_list *rl, int sync)
  81{
  82#ifdef CONFIG_CGROUP_WRITEBACK
  83        set_wb_congested(rl->blkg->wb_congested, sync);
  84#else
  85        /* see blk_clear_congested() */
  86        if (rl == &rl->q->root_rl)
  87                set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
  88#endif
  89}
  90
  91void blk_queue_congestion_threshold(struct request_queue *q)
  92{
  93        int nr;
  94
  95        nr = q->nr_requests - (q->nr_requests / 8) + 1;
  96        if (nr > q->nr_requests)
  97                nr = q->nr_requests;
  98        q->nr_congestion_on = nr;
  99
 100        nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 101        if (nr < 1)
 102                nr = 1;
 103        q->nr_congestion_off = nr;
 104}
 105
 106/**
 107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
 108 * @bdev:       device
 109 *
 110 * Locates the passed device's request queue and returns the address of its
 111 * backing_dev_info.  This function can only be called if @bdev is opened
 112 * and the return value is never NULL.
 113 */
 114struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
 115{
 116        struct request_queue *q = bdev_get_queue(bdev);
 117
 118        return &q->backing_dev_info;
 119}
 120EXPORT_SYMBOL(blk_get_backing_dev_info);
 121
 122void blk_rq_init(struct request_queue *q, struct request *rq)
 123{
 124        memset(rq, 0, sizeof(*rq));
 125
 126        INIT_LIST_HEAD(&rq->queuelist);
 127        INIT_LIST_HEAD(&rq->timeout_list);
 128        rq->cpu = -1;
 129        rq->q = q;
 130        rq->__sector = (sector_t) -1;
 131        INIT_HLIST_NODE(&rq->hash);
 132        RB_CLEAR_NODE(&rq->rb_node);
 133        rq->cmd = rq->__cmd;
 134        rq->cmd_len = BLK_MAX_CDB;
 135        rq->tag = -1;
 136        rq->start_time = jiffies;
 137        set_start_time_ns(rq);
 138        rq->part = NULL;
 139}
 140EXPORT_SYMBOL(blk_rq_init);
 141
 142static void req_bio_endio(struct request *rq, struct bio *bio,
 143                          unsigned int nbytes, int error)
 144{
 145        if (error)
 146                bio->bi_error = error;
 147
 148        if (unlikely(rq->cmd_flags & REQ_QUIET))
 149                bio_set_flag(bio, BIO_QUIET);
 150
 151        bio_advance(bio, nbytes);
 152
 153        /* don't actually finish bio if it's part of flush sequence */
 154        if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
 155                bio_endio(bio);
 156}
 157
 158void blk_dump_rq_flags(struct request *rq, char *msg)
 159{
 160        int bit;
 161
 162        printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
 163                rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 164                (unsigned long long) rq->cmd_flags);
 165
 166        printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 167               (unsigned long long)blk_rq_pos(rq),
 168               blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 169        printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 170               rq->bio, rq->biotail, blk_rq_bytes(rq));
 171
 172        if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 173                printk(KERN_INFO "  cdb: ");
 174                for (bit = 0; bit < BLK_MAX_CDB; bit++)
 175                        printk("%02x ", rq->cmd[bit]);
 176                printk("\n");
 177        }
 178}
 179EXPORT_SYMBOL(blk_dump_rq_flags);
 180
 181static void blk_delay_work(struct work_struct *work)
 182{
 183        struct request_queue *q;
 184
 185        q = container_of(work, struct request_queue, delay_work.work);
 186        spin_lock_irq(q->queue_lock);
 187        __blk_run_queue(q);
 188        spin_unlock_irq(q->queue_lock);
 189}
 190
 191/**
 192 * blk_delay_queue - restart queueing after defined interval
 193 * @q:          The &struct request_queue in question
 194 * @msecs:      Delay in msecs
 195 *
 196 * Description:
 197 *   Sometimes queueing needs to be postponed for a little while, to allow
 198 *   resources to come back. This function will make sure that queueing is
 199 *   restarted around the specified time. Queue lock must be held.
 200 */
 201void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 202{
 203        if (likely(!blk_queue_dead(q)))
 204                queue_delayed_work(kblockd_workqueue, &q->delay_work,
 205                                   msecs_to_jiffies(msecs));
 206}
 207EXPORT_SYMBOL(blk_delay_queue);
 208
 209/**
 210 * blk_start_queue_async - asynchronously restart a previously stopped queue
 211 * @q:    The &struct request_queue in question
 212 *
 213 * Description:
 214 *   blk_start_queue_async() will clear the stop flag on the queue, and
 215 *   ensure that the request_fn for the queue is run from an async
 216 *   context.
 217 **/
 218void blk_start_queue_async(struct request_queue *q)
 219{
 220        queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 221        blk_run_queue_async(q);
 222}
 223EXPORT_SYMBOL(blk_start_queue_async);
 224
 225/**
 226 * blk_start_queue - restart a previously stopped queue
 227 * @q:    The &struct request_queue in question
 228 *
 229 * Description:
 230 *   blk_start_queue() will clear the stop flag on the queue, and call
 231 *   the request_fn for the queue if it was in a stopped state when
 232 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 233 **/
 234void blk_start_queue(struct request_queue *q)
 235{
 236        WARN_ON(!irqs_disabled());
 237
 238        queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 239        __blk_run_queue(q);
 240}
 241EXPORT_SYMBOL(blk_start_queue);
 242
 243/**
 244 * blk_stop_queue - stop a queue
 245 * @q:    The &struct request_queue in question
 246 *
 247 * Description:
 248 *   The Linux block layer assumes that a block driver will consume all
 249 *   entries on the request queue when the request_fn strategy is called.
 250 *   Often this will not happen, because of hardware limitations (queue
 251 *   depth settings). If a device driver gets a 'queue full' response,
 252 *   or if it simply chooses not to queue more I/O at one point, it can
 253 *   call this function to prevent the request_fn from being called until
 254 *   the driver has signalled it's ready to go again. This happens by calling
 255 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 256 **/
 257void blk_stop_queue(struct request_queue *q)
 258{
 259        cancel_delayed_work(&q->delay_work);
 260        queue_flag_set(QUEUE_FLAG_STOPPED, q);
 261}
 262EXPORT_SYMBOL(blk_stop_queue);
 263
 264/**
 265 * blk_sync_queue - cancel any pending callbacks on a queue
 266 * @q: the queue
 267 *
 268 * Description:
 269 *     The block layer may perform asynchronous callback activity
 270 *     on a queue, such as calling the unplug function after a timeout.
 271 *     A block device may call blk_sync_queue to ensure that any
 272 *     such activity is cancelled, thus allowing it to release resources
 273 *     that the callbacks might use. The caller must already have made sure
 274 *     that its ->make_request_fn will not re-add plugging prior to calling
 275 *     this function.
 276 *
 277 *     This function does not cancel any asynchronous activity arising
 278 *     out of elevator or throttling code. That would require elevator_exit()
 279 *     and blkcg_exit_queue() to be called with queue lock initialized.
 280 *
 281 */
 282void blk_sync_queue(struct request_queue *q)
 283{
 284        del_timer_sync(&q->timeout);
 285
 286        if (q->mq_ops) {
 287                struct blk_mq_hw_ctx *hctx;
 288                int i;
 289
 290                queue_for_each_hw_ctx(q, hctx, i) {
 291                        cancel_delayed_work_sync(&hctx->run_work);
 292                        cancel_delayed_work_sync(&hctx->delay_work);
 293                }
 294        } else {
 295                cancel_delayed_work_sync(&q->delay_work);
 296        }
 297}
 298EXPORT_SYMBOL(blk_sync_queue);
 299
 300/**
 301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 302 * @q:  The queue to run
 303 *
 304 * Description:
 305 *    Invoke request handling on a queue if there are any pending requests.
 306 *    May be used to restart request handling after a request has completed.
 307 *    This variant runs the queue whether or not the queue has been
 308 *    stopped. Must be called with the queue lock held and interrupts
 309 *    disabled. See also @blk_run_queue.
 310 */
 311inline void __blk_run_queue_uncond(struct request_queue *q)
 312{
 313        if (unlikely(blk_queue_dead(q)))
 314                return;
 315
 316        /*
 317         * Some request_fn implementations, e.g. scsi_request_fn(), unlock
 318         * the queue lock internally. As a result multiple threads may be
 319         * running such a request function concurrently. Keep track of the
 320         * number of active request_fn invocations such that blk_drain_queue()
 321         * can wait until all these request_fn calls have finished.
 322         */
 323        q->request_fn_active++;
 324        q->request_fn(q);
 325        q->request_fn_active--;
 326}
 327EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
 328
 329/**
 330 * __blk_run_queue - run a single device queue
 331 * @q:  The queue to run
 332 *
 333 * Description:
 334 *    See @blk_run_queue. This variant must be called with the queue lock
 335 *    held and interrupts disabled.
 336 */
 337void __blk_run_queue(struct request_queue *q)
 338{
 339        if (unlikely(blk_queue_stopped(q)))
 340                return;
 341
 342        __blk_run_queue_uncond(q);
 343}
 344EXPORT_SYMBOL(__blk_run_queue);
 345
 346/**
 347 * blk_run_queue_async - run a single device queue in workqueue context
 348 * @q:  The queue to run
 349 *
 350 * Description:
 351 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 352 *    of us. The caller must hold the queue lock.
 353 */
 354void blk_run_queue_async(struct request_queue *q)
 355{
 356        if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
 357                mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 358}
 359EXPORT_SYMBOL(blk_run_queue_async);
 360
 361/**
 362 * blk_run_queue - run a single device queue
 363 * @q: The queue to run
 364 *
 365 * Description:
 366 *    Invoke request handling on this queue, if it has pending work to do.
 367 *    May be used to restart queueing when a request has completed.
 368 */
 369void blk_run_queue(struct request_queue *q)
 370{
 371        unsigned long flags;
 372
 373        spin_lock_irqsave(q->queue_lock, flags);
 374        __blk_run_queue(q);
 375        spin_unlock_irqrestore(q->queue_lock, flags);
 376}
 377EXPORT_SYMBOL(blk_run_queue);
 378
 379void blk_put_queue(struct request_queue *q)
 380{
 381        kobject_put(&q->kobj);
 382}
 383EXPORT_SYMBOL(blk_put_queue);
 384
 385/**
 386 * __blk_drain_queue - drain requests from request_queue
 387 * @q: queue to drain
 388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 389 *
 390 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 391 * If not, only ELVPRIV requests are drained.  The caller is responsible
 392 * for ensuring that no new requests which need to be drained are queued.
 393 */
 394static void __blk_drain_queue(struct request_queue *q, bool drain_all)
 395        __releases(q->queue_lock)
 396        __acquires(q->queue_lock)
 397{
 398        int i;
 399
 400        lockdep_assert_held(q->queue_lock);
 401
 402        while (true) {
 403                bool drain = false;
 404
 405                /*
 406                 * The caller might be trying to drain @q before its
 407                 * elevator is initialized.
 408                 */
 409                if (q->elevator)
 410                        elv_drain_elevator(q);
 411
 412                blkcg_drain_queue(q);
 413
 414                /*
 415                 * This function might be called on a queue which failed
 416                 * driver init after queue creation or is not yet fully
 417                 * active yet.  Some drivers (e.g. fd and loop) get unhappy
 418                 * in such cases.  Kick queue iff dispatch queue has
 419                 * something on it and @q has request_fn set.
 420                 */
 421                if (!list_empty(&q->queue_head) && q->request_fn)
 422                        __blk_run_queue(q);
 423
 424                drain |= q->nr_rqs_elvpriv;
 425                drain |= q->request_fn_active;
 426
 427                /*
 428                 * Unfortunately, requests are queued at and tracked from
 429                 * multiple places and there's no single counter which can
 430                 * be drained.  Check all the queues and counters.
 431                 */
 432                if (drain_all) {
 433                        struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 434                        drain |= !list_empty(&q->queue_head);
 435                        for (i = 0; i < 2; i++) {
 436                                drain |= q->nr_rqs[i];
 437                                drain |= q->in_flight[i];
 438                                if (fq)
 439                                    drain |= !list_empty(&fq->flush_queue[i]);
 440                        }
 441                }
 442
 443                if (!drain)
 444                        break;
 445
 446                spin_unlock_irq(q->queue_lock);
 447
 448                msleep(10);
 449
 450                spin_lock_irq(q->queue_lock);
 451        }
 452
 453        /*
 454         * With queue marked dead, any woken up waiter will fail the
 455         * allocation path, so the wakeup chaining is lost and we're
 456         * left with hung waiters. We need to wake up those waiters.
 457         */
 458        if (q->request_fn) {
 459                struct request_list *rl;
 460
 461                blk_queue_for_each_rl(rl, q)
 462                        for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
 463                                wake_up_all(&rl->wait[i]);
 464        }
 465}
 466
 467/**
 468 * blk_queue_bypass_start - enter queue bypass mode
 469 * @q: queue of interest
 470 *
 471 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 472 * function makes @q enter bypass mode and drains all requests which were
 473 * throttled or issued before.  On return, it's guaranteed that no request
 474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 475 * inside queue or RCU read lock.
 476 */
 477void blk_queue_bypass_start(struct request_queue *q)
 478{
 479        spin_lock_irq(q->queue_lock);
 480        q->bypass_depth++;
 481        queue_flag_set(QUEUE_FLAG_BYPASS, q);
 482        spin_unlock_irq(q->queue_lock);
 483
 484        /*
 485         * Queues start drained.  Skip actual draining till init is
 486         * complete.  This avoids lenghty delays during queue init which
 487         * can happen many times during boot.
 488         */
 489        if (blk_queue_init_done(q)) {
 490                spin_lock_irq(q->queue_lock);
 491                __blk_drain_queue(q, false);
 492                spin_unlock_irq(q->queue_lock);
 493
 494                /* ensure blk_queue_bypass() is %true inside RCU read lock */
 495                synchronize_rcu();
 496        }
 497}
 498EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
 499
 500/**
 501 * blk_queue_bypass_end - leave queue bypass mode
 502 * @q: queue of interest
 503 *
 504 * Leave bypass mode and restore the normal queueing behavior.
 505 */
 506void blk_queue_bypass_end(struct request_queue *q)
 507{
 508        spin_lock_irq(q->queue_lock);
 509        if (!--q->bypass_depth)
 510                queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 511        WARN_ON_ONCE(q->bypass_depth < 0);
 512        spin_unlock_irq(q->queue_lock);
 513}
 514EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
 515
 516void blk_set_queue_dying(struct request_queue *q)
 517{
 518        queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
 519
 520        if (q->mq_ops)
 521                blk_mq_wake_waiters(q);
 522        else {
 523                struct request_list *rl;
 524
 525                blk_queue_for_each_rl(rl, q) {
 526                        if (rl->rq_pool) {
 527                                wake_up(&rl->wait[BLK_RW_SYNC]);
 528                                wake_up(&rl->wait[BLK_RW_ASYNC]);
 529                        }
 530                }
 531        }
 532}
 533EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 534
 535/**
 536 * blk_cleanup_queue - shutdown a request queue
 537 * @q: request queue to shutdown
 538 *
 539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 540 * put it.  All future requests will be failed immediately with -ENODEV.
 541 */
 542void blk_cleanup_queue(struct request_queue *q)
 543{
 544        spinlock_t *lock = q->queue_lock;
 545
 546        /* mark @q DYING, no new request or merges will be allowed afterwards */
 547        mutex_lock(&q->sysfs_lock);
 548        blk_set_queue_dying(q);
 549        spin_lock_irq(lock);
 550
 551        /*
 552         * A dying queue is permanently in bypass mode till released.  Note
 553         * that, unlike blk_queue_bypass_start(), we aren't performing
 554         * synchronize_rcu() after entering bypass mode to avoid the delay
 555         * as some drivers create and destroy a lot of queues while
 556         * probing.  This is still safe because blk_release_queue() will be
 557         * called only after the queue refcnt drops to zero and nothing,
 558         * RCU or not, would be traversing the queue by then.
 559         */
 560        q->bypass_depth++;
 561        queue_flag_set(QUEUE_FLAG_BYPASS, q);
 562
 563        queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 564        queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 565        queue_flag_set(QUEUE_FLAG_DYING, q);
 566        spin_unlock_irq(lock);
 567        mutex_unlock(&q->sysfs_lock);
 568
 569        /*
 570         * Drain all requests queued before DYING marking. Set DEAD flag to
 571         * prevent that q->request_fn() gets invoked after draining finished.
 572         */
 573        blk_freeze_queue(q);
 574        spin_lock_irq(lock);
 575        if (!q->mq_ops)
 576                __blk_drain_queue(q, true);
 577        queue_flag_set(QUEUE_FLAG_DEAD, q);
 578        spin_unlock_irq(lock);
 579
 580        /* for synchronous bio-based driver finish in-flight integrity i/o */
 581        blk_flush_integrity();
 582
 583        /* @q won't process any more request, flush async actions */
 584        del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 585        blk_sync_queue(q);
 586
 587        if (q->mq_ops)
 588                blk_mq_free_queue(q);
 589        percpu_ref_exit(&q->q_usage_counter);
 590
 591        spin_lock_irq(lock);
 592        if (q->queue_lock != &q->__queue_lock)
 593                q->queue_lock = &q->__queue_lock;
 594        spin_unlock_irq(lock);
 595
 596        bdi_unregister(&q->backing_dev_info);
 597
 598        /* @q is and will stay empty, shutdown and put */
 599        blk_put_queue(q);
 600}
 601EXPORT_SYMBOL(blk_cleanup_queue);
 602
 603/* Allocate memory local to the request queue */
 604static void *alloc_request_struct(gfp_t gfp_mask, void *data)
 605{
 606        int nid = (int)(long)data;
 607        return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
 608}
 609
 610static void free_request_struct(void *element, void *unused)
 611{
 612        kmem_cache_free(request_cachep, element);
 613}
 614
 615int blk_init_rl(struct request_list *rl, struct request_queue *q,
 616                gfp_t gfp_mask)
 617{
 618        if (unlikely(rl->rq_pool))
 619                return 0;
 620
 621        rl->q = q;
 622        rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 623        rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 624        init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 625        init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 626
 627        rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
 628                                          free_request_struct,
 629                                          (void *)(long)q->node, gfp_mask,
 630                                          q->node);
 631        if (!rl->rq_pool)
 632                return -ENOMEM;
 633
 634        return 0;
 635}
 636
 637void blk_exit_rl(struct request_list *rl)
 638{
 639        if (rl->rq_pool)
 640                mempool_destroy(rl->rq_pool);
 641}
 642
 643struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 644{
 645        return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
 646}
 647EXPORT_SYMBOL(blk_alloc_queue);
 648
 649int blk_queue_enter(struct request_queue *q, bool nowait)
 650{
 651        while (true) {
 652                int ret;
 653
 654                if (percpu_ref_tryget_live(&q->q_usage_counter))
 655                        return 0;
 656
 657                if (nowait)
 658                        return -EBUSY;
 659
 660                ret = wait_event_interruptible(q->mq_freeze_wq,
 661                                !atomic_read(&q->mq_freeze_depth) ||
 662                                blk_queue_dying(q));
 663                if (blk_queue_dying(q))
 664                        return -ENODEV;
 665                if (ret)
 666                        return ret;
 667        }
 668}
 669
 670void blk_queue_exit(struct request_queue *q)
 671{
 672        percpu_ref_put(&q->q_usage_counter);
 673}
 674
 675static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 676{
 677        struct request_queue *q =
 678                container_of(ref, struct request_queue, q_usage_counter);
 679
 680        wake_up_all(&q->mq_freeze_wq);
 681}
 682
 683static void blk_rq_timed_out_timer(unsigned long data)
 684{
 685        struct request_queue *q = (struct request_queue *)data;
 686
 687        kblockd_schedule_work(&q->timeout_work);
 688}
 689
 690struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 691{
 692        struct request_queue *q;
 693        int err;
 694
 695        q = kmem_cache_alloc_node(blk_requestq_cachep,
 696                                gfp_mask | __GFP_ZERO, node_id);
 697        if (!q)
 698                return NULL;
 699
 700        q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
 701        if (q->id < 0)
 702                goto fail_q;
 703
 704        q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
 705        if (!q->bio_split)
 706                goto fail_id;
 707
 708        q->backing_dev_info.ra_pages =
 709                        (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
 710        q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
 711        q->backing_dev_info.name = "block";
 712        q->node = node_id;
 713
 714        err = bdi_init(&q->backing_dev_info);
 715        if (err)
 716                goto fail_split;
 717
 718        setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 719                    laptop_mode_timer_fn, (unsigned long) q);
 720        setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 721        INIT_LIST_HEAD(&q->queue_head);
 722        INIT_LIST_HEAD(&q->timeout_list);
 723        INIT_LIST_HEAD(&q->icq_list);
 724#ifdef CONFIG_BLK_CGROUP
 725        INIT_LIST_HEAD(&q->blkg_list);
 726#endif
 727        INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
 728
 729        kobject_init(&q->kobj, &blk_queue_ktype);
 730
 731        mutex_init(&q->sysfs_lock);
 732        spin_lock_init(&q->__queue_lock);
 733
 734        /*
 735         * By default initialize queue_lock to internal lock and driver can
 736         * override it later if need be.
 737         */
 738        q->queue_lock = &q->__queue_lock;
 739
 740        /*
 741         * A queue starts its life with bypass turned on to avoid
 742         * unnecessary bypass on/off overhead and nasty surprises during
 743         * init.  The initial bypass will be finished when the queue is
 744         * registered by blk_register_queue().
 745         */
 746        q->bypass_depth = 1;
 747        __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
 748
 749        init_waitqueue_head(&q->mq_freeze_wq);
 750
 751        /*
 752         * Init percpu_ref in atomic mode so that it's faster to shutdown.
 753         * See blk_register_queue() for details.
 754         */
 755        if (percpu_ref_init(&q->q_usage_counter,
 756                                blk_queue_usage_counter_release,
 757                                PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 758                goto fail_bdi;
 759
 760        if (blkcg_init_queue(q))
 761                goto fail_ref;
 762
 763        return q;
 764
 765fail_ref:
 766        percpu_ref_exit(&q->q_usage_counter);
 767fail_bdi:
 768        bdi_destroy(&q->backing_dev_info);
 769fail_split:
 770        bioset_free(q->bio_split);
 771fail_id:
 772        ida_simple_remove(&blk_queue_ida, q->id);
 773fail_q:
 774        kmem_cache_free(blk_requestq_cachep, q);
 775        return NULL;
 776}
 777EXPORT_SYMBOL(blk_alloc_queue_node);
 778
 779/**
 780 * blk_init_queue  - prepare a request queue for use with a block device
 781 * @rfn:  The function to be called to process requests that have been
 782 *        placed on the queue.
 783 * @lock: Request queue spin lock
 784 *
 785 * Description:
 786 *    If a block device wishes to use the standard request handling procedures,
 787 *    which sorts requests and coalesces adjacent requests, then it must
 788 *    call blk_init_queue().  The function @rfn will be called when there
 789 *    are requests on the queue that need to be processed.  If the device
 790 *    supports plugging, then @rfn may not be called immediately when requests
 791 *    are available on the queue, but may be called at some time later instead.
 792 *    Plugged queues are generally unplugged when a buffer belonging to one
 793 *    of the requests on the queue is needed, or due to memory pressure.
 794 *
 795 *    @rfn is not required, or even expected, to remove all requests off the
 796 *    queue, but only as many as it can handle at a time.  If it does leave
 797 *    requests on the queue, it is responsible for arranging that the requests
 798 *    get dealt with eventually.
 799 *
 800 *    The queue spin lock must be held while manipulating the requests on the
 801 *    request queue; this lock will be taken also from interrupt context, so irq
 802 *    disabling is needed for it.
 803 *
 804 *    Function returns a pointer to the initialized request queue, or %NULL if
 805 *    it didn't succeed.
 806 *
 807 * Note:
 808 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 809 *    when the block device is deactivated (such as at module unload).
 810 **/
 811
 812struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 813{
 814        return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
 815}
 816EXPORT_SYMBOL(blk_init_queue);
 817
 818struct request_queue *
 819blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 820{
 821        struct request_queue *uninit_q, *q;
 822
 823        uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 824        if (!uninit_q)
 825                return NULL;
 826
 827        q = blk_init_allocated_queue(uninit_q, rfn, lock);
 828        if (!q)
 829                blk_cleanup_queue(uninit_q);
 830
 831        return q;
 832}
 833EXPORT_SYMBOL(blk_init_queue_node);
 834
 835static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
 836
 837struct request_queue *
 838blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 839                         spinlock_t *lock)
 840{
 841        if (!q)
 842                return NULL;
 843
 844        q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
 845        if (!q->fq)
 846                return NULL;
 847
 848        if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
 849                goto fail;
 850
 851        INIT_WORK(&q->timeout_work, blk_timeout_work);
 852        q->request_fn           = rfn;
 853        q->prep_rq_fn           = NULL;
 854        q->unprep_rq_fn         = NULL;
 855        q->queue_flags          |= QUEUE_FLAG_DEFAULT;
 856
 857        /* Override internal queue lock with supplied lock pointer */
 858        if (lock)
 859                q->queue_lock           = lock;
 860
 861        /*
 862         * This also sets hw/phys segments, boundary and size
 863         */
 864        blk_queue_make_request(q, blk_queue_bio);
 865
 866        q->sg_reserved_size = INT_MAX;
 867
 868        /* Protect q->elevator from elevator_change */
 869        mutex_lock(&q->sysfs_lock);
 870
 871        /* init elevator */
 872        if (elevator_init(q, NULL)) {
 873                mutex_unlock(&q->sysfs_lock);
 874                goto fail;
 875        }
 876
 877        mutex_unlock(&q->sysfs_lock);
 878
 879        return q;
 880
 881fail:
 882        blk_free_flush_queue(q->fq);
 883        return NULL;
 884}
 885EXPORT_SYMBOL(blk_init_allocated_queue);
 886
 887bool blk_get_queue(struct request_queue *q)
 888{
 889        if (likely(!blk_queue_dying(q))) {
 890                __blk_get_queue(q);
 891                return true;
 892        }
 893
 894        return false;
 895}
 896EXPORT_SYMBOL(blk_get_queue);
 897
 898static inline void blk_free_request(struct request_list *rl, struct request *rq)
 899{
 900        if (rq->cmd_flags & REQ_ELVPRIV) {
 901                elv_put_request(rl->q, rq);
 902                if (rq->elv.icq)
 903                        put_io_context(rq->elv.icq->ioc);
 904        }
 905
 906        mempool_free(rq, rl->rq_pool);
 907}
 908
 909/*
 910 * ioc_batching returns true if the ioc is a valid batching request and
 911 * should be given priority access to a request.
 912 */
 913static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 914{
 915        if (!ioc)
 916                return 0;
 917
 918        /*
 919         * Make sure the process is able to allocate at least 1 request
 920         * even if the batch times out, otherwise we could theoretically
 921         * lose wakeups.
 922         */
 923        return ioc->nr_batch_requests == q->nr_batching ||
 924                (ioc->nr_batch_requests > 0
 925                && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 926}
 927
 928/*
 929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 930 * will cause the process to be a "batcher" on all queues in the system. This
 931 * is the behaviour we want though - once it gets a wakeup it should be given
 932 * a nice run.
 933 */
 934static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 935{
 936        if (!ioc || ioc_batching(q, ioc))
 937                return;
 938
 939        ioc->nr_batch_requests = q->nr_batching;
 940        ioc->last_waited = jiffies;
 941}
 942
 943static void __freed_request(struct request_list *rl, int sync)
 944{
 945        struct request_queue *q = rl->q;
 946
 947        if (rl->count[sync] < queue_congestion_off_threshold(q))
 948                blk_clear_congested(rl, sync);
 949
 950        if (rl->count[sync] + 1 <= q->nr_requests) {
 951                if (waitqueue_active(&rl->wait[sync]))
 952                        wake_up(&rl->wait[sync]);
 953
 954                blk_clear_rl_full(rl, sync);
 955        }
 956}
 957
 958/*
 959 * A request has just been released.  Account for it, update the full and
 960 * congestion status, wake up any waiters.   Called under q->queue_lock.
 961 */
 962static void freed_request(struct request_list *rl, unsigned int flags)
 963{
 964        struct request_queue *q = rl->q;
 965        int sync = rw_is_sync(flags);
 966
 967        q->nr_rqs[sync]--;
 968        rl->count[sync]--;
 969        if (flags & REQ_ELVPRIV)
 970                q->nr_rqs_elvpriv--;
 971
 972        __freed_request(rl, sync);
 973
 974        if (unlikely(rl->starved[sync ^ 1]))
 975                __freed_request(rl, sync ^ 1);
 976}
 977
 978int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
 979{
 980        struct request_list *rl;
 981        int on_thresh, off_thresh;
 982
 983        spin_lock_irq(q->queue_lock);
 984        q->nr_requests = nr;
 985        blk_queue_congestion_threshold(q);
 986        on_thresh = queue_congestion_on_threshold(q);
 987        off_thresh = queue_congestion_off_threshold(q);
 988
 989        blk_queue_for_each_rl(rl, q) {
 990                if (rl->count[BLK_RW_SYNC] >= on_thresh)
 991                        blk_set_congested(rl, BLK_RW_SYNC);
 992                else if (rl->count[BLK_RW_SYNC] < off_thresh)
 993                        blk_clear_congested(rl, BLK_RW_SYNC);
 994
 995                if (rl->count[BLK_RW_ASYNC] >= on_thresh)
 996                        blk_set_congested(rl, BLK_RW_ASYNC);
 997                else if (rl->count[BLK_RW_ASYNC] < off_thresh)
 998                        blk_clear_congested(rl, BLK_RW_ASYNC);
 999
1000                if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001                        blk_set_rl_full(rl, BLK_RW_SYNC);
1002                } else {
1003                        blk_clear_rl_full(rl, BLK_RW_SYNC);
1004                        wake_up(&rl->wait[BLK_RW_SYNC]);
1005                }
1006
1007                if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008                        blk_set_rl_full(rl, BLK_RW_ASYNC);
1009                } else {
1010                        blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011                        wake_up(&rl->wait[BLK_RW_ASYNC]);
1012                }
1013        }
1014
1015        spin_unlock_irq(q->queue_lock);
1016        return 0;
1017}
1018
1019/*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023static bool blk_rq_should_init_elevator(struct bio *bio)
1024{
1025        if (!bio)
1026                return true;
1027
1028        /*
1029         * Flush requests do not use the elevator so skip initialization.
1030         * This allows a request to share the flush and elevator data.
1031         */
1032        if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033                return false;
1034
1035        return true;
1036}
1037
1038/**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio.  May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045static struct io_context *rq_ioc(struct bio *bio)
1046{
1047#ifdef CONFIG_BLK_CGROUP
1048        if (bio && bio->bi_ioc)
1049                return bio->bi_ioc;
1050#endif
1051        return current->io_context;
1052}
1053
1054/**
1055 * __get_request - get a free request
1056 * @rl: request list to allocate from
1057 * @rw_flags: RW and SYNC flags
1058 * @bio: bio to allocate request for (can be %NULL)
1059 * @gfp_mask: allocation mask
1060 *
1061 * Get a free request from @q.  This function may fail under memory
1062 * pressure or if @q is dead.
1063 *
1064 * Must be called with @q->queue_lock held and,
1065 * Returns ERR_PTR on failure, with @q->queue_lock held.
1066 * Returns request pointer on success, with @q->queue_lock *not held*.
1067 */
1068static struct request *__get_request(struct request_list *rl, int rw_flags,
1069                                     struct bio *bio, gfp_t gfp_mask)
1070{
1071        struct request_queue *q = rl->q;
1072        struct request *rq;
1073        struct elevator_type *et = q->elevator->type;
1074        struct io_context *ioc = rq_ioc(bio);
1075        struct io_cq *icq = NULL;
1076        const bool is_sync = rw_is_sync(rw_flags) != 0;
1077        int may_queue;
1078
1079        if (unlikely(blk_queue_dying(q)))
1080                return ERR_PTR(-ENODEV);
1081
1082        may_queue = elv_may_queue(q, rw_flags);
1083        if (may_queue == ELV_MQUEUE_NO)
1084                goto rq_starved;
1085
1086        if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1087                if (rl->count[is_sync]+1 >= q->nr_requests) {
1088                        /*
1089                         * The queue will fill after this allocation, so set
1090                         * it as full, and mark this process as "batching".
1091                         * This process will be allowed to complete a batch of
1092                         * requests, others will be blocked.
1093                         */
1094                        if (!blk_rl_full(rl, is_sync)) {
1095                                ioc_set_batching(q, ioc);
1096                                blk_set_rl_full(rl, is_sync);
1097                        } else {
1098                                if (may_queue != ELV_MQUEUE_MUST
1099                                                && !ioc_batching(q, ioc)) {
1100                                        /*
1101                                         * The queue is full and the allocating
1102                                         * process is not a "batcher", and not
1103                                         * exempted by the IO scheduler
1104                                         */
1105                                        return ERR_PTR(-ENOMEM);
1106                                }
1107                        }
1108                }
1109                blk_set_congested(rl, is_sync);
1110        }
1111
1112        /*
1113         * Only allow batching queuers to allocate up to 50% over the defined
1114         * limit of requests, otherwise we could have thousands of requests
1115         * allocated with any setting of ->nr_requests
1116         */
1117        if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1118                return ERR_PTR(-ENOMEM);
1119
1120        q->nr_rqs[is_sync]++;
1121        rl->count[is_sync]++;
1122        rl->starved[is_sync] = 0;
1123
1124        /*
1125         * Decide whether the new request will be managed by elevator.  If
1126         * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1127         * prevent the current elevator from being destroyed until the new
1128         * request is freed.  This guarantees icq's won't be destroyed and
1129         * makes creating new ones safe.
1130         *
1131         * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1132         * it will be created after releasing queue_lock.
1133         */
1134        if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1135                rw_flags |= REQ_ELVPRIV;
1136                q->nr_rqs_elvpriv++;
1137                if (et->icq_cache && ioc)
1138                        icq = ioc_lookup_icq(ioc, q);
1139        }
1140
1141        if (blk_queue_io_stat(q))
1142                rw_flags |= REQ_IO_STAT;
1143        spin_unlock_irq(q->queue_lock);
1144
1145        /* allocate and init request */
1146        rq = mempool_alloc(rl->rq_pool, gfp_mask);
1147        if (!rq)
1148                goto fail_alloc;
1149
1150        blk_rq_init(q, rq);
1151        blk_rq_set_rl(rq, rl);
1152        rq->cmd_flags = rw_flags | REQ_ALLOCED;
1153
1154        /* init elvpriv */
1155        if (rw_flags & REQ_ELVPRIV) {
1156                if (unlikely(et->icq_cache && !icq)) {
1157                        if (ioc)
1158                                icq = ioc_create_icq(ioc, q, gfp_mask);
1159                        if (!icq)
1160                                goto fail_elvpriv;
1161                }
1162
1163                rq->elv.icq = icq;
1164                if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1165                        goto fail_elvpriv;
1166
1167                /* @rq->elv.icq holds io_context until @rq is freed */
1168                if (icq)
1169                        get_io_context(icq->ioc);
1170        }
1171out:
1172        /*
1173         * ioc may be NULL here, and ioc_batching will be false. That's
1174         * OK, if the queue is under the request limit then requests need
1175         * not count toward the nr_batch_requests limit. There will always
1176         * be some limit enforced by BLK_BATCH_TIME.
1177         */
1178        if (ioc_batching(q, ioc))
1179                ioc->nr_batch_requests--;
1180
1181        trace_block_getrq(q, bio, rw_flags & 1);
1182        return rq;
1183
1184fail_elvpriv:
1185        /*
1186         * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1187         * and may fail indefinitely under memory pressure and thus
1188         * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1189         * disturb iosched and blkcg but weird is bettern than dead.
1190         */
1191        printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1192                           __func__, dev_name(q->backing_dev_info.dev));
1193
1194        rq->cmd_flags &= ~REQ_ELVPRIV;
1195        rq->elv.icq = NULL;
1196
1197        spin_lock_irq(q->queue_lock);
1198        q->nr_rqs_elvpriv--;
1199        spin_unlock_irq(q->queue_lock);
1200        goto out;
1201
1202fail_alloc:
1203        /*
1204         * Allocation failed presumably due to memory. Undo anything we
1205         * might have messed up.
1206         *
1207         * Allocating task should really be put onto the front of the wait
1208         * queue, but this is pretty rare.
1209         */
1210        spin_lock_irq(q->queue_lock);
1211        freed_request(rl, rw_flags);
1212
1213        /*
1214         * in the very unlikely event that allocation failed and no
1215         * requests for this direction was pending, mark us starved so that
1216         * freeing of a request in the other direction will notice
1217         * us. another possible fix would be to split the rq mempool into
1218         * READ and WRITE
1219         */
1220rq_starved:
1221        if (unlikely(rl->count[is_sync] == 0))
1222                rl->starved[is_sync] = 1;
1223        return ERR_PTR(-ENOMEM);
1224}
1225
1226/**
1227 * get_request - get a free request
1228 * @q: request_queue to allocate request from
1229 * @rw_flags: RW and SYNC flags
1230 * @bio: bio to allocate request for (can be %NULL)
1231 * @gfp_mask: allocation mask
1232 *
1233 * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1234 * this function keeps retrying under memory pressure and fails iff @q is dead.
1235 *
1236 * Must be called with @q->queue_lock held and,
1237 * Returns ERR_PTR on failure, with @q->queue_lock held.
1238 * Returns request pointer on success, with @q->queue_lock *not held*.
1239 */
1240static struct request *get_request(struct request_queue *q, int rw_flags,
1241                                   struct bio *bio, gfp_t gfp_mask)
1242{
1243        const bool is_sync = rw_is_sync(rw_flags) != 0;
1244        DEFINE_WAIT(wait);
1245        struct request_list *rl;
1246        struct request *rq;
1247
1248        rl = blk_get_rl(q, bio);        /* transferred to @rq on success */
1249retry:
1250        rq = __get_request(rl, rw_flags, bio, gfp_mask);
1251        if (!IS_ERR(rq))
1252                return rq;
1253
1254        if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1255                blk_put_rl(rl);
1256                return rq;
1257        }
1258
1259        /* wait on @rl and retry */
1260        prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1261                                  TASK_UNINTERRUPTIBLE);
1262
1263        trace_block_sleeprq(q, bio, rw_flags & 1);
1264
1265        spin_unlock_irq(q->queue_lock);
1266        io_schedule();
1267
1268        /*
1269         * After sleeping, we become a "batching" process and will be able
1270         * to allocate at least one request, and up to a big batch of them
1271         * for a small period time.  See ioc_batching, ioc_set_batching
1272         */
1273        ioc_set_batching(q, current->io_context);
1274
1275        spin_lock_irq(q->queue_lock);
1276        finish_wait(&rl->wait[is_sync], &wait);
1277
1278        goto retry;
1279}
1280
1281static struct request *blk_old_get_request(struct request_queue *q, int rw,
1282                gfp_t gfp_mask)
1283{
1284        struct request *rq;
1285
1286        BUG_ON(rw != READ && rw != WRITE);
1287
1288        /* create ioc upfront */
1289        create_io_context(gfp_mask, q->node);
1290
1291        spin_lock_irq(q->queue_lock);
1292        rq = get_request(q, rw, NULL, gfp_mask);
1293        if (IS_ERR(rq))
1294                spin_unlock_irq(q->queue_lock);
1295        /* q->queue_lock is unlocked at this point */
1296
1297        return rq;
1298}
1299
1300struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301{
1302        if (q->mq_ops)
1303                return blk_mq_alloc_request(q, rw,
1304                        (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305                                0 : BLK_MQ_REQ_NOWAIT);
1306        else
1307                return blk_old_get_request(q, rw, gfp_mask);
1308}
1309EXPORT_SYMBOL(blk_get_request);
1310
1311/**
1312 * blk_make_request - given a bio, allocate a corresponding struct request.
1313 * @q: target request queue
1314 * @bio:  The bio describing the memory mappings that will be submitted for IO.
1315 *        It may be a chained-bio properly constructed by block/bio layer.
1316 * @gfp_mask: gfp flags to be used for memory allocation
1317 *
1318 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1319 * type commands. Where the struct request needs to be farther initialized by
1320 * the caller. It is passed a &struct bio, which describes the memory info of
1321 * the I/O transfer.
1322 *
1323 * The caller of blk_make_request must make sure that bi_io_vec
1324 * are set to describe the memory buffers. That bio_data_dir() will return
1325 * the needed direction of the request. (And all bio's in the passed bio-chain
1326 * are properly set accordingly)
1327 *
1328 * If called under none-sleepable conditions, mapped bio buffers must not
1329 * need bouncing, by calling the appropriate masked or flagged allocator,
1330 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1331 * BUG.
1332 *
1333 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1334 * given to how you allocate bios. In particular, you cannot use
1335 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1336 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1337 * thus resulting in a deadlock. Alternatively bios should be allocated using
1338 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1339 * If possible a big IO should be split into smaller parts when allocation
1340 * fails. Partial allocation should not be an error, or you risk a live-lock.
1341 */
1342struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1343                                 gfp_t gfp_mask)
1344{
1345        struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1346
1347        if (IS_ERR(rq))
1348                return rq;
1349
1350        blk_rq_set_block_pc(rq);
1351
1352        for_each_bio(bio) {
1353                struct bio *bounce_bio = bio;
1354                int ret;
1355
1356                blk_queue_bounce(q, &bounce_bio);
1357                ret = blk_rq_append_bio(q, rq, bounce_bio);
1358                if (unlikely(ret)) {
1359                        blk_put_request(rq);
1360                        return ERR_PTR(ret);
1361                }
1362        }
1363
1364        return rq;
1365}
1366EXPORT_SYMBOL(blk_make_request);
1367
1368/**
1369 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1370 * @rq:         request to be initialized
1371 *
1372 */
1373void blk_rq_set_block_pc(struct request *rq)
1374{
1375        rq->cmd_type = REQ_TYPE_BLOCK_PC;
1376        rq->__data_len = 0;
1377        rq->__sector = (sector_t) -1;
1378        rq->bio = rq->biotail = NULL;
1379        memset(rq->__cmd, 0, sizeof(rq->__cmd));
1380}
1381EXPORT_SYMBOL(blk_rq_set_block_pc);
1382
1383/**
1384 * blk_requeue_request - put a request back on queue
1385 * @q:          request queue where request should be inserted
1386 * @rq:         request to be inserted
1387 *
1388 * Description:
1389 *    Drivers often keep queueing requests until the hardware cannot accept
1390 *    more, when that condition happens we need to put the request back
1391 *    on the queue. Must be called with queue lock held.
1392 */
1393void blk_requeue_request(struct request_queue *q, struct request *rq)
1394{
1395        blk_delete_timer(rq);
1396        blk_clear_rq_complete(rq);
1397        trace_block_rq_requeue(q, rq);
1398
1399        if (rq->cmd_flags & REQ_QUEUED)
1400                blk_queue_end_tag(q, rq);
1401
1402        BUG_ON(blk_queued_rq(rq));
1403
1404        elv_requeue_request(q, rq);
1405}
1406EXPORT_SYMBOL(blk_requeue_request);
1407
1408static void add_acct_request(struct request_queue *q, struct request *rq,
1409                             int where)
1410{
1411        blk_account_io_start(rq, true);
1412        __elv_add_request(q, rq, where);
1413}
1414
1415static void part_round_stats_single(int cpu, struct hd_struct *part,
1416                                    unsigned long now)
1417{
1418        int inflight;
1419
1420        if (now == part->stamp)
1421                return;
1422
1423        inflight = part_in_flight(part);
1424        if (inflight) {
1425                __part_stat_add(cpu, part, time_in_queue,
1426                                inflight * (now - part->stamp));
1427                __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1428        }
1429        part->stamp = now;
1430}
1431
1432/**
1433 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1434 * @cpu: cpu number for stats access
1435 * @part: target partition
1436 *
1437 * The average IO queue length and utilisation statistics are maintained
1438 * by observing the current state of the queue length and the amount of
1439 * time it has been in this state for.
1440 *
1441 * Normally, that accounting is done on IO completion, but that can result
1442 * in more than a second's worth of IO being accounted for within any one
1443 * second, leading to >100% utilisation.  To deal with that, we call this
1444 * function to do a round-off before returning the results when reading
1445 * /proc/diskstats.  This accounts immediately for all queue usage up to
1446 * the current jiffies and restarts the counters again.
1447 */
1448void part_round_stats(int cpu, struct hd_struct *part)
1449{
1450        unsigned long now = jiffies;
1451
1452        if (part->partno)
1453                part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1454        part_round_stats_single(cpu, part, now);
1455}
1456EXPORT_SYMBOL_GPL(part_round_stats);
1457
1458#ifdef CONFIG_PM
1459static void blk_pm_put_request(struct request *rq)
1460{
1461        if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1462                pm_runtime_mark_last_busy(rq->q->dev);
1463}
1464#else
1465static inline void blk_pm_put_request(struct request *rq) {}
1466#endif
1467
1468/*
1469 * queue lock must be held
1470 */
1471void __blk_put_request(struct request_queue *q, struct request *req)
1472{
1473        if (unlikely(!q))
1474                return;
1475
1476        if (q->mq_ops) {
1477                blk_mq_free_request(req);
1478                return;
1479        }
1480
1481        blk_pm_put_request(req);
1482
1483        elv_completed_request(q, req);
1484
1485        /* this is a bio leak */
1486        WARN_ON(req->bio != NULL);
1487
1488        /*
1489         * Request may not have originated from ll_rw_blk. if not,
1490         * it didn't come out of our reserved rq pools
1491         */
1492        if (req->cmd_flags & REQ_ALLOCED) {
1493                unsigned int flags = req->cmd_flags;
1494                struct request_list *rl = blk_rq_rl(req);
1495
1496                BUG_ON(!list_empty(&req->queuelist));
1497                BUG_ON(ELV_ON_HASH(req));
1498
1499                blk_free_request(rl, req);
1500                freed_request(rl, flags);
1501                blk_put_rl(rl);
1502        }
1503}
1504EXPORT_SYMBOL_GPL(__blk_put_request);
1505
1506void blk_put_request(struct request *req)
1507{
1508        struct request_queue *q = req->q;
1509
1510        if (q->mq_ops)
1511                blk_mq_free_request(req);
1512        else {
1513                unsigned long flags;
1514
1515                spin_lock_irqsave(q->queue_lock, flags);
1516                __blk_put_request(q, req);
1517                spin_unlock_irqrestore(q->queue_lock, flags);
1518        }
1519}
1520EXPORT_SYMBOL(blk_put_request);
1521
1522/**
1523 * blk_add_request_payload - add a payload to a request
1524 * @rq: request to update
1525 * @page: page backing the payload
1526 * @offset: offset in page
1527 * @len: length of the payload.
1528 *
1529 * This allows to later add a payload to an already submitted request by
1530 * a block driver.  The driver needs to take care of freeing the payload
1531 * itself.
1532 *
1533 * Note that this is a quite horrible hack and nothing but handling of
1534 * discard requests should ever use it.
1535 */
1536void blk_add_request_payload(struct request *rq, struct page *page,
1537                int offset, unsigned int len)
1538{
1539        struct bio *bio = rq->bio;
1540
1541        bio->bi_io_vec->bv_page = page;
1542        bio->bi_io_vec->bv_offset = offset;
1543        bio->bi_io_vec->bv_len = len;
1544
1545        bio->bi_iter.bi_size = len;
1546        bio->bi_vcnt = 1;
1547        bio->bi_phys_segments = 1;
1548
1549        rq->__data_len = rq->resid_len = len;
1550        rq->nr_phys_segments = 1;
1551}
1552EXPORT_SYMBOL_GPL(blk_add_request_payload);
1553
1554bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1555                            struct bio *bio)
1556{
1557        const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1558
1559        if (!ll_back_merge_fn(q, req, bio))
1560                return false;
1561
1562        trace_block_bio_backmerge(q, req, bio);
1563
1564        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1565                blk_rq_set_mixed_merge(req);
1566
1567        req->biotail->bi_next = bio;
1568        req->biotail = bio;
1569        req->__data_len += bio->bi_iter.bi_size;
1570        req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1571
1572        blk_account_io_start(req, false);
1573        return true;
1574}
1575
1576bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1577                             struct bio *bio)
1578{
1579        const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1580
1581        if (!ll_front_merge_fn(q, req, bio))
1582                return false;
1583
1584        trace_block_bio_frontmerge(q, req, bio);
1585
1586        if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1587                blk_rq_set_mixed_merge(req);
1588
1589        bio->bi_next = req->bio;
1590        req->bio = bio;
1591
1592        req->__sector = bio->bi_iter.bi_sector;
1593        req->__data_len += bio->bi_iter.bi_size;
1594        req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1595
1596        blk_account_io_start(req, false);
1597        return true;
1598}
1599
1600/**
1601 * blk_attempt_plug_merge - try to merge with %current's plugged list
1602 * @q: request_queue new bio is being queued at
1603 * @bio: new bio being queued
1604 * @request_count: out parameter for number of traversed plugged requests
1605 * @same_queue_rq: pointer to &struct request that gets filled in when
1606 * another request associated with @q is found on the plug list
1607 * (optional, may be %NULL)
1608 *
1609 * Determine whether @bio being queued on @q can be merged with a request
1610 * on %current's plugged list.  Returns %true if merge was successful,
1611 * otherwise %false.
1612 *
1613 * Plugging coalesces IOs from the same issuer for the same purpose without
1614 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1615 * than scheduling, and the request, while may have elvpriv data, is not
1616 * added on the elevator at this point.  In addition, we don't have
1617 * reliable access to the elevator outside queue lock.  Only check basic
1618 * merging parameters without querying the elevator.
1619 *
1620 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1621 */
1622bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1623                            unsigned int *request_count,
1624                            struct request **same_queue_rq)
1625{
1626        struct blk_plug *plug;
1627        struct request *rq;
1628        bool ret = false;
1629        struct list_head *plug_list;
1630
1631        plug = current->plug;
1632        if (!plug)
1633                goto out;
1634        *request_count = 0;
1635
1636        if (q->mq_ops)
1637                plug_list = &plug->mq_list;
1638        else
1639                plug_list = &plug->list;
1640
1641        list_for_each_entry_reverse(rq, plug_list, queuelist) {
1642                int el_ret;
1643
1644                if (rq->q == q) {
1645                        (*request_count)++;
1646                        /*
1647                         * Only blk-mq multiple hardware queues case checks the
1648                         * rq in the same queue, there should be only one such
1649                         * rq in a queue
1650                         **/
1651                        if (same_queue_rq)
1652                                *same_queue_rq = rq;
1653                }
1654
1655                if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1656                        continue;
1657
1658                el_ret = blk_try_merge(rq, bio);
1659                if (el_ret == ELEVATOR_BACK_MERGE) {
1660                        ret = bio_attempt_back_merge(q, rq, bio);
1661                        if (ret)
1662                                break;
1663                } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1664                        ret = bio_attempt_front_merge(q, rq, bio);
1665                        if (ret)
1666                                break;
1667                }
1668        }
1669out:
1670        return ret;
1671}
1672
1673unsigned int blk_plug_queued_count(struct request_queue *q)
1674{
1675        struct blk_plug *plug;
1676        struct request *rq;
1677        struct list_head *plug_list;
1678        unsigned int ret = 0;
1679
1680        plug = current->plug;
1681        if (!plug)
1682                goto out;
1683
1684        if (q->mq_ops)
1685                plug_list = &plug->mq_list;
1686        else
1687                plug_list = &plug->list;
1688
1689        list_for_each_entry(rq, plug_list, queuelist) {
1690                if (rq->q == q)
1691                        ret++;
1692        }
1693out:
1694        return ret;
1695}
1696
1697void init_request_from_bio(struct request *req, struct bio *bio)
1698{
1699        req->cmd_type = REQ_TYPE_FS;
1700
1701        req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1702        if (bio->bi_rw & REQ_RAHEAD)
1703                req->cmd_flags |= REQ_FAILFAST_MASK;
1704
1705        req->errors = 0;
1706        req->__sector = bio->bi_iter.bi_sector;
1707        req->ioprio = bio_prio(bio);
1708        blk_rq_bio_prep(req->q, req, bio);
1709}
1710
1711static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1712{
1713        const bool sync = !!(bio->bi_rw & REQ_SYNC);
1714        struct blk_plug *plug;
1715        int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1716        struct request *req;
1717        unsigned int request_count = 0;
1718
1719        /*
1720         * low level driver can indicate that it wants pages above a
1721         * certain limit bounced to low memory (ie for highmem, or even
1722         * ISA dma in theory)
1723         */
1724        blk_queue_bounce(q, &bio);
1725
1726        blk_queue_split(q, &bio, q->bio_split);
1727
1728        if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1729                bio->bi_error = -EIO;
1730                bio_endio(bio);
1731                return BLK_QC_T_NONE;
1732        }
1733
1734        if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1735                spin_lock_irq(q->queue_lock);
1736                where = ELEVATOR_INSERT_FLUSH;
1737                goto get_rq;
1738        }
1739
1740        /*
1741         * Check if we can merge with the plugged list before grabbing
1742         * any locks.
1743         */
1744        if (!blk_queue_nomerges(q)) {
1745                if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1746                        return BLK_QC_T_NONE;
1747        } else
1748                request_count = blk_plug_queued_count(q);
1749
1750        spin_lock_irq(q->queue_lock);
1751
1752        el_ret = elv_merge(q, &req, bio);
1753        if (el_ret == ELEVATOR_BACK_MERGE) {
1754                if (bio_attempt_back_merge(q, req, bio)) {
1755                        elv_bio_merged(q, req, bio);
1756                        if (!attempt_back_merge(q, req))
1757                                elv_merged_request(q, req, el_ret);
1758                        goto out_unlock;
1759                }
1760        } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1761                if (bio_attempt_front_merge(q, req, bio)) {
1762                        elv_bio_merged(q, req, bio);
1763                        if (!attempt_front_merge(q, req))
1764                                elv_merged_request(q, req, el_ret);
1765                        goto out_unlock;
1766                }
1767        }
1768
1769get_rq:
1770        /*
1771         * This sync check and mask will be re-done in init_request_from_bio(),
1772         * but we need to set it earlier to expose the sync flag to the
1773         * rq allocator and io schedulers.
1774         */
1775        rw_flags = bio_data_dir(bio);
1776        if (sync)
1777                rw_flags |= REQ_SYNC;
1778
1779        /*
1780         * Grab a free request. This is might sleep but can not fail.
1781         * Returns with the queue unlocked.
1782         */
1783        req = get_request(q, rw_flags, bio, GFP_NOIO);
1784        if (IS_ERR(req)) {
1785                bio->bi_error = PTR_ERR(req);
1786                bio_endio(bio);
1787                goto out_unlock;
1788        }
1789
1790        /*
1791         * After dropping the lock and possibly sleeping here, our request
1792         * may now be mergeable after it had proven unmergeable (above).
1793         * We don't worry about that case for efficiency. It won't happen
1794         * often, and the elevators are able to handle it.
1795         */
1796        init_request_from_bio(req, bio);
1797
1798        if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1799                req->cpu = raw_smp_processor_id();
1800
1801        plug = current->plug;
1802        if (plug) {
1803                /*
1804                 * If this is the first request added after a plug, fire
1805                 * of a plug trace.
1806                 */
1807                if (!request_count)
1808                        trace_block_plug(q);
1809                else {
1810                        if (request_count >= BLK_MAX_REQUEST_COUNT) {
1811                                blk_flush_plug_list(plug, false);
1812                                trace_block_plug(q);
1813                        }
1814                }
1815                list_add_tail(&req->queuelist, &plug->list);
1816                blk_account_io_start(req, true);
1817        } else {
1818                spin_lock_irq(q->queue_lock);
1819                add_acct_request(q, req, where);
1820                __blk_run_queue(q);
1821out_unlock:
1822                spin_unlock_irq(q->queue_lock);
1823        }
1824
1825        return BLK_QC_T_NONE;
1826}
1827
1828/*
1829 * If bio->bi_dev is a partition, remap the location
1830 */
1831static inline void blk_partition_remap(struct bio *bio)
1832{
1833        struct block_device *bdev = bio->bi_bdev;
1834
1835        if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1836                struct hd_struct *p = bdev->bd_part;
1837
1838                bio->bi_iter.bi_sector += p->start_sect;
1839                bio->bi_bdev = bdev->bd_contains;
1840
1841                trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1842                                      bdev->bd_dev,
1843                                      bio->bi_iter.bi_sector - p->start_sect);
1844        }
1845}
1846
1847static void handle_bad_sector(struct bio *bio)
1848{
1849        char b[BDEVNAME_SIZE];
1850
1851        printk(KERN_INFO "attempt to access beyond end of device\n");
1852        printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1853                        bdevname(bio->bi_bdev, b),
1854                        bio->bi_rw,
1855                        (unsigned long long)bio_end_sector(bio),
1856                        (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1857}
1858
1859#ifdef CONFIG_FAIL_MAKE_REQUEST
1860
1861static DECLARE_FAULT_ATTR(fail_make_request);
1862
1863static int __init setup_fail_make_request(char *str)
1864{
1865        return setup_fault_attr(&fail_make_request, str);
1866}
1867__setup("fail_make_request=", setup_fail_make_request);
1868
1869static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1870{
1871        return part->make_it_fail && should_fail(&fail_make_request, bytes);
1872}
1873
1874static int __init fail_make_request_debugfs(void)
1875{
1876        struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1877                                                NULL, &fail_make_request);
1878
1879        return PTR_ERR_OR_ZERO(dir);
1880}
1881
1882late_initcall(fail_make_request_debugfs);
1883
1884#else /* CONFIG_FAIL_MAKE_REQUEST */
1885
1886static inline bool should_fail_request(struct hd_struct *part,
1887                                        unsigned int bytes)
1888{
1889        return false;
1890}
1891
1892#endif /* CONFIG_FAIL_MAKE_REQUEST */
1893
1894/*
1895 * Check whether this bio extends beyond the end of the device.
1896 */
1897static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1898{
1899        sector_t maxsector;
1900
1901        if (!nr_sectors)
1902                return 0;
1903
1904        /* Test device or partition size, when known. */
1905        maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1906        if (maxsector) {
1907                sector_t sector = bio->bi_iter.bi_sector;
1908
1909                if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1910                        /*
1911                         * This may well happen - the kernel calls bread()
1912                         * without checking the size of the device, e.g., when
1913                         * mounting a device.
1914                         */
1915                        handle_bad_sector(bio);
1916                        return 1;
1917                }
1918        }
1919
1920        return 0;
1921}
1922
1923static noinline_for_stack bool
1924generic_make_request_checks(struct bio *bio)
1925{
1926        struct request_queue *q;
1927        int nr_sectors = bio_sectors(bio);
1928        int err = -EIO;
1929        char b[BDEVNAME_SIZE];
1930        struct hd_struct *part;
1931
1932        might_sleep();
1933
1934        if (bio_check_eod(bio, nr_sectors))
1935                goto end_io;
1936
1937        q = bdev_get_queue(bio->bi_bdev);
1938        if (unlikely(!q)) {
1939                printk(KERN_ERR
1940                       "generic_make_request: Trying to access "
1941                        "nonexistent block-device %s (%Lu)\n",
1942                        bdevname(bio->bi_bdev, b),
1943                        (long long) bio->bi_iter.bi_sector);
1944                goto end_io;
1945        }
1946
1947        part = bio->bi_bdev->bd_part;
1948        if (should_fail_request(part, bio->bi_iter.bi_size) ||
1949            should_fail_request(&part_to_disk(part)->part0,
1950                                bio->bi_iter.bi_size))
1951                goto end_io;
1952
1953        /*
1954         * If this device has partitions, remap block n
1955         * of partition p to block n+start(p) of the disk.
1956         */
1957        blk_partition_remap(bio);
1958
1959        if (bio_check_eod(bio, nr_sectors))
1960                goto end_io;
1961
1962        /*
1963         * Filter flush bio's early so that make_request based
1964         * drivers without flush support don't have to worry
1965         * about them.
1966         */
1967        if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
1968            !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1969                bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1970                if (!nr_sectors) {
1971                        err = 0;
1972                        goto end_io;
1973                }
1974        }
1975
1976        if ((bio->bi_rw & REQ_DISCARD) &&
1977            (!blk_queue_discard(q) ||
1978             ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1979                err = -EOPNOTSUPP;
1980                goto end_io;
1981        }
1982
1983        if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1984                err = -EOPNOTSUPP;
1985                goto end_io;
1986        }
1987
1988        /*
1989         * Various block parts want %current->io_context and lazy ioc
1990         * allocation ends up trading a lot of pain for a small amount of
1991         * memory.  Just allocate it upfront.  This may fail and block
1992         * layer knows how to live with it.
1993         */
1994        create_io_context(GFP_ATOMIC, q->node);
1995
1996        if (!blkcg_bio_issue_check(q, bio))
1997                return false;
1998
1999        trace_block_bio_queue(q, bio);
2000        return true;
2001
2002end_io:
2003        bio->bi_error = err;
2004        bio_endio(bio);
2005        return false;
2006}
2007
2008/**
2009 * generic_make_request - hand a buffer to its device driver for I/O
2010 * @bio:  The bio describing the location in memory and on the device.
2011 *
2012 * generic_make_request() is used to make I/O requests of block
2013 * devices. It is passed a &struct bio, which describes the I/O that needs
2014 * to be done.
2015 *
2016 * generic_make_request() does not return any status.  The
2017 * success/failure status of the request, along with notification of
2018 * completion, is delivered asynchronously through the bio->bi_end_io
2019 * function described (one day) else where.
2020 *
2021 * The caller of generic_make_request must make sure that bi_io_vec
2022 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2023 * set to describe the device address, and the
2024 * bi_end_io and optionally bi_private are set to describe how
2025 * completion notification should be signaled.
2026 *
2027 * generic_make_request and the drivers it calls may use bi_next if this
2028 * bio happens to be merged with someone else, and may resubmit the bio to
2029 * a lower device by calling into generic_make_request recursively, which
2030 * means the bio should NOT be touched after the call to ->make_request_fn.
2031 */
2032blk_qc_t generic_make_request(struct bio *bio)
2033{
2034        struct bio_list bio_list_on_stack;
2035        blk_qc_t ret = BLK_QC_T_NONE;
2036
2037        if (!generic_make_request_checks(bio))
2038                goto out;
2039
2040        /*
2041         * We only want one ->make_request_fn to be active at a time, else
2042         * stack usage with stacked devices could be a problem.  So use
2043         * current->bio_list to keep a list of requests submited by a
2044         * make_request_fn function.  current->bio_list is also used as a
2045         * flag to say if generic_make_request is currently active in this
2046         * task or not.  If it is NULL, then no make_request is active.  If
2047         * it is non-NULL, then a make_request is active, and new requests
2048         * should be added at the tail
2049         */
2050        if (current->bio_list) {
2051                bio_list_add(current->bio_list, bio);
2052                goto out;
2053        }
2054
2055        /* following loop may be a bit non-obvious, and so deserves some
2056         * explanation.
2057         * Before entering the loop, bio->bi_next is NULL (as all callers
2058         * ensure that) so we have a list with a single bio.
2059         * We pretend that we have just taken it off a longer list, so
2060         * we assign bio_list to a pointer to the bio_list_on_stack,
2061         * thus initialising the bio_list of new bios to be
2062         * added.  ->make_request() may indeed add some more bios
2063         * through a recursive call to generic_make_request.  If it
2064         * did, we find a non-NULL value in bio_list and re-enter the loop
2065         * from the top.  In this case we really did just take the bio
2066         * of the top of the list (no pretending) and so remove it from
2067         * bio_list, and call into ->make_request() again.
2068         */
2069        BUG_ON(bio->bi_next);
2070        bio_list_init(&bio_list_on_stack);
2071        current->bio_list = &bio_list_on_stack;
2072        do {
2073                struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2074
2075                if (likely(blk_queue_enter(q, false) == 0)) {
2076                        ret = q->make_request_fn(q, bio);
2077
2078                        blk_queue_exit(q);
2079
2080                        bio = bio_list_pop(current->bio_list);
2081                } else {
2082                        struct bio *bio_next = bio_list_pop(current->bio_list);
2083
2084                        bio_io_error(bio);
2085                        bio = bio_next;
2086                }
2087        } while (bio);
2088        current->bio_list = NULL; /* deactivate */
2089
2090out:
2091        return ret;
2092}
2093EXPORT_SYMBOL(generic_make_request);
2094
2095/**
2096 * submit_bio - submit a bio to the block device layer for I/O
2097 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2098 * @bio: The &struct bio which describes the I/O
2099 *
2100 * submit_bio() is very similar in purpose to generic_make_request(), and
2101 * uses that function to do most of the work. Both are fairly rough
2102 * interfaces; @bio must be presetup and ready for I/O.
2103 *
2104 */
2105blk_qc_t submit_bio(int rw, struct bio *bio)
2106{
2107        bio->bi_rw |= rw;
2108
2109        /*
2110         * If it's a regular read/write or a barrier with data attached,
2111         * go through the normal accounting stuff before submission.
2112         */
2113        if (bio_has_data(bio)) {
2114                unsigned int count;
2115
2116                if (unlikely(rw & REQ_WRITE_SAME))
2117                        count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2118                else
2119                        count = bio_sectors(bio);
2120
2121                if (rw & WRITE) {
2122                        count_vm_events(PGPGOUT, count);
2123                } else {
2124                        task_io_account_read(bio->bi_iter.bi_size);
2125                        count_vm_events(PGPGIN, count);
2126                }
2127
2128                if (unlikely(block_dump)) {
2129                        char b[BDEVNAME_SIZE];
2130                        printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2131                        current->comm, task_pid_nr(current),
2132                                (rw & WRITE) ? "WRITE" : "READ",
2133                                (unsigned long long)bio->bi_iter.bi_sector,
2134                                bdevname(bio->bi_bdev, b),
2135                                count);
2136                }
2137        }
2138
2139        return generic_make_request(bio);
2140}
2141EXPORT_SYMBOL(submit_bio);
2142
2143/**
2144 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2145 *                              for new the queue limits
2146 * @q:  the queue
2147 * @rq: the request being checked
2148 *
2149 * Description:
2150 *    @rq may have been made based on weaker limitations of upper-level queues
2151 *    in request stacking drivers, and it may violate the limitation of @q.
2152 *    Since the block layer and the underlying device driver trust @rq
2153 *    after it is inserted to @q, it should be checked against @q before
2154 *    the insertion using this generic function.
2155 *
2156 *    Request stacking drivers like request-based dm may change the queue
2157 *    limits when retrying requests on other queues. Those requests need
2158 *    to be checked against the new queue limits again during dispatch.
2159 */
2160static int blk_cloned_rq_check_limits(struct request_queue *q,
2161                                      struct request *rq)
2162{
2163        if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2164                printk(KERN_ERR "%s: over max size limit.\n", __func__);
2165                return -EIO;
2166        }
2167
2168        /*
2169         * queue's settings related to segment counting like q->bounce_pfn
2170         * may differ from that of other stacking queues.
2171         * Recalculate it to check the request correctly on this queue's
2172         * limitation.
2173         */
2174        blk_recalc_rq_segments(rq);
2175        if (rq->nr_phys_segments > queue_max_segments(q)) {
2176                printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2177                return -EIO;
2178        }
2179
2180        return 0;
2181}
2182
2183/**
2184 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2185 * @q:  the queue to submit the request
2186 * @rq: the request being queued
2187 */
2188int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2189{
2190        unsigned long flags;
2191        int where = ELEVATOR_INSERT_BACK;
2192
2193        if (blk_cloned_rq_check_limits(q, rq))
2194                return -EIO;
2195
2196        if (rq->rq_disk &&
2197            should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2198                return -EIO;
2199
2200        if (q->mq_ops) {
2201                if (blk_queue_io_stat(q))
2202                        blk_account_io_start(rq, true);
2203                blk_mq_insert_request(rq, false, true, false);
2204                return 0;
2205        }
2206
2207        spin_lock_irqsave(q->queue_lock, flags);
2208        if (unlikely(blk_queue_dying(q))) {
2209                spin_unlock_irqrestore(q->queue_lock, flags);
2210                return -ENODEV;
2211        }
2212
2213        /*
2214         * Submitting request must be dequeued before calling this function
2215         * because it will be linked to another request_queue
2216         */
2217        BUG_ON(blk_queued_rq(rq));
2218
2219        if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2220                where = ELEVATOR_INSERT_FLUSH;
2221
2222        add_acct_request(q, rq, where);
2223        if (where == ELEVATOR_INSERT_FLUSH)
2224                __blk_run_queue(q);
2225        spin_unlock_irqrestore(q->queue_lock, flags);
2226
2227        return 0;
2228}
2229EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2230
2231/**
2232 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2233 * @rq: request to examine
2234 *
2235 * Description:
2236 *     A request could be merge of IOs which require different failure
2237 *     handling.  This function determines the number of bytes which
2238 *     can be failed from the beginning of the request without
2239 *     crossing into area which need to be retried further.
2240 *
2241 * Return:
2242 *     The number of bytes to fail.
2243 *
2244 * Context:
2245 *     queue_lock must be held.
2246 */
2247unsigned int blk_rq_err_bytes(const struct request *rq)
2248{
2249        unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2250        unsigned int bytes = 0;
2251        struct bio *bio;
2252
2253        if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2254                return blk_rq_bytes(rq);
2255
2256        /*
2257         * Currently the only 'mixing' which can happen is between
2258         * different fastfail types.  We can safely fail portions
2259         * which have all the failfast bits that the first one has -
2260         * the ones which are at least as eager to fail as the first
2261         * one.
2262         */
2263        for (bio = rq->bio; bio; bio = bio->bi_next) {
2264                if ((bio->bi_rw & ff) != ff)
2265                        break;
2266                bytes += bio->bi_iter.bi_size;
2267        }
2268
2269        /* this could lead to infinite loop */
2270        BUG_ON(blk_rq_bytes(rq) && !bytes);
2271        return bytes;
2272}
2273EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2274
2275void blk_account_io_completion(struct request *req, unsigned int bytes)
2276{
2277        if (blk_do_io_stat(req)) {
2278                const int rw = rq_data_dir(req);
2279                struct hd_struct *part;
2280                int cpu;
2281
2282                cpu = part_stat_lock();
2283                part = req->part;
2284                part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2285                part_stat_unlock();
2286        }
2287}
2288
2289void blk_account_io_done(struct request *req)
2290{
2291        /*
2292         * Account IO completion.  flush_rq isn't accounted as a
2293         * normal IO on queueing nor completion.  Accounting the
2294         * containing request is enough.
2295         */
2296        if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2297                unsigned long duration = jiffies - req->start_time;
2298                const int rw = rq_data_dir(req);
2299                struct hd_struct *part;
2300                int cpu;
2301
2302                cpu = part_stat_lock();
2303                part = req->part;
2304
2305                part_stat_inc(cpu, part, ios[rw]);
2306                part_stat_add(cpu, part, ticks[rw], duration);
2307                part_round_stats(cpu, part);
2308                part_dec_in_flight(part, rw);
2309
2310                hd_struct_put(part);
2311                part_stat_unlock();
2312        }
2313}
2314
2315#ifdef CONFIG_PM
2316/*
2317 * Don't process normal requests when queue is suspended
2318 * or in the process of suspending/resuming
2319 */
2320static struct request *blk_pm_peek_request(struct request_queue *q,
2321                                           struct request *rq)
2322{
2323        if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2324            (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2325                return NULL;
2326        else
2327                return rq;
2328}
2329#else
2330static inline struct request *blk_pm_peek_request(struct request_queue *q,
2331                                                  struct request *rq)
2332{
2333        return rq;
2334}
2335#endif
2336
2337void blk_account_io_start(struct request *rq, bool new_io)
2338{
2339        struct hd_struct *part;
2340        int rw = rq_data_dir(rq);
2341        int cpu;
2342
2343        if (!blk_do_io_stat(rq))
2344                return;
2345
2346        cpu = part_stat_lock();
2347
2348        if (!new_io) {
2349                part = rq->part;
2350                part_stat_inc(cpu, part, merges[rw]);
2351        } else {
2352                part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2353                if (!hd_struct_try_get(part)) {
2354                        /*
2355                         * The partition is already being removed,
2356                         * the request will be accounted on the disk only
2357                         *
2358                         * We take a reference on disk->part0 although that
2359                         * partition will never be deleted, so we can treat
2360                         * it as any other partition.
2361                         */
2362                        part = &rq->rq_disk->part0;
2363                        hd_struct_get(part);
2364                }
2365                part_round_stats(cpu, part);
2366                part_inc_in_flight(part, rw);
2367                rq->part = part;
2368        }
2369
2370        part_stat_unlock();
2371}
2372
2373/**
2374 * blk_peek_request - peek at the top of a request queue
2375 * @q: request queue to peek at
2376 *
2377 * Description:
2378 *     Return the request at the top of @q.  The returned request
2379 *     should be started using blk_start_request() before LLD starts
2380 *     processing it.
2381 *
2382 * Return:
2383 *     Pointer to the request at the top of @q if available.  Null
2384 *     otherwise.
2385 *
2386 * Context:
2387 *     queue_lock must be held.
2388 */
2389struct request *blk_peek_request(struct request_queue *q)
2390{
2391        struct request *rq;
2392        int ret;
2393
2394        while ((rq = __elv_next_request(q)) != NULL) {
2395
2396                rq = blk_pm_peek_request(q, rq);
2397                if (!rq)
2398                        break;
2399
2400                if (!(rq->cmd_flags & REQ_STARTED)) {
2401                        /*
2402                         * This is the first time the device driver
2403                         * sees this request (possibly after
2404                         * requeueing).  Notify IO scheduler.
2405                         */
2406                        if (rq->cmd_flags & REQ_SORTED)
2407                                elv_activate_rq(q, rq);
2408
2409                        /*
2410                         * just mark as started even if we don't start
2411                         * it, a request that has been delayed should
2412                         * not be passed by new incoming requests
2413                         */
2414                        rq->cmd_flags |= REQ_STARTED;
2415                        trace_block_rq_issue(q, rq);
2416                }
2417
2418                if (!q->boundary_rq || q->boundary_rq == rq) {
2419                        q->end_sector = rq_end_sector(rq);
2420                        q->boundary_rq = NULL;
2421                }
2422
2423                if (rq->cmd_flags & REQ_DONTPREP)
2424                        break;
2425
2426                if (q->dma_drain_size && blk_rq_bytes(rq)) {
2427                        /*
2428                         * make sure space for the drain appears we
2429                         * know we can do this because max_hw_segments
2430                         * has been adjusted to be one fewer than the
2431                         * device can handle
2432                         */
2433                        rq->nr_phys_segments++;
2434                }
2435
2436                if (!q->prep_rq_fn)
2437                        break;
2438
2439                ret = q->prep_rq_fn(q, rq);
2440                if (ret == BLKPREP_OK) {
2441                        break;
2442                } else if (ret == BLKPREP_DEFER) {
2443                        /*
2444                         * the request may have been (partially) prepped.
2445                         * we need to keep this request in the front to
2446                         * avoid resource deadlock.  REQ_STARTED will
2447                         * prevent other fs requests from passing this one.
2448                         */
2449                        if (q->dma_drain_size && blk_rq_bytes(rq) &&
2450                            !(rq->cmd_flags & REQ_DONTPREP)) {
2451                                /*
2452                                 * remove the space for the drain we added
2453                                 * so that we don't add it again
2454                                 */
2455                                --rq->nr_phys_segments;
2456                        }
2457
2458                        rq = NULL;
2459                        break;
2460                } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2461                        int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2462
2463                        rq->cmd_flags |= REQ_QUIET;
2464                        /*
2465                         * Mark this request as started so we don't trigger
2466                         * any debug logic in the end I/O path.
2467                         */
2468                        blk_start_request(rq);
2469                        __blk_end_request_all(rq, err);
2470                } else {
2471                        printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2472                        break;
2473                }
2474        }
2475
2476        return rq;
2477}
2478EXPORT_SYMBOL(blk_peek_request);
2479
2480void blk_dequeue_request(struct request *rq)
2481{
2482        struct request_queue *q = rq->q;
2483
2484        BUG_ON(list_empty(&rq->queuelist));
2485        BUG_ON(ELV_ON_HASH(rq));
2486
2487        list_del_init(&rq->queuelist);
2488
2489        /*
2490         * the time frame between a request being removed from the lists
2491         * and to it is freed is accounted as io that is in progress at
2492         * the driver side.
2493         */
2494        if (blk_account_rq(rq)) {
2495                q->in_flight[rq_is_sync(rq)]++;
2496                set_io_start_time_ns(rq);
2497        }
2498}
2499
2500/**
2501 * blk_start_request - start request processing on the driver
2502 * @req: request to dequeue
2503 *
2504 * Description:
2505 *     Dequeue @req and start timeout timer on it.  This hands off the
2506 *     request to the driver.
2507 *
2508 *     Block internal functions which don't want to start timer should
2509 *     call blk_dequeue_request().
2510 *
2511 * Context:
2512 *     queue_lock must be held.
2513 */
2514void blk_start_request(struct request *req)
2515{
2516        blk_dequeue_request(req);
2517
2518        /*
2519         * We are now handing the request to the hardware, initialize
2520         * resid_len to full count and add the timeout handler.
2521         */
2522        req->resid_len = blk_rq_bytes(req);
2523        if (unlikely(blk_bidi_rq(req)))
2524                req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2525
2526        BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2527        blk_add_timer(req);
2528}
2529EXPORT_SYMBOL(blk_start_request);
2530
2531/**
2532 * blk_fetch_request - fetch a request from a request queue
2533 * @q: request queue to fetch a request from
2534 *
2535 * Description:
2536 *     Return the request at the top of @q.  The request is started on
2537 *     return and LLD can start processing it immediately.
2538 *
2539 * Return:
2540 *     Pointer to the request at the top of @q if available.  Null
2541 *     otherwise.
2542 *
2543 * Context:
2544 *     queue_lock must be held.
2545 */
2546struct request *blk_fetch_request(struct request_queue *q)
2547{
2548        struct request *rq;
2549
2550        rq = blk_peek_request(q);
2551        if (rq)
2552                blk_start_request(rq);
2553        return rq;
2554}
2555EXPORT_SYMBOL(blk_fetch_request);
2556
2557/**
2558 * blk_update_request - Special helper function for request stacking drivers
2559 * @req:      the request being processed
2560 * @error:    %0 for success, < %0 for error
2561 * @nr_bytes: number of bytes to complete @req
2562 *
2563 * Description:
2564 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2565 *     the request structure even if @req doesn't have leftover.
2566 *     If @req has leftover, sets it up for the next range of segments.
2567 *
2568 *     This special helper function is only for request stacking drivers
2569 *     (e.g. request-based dm) so that they can handle partial completion.
2570 *     Actual device drivers should use blk_end_request instead.
2571 *
2572 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2573 *     %false return from this function.
2574 *
2575 * Return:
2576 *     %false - this request doesn't have any more data
2577 *     %true  - this request has more data
2578 **/
2579bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2580{
2581        int total_bytes;
2582
2583        trace_block_rq_complete(req->q, req, nr_bytes);
2584
2585        if (!req->bio)
2586                return false;
2587
2588        /*
2589         * For fs requests, rq is just carrier of independent bio's
2590         * and each partial completion should be handled separately.
2591         * Reset per-request error on each partial completion.
2592         *
2593         * TODO: tj: This is too subtle.  It would be better to let
2594         * low level drivers do what they see fit.
2595         */
2596        if (req->cmd_type == REQ_TYPE_FS)
2597                req->errors = 0;
2598
2599        if (error && req->cmd_type == REQ_TYPE_FS &&
2600            !(req->cmd_flags & REQ_QUIET)) {
2601                char *error_type;
2602
2603                switch (error) {
2604                case -ENOLINK:
2605                        error_type = "recoverable transport";
2606                        break;
2607                case -EREMOTEIO:
2608                        error_type = "critical target";
2609                        break;
2610                case -EBADE:
2611                        error_type = "critical nexus";
2612                        break;
2613                case -ETIMEDOUT:
2614                        error_type = "timeout";
2615                        break;
2616                case -ENOSPC:
2617                        error_type = "critical space allocation";
2618                        break;
2619                case -ENODATA:
2620                        error_type = "critical medium";
2621                        break;
2622                case -EIO:
2623                default:
2624                        error_type = "I/O";
2625                        break;
2626                }
2627                printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2628                                   __func__, error_type, req->rq_disk ?
2629                                   req->rq_disk->disk_name : "?",
2630                                   (unsigned long long)blk_rq_pos(req));
2631
2632        }
2633
2634        blk_account_io_completion(req, nr_bytes);
2635
2636        total_bytes = 0;
2637        while (req->bio) {
2638                struct bio *bio = req->bio;
2639                unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2640
2641                if (bio_bytes == bio->bi_iter.bi_size)
2642                        req->bio = bio->bi_next;
2643
2644                req_bio_endio(req, bio, bio_bytes, error);
2645
2646                total_bytes += bio_bytes;
2647                nr_bytes -= bio_bytes;
2648
2649                if (!nr_bytes)
2650                        break;
2651        }
2652
2653        /*
2654         * completely done
2655         */
2656        if (!req->bio) {
2657                /*
2658                 * Reset counters so that the request stacking driver
2659                 * can find how many bytes remain in the request
2660                 * later.
2661                 */
2662                req->__data_len = 0;
2663                return false;
2664        }
2665
2666        req->__data_len -= total_bytes;
2667
2668        /* update sector only for requests with clear definition of sector */
2669        if (req->cmd_type == REQ_TYPE_FS)
2670                req->__sector += total_bytes >> 9;
2671
2672        /* mixed attributes always follow the first bio */
2673        if (req->cmd_flags & REQ_MIXED_MERGE) {
2674                req->cmd_flags &= ~REQ_FAILFAST_MASK;
2675                req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2676        }
2677
2678        /*
2679         * If total number of sectors is less than the first segment
2680         * size, something has gone terribly wrong.
2681         */
2682        if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2683                blk_dump_rq_flags(req, "request botched");
2684                req->__data_len = blk_rq_cur_bytes(req);
2685        }
2686
2687        /* recalculate the number of segments */
2688        blk_recalc_rq_segments(req);
2689
2690        return true;
2691}
2692EXPORT_SYMBOL_GPL(blk_update_request);
2693
2694static bool blk_update_bidi_request(struct request *rq, int error,
2695                                    unsigned int nr_bytes,
2696                                    unsigned int bidi_bytes)
2697{
2698        if (blk_update_request(rq, error, nr_bytes))
2699                return true;
2700
2701        /* Bidi request must be completed as a whole */
2702        if (unlikely(blk_bidi_rq(rq)) &&
2703            blk_update_request(rq->next_rq, error, bidi_bytes))
2704                return true;
2705
2706        if (blk_queue_add_random(rq->q))
2707                add_disk_randomness(rq->rq_disk);
2708
2709        return false;
2710}
2711
2712/**
2713 * blk_unprep_request - unprepare a request
2714 * @req:        the request
2715 *
2716 * This function makes a request ready for complete resubmission (or
2717 * completion).  It happens only after all error handling is complete,
2718 * so represents the appropriate moment to deallocate any resources
2719 * that were allocated to the request in the prep_rq_fn.  The queue
2720 * lock is held when calling this.
2721 */
2722void blk_unprep_request(struct request *req)
2723{
2724        struct request_queue *q = req->q;
2725
2726        req->cmd_flags &= ~REQ_DONTPREP;
2727        if (q->unprep_rq_fn)
2728                q->unprep_rq_fn(q, req);
2729}
2730EXPORT_SYMBOL_GPL(blk_unprep_request);
2731
2732/*
2733 * queue lock must be held
2734 */
2735void blk_finish_request(struct request *req, int error)
2736{
2737        if (req->cmd_flags & REQ_QUEUED)
2738                blk_queue_end_tag(req->q, req);
2739
2740        BUG_ON(blk_queued_rq(req));
2741
2742        if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2743                laptop_io_completion(&req->q->backing_dev_info);
2744
2745        blk_delete_timer(req);
2746
2747        if (req->cmd_flags & REQ_DONTPREP)
2748                blk_unprep_request(req);
2749
2750        blk_account_io_done(req);
2751
2752        if (req->end_io)
2753                req->end_io(req, error);
2754        else {
2755                if (blk_bidi_rq(req))
2756                        __blk_put_request(req->next_rq->q, req->next_rq);
2757
2758                __blk_put_request(req->q, req);
2759        }
2760}
2761EXPORT_SYMBOL(blk_finish_request);
2762
2763/**
2764 * blk_end_bidi_request - Complete a bidi request
2765 * @rq:         the request to complete
2766 * @error:      %0 for success, < %0 for error
2767 * @nr_bytes:   number of bytes to complete @rq
2768 * @bidi_bytes: number of bytes to complete @rq->next_rq
2769 *
2770 * Description:
2771 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2772 *     Drivers that supports bidi can safely call this member for any
2773 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2774 *     just ignored.
2775 *
2776 * Return:
2777 *     %false - we are done with this request
2778 *     %true  - still buffers pending for this request
2779 **/
2780static bool blk_end_bidi_request(struct request *rq, int error,
2781                                 unsigned int nr_bytes, unsigned int bidi_bytes)
2782{
2783        struct request_queue *q = rq->q;
2784        unsigned long flags;
2785
2786        if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2787                return true;
2788
2789        spin_lock_irqsave(q->queue_lock, flags);
2790        blk_finish_request(rq, error);
2791        spin_unlock_irqrestore(q->queue_lock, flags);
2792
2793        return false;
2794}
2795
2796/**
2797 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2798 * @rq:         the request to complete
2799 * @error:      %0 for success, < %0 for error
2800 * @nr_bytes:   number of bytes to complete @rq
2801 * @bidi_bytes: number of bytes to complete @rq->next_rq
2802 *
2803 * Description:
2804 *     Identical to blk_end_bidi_request() except that queue lock is
2805 *     assumed to be locked on entry and remains so on return.
2806 *
2807 * Return:
2808 *     %false - we are done with this request
2809 *     %true  - still buffers pending for this request
2810 **/
2811bool __blk_end_bidi_request(struct request *rq, int error,
2812                                   unsigned int nr_bytes, unsigned int bidi_bytes)
2813{
2814        if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2815                return true;
2816
2817        blk_finish_request(rq, error);
2818
2819        return false;
2820}
2821
2822/**
2823 * blk_end_request - Helper function for drivers to complete the request.
2824 * @rq:       the request being processed
2825 * @error:    %0 for success, < %0 for error
2826 * @nr_bytes: number of bytes to complete
2827 *
2828 * Description:
2829 *     Ends I/O on a number of bytes attached to @rq.
2830 *     If @rq has leftover, sets it up for the next range of segments.
2831 *
2832 * Return:
2833 *     %false - we are done with this request
2834 *     %true  - still buffers pending for this request
2835 **/
2836bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2837{
2838        return blk_end_bidi_request(rq, error, nr_bytes, 0);
2839}
2840EXPORT_SYMBOL(blk_end_request);
2841
2842/**
2843 * blk_end_request_all - Helper function for drives to finish the request.
2844 * @rq: the request to finish
2845 * @error: %0 for success, < %0 for error
2846 *
2847 * Description:
2848 *     Completely finish @rq.
2849 */
2850void blk_end_request_all(struct request *rq, int error)
2851{
2852        bool pending;
2853        unsigned int bidi_bytes = 0;
2854
2855        if (unlikely(blk_bidi_rq(rq)))
2856                bidi_bytes = blk_rq_bytes(rq->next_rq);
2857
2858        pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2859        BUG_ON(pending);
2860}
2861EXPORT_SYMBOL(blk_end_request_all);
2862
2863/**
2864 * blk_end_request_cur - Helper function to finish the current request chunk.
2865 * @rq: the request to finish the current chunk for
2866 * @error: %0 for success, < %0 for error
2867 *
2868 * Description:
2869 *     Complete the current consecutively mapped chunk from @rq.
2870 *
2871 * Return:
2872 *     %false - we are done with this request
2873 *     %true  - still buffers pending for this request
2874 */
2875bool blk_end_request_cur(struct request *rq, int error)
2876{
2877        return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2878}
2879EXPORT_SYMBOL(blk_end_request_cur);
2880
2881/**
2882 * blk_end_request_err - Finish a request till the next failure boundary.
2883 * @rq: the request to finish till the next failure boundary for
2884 * @error: must be negative errno
2885 *
2886 * Description:
2887 *     Complete @rq till the next failure boundary.
2888 *
2889 * Return:
2890 *     %false - we are done with this request
2891 *     %true  - still buffers pending for this request
2892 */
2893bool blk_end_request_err(struct request *rq, int error)
2894{
2895        WARN_ON(error >= 0);
2896        return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2897}
2898EXPORT_SYMBOL_GPL(blk_end_request_err);
2899
2900/**
2901 * __blk_end_request - Helper function for drivers to complete the request.
2902 * @rq:       the request being processed
2903 * @error:    %0 for success, < %0 for error
2904 * @nr_bytes: number of bytes to complete
2905 *
2906 * Description:
2907 *     Must be called with queue lock held unlike blk_end_request().
2908 *
2909 * Return:
2910 *     %false - we are done with this request
2911 *     %true  - still buffers pending for this request
2912 **/
2913bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2914{
2915        return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2916}
2917EXPORT_SYMBOL(__blk_end_request);
2918
2919/**
2920 * __blk_end_request_all - Helper function for drives to finish the request.
2921 * @rq: the request to finish
2922 * @error: %0 for success, < %0 for error
2923 *
2924 * Description:
2925 *     Completely finish @rq.  Must be called with queue lock held.
2926 */
2927void __blk_end_request_all(struct request *rq, int error)
2928{
2929        bool pending;
2930        unsigned int bidi_bytes = 0;
2931
2932        if (unlikely(blk_bidi_rq(rq)))
2933                bidi_bytes = blk_rq_bytes(rq->next_rq);
2934
2935        pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2936        BUG_ON(pending);
2937}
2938EXPORT_SYMBOL(__blk_end_request_all);
2939
2940/**
2941 * __blk_end_request_cur - Helper function to finish the current request chunk.
2942 * @rq: the request to finish the current chunk for
2943 * @error: %0 for success, < %0 for error
2944 *
2945 * Description:
2946 *     Complete the current consecutively mapped chunk from @rq.  Must
2947 *     be called with queue lock held.
2948 *
2949 * Return:
2950 *     %false - we are done with this request
2951 *     %true  - still buffers pending for this request
2952 */
2953bool __blk_end_request_cur(struct request *rq, int error)
2954{
2955        return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2956}
2957EXPORT_SYMBOL(__blk_end_request_cur);
2958
2959/**
2960 * __blk_end_request_err - Finish a request till the next failure boundary.
2961 * @rq: the request to finish till the next failure boundary for
2962 * @error: must be negative errno
2963 *
2964 * Description:
2965 *     Complete @rq till the next failure boundary.  Must be called
2966 *     with queue lock held.
2967 *
2968 * Return:
2969 *     %false - we are done with this request
2970 *     %true  - still buffers pending for this request
2971 */
2972bool __blk_end_request_err(struct request *rq, int error)
2973{
2974        WARN_ON(error >= 0);
2975        return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2976}
2977EXPORT_SYMBOL_GPL(__blk_end_request_err);
2978
2979void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2980                     struct bio *bio)
2981{
2982        /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2983        rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2984
2985        if (bio_has_data(bio))
2986                rq->nr_phys_segments = bio_phys_segments(q, bio);
2987
2988        rq->__data_len = bio->bi_iter.bi_size;
2989        rq->bio = rq->biotail = bio;
2990
2991        if (bio->bi_bdev)
2992                rq->rq_disk = bio->bi_bdev->bd_disk;
2993}
2994
2995#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2996/**
2997 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2998 * @rq: the request to be flushed
2999 *
3000 * Description:
3001 *     Flush all pages in @rq.
3002 */
3003void rq_flush_dcache_pages(struct request *rq)
3004{
3005        struct req_iterator iter;
3006        struct bio_vec bvec;
3007
3008        rq_for_each_segment(bvec, rq, iter)
3009                flush_dcache_page(bvec.bv_page);
3010}
3011EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3012#endif
3013
3014/**
3015 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3016 * @q : the queue of the device being checked
3017 *
3018 * Description:
3019 *    Check if underlying low-level drivers of a device are busy.
3020 *    If the drivers want to export their busy state, they must set own
3021 *    exporting function using blk_queue_lld_busy() first.
3022 *
3023 *    Basically, this function is used only by request stacking drivers
3024 *    to stop dispatching requests to underlying devices when underlying
3025 *    devices are busy.  This behavior helps more I/O merging on the queue
3026 *    of the request stacking driver and prevents I/O throughput regression
3027 *    on burst I/O load.
3028 *
3029 * Return:
3030 *    0 - Not busy (The request stacking driver should dispatch request)
3031 *    1 - Busy (The request stacking driver should stop dispatching request)
3032 */
3033int blk_lld_busy(struct request_queue *q)
3034{
3035        if (q->lld_busy_fn)
3036                return q->lld_busy_fn(q);
3037
3038        return 0;
3039}
3040EXPORT_SYMBOL_GPL(blk_lld_busy);
3041
3042/**
3043 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3044 * @rq: the clone request to be cleaned up
3045 *
3046 * Description:
3047 *     Free all bios in @rq for a cloned request.
3048 */
3049void blk_rq_unprep_clone(struct request *rq)
3050{
3051        struct bio *bio;
3052
3053        while ((bio = rq->bio) != NULL) {
3054                rq->bio = bio->bi_next;
3055
3056                bio_put(bio);
3057        }
3058}
3059EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3060
3061/*
3062 * Copy attributes of the original request to the clone request.
3063 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3064 */
3065static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3066{
3067        dst->cpu = src->cpu;
3068        dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3069        dst->cmd_type = src->cmd_type;
3070        dst->__sector = blk_rq_pos(src);
3071        dst->__data_len = blk_rq_bytes(src);
3072        dst->nr_phys_segments = src->nr_phys_segments;
3073        dst->ioprio = src->ioprio;
3074        dst->extra_len = src->extra_len;
3075}
3076
3077/**
3078 * blk_rq_prep_clone - Helper function to setup clone request
3079 * @rq: the request to be setup
3080 * @rq_src: original request to be cloned
3081 * @bs: bio_set that bios for clone are allocated from
3082 * @gfp_mask: memory allocation mask for bio
3083 * @bio_ctr: setup function to be called for each clone bio.
3084 *           Returns %0 for success, non %0 for failure.
3085 * @data: private data to be passed to @bio_ctr
3086 *
3087 * Description:
3088 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3089 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3090 *     are not copied, and copying such parts is the caller's responsibility.
3091 *     Also, pages which the original bios are pointing to are not copied
3092 *     and the cloned bios just point same pages.
3093 *     So cloned bios must be completed before original bios, which means
3094 *     the caller must complete @rq before @rq_src.
3095 */
3096int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3097                      struct bio_set *bs, gfp_t gfp_mask,
3098                      int (*bio_ctr)(struct bio *, struct bio *, void *),
3099                      void *data)
3100{
3101        struct bio *bio, *bio_src;
3102
3103        if (!bs)
3104                bs = fs_bio_set;
3105
3106        __rq_for_each_bio(bio_src, rq_src) {
3107                bio = bio_clone_fast(bio_src, gfp_mask, bs);
3108                if (!bio)
3109                        goto free_and_out;
3110
3111                if (bio_ctr && bio_ctr(bio, bio_src, data))
3112                        goto free_and_out;
3113
3114                if (rq->bio) {
3115                        rq->biotail->bi_next = bio;
3116                        rq->biotail = bio;
3117                } else
3118                        rq->bio = rq->biotail = bio;
3119        }
3120
3121        __blk_rq_prep_clone(rq, rq_src);
3122
3123        return 0;
3124
3125free_and_out:
3126        if (bio)
3127                bio_put(bio);
3128        blk_rq_unprep_clone(rq);
3129
3130        return -ENOMEM;
3131}
3132EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3133
3134int kblockd_schedule_work(struct work_struct *work)
3135{
3136        return queue_work(kblockd_workqueue, work);
3137}
3138EXPORT_SYMBOL(kblockd_schedule_work);
3139
3140int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3141                                  unsigned long delay)
3142{
3143        return queue_delayed_work(kblockd_workqueue, dwork, delay);
3144}
3145EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3146
3147int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3148                                     unsigned long delay)
3149{
3150        return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3151}
3152EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3153
3154/**
3155 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3156 * @plug:       The &struct blk_plug that needs to be initialized
3157 *
3158 * Description:
3159 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3160 *   pending I/O should the task end up blocking between blk_start_plug() and
3161 *   blk_finish_plug(). This is important from a performance perspective, but
3162 *   also ensures that we don't deadlock. For instance, if the task is blocking
3163 *   for a memory allocation, memory reclaim could end up wanting to free a
3164 *   page belonging to that request that is currently residing in our private
3165 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3166 *   this kind of deadlock.
3167 */
3168void blk_start_plug(struct blk_plug *plug)
3169{
3170        struct task_struct *tsk = current;
3171
3172        /*
3173         * If this is a nested plug, don't actually assign it.
3174         */
3175        if (tsk->plug)
3176                return;
3177
3178        INIT_LIST_HEAD(&plug->list);
3179        INIT_LIST_HEAD(&plug->mq_list);
3180        INIT_LIST_HEAD(&plug->cb_list);
3181        /*
3182         * Store ordering should not be needed here, since a potential
3183         * preempt will imply a full memory barrier
3184         */
3185        tsk->plug = plug;
3186}
3187EXPORT_SYMBOL(blk_start_plug);
3188
3189static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3190{
3191        struct request *rqa = container_of(a, struct request, queuelist);
3192        struct request *rqb = container_of(b, struct request, queuelist);
3193
3194        return !(rqa->q < rqb->q ||
3195                (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3196}
3197
3198/*
3199 * If 'from_schedule' is true, then postpone the dispatch of requests
3200 * until a safe kblockd context. We due this to avoid accidental big
3201 * additional stack usage in driver dispatch, in places where the originally
3202 * plugger did not intend it.
3203 */
3204static void queue_unplugged(struct request_queue *q, unsigned int depth,
3205                            bool from_schedule)
3206        __releases(q->queue_lock)
3207{
3208        trace_block_unplug(q, depth, !from_schedule);
3209
3210        if (from_schedule)
3211                blk_run_queue_async(q);
3212        else
3213                __blk_run_queue(q);
3214        spin_unlock(q->queue_lock);
3215}
3216
3217static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3218{
3219        LIST_HEAD(callbacks);
3220
3221        while (!list_empty(&plug->cb_list)) {
3222                list_splice_init(&plug->cb_list, &callbacks);
3223
3224                while (!list_empty(&callbacks)) {
3225                        struct blk_plug_cb *cb = list_first_entry(&callbacks,
3226                                                          struct blk_plug_cb,
3227                                                          list);
3228                        list_del(&cb->list);
3229                        cb->callback(cb, from_schedule);
3230                }
3231        }
3232}
3233
3234struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3235                                      int size)
3236{
3237        struct blk_plug *plug = current->plug;
3238        struct blk_plug_cb *cb;
3239
3240        if (!plug)
3241                return NULL;
3242
3243        list_for_each_entry(cb, &plug->cb_list, list)
3244                if (cb->callback == unplug && cb->data == data)
3245                        return cb;
3246
3247        /* Not currently on the callback list */
3248        BUG_ON(size < sizeof(*cb));
3249        cb = kzalloc(size, GFP_ATOMIC);
3250        if (cb) {
3251                cb->data = data;
3252                cb->callback = unplug;
3253                list_add(&cb->list, &plug->cb_list);
3254        }
3255        return cb;
3256}
3257EXPORT_SYMBOL(blk_check_plugged);
3258
3259void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3260{
3261        struct request_queue *q;
3262        unsigned long flags;
3263        struct request *rq;
3264        LIST_HEAD(list);
3265        unsigned int depth;
3266
3267        flush_plug_callbacks(plug, from_schedule);
3268
3269        if (!list_empty(&plug->mq_list))
3270                blk_mq_flush_plug_list(plug, from_schedule);
3271
3272        if (list_empty(&plug->list))
3273                return;
3274
3275        list_splice_init(&plug->list, &list);
3276
3277        list_sort(NULL, &list, plug_rq_cmp);
3278
3279        q = NULL;
3280        depth = 0;
3281
3282        /*
3283         * Save and disable interrupts here, to avoid doing it for every
3284         * queue lock we have to take.
3285         */
3286        local_irq_save(flags);
3287        while (!list_empty(&list)) {
3288                rq = list_entry_rq(list.next);
3289                list_del_init(&rq->queuelist);
3290                BUG_ON(!rq->q);
3291                if (rq->q != q) {
3292                        /*
3293                         * This drops the queue lock
3294                         */
3295                        if (q)
3296                                queue_unplugged(q, depth, from_schedule);
3297                        q = rq->q;
3298                        depth = 0;
3299                        spin_lock(q->queue_lock);
3300                }
3301
3302                /*
3303                 * Short-circuit if @q is dead
3304                 */
3305                if (unlikely(blk_queue_dying(q))) {
3306                        __blk_end_request_all(rq, -ENODEV);
3307                        continue;
3308                }
3309
3310                /*
3311                 * rq is already accounted, so use raw insert
3312                 */
3313                if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3314                        __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3315                else
3316                        __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3317
3318                depth++;
3319        }
3320
3321        /*
3322         * This drops the queue lock
3323         */
3324        if (q)
3325                queue_unplugged(q, depth, from_schedule);
3326
3327        local_irq_restore(flags);
3328}
3329
3330void blk_finish_plug(struct blk_plug *plug)
3331{
3332        if (plug != current->plug)
3333                return;
3334        blk_flush_plug_list(plug, false);
3335
3336        current->plug = NULL;
3337}
3338EXPORT_SYMBOL(blk_finish_plug);
3339
3340bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3341{
3342        struct blk_plug *plug;
3343        long state;
3344
3345        if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3346            !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3347                return false;
3348
3349        plug = current->plug;
3350        if (plug)
3351                blk_flush_plug_list(plug, false);
3352
3353        state = current->state;
3354        while (!need_resched()) {
3355                unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3356                struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3357                int ret;
3358
3359                hctx->poll_invoked++;
3360
3361                ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3362                if (ret > 0) {
3363                        hctx->poll_success++;
3364                        set_current_state(TASK_RUNNING);
3365                        return true;
3366                }
3367
3368                if (signal_pending_state(state, current))
3369                        set_current_state(TASK_RUNNING);
3370
3371                if (current->state == TASK_RUNNING)
3372                        return true;
3373                if (ret < 0)
3374                        break;
3375                cpu_relax();
3376        }
3377
3378        return false;
3379}
3380
3381#ifdef CONFIG_PM
3382/**
3383 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3384 * @q: the queue of the device
3385 * @dev: the device the queue belongs to
3386 *
3387 * Description:
3388 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3389 *    @dev. Drivers that want to take advantage of request-based runtime PM
3390 *    should call this function after @dev has been initialized, and its
3391 *    request queue @q has been allocated, and runtime PM for it can not happen
3392 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3393 *    cases, driver should call this function before any I/O has taken place.
3394 *
3395 *    This function takes care of setting up using auto suspend for the device,
3396 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3397 *    until an updated value is either set by user or by driver. Drivers do
3398 *    not need to touch other autosuspend settings.
3399 *
3400 *    The block layer runtime PM is request based, so only works for drivers
3401 *    that use request as their IO unit instead of those directly use bio's.
3402 */
3403void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3404{
3405        q->dev = dev;
3406        q->rpm_status = RPM_ACTIVE;
3407        pm_runtime_set_autosuspend_delay(q->dev, -1);
3408        pm_runtime_use_autosuspend(q->dev);
3409}
3410EXPORT_SYMBOL(blk_pm_runtime_init);
3411
3412/**
3413 * blk_pre_runtime_suspend - Pre runtime suspend check
3414 * @q: the queue of the device
3415 *
3416 * Description:
3417 *    This function will check if runtime suspend is allowed for the device
3418 *    by examining if there are any requests pending in the queue. If there
3419 *    are requests pending, the device can not be runtime suspended; otherwise,
3420 *    the queue's status will be updated to SUSPENDING and the driver can
3421 *    proceed to suspend the device.
3422 *
3423 *    For the not allowed case, we mark last busy for the device so that
3424 *    runtime PM core will try to autosuspend it some time later.
3425 *
3426 *    This function should be called near the start of the device's
3427 *    runtime_suspend callback.
3428 *
3429 * Return:
3430 *    0         - OK to runtime suspend the device
3431 *    -EBUSY    - Device should not be runtime suspended
3432 */
3433int blk_pre_runtime_suspend(struct request_queue *q)
3434{
3435        int ret = 0;
3436
3437        if (!q->dev)
3438                return ret;
3439
3440        spin_lock_irq(q->queue_lock);
3441        if (q->nr_pending) {
3442                ret = -EBUSY;
3443                pm_runtime_mark_last_busy(q->dev);
3444        } else {
3445                q->rpm_status = RPM_SUSPENDING;
3446        }
3447        spin_unlock_irq(q->queue_lock);
3448        return ret;
3449}
3450EXPORT_SYMBOL(blk_pre_runtime_suspend);
3451
3452/**
3453 * blk_post_runtime_suspend - Post runtime suspend processing
3454 * @q: the queue of the device
3455 * @err: return value of the device's runtime_suspend function
3456 *
3457 * Description:
3458 *    Update the queue's runtime status according to the return value of the
3459 *    device's runtime suspend function and mark last busy for the device so
3460 *    that PM core will try to auto suspend the device at a later time.
3461 *
3462 *    This function should be called near the end of the device's
3463 *    runtime_suspend callback.
3464 */
3465void blk_post_runtime_suspend(struct request_queue *q, int err)
3466{
3467        if (!q->dev)
3468                return;
3469
3470        spin_lock_irq(q->queue_lock);
3471        if (!err) {
3472                q->rpm_status = RPM_SUSPENDED;
3473        } else {
3474                q->rpm_status = RPM_ACTIVE;
3475                pm_runtime_mark_last_busy(q->dev);
3476        }
3477        spin_unlock_irq(q->queue_lock);
3478}
3479EXPORT_SYMBOL(blk_post_runtime_suspend);
3480
3481/**
3482 * blk_pre_runtime_resume - Pre runtime resume processing
3483 * @q: the queue of the device
3484 *
3485 * Description:
3486 *    Update the queue's runtime status to RESUMING in preparation for the
3487 *    runtime resume of the device.
3488 *
3489 *    This function should be called near the start of the device's
3490 *    runtime_resume callback.
3491 */
3492void blk_pre_runtime_resume(struct request_queue *q)
3493{
3494        if (!q->dev)
3495                return;
3496
3497        spin_lock_irq(q->queue_lock);
3498        q->rpm_status = RPM_RESUMING;
3499        spin_unlock_irq(q->queue_lock);
3500}
3501EXPORT_SYMBOL(blk_pre_runtime_resume);
3502
3503/**
3504 * blk_post_runtime_resume - Post runtime resume processing
3505 * @q: the queue of the device
3506 * @err: return value of the device's runtime_resume function
3507 *
3508 * Description:
3509 *    Update the queue's runtime status according to the return value of the
3510 *    device's runtime_resume function. If it is successfully resumed, process
3511 *    the requests that are queued into the device's queue when it is resuming
3512 *    and then mark last busy and initiate autosuspend for it.
3513 *
3514 *    This function should be called near the end of the device's
3515 *    runtime_resume callback.
3516 */
3517void blk_post_runtime_resume(struct request_queue *q, int err)
3518{
3519        if (!q->dev)
3520                return;
3521
3522        spin_lock_irq(q->queue_lock);
3523        if (!err) {
3524                q->rpm_status = RPM_ACTIVE;
3525                __blk_run_queue(q);
3526                pm_runtime_mark_last_busy(q->dev);
3527                pm_request_autosuspend(q->dev);
3528        } else {
3529                q->rpm_status = RPM_SUSPENDED;
3530        }
3531        spin_unlock_irq(q->queue_lock);
3532}
3533EXPORT_SYMBOL(blk_post_runtime_resume);
3534
3535/**
3536 * blk_set_runtime_active - Force runtime status of the queue to be active
3537 * @q: the queue of the device
3538 *
3539 * If the device is left runtime suspended during system suspend the resume
3540 * hook typically resumes the device and corrects runtime status
3541 * accordingly. However, that does not affect the queue runtime PM status
3542 * which is still "suspended". This prevents processing requests from the
3543 * queue.
3544 *
3545 * This function can be used in driver's resume hook to correct queue
3546 * runtime PM status and re-enable peeking requests from the queue. It
3547 * should be called before first request is added to the queue.
3548 */
3549void blk_set_runtime_active(struct request_queue *q)
3550{
3551        spin_lock_irq(q->queue_lock);
3552        q->rpm_status = RPM_ACTIVE;
3553        pm_runtime_mark_last_busy(q->dev);
3554        pm_request_autosuspend(q->dev);
3555        spin_unlock_irq(q->queue_lock);
3556}
3557EXPORT_SYMBOL(blk_set_runtime_active);
3558#endif
3559
3560int __init blk_dev_init(void)
3561{
3562        BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3563                        FIELD_SIZEOF(struct request, cmd_flags));
3564
3565        /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3566        kblockd_workqueue = alloc_workqueue("kblockd",
3567                                            WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3568        if (!kblockd_workqueue)
3569                panic("Failed to create kblockd\n");
3570
3571        request_cachep = kmem_cache_create("blkdev_requests",
3572                        sizeof(struct request), 0, SLAB_PANIC, NULL);
3573
3574        blk_requestq_cachep = kmem_cache_create("request_queue",
3575                        sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3576
3577        return 0;
3578}
3579