linux/drivers/char/xillybus/xillybus_core.c
<<
>>
Prefs
   1/*
   2 * linux/drivers/misc/xillybus_core.c
   3 *
   4 * Copyright 2011 Xillybus Ltd, http://xillybus.com
   5 *
   6 * Driver for the Xillybus FPGA/host framework.
   7 *
   8 * This driver interfaces with a special IP core in an FPGA, setting up
   9 * a pipe between a hardware FIFO in the programmable logic and a device
  10 * file in the host. The number of such pipes and their attributes are
  11 * set up on the logic. This driver detects these automatically and
  12 * creates the device files accordingly.
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the smems of the GNU General Public License as published by
  16 * the Free Software Foundation; version 2 of the License.
  17 */
  18
  19#include <linux/list.h>
  20#include <linux/device.h>
  21#include <linux/module.h>
  22#include <linux/io.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/interrupt.h>
  25#include <linux/sched.h>
  26#include <linux/fs.h>
  27#include <linux/cdev.h>
  28#include <linux/spinlock.h>
  29#include <linux/mutex.h>
  30#include <linux/crc32.h>
  31#include <linux/poll.h>
  32#include <linux/delay.h>
  33#include <linux/slab.h>
  34#include <linux/workqueue.h>
  35#include "xillybus.h"
  36
  37MODULE_DESCRIPTION("Xillybus core functions");
  38MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
  39MODULE_VERSION("1.07");
  40MODULE_ALIAS("xillybus_core");
  41MODULE_LICENSE("GPL v2");
  42
  43/* General timeout is 100 ms, rx timeout is 10 ms */
  44#define XILLY_RX_TIMEOUT (10*HZ/1000)
  45#define XILLY_TIMEOUT (100*HZ/1000)
  46
  47#define fpga_msg_ctrl_reg              0x0008
  48#define fpga_dma_control_reg           0x0020
  49#define fpga_dma_bufno_reg             0x0024
  50#define fpga_dma_bufaddr_lowaddr_reg   0x0028
  51#define fpga_dma_bufaddr_highaddr_reg  0x002c
  52#define fpga_buf_ctrl_reg              0x0030
  53#define fpga_buf_offset_reg            0x0034
  54#define fpga_endian_reg                0x0040
  55
  56#define XILLYMSG_OPCODE_RELEASEBUF 1
  57#define XILLYMSG_OPCODE_QUIESCEACK 2
  58#define XILLYMSG_OPCODE_FIFOEOF 3
  59#define XILLYMSG_OPCODE_FATAL_ERROR 4
  60#define XILLYMSG_OPCODE_NONEMPTY 5
  61
  62static const char xillyname[] = "xillybus";
  63
  64static struct class *xillybus_class;
  65
  66/*
  67 * ep_list_lock is the last lock to be taken; No other lock requests are
  68 * allowed while holding it. It merely protects list_of_endpoints, and not
  69 * the endpoints listed in it.
  70 */
  71
  72static LIST_HEAD(list_of_endpoints);
  73static struct mutex ep_list_lock;
  74static struct workqueue_struct *xillybus_wq;
  75
  76/*
  77 * Locking scheme: Mutexes protect invocations of character device methods.
  78 * If both locks are taken, wr_mutex is taken first, rd_mutex second.
  79 *
  80 * wr_spinlock protects wr_*_buf_idx, wr_empty, wr_sleepy, wr_ready and the
  81 * buffers' end_offset fields against changes made by IRQ handler (and in
  82 * theory, other file request handlers, but the mutex handles that). Nothing
  83 * else.
  84 * They are held for short direct memory manipulations. Needless to say,
  85 * no mutex locking is allowed when a spinlock is held.
  86 *
  87 * rd_spinlock does the same with rd_*_buf_idx, rd_empty and end_offset.
  88 *
  89 * register_mutex is endpoint-specific, and is held when non-atomic
  90 * register operations are performed. wr_mutex and rd_mutex may be
  91 * held when register_mutex is taken, but none of the spinlocks. Note that
  92 * register_mutex doesn't protect against sporadic buf_ctrl_reg writes
  93 * which are unrelated to buf_offset_reg, since they are harmless.
  94 *
  95 * Blocking on the wait queues is allowed with mutexes held, but not with
  96 * spinlocks.
  97 *
  98 * Only interruptible blocking is allowed on mutexes and wait queues.
  99 *
 100 * All in all, the locking order goes (with skips allowed, of course):
 101 * wr_mutex -> rd_mutex -> register_mutex -> wr_spinlock -> rd_spinlock
 102 */
 103
 104static void malformed_message(struct xilly_endpoint *endpoint, u32 *buf)
 105{
 106        int opcode;
 107        int msg_channel, msg_bufno, msg_data, msg_dir;
 108
 109        opcode = (buf[0] >> 24) & 0xff;
 110        msg_dir = buf[0] & 1;
 111        msg_channel = (buf[0] >> 1) & 0x7ff;
 112        msg_bufno = (buf[0] >> 12) & 0x3ff;
 113        msg_data = buf[1] & 0xfffffff;
 114
 115        dev_warn(endpoint->dev,
 116                 "Malformed message (skipping): opcode=%d, channel=%03x, dir=%d, bufno=%03x, data=%07x\n",
 117                 opcode, msg_channel, msg_dir, msg_bufno, msg_data);
 118}
 119
 120/*
 121 * xillybus_isr assumes the interrupt is allocated exclusively to it,
 122 * which is the natural case MSI and several other hardware-oriented
 123 * interrupts. Sharing is not allowed.
 124 */
 125
 126irqreturn_t xillybus_isr(int irq, void *data)
 127{
 128        struct xilly_endpoint *ep = data;
 129        u32 *buf;
 130        unsigned int buf_size;
 131        int i;
 132        int opcode;
 133        unsigned int msg_channel, msg_bufno, msg_data, msg_dir;
 134        struct xilly_channel *channel;
 135
 136        buf = ep->msgbuf_addr;
 137        buf_size = ep->msg_buf_size/sizeof(u32);
 138
 139        ep->ephw->hw_sync_sgl_for_cpu(ep,
 140                                      ep->msgbuf_dma_addr,
 141                                      ep->msg_buf_size,
 142                                      DMA_FROM_DEVICE);
 143
 144        for (i = 0; i < buf_size; i += 2) {
 145                if (((buf[i+1] >> 28) & 0xf) != ep->msg_counter) {
 146                        malformed_message(ep, &buf[i]);
 147                        dev_warn(ep->dev,
 148                                 "Sending a NACK on counter %x (instead of %x) on entry %d\n",
 149                                 ((buf[i+1] >> 28) & 0xf),
 150                                 ep->msg_counter,
 151                                 i/2);
 152
 153                        if (++ep->failed_messages > 10) {
 154                                dev_err(ep->dev,
 155                                        "Lost sync with interrupt messages. Stopping.\n");
 156                        } else {
 157                                ep->ephw->hw_sync_sgl_for_device(
 158                                        ep,
 159                                        ep->msgbuf_dma_addr,
 160                                        ep->msg_buf_size,
 161                                        DMA_FROM_DEVICE);
 162
 163                                iowrite32(0x01,  /* Message NACK */
 164                                          ep->registers + fpga_msg_ctrl_reg);
 165                        }
 166                        return IRQ_HANDLED;
 167                } else if (buf[i] & (1 << 22)) /* Last message */
 168                        break;
 169        }
 170
 171        if (i >= buf_size) {
 172                dev_err(ep->dev, "Bad interrupt message. Stopping.\n");
 173                return IRQ_HANDLED;
 174        }
 175
 176        buf_size = i + 2;
 177
 178        for (i = 0; i < buf_size; i += 2) { /* Scan through messages */
 179                opcode = (buf[i] >> 24) & 0xff;
 180
 181                msg_dir = buf[i] & 1;
 182                msg_channel = (buf[i] >> 1) & 0x7ff;
 183                msg_bufno = (buf[i] >> 12) & 0x3ff;
 184                msg_data = buf[i+1] & 0xfffffff;
 185
 186                switch (opcode) {
 187                case XILLYMSG_OPCODE_RELEASEBUF:
 188                        if ((msg_channel > ep->num_channels) ||
 189                            (msg_channel == 0)) {
 190                                malformed_message(ep, &buf[i]);
 191                                break;
 192                        }
 193
 194                        channel = ep->channels[msg_channel];
 195
 196                        if (msg_dir) { /* Write channel */
 197                                if (msg_bufno >= channel->num_wr_buffers) {
 198                                        malformed_message(ep, &buf[i]);
 199                                        break;
 200                                }
 201                                spin_lock(&channel->wr_spinlock);
 202                                channel->wr_buffers[msg_bufno]->end_offset =
 203                                        msg_data;
 204                                channel->wr_fpga_buf_idx = msg_bufno;
 205                                channel->wr_empty = 0;
 206                                channel->wr_sleepy = 0;
 207                                spin_unlock(&channel->wr_spinlock);
 208
 209                                wake_up_interruptible(&channel->wr_wait);
 210
 211                        } else {
 212                                /* Read channel */
 213
 214                                if (msg_bufno >= channel->num_rd_buffers) {
 215                                        malformed_message(ep, &buf[i]);
 216                                        break;
 217                                }
 218
 219                                spin_lock(&channel->rd_spinlock);
 220                                channel->rd_fpga_buf_idx = msg_bufno;
 221                                channel->rd_full = 0;
 222                                spin_unlock(&channel->rd_spinlock);
 223
 224                                wake_up_interruptible(&channel->rd_wait);
 225                                if (!channel->rd_synchronous)
 226                                        queue_delayed_work(
 227                                                xillybus_wq,
 228                                                &channel->rd_workitem,
 229                                                XILLY_RX_TIMEOUT);
 230                        }
 231
 232                        break;
 233                case XILLYMSG_OPCODE_NONEMPTY:
 234                        if ((msg_channel > ep->num_channels) ||
 235                            (msg_channel == 0) || (!msg_dir) ||
 236                            !ep->channels[msg_channel]->wr_supports_nonempty) {
 237                                malformed_message(ep, &buf[i]);
 238                                break;
 239                        }
 240
 241                        channel = ep->channels[msg_channel];
 242
 243                        if (msg_bufno >= channel->num_wr_buffers) {
 244                                malformed_message(ep, &buf[i]);
 245                                break;
 246                        }
 247                        spin_lock(&channel->wr_spinlock);
 248                        if (msg_bufno == channel->wr_host_buf_idx)
 249                                channel->wr_ready = 1;
 250                        spin_unlock(&channel->wr_spinlock);
 251
 252                        wake_up_interruptible(&channel->wr_ready_wait);
 253
 254                        break;
 255                case XILLYMSG_OPCODE_QUIESCEACK:
 256                        ep->idtlen = msg_data;
 257                        wake_up_interruptible(&ep->ep_wait);
 258
 259                        break;
 260                case XILLYMSG_OPCODE_FIFOEOF:
 261                        if ((msg_channel > ep->num_channels) ||
 262                            (msg_channel == 0) || (!msg_dir) ||
 263                            !ep->channels[msg_channel]->num_wr_buffers) {
 264                                malformed_message(ep, &buf[i]);
 265                                break;
 266                        }
 267                        channel = ep->channels[msg_channel];
 268                        spin_lock(&channel->wr_spinlock);
 269                        channel->wr_eof = msg_bufno;
 270                        channel->wr_sleepy = 0;
 271
 272                        channel->wr_hangup = channel->wr_empty &&
 273                                (channel->wr_host_buf_idx == msg_bufno);
 274
 275                        spin_unlock(&channel->wr_spinlock);
 276
 277                        wake_up_interruptible(&channel->wr_wait);
 278
 279                        break;
 280                case XILLYMSG_OPCODE_FATAL_ERROR:
 281                        ep->fatal_error = 1;
 282                        wake_up_interruptible(&ep->ep_wait); /* For select() */
 283                        dev_err(ep->dev,
 284                                "FPGA reported a fatal error. This means that the low-level communication with the device has failed. This hardware problem is most likely unrelated to Xillybus (neither kernel module nor FPGA core), but reports are still welcome. All I/O is aborted.\n");
 285                        break;
 286                default:
 287                        malformed_message(ep, &buf[i]);
 288                        break;
 289                }
 290        }
 291
 292        ep->ephw->hw_sync_sgl_for_device(ep,
 293                                         ep->msgbuf_dma_addr,
 294                                         ep->msg_buf_size,
 295                                         DMA_FROM_DEVICE);
 296
 297        ep->msg_counter = (ep->msg_counter + 1) & 0xf;
 298        ep->failed_messages = 0;
 299        iowrite32(0x03, ep->registers + fpga_msg_ctrl_reg); /* Message ACK */
 300
 301        return IRQ_HANDLED;
 302}
 303EXPORT_SYMBOL(xillybus_isr);
 304
 305/*
 306 * A few trivial memory management functions.
 307 * NOTE: These functions are used only on probe and remove, and therefore
 308 * no locks are applied!
 309 */
 310
 311static void xillybus_autoflush(struct work_struct *work);
 312
 313struct xilly_alloc_state {
 314        void *salami;
 315        int left_of_salami;
 316        int nbuffer;
 317        enum dma_data_direction direction;
 318        u32 regdirection;
 319};
 320
 321static int xilly_get_dma_buffers(struct xilly_endpoint *ep,
 322                                 struct xilly_alloc_state *s,
 323                                 struct xilly_buffer **buffers,
 324                                 int bufnum, int bytebufsize)
 325{
 326        int i, rc;
 327        dma_addr_t dma_addr;
 328        struct device *dev = ep->dev;
 329        struct xilly_buffer *this_buffer = NULL; /* Init to silence warning */
 330
 331        if (buffers) { /* Not the message buffer */
 332                this_buffer = devm_kcalloc(dev, bufnum,
 333                                           sizeof(struct xilly_buffer),
 334                                           GFP_KERNEL);
 335                if (!this_buffer)
 336                        return -ENOMEM;
 337        }
 338
 339        for (i = 0; i < bufnum; i++) {
 340                /*
 341                 * Buffers are expected in descending size order, so there
 342                 * is either enough space for this buffer or none at all.
 343                 */
 344
 345                if ((s->left_of_salami < bytebufsize) &&
 346                    (s->left_of_salami > 0)) {
 347                        dev_err(ep->dev,
 348                                "Corrupt buffer allocation in IDT. Aborting.\n");
 349                        return -ENODEV;
 350                }
 351
 352                if (s->left_of_salami == 0) {
 353                        int allocorder, allocsize;
 354
 355                        allocsize = PAGE_SIZE;
 356                        allocorder = 0;
 357                        while (bytebufsize > allocsize) {
 358                                allocsize *= 2;
 359                                allocorder++;
 360                        }
 361
 362                        s->salami = (void *) devm_get_free_pages(
 363                                dev,
 364                                GFP_KERNEL | __GFP_DMA32 | __GFP_ZERO,
 365                                allocorder);
 366                        if (!s->salami)
 367                                return -ENOMEM;
 368
 369                        s->left_of_salami = allocsize;
 370                }
 371
 372                rc = ep->ephw->map_single(ep, s->salami,
 373                                          bytebufsize, s->direction,
 374                                          &dma_addr);
 375                if (rc)
 376                        return rc;
 377
 378                iowrite32((u32) (dma_addr & 0xffffffff),
 379                          ep->registers + fpga_dma_bufaddr_lowaddr_reg);
 380                iowrite32(((u32) ((((u64) dma_addr) >> 32) & 0xffffffff)),
 381                          ep->registers + fpga_dma_bufaddr_highaddr_reg);
 382
 383                if (buffers) { /* Not the message buffer */
 384                        this_buffer->addr = s->salami;
 385                        this_buffer->dma_addr = dma_addr;
 386                        buffers[i] = this_buffer++;
 387
 388                        iowrite32(s->regdirection | s->nbuffer++,
 389                                  ep->registers + fpga_dma_bufno_reg);
 390                } else {
 391                        ep->msgbuf_addr = s->salami;
 392                        ep->msgbuf_dma_addr = dma_addr;
 393                        ep->msg_buf_size = bytebufsize;
 394
 395                        iowrite32(s->regdirection,
 396                                  ep->registers + fpga_dma_bufno_reg);
 397                }
 398
 399                s->left_of_salami -= bytebufsize;
 400                s->salami += bytebufsize;
 401        }
 402        return 0;
 403}
 404
 405static int xilly_setupchannels(struct xilly_endpoint *ep,
 406                               unsigned char *chandesc,
 407                               int entries)
 408{
 409        struct device *dev = ep->dev;
 410        int i, entry, rc;
 411        struct xilly_channel *channel;
 412        int channelnum, bufnum, bufsize, format, is_writebuf;
 413        int bytebufsize;
 414        int synchronous, allowpartial, exclusive_open, seekable;
 415        int supports_nonempty;
 416        int msg_buf_done = 0;
 417
 418        struct xilly_alloc_state rd_alloc = {
 419                .salami = NULL,
 420                .left_of_salami = 0,
 421                .nbuffer = 1,
 422                .direction = DMA_TO_DEVICE,
 423                .regdirection = 0,
 424        };
 425
 426        struct xilly_alloc_state wr_alloc = {
 427                .salami = NULL,
 428                .left_of_salami = 0,
 429                .nbuffer = 1,
 430                .direction = DMA_FROM_DEVICE,
 431                .regdirection = 0x80000000,
 432        };
 433
 434        channel = devm_kcalloc(dev, ep->num_channels,
 435                               sizeof(struct xilly_channel), GFP_KERNEL);
 436        if (!channel)
 437                return -ENOMEM;
 438
 439        ep->channels = devm_kcalloc(dev, ep->num_channels + 1,
 440                                    sizeof(struct xilly_channel *),
 441                                    GFP_KERNEL);
 442        if (!ep->channels)
 443                return -ENOMEM;
 444
 445        ep->channels[0] = NULL; /* Channel 0 is message buf. */
 446
 447        /* Initialize all channels with defaults */
 448
 449        for (i = 1; i <= ep->num_channels; i++) {
 450                channel->wr_buffers = NULL;
 451                channel->rd_buffers = NULL;
 452                channel->num_wr_buffers = 0;
 453                channel->num_rd_buffers = 0;
 454                channel->wr_fpga_buf_idx = -1;
 455                channel->wr_host_buf_idx = 0;
 456                channel->wr_host_buf_pos = 0;
 457                channel->wr_empty = 1;
 458                channel->wr_ready = 0;
 459                channel->wr_sleepy = 1;
 460                channel->rd_fpga_buf_idx = 0;
 461                channel->rd_host_buf_idx = 0;
 462                channel->rd_host_buf_pos = 0;
 463                channel->rd_full = 0;
 464                channel->wr_ref_count = 0;
 465                channel->rd_ref_count = 0;
 466
 467                spin_lock_init(&channel->wr_spinlock);
 468                spin_lock_init(&channel->rd_spinlock);
 469                mutex_init(&channel->wr_mutex);
 470                mutex_init(&channel->rd_mutex);
 471                init_waitqueue_head(&channel->rd_wait);
 472                init_waitqueue_head(&channel->wr_wait);
 473                init_waitqueue_head(&channel->wr_ready_wait);
 474
 475                INIT_DELAYED_WORK(&channel->rd_workitem, xillybus_autoflush);
 476
 477                channel->endpoint = ep;
 478                channel->chan_num = i;
 479
 480                channel->log2_element_size = 0;
 481
 482                ep->channels[i] = channel++;
 483        }
 484
 485        for (entry = 0; entry < entries; entry++, chandesc += 4) {
 486                struct xilly_buffer **buffers = NULL;
 487
 488                is_writebuf = chandesc[0] & 0x01;
 489                channelnum = (chandesc[0] >> 1) | ((chandesc[1] & 0x0f) << 7);
 490                format = (chandesc[1] >> 4) & 0x03;
 491                allowpartial = (chandesc[1] >> 6) & 0x01;
 492                synchronous = (chandesc[1] >> 7) & 0x01;
 493                bufsize = 1 << (chandesc[2] & 0x1f);
 494                bufnum = 1 << (chandesc[3] & 0x0f);
 495                exclusive_open = (chandesc[2] >> 7) & 0x01;
 496                seekable = (chandesc[2] >> 6) & 0x01;
 497                supports_nonempty = (chandesc[2] >> 5) & 0x01;
 498
 499                if ((channelnum > ep->num_channels) ||
 500                    ((channelnum == 0) && !is_writebuf)) {
 501                        dev_err(ep->dev,
 502                                "IDT requests channel out of range. Aborting.\n");
 503                        return -ENODEV;
 504                }
 505
 506                channel = ep->channels[channelnum]; /* NULL for msg channel */
 507
 508                if (!is_writebuf || channelnum > 0) {
 509                        channel->log2_element_size = ((format > 2) ?
 510                                                      2 : format);
 511
 512                        bytebufsize = bufsize *
 513                                (1 << channel->log2_element_size);
 514
 515                        buffers = devm_kcalloc(dev, bufnum,
 516                                               sizeof(struct xilly_buffer *),
 517                                               GFP_KERNEL);
 518                        if (!buffers)
 519                                return -ENOMEM;
 520                } else {
 521                        bytebufsize = bufsize << 2;
 522                }
 523
 524                if (!is_writebuf) {
 525                        channel->num_rd_buffers = bufnum;
 526                        channel->rd_buf_size = bytebufsize;
 527                        channel->rd_allow_partial = allowpartial;
 528                        channel->rd_synchronous = synchronous;
 529                        channel->rd_exclusive_open = exclusive_open;
 530                        channel->seekable = seekable;
 531
 532                        channel->rd_buffers = buffers;
 533                        rc = xilly_get_dma_buffers(ep, &rd_alloc, buffers,
 534                                                   bufnum, bytebufsize);
 535                } else if (channelnum > 0) {
 536                        channel->num_wr_buffers = bufnum;
 537                        channel->wr_buf_size = bytebufsize;
 538
 539                        channel->seekable = seekable;
 540                        channel->wr_supports_nonempty = supports_nonempty;
 541
 542                        channel->wr_allow_partial = allowpartial;
 543                        channel->wr_synchronous = synchronous;
 544                        channel->wr_exclusive_open = exclusive_open;
 545
 546                        channel->wr_buffers = buffers;
 547                        rc = xilly_get_dma_buffers(ep, &wr_alloc, buffers,
 548                                                   bufnum, bytebufsize);
 549                } else {
 550                        rc = xilly_get_dma_buffers(ep, &wr_alloc, NULL,
 551                                                   bufnum, bytebufsize);
 552                        msg_buf_done++;
 553                }
 554
 555                if (rc)
 556                        return -ENOMEM;
 557        }
 558
 559        if (!msg_buf_done) {
 560                dev_err(ep->dev,
 561                        "Corrupt IDT: No message buffer. Aborting.\n");
 562                return -ENODEV;
 563        }
 564        return 0;
 565}
 566
 567static int xilly_scan_idt(struct xilly_endpoint *endpoint,
 568                          struct xilly_idt_handle *idt_handle)
 569{
 570        int count = 0;
 571        unsigned char *idt = endpoint->channels[1]->wr_buffers[0]->addr;
 572        unsigned char *end_of_idt = idt + endpoint->idtlen - 4;
 573        unsigned char *scan;
 574        int len;
 575
 576        scan = idt;
 577        idt_handle->idt = idt;
 578
 579        scan++; /* Skip version number */
 580
 581        while ((scan <= end_of_idt) && *scan) {
 582                while ((scan <= end_of_idt) && *scan++)
 583                        /* Do nothing, just scan thru string */;
 584                count++;
 585        }
 586
 587        scan++;
 588
 589        if (scan > end_of_idt) {
 590                dev_err(endpoint->dev,
 591                        "IDT device name list overflow. Aborting.\n");
 592                return -ENODEV;
 593        }
 594        idt_handle->chandesc = scan;
 595
 596        len = endpoint->idtlen - (3 + ((int) (scan - idt)));
 597
 598        if (len & 0x03) {
 599                dev_err(endpoint->dev,
 600                        "Corrupt IDT device name list. Aborting.\n");
 601                return -ENODEV;
 602        }
 603
 604        idt_handle->entries = len >> 2;
 605        endpoint->num_channels = count;
 606
 607        return 0;
 608}
 609
 610static int xilly_obtain_idt(struct xilly_endpoint *endpoint)
 611{
 612        struct xilly_channel *channel;
 613        unsigned char *version;
 614        long t;
 615
 616        channel = endpoint->channels[1]; /* This should be generated ad-hoc */
 617
 618        channel->wr_sleepy = 1;
 619
 620        iowrite32(1 |
 621                  (3 << 24), /* Opcode 3 for channel 0 = Send IDT */
 622                  endpoint->registers + fpga_buf_ctrl_reg);
 623
 624        t = wait_event_interruptible_timeout(channel->wr_wait,
 625                                             (!channel->wr_sleepy),
 626                                             XILLY_TIMEOUT);
 627
 628        if (t <= 0) {
 629                dev_err(endpoint->dev, "Failed to obtain IDT. Aborting.\n");
 630
 631                if (endpoint->fatal_error)
 632                        return -EIO;
 633
 634                return -ENODEV;
 635        }
 636
 637        endpoint->ephw->hw_sync_sgl_for_cpu(
 638                channel->endpoint,
 639                channel->wr_buffers[0]->dma_addr,
 640                channel->wr_buf_size,
 641                DMA_FROM_DEVICE);
 642
 643        if (channel->wr_buffers[0]->end_offset != endpoint->idtlen) {
 644                dev_err(endpoint->dev,
 645                        "IDT length mismatch (%d != %d). Aborting.\n",
 646                        channel->wr_buffers[0]->end_offset, endpoint->idtlen);
 647                return -ENODEV;
 648        }
 649
 650        if (crc32_le(~0, channel->wr_buffers[0]->addr,
 651                     endpoint->idtlen+1) != 0) {
 652                dev_err(endpoint->dev, "IDT failed CRC check. Aborting.\n");
 653                return -ENODEV;
 654        }
 655
 656        version = channel->wr_buffers[0]->addr;
 657
 658        /* Check version number. Accept anything below 0x82 for now. */
 659        if (*version > 0x82) {
 660                dev_err(endpoint->dev,
 661                        "No support for IDT version 0x%02x. Maybe the xillybus driver needs an upgarde. Aborting.\n",
 662                        *version);
 663                return -ENODEV;
 664        }
 665
 666        return 0;
 667}
 668
 669static ssize_t xillybus_read(struct file *filp, char __user *userbuf,
 670                             size_t count, loff_t *f_pos)
 671{
 672        ssize_t rc;
 673        unsigned long flags;
 674        int bytes_done = 0;
 675        int no_time_left = 0;
 676        long deadline, left_to_sleep;
 677        struct xilly_channel *channel = filp->private_data;
 678
 679        int empty, reached_eof, exhausted, ready;
 680        /* Initializations are there only to silence warnings */
 681
 682        int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
 683        int waiting_bufidx;
 684
 685        if (channel->endpoint->fatal_error)
 686                return -EIO;
 687
 688        deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
 689
 690        rc = mutex_lock_interruptible(&channel->wr_mutex);
 691        if (rc)
 692                return rc;
 693
 694        while (1) { /* Note that we may drop mutex within this loop */
 695                int bytes_to_do = count - bytes_done;
 696
 697                spin_lock_irqsave(&channel->wr_spinlock, flags);
 698
 699                empty = channel->wr_empty;
 700                ready = !empty || channel->wr_ready;
 701
 702                if (!empty) {
 703                        bufidx = channel->wr_host_buf_idx;
 704                        bufpos = channel->wr_host_buf_pos;
 705                        howmany = ((channel->wr_buffers[bufidx]->end_offset
 706                                    + 1) << channel->log2_element_size)
 707                                - bufpos;
 708
 709                        /* Update wr_host_* to its post-operation state */
 710                        if (howmany > bytes_to_do) {
 711                                bufferdone = 0;
 712
 713                                howmany = bytes_to_do;
 714                                channel->wr_host_buf_pos += howmany;
 715                        } else {
 716                                bufferdone = 1;
 717
 718                                channel->wr_host_buf_pos = 0;
 719
 720                                if (bufidx == channel->wr_fpga_buf_idx) {
 721                                        channel->wr_empty = 1;
 722                                        channel->wr_sleepy = 1;
 723                                        channel->wr_ready = 0;
 724                                }
 725
 726                                if (bufidx >= (channel->num_wr_buffers - 1))
 727                                        channel->wr_host_buf_idx = 0;
 728                                else
 729                                        channel->wr_host_buf_idx++;
 730                        }
 731                }
 732
 733                /*
 734                 * Marking our situation after the possible changes above,
 735                 * for use after releasing the spinlock.
 736                 *
 737                 * empty = empty before change
 738                 * exhasted = empty after possible change
 739                 */
 740
 741                reached_eof = channel->wr_empty &&
 742                        (channel->wr_host_buf_idx == channel->wr_eof);
 743                channel->wr_hangup = reached_eof;
 744                exhausted = channel->wr_empty;
 745                waiting_bufidx = channel->wr_host_buf_idx;
 746
 747                spin_unlock_irqrestore(&channel->wr_spinlock, flags);
 748
 749                if (!empty) { /* Go on, now without the spinlock */
 750
 751                        if (bufpos == 0) /* Position zero means it's virgin */
 752                                channel->endpoint->ephw->hw_sync_sgl_for_cpu(
 753                                        channel->endpoint,
 754                                        channel->wr_buffers[bufidx]->dma_addr,
 755                                        channel->wr_buf_size,
 756                                        DMA_FROM_DEVICE);
 757
 758                        if (copy_to_user(
 759                                    userbuf,
 760                                    channel->wr_buffers[bufidx]->addr
 761                                    + bufpos, howmany))
 762                                rc = -EFAULT;
 763
 764                        userbuf += howmany;
 765                        bytes_done += howmany;
 766
 767                        if (bufferdone) {
 768                                channel->endpoint->ephw->hw_sync_sgl_for_device(
 769                                        channel->endpoint,
 770                                        channel->wr_buffers[bufidx]->dma_addr,
 771                                        channel->wr_buf_size,
 772                                        DMA_FROM_DEVICE);
 773
 774                                /*
 775                                 * Tell FPGA the buffer is done with. It's an
 776                                 * atomic operation to the FPGA, so what
 777                                 * happens with other channels doesn't matter,
 778                                 * and the certain channel is protected with
 779                                 * the channel-specific mutex.
 780                                 */
 781
 782                                iowrite32(1 | (channel->chan_num << 1) |
 783                                          (bufidx << 12),
 784                                          channel->endpoint->registers +
 785                                          fpga_buf_ctrl_reg);
 786                        }
 787
 788                        if (rc) {
 789                                mutex_unlock(&channel->wr_mutex);
 790                                return rc;
 791                        }
 792                }
 793
 794                /* This includes a zero-count return = EOF */
 795                if ((bytes_done >= count) || reached_eof)
 796                        break;
 797
 798                if (!exhausted)
 799                        continue; /* More in RAM buffer(s)? Just go on. */
 800
 801                if ((bytes_done > 0) &&
 802                    (no_time_left ||
 803                     (channel->wr_synchronous && channel->wr_allow_partial)))
 804                        break;
 805
 806                /*
 807                 * Nonblocking read: The "ready" flag tells us that the FPGA
 808                 * has data to send. In non-blocking mode, if it isn't on,
 809                 * just return. But if there is, we jump directly to the point
 810                 * where we ask for the FPGA to send all it has, and wait
 811                 * until that data arrives. So in a sense, we *do* block in
 812                 * nonblocking mode, but only for a very short time.
 813                 */
 814
 815                if (!no_time_left && (filp->f_flags & O_NONBLOCK)) {
 816                        if (bytes_done > 0)
 817                                break;
 818
 819                        if (ready)
 820                                goto desperate;
 821
 822                        rc = -EAGAIN;
 823                        break;
 824                }
 825
 826                if (!no_time_left || (bytes_done > 0)) {
 827                        /*
 828                         * Note that in case of an element-misaligned read
 829                         * request, offsetlimit will include the last element,
 830                         * which will be partially read from.
 831                         */
 832                        int offsetlimit = ((count - bytes_done) - 1) >>
 833                                channel->log2_element_size;
 834                        int buf_elements = channel->wr_buf_size >>
 835                                channel->log2_element_size;
 836
 837                        /*
 838                         * In synchronous mode, always send an offset limit.
 839                         * Just don't send a value too big.
 840                         */
 841
 842                        if (channel->wr_synchronous) {
 843                                /* Don't request more than one buffer */
 844                                if (channel->wr_allow_partial &&
 845                                    (offsetlimit >= buf_elements))
 846                                        offsetlimit = buf_elements - 1;
 847
 848                                /* Don't request more than all buffers */
 849                                if (!channel->wr_allow_partial &&
 850                                    (offsetlimit >=
 851                                     (buf_elements * channel->num_wr_buffers)))
 852                                        offsetlimit = buf_elements *
 853                                                channel->num_wr_buffers - 1;
 854                        }
 855
 856                        /*
 857                         * In asynchronous mode, force early flush of a buffer
 858                         * only if that will allow returning a full count. The
 859                         * "offsetlimit < ( ... )" rather than "<=" excludes
 860                         * requesting a full buffer, which would obviously
 861                         * cause a buffer transmission anyhow
 862                         */
 863
 864                        if (channel->wr_synchronous ||
 865                            (offsetlimit < (buf_elements - 1))) {
 866                                mutex_lock(&channel->endpoint->register_mutex);
 867
 868                                iowrite32(offsetlimit,
 869                                          channel->endpoint->registers +
 870                                          fpga_buf_offset_reg);
 871
 872                                iowrite32(1 | (channel->chan_num << 1) |
 873                                          (2 << 24) |  /* 2 = offset limit */
 874                                          (waiting_bufidx << 12),
 875                                          channel->endpoint->registers +
 876                                          fpga_buf_ctrl_reg);
 877
 878                                mutex_unlock(&channel->endpoint->
 879                                             register_mutex);
 880                        }
 881                }
 882
 883                /*
 884                 * If partial completion is disallowed, there is no point in
 885                 * timeout sleeping. Neither if no_time_left is set and
 886                 * there's no data.
 887                 */
 888
 889                if (!channel->wr_allow_partial ||
 890                    (no_time_left && (bytes_done == 0))) {
 891                        /*
 892                         * This do-loop will run more than once if another
 893                         * thread reasserted wr_sleepy before we got the mutex
 894                         * back, so we try again.
 895                         */
 896
 897                        do {
 898                                mutex_unlock(&channel->wr_mutex);
 899
 900                                if (wait_event_interruptible(
 901                                            channel->wr_wait,
 902                                            (!channel->wr_sleepy)))
 903                                        goto interrupted;
 904
 905                                if (mutex_lock_interruptible(
 906                                            &channel->wr_mutex))
 907                                        goto interrupted;
 908                        } while (channel->wr_sleepy);
 909
 910                        continue;
 911
 912interrupted: /* Mutex is not held if got here */
 913                        if (channel->endpoint->fatal_error)
 914                                return -EIO;
 915                        if (bytes_done)
 916                                return bytes_done;
 917                        if (filp->f_flags & O_NONBLOCK)
 918                                return -EAGAIN; /* Don't admit snoozing */
 919                        return -EINTR;
 920                }
 921
 922                left_to_sleep = deadline - ((long) jiffies);
 923
 924                /*
 925                 * If our time is out, skip the waiting. We may miss wr_sleepy
 926                 * being deasserted but hey, almost missing the train is like
 927                 * missing it.
 928                 */
 929
 930                if (left_to_sleep > 0) {
 931                        left_to_sleep =
 932                                wait_event_interruptible_timeout(
 933                                        channel->wr_wait,
 934                                        (!channel->wr_sleepy),
 935                                        left_to_sleep);
 936
 937                        if (left_to_sleep > 0) /* wr_sleepy deasserted */
 938                                continue;
 939
 940                        if (left_to_sleep < 0) { /* Interrupt */
 941                                mutex_unlock(&channel->wr_mutex);
 942                                if (channel->endpoint->fatal_error)
 943                                        return -EIO;
 944                                if (bytes_done)
 945                                        return bytes_done;
 946                                return -EINTR;
 947                        }
 948                }
 949
 950desperate:
 951                no_time_left = 1; /* We're out of sleeping time. Desperate! */
 952
 953                if (bytes_done == 0) {
 954                        /*
 955                         * Reaching here means that we allow partial return,
 956                         * that we've run out of time, and that we have
 957                         * nothing to return.
 958                         * So tell the FPGA to send anything it has or gets.
 959                         */
 960
 961                        iowrite32(1 | (channel->chan_num << 1) |
 962                                  (3 << 24) |  /* Opcode 3, flush it all! */
 963                                  (waiting_bufidx << 12),
 964                                  channel->endpoint->registers +
 965                                  fpga_buf_ctrl_reg);
 966                }
 967
 968                /*
 969                 * Reaching here means that we *do* have data in the buffer,
 970                 * but the "partial" flag disallows returning less than
 971                 * required. And we don't have as much. So loop again,
 972                 * which is likely to end up blocking indefinitely until
 973                 * enough data has arrived.
 974                 */
 975        }
 976
 977        mutex_unlock(&channel->wr_mutex);
 978
 979        if (channel->endpoint->fatal_error)
 980                return -EIO;
 981
 982        if (rc)
 983                return rc;
 984
 985        return bytes_done;
 986}
 987
 988/*
 989 * The timeout argument takes values as follows:
 990 *  >0 : Flush with timeout
 991 * ==0 : Flush, and wait idefinitely for the flush to complete
 992 *  <0 : Autoflush: Flush only if there's a single buffer occupied
 993 */
 994
 995static int xillybus_myflush(struct xilly_channel *channel, long timeout)
 996{
 997        int rc;
 998        unsigned long flags;
 999
1000        int end_offset_plus1;
1001        int bufidx, bufidx_minus1;
1002        int i;
1003        int empty;
1004        int new_rd_host_buf_pos;
1005
1006        if (channel->endpoint->fatal_error)
1007                return -EIO;
1008        rc = mutex_lock_interruptible(&channel->rd_mutex);
1009        if (rc)
1010                return rc;
1011
1012        /*
1013         * Don't flush a closed channel. This can happen when the work queued
1014         * autoflush thread fires off after the file has closed. This is not
1015         * an error, just something to dismiss.
1016         */
1017
1018        if (!channel->rd_ref_count)
1019                goto done;
1020
1021        bufidx = channel->rd_host_buf_idx;
1022
1023        bufidx_minus1 = (bufidx == 0) ?
1024                channel->num_rd_buffers - 1 :
1025                bufidx - 1;
1026
1027        end_offset_plus1 = channel->rd_host_buf_pos >>
1028                channel->log2_element_size;
1029
1030        new_rd_host_buf_pos = channel->rd_host_buf_pos -
1031                (end_offset_plus1 << channel->log2_element_size);
1032
1033        /* Submit the current buffer if it's nonempty */
1034        if (end_offset_plus1) {
1035                unsigned char *tail = channel->rd_buffers[bufidx]->addr +
1036                        (end_offset_plus1 << channel->log2_element_size);
1037
1038                /* Copy  unflushed data, so we can put it in next buffer */
1039                for (i = 0; i < new_rd_host_buf_pos; i++)
1040                        channel->rd_leftovers[i] = *tail++;
1041
1042                spin_lock_irqsave(&channel->rd_spinlock, flags);
1043
1044                /* Autoflush only if a single buffer is occupied */
1045
1046                if ((timeout < 0) &&
1047                    (channel->rd_full ||
1048                     (bufidx_minus1 != channel->rd_fpga_buf_idx))) {
1049                        spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1050                        /*
1051                         * A new work item may be queued by the ISR exactly
1052                         * now, since the execution of a work item allows the
1053                         * queuing of a new one while it's running.
1054                         */
1055                        goto done;
1056                }
1057
1058                /* The 4th element is never needed for data, so it's a flag */
1059                channel->rd_leftovers[3] = (new_rd_host_buf_pos != 0);
1060
1061                /* Set up rd_full to reflect a certain moment's state */
1062
1063                if (bufidx == channel->rd_fpga_buf_idx)
1064                        channel->rd_full = 1;
1065                spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1066
1067                if (bufidx >= (channel->num_rd_buffers - 1))
1068                        channel->rd_host_buf_idx = 0;
1069                else
1070                        channel->rd_host_buf_idx++;
1071
1072                channel->endpoint->ephw->hw_sync_sgl_for_device(
1073                        channel->endpoint,
1074                        channel->rd_buffers[bufidx]->dma_addr,
1075                        channel->rd_buf_size,
1076                        DMA_TO_DEVICE);
1077
1078                mutex_lock(&channel->endpoint->register_mutex);
1079
1080                iowrite32(end_offset_plus1 - 1,
1081                          channel->endpoint->registers + fpga_buf_offset_reg);
1082
1083                iowrite32((channel->chan_num << 1) | /* Channel ID */
1084                          (2 << 24) |  /* Opcode 2, submit buffer */
1085                          (bufidx << 12),
1086                          channel->endpoint->registers + fpga_buf_ctrl_reg);
1087
1088                mutex_unlock(&channel->endpoint->register_mutex);
1089        } else if (bufidx == 0) {
1090                bufidx = channel->num_rd_buffers - 1;
1091        } else {
1092                bufidx--;
1093        }
1094
1095        channel->rd_host_buf_pos = new_rd_host_buf_pos;
1096
1097        if (timeout < 0)
1098                goto done; /* Autoflush */
1099
1100        /*
1101         * bufidx is now the last buffer written to (or equal to
1102         * rd_fpga_buf_idx if buffer was never written to), and
1103         * channel->rd_host_buf_idx the one after it.
1104         *
1105         * If bufidx == channel->rd_fpga_buf_idx we're either empty or full.
1106         */
1107
1108        while (1) { /* Loop waiting for draining of buffers */
1109                spin_lock_irqsave(&channel->rd_spinlock, flags);
1110
1111                if (bufidx != channel->rd_fpga_buf_idx)
1112                        channel->rd_full = 1; /*
1113                                               * Not really full,
1114                                               * but needs waiting.
1115                                               */
1116
1117                empty = !channel->rd_full;
1118
1119                spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1120
1121                if (empty)
1122                        break;
1123
1124                /*
1125                 * Indefinite sleep with mutex taken. With data waiting for
1126                 * flushing user should not be surprised if open() for write
1127                 * sleeps.
1128                 */
1129                if (timeout == 0)
1130                        wait_event_interruptible(channel->rd_wait,
1131                                                 (!channel->rd_full));
1132
1133                else if (wait_event_interruptible_timeout(
1134                                 channel->rd_wait,
1135                                 (!channel->rd_full),
1136                                 timeout) == 0) {
1137                        dev_warn(channel->endpoint->dev,
1138                                 "Timed out while flushing. Output data may be lost.\n");
1139
1140                        rc = -ETIMEDOUT;
1141                        break;
1142                }
1143
1144                if (channel->rd_full) {
1145                        rc = -EINTR;
1146                        break;
1147                }
1148        }
1149
1150done:
1151        mutex_unlock(&channel->rd_mutex);
1152
1153        if (channel->endpoint->fatal_error)
1154                return -EIO;
1155
1156        return rc;
1157}
1158
1159static int xillybus_flush(struct file *filp, fl_owner_t id)
1160{
1161        if (!(filp->f_mode & FMODE_WRITE))
1162                return 0;
1163
1164        return xillybus_myflush(filp->private_data, HZ); /* 1 second timeout */
1165}
1166
1167static void xillybus_autoflush(struct work_struct *work)
1168{
1169        struct delayed_work *workitem = container_of(
1170                work, struct delayed_work, work);
1171        struct xilly_channel *channel = container_of(
1172                workitem, struct xilly_channel, rd_workitem);
1173        int rc;
1174
1175        rc = xillybus_myflush(channel, -1);
1176        if (rc == -EINTR)
1177                dev_warn(channel->endpoint->dev,
1178                         "Autoflush failed because work queue thread got a signal.\n");
1179        else if (rc)
1180                dev_err(channel->endpoint->dev,
1181                        "Autoflush failed under weird circumstances.\n");
1182}
1183
1184static ssize_t xillybus_write(struct file *filp, const char __user *userbuf,
1185                              size_t count, loff_t *f_pos)
1186{
1187        ssize_t rc;
1188        unsigned long flags;
1189        int bytes_done = 0;
1190        struct xilly_channel *channel = filp->private_data;
1191
1192        int full, exhausted;
1193        /* Initializations are there only to silence warnings */
1194
1195        int howmany = 0, bufpos = 0, bufidx = 0, bufferdone = 0;
1196        int end_offset_plus1 = 0;
1197
1198        if (channel->endpoint->fatal_error)
1199                return -EIO;
1200
1201        rc = mutex_lock_interruptible(&channel->rd_mutex);
1202        if (rc)
1203                return rc;
1204
1205        while (1) {
1206                int bytes_to_do = count - bytes_done;
1207
1208                spin_lock_irqsave(&channel->rd_spinlock, flags);
1209
1210                full = channel->rd_full;
1211
1212                if (!full) {
1213                        bufidx = channel->rd_host_buf_idx;
1214                        bufpos = channel->rd_host_buf_pos;
1215                        howmany = channel->rd_buf_size - bufpos;
1216
1217                        /*
1218                         * Update rd_host_* to its state after this operation.
1219                         * count=0 means committing the buffer immediately,
1220                         * which is like flushing, but not necessarily block.
1221                         */
1222
1223                        if ((howmany > bytes_to_do) &&
1224                            (count ||
1225                             ((bufpos >> channel->log2_element_size) == 0))) {
1226                                bufferdone = 0;
1227
1228                                howmany = bytes_to_do;
1229                                channel->rd_host_buf_pos += howmany;
1230                        } else {
1231                                bufferdone = 1;
1232
1233                                if (count) {
1234                                        end_offset_plus1 =
1235                                                channel->rd_buf_size >>
1236                                                channel->log2_element_size;
1237                                        channel->rd_host_buf_pos = 0;
1238                                } else {
1239                                        unsigned char *tail;
1240                                        int i;
1241
1242                                        howmany = 0;
1243
1244                                        end_offset_plus1 = bufpos >>
1245                                                channel->log2_element_size;
1246
1247                                        channel->rd_host_buf_pos -=
1248                                                end_offset_plus1 <<
1249                                                channel->log2_element_size;
1250
1251                                        tail = channel->
1252                                                rd_buffers[bufidx]->addr +
1253                                                (end_offset_plus1 <<
1254                                                 channel->log2_element_size);
1255
1256                                        for (i = 0;
1257                                             i < channel->rd_host_buf_pos;
1258                                             i++)
1259                                                channel->rd_leftovers[i] =
1260                                                        *tail++;
1261                                }
1262
1263                                if (bufidx == channel->rd_fpga_buf_idx)
1264                                        channel->rd_full = 1;
1265
1266                                if (bufidx >= (channel->num_rd_buffers - 1))
1267                                        channel->rd_host_buf_idx = 0;
1268                                else
1269                                        channel->rd_host_buf_idx++;
1270                        }
1271                }
1272
1273                /*
1274                 * Marking our situation after the possible changes above,
1275                 * for use  after releasing the spinlock.
1276                 *
1277                 * full = full before change
1278                 * exhasted = full after possible change
1279                 */
1280
1281                exhausted = channel->rd_full;
1282
1283                spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1284
1285                if (!full) { /* Go on, now without the spinlock */
1286                        unsigned char *head =
1287                                channel->rd_buffers[bufidx]->addr;
1288                        int i;
1289
1290                        if ((bufpos == 0) || /* Zero means it's virgin */
1291                            (channel->rd_leftovers[3] != 0)) {
1292                                channel->endpoint->ephw->hw_sync_sgl_for_cpu(
1293                                        channel->endpoint,
1294                                        channel->rd_buffers[bufidx]->dma_addr,
1295                                        channel->rd_buf_size,
1296                                        DMA_TO_DEVICE);
1297
1298                                /* Virgin, but leftovers are due */
1299                                for (i = 0; i < bufpos; i++)
1300                                        *head++ = channel->rd_leftovers[i];
1301
1302                                channel->rd_leftovers[3] = 0; /* Clear flag */
1303                        }
1304
1305                        if (copy_from_user(
1306                                    channel->rd_buffers[bufidx]->addr + bufpos,
1307                                    userbuf, howmany))
1308                                rc = -EFAULT;
1309
1310                        userbuf += howmany;
1311                        bytes_done += howmany;
1312
1313                        if (bufferdone) {
1314                                channel->endpoint->ephw->hw_sync_sgl_for_device(
1315                                        channel->endpoint,
1316                                        channel->rd_buffers[bufidx]->dma_addr,
1317                                        channel->rd_buf_size,
1318                                        DMA_TO_DEVICE);
1319
1320                                mutex_lock(&channel->endpoint->register_mutex);
1321
1322                                iowrite32(end_offset_plus1 - 1,
1323                                          channel->endpoint->registers +
1324                                          fpga_buf_offset_reg);
1325
1326                                iowrite32((channel->chan_num << 1) |
1327                                          (2 << 24) |  /* 2 = submit buffer */
1328                                          (bufidx << 12),
1329                                          channel->endpoint->registers +
1330                                          fpga_buf_ctrl_reg);
1331
1332                                mutex_unlock(&channel->endpoint->
1333                                             register_mutex);
1334
1335                                channel->rd_leftovers[3] =
1336                                        (channel->rd_host_buf_pos != 0);
1337                        }
1338
1339                        if (rc) {
1340                                mutex_unlock(&channel->rd_mutex);
1341
1342                                if (channel->endpoint->fatal_error)
1343                                        return -EIO;
1344
1345                                if (!channel->rd_synchronous)
1346                                        queue_delayed_work(
1347                                                xillybus_wq,
1348                                                &channel->rd_workitem,
1349                                                XILLY_RX_TIMEOUT);
1350
1351                                return rc;
1352                        }
1353                }
1354
1355                if (bytes_done >= count)
1356                        break;
1357
1358                if (!exhausted)
1359                        continue; /* If there's more space, just go on */
1360
1361                if ((bytes_done > 0) && channel->rd_allow_partial)
1362                        break;
1363
1364                /*
1365                 * Indefinite sleep with mutex taken. With data waiting for
1366                 * flushing, user should not be surprised if open() for write
1367                 * sleeps.
1368                 */
1369
1370                if (filp->f_flags & O_NONBLOCK) {
1371                        rc = -EAGAIN;
1372                        break;
1373                }
1374
1375                if (wait_event_interruptible(channel->rd_wait,
1376                                             (!channel->rd_full))) {
1377                        mutex_unlock(&channel->rd_mutex);
1378
1379                        if (channel->endpoint->fatal_error)
1380                                return -EIO;
1381
1382                        if (bytes_done)
1383                                return bytes_done;
1384                        return -EINTR;
1385                }
1386        }
1387
1388        mutex_unlock(&channel->rd_mutex);
1389
1390        if (!channel->rd_synchronous)
1391                queue_delayed_work(xillybus_wq,
1392                                   &channel->rd_workitem,
1393                                   XILLY_RX_TIMEOUT);
1394
1395        if (channel->endpoint->fatal_error)
1396                return -EIO;
1397
1398        if (rc)
1399                return rc;
1400
1401        if ((channel->rd_synchronous) && (bytes_done > 0)) {
1402                rc = xillybus_myflush(filp->private_data, 0); /* No timeout */
1403
1404                if (rc && (rc != -EINTR))
1405                        return rc;
1406        }
1407
1408        return bytes_done;
1409}
1410
1411static int xillybus_open(struct inode *inode, struct file *filp)
1412{
1413        int rc = 0;
1414        unsigned long flags;
1415        int minor = iminor(inode);
1416        int major = imajor(inode);
1417        struct xilly_endpoint *ep_iter, *endpoint = NULL;
1418        struct xilly_channel *channel;
1419
1420        mutex_lock(&ep_list_lock);
1421
1422        list_for_each_entry(ep_iter, &list_of_endpoints, ep_list) {
1423                if ((ep_iter->major == major) &&
1424                    (minor >= ep_iter->lowest_minor) &&
1425                    (minor < (ep_iter->lowest_minor +
1426                              ep_iter->num_channels))) {
1427                        endpoint = ep_iter;
1428                        break;
1429                }
1430        }
1431        mutex_unlock(&ep_list_lock);
1432
1433        if (!endpoint) {
1434                pr_err("xillybus: open() failed to find a device for major=%d and minor=%d\n",
1435                       major, minor);
1436                return -ENODEV;
1437        }
1438
1439        if (endpoint->fatal_error)
1440                return -EIO;
1441
1442        channel = endpoint->channels[1 + minor - endpoint->lowest_minor];
1443        filp->private_data = channel;
1444
1445        /*
1446         * It gets complicated because:
1447         * 1. We don't want to take a mutex we don't have to
1448         * 2. We don't want to open one direction if the other will fail.
1449         */
1450
1451        if ((filp->f_mode & FMODE_READ) && (!channel->num_wr_buffers))
1452                return -ENODEV;
1453
1454        if ((filp->f_mode & FMODE_WRITE) && (!channel->num_rd_buffers))
1455                return -ENODEV;
1456
1457        if ((filp->f_mode & FMODE_READ) && (filp->f_flags & O_NONBLOCK) &&
1458            (channel->wr_synchronous || !channel->wr_allow_partial ||
1459             !channel->wr_supports_nonempty)) {
1460                dev_err(endpoint->dev,
1461                        "open() failed: O_NONBLOCK not allowed for read on this device\n");
1462                return -ENODEV;
1463        }
1464
1465        if ((filp->f_mode & FMODE_WRITE) && (filp->f_flags & O_NONBLOCK) &&
1466            (channel->rd_synchronous || !channel->rd_allow_partial)) {
1467                dev_err(endpoint->dev,
1468                        "open() failed: O_NONBLOCK not allowed for write on this device\n");
1469                return -ENODEV;
1470        }
1471
1472        /*
1473         * Note: open() may block on getting mutexes despite O_NONBLOCK.
1474         * This shouldn't occur normally, since multiple open of the same
1475         * file descriptor is almost always prohibited anyhow
1476         * (*_exclusive_open is normally set in real-life systems).
1477         */
1478
1479        if (filp->f_mode & FMODE_READ) {
1480                rc = mutex_lock_interruptible(&channel->wr_mutex);
1481                if (rc)
1482                        return rc;
1483        }
1484
1485        if (filp->f_mode & FMODE_WRITE) {
1486                rc = mutex_lock_interruptible(&channel->rd_mutex);
1487                if (rc)
1488                        goto unlock_wr;
1489        }
1490
1491        if ((filp->f_mode & FMODE_READ) &&
1492            (channel->wr_ref_count != 0) &&
1493            (channel->wr_exclusive_open)) {
1494                rc = -EBUSY;
1495                goto unlock;
1496        }
1497
1498        if ((filp->f_mode & FMODE_WRITE) &&
1499            (channel->rd_ref_count != 0) &&
1500            (channel->rd_exclusive_open)) {
1501                rc = -EBUSY;
1502                goto unlock;
1503        }
1504
1505        if (filp->f_mode & FMODE_READ) {
1506                if (channel->wr_ref_count == 0) { /* First open of file */
1507                        /* Move the host to first buffer */
1508                        spin_lock_irqsave(&channel->wr_spinlock, flags);
1509                        channel->wr_host_buf_idx = 0;
1510                        channel->wr_host_buf_pos = 0;
1511                        channel->wr_fpga_buf_idx = -1;
1512                        channel->wr_empty = 1;
1513                        channel->wr_ready = 0;
1514                        channel->wr_sleepy = 1;
1515                        channel->wr_eof = -1;
1516                        channel->wr_hangup = 0;
1517
1518                        spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1519
1520                        iowrite32(1 | (channel->chan_num << 1) |
1521                                  (4 << 24) |  /* Opcode 4, open channel */
1522                                  ((channel->wr_synchronous & 1) << 23),
1523                                  channel->endpoint->registers +
1524                                  fpga_buf_ctrl_reg);
1525                }
1526
1527                channel->wr_ref_count++;
1528        }
1529
1530        if (filp->f_mode & FMODE_WRITE) {
1531                if (channel->rd_ref_count == 0) { /* First open of file */
1532                        /* Move the host to first buffer */
1533                        spin_lock_irqsave(&channel->rd_spinlock, flags);
1534                        channel->rd_host_buf_idx = 0;
1535                        channel->rd_host_buf_pos = 0;
1536                        channel->rd_leftovers[3] = 0; /* No leftovers. */
1537                        channel->rd_fpga_buf_idx = channel->num_rd_buffers - 1;
1538                        channel->rd_full = 0;
1539
1540                        spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1541
1542                        iowrite32((channel->chan_num << 1) |
1543                                  (4 << 24),   /* Opcode 4, open channel */
1544                                  channel->endpoint->registers +
1545                                  fpga_buf_ctrl_reg);
1546                }
1547
1548                channel->rd_ref_count++;
1549        }
1550
1551unlock:
1552        if (filp->f_mode & FMODE_WRITE)
1553                mutex_unlock(&channel->rd_mutex);
1554unlock_wr:
1555        if (filp->f_mode & FMODE_READ)
1556                mutex_unlock(&channel->wr_mutex);
1557
1558        if (!rc && (!channel->seekable))
1559                return nonseekable_open(inode, filp);
1560
1561        return rc;
1562}
1563
1564static int xillybus_release(struct inode *inode, struct file *filp)
1565{
1566        unsigned long flags;
1567        struct xilly_channel *channel = filp->private_data;
1568
1569        int buf_idx;
1570        int eof;
1571
1572        if (channel->endpoint->fatal_error)
1573                return -EIO;
1574
1575        if (filp->f_mode & FMODE_WRITE) {
1576                mutex_lock(&channel->rd_mutex);
1577
1578                channel->rd_ref_count--;
1579
1580                if (channel->rd_ref_count == 0) {
1581                        /*
1582                         * We rely on the kernel calling flush()
1583                         * before we get here.
1584                         */
1585
1586                        iowrite32((channel->chan_num << 1) | /* Channel ID */
1587                                  (5 << 24),  /* Opcode 5, close channel */
1588                                  channel->endpoint->registers +
1589                                  fpga_buf_ctrl_reg);
1590                }
1591                mutex_unlock(&channel->rd_mutex);
1592        }
1593
1594        if (filp->f_mode & FMODE_READ) {
1595                mutex_lock(&channel->wr_mutex);
1596
1597                channel->wr_ref_count--;
1598
1599                if (channel->wr_ref_count == 0) {
1600                        iowrite32(1 | (channel->chan_num << 1) |
1601                                  (5 << 24),  /* Opcode 5, close channel */
1602                                  channel->endpoint->registers +
1603                                  fpga_buf_ctrl_reg);
1604
1605                        /*
1606                         * This is crazily cautious: We make sure that not
1607                         * only that we got an EOF (be it because we closed
1608                         * the channel or because of a user's EOF), but verify
1609                         * that it's one beyond the last buffer arrived, so
1610                         * we have no leftover buffers pending before wrapping
1611                         * up (which can only happen in asynchronous channels,
1612                         * BTW)
1613                         */
1614
1615                        while (1) {
1616                                spin_lock_irqsave(&channel->wr_spinlock,
1617                                                  flags);
1618                                buf_idx = channel->wr_fpga_buf_idx;
1619                                eof = channel->wr_eof;
1620                                channel->wr_sleepy = 1;
1621                                spin_unlock_irqrestore(&channel->wr_spinlock,
1622                                                       flags);
1623
1624                                /*
1625                                 * Check if eof points at the buffer after
1626                                 * the last one the FPGA submitted. Note that
1627                                 * no EOF is marked by negative eof.
1628                                 */
1629
1630                                buf_idx++;
1631                                if (buf_idx == channel->num_wr_buffers)
1632                                        buf_idx = 0;
1633
1634                                if (buf_idx == eof)
1635                                        break;
1636
1637                                /*
1638                                 * Steal extra 100 ms if awaken by interrupt.
1639                                 * This is a simple workaround for an
1640                                 * interrupt pending when entering, which would
1641                                 * otherwise result in declaring the hardware
1642                                 * non-responsive.
1643                                 */
1644
1645                                if (wait_event_interruptible(
1646                                            channel->wr_wait,
1647                                            (!channel->wr_sleepy)))
1648                                        msleep(100);
1649
1650                                if (channel->wr_sleepy) {
1651                                        mutex_unlock(&channel->wr_mutex);
1652                                        dev_warn(channel->endpoint->dev,
1653                                                 "Hardware failed to respond to close command, therefore left in messy state.\n");
1654                                        return -EINTR;
1655                                }
1656                        }
1657                }
1658
1659                mutex_unlock(&channel->wr_mutex);
1660        }
1661
1662        return 0;
1663}
1664
1665static loff_t xillybus_llseek(struct file *filp, loff_t offset, int whence)
1666{
1667        struct xilly_channel *channel = filp->private_data;
1668        loff_t pos = filp->f_pos;
1669        int rc = 0;
1670
1671        /*
1672         * Take both mutexes not allowing interrupts, since it seems like
1673         * common applications don't expect an -EINTR here. Besides, multiple
1674         * access to a single file descriptor on seekable devices is a mess
1675         * anyhow.
1676         */
1677
1678        if (channel->endpoint->fatal_error)
1679                return -EIO;
1680
1681        mutex_lock(&channel->wr_mutex);
1682        mutex_lock(&channel->rd_mutex);
1683
1684        switch (whence) {
1685        case SEEK_SET:
1686                pos = offset;
1687                break;
1688        case SEEK_CUR:
1689                pos += offset;
1690                break;
1691        case SEEK_END:
1692                pos = offset; /* Going to the end => to the beginning */
1693                break;
1694        default:
1695                rc = -EINVAL;
1696                goto end;
1697        }
1698
1699        /* In any case, we must finish on an element boundary */
1700        if (pos & ((1 << channel->log2_element_size) - 1)) {
1701                rc = -EINVAL;
1702                goto end;
1703        }
1704
1705        mutex_lock(&channel->endpoint->register_mutex);
1706
1707        iowrite32(pos >> channel->log2_element_size,
1708                  channel->endpoint->registers + fpga_buf_offset_reg);
1709
1710        iowrite32((channel->chan_num << 1) |
1711                  (6 << 24),  /* Opcode 6, set address */
1712                  channel->endpoint->registers + fpga_buf_ctrl_reg);
1713
1714        mutex_unlock(&channel->endpoint->register_mutex);
1715
1716end:
1717        mutex_unlock(&channel->rd_mutex);
1718        mutex_unlock(&channel->wr_mutex);
1719
1720        if (rc) /* Return error after releasing mutexes */
1721                return rc;
1722
1723        filp->f_pos = pos;
1724
1725        /*
1726         * Since seekable devices are allowed only when the channel is
1727         * synchronous, we assume that there is no data pending in either
1728         * direction (which holds true as long as no concurrent access on the
1729         * file descriptor takes place).
1730         * The only thing we may need to throw away is leftovers from partial
1731         * write() flush.
1732         */
1733
1734        channel->rd_leftovers[3] = 0;
1735
1736        return pos;
1737}
1738
1739static unsigned int xillybus_poll(struct file *filp, poll_table *wait)
1740{
1741        struct xilly_channel *channel = filp->private_data;
1742        unsigned int mask = 0;
1743        unsigned long flags;
1744
1745        poll_wait(filp, &channel->endpoint->ep_wait, wait);
1746
1747        /*
1748         * poll() won't play ball regarding read() channels which
1749         * aren't asynchronous and support the nonempty message. Allowing
1750         * that will create situations where data has been delivered at
1751         * the FPGA, and users expecting select() to wake up, which it may
1752         * not.
1753         */
1754
1755        if (!channel->wr_synchronous && channel->wr_supports_nonempty) {
1756                poll_wait(filp, &channel->wr_wait, wait);
1757                poll_wait(filp, &channel->wr_ready_wait, wait);
1758
1759                spin_lock_irqsave(&channel->wr_spinlock, flags);
1760                if (!channel->wr_empty || channel->wr_ready)
1761                        mask |= POLLIN | POLLRDNORM;
1762
1763                if (channel->wr_hangup)
1764                        /*
1765                         * Not POLLHUP, because its behavior is in the
1766                         * mist, and POLLIN does what we want: Wake up
1767                         * the read file descriptor so it sees EOF.
1768                         */
1769                        mask |=  POLLIN | POLLRDNORM;
1770                spin_unlock_irqrestore(&channel->wr_spinlock, flags);
1771        }
1772
1773        /*
1774         * If partial data write is disallowed on a write() channel,
1775         * it's pointless to ever signal OK to write, because is could
1776         * block despite some space being available.
1777         */
1778
1779        if (channel->rd_allow_partial) {
1780                poll_wait(filp, &channel->rd_wait, wait);
1781
1782                spin_lock_irqsave(&channel->rd_spinlock, flags);
1783                if (!channel->rd_full)
1784                        mask |= POLLOUT | POLLWRNORM;
1785                spin_unlock_irqrestore(&channel->rd_spinlock, flags);
1786        }
1787
1788        if (channel->endpoint->fatal_error)
1789                mask |= POLLERR;
1790
1791        return mask;
1792}
1793
1794static const struct file_operations xillybus_fops = {
1795        .owner      = THIS_MODULE,
1796        .read       = xillybus_read,
1797        .write      = xillybus_write,
1798        .open       = xillybus_open,
1799        .flush      = xillybus_flush,
1800        .release    = xillybus_release,
1801        .llseek     = xillybus_llseek,
1802        .poll       = xillybus_poll,
1803};
1804
1805static int xillybus_init_chrdev(struct xilly_endpoint *endpoint,
1806                                const unsigned char *idt)
1807{
1808        int rc;
1809        dev_t dev;
1810        int devnum, i, minor, major;
1811        char devname[48];
1812        struct device *device;
1813
1814        rc = alloc_chrdev_region(&dev, 0, /* minor start */
1815                                 endpoint->num_channels,
1816                                 xillyname);
1817        if (rc) {
1818                dev_warn(endpoint->dev, "Failed to obtain major/minors");
1819                return rc;
1820        }
1821
1822        endpoint->major = major = MAJOR(dev);
1823        endpoint->lowest_minor = minor = MINOR(dev);
1824
1825        cdev_init(&endpoint->cdev, &xillybus_fops);
1826        endpoint->cdev.owner = endpoint->ephw->owner;
1827        rc = cdev_add(&endpoint->cdev, MKDEV(major, minor),
1828                      endpoint->num_channels);
1829        if (rc) {
1830                dev_warn(endpoint->dev, "Failed to add cdev. Aborting.\n");
1831                goto unregister_chrdev;
1832        }
1833
1834        idt++;
1835
1836        for (i = minor, devnum = 0;
1837             devnum < endpoint->num_channels;
1838             devnum++, i++) {
1839                snprintf(devname, sizeof(devname)-1, "xillybus_%s", idt);
1840
1841                devname[sizeof(devname)-1] = 0; /* Should never matter */
1842
1843                while (*idt++)
1844                        /* Skip to next */;
1845
1846                device = device_create(xillybus_class,
1847                                       NULL,
1848                                       MKDEV(major, i),
1849                                       NULL,
1850                                       "%s", devname);
1851
1852                if (IS_ERR(device)) {
1853                        dev_warn(endpoint->dev,
1854                                 "Failed to create %s device. Aborting.\n",
1855                                 devname);
1856                        rc = -ENODEV;
1857                        goto unroll_device_create;
1858                }
1859        }
1860
1861        dev_info(endpoint->dev, "Created %d device files.\n",
1862                 endpoint->num_channels);
1863        return 0; /* succeed */
1864
1865unroll_device_create:
1866        devnum--; i--;
1867        for (; devnum >= 0; devnum--, i--)
1868                device_destroy(xillybus_class, MKDEV(major, i));
1869
1870        cdev_del(&endpoint->cdev);
1871unregister_chrdev:
1872        unregister_chrdev_region(MKDEV(major, minor), endpoint->num_channels);
1873
1874        return rc;
1875}
1876
1877static void xillybus_cleanup_chrdev(struct xilly_endpoint *endpoint)
1878{
1879        int minor;
1880
1881        for (minor = endpoint->lowest_minor;
1882             minor < (endpoint->lowest_minor + endpoint->num_channels);
1883             minor++)
1884                device_destroy(xillybus_class, MKDEV(endpoint->major, minor));
1885        cdev_del(&endpoint->cdev);
1886        unregister_chrdev_region(MKDEV(endpoint->major,
1887                                       endpoint->lowest_minor),
1888                                 endpoint->num_channels);
1889
1890        dev_info(endpoint->dev, "Removed %d device files.\n",
1891                 endpoint->num_channels);
1892}
1893
1894struct xilly_endpoint *xillybus_init_endpoint(struct pci_dev *pdev,
1895                                              struct device *dev,
1896                                              struct xilly_endpoint_hardware
1897                                              *ephw)
1898{
1899        struct xilly_endpoint *endpoint;
1900
1901        endpoint = devm_kzalloc(dev, sizeof(*endpoint), GFP_KERNEL);
1902        if (!endpoint)
1903                return NULL;
1904
1905        endpoint->pdev = pdev;
1906        endpoint->dev = dev;
1907        endpoint->ephw = ephw;
1908        endpoint->msg_counter = 0x0b;
1909        endpoint->failed_messages = 0;
1910        endpoint->fatal_error = 0;
1911
1912        init_waitqueue_head(&endpoint->ep_wait);
1913        mutex_init(&endpoint->register_mutex);
1914
1915        return endpoint;
1916}
1917EXPORT_SYMBOL(xillybus_init_endpoint);
1918
1919static int xilly_quiesce(struct xilly_endpoint *endpoint)
1920{
1921        long t;
1922
1923        endpoint->idtlen = -1;
1924
1925        iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1926                  endpoint->registers + fpga_dma_control_reg);
1927
1928        t = wait_event_interruptible_timeout(endpoint->ep_wait,
1929                                             (endpoint->idtlen >= 0),
1930                                             XILLY_TIMEOUT);
1931        if (t <= 0) {
1932                dev_err(endpoint->dev,
1933                        "Failed to quiesce the device on exit.\n");
1934                return -ENODEV;
1935        }
1936        return 0;
1937}
1938
1939int xillybus_endpoint_discovery(struct xilly_endpoint *endpoint)
1940{
1941        int rc;
1942        long t;
1943
1944        void *bootstrap_resources;
1945        int idtbuffersize = (1 << PAGE_SHIFT);
1946        struct device *dev = endpoint->dev;
1947
1948        /*
1949         * The bogus IDT is used during bootstrap for allocating the initial
1950         * message buffer, and then the message buffer and space for the IDT
1951         * itself. The initial message buffer is of a single page's size, but
1952         * it's soon replaced with a more modest one (and memory is freed).
1953         */
1954
1955        unsigned char bogus_idt[8] = { 1, 224, (PAGE_SHIFT)-2, 0,
1956                                       3, 192, PAGE_SHIFT, 0 };
1957        struct xilly_idt_handle idt_handle;
1958
1959        /*
1960         * Writing the value 0x00000001 to Endianness register signals which
1961         * endianness this processor is using, so the FPGA can swap words as
1962         * necessary.
1963         */
1964
1965        iowrite32(1, endpoint->registers + fpga_endian_reg);
1966
1967        /* Bootstrap phase I: Allocate temporary message buffer */
1968
1969        bootstrap_resources = devres_open_group(dev, NULL, GFP_KERNEL);
1970        if (!bootstrap_resources)
1971                return -ENOMEM;
1972
1973        endpoint->num_channels = 0;
1974
1975        rc = xilly_setupchannels(endpoint, bogus_idt, 1);
1976        if (rc)
1977                return rc;
1978
1979        /* Clear the message subsystem (and counter in particular) */
1980        iowrite32(0x04, endpoint->registers + fpga_msg_ctrl_reg);
1981
1982        endpoint->idtlen = -1;
1983
1984        /*
1985         * Set DMA 32/64 bit mode, quiesce the device (?!) and get IDT
1986         * buffer size.
1987         */
1988        iowrite32((u32) (endpoint->dma_using_dac & 0x0001),
1989                  endpoint->registers + fpga_dma_control_reg);
1990
1991        t = wait_event_interruptible_timeout(endpoint->ep_wait,
1992                                             (endpoint->idtlen >= 0),
1993                                             XILLY_TIMEOUT);
1994        if (t <= 0) {
1995                dev_err(endpoint->dev, "No response from FPGA. Aborting.\n");
1996                return -ENODEV;
1997        }
1998
1999        /* Enable DMA */
2000        iowrite32((u32) (0x0002 | (endpoint->dma_using_dac & 0x0001)),
2001                  endpoint->registers + fpga_dma_control_reg);
2002
2003        /* Bootstrap phase II: Allocate buffer for IDT and obtain it */
2004        while (endpoint->idtlen >= idtbuffersize) {
2005                idtbuffersize *= 2;
2006                bogus_idt[6]++;
2007        }
2008
2009        endpoint->num_channels = 1;
2010
2011        rc = xilly_setupchannels(endpoint, bogus_idt, 2);
2012        if (rc)
2013                goto failed_idt;
2014
2015        rc = xilly_obtain_idt(endpoint);
2016        if (rc)
2017                goto failed_idt;
2018
2019        rc = xilly_scan_idt(endpoint, &idt_handle);
2020        if (rc)
2021                goto failed_idt;
2022
2023        devres_close_group(dev, bootstrap_resources);
2024
2025        /* Bootstrap phase III: Allocate buffers according to IDT */
2026
2027        rc = xilly_setupchannels(endpoint,
2028                                 idt_handle.chandesc,
2029                                 idt_handle.entries);
2030        if (rc)
2031                goto failed_idt;
2032
2033        /*
2034         * endpoint is now completely configured. We put it on the list
2035         * available to open() before registering the char device(s)
2036         */
2037
2038        mutex_lock(&ep_list_lock);
2039        list_add_tail(&endpoint->ep_list, &list_of_endpoints);
2040        mutex_unlock(&ep_list_lock);
2041
2042        rc = xillybus_init_chrdev(endpoint, idt_handle.idt);
2043        if (rc)
2044                goto failed_chrdevs;
2045
2046        devres_release_group(dev, bootstrap_resources);
2047
2048        return 0;
2049
2050failed_chrdevs:
2051        mutex_lock(&ep_list_lock);
2052        list_del(&endpoint->ep_list);
2053        mutex_unlock(&ep_list_lock);
2054
2055failed_idt:
2056        xilly_quiesce(endpoint);
2057        flush_workqueue(xillybus_wq);
2058
2059        return rc;
2060}
2061EXPORT_SYMBOL(xillybus_endpoint_discovery);
2062
2063void xillybus_endpoint_remove(struct xilly_endpoint *endpoint)
2064{
2065        xillybus_cleanup_chrdev(endpoint);
2066
2067        mutex_lock(&ep_list_lock);
2068        list_del(&endpoint->ep_list);
2069        mutex_unlock(&ep_list_lock);
2070
2071        xilly_quiesce(endpoint);
2072
2073        /*
2074         * Flushing is done upon endpoint release to prevent access to memory
2075         * just about to be released. This makes the quiesce complete.
2076         */
2077        flush_workqueue(xillybus_wq);
2078}
2079EXPORT_SYMBOL(xillybus_endpoint_remove);
2080
2081static int __init xillybus_init(void)
2082{
2083        mutex_init(&ep_list_lock);
2084
2085        xillybus_class = class_create(THIS_MODULE, xillyname);
2086        if (IS_ERR(xillybus_class))
2087                return PTR_ERR(xillybus_class);
2088
2089        xillybus_wq = alloc_workqueue(xillyname, 0, 0);
2090        if (!xillybus_wq) {
2091                class_destroy(xillybus_class);
2092                return -ENOMEM;
2093        }
2094
2095        return 0;
2096}
2097
2098static void __exit xillybus_exit(void)
2099{
2100        /* flush_workqueue() was called for each endpoint released */
2101        destroy_workqueue(xillybus_wq);
2102
2103        class_destroy(xillybus_class);
2104}
2105
2106module_init(xillybus_init);
2107module_exit(xillybus_exit);
2108