linux/drivers/clocksource/sh_cmt.c
<<
>>
Prefs
   1/*
   2 * SuperH Timer Support - CMT
   3 *
   4 *  Copyright (C) 2008 Magnus Damm
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/ioport.h>
  25#include <linux/irq.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/platform_device.h>
  29#include <linux/pm_domain.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/sh_timer.h>
  32#include <linux/slab.h>
  33#include <linux/spinlock.h>
  34
  35struct sh_cmt_device;
  36
  37/*
  38 * The CMT comes in 5 different identified flavours, depending not only on the
  39 * SoC but also on the particular instance. The following table lists the main
  40 * characteristics of those flavours.
  41 *
  42 *                      16B     32B     32B-F   48B     48B-2
  43 * -----------------------------------------------------------------------------
  44 * Channels             2       1/4     1       6       2/8
  45 * Control Width        16      16      16      16      32
  46 * Counter Width        16      32      32      32/48   32/48
  47 * Shared Start/Stop    Y       Y       Y       Y       N
  48 *
  49 * The 48-bit gen2 version has a per-channel start/stop register located in the
  50 * channel registers block. All other versions have a shared start/stop register
  51 * located in the global space.
  52 *
  53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  54 * infers the start/stop bit position in the control register and the channel
  55 * registers block address. Some CMT instances have a subset of channels
  56 * available, in which case the index in the documentation doesn't match the
  57 * "real" index as implemented in hardware. This is for instance the case with
  58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  59 * in the documentation but using start/stop bit 5 and having its registers
  60 * block at 0x60.
  61 *
  62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  64 */
  65
  66enum sh_cmt_model {
  67        SH_CMT_16BIT,
  68        SH_CMT_32BIT,
  69        SH_CMT_32BIT_FAST,
  70        SH_CMT_48BIT,
  71        SH_CMT_48BIT_GEN2,
  72};
  73
  74struct sh_cmt_info {
  75        enum sh_cmt_model model;
  76
  77        unsigned long width; /* 16 or 32 bit version of hardware block */
  78        unsigned long overflow_bit;
  79        unsigned long clear_bits;
  80
  81        /* callbacks for CMSTR and CMCSR access */
  82        unsigned long (*read_control)(void __iomem *base, unsigned long offs);
  83        void (*write_control)(void __iomem *base, unsigned long offs,
  84                              unsigned long value);
  85
  86        /* callbacks for CMCNT and CMCOR access */
  87        unsigned long (*read_count)(void __iomem *base, unsigned long offs);
  88        void (*write_count)(void __iomem *base, unsigned long offs,
  89                            unsigned long value);
  90};
  91
  92struct sh_cmt_channel {
  93        struct sh_cmt_device *cmt;
  94
  95        unsigned int index;     /* Index in the documentation */
  96        unsigned int hwidx;     /* Real hardware index */
  97
  98        void __iomem *iostart;
  99        void __iomem *ioctrl;
 100
 101        unsigned int timer_bit;
 102        unsigned long flags;
 103        unsigned long match_value;
 104        unsigned long next_match_value;
 105        unsigned long max_match_value;
 106        unsigned long rate;
 107        raw_spinlock_t lock;
 108        struct clock_event_device ced;
 109        struct clocksource cs;
 110        unsigned long total_cycles;
 111        bool cs_enabled;
 112};
 113
 114struct sh_cmt_device {
 115        struct platform_device *pdev;
 116
 117        const struct sh_cmt_info *info;
 118
 119        void __iomem *mapbase;
 120        struct clk *clk;
 121
 122        raw_spinlock_t lock; /* Protect the shared start/stop register */
 123
 124        struct sh_cmt_channel *channels;
 125        unsigned int num_channels;
 126        unsigned int hw_channels;
 127
 128        bool has_clockevent;
 129        bool has_clocksource;
 130};
 131
 132#define SH_CMT16_CMCSR_CMF              (1 << 7)
 133#define SH_CMT16_CMCSR_CMIE             (1 << 6)
 134#define SH_CMT16_CMCSR_CKS8             (0 << 0)
 135#define SH_CMT16_CMCSR_CKS32            (1 << 0)
 136#define SH_CMT16_CMCSR_CKS128           (2 << 0)
 137#define SH_CMT16_CMCSR_CKS512           (3 << 0)
 138#define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
 139
 140#define SH_CMT32_CMCSR_CMF              (1 << 15)
 141#define SH_CMT32_CMCSR_OVF              (1 << 14)
 142#define SH_CMT32_CMCSR_WRFLG            (1 << 13)
 143#define SH_CMT32_CMCSR_STTF             (1 << 12)
 144#define SH_CMT32_CMCSR_STPF             (1 << 11)
 145#define SH_CMT32_CMCSR_SSIE             (1 << 10)
 146#define SH_CMT32_CMCSR_CMS              (1 << 9)
 147#define SH_CMT32_CMCSR_CMM              (1 << 8)
 148#define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
 149#define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
 150#define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
 151#define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
 152#define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
 153#define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
 154#define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
 157#define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
 158#define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
 159
 160static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 161{
 162        return ioread16(base + (offs << 1));
 163}
 164
 165static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 166{
 167        return ioread32(base + (offs << 2));
 168}
 169
 170static void sh_cmt_write16(void __iomem *base, unsigned long offs,
 171                           unsigned long value)
 172{
 173        iowrite16(value, base + (offs << 1));
 174}
 175
 176static void sh_cmt_write32(void __iomem *base, unsigned long offs,
 177                           unsigned long value)
 178{
 179        iowrite32(value, base + (offs << 2));
 180}
 181
 182static const struct sh_cmt_info sh_cmt_info[] = {
 183        [SH_CMT_16BIT] = {
 184                .model = SH_CMT_16BIT,
 185                .width = 16,
 186                .overflow_bit = SH_CMT16_CMCSR_CMF,
 187                .clear_bits = ~SH_CMT16_CMCSR_CMF,
 188                .read_control = sh_cmt_read16,
 189                .write_control = sh_cmt_write16,
 190                .read_count = sh_cmt_read16,
 191                .write_count = sh_cmt_write16,
 192        },
 193        [SH_CMT_32BIT] = {
 194                .model = SH_CMT_32BIT,
 195                .width = 32,
 196                .overflow_bit = SH_CMT32_CMCSR_CMF,
 197                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 198                .read_control = sh_cmt_read16,
 199                .write_control = sh_cmt_write16,
 200                .read_count = sh_cmt_read32,
 201                .write_count = sh_cmt_write32,
 202        },
 203        [SH_CMT_32BIT_FAST] = {
 204                .model = SH_CMT_32BIT_FAST,
 205                .width = 32,
 206                .overflow_bit = SH_CMT32_CMCSR_CMF,
 207                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 208                .read_control = sh_cmt_read16,
 209                .write_control = sh_cmt_write16,
 210                .read_count = sh_cmt_read32,
 211                .write_count = sh_cmt_write32,
 212        },
 213        [SH_CMT_48BIT] = {
 214                .model = SH_CMT_48BIT,
 215                .width = 32,
 216                .overflow_bit = SH_CMT32_CMCSR_CMF,
 217                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 218                .read_control = sh_cmt_read32,
 219                .write_control = sh_cmt_write32,
 220                .read_count = sh_cmt_read32,
 221                .write_count = sh_cmt_write32,
 222        },
 223        [SH_CMT_48BIT_GEN2] = {
 224                .model = SH_CMT_48BIT_GEN2,
 225                .width = 32,
 226                .overflow_bit = SH_CMT32_CMCSR_CMF,
 227                .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 228                .read_control = sh_cmt_read32,
 229                .write_control = sh_cmt_write32,
 230                .read_count = sh_cmt_read32,
 231                .write_count = sh_cmt_write32,
 232        },
 233};
 234
 235#define CMCSR 0 /* channel register */
 236#define CMCNT 1 /* channel register */
 237#define CMCOR 2 /* channel register */
 238
 239static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 240{
 241        if (ch->iostart)
 242                return ch->cmt->info->read_control(ch->iostart, 0);
 243        else
 244                return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 245}
 246
 247static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
 248                                      unsigned long value)
 249{
 250        if (ch->iostart)
 251                ch->cmt->info->write_control(ch->iostart, 0, value);
 252        else
 253                ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 254}
 255
 256static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 257{
 258        return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 259}
 260
 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
 262                                      unsigned long value)
 263{
 264        ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 265}
 266
 267static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 268{
 269        return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 270}
 271
 272static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
 273                                      unsigned long value)
 274{
 275        ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 276}
 277
 278static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
 279                                      unsigned long value)
 280{
 281        ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 282}
 283
 284static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
 285                                        int *has_wrapped)
 286{
 287        unsigned long v1, v2, v3;
 288        int o1, o2;
 289
 290        o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 291
 292        /* Make sure the timer value is stable. Stolen from acpi_pm.c */
 293        do {
 294                o2 = o1;
 295                v1 = sh_cmt_read_cmcnt(ch);
 296                v2 = sh_cmt_read_cmcnt(ch);
 297                v3 = sh_cmt_read_cmcnt(ch);
 298                o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 299        } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 300                          || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 301
 302        *has_wrapped = o1;
 303        return v2;
 304}
 305
 306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 307{
 308        unsigned long flags, value;
 309
 310        /* start stop register shared by multiple timer channels */
 311        raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 312        value = sh_cmt_read_cmstr(ch);
 313
 314        if (start)
 315                value |= 1 << ch->timer_bit;
 316        else
 317                value &= ~(1 << ch->timer_bit);
 318
 319        sh_cmt_write_cmstr(ch, value);
 320        raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 321}
 322
 323static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
 324{
 325        int k, ret;
 326
 327        pm_runtime_get_sync(&ch->cmt->pdev->dev);
 328        dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 329
 330        /* enable clock */
 331        ret = clk_enable(ch->cmt->clk);
 332        if (ret) {
 333                dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 334                        ch->index);
 335                goto err0;
 336        }
 337
 338        /* make sure channel is disabled */
 339        sh_cmt_start_stop_ch(ch, 0);
 340
 341        /* configure channel, periodic mode and maximum timeout */
 342        if (ch->cmt->info->width == 16) {
 343                *rate = clk_get_rate(ch->cmt->clk) / 512;
 344                sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 345                                   SH_CMT16_CMCSR_CKS512);
 346        } else {
 347                *rate = clk_get_rate(ch->cmt->clk) / 8;
 348                sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 349                                   SH_CMT32_CMCSR_CMTOUT_IE |
 350                                   SH_CMT32_CMCSR_CMR_IRQ |
 351                                   SH_CMT32_CMCSR_CKS_RCLK8);
 352        }
 353
 354        sh_cmt_write_cmcor(ch, 0xffffffff);
 355        sh_cmt_write_cmcnt(ch, 0);
 356
 357        /*
 358         * According to the sh73a0 user's manual, as CMCNT can be operated
 359         * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 360         * modifying CMCNT register; two RCLK cycles are necessary before
 361         * this register is either read or any modification of the value
 362         * it holds is reflected in the LSI's actual operation.
 363         *
 364         * While at it, we're supposed to clear out the CMCNT as of this
 365         * moment, so make sure it's processed properly here.  This will
 366         * take RCLKx2 at maximum.
 367         */
 368        for (k = 0; k < 100; k++) {
 369                if (!sh_cmt_read_cmcnt(ch))
 370                        break;
 371                udelay(1);
 372        }
 373
 374        if (sh_cmt_read_cmcnt(ch)) {
 375                dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 376                        ch->index);
 377                ret = -ETIMEDOUT;
 378                goto err1;
 379        }
 380
 381        /* enable channel */
 382        sh_cmt_start_stop_ch(ch, 1);
 383        return 0;
 384 err1:
 385        /* stop clock */
 386        clk_disable(ch->cmt->clk);
 387
 388 err0:
 389        return ret;
 390}
 391
 392static void sh_cmt_disable(struct sh_cmt_channel *ch)
 393{
 394        /* disable channel */
 395        sh_cmt_start_stop_ch(ch, 0);
 396
 397        /* disable interrupts in CMT block */
 398        sh_cmt_write_cmcsr(ch, 0);
 399
 400        /* stop clock */
 401        clk_disable(ch->cmt->clk);
 402
 403        dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 404        pm_runtime_put(&ch->cmt->pdev->dev);
 405}
 406
 407/* private flags */
 408#define FLAG_CLOCKEVENT (1 << 0)
 409#define FLAG_CLOCKSOURCE (1 << 1)
 410#define FLAG_REPROGRAM (1 << 2)
 411#define FLAG_SKIPEVENT (1 << 3)
 412#define FLAG_IRQCONTEXT (1 << 4)
 413
 414static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 415                                              int absolute)
 416{
 417        unsigned long new_match;
 418        unsigned long value = ch->next_match_value;
 419        unsigned long delay = 0;
 420        unsigned long now = 0;
 421        int has_wrapped;
 422
 423        now = sh_cmt_get_counter(ch, &has_wrapped);
 424        ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 425
 426        if (has_wrapped) {
 427                /* we're competing with the interrupt handler.
 428                 *  -> let the interrupt handler reprogram the timer.
 429                 *  -> interrupt number two handles the event.
 430                 */
 431                ch->flags |= FLAG_SKIPEVENT;
 432                return;
 433        }
 434
 435        if (absolute)
 436                now = 0;
 437
 438        do {
 439                /* reprogram the timer hardware,
 440                 * but don't save the new match value yet.
 441                 */
 442                new_match = now + value + delay;
 443                if (new_match > ch->max_match_value)
 444                        new_match = ch->max_match_value;
 445
 446                sh_cmt_write_cmcor(ch, new_match);
 447
 448                now = sh_cmt_get_counter(ch, &has_wrapped);
 449                if (has_wrapped && (new_match > ch->match_value)) {
 450                        /* we are changing to a greater match value,
 451                         * so this wrap must be caused by the counter
 452                         * matching the old value.
 453                         * -> first interrupt reprograms the timer.
 454                         * -> interrupt number two handles the event.
 455                         */
 456                        ch->flags |= FLAG_SKIPEVENT;
 457                        break;
 458                }
 459
 460                if (has_wrapped) {
 461                        /* we are changing to a smaller match value,
 462                         * so the wrap must be caused by the counter
 463                         * matching the new value.
 464                         * -> save programmed match value.
 465                         * -> let isr handle the event.
 466                         */
 467                        ch->match_value = new_match;
 468                        break;
 469                }
 470
 471                /* be safe: verify hardware settings */
 472                if (now < new_match) {
 473                        /* timer value is below match value, all good.
 474                         * this makes sure we won't miss any match events.
 475                         * -> save programmed match value.
 476                         * -> let isr handle the event.
 477                         */
 478                        ch->match_value = new_match;
 479                        break;
 480                }
 481
 482                /* the counter has reached a value greater
 483                 * than our new match value. and since the
 484                 * has_wrapped flag isn't set we must have
 485                 * programmed a too close event.
 486                 * -> increase delay and retry.
 487                 */
 488                if (delay)
 489                        delay <<= 1;
 490                else
 491                        delay = 1;
 492
 493                if (!delay)
 494                        dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 495                                 ch->index);
 496
 497        } while (delay);
 498}
 499
 500static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 501{
 502        if (delta > ch->max_match_value)
 503                dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 504                         ch->index);
 505
 506        ch->next_match_value = delta;
 507        sh_cmt_clock_event_program_verify(ch, 0);
 508}
 509
 510static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 511{
 512        unsigned long flags;
 513
 514        raw_spin_lock_irqsave(&ch->lock, flags);
 515        __sh_cmt_set_next(ch, delta);
 516        raw_spin_unlock_irqrestore(&ch->lock, flags);
 517}
 518
 519static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 520{
 521        struct sh_cmt_channel *ch = dev_id;
 522
 523        /* clear flags */
 524        sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 525                           ch->cmt->info->clear_bits);
 526
 527        /* update clock source counter to begin with if enabled
 528         * the wrap flag should be cleared by the timer specific
 529         * isr before we end up here.
 530         */
 531        if (ch->flags & FLAG_CLOCKSOURCE)
 532                ch->total_cycles += ch->match_value + 1;
 533
 534        if (!(ch->flags & FLAG_REPROGRAM))
 535                ch->next_match_value = ch->max_match_value;
 536
 537        ch->flags |= FLAG_IRQCONTEXT;
 538
 539        if (ch->flags & FLAG_CLOCKEVENT) {
 540                if (!(ch->flags & FLAG_SKIPEVENT)) {
 541                        if (clockevent_state_oneshot(&ch->ced)) {
 542                                ch->next_match_value = ch->max_match_value;
 543                                ch->flags |= FLAG_REPROGRAM;
 544                        }
 545
 546                        ch->ced.event_handler(&ch->ced);
 547                }
 548        }
 549
 550        ch->flags &= ~FLAG_SKIPEVENT;
 551
 552        if (ch->flags & FLAG_REPROGRAM) {
 553                ch->flags &= ~FLAG_REPROGRAM;
 554                sh_cmt_clock_event_program_verify(ch, 1);
 555
 556                if (ch->flags & FLAG_CLOCKEVENT)
 557                        if ((clockevent_state_shutdown(&ch->ced))
 558                            || (ch->match_value == ch->next_match_value))
 559                                ch->flags &= ~FLAG_REPROGRAM;
 560        }
 561
 562        ch->flags &= ~FLAG_IRQCONTEXT;
 563
 564        return IRQ_HANDLED;
 565}
 566
 567static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 568{
 569        int ret = 0;
 570        unsigned long flags;
 571
 572        raw_spin_lock_irqsave(&ch->lock, flags);
 573
 574        if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 575                ret = sh_cmt_enable(ch, &ch->rate);
 576
 577        if (ret)
 578                goto out;
 579        ch->flags |= flag;
 580
 581        /* setup timeout if no clockevent */
 582        if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 583                __sh_cmt_set_next(ch, ch->max_match_value);
 584 out:
 585        raw_spin_unlock_irqrestore(&ch->lock, flags);
 586
 587        return ret;
 588}
 589
 590static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 591{
 592        unsigned long flags;
 593        unsigned long f;
 594
 595        raw_spin_lock_irqsave(&ch->lock, flags);
 596
 597        f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 598        ch->flags &= ~flag;
 599
 600        if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 601                sh_cmt_disable(ch);
 602
 603        /* adjust the timeout to maximum if only clocksource left */
 604        if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 605                __sh_cmt_set_next(ch, ch->max_match_value);
 606
 607        raw_spin_unlock_irqrestore(&ch->lock, flags);
 608}
 609
 610static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 611{
 612        return container_of(cs, struct sh_cmt_channel, cs);
 613}
 614
 615static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
 616{
 617        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 618        unsigned long flags, raw;
 619        unsigned long value;
 620        int has_wrapped;
 621
 622        raw_spin_lock_irqsave(&ch->lock, flags);
 623        value = ch->total_cycles;
 624        raw = sh_cmt_get_counter(ch, &has_wrapped);
 625
 626        if (unlikely(has_wrapped))
 627                raw += ch->match_value + 1;
 628        raw_spin_unlock_irqrestore(&ch->lock, flags);
 629
 630        return value + raw;
 631}
 632
 633static int sh_cmt_clocksource_enable(struct clocksource *cs)
 634{
 635        int ret;
 636        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 637
 638        WARN_ON(ch->cs_enabled);
 639
 640        ch->total_cycles = 0;
 641
 642        ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 643        if (!ret) {
 644                __clocksource_update_freq_hz(cs, ch->rate);
 645                ch->cs_enabled = true;
 646        }
 647        return ret;
 648}
 649
 650static void sh_cmt_clocksource_disable(struct clocksource *cs)
 651{
 652        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 653
 654        WARN_ON(!ch->cs_enabled);
 655
 656        sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 657        ch->cs_enabled = false;
 658}
 659
 660static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 661{
 662        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 663
 664        if (!ch->cs_enabled)
 665                return;
 666
 667        sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 668        pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 669}
 670
 671static void sh_cmt_clocksource_resume(struct clocksource *cs)
 672{
 673        struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 674
 675        if (!ch->cs_enabled)
 676                return;
 677
 678        pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 679        sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 680}
 681
 682static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 683                                       const char *name)
 684{
 685        struct clocksource *cs = &ch->cs;
 686
 687        cs->name = name;
 688        cs->rating = 125;
 689        cs->read = sh_cmt_clocksource_read;
 690        cs->enable = sh_cmt_clocksource_enable;
 691        cs->disable = sh_cmt_clocksource_disable;
 692        cs->suspend = sh_cmt_clocksource_suspend;
 693        cs->resume = sh_cmt_clocksource_resume;
 694        cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
 695        cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 696
 697        dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 698                 ch->index);
 699
 700        /* Register with dummy 1 Hz value, gets updated in ->enable() */
 701        clocksource_register_hz(cs, 1);
 702        return 0;
 703}
 704
 705static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 706{
 707        return container_of(ced, struct sh_cmt_channel, ced);
 708}
 709
 710static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 711{
 712        struct clock_event_device *ced = &ch->ced;
 713
 714        sh_cmt_start(ch, FLAG_CLOCKEVENT);
 715
 716        /* TODO: calculate good shift from rate and counter bit width */
 717
 718        ced->shift = 32;
 719        ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
 720        ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 721        ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 722
 723        if (periodic)
 724                sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
 725        else
 726                sh_cmt_set_next(ch, ch->max_match_value);
 727}
 728
 729static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 730{
 731        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 732
 733        sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 734        return 0;
 735}
 736
 737static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 738                                        int periodic)
 739{
 740        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 741
 742        /* deal with old setting first */
 743        if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 744                sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 745
 746        dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 747                 ch->index, periodic ? "periodic" : "oneshot");
 748        sh_cmt_clock_event_start(ch, periodic);
 749        return 0;
 750}
 751
 752static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 753{
 754        return sh_cmt_clock_event_set_state(ced, 0);
 755}
 756
 757static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 758{
 759        return sh_cmt_clock_event_set_state(ced, 1);
 760}
 761
 762static int sh_cmt_clock_event_next(unsigned long delta,
 763                                   struct clock_event_device *ced)
 764{
 765        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 766
 767        BUG_ON(!clockevent_state_oneshot(ced));
 768        if (likely(ch->flags & FLAG_IRQCONTEXT))
 769                ch->next_match_value = delta - 1;
 770        else
 771                sh_cmt_set_next(ch, delta - 1);
 772
 773        return 0;
 774}
 775
 776static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 777{
 778        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 779
 780        pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 781        clk_unprepare(ch->cmt->clk);
 782}
 783
 784static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 785{
 786        struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 787
 788        clk_prepare(ch->cmt->clk);
 789        pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 790}
 791
 792static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 793                                      const char *name)
 794{
 795        struct clock_event_device *ced = &ch->ced;
 796        int irq;
 797        int ret;
 798
 799        irq = platform_get_irq(ch->cmt->pdev, ch->index);
 800        if (irq < 0) {
 801                dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
 802                        ch->index);
 803                return irq;
 804        }
 805
 806        ret = request_irq(irq, sh_cmt_interrupt,
 807                          IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 808                          dev_name(&ch->cmt->pdev->dev), ch);
 809        if (ret) {
 810                dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 811                        ch->index, irq);
 812                return ret;
 813        }
 814
 815        ced->name = name;
 816        ced->features = CLOCK_EVT_FEAT_PERIODIC;
 817        ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 818        ced->rating = 125;
 819        ced->cpumask = cpu_possible_mask;
 820        ced->set_next_event = sh_cmt_clock_event_next;
 821        ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 822        ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 823        ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 824        ced->suspend = sh_cmt_clock_event_suspend;
 825        ced->resume = sh_cmt_clock_event_resume;
 826
 827        dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 828                 ch->index);
 829        clockevents_register_device(ced);
 830
 831        return 0;
 832}
 833
 834static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 835                           bool clockevent, bool clocksource)
 836{
 837        int ret;
 838
 839        if (clockevent) {
 840                ch->cmt->has_clockevent = true;
 841                ret = sh_cmt_register_clockevent(ch, name);
 842                if (ret < 0)
 843                        return ret;
 844        }
 845
 846        if (clocksource) {
 847                ch->cmt->has_clocksource = true;
 848                sh_cmt_register_clocksource(ch, name);
 849        }
 850
 851        return 0;
 852}
 853
 854static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 855                                unsigned int hwidx, bool clockevent,
 856                                bool clocksource, struct sh_cmt_device *cmt)
 857{
 858        int ret;
 859
 860        /* Skip unused channels. */
 861        if (!clockevent && !clocksource)
 862                return 0;
 863
 864        ch->cmt = cmt;
 865        ch->index = index;
 866        ch->hwidx = hwidx;
 867
 868        /*
 869         * Compute the address of the channel control register block. For the
 870         * timers with a per-channel start/stop register, compute its address
 871         * as well.
 872         */
 873        switch (cmt->info->model) {
 874        case SH_CMT_16BIT:
 875                ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 876                break;
 877        case SH_CMT_32BIT:
 878        case SH_CMT_48BIT:
 879                ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 880                break;
 881        case SH_CMT_32BIT_FAST:
 882                /*
 883                 * The 32-bit "fast" timer has a single channel at hwidx 5 but
 884                 * is located at offset 0x40 instead of 0x60 for some reason.
 885                 */
 886                ch->ioctrl = cmt->mapbase + 0x40;
 887                break;
 888        case SH_CMT_48BIT_GEN2:
 889                ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 890                ch->ioctrl = ch->iostart + 0x10;
 891                break;
 892        }
 893
 894        if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 895                ch->max_match_value = ~0;
 896        else
 897                ch->max_match_value = (1 << cmt->info->width) - 1;
 898
 899        ch->match_value = ch->max_match_value;
 900        raw_spin_lock_init(&ch->lock);
 901
 902        ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
 903
 904        ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 905                              clockevent, clocksource);
 906        if (ret) {
 907                dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 908                        ch->index);
 909                return ret;
 910        }
 911        ch->cs_enabled = false;
 912
 913        return 0;
 914}
 915
 916static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 917{
 918        struct resource *mem;
 919
 920        mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 921        if (!mem) {
 922                dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 923                return -ENXIO;
 924        }
 925
 926        cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 927        if (cmt->mapbase == NULL) {
 928                dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 929                return -ENXIO;
 930        }
 931
 932        return 0;
 933}
 934
 935static const struct platform_device_id sh_cmt_id_table[] = {
 936        { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 937        { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 938        { }
 939};
 940MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 941
 942static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 943        { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
 944        { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
 945        { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
 946        { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
 947        { }
 948};
 949MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 950
 951static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
 952{
 953        struct device_node *np = cmt->pdev->dev.of_node;
 954
 955        return of_property_read_u32(np, "renesas,channels-mask",
 956                                    &cmt->hw_channels);
 957}
 958
 959static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 960{
 961        unsigned int mask;
 962        unsigned int i;
 963        int ret;
 964
 965        cmt->pdev = pdev;
 966        raw_spin_lock_init(&cmt->lock);
 967
 968        if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 969                const struct of_device_id *id;
 970
 971                id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
 972                cmt->info = id->data;
 973
 974                ret = sh_cmt_parse_dt(cmt);
 975                if (ret < 0)
 976                        return ret;
 977        } else if (pdev->dev.platform_data) {
 978                struct sh_timer_config *cfg = pdev->dev.platform_data;
 979                const struct platform_device_id *id = pdev->id_entry;
 980
 981                cmt->info = (const struct sh_cmt_info *)id->driver_data;
 982                cmt->hw_channels = cfg->channels_mask;
 983        } else {
 984                dev_err(&cmt->pdev->dev, "missing platform data\n");
 985                return -ENXIO;
 986        }
 987
 988        /* Get hold of clock. */
 989        cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 990        if (IS_ERR(cmt->clk)) {
 991                dev_err(&cmt->pdev->dev, "cannot get clock\n");
 992                return PTR_ERR(cmt->clk);
 993        }
 994
 995        ret = clk_prepare(cmt->clk);
 996        if (ret < 0)
 997                goto err_clk_put;
 998
 999        /* Map the memory resource(s). */
1000        ret = sh_cmt_map_memory(cmt);
1001        if (ret < 0)
1002                goto err_clk_unprepare;
1003
1004        /* Allocate and setup the channels. */
1005        cmt->num_channels = hweight8(cmt->hw_channels);
1006        cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1007                                GFP_KERNEL);
1008        if (cmt->channels == NULL) {
1009                ret = -ENOMEM;
1010                goto err_unmap;
1011        }
1012
1013        /*
1014         * Use the first channel as a clock event device and the second channel
1015         * as a clock source. If only one channel is available use it for both.
1016         */
1017        for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1018                unsigned int hwidx = ffs(mask) - 1;
1019                bool clocksource = i == 1 || cmt->num_channels == 1;
1020                bool clockevent = i == 0;
1021
1022                ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1023                                           clockevent, clocksource, cmt);
1024                if (ret < 0)
1025                        goto err_unmap;
1026
1027                mask &= ~(1 << hwidx);
1028        }
1029
1030        platform_set_drvdata(pdev, cmt);
1031
1032        return 0;
1033
1034err_unmap:
1035        kfree(cmt->channels);
1036        iounmap(cmt->mapbase);
1037err_clk_unprepare:
1038        clk_unprepare(cmt->clk);
1039err_clk_put:
1040        clk_put(cmt->clk);
1041        return ret;
1042}
1043
1044static int sh_cmt_probe(struct platform_device *pdev)
1045{
1046        struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1047        int ret;
1048
1049        if (!is_early_platform_device(pdev)) {
1050                pm_runtime_set_active(&pdev->dev);
1051                pm_runtime_enable(&pdev->dev);
1052        }
1053
1054        if (cmt) {
1055                dev_info(&pdev->dev, "kept as earlytimer\n");
1056                goto out;
1057        }
1058
1059        cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1060        if (cmt == NULL)
1061                return -ENOMEM;
1062
1063        ret = sh_cmt_setup(cmt, pdev);
1064        if (ret) {
1065                kfree(cmt);
1066                pm_runtime_idle(&pdev->dev);
1067                return ret;
1068        }
1069        if (is_early_platform_device(pdev))
1070                return 0;
1071
1072 out:
1073        if (cmt->has_clockevent || cmt->has_clocksource)
1074                pm_runtime_irq_safe(&pdev->dev);
1075        else
1076                pm_runtime_idle(&pdev->dev);
1077
1078        return 0;
1079}
1080
1081static int sh_cmt_remove(struct platform_device *pdev)
1082{
1083        return -EBUSY; /* cannot unregister clockevent and clocksource */
1084}
1085
1086static struct platform_driver sh_cmt_device_driver = {
1087        .probe          = sh_cmt_probe,
1088        .remove         = sh_cmt_remove,
1089        .driver         = {
1090                .name   = "sh_cmt",
1091                .of_match_table = of_match_ptr(sh_cmt_of_table),
1092        },
1093        .id_table       = sh_cmt_id_table,
1094};
1095
1096static int __init sh_cmt_init(void)
1097{
1098        return platform_driver_register(&sh_cmt_device_driver);
1099}
1100
1101static void __exit sh_cmt_exit(void)
1102{
1103        platform_driver_unregister(&sh_cmt_device_driver);
1104}
1105
1106early_platform_init("earlytimer", &sh_cmt_device_driver);
1107subsys_initcall(sh_cmt_init);
1108module_exit(sh_cmt_exit);
1109
1110MODULE_AUTHOR("Magnus Damm");
1111MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1112MODULE_LICENSE("GPL v2");
1113