linux/drivers/dma/amba-pl08x.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 *
   5 * Author: Peter Pearse <peter.pearse@arm.com>
   6 * Author: Linus Walleij <linus.walleij@stericsson.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify it
   9 * under the terms of the GNU General Public License as published by the Free
  10 * Software Foundation; either version 2 of the License, or (at your option)
  11 * any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but WITHOUT
  14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  16 * more details.
  17 *
  18 * The full GNU General Public License is in this distribution in the file
  19 * called COPYING.
  20 *
  21 * Documentation: ARM DDI 0196G == PL080
  22 * Documentation: ARM DDI 0218E == PL081
  23 * Documentation: S3C6410 User's Manual == PL080S
  24 *
  25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  26 * channel.
  27 *
  28 * The PL080 has 8 channels available for simultaneous use, and the PL081
  29 * has only two channels. So on these DMA controllers the number of channels
  30 * and the number of incoming DMA signals are two totally different things.
  31 * It is usually not possible to theoretically handle all physical signals,
  32 * so a multiplexing scheme with possible denial of use is necessary.
  33 *
  34 * The PL080 has a dual bus master, PL081 has a single master.
  35 *
  36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  37 * It differs in following aspects:
  38 * - CH_CONFIG register at different offset,
  39 * - separate CH_CONTROL2 register for transfer size,
  40 * - bigger maximum transfer size,
  41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  42 * - no support for peripheral flow control.
  43 *
  44 * Memory to peripheral transfer may be visualized as
  45 *      Get data from memory to DMAC
  46 *      Until no data left
  47 *              On burst request from peripheral
  48 *                      Destination burst from DMAC to peripheral
  49 *                      Clear burst request
  50 *      Raise terminal count interrupt
  51 *
  52 * For peripherals with a FIFO:
  53 * Source      burst size == half the depth of the peripheral FIFO
  54 * Destination burst size == the depth of the peripheral FIFO
  55 *
  56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  57 * signals, the DMA controller will simply facilitate its AHB master.)
  58 *
  59 * ASSUMES default (little) endianness for DMA transfers
  60 *
  61 * The PL08x has two flow control settings:
  62 *  - DMAC flow control: the transfer size defines the number of transfers
  63 *    which occur for the current LLI entry, and the DMAC raises TC at the
  64 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  65 *    to both the BREQ and SREQ signals (contrary to documented),
  66 *    transferring data if either is active.  The LBREQ and LSREQ signals
  67 *    are ignored.
  68 *
  69 *  - Peripheral flow control: the transfer size is ignored (and should be
  70 *    zero).  The data is transferred from the current LLI entry, until
  71 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  72 *    will then move to the next LLI entry. Unsupported by PL080S.
  73 */
  74#include <linux/amba/bus.h>
  75#include <linux/amba/pl08x.h>
  76#include <linux/debugfs.h>
  77#include <linux/delay.h>
  78#include <linux/device.h>
  79#include <linux/dmaengine.h>
  80#include <linux/dmapool.h>
  81#include <linux/dma-mapping.h>
  82#include <linux/export.h>
  83#include <linux/init.h>
  84#include <linux/interrupt.h>
  85#include <linux/module.h>
  86#include <linux/of.h>
  87#include <linux/of_dma.h>
  88#include <linux/pm_runtime.h>
  89#include <linux/seq_file.h>
  90#include <linux/slab.h>
  91#include <linux/amba/pl080.h>
  92
  93#include "dmaengine.h"
  94#include "virt-dma.h"
  95
  96#define DRIVER_NAME     "pl08xdmac"
  97
  98#define PL80X_DMA_BUSWIDTHS \
  99        BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
 100        BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 101        BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 102        BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
 103
 104static struct amba_driver pl08x_amba_driver;
 105struct pl08x_driver_data;
 106
 107/**
 108 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
 109 * @channels: the number of channels available in this variant
 110 * @signals: the number of request signals available from the hardware
 111 * @dualmaster: whether this version supports dual AHB masters or not.
 112 * @nomadik: whether the channels have Nomadik security extension bits
 113 *      that need to be checked for permission before use and some registers are
 114 *      missing
 115 * @pl080s: whether this version is a PL080S, which has separate register and
 116 *      LLI word for transfer size.
 117 * @max_transfer_size: the maximum single element transfer size for this
 118 *      PL08x variant.
 119 */
 120struct vendor_data {
 121        u8 config_offset;
 122        u8 channels;
 123        u8 signals;
 124        bool dualmaster;
 125        bool nomadik;
 126        bool pl080s;
 127        u32 max_transfer_size;
 128};
 129
 130/**
 131 * struct pl08x_bus_data - information of source or destination
 132 * busses for a transfer
 133 * @addr: current address
 134 * @maxwidth: the maximum width of a transfer on this bus
 135 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 136 */
 137struct pl08x_bus_data {
 138        dma_addr_t addr;
 139        u8 maxwidth;
 140        u8 buswidth;
 141};
 142
 143#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 144
 145/**
 146 * struct pl08x_phy_chan - holder for the physical channels
 147 * @id: physical index to this channel
 148 * @lock: a lock to use when altering an instance of this struct
 149 * @serving: the virtual channel currently being served by this physical
 150 * channel
 151 * @locked: channel unavailable for the system, e.g. dedicated to secure
 152 * world
 153 */
 154struct pl08x_phy_chan {
 155        unsigned int id;
 156        void __iomem *base;
 157        void __iomem *reg_config;
 158        spinlock_t lock;
 159        struct pl08x_dma_chan *serving;
 160        bool locked;
 161};
 162
 163/**
 164 * struct pl08x_sg - structure containing data per sg
 165 * @src_addr: src address of sg
 166 * @dst_addr: dst address of sg
 167 * @len: transfer len in bytes
 168 * @node: node for txd's dsg_list
 169 */
 170struct pl08x_sg {
 171        dma_addr_t src_addr;
 172        dma_addr_t dst_addr;
 173        size_t len;
 174        struct list_head node;
 175};
 176
 177/**
 178 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 179 * @vd: virtual DMA descriptor
 180 * @dsg_list: list of children sg's
 181 * @llis_bus: DMA memory address (physical) start for the LLIs
 182 * @llis_va: virtual memory address start for the LLIs
 183 * @cctl: control reg values for current txd
 184 * @ccfg: config reg values for current txd
 185 * @done: this marks completed descriptors, which should not have their
 186 *   mux released.
 187 * @cyclic: indicate cyclic transfers
 188 */
 189struct pl08x_txd {
 190        struct virt_dma_desc vd;
 191        struct list_head dsg_list;
 192        dma_addr_t llis_bus;
 193        u32 *llis_va;
 194        /* Default cctl value for LLIs */
 195        u32 cctl;
 196        /*
 197         * Settings to be put into the physical channel when we
 198         * trigger this txd.  Other registers are in llis_va[0].
 199         */
 200        u32 ccfg;
 201        bool done;
 202        bool cyclic;
 203};
 204
 205/**
 206 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
 207 * states
 208 * @PL08X_CHAN_IDLE: the channel is idle
 209 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 210 * channel and is running a transfer on it
 211 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 212 * channel, but the transfer is currently paused
 213 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 214 * channel to become available (only pertains to memcpy channels)
 215 */
 216enum pl08x_dma_chan_state {
 217        PL08X_CHAN_IDLE,
 218        PL08X_CHAN_RUNNING,
 219        PL08X_CHAN_PAUSED,
 220        PL08X_CHAN_WAITING,
 221};
 222
 223/**
 224 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 225 * @vc: wrappped virtual channel
 226 * @phychan: the physical channel utilized by this channel, if there is one
 227 * @name: name of channel
 228 * @cd: channel platform data
 229 * @runtime_addr: address for RX/TX according to the runtime config
 230 * @at: active transaction on this channel
 231 * @lock: a lock for this channel data
 232 * @host: a pointer to the host (internal use)
 233 * @state: whether the channel is idle, paused, running etc
 234 * @slave: whether this channel is a device (slave) or for memcpy
 235 * @signal: the physical DMA request signal which this channel is using
 236 * @mux_use: count of descriptors using this DMA request signal setting
 237 */
 238struct pl08x_dma_chan {
 239        struct virt_dma_chan vc;
 240        struct pl08x_phy_chan *phychan;
 241        const char *name;
 242        struct pl08x_channel_data *cd;
 243        struct dma_slave_config cfg;
 244        struct pl08x_txd *at;
 245        struct pl08x_driver_data *host;
 246        enum pl08x_dma_chan_state state;
 247        bool slave;
 248        int signal;
 249        unsigned mux_use;
 250};
 251
 252/**
 253 * struct pl08x_driver_data - the local state holder for the PL08x
 254 * @slave: slave engine for this instance
 255 * @memcpy: memcpy engine for this instance
 256 * @base: virtual memory base (remapped) for the PL08x
 257 * @adev: the corresponding AMBA (PrimeCell) bus entry
 258 * @vd: vendor data for this PL08x variant
 259 * @pd: platform data passed in from the platform/machine
 260 * @phy_chans: array of data for the physical channels
 261 * @pool: a pool for the LLI descriptors
 262 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 263 * fetches
 264 * @mem_buses: set to indicate memory transfers on AHB2.
 265 * @lock: a spinlock for this struct
 266 */
 267struct pl08x_driver_data {
 268        struct dma_device slave;
 269        struct dma_device memcpy;
 270        void __iomem *base;
 271        struct amba_device *adev;
 272        const struct vendor_data *vd;
 273        struct pl08x_platform_data *pd;
 274        struct pl08x_phy_chan *phy_chans;
 275        struct dma_pool *pool;
 276        u8 lli_buses;
 277        u8 mem_buses;
 278        u8 lli_words;
 279};
 280
 281/*
 282 * PL08X specific defines
 283 */
 284
 285/* The order of words in an LLI. */
 286#define PL080_LLI_SRC           0
 287#define PL080_LLI_DST           1
 288#define PL080_LLI_LLI           2
 289#define PL080_LLI_CCTL          3
 290#define PL080S_LLI_CCTL2        4
 291
 292/* Total words in an LLI. */
 293#define PL080_LLI_WORDS         4
 294#define PL080S_LLI_WORDS        8
 295
 296/*
 297 * Number of LLIs in each LLI buffer allocated for one transfer
 298 * (maximum times we call dma_pool_alloc on this pool without freeing)
 299 */
 300#define MAX_NUM_TSFR_LLIS       512
 301#define PL08X_ALIGN             8
 302
 303static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 304{
 305        return container_of(chan, struct pl08x_dma_chan, vc.chan);
 306}
 307
 308static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 309{
 310        return container_of(tx, struct pl08x_txd, vd.tx);
 311}
 312
 313/*
 314 * Mux handling.
 315 *
 316 * This gives us the DMA request input to the PL08x primecell which the
 317 * peripheral described by the channel data will be routed to, possibly
 318 * via a board/SoC specific external MUX.  One important point to note
 319 * here is that this does not depend on the physical channel.
 320 */
 321static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 322{
 323        const struct pl08x_platform_data *pd = plchan->host->pd;
 324        int ret;
 325
 326        if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 327                ret = pd->get_xfer_signal(plchan->cd);
 328                if (ret < 0) {
 329                        plchan->mux_use = 0;
 330                        return ret;
 331                }
 332
 333                plchan->signal = ret;
 334        }
 335        return 0;
 336}
 337
 338static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 339{
 340        const struct pl08x_platform_data *pd = plchan->host->pd;
 341
 342        if (plchan->signal >= 0) {
 343                WARN_ON(plchan->mux_use == 0);
 344
 345                if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 346                        pd->put_xfer_signal(plchan->cd, plchan->signal);
 347                        plchan->signal = -1;
 348                }
 349        }
 350}
 351
 352/*
 353 * Physical channel handling
 354 */
 355
 356/* Whether a certain channel is busy or not */
 357static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 358{
 359        unsigned int val;
 360
 361        val = readl(ch->reg_config);
 362        return val & PL080_CONFIG_ACTIVE;
 363}
 364
 365static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 366                struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 367{
 368        if (pl08x->vd->pl080s)
 369                dev_vdbg(&pl08x->adev->dev,
 370                        "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 371                        "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 372                        phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 373                        lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 374                        lli[PL080S_LLI_CCTL2], ccfg);
 375        else
 376                dev_vdbg(&pl08x->adev->dev,
 377                        "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 378                        "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 379                        phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 380                        lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 381
 382        writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
 383        writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
 384        writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
 385        writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
 386
 387        if (pl08x->vd->pl080s)
 388                writel_relaxed(lli[PL080S_LLI_CCTL2],
 389                                phychan->base + PL080S_CH_CONTROL2);
 390
 391        writel(ccfg, phychan->reg_config);
 392}
 393
 394/*
 395 * Set the initial DMA register values i.e. those for the first LLI
 396 * The next LLI pointer and the configuration interrupt bit have
 397 * been set when the LLIs were constructed.  Poke them into the hardware
 398 * and start the transfer.
 399 */
 400static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 401{
 402        struct pl08x_driver_data *pl08x = plchan->host;
 403        struct pl08x_phy_chan *phychan = plchan->phychan;
 404        struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 405        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 406        u32 val;
 407
 408        list_del(&txd->vd.node);
 409
 410        plchan->at = txd;
 411
 412        /* Wait for channel inactive */
 413        while (pl08x_phy_channel_busy(phychan))
 414                cpu_relax();
 415
 416        pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 417
 418        /* Enable the DMA channel */
 419        /* Do not access config register until channel shows as disabled */
 420        while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
 421                cpu_relax();
 422
 423        /* Do not access config register until channel shows as inactive */
 424        val = readl(phychan->reg_config);
 425        while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
 426                val = readl(phychan->reg_config);
 427
 428        writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 429}
 430
 431/*
 432 * Pause the channel by setting the HALT bit.
 433 *
 434 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 435 * the FIFO can only drain if the peripheral is still requesting data.
 436 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 437 *
 438 * For P->M transfers, disable the peripheral first to stop it filling
 439 * the DMAC FIFO, and then pause the DMAC.
 440 */
 441static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 442{
 443        u32 val;
 444        int timeout;
 445
 446        /* Set the HALT bit and wait for the FIFO to drain */
 447        val = readl(ch->reg_config);
 448        val |= PL080_CONFIG_HALT;
 449        writel(val, ch->reg_config);
 450
 451        /* Wait for channel inactive */
 452        for (timeout = 1000; timeout; timeout--) {
 453                if (!pl08x_phy_channel_busy(ch))
 454                        break;
 455                udelay(1);
 456        }
 457        if (pl08x_phy_channel_busy(ch))
 458                pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 459}
 460
 461static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 462{
 463        u32 val;
 464
 465        /* Clear the HALT bit */
 466        val = readl(ch->reg_config);
 467        val &= ~PL080_CONFIG_HALT;
 468        writel(val, ch->reg_config);
 469}
 470
 471/*
 472 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 473 * clears any pending interrupt status.  This should not be used for
 474 * an on-going transfer, but as a method of shutting down a channel
 475 * (eg, when it's no longer used) or terminating a transfer.
 476 */
 477static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 478        struct pl08x_phy_chan *ch)
 479{
 480        u32 val = readl(ch->reg_config);
 481
 482        val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 483                 PL080_CONFIG_TC_IRQ_MASK);
 484
 485        writel(val, ch->reg_config);
 486
 487        writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
 488        writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
 489}
 490
 491static inline u32 get_bytes_in_cctl(u32 cctl)
 492{
 493        /* The source width defines the number of bytes */
 494        u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
 495
 496        cctl &= PL080_CONTROL_SWIDTH_MASK;
 497
 498        switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 499        case PL080_WIDTH_8BIT:
 500                break;
 501        case PL080_WIDTH_16BIT:
 502                bytes *= 2;
 503                break;
 504        case PL080_WIDTH_32BIT:
 505                bytes *= 4;
 506                break;
 507        }
 508        return bytes;
 509}
 510
 511static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
 512{
 513        /* The source width defines the number of bytes */
 514        u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 515
 516        cctl &= PL080_CONTROL_SWIDTH_MASK;
 517
 518        switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
 519        case PL080_WIDTH_8BIT:
 520                break;
 521        case PL080_WIDTH_16BIT:
 522                bytes *= 2;
 523                break;
 524        case PL080_WIDTH_32BIT:
 525                bytes *= 4;
 526                break;
 527        }
 528        return bytes;
 529}
 530
 531/* The channel should be paused when calling this */
 532static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 533{
 534        struct pl08x_driver_data *pl08x = plchan->host;
 535        const u32 *llis_va, *llis_va_limit;
 536        struct pl08x_phy_chan *ch;
 537        dma_addr_t llis_bus;
 538        struct pl08x_txd *txd;
 539        u32 llis_max_words;
 540        size_t bytes;
 541        u32 clli;
 542
 543        ch = plchan->phychan;
 544        txd = plchan->at;
 545
 546        if (!ch || !txd)
 547                return 0;
 548
 549        /*
 550         * Follow the LLIs to get the number of remaining
 551         * bytes in the currently active transaction.
 552         */
 553        clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
 554
 555        /* First get the remaining bytes in the active transfer */
 556        if (pl08x->vd->pl080s)
 557                bytes = get_bytes_in_cctl_pl080s(
 558                                readl(ch->base + PL080_CH_CONTROL),
 559                                readl(ch->base + PL080S_CH_CONTROL2));
 560        else
 561                bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
 562
 563        if (!clli)
 564                return bytes;
 565
 566        llis_va = txd->llis_va;
 567        llis_bus = txd->llis_bus;
 568
 569        llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 570        BUG_ON(clli < llis_bus || clli >= llis_bus +
 571                                                sizeof(u32) * llis_max_words);
 572
 573        /*
 574         * Locate the next LLI - as this is an array,
 575         * it's simple maths to find.
 576         */
 577        llis_va += (clli - llis_bus) / sizeof(u32);
 578
 579        llis_va_limit = llis_va + llis_max_words;
 580
 581        for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 582                if (pl08x->vd->pl080s)
 583                        bytes += get_bytes_in_cctl_pl080s(
 584                                                llis_va[PL080_LLI_CCTL],
 585                                                llis_va[PL080S_LLI_CCTL2]);
 586                else
 587                        bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
 588
 589                /*
 590                 * A LLI pointer going backward terminates the LLI list
 591                 */
 592                if (llis_va[PL080_LLI_LLI] <= clli)
 593                        break;
 594        }
 595
 596        return bytes;
 597}
 598
 599/*
 600 * Allocate a physical channel for a virtual channel
 601 *
 602 * Try to locate a physical channel to be used for this transfer. If all
 603 * are taken return NULL and the requester will have to cope by using
 604 * some fallback PIO mode or retrying later.
 605 */
 606static struct pl08x_phy_chan *
 607pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 608                      struct pl08x_dma_chan *virt_chan)
 609{
 610        struct pl08x_phy_chan *ch = NULL;
 611        unsigned long flags;
 612        int i;
 613
 614        for (i = 0; i < pl08x->vd->channels; i++) {
 615                ch = &pl08x->phy_chans[i];
 616
 617                spin_lock_irqsave(&ch->lock, flags);
 618
 619                if (!ch->locked && !ch->serving) {
 620                        ch->serving = virt_chan;
 621                        spin_unlock_irqrestore(&ch->lock, flags);
 622                        break;
 623                }
 624
 625                spin_unlock_irqrestore(&ch->lock, flags);
 626        }
 627
 628        if (i == pl08x->vd->channels) {
 629                /* No physical channel available, cope with it */
 630                return NULL;
 631        }
 632
 633        return ch;
 634}
 635
 636/* Mark the physical channel as free.  Note, this write is atomic. */
 637static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 638                                         struct pl08x_phy_chan *ch)
 639{
 640        ch->serving = NULL;
 641}
 642
 643/*
 644 * Try to allocate a physical channel.  When successful, assign it to
 645 * this virtual channel, and initiate the next descriptor.  The
 646 * virtual channel lock must be held at this point.
 647 */
 648static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 649{
 650        struct pl08x_driver_data *pl08x = plchan->host;
 651        struct pl08x_phy_chan *ch;
 652
 653        ch = pl08x_get_phy_channel(pl08x, plchan);
 654        if (!ch) {
 655                dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 656                plchan->state = PL08X_CHAN_WAITING;
 657                return;
 658        }
 659
 660        dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 661                ch->id, plchan->name);
 662
 663        plchan->phychan = ch;
 664        plchan->state = PL08X_CHAN_RUNNING;
 665        pl08x_start_next_txd(plchan);
 666}
 667
 668static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 669        struct pl08x_dma_chan *plchan)
 670{
 671        struct pl08x_driver_data *pl08x = plchan->host;
 672
 673        dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 674                ch->id, plchan->name);
 675
 676        /*
 677         * We do this without taking the lock; we're really only concerned
 678         * about whether this pointer is NULL or not, and we're guaranteed
 679         * that this will only be called when it _already_ is non-NULL.
 680         */
 681        ch->serving = plchan;
 682        plchan->phychan = ch;
 683        plchan->state = PL08X_CHAN_RUNNING;
 684        pl08x_start_next_txd(plchan);
 685}
 686
 687/*
 688 * Free a physical DMA channel, potentially reallocating it to another
 689 * virtual channel if we have any pending.
 690 */
 691static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 692{
 693        struct pl08x_driver_data *pl08x = plchan->host;
 694        struct pl08x_dma_chan *p, *next;
 695
 696 retry:
 697        next = NULL;
 698
 699        /* Find a waiting virtual channel for the next transfer. */
 700        list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 701                if (p->state == PL08X_CHAN_WAITING) {
 702                        next = p;
 703                        break;
 704                }
 705
 706        if (!next) {
 707                list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 708                        if (p->state == PL08X_CHAN_WAITING) {
 709                                next = p;
 710                                break;
 711                        }
 712        }
 713
 714        /* Ensure that the physical channel is stopped */
 715        pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 716
 717        if (next) {
 718                bool success;
 719
 720                /*
 721                 * Eww.  We know this isn't going to deadlock
 722                 * but lockdep probably doesn't.
 723                 */
 724                spin_lock(&next->vc.lock);
 725                /* Re-check the state now that we have the lock */
 726                success = next->state == PL08X_CHAN_WAITING;
 727                if (success)
 728                        pl08x_phy_reassign_start(plchan->phychan, next);
 729                spin_unlock(&next->vc.lock);
 730
 731                /* If the state changed, try to find another channel */
 732                if (!success)
 733                        goto retry;
 734        } else {
 735                /* No more jobs, so free up the physical channel */
 736                pl08x_put_phy_channel(pl08x, plchan->phychan);
 737        }
 738
 739        plchan->phychan = NULL;
 740        plchan->state = PL08X_CHAN_IDLE;
 741}
 742
 743/*
 744 * LLI handling
 745 */
 746
 747static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
 748{
 749        switch (coded) {
 750        case PL080_WIDTH_8BIT:
 751                return 1;
 752        case PL080_WIDTH_16BIT:
 753                return 2;
 754        case PL080_WIDTH_32BIT:
 755                return 4;
 756        default:
 757                break;
 758        }
 759        BUG();
 760        return 0;
 761}
 762
 763static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
 764                                  size_t tsize)
 765{
 766        u32 retbits = cctl;
 767
 768        /* Remove all src, dst and transfer size bits */
 769        retbits &= ~PL080_CONTROL_DWIDTH_MASK;
 770        retbits &= ~PL080_CONTROL_SWIDTH_MASK;
 771        retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
 772
 773        /* Then set the bits according to the parameters */
 774        switch (srcwidth) {
 775        case 1:
 776                retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
 777                break;
 778        case 2:
 779                retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
 780                break;
 781        case 4:
 782                retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
 783                break;
 784        default:
 785                BUG();
 786                break;
 787        }
 788
 789        switch (dstwidth) {
 790        case 1:
 791                retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
 792                break;
 793        case 2:
 794                retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
 795                break;
 796        case 4:
 797                retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
 798                break;
 799        default:
 800                BUG();
 801                break;
 802        }
 803
 804        tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
 805        retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
 806        return retbits;
 807}
 808
 809struct pl08x_lli_build_data {
 810        struct pl08x_txd *txd;
 811        struct pl08x_bus_data srcbus;
 812        struct pl08x_bus_data dstbus;
 813        size_t remainder;
 814        u32 lli_bus;
 815};
 816
 817/*
 818 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 819 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 820 * masters address with width requirements of transfer (by sending few byte by
 821 * byte data), slave is still not aligned, then its width will be reduced to
 822 * BYTE.
 823 * - prefers the destination bus if both available
 824 * - prefers bus with fixed address (i.e. peripheral)
 825 */
 826static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
 827        struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
 828{
 829        if (!(cctl & PL080_CONTROL_DST_INCR)) {
 830                *mbus = &bd->dstbus;
 831                *sbus = &bd->srcbus;
 832        } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
 833                *mbus = &bd->srcbus;
 834                *sbus = &bd->dstbus;
 835        } else {
 836                if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
 837                        *mbus = &bd->dstbus;
 838                        *sbus = &bd->srcbus;
 839                } else {
 840                        *mbus = &bd->srcbus;
 841                        *sbus = &bd->dstbus;
 842                }
 843        }
 844}
 845
 846/*
 847 * Fills in one LLI for a certain transfer descriptor and advance the counter
 848 */
 849static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
 850                                    struct pl08x_lli_build_data *bd,
 851                                    int num_llis, int len, u32 cctl, u32 cctl2)
 852{
 853        u32 offset = num_llis * pl08x->lli_words;
 854        u32 *llis_va = bd->txd->llis_va + offset;
 855        dma_addr_t llis_bus = bd->txd->llis_bus;
 856
 857        BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
 858
 859        /* Advance the offset to next LLI. */
 860        offset += pl08x->lli_words;
 861
 862        llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
 863        llis_va[PL080_LLI_DST] = bd->dstbus.addr;
 864        llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
 865        llis_va[PL080_LLI_LLI] |= bd->lli_bus;
 866        llis_va[PL080_LLI_CCTL] = cctl;
 867        if (pl08x->vd->pl080s)
 868                llis_va[PL080S_LLI_CCTL2] = cctl2;
 869
 870        if (cctl & PL080_CONTROL_SRC_INCR)
 871                bd->srcbus.addr += len;
 872        if (cctl & PL080_CONTROL_DST_INCR)
 873                bd->dstbus.addr += len;
 874
 875        BUG_ON(bd->remainder < len);
 876
 877        bd->remainder -= len;
 878}
 879
 880static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
 881                        struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
 882                        int num_llis, size_t *total_bytes)
 883{
 884        *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
 885        pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
 886        (*total_bytes) += len;
 887}
 888
 889#ifdef VERBOSE_DEBUG
 890static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 891                           const u32 *llis_va, int num_llis)
 892{
 893        int i;
 894
 895        if (pl08x->vd->pl080s) {
 896                dev_vdbg(&pl08x->adev->dev,
 897                        "%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
 898                        "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
 899                for (i = 0; i < num_llis; i++) {
 900                        dev_vdbg(&pl08x->adev->dev,
 901                                "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
 902                                i, llis_va, llis_va[PL080_LLI_SRC],
 903                                llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 904                                llis_va[PL080_LLI_CCTL],
 905                                llis_va[PL080S_LLI_CCTL2]);
 906                        llis_va += pl08x->lli_words;
 907                }
 908        } else {
 909                dev_vdbg(&pl08x->adev->dev,
 910                        "%-3s %-9s  %-10s %-10s %-10s %s\n",
 911                        "lli", "", "csrc", "cdst", "clli", "cctl");
 912                for (i = 0; i < num_llis; i++) {
 913                        dev_vdbg(&pl08x->adev->dev,
 914                                "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
 915                                i, llis_va, llis_va[PL080_LLI_SRC],
 916                                llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
 917                                llis_va[PL080_LLI_CCTL]);
 918                        llis_va += pl08x->lli_words;
 919                }
 920        }
 921}
 922#else
 923static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
 924                                  const u32 *llis_va, int num_llis) {}
 925#endif
 926
 927/*
 928 * This fills in the table of LLIs for the transfer descriptor
 929 * Note that we assume we never have to change the burst sizes
 930 * Return 0 for error
 931 */
 932static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
 933                              struct pl08x_txd *txd)
 934{
 935        struct pl08x_bus_data *mbus, *sbus;
 936        struct pl08x_lli_build_data bd;
 937        int num_llis = 0;
 938        u32 cctl, early_bytes = 0;
 939        size_t max_bytes_per_lli, total_bytes;
 940        u32 *llis_va, *last_lli;
 941        struct pl08x_sg *dsg;
 942
 943        txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
 944        if (!txd->llis_va) {
 945                dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
 946                return 0;
 947        }
 948
 949        bd.txd = txd;
 950        bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
 951        cctl = txd->cctl;
 952
 953        /* Find maximum width of the source bus */
 954        bd.srcbus.maxwidth =
 955                pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
 956                                       PL080_CONTROL_SWIDTH_SHIFT);
 957
 958        /* Find maximum width of the destination bus */
 959        bd.dstbus.maxwidth =
 960                pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
 961                                       PL080_CONTROL_DWIDTH_SHIFT);
 962
 963        list_for_each_entry(dsg, &txd->dsg_list, node) {
 964                total_bytes = 0;
 965                cctl = txd->cctl;
 966
 967                bd.srcbus.addr = dsg->src_addr;
 968                bd.dstbus.addr = dsg->dst_addr;
 969                bd.remainder = dsg->len;
 970                bd.srcbus.buswidth = bd.srcbus.maxwidth;
 971                bd.dstbus.buswidth = bd.dstbus.maxwidth;
 972
 973                pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
 974
 975                dev_vdbg(&pl08x->adev->dev,
 976                        "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
 977                        (u64)bd.srcbus.addr,
 978                        cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
 979                        bd.srcbus.buswidth,
 980                        (u64)bd.dstbus.addr,
 981                        cctl & PL080_CONTROL_DST_INCR ? "+" : "",
 982                        bd.dstbus.buswidth,
 983                        bd.remainder);
 984                dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
 985                        mbus == &bd.srcbus ? "src" : "dst",
 986                        sbus == &bd.srcbus ? "src" : "dst");
 987
 988                /*
 989                 * Zero length is only allowed if all these requirements are
 990                 * met:
 991                 * - flow controller is peripheral.
 992                 * - src.addr is aligned to src.width
 993                 * - dst.addr is aligned to dst.width
 994                 *
 995                 * sg_len == 1 should be true, as there can be two cases here:
 996                 *
 997                 * - Memory addresses are contiguous and are not scattered.
 998                 *   Here, Only one sg will be passed by user driver, with
 999                 *   memory address and zero length. We pass this to controller
1000                 *   and after the transfer it will receive the last burst
1001                 *   request from peripheral and so transfer finishes.
1002                 *
1003                 * - Memory addresses are scattered and are not contiguous.
1004                 *   Here, Obviously as DMA controller doesn't know when a lli's
1005                 *   transfer gets over, it can't load next lli. So in this
1006                 *   case, there has to be an assumption that only one lli is
1007                 *   supported. Thus, we can't have scattered addresses.
1008                 */
1009                if (!bd.remainder) {
1010                        u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1011                                PL080_CONFIG_FLOW_CONTROL_SHIFT;
1012                        if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1013                                        (fc <= PL080_FLOW_SRC2DST_SRC))) {
1014                                dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1015                                        __func__);
1016                                return 0;
1017                        }
1018
1019                        if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1020                                !IS_BUS_ALIGNED(&bd.dstbus)) {
1021                                dev_err(&pl08x->adev->dev,
1022                                        "%s src & dst address must be aligned to src"
1023                                        " & dst width if peripheral is flow controller",
1024                                        __func__);
1025                                return 0;
1026                        }
1027
1028                        cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1029                                        bd.dstbus.buswidth, 0);
1030                        pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1031                                        0, cctl, 0);
1032                        break;
1033                }
1034
1035                /*
1036                 * Send byte by byte for following cases
1037                 * - Less than a bus width available
1038                 * - until master bus is aligned
1039                 */
1040                if (bd.remainder < mbus->buswidth)
1041                        early_bytes = bd.remainder;
1042                else if (!IS_BUS_ALIGNED(mbus)) {
1043                        early_bytes = mbus->buswidth -
1044                                (mbus->addr & (mbus->buswidth - 1));
1045                        if ((bd.remainder - early_bytes) < mbus->buswidth)
1046                                early_bytes = bd.remainder;
1047                }
1048
1049                if (early_bytes) {
1050                        dev_vdbg(&pl08x->adev->dev,
1051                                "%s byte width LLIs (remain 0x%08zx)\n",
1052                                __func__, bd.remainder);
1053                        prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1054                                num_llis++, &total_bytes);
1055                }
1056
1057                if (bd.remainder) {
1058                        /*
1059                         * Master now aligned
1060                         * - if slave is not then we must set its width down
1061                         */
1062                        if (!IS_BUS_ALIGNED(sbus)) {
1063                                dev_dbg(&pl08x->adev->dev,
1064                                        "%s set down bus width to one byte\n",
1065                                        __func__);
1066
1067                                sbus->buswidth = 1;
1068                        }
1069
1070                        /*
1071                         * Bytes transferred = tsize * src width, not
1072                         * MIN(buswidths)
1073                         */
1074                        max_bytes_per_lli = bd.srcbus.buswidth *
1075                                                pl08x->vd->max_transfer_size;
1076                        dev_vdbg(&pl08x->adev->dev,
1077                                "%s max bytes per lli = %zu\n",
1078                                __func__, max_bytes_per_lli);
1079
1080                        /*
1081                         * Make largest possible LLIs until less than one bus
1082                         * width left
1083                         */
1084                        while (bd.remainder > (mbus->buswidth - 1)) {
1085                                size_t lli_len, tsize, width;
1086
1087                                /*
1088                                 * If enough left try to send max possible,
1089                                 * otherwise try to send the remainder
1090                                 */
1091                                lli_len = min(bd.remainder, max_bytes_per_lli);
1092
1093                                /*
1094                                 * Check against maximum bus alignment:
1095                                 * Calculate actual transfer size in relation to
1096                                 * bus width an get a maximum remainder of the
1097                                 * highest bus width - 1
1098                                 */
1099                                width = max(mbus->buswidth, sbus->buswidth);
1100                                lli_len = (lli_len / width) * width;
1101                                tsize = lli_len / bd.srcbus.buswidth;
1102
1103                                dev_vdbg(&pl08x->adev->dev,
1104                                        "%s fill lli with single lli chunk of "
1105                                        "size 0x%08zx (remainder 0x%08zx)\n",
1106                                        __func__, lli_len, bd.remainder);
1107
1108                                cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1109                                        bd.dstbus.buswidth, tsize);
1110                                pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1111                                                lli_len, cctl, tsize);
1112                                total_bytes += lli_len;
1113                        }
1114
1115                        /*
1116                         * Send any odd bytes
1117                         */
1118                        if (bd.remainder) {
1119                                dev_vdbg(&pl08x->adev->dev,
1120                                        "%s align with boundary, send odd bytes (remain %zu)\n",
1121                                        __func__, bd.remainder);
1122                                prep_byte_width_lli(pl08x, &bd, &cctl,
1123                                        bd.remainder, num_llis++, &total_bytes);
1124                        }
1125                }
1126
1127                if (total_bytes != dsg->len) {
1128                        dev_err(&pl08x->adev->dev,
1129                                "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1130                                __func__, total_bytes, dsg->len);
1131                        return 0;
1132                }
1133
1134                if (num_llis >= MAX_NUM_TSFR_LLIS) {
1135                        dev_err(&pl08x->adev->dev,
1136                                "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1137                                __func__, MAX_NUM_TSFR_LLIS);
1138                        return 0;
1139                }
1140        }
1141
1142        llis_va = txd->llis_va;
1143        last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1144
1145        if (txd->cyclic) {
1146                /* Link back to the first LLI. */
1147                last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1148        } else {
1149                /* The final LLI terminates the LLI. */
1150                last_lli[PL080_LLI_LLI] = 0;
1151                /* The final LLI element shall also fire an interrupt. */
1152                last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1153        }
1154
1155        pl08x_dump_lli(pl08x, llis_va, num_llis);
1156
1157        return num_llis;
1158}
1159
1160static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1161                           struct pl08x_txd *txd)
1162{
1163        struct pl08x_sg *dsg, *_dsg;
1164
1165        if (txd->llis_va)
1166                dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1167
1168        list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1169                list_del(&dsg->node);
1170                kfree(dsg);
1171        }
1172
1173        kfree(txd);
1174}
1175
1176static void pl08x_desc_free(struct virt_dma_desc *vd)
1177{
1178        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1179        struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1180
1181        dma_descriptor_unmap(&vd->tx);
1182        if (!txd->done)
1183                pl08x_release_mux(plchan);
1184
1185        pl08x_free_txd(plchan->host, txd);
1186}
1187
1188static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1189                                struct pl08x_dma_chan *plchan)
1190{
1191        LIST_HEAD(head);
1192
1193        vchan_get_all_descriptors(&plchan->vc, &head);
1194        vchan_dma_desc_free_list(&plchan->vc, &head);
1195}
1196
1197/*
1198 * The DMA ENGINE API
1199 */
1200static void pl08x_free_chan_resources(struct dma_chan *chan)
1201{
1202        /* Ensure all queued descriptors are freed */
1203        vchan_free_chan_resources(to_virt_chan(chan));
1204}
1205
1206static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1207                struct dma_chan *chan, unsigned long flags)
1208{
1209        struct dma_async_tx_descriptor *retval = NULL;
1210
1211        return retval;
1212}
1213
1214/*
1215 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1216 * If slaves are relying on interrupts to signal completion this function
1217 * must not be called with interrupts disabled.
1218 */
1219static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1220                dma_cookie_t cookie, struct dma_tx_state *txstate)
1221{
1222        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1223        struct virt_dma_desc *vd;
1224        unsigned long flags;
1225        enum dma_status ret;
1226        size_t bytes = 0;
1227
1228        ret = dma_cookie_status(chan, cookie, txstate);
1229        if (ret == DMA_COMPLETE)
1230                return ret;
1231
1232        /*
1233         * There's no point calculating the residue if there's
1234         * no txstate to store the value.
1235         */
1236        if (!txstate) {
1237                if (plchan->state == PL08X_CHAN_PAUSED)
1238                        ret = DMA_PAUSED;
1239                return ret;
1240        }
1241
1242        spin_lock_irqsave(&plchan->vc.lock, flags);
1243        ret = dma_cookie_status(chan, cookie, txstate);
1244        if (ret != DMA_COMPLETE) {
1245                vd = vchan_find_desc(&plchan->vc, cookie);
1246                if (vd) {
1247                        /* On the issued list, so hasn't been processed yet */
1248                        struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1249                        struct pl08x_sg *dsg;
1250
1251                        list_for_each_entry(dsg, &txd->dsg_list, node)
1252                                bytes += dsg->len;
1253                } else {
1254                        bytes = pl08x_getbytes_chan(plchan);
1255                }
1256        }
1257        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1258
1259        /*
1260         * This cookie not complete yet
1261         * Get number of bytes left in the active transactions and queue
1262         */
1263        dma_set_residue(txstate, bytes);
1264
1265        if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1266                ret = DMA_PAUSED;
1267
1268        /* Whether waiting or running, we're in progress */
1269        return ret;
1270}
1271
1272/* PrimeCell DMA extension */
1273struct burst_table {
1274        u32 burstwords;
1275        u32 reg;
1276};
1277
1278static const struct burst_table burst_sizes[] = {
1279        {
1280                .burstwords = 256,
1281                .reg = PL080_BSIZE_256,
1282        },
1283        {
1284                .burstwords = 128,
1285                .reg = PL080_BSIZE_128,
1286        },
1287        {
1288                .burstwords = 64,
1289                .reg = PL080_BSIZE_64,
1290        },
1291        {
1292                .burstwords = 32,
1293                .reg = PL080_BSIZE_32,
1294        },
1295        {
1296                .burstwords = 16,
1297                .reg = PL080_BSIZE_16,
1298        },
1299        {
1300                .burstwords = 8,
1301                .reg = PL080_BSIZE_8,
1302        },
1303        {
1304                .burstwords = 4,
1305                .reg = PL080_BSIZE_4,
1306        },
1307        {
1308                .burstwords = 0,
1309                .reg = PL080_BSIZE_1,
1310        },
1311};
1312
1313/*
1314 * Given the source and destination available bus masks, select which
1315 * will be routed to each port.  We try to have source and destination
1316 * on separate ports, but always respect the allowable settings.
1317 */
1318static u32 pl08x_select_bus(u8 src, u8 dst)
1319{
1320        u32 cctl = 0;
1321
1322        if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1323                cctl |= PL080_CONTROL_DST_AHB2;
1324        if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1325                cctl |= PL080_CONTROL_SRC_AHB2;
1326
1327        return cctl;
1328}
1329
1330static u32 pl08x_cctl(u32 cctl)
1331{
1332        cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1333                  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1334                  PL080_CONTROL_PROT_MASK);
1335
1336        /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1337        return cctl | PL080_CONTROL_PROT_SYS;
1338}
1339
1340static u32 pl08x_width(enum dma_slave_buswidth width)
1341{
1342        switch (width) {
1343        case DMA_SLAVE_BUSWIDTH_1_BYTE:
1344                return PL080_WIDTH_8BIT;
1345        case DMA_SLAVE_BUSWIDTH_2_BYTES:
1346                return PL080_WIDTH_16BIT;
1347        case DMA_SLAVE_BUSWIDTH_4_BYTES:
1348                return PL080_WIDTH_32BIT;
1349        default:
1350                return ~0;
1351        }
1352}
1353
1354static u32 pl08x_burst(u32 maxburst)
1355{
1356        int i;
1357
1358        for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1359                if (burst_sizes[i].burstwords <= maxburst)
1360                        break;
1361
1362        return burst_sizes[i].reg;
1363}
1364
1365static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1366        enum dma_slave_buswidth addr_width, u32 maxburst)
1367{
1368        u32 width, burst, cctl = 0;
1369
1370        width = pl08x_width(addr_width);
1371        if (width == ~0)
1372                return ~0;
1373
1374        cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1375        cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1376
1377        /*
1378         * If this channel will only request single transfers, set this
1379         * down to ONE element.  Also select one element if no maxburst
1380         * is specified.
1381         */
1382        if (plchan->cd->single)
1383                maxburst = 1;
1384
1385        burst = pl08x_burst(maxburst);
1386        cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1387        cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1388
1389        return pl08x_cctl(cctl);
1390}
1391
1392/*
1393 * Slave transactions callback to the slave device to allow
1394 * synchronization of slave DMA signals with the DMAC enable
1395 */
1396static void pl08x_issue_pending(struct dma_chan *chan)
1397{
1398        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1399        unsigned long flags;
1400
1401        spin_lock_irqsave(&plchan->vc.lock, flags);
1402        if (vchan_issue_pending(&plchan->vc)) {
1403                if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1404                        pl08x_phy_alloc_and_start(plchan);
1405        }
1406        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1407}
1408
1409static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1410{
1411        struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1412
1413        if (txd) {
1414                INIT_LIST_HEAD(&txd->dsg_list);
1415
1416                /* Always enable error and terminal interrupts */
1417                txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1418                            PL080_CONFIG_TC_IRQ_MASK;
1419        }
1420        return txd;
1421}
1422
1423/*
1424 * Initialize a descriptor to be used by memcpy submit
1425 */
1426static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1427                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1428                size_t len, unsigned long flags)
1429{
1430        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1431        struct pl08x_driver_data *pl08x = plchan->host;
1432        struct pl08x_txd *txd;
1433        struct pl08x_sg *dsg;
1434        int ret;
1435
1436        txd = pl08x_get_txd(plchan);
1437        if (!txd) {
1438                dev_err(&pl08x->adev->dev,
1439                        "%s no memory for descriptor\n", __func__);
1440                return NULL;
1441        }
1442
1443        dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1444        if (!dsg) {
1445                pl08x_free_txd(pl08x, txd);
1446                dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1447                                __func__);
1448                return NULL;
1449        }
1450        list_add_tail(&dsg->node, &txd->dsg_list);
1451
1452        dsg->src_addr = src;
1453        dsg->dst_addr = dest;
1454        dsg->len = len;
1455
1456        /* Set platform data for m2m */
1457        txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1458        txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1459                        ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1460
1461        /* Both to be incremented or the code will break */
1462        txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1463
1464        if (pl08x->vd->dualmaster)
1465                txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1466                                              pl08x->mem_buses);
1467
1468        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1469        if (!ret) {
1470                pl08x_free_txd(pl08x, txd);
1471                return NULL;
1472        }
1473
1474        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1475}
1476
1477static struct pl08x_txd *pl08x_init_txd(
1478                struct dma_chan *chan,
1479                enum dma_transfer_direction direction,
1480                dma_addr_t *slave_addr)
1481{
1482        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1483        struct pl08x_driver_data *pl08x = plchan->host;
1484        struct pl08x_txd *txd;
1485        enum dma_slave_buswidth addr_width;
1486        int ret, tmp;
1487        u8 src_buses, dst_buses;
1488        u32 maxburst, cctl;
1489
1490        txd = pl08x_get_txd(plchan);
1491        if (!txd) {
1492                dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1493                return NULL;
1494        }
1495
1496        /*
1497         * Set up addresses, the PrimeCell configured address
1498         * will take precedence since this may configure the
1499         * channel target address dynamically at runtime.
1500         */
1501        if (direction == DMA_MEM_TO_DEV) {
1502                cctl = PL080_CONTROL_SRC_INCR;
1503                *slave_addr = plchan->cfg.dst_addr;
1504                addr_width = plchan->cfg.dst_addr_width;
1505                maxburst = plchan->cfg.dst_maxburst;
1506                src_buses = pl08x->mem_buses;
1507                dst_buses = plchan->cd->periph_buses;
1508        } else if (direction == DMA_DEV_TO_MEM) {
1509                cctl = PL080_CONTROL_DST_INCR;
1510                *slave_addr = plchan->cfg.src_addr;
1511                addr_width = plchan->cfg.src_addr_width;
1512                maxburst = plchan->cfg.src_maxburst;
1513                src_buses = plchan->cd->periph_buses;
1514                dst_buses = pl08x->mem_buses;
1515        } else {
1516                pl08x_free_txd(pl08x, txd);
1517                dev_err(&pl08x->adev->dev,
1518                        "%s direction unsupported\n", __func__);
1519                return NULL;
1520        }
1521
1522        cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1523        if (cctl == ~0) {
1524                pl08x_free_txd(pl08x, txd);
1525                dev_err(&pl08x->adev->dev,
1526                        "DMA slave configuration botched?\n");
1527                return NULL;
1528        }
1529
1530        txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1531
1532        if (plchan->cfg.device_fc)
1533                tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1534                        PL080_FLOW_PER2MEM_PER;
1535        else
1536                tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1537                        PL080_FLOW_PER2MEM;
1538
1539        txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1540
1541        ret = pl08x_request_mux(plchan);
1542        if (ret < 0) {
1543                pl08x_free_txd(pl08x, txd);
1544                dev_dbg(&pl08x->adev->dev,
1545                        "unable to mux for transfer on %s due to platform restrictions\n",
1546                        plchan->name);
1547                return NULL;
1548        }
1549
1550        dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1551                 plchan->signal, plchan->name);
1552
1553        /* Assign the flow control signal to this channel */
1554        if (direction == DMA_MEM_TO_DEV)
1555                txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1556        else
1557                txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1558
1559        return txd;
1560}
1561
1562static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1563                           enum dma_transfer_direction direction,
1564                           dma_addr_t slave_addr,
1565                           dma_addr_t buf_addr,
1566                           unsigned int len)
1567{
1568        struct pl08x_sg *dsg;
1569
1570        dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1571        if (!dsg)
1572                return -ENOMEM;
1573
1574        list_add_tail(&dsg->node, &txd->dsg_list);
1575
1576        dsg->len = len;
1577        if (direction == DMA_MEM_TO_DEV) {
1578                dsg->src_addr = buf_addr;
1579                dsg->dst_addr = slave_addr;
1580        } else {
1581                dsg->src_addr = slave_addr;
1582                dsg->dst_addr = buf_addr;
1583        }
1584
1585        return 0;
1586}
1587
1588static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1589                struct dma_chan *chan, struct scatterlist *sgl,
1590                unsigned int sg_len, enum dma_transfer_direction direction,
1591                unsigned long flags, void *context)
1592{
1593        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1594        struct pl08x_driver_data *pl08x = plchan->host;
1595        struct pl08x_txd *txd;
1596        struct scatterlist *sg;
1597        int ret, tmp;
1598        dma_addr_t slave_addr;
1599
1600        dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1601                        __func__, sg_dma_len(sgl), plchan->name);
1602
1603        txd = pl08x_init_txd(chan, direction, &slave_addr);
1604        if (!txd)
1605                return NULL;
1606
1607        for_each_sg(sgl, sg, sg_len, tmp) {
1608                ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1609                                      sg_dma_address(sg),
1610                                      sg_dma_len(sg));
1611                if (ret) {
1612                        pl08x_release_mux(plchan);
1613                        pl08x_free_txd(pl08x, txd);
1614                        dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1615                                        __func__);
1616                        return NULL;
1617                }
1618        }
1619
1620        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1621        if (!ret) {
1622                pl08x_release_mux(plchan);
1623                pl08x_free_txd(pl08x, txd);
1624                return NULL;
1625        }
1626
1627        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1628}
1629
1630static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1631                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1632                size_t period_len, enum dma_transfer_direction direction,
1633                unsigned long flags)
1634{
1635        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1636        struct pl08x_driver_data *pl08x = plchan->host;
1637        struct pl08x_txd *txd;
1638        int ret, tmp;
1639        dma_addr_t slave_addr;
1640
1641        dev_dbg(&pl08x->adev->dev,
1642                "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1643                __func__, period_len, buf_len,
1644                direction == DMA_MEM_TO_DEV ? "to" : "from",
1645                plchan->name);
1646
1647        txd = pl08x_init_txd(chan, direction, &slave_addr);
1648        if (!txd)
1649                return NULL;
1650
1651        txd->cyclic = true;
1652        txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1653        for (tmp = 0; tmp < buf_len; tmp += period_len) {
1654                ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1655                                      buf_addr + tmp, period_len);
1656                if (ret) {
1657                        pl08x_release_mux(plchan);
1658                        pl08x_free_txd(pl08x, txd);
1659                        return NULL;
1660                }
1661        }
1662
1663        ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1664        if (!ret) {
1665                pl08x_release_mux(plchan);
1666                pl08x_free_txd(pl08x, txd);
1667                return NULL;
1668        }
1669
1670        return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1671}
1672
1673static int pl08x_config(struct dma_chan *chan,
1674                        struct dma_slave_config *config)
1675{
1676        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1677        struct pl08x_driver_data *pl08x = plchan->host;
1678
1679        if (!plchan->slave)
1680                return -EINVAL;
1681
1682        /* Reject definitely invalid configurations */
1683        if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1684            config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1685                return -EINVAL;
1686
1687        if (config->device_fc && pl08x->vd->pl080s) {
1688                dev_err(&pl08x->adev->dev,
1689                        "%s: PL080S does not support peripheral flow control\n",
1690                        __func__);
1691                return -EINVAL;
1692        }
1693
1694        plchan->cfg = *config;
1695
1696        return 0;
1697}
1698
1699static int pl08x_terminate_all(struct dma_chan *chan)
1700{
1701        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1702        struct pl08x_driver_data *pl08x = plchan->host;
1703        unsigned long flags;
1704
1705        spin_lock_irqsave(&plchan->vc.lock, flags);
1706        if (!plchan->phychan && !plchan->at) {
1707                spin_unlock_irqrestore(&plchan->vc.lock, flags);
1708                return 0;
1709        }
1710
1711        plchan->state = PL08X_CHAN_IDLE;
1712
1713        if (plchan->phychan) {
1714                /*
1715                 * Mark physical channel as free and free any slave
1716                 * signal
1717                 */
1718                pl08x_phy_free(plchan);
1719        }
1720        /* Dequeue jobs and free LLIs */
1721        if (plchan->at) {
1722                pl08x_desc_free(&plchan->at->vd);
1723                plchan->at = NULL;
1724        }
1725        /* Dequeue jobs not yet fired as well */
1726        pl08x_free_txd_list(pl08x, plchan);
1727
1728        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1729
1730        return 0;
1731}
1732
1733static int pl08x_pause(struct dma_chan *chan)
1734{
1735        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1736        unsigned long flags;
1737
1738        /*
1739         * Anything succeeds on channels with no physical allocation and
1740         * no queued transfers.
1741         */
1742        spin_lock_irqsave(&plchan->vc.lock, flags);
1743        if (!plchan->phychan && !plchan->at) {
1744                spin_unlock_irqrestore(&plchan->vc.lock, flags);
1745                return 0;
1746        }
1747
1748        pl08x_pause_phy_chan(plchan->phychan);
1749        plchan->state = PL08X_CHAN_PAUSED;
1750
1751        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1752
1753        return 0;
1754}
1755
1756static int pl08x_resume(struct dma_chan *chan)
1757{
1758        struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1759        unsigned long flags;
1760
1761        /*
1762         * Anything succeeds on channels with no physical allocation and
1763         * no queued transfers.
1764         */
1765        spin_lock_irqsave(&plchan->vc.lock, flags);
1766        if (!plchan->phychan && !plchan->at) {
1767                spin_unlock_irqrestore(&plchan->vc.lock, flags);
1768                return 0;
1769        }
1770
1771        pl08x_resume_phy_chan(plchan->phychan);
1772        plchan->state = PL08X_CHAN_RUNNING;
1773
1774        spin_unlock_irqrestore(&plchan->vc.lock, flags);
1775
1776        return 0;
1777}
1778
1779bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1780{
1781        struct pl08x_dma_chan *plchan;
1782        char *name = chan_id;
1783
1784        /* Reject channels for devices not bound to this driver */
1785        if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1786                return false;
1787
1788        plchan = to_pl08x_chan(chan);
1789
1790        /* Check that the channel is not taken! */
1791        if (!strcmp(plchan->name, name))
1792                return true;
1793
1794        return false;
1795}
1796EXPORT_SYMBOL_GPL(pl08x_filter_id);
1797
1798/*
1799 * Just check that the device is there and active
1800 * TODO: turn this bit on/off depending on the number of physical channels
1801 * actually used, if it is zero... well shut it off. That will save some
1802 * power. Cut the clock at the same time.
1803 */
1804static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1805{
1806        /* The Nomadik variant does not have the config register */
1807        if (pl08x->vd->nomadik)
1808                return;
1809        writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1810}
1811
1812static irqreturn_t pl08x_irq(int irq, void *dev)
1813{
1814        struct pl08x_driver_data *pl08x = dev;
1815        u32 mask = 0, err, tc, i;
1816
1817        /* check & clear - ERR & TC interrupts */
1818        err = readl(pl08x->base + PL080_ERR_STATUS);
1819        if (err) {
1820                dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1821                        __func__, err);
1822                writel(err, pl08x->base + PL080_ERR_CLEAR);
1823        }
1824        tc = readl(pl08x->base + PL080_TC_STATUS);
1825        if (tc)
1826                writel(tc, pl08x->base + PL080_TC_CLEAR);
1827
1828        if (!err && !tc)
1829                return IRQ_NONE;
1830
1831        for (i = 0; i < pl08x->vd->channels; i++) {
1832                if (((1 << i) & err) || ((1 << i) & tc)) {
1833                        /* Locate physical channel */
1834                        struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1835                        struct pl08x_dma_chan *plchan = phychan->serving;
1836                        struct pl08x_txd *tx;
1837
1838                        if (!plchan) {
1839                                dev_err(&pl08x->adev->dev,
1840                                        "%s Error TC interrupt on unused channel: 0x%08x\n",
1841                                        __func__, i);
1842                                continue;
1843                        }
1844
1845                        spin_lock(&plchan->vc.lock);
1846                        tx = plchan->at;
1847                        if (tx && tx->cyclic) {
1848                                vchan_cyclic_callback(&tx->vd);
1849                        } else if (tx) {
1850                                plchan->at = NULL;
1851                                /*
1852                                 * This descriptor is done, release its mux
1853                                 * reservation.
1854                                 */
1855                                pl08x_release_mux(plchan);
1856                                tx->done = true;
1857                                vchan_cookie_complete(&tx->vd);
1858
1859                                /*
1860                                 * And start the next descriptor (if any),
1861                                 * otherwise free this channel.
1862                                 */
1863                                if (vchan_next_desc(&plchan->vc))
1864                                        pl08x_start_next_txd(plchan);
1865                                else
1866                                        pl08x_phy_free(plchan);
1867                        }
1868                        spin_unlock(&plchan->vc.lock);
1869
1870                        mask |= (1 << i);
1871                }
1872        }
1873
1874        return mask ? IRQ_HANDLED : IRQ_NONE;
1875}
1876
1877static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1878{
1879        chan->slave = true;
1880        chan->name = chan->cd->bus_id;
1881        chan->cfg.src_addr = chan->cd->addr;
1882        chan->cfg.dst_addr = chan->cd->addr;
1883}
1884
1885/*
1886 * Initialise the DMAC memcpy/slave channels.
1887 * Make a local wrapper to hold required data
1888 */
1889static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1890                struct dma_device *dmadev, unsigned int channels, bool slave)
1891{
1892        struct pl08x_dma_chan *chan;
1893        int i;
1894
1895        INIT_LIST_HEAD(&dmadev->channels);
1896
1897        /*
1898         * Register as many many memcpy as we have physical channels,
1899         * we won't always be able to use all but the code will have
1900         * to cope with that situation.
1901         */
1902        for (i = 0; i < channels; i++) {
1903                chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1904                if (!chan) {
1905                        dev_err(&pl08x->adev->dev,
1906                                "%s no memory for channel\n", __func__);
1907                        return -ENOMEM;
1908                }
1909
1910                chan->host = pl08x;
1911                chan->state = PL08X_CHAN_IDLE;
1912                chan->signal = -1;
1913
1914                if (slave) {
1915                        chan->cd = &pl08x->pd->slave_channels[i];
1916                        /*
1917                         * Some implementations have muxed signals, whereas some
1918                         * use a mux in front of the signals and need dynamic
1919                         * assignment of signals.
1920                         */
1921                        chan->signal = i;
1922                        pl08x_dma_slave_init(chan);
1923                } else {
1924                        chan->cd = &pl08x->pd->memcpy_channel;
1925                        chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1926                        if (!chan->name) {
1927                                kfree(chan);
1928                                return -ENOMEM;
1929                        }
1930                }
1931                dev_dbg(&pl08x->adev->dev,
1932                         "initialize virtual channel \"%s\"\n",
1933                         chan->name);
1934
1935                chan->vc.desc_free = pl08x_desc_free;
1936                vchan_init(&chan->vc, dmadev);
1937        }
1938        dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1939                 i, slave ? "slave" : "memcpy");
1940        return i;
1941}
1942
1943static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1944{
1945        struct pl08x_dma_chan *chan = NULL;
1946        struct pl08x_dma_chan *next;
1947
1948        list_for_each_entry_safe(chan,
1949                                 next, &dmadev->channels, vc.chan.device_node) {
1950                list_del(&chan->vc.chan.device_node);
1951                kfree(chan);
1952        }
1953}
1954
1955#ifdef CONFIG_DEBUG_FS
1956static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1957{
1958        switch (state) {
1959        case PL08X_CHAN_IDLE:
1960                return "idle";
1961        case PL08X_CHAN_RUNNING:
1962                return "running";
1963        case PL08X_CHAN_PAUSED:
1964                return "paused";
1965        case PL08X_CHAN_WAITING:
1966                return "waiting";
1967        default:
1968                break;
1969        }
1970        return "UNKNOWN STATE";
1971}
1972
1973static int pl08x_debugfs_show(struct seq_file *s, void *data)
1974{
1975        struct pl08x_driver_data *pl08x = s->private;
1976        struct pl08x_dma_chan *chan;
1977        struct pl08x_phy_chan *ch;
1978        unsigned long flags;
1979        int i;
1980
1981        seq_printf(s, "PL08x physical channels:\n");
1982        seq_printf(s, "CHANNEL:\tUSER:\n");
1983        seq_printf(s, "--------\t-----\n");
1984        for (i = 0; i < pl08x->vd->channels; i++) {
1985                struct pl08x_dma_chan *virt_chan;
1986
1987                ch = &pl08x->phy_chans[i];
1988
1989                spin_lock_irqsave(&ch->lock, flags);
1990                virt_chan = ch->serving;
1991
1992                seq_printf(s, "%d\t\t%s%s\n",
1993                           ch->id,
1994                           virt_chan ? virt_chan->name : "(none)",
1995                           ch->locked ? " LOCKED" : "");
1996
1997                spin_unlock_irqrestore(&ch->lock, flags);
1998        }
1999
2000        seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2001        seq_printf(s, "CHANNEL:\tSTATE:\n");
2002        seq_printf(s, "--------\t------\n");
2003        list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2004                seq_printf(s, "%s\t\t%s\n", chan->name,
2005                           pl08x_state_str(chan->state));
2006        }
2007
2008        seq_printf(s, "\nPL08x virtual slave channels:\n");
2009        seq_printf(s, "CHANNEL:\tSTATE:\n");
2010        seq_printf(s, "--------\t------\n");
2011        list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2012                seq_printf(s, "%s\t\t%s\n", chan->name,
2013                           pl08x_state_str(chan->state));
2014        }
2015
2016        return 0;
2017}
2018
2019static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2020{
2021        return single_open(file, pl08x_debugfs_show, inode->i_private);
2022}
2023
2024static const struct file_operations pl08x_debugfs_operations = {
2025        .open           = pl08x_debugfs_open,
2026        .read           = seq_read,
2027        .llseek         = seq_lseek,
2028        .release        = single_release,
2029};
2030
2031static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2032{
2033        /* Expose a simple debugfs interface to view all clocks */
2034        (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2035                        S_IFREG | S_IRUGO, NULL, pl08x,
2036                        &pl08x_debugfs_operations);
2037}
2038
2039#else
2040static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2041{
2042}
2043#endif
2044
2045#ifdef CONFIG_OF
2046static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2047                                         u32 id)
2048{
2049        struct pl08x_dma_chan *chan;
2050
2051        list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2052                if (chan->signal == id)
2053                        return &chan->vc.chan;
2054        }
2055
2056        return NULL;
2057}
2058
2059static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2060                                       struct of_dma *ofdma)
2061{
2062        struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2063        struct dma_chan *dma_chan;
2064        struct pl08x_dma_chan *plchan;
2065
2066        if (!pl08x)
2067                return NULL;
2068
2069        if (dma_spec->args_count != 2) {
2070                dev_err(&pl08x->adev->dev,
2071                        "DMA channel translation requires two cells\n");
2072                return NULL;
2073        }
2074
2075        dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2076        if (!dma_chan) {
2077                dev_err(&pl08x->adev->dev,
2078                        "DMA slave channel not found\n");
2079                return NULL;
2080        }
2081
2082        plchan = to_pl08x_chan(dma_chan);
2083        dev_dbg(&pl08x->adev->dev,
2084                "translated channel for signal %d\n",
2085                dma_spec->args[0]);
2086
2087        /* Augment channel data for applicable AHB buses */
2088        plchan->cd->periph_buses = dma_spec->args[1];
2089        return dma_get_slave_channel(dma_chan);
2090}
2091
2092static int pl08x_of_probe(struct amba_device *adev,
2093                          struct pl08x_driver_data *pl08x,
2094                          struct device_node *np)
2095{
2096        struct pl08x_platform_data *pd;
2097        struct pl08x_channel_data *chanp = NULL;
2098        u32 cctl_memcpy = 0;
2099        u32 val;
2100        int ret;
2101        int i;
2102
2103        pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2104        if (!pd)
2105                return -ENOMEM;
2106
2107        /* Eligible bus masters for fetching LLIs */
2108        if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2109                pd->lli_buses |= PL08X_AHB1;
2110        if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2111                pd->lli_buses |= PL08X_AHB2;
2112        if (!pd->lli_buses) {
2113                dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2114                pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2115        }
2116
2117        /* Eligible bus masters for memory access */
2118        if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2119                pd->mem_buses |= PL08X_AHB1;
2120        if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2121                pd->mem_buses |= PL08X_AHB2;
2122        if (!pd->mem_buses) {
2123                dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2124                pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2125        }
2126
2127        /* Parse the memcpy channel properties */
2128        ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2129        if (ret) {
2130                dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2131                val = 1;
2132        }
2133        switch (val) {
2134        default:
2135                dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2136                /* Fall through */
2137        case 1:
2138                cctl_memcpy |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
2139                               PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
2140                break;
2141        case 4:
2142                cctl_memcpy |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
2143                               PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
2144                break;
2145        case 8:
2146                cctl_memcpy |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
2147                               PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
2148                break;
2149        case 16:
2150                cctl_memcpy |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
2151                               PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
2152                break;
2153        case 32:
2154                cctl_memcpy |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
2155                               PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
2156                break;
2157        case 64:
2158                cctl_memcpy |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
2159                               PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
2160                break;
2161        case 128:
2162                cctl_memcpy |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
2163                               PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
2164                break;
2165        case 256:
2166                cctl_memcpy |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
2167                               PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
2168                break;
2169        }
2170
2171        ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2172        if (ret) {
2173                dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2174                val = 8;
2175        }
2176        switch (val) {
2177        default:
2178                dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2179                /* Fall through */
2180        case 8:
2181                cctl_memcpy |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
2182                               PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
2183                break;
2184        case 16:
2185                cctl_memcpy |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
2186                               PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
2187                break;
2188        case 32:
2189                cctl_memcpy |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
2190                               PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
2191                break;
2192        }
2193
2194        /* This is currently the only thing making sense */
2195        cctl_memcpy |= PL080_CONTROL_PROT_SYS;
2196
2197        /* Set up memcpy channel */
2198        pd->memcpy_channel.bus_id = "memcpy";
2199        pd->memcpy_channel.cctl_memcpy = cctl_memcpy;
2200        /* Use the buses that can access memory, obviously */
2201        pd->memcpy_channel.periph_buses = pd->mem_buses;
2202
2203        /*
2204         * Allocate channel data for all possible slave channels (one
2205         * for each possible signal), channels will then be allocated
2206         * for a device and have it's AHB interfaces set up at
2207         * translation time.
2208         */
2209        chanp = devm_kcalloc(&adev->dev,
2210                        pl08x->vd->signals,
2211                        sizeof(struct pl08x_channel_data),
2212                        GFP_KERNEL);
2213        if (!chanp)
2214                return -ENOMEM;
2215
2216        pd->slave_channels = chanp;
2217        for (i = 0; i < pl08x->vd->signals; i++) {
2218                /* chanp->periph_buses will be assigned at translation */
2219                chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2220                chanp++;
2221        }
2222        pd->num_slave_channels = pl08x->vd->signals;
2223
2224        pl08x->pd = pd;
2225
2226        return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2227                                          pl08x);
2228}
2229#else
2230static inline int pl08x_of_probe(struct amba_device *adev,
2231                                 struct pl08x_driver_data *pl08x,
2232                                 struct device_node *np)
2233{
2234        return -EINVAL;
2235}
2236#endif
2237
2238static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2239{
2240        struct pl08x_driver_data *pl08x;
2241        const struct vendor_data *vd = id->data;
2242        struct device_node *np = adev->dev.of_node;
2243        u32 tsfr_size;
2244        int ret = 0;
2245        int i;
2246
2247        ret = amba_request_regions(adev, NULL);
2248        if (ret)
2249                return ret;
2250
2251        /* Ensure that we can do DMA */
2252        ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2253        if (ret)
2254                goto out_no_pl08x;
2255
2256        /* Create the driver state holder */
2257        pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2258        if (!pl08x) {
2259                ret = -ENOMEM;
2260                goto out_no_pl08x;
2261        }
2262
2263        /* Assign useful pointers to the driver state */
2264        pl08x->adev = adev;
2265        pl08x->vd = vd;
2266
2267        /* Initialize memcpy engine */
2268        dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2269        pl08x->memcpy.dev = &adev->dev;
2270        pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2271        pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2272        pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2273        pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2274        pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2275        pl08x->memcpy.device_config = pl08x_config;
2276        pl08x->memcpy.device_pause = pl08x_pause;
2277        pl08x->memcpy.device_resume = pl08x_resume;
2278        pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2279        pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2280        pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2281        pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2282        pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2283
2284        /* Initialize slave engine */
2285        dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2286        dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2287        pl08x->slave.dev = &adev->dev;
2288        pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2289        pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2290        pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2291        pl08x->slave.device_issue_pending = pl08x_issue_pending;
2292        pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2293        pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2294        pl08x->slave.device_config = pl08x_config;
2295        pl08x->slave.device_pause = pl08x_pause;
2296        pl08x->slave.device_resume = pl08x_resume;
2297        pl08x->slave.device_terminate_all = pl08x_terminate_all;
2298        pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2299        pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2300        pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2301        pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2302
2303        /* Get the platform data */
2304        pl08x->pd = dev_get_platdata(&adev->dev);
2305        if (!pl08x->pd) {
2306                if (np) {
2307                        ret = pl08x_of_probe(adev, pl08x, np);
2308                        if (ret)
2309                                goto out_no_platdata;
2310                } else {
2311                        dev_err(&adev->dev, "no platform data supplied\n");
2312                        ret = -EINVAL;
2313                        goto out_no_platdata;
2314                }
2315        }
2316
2317        /* By default, AHB1 only.  If dualmaster, from platform */
2318        pl08x->lli_buses = PL08X_AHB1;
2319        pl08x->mem_buses = PL08X_AHB1;
2320        if (pl08x->vd->dualmaster) {
2321                pl08x->lli_buses = pl08x->pd->lli_buses;
2322                pl08x->mem_buses = pl08x->pd->mem_buses;
2323        }
2324
2325        if (vd->pl080s)
2326                pl08x->lli_words = PL080S_LLI_WORDS;
2327        else
2328                pl08x->lli_words = PL080_LLI_WORDS;
2329        tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2330
2331        /* A DMA memory pool for LLIs, align on 1-byte boundary */
2332        pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2333                                                tsfr_size, PL08X_ALIGN, 0);
2334        if (!pl08x->pool) {
2335                ret = -ENOMEM;
2336                goto out_no_lli_pool;
2337        }
2338
2339        pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2340        if (!pl08x->base) {
2341                ret = -ENOMEM;
2342                goto out_no_ioremap;
2343        }
2344
2345        /* Turn on the PL08x */
2346        pl08x_ensure_on(pl08x);
2347
2348        /* Attach the interrupt handler */
2349        writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2350        writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2351
2352        ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2353        if (ret) {
2354                dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2355                        __func__, adev->irq[0]);
2356                goto out_no_irq;
2357        }
2358
2359        /* Initialize physical channels */
2360        pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2361                        GFP_KERNEL);
2362        if (!pl08x->phy_chans) {
2363                dev_err(&adev->dev, "%s failed to allocate "
2364                        "physical channel holders\n",
2365                        __func__);
2366                ret = -ENOMEM;
2367                goto out_no_phychans;
2368        }
2369
2370        for (i = 0; i < vd->channels; i++) {
2371                struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2372
2373                ch->id = i;
2374                ch->base = pl08x->base + PL080_Cx_BASE(i);
2375                ch->reg_config = ch->base + vd->config_offset;
2376                spin_lock_init(&ch->lock);
2377
2378                /*
2379                 * Nomadik variants can have channels that are locked
2380                 * down for the secure world only. Lock up these channels
2381                 * by perpetually serving a dummy virtual channel.
2382                 */
2383                if (vd->nomadik) {
2384                        u32 val;
2385
2386                        val = readl(ch->reg_config);
2387                        if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2388                                dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2389                                ch->locked = true;
2390                        }
2391                }
2392
2393                dev_dbg(&adev->dev, "physical channel %d is %s\n",
2394                        i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2395        }
2396
2397        /* Register as many memcpy channels as there are physical channels */
2398        ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2399                                              pl08x->vd->channels, false);
2400        if (ret <= 0) {
2401                dev_warn(&pl08x->adev->dev,
2402                         "%s failed to enumerate memcpy channels - %d\n",
2403                         __func__, ret);
2404                goto out_no_memcpy;
2405        }
2406
2407        /* Register slave channels */
2408        ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2409                        pl08x->pd->num_slave_channels, true);
2410        if (ret < 0) {
2411                dev_warn(&pl08x->adev->dev,
2412                        "%s failed to enumerate slave channels - %d\n",
2413                                __func__, ret);
2414                goto out_no_slave;
2415        }
2416
2417        ret = dma_async_device_register(&pl08x->memcpy);
2418        if (ret) {
2419                dev_warn(&pl08x->adev->dev,
2420                        "%s failed to register memcpy as an async device - %d\n",
2421                        __func__, ret);
2422                goto out_no_memcpy_reg;
2423        }
2424
2425        ret = dma_async_device_register(&pl08x->slave);
2426        if (ret) {
2427                dev_warn(&pl08x->adev->dev,
2428                        "%s failed to register slave as an async device - %d\n",
2429                        __func__, ret);
2430                goto out_no_slave_reg;
2431        }
2432
2433        amba_set_drvdata(adev, pl08x);
2434        init_pl08x_debugfs(pl08x);
2435        dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2436                 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2437                 (unsigned long long)adev->res.start, adev->irq[0]);
2438
2439        return 0;
2440
2441out_no_slave_reg:
2442        dma_async_device_unregister(&pl08x->memcpy);
2443out_no_memcpy_reg:
2444        pl08x_free_virtual_channels(&pl08x->slave);
2445out_no_slave:
2446        pl08x_free_virtual_channels(&pl08x->memcpy);
2447out_no_memcpy:
2448        kfree(pl08x->phy_chans);
2449out_no_phychans:
2450        free_irq(adev->irq[0], pl08x);
2451out_no_irq:
2452        iounmap(pl08x->base);
2453out_no_ioremap:
2454        dma_pool_destroy(pl08x->pool);
2455out_no_lli_pool:
2456out_no_platdata:
2457        kfree(pl08x);
2458out_no_pl08x:
2459        amba_release_regions(adev);
2460        return ret;
2461}
2462
2463/* PL080 has 8 channels and the PL080 have just 2 */
2464static struct vendor_data vendor_pl080 = {
2465        .config_offset = PL080_CH_CONFIG,
2466        .channels = 8,
2467        .signals = 16,
2468        .dualmaster = true,
2469        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2470};
2471
2472static struct vendor_data vendor_nomadik = {
2473        .config_offset = PL080_CH_CONFIG,
2474        .channels = 8,
2475        .signals = 32,
2476        .dualmaster = true,
2477        .nomadik = true,
2478        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2479};
2480
2481static struct vendor_data vendor_pl080s = {
2482        .config_offset = PL080S_CH_CONFIG,
2483        .channels = 8,
2484        .signals = 32,
2485        .pl080s = true,
2486        .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2487};
2488
2489static struct vendor_data vendor_pl081 = {
2490        .config_offset = PL080_CH_CONFIG,
2491        .channels = 2,
2492        .signals = 16,
2493        .dualmaster = false,
2494        .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2495};
2496
2497static struct amba_id pl08x_ids[] = {
2498        /* Samsung PL080S variant */
2499        {
2500                .id     = 0x0a141080,
2501                .mask   = 0xffffffff,
2502                .data   = &vendor_pl080s,
2503        },
2504        /* PL080 */
2505        {
2506                .id     = 0x00041080,
2507                .mask   = 0x000fffff,
2508                .data   = &vendor_pl080,
2509        },
2510        /* PL081 */
2511        {
2512                .id     = 0x00041081,
2513                .mask   = 0x000fffff,
2514                .data   = &vendor_pl081,
2515        },
2516        /* Nomadik 8815 PL080 variant */
2517        {
2518                .id     = 0x00280080,
2519                .mask   = 0x00ffffff,
2520                .data   = &vendor_nomadik,
2521        },
2522        { 0, 0 },
2523};
2524
2525MODULE_DEVICE_TABLE(amba, pl08x_ids);
2526
2527static struct amba_driver pl08x_amba_driver = {
2528        .drv.name       = DRIVER_NAME,
2529        .id_table       = pl08x_ids,
2530        .probe          = pl08x_probe,
2531};
2532
2533static int __init pl08x_init(void)
2534{
2535        int retval;
2536        retval = amba_driver_register(&pl08x_amba_driver);
2537        if (retval)
2538                printk(KERN_WARNING DRIVER_NAME
2539                       "failed to register as an AMBA device (%d)\n",
2540                       retval);
2541        return retval;
2542}
2543subsys_initcall(pl08x_init);
2544