linux/drivers/edac/edac_mc.c
<<
>>
Prefs
   1/*
   2 * edac_mc kernel module
   3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
   4 * This file may be distributed under the terms of the
   5 * GNU General Public License.
   6 *
   7 * Written by Thayne Harbaugh
   8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
   9 *      http://www.anime.net/~goemon/linux-ecc/
  10 *
  11 * Modified by Dave Peterson and Doug Thompson
  12 *
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/proc_fs.h>
  17#include <linux/kernel.h>
  18#include <linux/types.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/sysctl.h>
  22#include <linux/highmem.h>
  23#include <linux/timer.h>
  24#include <linux/slab.h>
  25#include <linux/jiffies.h>
  26#include <linux/spinlock.h>
  27#include <linux/list.h>
  28#include <linux/ctype.h>
  29#include <linux/edac.h>
  30#include <linux/bitops.h>
  31#include <asm/uaccess.h>
  32#include <asm/page.h>
  33#include "edac_core.h"
  34#include "edac_module.h"
  35#include <ras/ras_event.h>
  36
  37#ifdef CONFIG_EDAC_ATOMIC_SCRUB
  38#include <asm/edac.h>
  39#else
  40#define edac_atomic_scrub(va, size) do { } while (0)
  41#endif
  42
  43/* lock to memory controller's control array */
  44static DEFINE_MUTEX(mem_ctls_mutex);
  45static LIST_HEAD(mc_devices);
  46
  47/*
  48 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
  49 *      apei/ghes and i7core_edac to be used at the same time.
  50 */
  51static void const *edac_mc_owner;
  52
  53static struct bus_type mc_bus[EDAC_MAX_MCS];
  54
  55unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
  56                                 unsigned len)
  57{
  58        struct mem_ctl_info *mci = dimm->mci;
  59        int i, n, count = 0;
  60        char *p = buf;
  61
  62        for (i = 0; i < mci->n_layers; i++) {
  63                n = snprintf(p, len, "%s %d ",
  64                              edac_layer_name[mci->layers[i].type],
  65                              dimm->location[i]);
  66                p += n;
  67                len -= n;
  68                count += n;
  69                if (!len)
  70                        break;
  71        }
  72
  73        return count;
  74}
  75
  76#ifdef CONFIG_EDAC_DEBUG
  77
  78static void edac_mc_dump_channel(struct rank_info *chan)
  79{
  80        edac_dbg(4, "  channel->chan_idx = %d\n", chan->chan_idx);
  81        edac_dbg(4, "    channel = %p\n", chan);
  82        edac_dbg(4, "    channel->csrow = %p\n", chan->csrow);
  83        edac_dbg(4, "    channel->dimm = %p\n", chan->dimm);
  84}
  85
  86static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
  87{
  88        char location[80];
  89
  90        edac_dimm_info_location(dimm, location, sizeof(location));
  91
  92        edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
  93                 dimm->mci->csbased ? "rank" : "dimm",
  94                 number, location, dimm->csrow, dimm->cschannel);
  95        edac_dbg(4, "  dimm = %p\n", dimm);
  96        edac_dbg(4, "  dimm->label = '%s'\n", dimm->label);
  97        edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
  98        edac_dbg(4, "  dimm->grain = %d\n", dimm->grain);
  99        edac_dbg(4, "  dimm->nr_pages = 0x%x\n", dimm->nr_pages);
 100}
 101
 102static void edac_mc_dump_csrow(struct csrow_info *csrow)
 103{
 104        edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
 105        edac_dbg(4, "  csrow = %p\n", csrow);
 106        edac_dbg(4, "  csrow->first_page = 0x%lx\n", csrow->first_page);
 107        edac_dbg(4, "  csrow->last_page = 0x%lx\n", csrow->last_page);
 108        edac_dbg(4, "  csrow->page_mask = 0x%lx\n", csrow->page_mask);
 109        edac_dbg(4, "  csrow->nr_channels = %d\n", csrow->nr_channels);
 110        edac_dbg(4, "  csrow->channels = %p\n", csrow->channels);
 111        edac_dbg(4, "  csrow->mci = %p\n", csrow->mci);
 112}
 113
 114static void edac_mc_dump_mci(struct mem_ctl_info *mci)
 115{
 116        edac_dbg(3, "\tmci = %p\n", mci);
 117        edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
 118        edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
 119        edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
 120        edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
 121        edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
 122                 mci->nr_csrows, mci->csrows);
 123        edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
 124                 mci->tot_dimms, mci->dimms);
 125        edac_dbg(3, "\tdev = %p\n", mci->pdev);
 126        edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
 127                 mci->mod_name, mci->ctl_name);
 128        edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
 129}
 130
 131#endif                          /* CONFIG_EDAC_DEBUG */
 132
 133const char * const edac_mem_types[] = {
 134        [MEM_EMPTY]     = "Empty csrow",
 135        [MEM_RESERVED]  = "Reserved csrow type",
 136        [MEM_UNKNOWN]   = "Unknown csrow type",
 137        [MEM_FPM]       = "Fast page mode RAM",
 138        [MEM_EDO]       = "Extended data out RAM",
 139        [MEM_BEDO]      = "Burst Extended data out RAM",
 140        [MEM_SDR]       = "Single data rate SDRAM",
 141        [MEM_RDR]       = "Registered single data rate SDRAM",
 142        [MEM_DDR]       = "Double data rate SDRAM",
 143        [MEM_RDDR]      = "Registered Double data rate SDRAM",
 144        [MEM_RMBS]      = "Rambus DRAM",
 145        [MEM_DDR2]      = "Unbuffered DDR2 RAM",
 146        [MEM_FB_DDR2]   = "Fully buffered DDR2",
 147        [MEM_RDDR2]     = "Registered DDR2 RAM",
 148        [MEM_XDR]       = "Rambus XDR",
 149        [MEM_DDR3]      = "Unbuffered DDR3 RAM",
 150        [MEM_RDDR3]     = "Registered DDR3 RAM",
 151        [MEM_LRDDR3]    = "Load-Reduced DDR3 RAM",
 152        [MEM_DDR4]      = "Unbuffered DDR4 RAM",
 153        [MEM_RDDR4]     = "Registered DDR4 RAM",
 154};
 155EXPORT_SYMBOL_GPL(edac_mem_types);
 156
 157/**
 158 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
 159 * @p:          pointer to a pointer with the memory offset to be used. At
 160 *              return, this will be incremented to point to the next offset
 161 * @size:       Size of the data structure to be reserved
 162 * @n_elems:    Number of elements that should be reserved
 163 *
 164 * If 'size' is a constant, the compiler will optimize this whole function
 165 * down to either a no-op or the addition of a constant to the value of '*p'.
 166 *
 167 * The 'p' pointer is absolutely needed to keep the proper advancing
 168 * further in memory to the proper offsets when allocating the struct along
 169 * with its embedded structs, as edac_device_alloc_ctl_info() does it
 170 * above, for example.
 171 *
 172 * At return, the pointer 'p' will be incremented to be used on a next call
 173 * to this function.
 174 */
 175void *edac_align_ptr(void **p, unsigned size, int n_elems)
 176{
 177        unsigned align, r;
 178        void *ptr = *p;
 179
 180        *p += size * n_elems;
 181
 182        /*
 183         * 'p' can possibly be an unaligned item X such that sizeof(X) is
 184         * 'size'.  Adjust 'p' so that its alignment is at least as
 185         * stringent as what the compiler would provide for X and return
 186         * the aligned result.
 187         * Here we assume that the alignment of a "long long" is the most
 188         * stringent alignment that the compiler will ever provide by default.
 189         * As far as I know, this is a reasonable assumption.
 190         */
 191        if (size > sizeof(long))
 192                align = sizeof(long long);
 193        else if (size > sizeof(int))
 194                align = sizeof(long);
 195        else if (size > sizeof(short))
 196                align = sizeof(int);
 197        else if (size > sizeof(char))
 198                align = sizeof(short);
 199        else
 200                return (char *)ptr;
 201
 202        r = (unsigned long)p % align;
 203
 204        if (r == 0)
 205                return (char *)ptr;
 206
 207        *p += align - r;
 208
 209        return (void *)(((unsigned long)ptr) + align - r);
 210}
 211
 212static void _edac_mc_free(struct mem_ctl_info *mci)
 213{
 214        int i, chn, row;
 215        struct csrow_info *csr;
 216        const unsigned int tot_dimms = mci->tot_dimms;
 217        const unsigned int tot_channels = mci->num_cschannel;
 218        const unsigned int tot_csrows = mci->nr_csrows;
 219
 220        if (mci->dimms) {
 221                for (i = 0; i < tot_dimms; i++)
 222                        kfree(mci->dimms[i]);
 223                kfree(mci->dimms);
 224        }
 225        if (mci->csrows) {
 226                for (row = 0; row < tot_csrows; row++) {
 227                        csr = mci->csrows[row];
 228                        if (csr) {
 229                                if (csr->channels) {
 230                                        for (chn = 0; chn < tot_channels; chn++)
 231                                                kfree(csr->channels[chn]);
 232                                        kfree(csr->channels);
 233                                }
 234                                kfree(csr);
 235                        }
 236                }
 237                kfree(mci->csrows);
 238        }
 239        kfree(mci);
 240}
 241
 242/**
 243 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
 244 * @mc_num:             Memory controller number
 245 * @n_layers:           Number of MC hierarchy layers
 246 * layers:              Describes each layer as seen by the Memory Controller
 247 * @size_pvt:           size of private storage needed
 248 *
 249 *
 250 * Everything is kmalloc'ed as one big chunk - more efficient.
 251 * Only can be used if all structures have the same lifetime - otherwise
 252 * you have to allocate and initialize your own structures.
 253 *
 254 * Use edac_mc_free() to free mc structures allocated by this function.
 255 *
 256 * NOTE: drivers handle multi-rank memories in different ways: in some
 257 * drivers, one multi-rank memory stick is mapped as one entry, while, in
 258 * others, a single multi-rank memory stick would be mapped into several
 259 * entries. Currently, this function will allocate multiple struct dimm_info
 260 * on such scenarios, as grouping the multiple ranks require drivers change.
 261 *
 262 * Returns:
 263 *      On failure: NULL
 264 *      On success: struct mem_ctl_info pointer
 265 */
 266struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
 267                                   unsigned n_layers,
 268                                   struct edac_mc_layer *layers,
 269                                   unsigned sz_pvt)
 270{
 271        struct mem_ctl_info *mci;
 272        struct edac_mc_layer *layer;
 273        struct csrow_info *csr;
 274        struct rank_info *chan;
 275        struct dimm_info *dimm;
 276        u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
 277        unsigned pos[EDAC_MAX_LAYERS];
 278        unsigned size, tot_dimms = 1, count = 1;
 279        unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
 280        void *pvt, *p, *ptr = NULL;
 281        int i, j, row, chn, n, len, off;
 282        bool per_rank = false;
 283
 284        BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
 285        /*
 286         * Calculate the total amount of dimms and csrows/cschannels while
 287         * in the old API emulation mode
 288         */
 289        for (i = 0; i < n_layers; i++) {
 290                tot_dimms *= layers[i].size;
 291                if (layers[i].is_virt_csrow)
 292                        tot_csrows *= layers[i].size;
 293                else
 294                        tot_channels *= layers[i].size;
 295
 296                if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
 297                        per_rank = true;
 298        }
 299
 300        /* Figure out the offsets of the various items from the start of an mc
 301         * structure.  We want the alignment of each item to be at least as
 302         * stringent as what the compiler would provide if we could simply
 303         * hardcode everything into a single struct.
 304         */
 305        mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
 306        layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
 307        for (i = 0; i < n_layers; i++) {
 308                count *= layers[i].size;
 309                edac_dbg(4, "errcount layer %d size %d\n", i, count);
 310                ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 311                ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
 312                tot_errcount += 2 * count;
 313        }
 314
 315        edac_dbg(4, "allocating %d error counters\n", tot_errcount);
 316        pvt = edac_align_ptr(&ptr, sz_pvt, 1);
 317        size = ((unsigned long)pvt) + sz_pvt;
 318
 319        edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
 320                 size,
 321                 tot_dimms,
 322                 per_rank ? "ranks" : "dimms",
 323                 tot_csrows * tot_channels);
 324
 325        mci = kzalloc(size, GFP_KERNEL);
 326        if (mci == NULL)
 327                return NULL;
 328
 329        /* Adjust pointers so they point within the memory we just allocated
 330         * rather than an imaginary chunk of memory located at address 0.
 331         */
 332        layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
 333        for (i = 0; i < n_layers; i++) {
 334                mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
 335                mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
 336        }
 337        pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
 338
 339        /* setup index and various internal pointers */
 340        mci->mc_idx = mc_num;
 341        mci->tot_dimms = tot_dimms;
 342        mci->pvt_info = pvt;
 343        mci->n_layers = n_layers;
 344        mci->layers = layer;
 345        memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
 346        mci->nr_csrows = tot_csrows;
 347        mci->num_cschannel = tot_channels;
 348        mci->csbased = per_rank;
 349
 350        /*
 351         * Alocate and fill the csrow/channels structs
 352         */
 353        mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
 354        if (!mci->csrows)
 355                goto error;
 356        for (row = 0; row < tot_csrows; row++) {
 357                csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
 358                if (!csr)
 359                        goto error;
 360                mci->csrows[row] = csr;
 361                csr->csrow_idx = row;
 362                csr->mci = mci;
 363                csr->nr_channels = tot_channels;
 364                csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
 365                                        GFP_KERNEL);
 366                if (!csr->channels)
 367                        goto error;
 368
 369                for (chn = 0; chn < tot_channels; chn++) {
 370                        chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
 371                        if (!chan)
 372                                goto error;
 373                        csr->channels[chn] = chan;
 374                        chan->chan_idx = chn;
 375                        chan->csrow = csr;
 376                }
 377        }
 378
 379        /*
 380         * Allocate and fill the dimm structs
 381         */
 382        mci->dimms  = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
 383        if (!mci->dimms)
 384                goto error;
 385
 386        memset(&pos, 0, sizeof(pos));
 387        row = 0;
 388        chn = 0;
 389        for (i = 0; i < tot_dimms; i++) {
 390                chan = mci->csrows[row]->channels[chn];
 391                off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
 392                if (off < 0 || off >= tot_dimms) {
 393                        edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
 394                        goto error;
 395                }
 396
 397                dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
 398                if (!dimm)
 399                        goto error;
 400                mci->dimms[off] = dimm;
 401                dimm->mci = mci;
 402
 403                /*
 404                 * Copy DIMM location and initialize it.
 405                 */
 406                len = sizeof(dimm->label);
 407                p = dimm->label;
 408                n = snprintf(p, len, "mc#%u", mc_num);
 409                p += n;
 410                len -= n;
 411                for (j = 0; j < n_layers; j++) {
 412                        n = snprintf(p, len, "%s#%u",
 413                                     edac_layer_name[layers[j].type],
 414                                     pos[j]);
 415                        p += n;
 416                        len -= n;
 417                        dimm->location[j] = pos[j];
 418
 419                        if (len <= 0)
 420                                break;
 421                }
 422
 423                /* Link it to the csrows old API data */
 424                chan->dimm = dimm;
 425                dimm->csrow = row;
 426                dimm->cschannel = chn;
 427
 428                /* Increment csrow location */
 429                if (layers[0].is_virt_csrow) {
 430                        chn++;
 431                        if (chn == tot_channels) {
 432                                chn = 0;
 433                                row++;
 434                        }
 435                } else {
 436                        row++;
 437                        if (row == tot_csrows) {
 438                                row = 0;
 439                                chn++;
 440                        }
 441                }
 442
 443                /* Increment dimm location */
 444                for (j = n_layers - 1; j >= 0; j--) {
 445                        pos[j]++;
 446                        if (pos[j] < layers[j].size)
 447                                break;
 448                        pos[j] = 0;
 449                }
 450        }
 451
 452        mci->op_state = OP_ALLOC;
 453
 454        return mci;
 455
 456error:
 457        _edac_mc_free(mci);
 458
 459        return NULL;
 460}
 461EXPORT_SYMBOL_GPL(edac_mc_alloc);
 462
 463/**
 464 * edac_mc_free
 465 *      'Free' a previously allocated 'mci' structure
 466 * @mci: pointer to a struct mem_ctl_info structure
 467 */
 468void edac_mc_free(struct mem_ctl_info *mci)
 469{
 470        edac_dbg(1, "\n");
 471
 472        /* If we're not yet registered with sysfs free only what was allocated
 473         * in edac_mc_alloc().
 474         */
 475        if (!device_is_registered(&mci->dev)) {
 476                _edac_mc_free(mci);
 477                return;
 478        }
 479
 480        /* the mci instance is freed here, when the sysfs object is dropped */
 481        edac_unregister_sysfs(mci);
 482}
 483EXPORT_SYMBOL_GPL(edac_mc_free);
 484
 485
 486/**
 487 * find_mci_by_dev
 488 *
 489 *      scan list of controllers looking for the one that manages
 490 *      the 'dev' device
 491 * @dev: pointer to a struct device related with the MCI
 492 */
 493struct mem_ctl_info *find_mci_by_dev(struct device *dev)
 494{
 495        struct mem_ctl_info *mci;
 496        struct list_head *item;
 497
 498        edac_dbg(3, "\n");
 499
 500        list_for_each(item, &mc_devices) {
 501                mci = list_entry(item, struct mem_ctl_info, link);
 502
 503                if (mci->pdev == dev)
 504                        return mci;
 505        }
 506
 507        return NULL;
 508}
 509EXPORT_SYMBOL_GPL(find_mci_by_dev);
 510
 511/*
 512 * handler for EDAC to check if NMI type handler has asserted interrupt
 513 */
 514static int edac_mc_assert_error_check_and_clear(void)
 515{
 516        int old_state;
 517
 518        if (edac_op_state == EDAC_OPSTATE_POLL)
 519                return 1;
 520
 521        old_state = edac_err_assert;
 522        edac_err_assert = 0;
 523
 524        return old_state;
 525}
 526
 527/*
 528 * edac_mc_workq_function
 529 *      performs the operation scheduled by a workq request
 530 */
 531static void edac_mc_workq_function(struct work_struct *work_req)
 532{
 533        struct delayed_work *d_work = to_delayed_work(work_req);
 534        struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
 535
 536        mutex_lock(&mem_ctls_mutex);
 537
 538        if (mci->op_state != OP_RUNNING_POLL) {
 539                mutex_unlock(&mem_ctls_mutex);
 540                return;
 541        }
 542
 543        if (edac_mc_assert_error_check_and_clear())
 544                mci->edac_check(mci);
 545
 546        mutex_unlock(&mem_ctls_mutex);
 547
 548        /* Queue ourselves again. */
 549        edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 550}
 551
 552/*
 553 * edac_mc_reset_delay_period(unsigned long value)
 554 *
 555 *      user space has updated our poll period value, need to
 556 *      reset our workq delays
 557 */
 558void edac_mc_reset_delay_period(unsigned long value)
 559{
 560        struct mem_ctl_info *mci;
 561        struct list_head *item;
 562
 563        mutex_lock(&mem_ctls_mutex);
 564
 565        list_for_each(item, &mc_devices) {
 566                mci = list_entry(item, struct mem_ctl_info, link);
 567
 568                if (mci->op_state == OP_RUNNING_POLL)
 569                        edac_mod_work(&mci->work, value);
 570        }
 571        mutex_unlock(&mem_ctls_mutex);
 572}
 573
 574
 575
 576/* Return 0 on success, 1 on failure.
 577 * Before calling this function, caller must
 578 * assign a unique value to mci->mc_idx.
 579 *
 580 *      locking model:
 581 *
 582 *              called with the mem_ctls_mutex lock held
 583 */
 584static int add_mc_to_global_list(struct mem_ctl_info *mci)
 585{
 586        struct list_head *item, *insert_before;
 587        struct mem_ctl_info *p;
 588
 589        insert_before = &mc_devices;
 590
 591        p = find_mci_by_dev(mci->pdev);
 592        if (unlikely(p != NULL))
 593                goto fail0;
 594
 595        list_for_each(item, &mc_devices) {
 596                p = list_entry(item, struct mem_ctl_info, link);
 597
 598                if (p->mc_idx >= mci->mc_idx) {
 599                        if (unlikely(p->mc_idx == mci->mc_idx))
 600                                goto fail1;
 601
 602                        insert_before = item;
 603                        break;
 604                }
 605        }
 606
 607        list_add_tail_rcu(&mci->link, insert_before);
 608        atomic_inc(&edac_handlers);
 609        return 0;
 610
 611fail0:
 612        edac_printk(KERN_WARNING, EDAC_MC,
 613                "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
 614                edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
 615        return 1;
 616
 617fail1:
 618        edac_printk(KERN_WARNING, EDAC_MC,
 619                "bug in low-level driver: attempt to assign\n"
 620                "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
 621        return 1;
 622}
 623
 624static int del_mc_from_global_list(struct mem_ctl_info *mci)
 625{
 626        int handlers = atomic_dec_return(&edac_handlers);
 627        list_del_rcu(&mci->link);
 628
 629        /* these are for safe removal of devices from global list while
 630         * NMI handlers may be traversing list
 631         */
 632        synchronize_rcu();
 633        INIT_LIST_HEAD(&mci->link);
 634
 635        return handlers;
 636}
 637
 638/**
 639 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
 640 *
 641 * If found, return a pointer to the structure.
 642 * Else return NULL.
 643 *
 644 * Caller must hold mem_ctls_mutex.
 645 */
 646struct mem_ctl_info *edac_mc_find(int idx)
 647{
 648        struct list_head *item;
 649        struct mem_ctl_info *mci;
 650
 651        list_for_each(item, &mc_devices) {
 652                mci = list_entry(item, struct mem_ctl_info, link);
 653
 654                if (mci->mc_idx >= idx) {
 655                        if (mci->mc_idx == idx)
 656                                return mci;
 657
 658                        break;
 659                }
 660        }
 661
 662        return NULL;
 663}
 664EXPORT_SYMBOL(edac_mc_find);
 665
 666/**
 667 * edac_mc_add_mc_with_groups: Insert the 'mci' structure into the mci
 668 *      global list and create sysfs entries associated with mci structure
 669 * @mci: pointer to the mci structure to be added to the list
 670 * @groups: optional attribute groups for the driver-specific sysfs entries
 671 *
 672 * Return:
 673 *      0       Success
 674 *      !0      Failure
 675 */
 676
 677/* FIXME - should a warning be printed if no error detection? correction? */
 678int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
 679                               const struct attribute_group **groups)
 680{
 681        int ret = -EINVAL;
 682        edac_dbg(0, "\n");
 683
 684        if (mci->mc_idx >= EDAC_MAX_MCS) {
 685                pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
 686                return -ENODEV;
 687        }
 688
 689#ifdef CONFIG_EDAC_DEBUG
 690        if (edac_debug_level >= 3)
 691                edac_mc_dump_mci(mci);
 692
 693        if (edac_debug_level >= 4) {
 694                int i;
 695
 696                for (i = 0; i < mci->nr_csrows; i++) {
 697                        struct csrow_info *csrow = mci->csrows[i];
 698                        u32 nr_pages = 0;
 699                        int j;
 700
 701                        for (j = 0; j < csrow->nr_channels; j++)
 702                                nr_pages += csrow->channels[j]->dimm->nr_pages;
 703                        if (!nr_pages)
 704                                continue;
 705                        edac_mc_dump_csrow(csrow);
 706                        for (j = 0; j < csrow->nr_channels; j++)
 707                                if (csrow->channels[j]->dimm->nr_pages)
 708                                        edac_mc_dump_channel(csrow->channels[j]);
 709                }
 710                for (i = 0; i < mci->tot_dimms; i++)
 711                        if (mci->dimms[i]->nr_pages)
 712                                edac_mc_dump_dimm(mci->dimms[i], i);
 713        }
 714#endif
 715        mutex_lock(&mem_ctls_mutex);
 716
 717        if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
 718                ret = -EPERM;
 719                goto fail0;
 720        }
 721
 722        if (add_mc_to_global_list(mci))
 723                goto fail0;
 724
 725        /* set load time so that error rate can be tracked */
 726        mci->start_time = jiffies;
 727
 728        mci->bus = &mc_bus[mci->mc_idx];
 729
 730        if (edac_create_sysfs_mci_device(mci, groups)) {
 731                edac_mc_printk(mci, KERN_WARNING,
 732                        "failed to create sysfs device\n");
 733                goto fail1;
 734        }
 735
 736        if (mci->edac_check) {
 737                mci->op_state = OP_RUNNING_POLL;
 738
 739                INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
 740                edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
 741
 742        } else {
 743                mci->op_state = OP_RUNNING_INTERRUPT;
 744        }
 745
 746        /* Report action taken */
 747        edac_mc_printk(mci, KERN_INFO,
 748                "Giving out device to module %s controller %s: DEV %s (%s)\n",
 749                mci->mod_name, mci->ctl_name, mci->dev_name,
 750                edac_op_state_to_string(mci->op_state));
 751
 752        edac_mc_owner = mci->mod_name;
 753
 754        mutex_unlock(&mem_ctls_mutex);
 755        return 0;
 756
 757fail1:
 758        del_mc_from_global_list(mci);
 759
 760fail0:
 761        mutex_unlock(&mem_ctls_mutex);
 762        return ret;
 763}
 764EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
 765
 766/**
 767 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
 768 *                 remove mci structure from global list
 769 * @pdev: Pointer to 'struct device' representing mci structure to remove.
 770 *
 771 * Return pointer to removed mci structure, or NULL if device not found.
 772 */
 773struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
 774{
 775        struct mem_ctl_info *mci;
 776
 777        edac_dbg(0, "\n");
 778
 779        mutex_lock(&mem_ctls_mutex);
 780
 781        /* find the requested mci struct in the global list */
 782        mci = find_mci_by_dev(dev);
 783        if (mci == NULL) {
 784                mutex_unlock(&mem_ctls_mutex);
 785                return NULL;
 786        }
 787
 788        /* mark MCI offline: */
 789        mci->op_state = OP_OFFLINE;
 790
 791        if (!del_mc_from_global_list(mci))
 792                edac_mc_owner = NULL;
 793
 794        mutex_unlock(&mem_ctls_mutex);
 795
 796        if (mci->edac_check)
 797                edac_stop_work(&mci->work);
 798
 799        /* remove from sysfs */
 800        edac_remove_sysfs_mci_device(mci);
 801
 802        edac_printk(KERN_INFO, EDAC_MC,
 803                "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
 804                mci->mod_name, mci->ctl_name, edac_dev_name(mci));
 805
 806        return mci;
 807}
 808EXPORT_SYMBOL_GPL(edac_mc_del_mc);
 809
 810static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
 811                                u32 size)
 812{
 813        struct page *pg;
 814        void *virt_addr;
 815        unsigned long flags = 0;
 816
 817        edac_dbg(3, "\n");
 818
 819        /* ECC error page was not in our memory. Ignore it. */
 820        if (!pfn_valid(page))
 821                return;
 822
 823        /* Find the actual page structure then map it and fix */
 824        pg = pfn_to_page(page);
 825
 826        if (PageHighMem(pg))
 827                local_irq_save(flags);
 828
 829        virt_addr = kmap_atomic(pg);
 830
 831        /* Perform architecture specific atomic scrub operation */
 832        edac_atomic_scrub(virt_addr + offset, size);
 833
 834        /* Unmap and complete */
 835        kunmap_atomic(virt_addr);
 836
 837        if (PageHighMem(pg))
 838                local_irq_restore(flags);
 839}
 840
 841/* FIXME - should return -1 */
 842int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
 843{
 844        struct csrow_info **csrows = mci->csrows;
 845        int row, i, j, n;
 846
 847        edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
 848        row = -1;
 849
 850        for (i = 0; i < mci->nr_csrows; i++) {
 851                struct csrow_info *csrow = csrows[i];
 852                n = 0;
 853                for (j = 0; j < csrow->nr_channels; j++) {
 854                        struct dimm_info *dimm = csrow->channels[j]->dimm;
 855                        n += dimm->nr_pages;
 856                }
 857                if (n == 0)
 858                        continue;
 859
 860                edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
 861                         mci->mc_idx,
 862                         csrow->first_page, page, csrow->last_page,
 863                         csrow->page_mask);
 864
 865                if ((page >= csrow->first_page) &&
 866                    (page <= csrow->last_page) &&
 867                    ((page & csrow->page_mask) ==
 868                     (csrow->first_page & csrow->page_mask))) {
 869                        row = i;
 870                        break;
 871                }
 872        }
 873
 874        if (row == -1)
 875                edac_mc_printk(mci, KERN_ERR,
 876                        "could not look up page error address %lx\n",
 877                        (unsigned long)page);
 878
 879        return row;
 880}
 881EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
 882
 883const char *edac_layer_name[] = {
 884        [EDAC_MC_LAYER_BRANCH] = "branch",
 885        [EDAC_MC_LAYER_CHANNEL] = "channel",
 886        [EDAC_MC_LAYER_SLOT] = "slot",
 887        [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
 888        [EDAC_MC_LAYER_ALL_MEM] = "memory",
 889};
 890EXPORT_SYMBOL_GPL(edac_layer_name);
 891
 892static void edac_inc_ce_error(struct mem_ctl_info *mci,
 893                              bool enable_per_layer_report,
 894                              const int pos[EDAC_MAX_LAYERS],
 895                              const u16 count)
 896{
 897        int i, index = 0;
 898
 899        mci->ce_mc += count;
 900
 901        if (!enable_per_layer_report) {
 902                mci->ce_noinfo_count += count;
 903                return;
 904        }
 905
 906        for (i = 0; i < mci->n_layers; i++) {
 907                if (pos[i] < 0)
 908                        break;
 909                index += pos[i];
 910                mci->ce_per_layer[i][index] += count;
 911
 912                if (i < mci->n_layers - 1)
 913                        index *= mci->layers[i + 1].size;
 914        }
 915}
 916
 917static void edac_inc_ue_error(struct mem_ctl_info *mci,
 918                                    bool enable_per_layer_report,
 919                                    const int pos[EDAC_MAX_LAYERS],
 920                                    const u16 count)
 921{
 922        int i, index = 0;
 923
 924        mci->ue_mc += count;
 925
 926        if (!enable_per_layer_report) {
 927                mci->ue_noinfo_count += count;
 928                return;
 929        }
 930
 931        for (i = 0; i < mci->n_layers; i++) {
 932                if (pos[i] < 0)
 933                        break;
 934                index += pos[i];
 935                mci->ue_per_layer[i][index] += count;
 936
 937                if (i < mci->n_layers - 1)
 938                        index *= mci->layers[i + 1].size;
 939        }
 940}
 941
 942static void edac_ce_error(struct mem_ctl_info *mci,
 943                          const u16 error_count,
 944                          const int pos[EDAC_MAX_LAYERS],
 945                          const char *msg,
 946                          const char *location,
 947                          const char *label,
 948                          const char *detail,
 949                          const char *other_detail,
 950                          const bool enable_per_layer_report,
 951                          const unsigned long page_frame_number,
 952                          const unsigned long offset_in_page,
 953                          long grain)
 954{
 955        unsigned long remapped_page;
 956        char *msg_aux = "";
 957
 958        if (*msg)
 959                msg_aux = " ";
 960
 961        if (edac_mc_get_log_ce()) {
 962                if (other_detail && *other_detail)
 963                        edac_mc_printk(mci, KERN_WARNING,
 964                                       "%d CE %s%son %s (%s %s - %s)\n",
 965                                       error_count, msg, msg_aux, label,
 966                                       location, detail, other_detail);
 967                else
 968                        edac_mc_printk(mci, KERN_WARNING,
 969                                       "%d CE %s%son %s (%s %s)\n",
 970                                       error_count, msg, msg_aux, label,
 971                                       location, detail);
 972        }
 973        edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
 974
 975        if (mci->scrub_mode == SCRUB_SW_SRC) {
 976                /*
 977                        * Some memory controllers (called MCs below) can remap
 978                        * memory so that it is still available at a different
 979                        * address when PCI devices map into memory.
 980                        * MC's that can't do this, lose the memory where PCI
 981                        * devices are mapped. This mapping is MC-dependent
 982                        * and so we call back into the MC driver for it to
 983                        * map the MC page to a physical (CPU) page which can
 984                        * then be mapped to a virtual page - which can then
 985                        * be scrubbed.
 986                        */
 987                remapped_page = mci->ctl_page_to_phys ?
 988                        mci->ctl_page_to_phys(mci, page_frame_number) :
 989                        page_frame_number;
 990
 991                edac_mc_scrub_block(remapped_page,
 992                                        offset_in_page, grain);
 993        }
 994}
 995
 996static void edac_ue_error(struct mem_ctl_info *mci,
 997                          const u16 error_count,
 998                          const int pos[EDAC_MAX_LAYERS],
 999                          const char *msg,
1000                          const char *location,
1001                          const char *label,
1002                          const char *detail,
1003                          const char *other_detail,
1004                          const bool enable_per_layer_report)
1005{
1006        char *msg_aux = "";
1007
1008        if (*msg)
1009                msg_aux = " ";
1010
1011        if (edac_mc_get_log_ue()) {
1012                if (other_detail && *other_detail)
1013                        edac_mc_printk(mci, KERN_WARNING,
1014                                       "%d UE %s%son %s (%s %s - %s)\n",
1015                                       error_count, msg, msg_aux, label,
1016                                       location, detail, other_detail);
1017                else
1018                        edac_mc_printk(mci, KERN_WARNING,
1019                                       "%d UE %s%son %s (%s %s)\n",
1020                                       error_count, msg, msg_aux, label,
1021                                       location, detail);
1022        }
1023
1024        if (edac_mc_get_panic_on_ue()) {
1025                if (other_detail && *other_detail)
1026                        panic("UE %s%son %s (%s%s - %s)\n",
1027                              msg, msg_aux, label, location, detail, other_detail);
1028                else
1029                        panic("UE %s%son %s (%s%s)\n",
1030                              msg, msg_aux, label, location, detail);
1031        }
1032
1033        edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1034}
1035
1036/**
1037 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1038 *                            anything to discover the error location
1039 *
1040 * @type:               severity of the error (CE/UE/Fatal)
1041 * @mci:                a struct mem_ctl_info pointer
1042 * @e:                  error description
1043 *
1044 * This raw function is used internally by edac_mc_handle_error(). It should
1045 * only be called directly when the hardware error come directly from BIOS,
1046 * like in the case of APEI GHES driver.
1047 */
1048void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1049                              struct mem_ctl_info *mci,
1050                              struct edac_raw_error_desc *e)
1051{
1052        char detail[80];
1053        int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1054
1055        /* Memory type dependent details about the error */
1056        if (type == HW_EVENT_ERR_CORRECTED) {
1057                snprintf(detail, sizeof(detail),
1058                        "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1059                        e->page_frame_number, e->offset_in_page,
1060                        e->grain, e->syndrome);
1061                edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1062                              detail, e->other_detail, e->enable_per_layer_report,
1063                              e->page_frame_number, e->offset_in_page, e->grain);
1064        } else {
1065                snprintf(detail, sizeof(detail),
1066                        "page:0x%lx offset:0x%lx grain:%ld",
1067                        e->page_frame_number, e->offset_in_page, e->grain);
1068
1069                edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1070                              detail, e->other_detail, e->enable_per_layer_report);
1071        }
1072
1073
1074}
1075EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1076
1077/**
1078 * edac_mc_handle_error - reports a memory event to userspace
1079 *
1080 * @type:               severity of the error (CE/UE/Fatal)
1081 * @mci:                a struct mem_ctl_info pointer
1082 * @error_count:        Number of errors of the same type
1083 * @page_frame_number:  mem page where the error occurred
1084 * @offset_in_page:     offset of the error inside the page
1085 * @syndrome:           ECC syndrome
1086 * @top_layer:          Memory layer[0] position
1087 * @mid_layer:          Memory layer[1] position
1088 * @low_layer:          Memory layer[2] position
1089 * @msg:                Message meaningful to the end users that
1090 *                      explains the event
1091 * @other_detail:       Technical details about the event that
1092 *                      may help hardware manufacturers and
1093 *                      EDAC developers to analyse the event
1094 */
1095void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1096                          struct mem_ctl_info *mci,
1097                          const u16 error_count,
1098                          const unsigned long page_frame_number,
1099                          const unsigned long offset_in_page,
1100                          const unsigned long syndrome,
1101                          const int top_layer,
1102                          const int mid_layer,
1103                          const int low_layer,
1104                          const char *msg,
1105                          const char *other_detail)
1106{
1107        char *p;
1108        int row = -1, chan = -1;
1109        int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1110        int i, n_labels = 0;
1111        u8 grain_bits;
1112        struct edac_raw_error_desc *e = &mci->error_desc;
1113
1114        edac_dbg(3, "MC%d\n", mci->mc_idx);
1115
1116        /* Fills the error report buffer */
1117        memset(e, 0, sizeof (*e));
1118        e->error_count = error_count;
1119        e->top_layer = top_layer;
1120        e->mid_layer = mid_layer;
1121        e->low_layer = low_layer;
1122        e->page_frame_number = page_frame_number;
1123        e->offset_in_page = offset_in_page;
1124        e->syndrome = syndrome;
1125        e->msg = msg;
1126        e->other_detail = other_detail;
1127
1128        /*
1129         * Check if the event report is consistent and if the memory
1130         * location is known. If it is known, enable_per_layer_report will be
1131         * true, the DIMM(s) label info will be filled and the per-layer
1132         * error counters will be incremented.
1133         */
1134        for (i = 0; i < mci->n_layers; i++) {
1135                if (pos[i] >= (int)mci->layers[i].size) {
1136
1137                        edac_mc_printk(mci, KERN_ERR,
1138                                       "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1139                                       edac_layer_name[mci->layers[i].type],
1140                                       pos[i], mci->layers[i].size);
1141                        /*
1142                         * Instead of just returning it, let's use what's
1143                         * known about the error. The increment routines and
1144                         * the DIMM filter logic will do the right thing by
1145                         * pointing the likely damaged DIMMs.
1146                         */
1147                        pos[i] = -1;
1148                }
1149                if (pos[i] >= 0)
1150                        e->enable_per_layer_report = true;
1151        }
1152
1153        /*
1154         * Get the dimm label/grain that applies to the match criteria.
1155         * As the error algorithm may not be able to point to just one memory
1156         * stick, the logic here will get all possible labels that could
1157         * pottentially be affected by the error.
1158         * On FB-DIMM memory controllers, for uncorrected errors, it is common
1159         * to have only the MC channel and the MC dimm (also called "branch")
1160         * but the channel is not known, as the memory is arranged in pairs,
1161         * where each memory belongs to a separate channel within the same
1162         * branch.
1163         */
1164        p = e->label;
1165        *p = '\0';
1166
1167        for (i = 0; i < mci->tot_dimms; i++) {
1168                struct dimm_info *dimm = mci->dimms[i];
1169
1170                if (top_layer >= 0 && top_layer != dimm->location[0])
1171                        continue;
1172                if (mid_layer >= 0 && mid_layer != dimm->location[1])
1173                        continue;
1174                if (low_layer >= 0 && low_layer != dimm->location[2])
1175                        continue;
1176
1177                /* get the max grain, over the error match range */
1178                if (dimm->grain > e->grain)
1179                        e->grain = dimm->grain;
1180
1181                /*
1182                 * If the error is memory-controller wide, there's no need to
1183                 * seek for the affected DIMMs because the whole
1184                 * channel/memory controller/...  may be affected.
1185                 * Also, don't show errors for empty DIMM slots.
1186                 */
1187                if (e->enable_per_layer_report && dimm->nr_pages) {
1188                        if (n_labels >= EDAC_MAX_LABELS) {
1189                                e->enable_per_layer_report = false;
1190                                break;
1191                        }
1192                        n_labels++;
1193                        if (p != e->label) {
1194                                strcpy(p, OTHER_LABEL);
1195                                p += strlen(OTHER_LABEL);
1196                        }
1197                        strcpy(p, dimm->label);
1198                        p += strlen(p);
1199                        *p = '\0';
1200
1201                        /*
1202                         * get csrow/channel of the DIMM, in order to allow
1203                         * incrementing the compat API counters
1204                         */
1205                        edac_dbg(4, "%s csrows map: (%d,%d)\n",
1206                                 mci->csbased ? "rank" : "dimm",
1207                                 dimm->csrow, dimm->cschannel);
1208                        if (row == -1)
1209                                row = dimm->csrow;
1210                        else if (row >= 0 && row != dimm->csrow)
1211                                row = -2;
1212
1213                        if (chan == -1)
1214                                chan = dimm->cschannel;
1215                        else if (chan >= 0 && chan != dimm->cschannel)
1216                                chan = -2;
1217                }
1218        }
1219
1220        if (!e->enable_per_layer_report) {
1221                strcpy(e->label, "any memory");
1222        } else {
1223                edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1224                if (p == e->label)
1225                        strcpy(e->label, "unknown memory");
1226                if (type == HW_EVENT_ERR_CORRECTED) {
1227                        if (row >= 0) {
1228                                mci->csrows[row]->ce_count += error_count;
1229                                if (chan >= 0)
1230                                        mci->csrows[row]->channels[chan]->ce_count += error_count;
1231                        }
1232                } else
1233                        if (row >= 0)
1234                                mci->csrows[row]->ue_count += error_count;
1235        }
1236
1237        /* Fill the RAM location data */
1238        p = e->location;
1239
1240        for (i = 0; i < mci->n_layers; i++) {
1241                if (pos[i] < 0)
1242                        continue;
1243
1244                p += sprintf(p, "%s:%d ",
1245                             edac_layer_name[mci->layers[i].type],
1246                             pos[i]);
1247        }
1248        if (p > e->location)
1249                *(p - 1) = '\0';
1250
1251        /* Report the error via the trace interface */
1252        grain_bits = fls_long(e->grain) + 1;
1253        trace_mc_event(type, e->msg, e->label, e->error_count,
1254                       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1255                       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
1256                       grain_bits, e->syndrome, e->other_detail);
1257
1258        edac_raw_mc_handle_error(type, mci, e);
1259}
1260EXPORT_SYMBOL_GPL(edac_mc_handle_error);
1261