linux/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomctrl.c
<<
>>
Prefs
   1/*
   2 * Copyright 2015 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23#include <linux/module.h>
  24#include <linux/slab.h>
  25#include <linux/fb.h>
  26
  27#include "ppatomctrl.h"
  28#include "atombios.h"
  29#include "cgs_common.h"
  30#include "pp_debug.h"
  31#include "ppevvmath.h"
  32
  33#define MEM_ID_MASK           0xff000000
  34#define MEM_ID_SHIFT          24
  35#define CLOCK_RANGE_MASK      0x00ffffff
  36#define CLOCK_RANGE_SHIFT     0
  37#define LOW_NIBBLE_MASK       0xf
  38#define DATA_EQU_PREV         0
  39#define DATA_FROM_TABLE       4
  40
  41union voltage_object_info {
  42        struct _ATOM_VOLTAGE_OBJECT_INFO v1;
  43        struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
  44        struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
  45};
  46
  47static int atomctrl_retrieve_ac_timing(
  48                uint8_t index,
  49                ATOM_INIT_REG_BLOCK *reg_block,
  50                pp_atomctrl_mc_reg_table *table)
  51{
  52        uint32_t i, j;
  53        uint8_t tmem_id;
  54        ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
  55                ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
  56
  57        uint8_t num_ranges = 0;
  58
  59        while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
  60                        num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
  61                tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
  62
  63                if (index == tmem_id) {
  64                        table->mc_reg_table_entry[num_ranges].mclk_max =
  65                                (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
  66                                                CLOCK_RANGE_SHIFT);
  67
  68                        for (i = 0, j = 1; i < table->last; i++) {
  69                                if ((table->mc_reg_address[i].uc_pre_reg_data &
  70                                                        LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
  71                                        table->mc_reg_table_entry[num_ranges].mc_data[i] =
  72                                                (uint32_t)*((uint32_t *)reg_data + j);
  73                                        j++;
  74                                } else if ((table->mc_reg_address[i].uc_pre_reg_data &
  75                                                        LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
  76                                        table->mc_reg_table_entry[num_ranges].mc_data[i] =
  77                                                table->mc_reg_table_entry[num_ranges].mc_data[i-1];
  78                                }
  79                        }
  80                        num_ranges++;
  81                }
  82
  83                reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
  84                        ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
  85        }
  86
  87        PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
  88                        "Invalid VramInfo table.", return -1);
  89        table->num_entries = num_ranges;
  90
  91        return 0;
  92}
  93
  94/**
  95 * Get memory clock AC timing registers index from VBIOS table
  96 * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
  97 * @param    reg_block the address ATOM_INIT_REG_BLOCK
  98 * @param    table the address of MCRegTable
  99 * @return   0
 100 */
 101static int atomctrl_set_mc_reg_address_table(
 102                ATOM_INIT_REG_BLOCK *reg_block,
 103                pp_atomctrl_mc_reg_table *table)
 104{
 105        uint8_t i = 0;
 106        uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
 107                        / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
 108        ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
 109
 110        num_entries--;        /* subtract 1 data end mark entry */
 111
 112        PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
 113                        "Invalid VramInfo table.", return -1);
 114
 115        /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
 116        while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
 117                        (i < num_entries)) {
 118                table->mc_reg_address[i].s1 =
 119                        (uint16_t)(le16_to_cpu(format->usRegIndex));
 120                table->mc_reg_address[i].uc_pre_reg_data =
 121                        format->ucPreRegDataLength;
 122
 123                i++;
 124                format = (ATOM_INIT_REG_INDEX_FORMAT *)
 125                        ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
 126        }
 127
 128        table->last = i;
 129        return 0;
 130}
 131
 132
 133int atomctrl_initialize_mc_reg_table(
 134                struct pp_hwmgr *hwmgr,
 135                uint8_t module_index,
 136                pp_atomctrl_mc_reg_table *table)
 137{
 138        ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
 139        ATOM_INIT_REG_BLOCK *reg_block;
 140        int result = 0;
 141        u8 frev, crev;
 142        u16 size;
 143
 144        vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
 145                cgs_atom_get_data_table(hwmgr->device,
 146                                GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
 147
 148        if (module_index >= vram_info->ucNumOfVRAMModule) {
 149                printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
 150                result = -1;
 151        } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
 152                printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
 153                result = -1;
 154        }
 155
 156        if (0 == result) {
 157                reg_block = (ATOM_INIT_REG_BLOCK *)
 158                        ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
 159                result = atomctrl_set_mc_reg_address_table(reg_block, table);
 160        }
 161
 162        if (0 == result) {
 163                result = atomctrl_retrieve_ac_timing(module_index,
 164                                        reg_block, table);
 165        }
 166
 167        return result;
 168}
 169
 170/**
 171 * Set DRAM timings based on engine clock and memory clock.
 172 */
 173int atomctrl_set_engine_dram_timings_rv770(
 174                struct pp_hwmgr *hwmgr,
 175                uint32_t engine_clock,
 176                uint32_t memory_clock)
 177{
 178        SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
 179
 180        /* They are both in 10KHz Units. */
 181        engine_clock_parameters.ulTargetEngineClock =
 182                (uint32_t) engine_clock & SET_CLOCK_FREQ_MASK;
 183        engine_clock_parameters.ulTargetEngineClock |=
 184                (COMPUTE_ENGINE_PLL_PARAM << 24);
 185
 186        /* in 10 khz units.*/
 187        engine_clock_parameters.sReserved.ulClock =
 188                (uint32_t) memory_clock & SET_CLOCK_FREQ_MASK;
 189        return cgs_atom_exec_cmd_table(hwmgr->device,
 190                        GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
 191                        &engine_clock_parameters);
 192}
 193
 194/**
 195 * Private Function to get the PowerPlay Table Address.
 196 * WARNING: The tabled returned by this function is in
 197 * dynamically allocated memory.
 198 * The caller has to release if by calling kfree.
 199 */
 200static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
 201{
 202        int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
 203        u8 frev, crev;
 204        u16 size;
 205        union voltage_object_info *voltage_info;
 206
 207        voltage_info = (union voltage_object_info *)
 208                cgs_atom_get_data_table(device, index,
 209                        &size, &frev, &crev);
 210
 211        if (voltage_info != NULL)
 212                return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
 213        else
 214                return NULL;
 215}
 216
 217static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
 218                const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
 219                uint8_t voltage_type, uint8_t voltage_mode)
 220{
 221        unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
 222        unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
 223        uint8_t *start = (uint8_t *)voltage_object_info_table;
 224
 225        while (offset < size) {
 226                const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
 227                        (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
 228
 229                if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
 230                        voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
 231                        return voltage_object;
 232
 233                offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
 234        }
 235
 236        return NULL;
 237}
 238
 239/** atomctrl_get_memory_pll_dividers_si().
 240 *
 241 * @param hwmgr                 input parameter: pointer to HwMgr
 242 * @param clock_value             input parameter: memory clock
 243 * @param dividers                 output parameter: memory PLL dividers
 244 * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
 245 */
 246int atomctrl_get_memory_pll_dividers_si(
 247                struct pp_hwmgr *hwmgr,
 248                uint32_t clock_value,
 249                pp_atomctrl_memory_clock_param *mpll_param,
 250                bool strobe_mode)
 251{
 252        COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
 253        int result;
 254
 255        mpll_parameters.ulClock = (uint32_t) clock_value;
 256        mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
 257
 258        result = cgs_atom_exec_cmd_table
 259                (hwmgr->device,
 260                 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
 261                 &mpll_parameters);
 262
 263        if (0 == result) {
 264                mpll_param->mpll_fb_divider.clk_frac =
 265                        mpll_parameters.ulFbDiv.usFbDivFrac;
 266                mpll_param->mpll_fb_divider.cl_kf =
 267                        mpll_parameters.ulFbDiv.usFbDiv;
 268                mpll_param->mpll_post_divider =
 269                        (uint32_t)mpll_parameters.ucPostDiv;
 270                mpll_param->vco_mode =
 271                        (uint32_t)(mpll_parameters.ucPllCntlFlag &
 272                                        MPLL_CNTL_FLAG_VCO_MODE_MASK);
 273                mpll_param->yclk_sel =
 274                        (uint32_t)((mpll_parameters.ucPllCntlFlag &
 275                                                MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
 276                mpll_param->qdr =
 277                        (uint32_t)((mpll_parameters.ucPllCntlFlag &
 278                                                MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
 279                mpll_param->half_rate =
 280                        (uint32_t)((mpll_parameters.ucPllCntlFlag &
 281                                                MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
 282                mpll_param->dll_speed =
 283                        (uint32_t)(mpll_parameters.ucDllSpeed);
 284                mpll_param->bw_ctrl =
 285                        (uint32_t)(mpll_parameters.ucBWCntl);
 286        }
 287
 288        return result;
 289}
 290
 291/** atomctrl_get_memory_pll_dividers_vi().
 292 *
 293 * @param hwmgr                 input parameter: pointer to HwMgr
 294 * @param clock_value             input parameter: memory clock
 295 * @param dividers               output parameter: memory PLL dividers
 296 */
 297int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
 298                uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
 299{
 300        COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
 301        int result;
 302
 303        mpll_parameters.ulClock.ulClock = (uint32_t)clock_value;
 304
 305        result = cgs_atom_exec_cmd_table(hwmgr->device,
 306                        GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
 307                        &mpll_parameters);
 308
 309        if (!result)
 310                mpll_param->mpll_post_divider =
 311                                (uint32_t)mpll_parameters.ulClock.ucPostDiv;
 312
 313        return result;
 314}
 315
 316int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
 317                                          uint32_t clock_value,
 318                                          pp_atomctrl_clock_dividers_kong *dividers)
 319{
 320        COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
 321        int result;
 322
 323        pll_parameters.ulClock = clock_value;
 324
 325        result = cgs_atom_exec_cmd_table
 326                (hwmgr->device,
 327                 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 328                 &pll_parameters);
 329
 330        if (0 == result) {
 331                dividers->pll_post_divider = pll_parameters.ucPostDiv;
 332                dividers->real_clock = pll_parameters.ulClock;
 333        }
 334
 335        return result;
 336}
 337
 338int atomctrl_get_engine_pll_dividers_vi(
 339                struct pp_hwmgr *hwmgr,
 340                uint32_t clock_value,
 341                pp_atomctrl_clock_dividers_vi *dividers)
 342{
 343        COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
 344        int result;
 345
 346        pll_patameters.ulClock.ulClock = clock_value;
 347        pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
 348
 349        result = cgs_atom_exec_cmd_table
 350                (hwmgr->device,
 351                 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 352                 &pll_patameters);
 353
 354        if (0 == result) {
 355                dividers->pll_post_divider =
 356                        pll_patameters.ulClock.ucPostDiv;
 357                dividers->real_clock =
 358                        pll_patameters.ulClock.ulClock;
 359
 360                dividers->ul_fb_div.ul_fb_div_frac =
 361                        pll_patameters.ulFbDiv.usFbDivFrac;
 362                dividers->ul_fb_div.ul_fb_div =
 363                        pll_patameters.ulFbDiv.usFbDiv;
 364
 365                dividers->uc_pll_ref_div =
 366                        pll_patameters.ucPllRefDiv;
 367                dividers->uc_pll_post_div =
 368                        pll_patameters.ucPllPostDiv;
 369                dividers->uc_pll_cntl_flag =
 370                        pll_patameters.ucPllCntlFlag;
 371        }
 372
 373        return result;
 374}
 375
 376int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
 377                uint32_t clock_value,
 378                pp_atomctrl_clock_dividers_ai *dividers)
 379{
 380        COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
 381        int result;
 382
 383        pll_patameters.ulClock.ulClock = clock_value;
 384        pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
 385
 386        result = cgs_atom_exec_cmd_table
 387                (hwmgr->device,
 388                 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 389                 &pll_patameters);
 390
 391        if (0 == result) {
 392                dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
 393                dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
 394                dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
 395                dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
 396                dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
 397                dividers->ucSscEnable         = pll_patameters.ucSscEnable;
 398                dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
 399                dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
 400                dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
 401                dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
 402                dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
 403        }
 404        return result;
 405}
 406
 407int atomctrl_get_dfs_pll_dividers_vi(
 408                struct pp_hwmgr *hwmgr,
 409                uint32_t clock_value,
 410                pp_atomctrl_clock_dividers_vi *dividers)
 411{
 412        COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
 413        int result;
 414
 415        pll_patameters.ulClock.ulClock = clock_value;
 416        pll_patameters.ulClock.ucPostDiv =
 417                COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
 418
 419        result = cgs_atom_exec_cmd_table
 420                (hwmgr->device,
 421                 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
 422                 &pll_patameters);
 423
 424        if (0 == result) {
 425                dividers->pll_post_divider =
 426                        pll_patameters.ulClock.ucPostDiv;
 427                dividers->real_clock =
 428                        pll_patameters.ulClock.ulClock;
 429
 430                dividers->ul_fb_div.ul_fb_div_frac =
 431                        pll_patameters.ulFbDiv.usFbDivFrac;
 432                dividers->ul_fb_div.ul_fb_div =
 433                        pll_patameters.ulFbDiv.usFbDiv;
 434
 435                dividers->uc_pll_ref_div =
 436                        pll_patameters.ucPllRefDiv;
 437                dividers->uc_pll_post_div =
 438                        pll_patameters.ucPllPostDiv;
 439                dividers->uc_pll_cntl_flag =
 440                        pll_patameters.ucPllCntlFlag;
 441        }
 442
 443        return result;
 444}
 445
 446/**
 447 * Get the reference clock in 10KHz
 448 */
 449uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
 450{
 451        ATOM_FIRMWARE_INFO *fw_info;
 452        u8 frev, crev;
 453        u16 size;
 454        uint32_t clock;
 455
 456        fw_info = (ATOM_FIRMWARE_INFO *)
 457                cgs_atom_get_data_table(hwmgr->device,
 458                        GetIndexIntoMasterTable(DATA, FirmwareInfo),
 459                        &size, &frev, &crev);
 460
 461        if (fw_info == NULL)
 462                clock = 2700;
 463        else
 464                clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
 465
 466        return clock;
 467}
 468
 469/**
 470 * Returns true if the given voltage type is controlled by GPIO pins.
 471 * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
 472 * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
 473 * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
 474 */
 475bool atomctrl_is_voltage_controled_by_gpio_v3(
 476                struct pp_hwmgr *hwmgr,
 477                uint8_t voltage_type,
 478                uint8_t voltage_mode)
 479{
 480        ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
 481                (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
 482        bool ret;
 483
 484        PP_ASSERT_WITH_CODE((NULL != voltage_info),
 485                        "Could not find Voltage Table in BIOS.", return false;);
 486
 487        ret = (NULL != atomctrl_lookup_voltage_type_v3
 488                        (voltage_info, voltage_type, voltage_mode)) ? true : false;
 489
 490        return ret;
 491}
 492
 493int atomctrl_get_voltage_table_v3(
 494                struct pp_hwmgr *hwmgr,
 495                uint8_t voltage_type,
 496                uint8_t voltage_mode,
 497                pp_atomctrl_voltage_table *voltage_table)
 498{
 499        ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
 500                (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
 501        const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
 502        unsigned int i;
 503
 504        PP_ASSERT_WITH_CODE((NULL != voltage_info),
 505                        "Could not find Voltage Table in BIOS.", return -1;);
 506
 507        voltage_object = atomctrl_lookup_voltage_type_v3
 508                (voltage_info, voltage_type, voltage_mode);
 509
 510        if (voltage_object == NULL)
 511                return -1;
 512
 513        PP_ASSERT_WITH_CODE(
 514                        (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
 515                        PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
 516                        "Too many voltage entries!",
 517                        return -1;
 518                        );
 519
 520        for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
 521                voltage_table->entries[i].value =
 522                        voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue;
 523                voltage_table->entries[i].smio_low =
 524                        voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId;
 525        }
 526
 527        voltage_table->mask_low    =
 528                voltage_object->asGpioVoltageObj.ulGpioMaskVal;
 529        voltage_table->count      =
 530                voltage_object->asGpioVoltageObj.ucGpioEntryNum;
 531        voltage_table->phase_delay =
 532                voltage_object->asGpioVoltageObj.ucPhaseDelay;
 533
 534        return 0;
 535}
 536
 537static bool atomctrl_lookup_gpio_pin(
 538                ATOM_GPIO_PIN_LUT * gpio_lookup_table,
 539                const uint32_t pinId,
 540                pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
 541{
 542        unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
 543        unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
 544        uint8_t *start = (uint8_t *)gpio_lookup_table;
 545
 546        while (offset < size) {
 547                const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
 548                        (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
 549
 550                if (pinId == pin_assignment->ucGPIO_ID) {
 551                        gpio_pin_assignment->uc_gpio_pin_bit_shift =
 552                                pin_assignment->ucGpioPinBitShift;
 553                        gpio_pin_assignment->us_gpio_pin_aindex =
 554                                le16_to_cpu(pin_assignment->usGpioPin_AIndex);
 555                        return false;
 556                }
 557
 558                offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
 559        }
 560
 561        return true;
 562}
 563
 564/**
 565 * Private Function to get the PowerPlay Table Address.
 566 * WARNING: The tabled returned by this function is in
 567 * dynamically allocated memory.
 568 * The caller has to release if by calling kfree.
 569 */
 570static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
 571{
 572        u8 frev, crev;
 573        u16 size;
 574        void *table_address;
 575
 576        table_address = (ATOM_GPIO_PIN_LUT *)
 577                cgs_atom_get_data_table(device,
 578                                GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
 579                                &size, &frev, &crev);
 580
 581        PP_ASSERT_WITH_CODE((NULL != table_address),
 582                        "Error retrieving BIOS Table Address!", return NULL;);
 583
 584        return (ATOM_GPIO_PIN_LUT *)table_address;
 585}
 586
 587/**
 588 * Returns 1 if the given pin id find in lookup table.
 589 */
 590bool atomctrl_get_pp_assign_pin(
 591                struct pp_hwmgr *hwmgr,
 592                const uint32_t pinId,
 593                pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
 594{
 595        bool bRet = 0;
 596        ATOM_GPIO_PIN_LUT *gpio_lookup_table =
 597                get_gpio_lookup_table(hwmgr->device);
 598
 599        PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
 600                        "Could not find GPIO lookup Table in BIOS.", return -1);
 601
 602        bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
 603                gpio_pin_assignment);
 604
 605        return bRet;
 606}
 607
 608int atomctrl_calculate_voltage_evv_on_sclk(
 609                struct pp_hwmgr *hwmgr,
 610                uint8_t voltage_type,
 611                uint32_t sclk,
 612                uint16_t virtual_voltage_Id,
 613                uint16_t *voltage,
 614                uint16_t dpm_level,
 615                bool debug)
 616{
 617        ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
 618
 619        EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
 620        EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
 621        EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
 622        EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
 623        EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
 624        EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
 625        EFUSE_INPUT_PARAMETER sInput_FuseValues;
 626        READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
 627
 628        uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
 629        fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
 630        fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
 631        fInt fLkg_FT, repeat;
 632        fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
 633        fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
 634        fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
 635        fInt fSclk_margin, fSclk, fEVV_V;
 636        fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
 637        uint32_t ul_FT_Lkg_V0NORM;
 638        fInt fLn_MaxDivMin, fMin, fAverage, fRange;
 639        fInt fRoots[2];
 640        fInt fStepSize = GetScaledFraction(625, 100000);
 641
 642        int result;
 643
 644        getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
 645                        cgs_atom_get_data_table(hwmgr->device,
 646                                        GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
 647                                        NULL, NULL, NULL);
 648
 649        if (!getASICProfilingInfo)
 650                return -1;
 651
 652        if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
 653                        (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
 654                        getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
 655                return -1;
 656
 657        /*-----------------------------------------------------------
 658         *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
 659         *-----------------------------------------------------------
 660         */
 661        fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
 662
 663        switch (dpm_level) {
 664        case 1:
 665                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm1);
 666                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM1, 1000);
 667                break;
 668        case 2:
 669                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm2);
 670                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM2, 1000);
 671                break;
 672        case 3:
 673                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm3);
 674                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM3, 1000);
 675                break;
 676        case 4:
 677                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm4);
 678                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM4, 1000);
 679                break;
 680        case 5:
 681                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm5);
 682                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM5, 1000);
 683                break;
 684        case 6:
 685                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm6);
 686                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM6, 1000);
 687                break;
 688        case 7:
 689                fPowerDPMx = Convert_ULONG_ToFraction(getASICProfilingInfo->usPowerDpm7);
 690                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM7, 1000);
 691                break;
 692        default:
 693                printk(KERN_ERR "DPM Level not supported\n");
 694                fPowerDPMx = Convert_ULONG_ToFraction(1);
 695                fDerateTDP = GetScaledFraction(getASICProfilingInfo->ulTdpDerateDPM0, 1000);
 696        }
 697
 698        /*-------------------------
 699         * DECODING FUSE VALUES
 700         * ------------------------
 701         */
 702        /*Decode RO_Fused*/
 703        sRO_fuse = getASICProfilingInfo->sRoFuse;
 704
 705        sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
 706        sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
 707        sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
 708
 709        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 710
 711        result = cgs_atom_exec_cmd_table(hwmgr->device,
 712                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 713                        &sOutput_FuseValues);
 714
 715        if (result)
 716                return result;
 717
 718        /* Finally, the actual fuse value */
 719        ul_RO_fused = sOutput_FuseValues.ulEfuseValue;
 720        fMin = GetScaledFraction(sRO_fuse.ulEfuseMin, 1);
 721        fRange = GetScaledFraction(sRO_fuse.ulEfuseEncodeRange, 1);
 722        fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
 723
 724        sCACm_fuse = getASICProfilingInfo->sCACm;
 725
 726        sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
 727        sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
 728        sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
 729
 730        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 731
 732        result = cgs_atom_exec_cmd_table(hwmgr->device,
 733                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 734                        &sOutput_FuseValues);
 735
 736        if (result)
 737                return result;
 738
 739        ul_CACm_fused = sOutput_FuseValues.ulEfuseValue;
 740        fMin = GetScaledFraction(sCACm_fuse.ulEfuseMin, 1000);
 741        fRange = GetScaledFraction(sCACm_fuse.ulEfuseEncodeRange, 1000);
 742
 743        fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
 744
 745        sCACb_fuse = getASICProfilingInfo->sCACb;
 746
 747        sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
 748        sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
 749        sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
 750        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 751
 752        result = cgs_atom_exec_cmd_table(hwmgr->device,
 753                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 754                        &sOutput_FuseValues);
 755
 756        if (result)
 757                return result;
 758
 759        ul_CACb_fused = sOutput_FuseValues.ulEfuseValue;
 760        fMin = GetScaledFraction(sCACb_fuse.ulEfuseMin, 1000);
 761        fRange = GetScaledFraction(sCACb_fuse.ulEfuseEncodeRange, 1000);
 762
 763        fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
 764
 765        sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
 766
 767        sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
 768        sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
 769        sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
 770
 771        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 772
 773        result = cgs_atom_exec_cmd_table(hwmgr->device,
 774                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 775                        &sOutput_FuseValues);
 776
 777        if (result)
 778                return result;
 779
 780        ul_Kt_Beta_fused = sOutput_FuseValues.ulEfuseValue;
 781        fAverage = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeAverage, 1000);
 782        fRange = GetScaledFraction(sKt_Beta_fuse.ulEfuseEncodeRange, 1000);
 783
 784        fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
 785                        fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
 786
 787        sKv_m_fuse = getASICProfilingInfo->sKv_m;
 788
 789        sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
 790        sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
 791        sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
 792
 793        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 794
 795        result = cgs_atom_exec_cmd_table(hwmgr->device,
 796                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 797                        &sOutput_FuseValues);
 798        if (result)
 799                return result;
 800
 801        ul_Kv_m_fused = sOutput_FuseValues.ulEfuseValue;
 802        fAverage = GetScaledFraction(sKv_m_fuse.ulEfuseEncodeAverage, 1000);
 803        fRange = GetScaledFraction((sKv_m_fuse.ulEfuseEncodeRange & 0x7fffffff), 1000);
 804        fRange = fMultiply(fRange, ConvertToFraction(-1));
 805
 806        fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
 807                        fAverage, fRange, sKv_m_fuse.ucEfuseLength);
 808
 809        sKv_b_fuse = getASICProfilingInfo->sKv_b;
 810
 811        sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
 812        sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
 813        sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
 814        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 815
 816        result = cgs_atom_exec_cmd_table(hwmgr->device,
 817                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 818                        &sOutput_FuseValues);
 819
 820        if (result)
 821                return result;
 822
 823        ul_Kv_b_fused = sOutput_FuseValues.ulEfuseValue;
 824        fAverage = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeAverage, 1000);
 825        fRange = GetScaledFraction(sKv_b_fuse.ulEfuseEncodeRange, 1000);
 826
 827        fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
 828                        fAverage, fRange, sKv_b_fuse.ucEfuseLength);
 829
 830        /* Decoding the Leakage - No special struct container */
 831        /*
 832         * usLkgEuseIndex=56
 833         * ucLkgEfuseBitLSB=6
 834         * ucLkgEfuseLength=10
 835         * ulLkgEncodeLn_MaxDivMin=69077
 836         * ulLkgEncodeMax=1000000
 837         * ulLkgEncodeMin=1000
 838         * ulEfuseLogisticAlpha=13
 839         */
 840
 841        sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
 842        sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
 843        sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
 844
 845        sOutput_FuseValues.sEfuse = sInput_FuseValues;
 846
 847        result = cgs_atom_exec_cmd_table(hwmgr->device,
 848                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
 849                        &sOutput_FuseValues);
 850
 851        if (result)
 852                return result;
 853
 854        ul_FT_Lkg_V0NORM = sOutput_FuseValues.ulEfuseValue;
 855        fLn_MaxDivMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin, 10000);
 856        fMin = GetScaledFraction(getASICProfilingInfo->ulLkgEncodeMin, 10000);
 857
 858        fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
 859                        fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
 860        fLkg_FT = fFT_Lkg_V0NORM;
 861
 862        /*-------------------------------------------
 863         * PART 2 - Grabbing all required values
 864         *-------------------------------------------
 865         */
 866        fSM_A0 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A0, 1000000),
 867                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
 868        fSM_A1 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A1, 1000000),
 869                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
 870        fSM_A2 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A2, 100000),
 871                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
 872        fSM_A3 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A3, 1000000),
 873                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
 874        fSM_A4 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A4, 1000000),
 875                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
 876        fSM_A5 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A5, 1000),
 877                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
 878        fSM_A6 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A6, 1000),
 879                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
 880        fSM_A7 = fMultiply(GetScaledFraction(getASICProfilingInfo->ulSM_A7, 1000),
 881                        ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
 882
 883        fMargin_RO_a = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_a);
 884        fMargin_RO_b = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_b);
 885        fMargin_RO_c = ConvertToFraction(getASICProfilingInfo->ulMargin_RO_c);
 886
 887        fMargin_fixed = ConvertToFraction(getASICProfilingInfo->ulMargin_fixed);
 888
 889        fMargin_FMAX_mean = GetScaledFraction(
 890                        getASICProfilingInfo->ulMargin_Fmax_mean, 10000);
 891        fMargin_Plat_mean = GetScaledFraction(
 892                        getASICProfilingInfo->ulMargin_plat_mean, 10000);
 893        fMargin_FMAX_sigma = GetScaledFraction(
 894                        getASICProfilingInfo->ulMargin_Fmax_sigma, 10000);
 895        fMargin_Plat_sigma = GetScaledFraction(
 896                        getASICProfilingInfo->ulMargin_plat_sigma, 10000);
 897
 898        fMargin_DC_sigma = GetScaledFraction(
 899                        getASICProfilingInfo->ulMargin_DC_sigma, 100);
 900        fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
 901
 902        fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
 903        fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
 904        fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
 905        fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
 906        fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
 907
 908        fSclk = GetScaledFraction(sclk, 100);
 909
 910        fV_max = fDivide(GetScaledFraction(
 911                        getASICProfilingInfo->ulMaxVddc, 1000), ConvertToFraction(4));
 912        fT_prod = GetScaledFraction(getASICProfilingInfo->ulBoardCoreTemp, 10);
 913        fLKG_Factor = GetScaledFraction(getASICProfilingInfo->ulEvvLkgFactor, 100);
 914        fT_FT = GetScaledFraction(getASICProfilingInfo->ulLeakageTemp, 10);
 915        fV_FT = fDivide(GetScaledFraction(
 916                        getASICProfilingInfo->ulLeakageVoltage, 1000), ConvertToFraction(4));
 917        fV_min = fDivide(GetScaledFraction(
 918                        getASICProfilingInfo->ulMinVddc, 1000), ConvertToFraction(4));
 919
 920        /*-----------------------
 921         * PART 3
 922         *-----------------------
 923         */
 924
 925        fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
 926        fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
 927        fC_Term = fAdd(fMargin_RO_c,
 928                        fAdd(fMultiply(fSM_A0,fLkg_FT),
 929                        fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
 930                        fAdd(fMultiply(fSM_A3, fSclk),
 931                        fSubtract(fSM_A7, fRO_fused)))));
 932
 933        fVDDC_base = fSubtract(fRO_fused,
 934                        fSubtract(fMargin_RO_c,
 935                                        fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
 936        fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
 937
 938        repeat = fSubtract(fVDDC_base,
 939                        fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
 940
 941        fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
 942                        fGetSquare(repeat)),
 943                        fAdd(fMultiply(fMargin_RO_b, repeat),
 944                        fMargin_RO_c));
 945
 946        fDC_SCLK = fSubtract(fRO_fused,
 947                        fSubtract(fRO_DC_margin,
 948                        fSubtract(fSM_A3,
 949                        fMultiply(fSM_A2, repeat))));
 950        fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
 951
 952        fSigma_DC = fSubtract(fSclk, fDC_SCLK);
 953
 954        fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
 955        fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
 956        fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
 957        fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
 958
 959        fSquared_Sigma_DC = fGetSquare(fSigma_DC);
 960        fSquared_Sigma_CR = fGetSquare(fSigma_CR);
 961        fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
 962
 963        fSclk_margin = fAdd(fMicro_FMAX,
 964                        fAdd(fMicro_CR,
 965                        fAdd(fMargin_fixed,
 966                        fSqrt(fAdd(fSquared_Sigma_FMAX,
 967                        fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
 968        /*
 969         fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
 970         fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
 971         fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
 972         */
 973
 974        fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
 975        fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
 976        fC_Term = fAdd(fRO_DC_margin,
 977                        fAdd(fMultiply(fSM_A0, fLkg_FT),
 978                        fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
 979                        fAdd(fSclk, fSclk_margin)),
 980                        fAdd(fMultiply(fSM_A3,
 981                        fAdd(fSclk, fSclk_margin)),
 982                        fSubtract(fSM_A7, fRO_fused)))));
 983
 984        SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
 985
 986        if (GreaterThan(fRoots[0], fRoots[1]))
 987                fEVV_V = fRoots[1];
 988        else
 989                fEVV_V = fRoots[0];
 990
 991        if (GreaterThan(fV_min, fEVV_V))
 992                fEVV_V = fV_min;
 993        else if (GreaterThan(fEVV_V, fV_max))
 994                fEVV_V = fSubtract(fV_max, fStepSize);
 995
 996        fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
 997
 998        /*-----------------
 999         * PART 4
1000         *-----------------
1001         */
1002
1003        fV_x = fV_min;
1004
1005        while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1006                fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1007                                fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1008                                fGetSquare(fV_x)), fDerateTDP);
1009
1010                fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1011                                fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1012                                fT_prod), fKv_b_fused), fV_x)), fV_x)));
1013                fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1014                                fKt_Beta_fused, fT_prod)));
1015                fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1016                                fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1017                fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1018                                fKt_Beta_fused, fT_FT)));
1019
1020                fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1021
1022                fTDP_Current = fDivide(fTDP_Power, fV_x);
1023
1024                fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1025                                ConvertToFraction(10)));
1026
1027                fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1028
1029                if (GreaterThan(fV_max, fV_NL) &&
1030                        (GreaterThan(fV_NL, fEVV_V) ||
1031                        Equal(fV_NL, fEVV_V))) {
1032                        fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1033
1034                        *voltage = (uint16_t)fV_NL.partial.real;
1035                        break;
1036                } else
1037                        fV_x = fAdd(fV_x, fStepSize);
1038        }
1039
1040        return result;
1041}
1042
1043/** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1044 * @param hwmgr input: pointer to hwManager
1045 * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1046 * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1047 *              which is define in PPTable SCLK/VDDC dependence
1048 *                              table associated with this virtual_voltage_Id
1049 * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1050 * @param voltage                      output: real voltage level in unit of mv
1051 */
1052int atomctrl_get_voltage_evv_on_sclk(
1053                struct pp_hwmgr *hwmgr,
1054                uint8_t voltage_type,
1055                uint32_t sclk, uint16_t virtual_voltage_Id,
1056                uint16_t *voltage)
1057{
1058        int result;
1059        GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1060
1061        get_voltage_info_param_space.ucVoltageType   =
1062                voltage_type;
1063        get_voltage_info_param_space.ucVoltageMode   =
1064                ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1065        get_voltage_info_param_space.usVoltageLevel  =
1066                virtual_voltage_Id;
1067        get_voltage_info_param_space.ulSCLKFreq      =
1068                sclk;
1069
1070        result = cgs_atom_exec_cmd_table(hwmgr->device,
1071                        GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1072                        &get_voltage_info_param_space);
1073
1074        if (0 != result)
1075                return result;
1076
1077        *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1078                        (&get_voltage_info_param_space))->usVoltageLevel;
1079
1080        return result;
1081}
1082
1083/**
1084 * Get the mpll reference clock in 10KHz
1085 */
1086uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1087{
1088        ATOM_COMMON_TABLE_HEADER *fw_info;
1089        uint32_t clock;
1090        u8 frev, crev;
1091        u16 size;
1092
1093        fw_info = (ATOM_COMMON_TABLE_HEADER *)
1094                cgs_atom_get_data_table(hwmgr->device,
1095                                GetIndexIntoMasterTable(DATA, FirmwareInfo),
1096                                &size, &frev, &crev);
1097
1098        if (fw_info == NULL)
1099                clock = 2700;
1100        else {
1101                if ((fw_info->ucTableFormatRevision == 2) &&
1102                        (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1103                        ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1104                                (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1105                        clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1106                } else {
1107                        ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1108                                (ATOM_FIRMWARE_INFO *)fw_info;
1109                        clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1110                }
1111        }
1112
1113        return clock;
1114}
1115
1116/**
1117 * Get the asic internal spread spectrum table
1118 */
1119static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1120{
1121        ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1122        u8 frev, crev;
1123        u16 size;
1124
1125        table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1126                cgs_atom_get_data_table(device,
1127                        GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1128                        &size, &frev, &crev);
1129
1130        return table;
1131}
1132
1133/**
1134 * Get the asic internal spread spectrum assignment
1135 */
1136static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1137                const uint8_t clockSource,
1138                const uint32_t clockSpeed,
1139                pp_atomctrl_internal_ss_info *ssEntry)
1140{
1141        ATOM_ASIC_INTERNAL_SS_INFO *table;
1142        ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1143        int entry_found = 0;
1144
1145        memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1146
1147        table = asic_internal_ss_get_ss_table(hwmgr->device);
1148
1149        if (NULL == table)
1150                return -1;
1151
1152        ssInfo = &table->asSpreadSpectrum[0];
1153
1154        while (((uint8_t *)ssInfo - (uint8_t *)table) <
1155                le16_to_cpu(table->sHeader.usStructureSize)) {
1156                if ((clockSource == ssInfo->ucClockIndication) &&
1157                        ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1158                        entry_found = 1;
1159                        break;
1160                }
1161
1162                ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1163                                sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1164        }
1165
1166        if (entry_found) {
1167                ssEntry->speed_spectrum_percentage =
1168                        ssInfo->usSpreadSpectrumPercentage;
1169                ssEntry->speed_spectrum_rate = ssInfo->usSpreadRateInKhz;
1170
1171                if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1172                        (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1173                        (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1174                        ssEntry->speed_spectrum_rate /= 100;
1175                }
1176
1177                switch (ssInfo->ucSpreadSpectrumMode) {
1178                case 0:
1179                        ssEntry->speed_spectrum_mode =
1180                                pp_atomctrl_spread_spectrum_mode_down;
1181                        break;
1182                case 1:
1183                        ssEntry->speed_spectrum_mode =
1184                                pp_atomctrl_spread_spectrum_mode_center;
1185                        break;
1186                default:
1187                        ssEntry->speed_spectrum_mode =
1188                                pp_atomctrl_spread_spectrum_mode_down;
1189                        break;
1190                }
1191        }
1192
1193        return entry_found ? 0 : 1;
1194}
1195
1196/**
1197 * Get the memory clock spread spectrum info
1198 */
1199int atomctrl_get_memory_clock_spread_spectrum(
1200                struct pp_hwmgr *hwmgr,
1201                const uint32_t memory_clock,
1202                pp_atomctrl_internal_ss_info *ssInfo)
1203{
1204        return asic_internal_ss_get_ss_asignment(hwmgr,
1205                        ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1206}
1207/**
1208 * Get the engine clock spread spectrum info
1209 */
1210int atomctrl_get_engine_clock_spread_spectrum(
1211                struct pp_hwmgr *hwmgr,
1212                const uint32_t engine_clock,
1213                pp_atomctrl_internal_ss_info *ssInfo)
1214{
1215        return asic_internal_ss_get_ss_asignment(hwmgr,
1216                        ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1217}
1218
1219int atomctrl_read_efuse(void *device, uint16_t start_index,
1220                uint16_t end_index, uint32_t mask, uint32_t *efuse)
1221{
1222        int result;
1223        READ_EFUSE_VALUE_PARAMETER efuse_param;
1224
1225        efuse_param.sEfuse.usEfuseIndex = (start_index / 32) * 4;
1226        efuse_param.sEfuse.ucBitShift = (uint8_t)
1227                        (start_index - ((start_index / 32) * 32));
1228        efuse_param.sEfuse.ucBitLength  = (uint8_t)
1229                        ((end_index - start_index) + 1);
1230
1231        result = cgs_atom_exec_cmd_table(device,
1232                        GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1233                        &efuse_param);
1234        if (!result)
1235                *efuse = efuse_param.ulEfuseValue & mask;
1236
1237        return result;
1238}
1239
1240int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1241                                                                uint8_t level)
1242{
1243        DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1244        int result;
1245
1246        memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq = memory_clock & SET_CLOCK_FREQ_MASK;
1247        memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag = ADJUST_MC_SETTING_PARAM;
1248        memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1249
1250        result = cgs_atom_exec_cmd_table
1251                (hwmgr->device,
1252                 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1253                 &memory_clock_parameters);
1254
1255        return result;
1256}
1257
1258int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1259                                uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1260{
1261
1262        int result;
1263        GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1264
1265        get_voltage_info_param_space.ucVoltageType = voltage_type;
1266        get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1267        get_voltage_info_param_space.usVoltageLevel = virtual_voltage_Id;
1268        get_voltage_info_param_space.ulSCLKFreq = sclk;
1269
1270        result = cgs_atom_exec_cmd_table(hwmgr->device,
1271                        GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1272                        &get_voltage_info_param_space);
1273
1274        if (0 != result)
1275                return result;
1276
1277        *voltage = ((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel;
1278
1279        return result;
1280}
1281
1282int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1283{
1284
1285        int i;
1286        u8 frev, crev;
1287        u16 size;
1288
1289        ATOM_SMU_INFO_V2_1 *psmu_info =
1290                (ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
1291                        GetIndexIntoMasterTable(DATA, SMU_Info),
1292                        &size, &frev, &crev);
1293
1294
1295        for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1296                table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1297                table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1298                table->entry[i].usFcw_pcc = psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc;
1299                table->entry[i].usFcw_trans_upper = psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper;
1300                table->entry[i].usRcw_trans_lower = psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower;
1301        }
1302
1303        return 0;
1304}
1305
1306int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl__avfs_parameters *param)
1307{
1308        ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1309
1310        if (param == NULL)
1311                return -EINVAL;
1312
1313        profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1314                        cgs_atom_get_data_table(hwmgr->device,
1315                                        GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1316                                        NULL, NULL, NULL);
1317        if (!profile)
1318                return -1;
1319
1320        param->ulAVFS_meanNsigma_Acontant0 = profile->ulAVFS_meanNsigma_Acontant0;
1321        param->ulAVFS_meanNsigma_Acontant1 = profile->ulAVFS_meanNsigma_Acontant1;
1322        param->ulAVFS_meanNsigma_Acontant2 = profile->ulAVFS_meanNsigma_Acontant2;
1323        param->usAVFS_meanNsigma_DC_tol_sigma = profile->usAVFS_meanNsigma_DC_tol_sigma;
1324        param->usAVFS_meanNsigma_Platform_mean = profile->usAVFS_meanNsigma_Platform_mean;
1325        param->usAVFS_meanNsigma_Platform_sigma = profile->usAVFS_meanNsigma_Platform_sigma;
1326        param->ulGB_VDROOP_TABLE_CKSOFF_a0 = profile->ulGB_VDROOP_TABLE_CKSOFF_a0;
1327        param->ulGB_VDROOP_TABLE_CKSOFF_a1 = profile->ulGB_VDROOP_TABLE_CKSOFF_a1;
1328        param->ulGB_VDROOP_TABLE_CKSOFF_a2 = profile->ulGB_VDROOP_TABLE_CKSOFF_a2;
1329        param->ulGB_VDROOP_TABLE_CKSON_a0 = profile->ulGB_VDROOP_TABLE_CKSON_a0;
1330        param->ulGB_VDROOP_TABLE_CKSON_a1 = profile->ulGB_VDROOP_TABLE_CKSON_a1;
1331        param->ulGB_VDROOP_TABLE_CKSON_a2 = profile->ulGB_VDROOP_TABLE_CKSON_a2;
1332        param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1;
1333        param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2;
1334        param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b;
1335        param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = profile->ulAVFSGB_FUSE_TABLE_CKSON_m1;
1336        param->usAVFSGB_FUSE_TABLE_CKSON_m2 = profile->usAVFSGB_FUSE_TABLE_CKSON_m2;
1337        param->ulAVFSGB_FUSE_TABLE_CKSON_b = profile->ulAVFSGB_FUSE_TABLE_CKSON_b;
1338        param->usMaxVoltage_0_25mv = profile->usMaxVoltage_0_25mv;
1339        param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1340        param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1341        param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1342        param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1343        param->usPSM_Age_ComFactor = profile->usPSM_Age_ComFactor;
1344        param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1345
1346        return 0;
1347}
1348