linux/drivers/gpu/drm/i915/i915_gem.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
  32#include "i915_vgpu.h"
  33#include "i915_trace.h"
  34#include "intel_drv.h"
  35#include "intel_mocs.h"
  36#include <linux/shmem_fs.h>
  37#include <linux/slab.h>
  38#include <linux/swap.h>
  39#include <linux/pci.h>
  40#include <linux/dma-buf.h>
  41
  42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  44static void
  45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
  46static void
  47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
  48
  49static bool cpu_cache_is_coherent(struct drm_device *dev,
  50                                  enum i915_cache_level level)
  51{
  52        return HAS_LLC(dev) || level != I915_CACHE_NONE;
  53}
  54
  55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  56{
  57        if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  58                return true;
  59
  60        return obj->pin_display;
  61}
  62
  63/* some bookkeeping */
  64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  65                                  size_t size)
  66{
  67        spin_lock(&dev_priv->mm.object_stat_lock);
  68        dev_priv->mm.object_count++;
  69        dev_priv->mm.object_memory += size;
  70        spin_unlock(&dev_priv->mm.object_stat_lock);
  71}
  72
  73static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  74                                     size_t size)
  75{
  76        spin_lock(&dev_priv->mm.object_stat_lock);
  77        dev_priv->mm.object_count--;
  78        dev_priv->mm.object_memory -= size;
  79        spin_unlock(&dev_priv->mm.object_stat_lock);
  80}
  81
  82static int
  83i915_gem_wait_for_error(struct i915_gpu_error *error)
  84{
  85        int ret;
  86
  87        if (!i915_reset_in_progress(error))
  88                return 0;
  89
  90        /*
  91         * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  92         * userspace. If it takes that long something really bad is going on and
  93         * we should simply try to bail out and fail as gracefully as possible.
  94         */
  95        ret = wait_event_interruptible_timeout(error->reset_queue,
  96                                               !i915_reset_in_progress(error),
  97                                               10*HZ);
  98        if (ret == 0) {
  99                DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 100                return -EIO;
 101        } else if (ret < 0) {
 102                return ret;
 103        } else {
 104                return 0;
 105        }
 106}
 107
 108int i915_mutex_lock_interruptible(struct drm_device *dev)
 109{
 110        struct drm_i915_private *dev_priv = dev->dev_private;
 111        int ret;
 112
 113        ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 114        if (ret)
 115                return ret;
 116
 117        ret = mutex_lock_interruptible(&dev->struct_mutex);
 118        if (ret)
 119                return ret;
 120
 121        WARN_ON(i915_verify_lists(dev));
 122        return 0;
 123}
 124
 125int
 126i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 127                            struct drm_file *file)
 128{
 129        struct drm_i915_private *dev_priv = to_i915(dev);
 130        struct i915_ggtt *ggtt = &dev_priv->ggtt;
 131        struct drm_i915_gem_get_aperture *args = data;
 132        struct i915_vma *vma;
 133        size_t pinned;
 134
 135        pinned = 0;
 136        mutex_lock(&dev->struct_mutex);
 137        list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
 138                if (vma->pin_count)
 139                        pinned += vma->node.size;
 140        list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
 141                if (vma->pin_count)
 142                        pinned += vma->node.size;
 143        mutex_unlock(&dev->struct_mutex);
 144
 145        args->aper_size = ggtt->base.total;
 146        args->aper_available_size = args->aper_size - pinned;
 147
 148        return 0;
 149}
 150
 151static int
 152i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
 153{
 154        struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 155        char *vaddr = obj->phys_handle->vaddr;
 156        struct sg_table *st;
 157        struct scatterlist *sg;
 158        int i;
 159
 160        if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
 161                return -EINVAL;
 162
 163        for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 164                struct page *page;
 165                char *src;
 166
 167                page = shmem_read_mapping_page(mapping, i);
 168                if (IS_ERR(page))
 169                        return PTR_ERR(page);
 170
 171                src = kmap_atomic(page);
 172                memcpy(vaddr, src, PAGE_SIZE);
 173                drm_clflush_virt_range(vaddr, PAGE_SIZE);
 174                kunmap_atomic(src);
 175
 176                put_page(page);
 177                vaddr += PAGE_SIZE;
 178        }
 179
 180        i915_gem_chipset_flush(obj->base.dev);
 181
 182        st = kmalloc(sizeof(*st), GFP_KERNEL);
 183        if (st == NULL)
 184                return -ENOMEM;
 185
 186        if (sg_alloc_table(st, 1, GFP_KERNEL)) {
 187                kfree(st);
 188                return -ENOMEM;
 189        }
 190
 191        sg = st->sgl;
 192        sg->offset = 0;
 193        sg->length = obj->base.size;
 194
 195        sg_dma_address(sg) = obj->phys_handle->busaddr;
 196        sg_dma_len(sg) = obj->base.size;
 197
 198        obj->pages = st;
 199        return 0;
 200}
 201
 202static void
 203i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
 204{
 205        int ret;
 206
 207        BUG_ON(obj->madv == __I915_MADV_PURGED);
 208
 209        ret = i915_gem_object_set_to_cpu_domain(obj, true);
 210        if (WARN_ON(ret)) {
 211                /* In the event of a disaster, abandon all caches and
 212                 * hope for the best.
 213                 */
 214                obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
 215        }
 216
 217        if (obj->madv == I915_MADV_DONTNEED)
 218                obj->dirty = 0;
 219
 220        if (obj->dirty) {
 221                struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 222                char *vaddr = obj->phys_handle->vaddr;
 223                int i;
 224
 225                for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 226                        struct page *page;
 227                        char *dst;
 228
 229                        page = shmem_read_mapping_page(mapping, i);
 230                        if (IS_ERR(page))
 231                                continue;
 232
 233                        dst = kmap_atomic(page);
 234                        drm_clflush_virt_range(vaddr, PAGE_SIZE);
 235                        memcpy(dst, vaddr, PAGE_SIZE);
 236                        kunmap_atomic(dst);
 237
 238                        set_page_dirty(page);
 239                        if (obj->madv == I915_MADV_WILLNEED)
 240                                mark_page_accessed(page);
 241                        put_page(page);
 242                        vaddr += PAGE_SIZE;
 243                }
 244                obj->dirty = 0;
 245        }
 246
 247        sg_free_table(obj->pages);
 248        kfree(obj->pages);
 249}
 250
 251static void
 252i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
 253{
 254        drm_pci_free(obj->base.dev, obj->phys_handle);
 255}
 256
 257static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
 258        .get_pages = i915_gem_object_get_pages_phys,
 259        .put_pages = i915_gem_object_put_pages_phys,
 260        .release = i915_gem_object_release_phys,
 261};
 262
 263static int
 264drop_pages(struct drm_i915_gem_object *obj)
 265{
 266        struct i915_vma *vma, *next;
 267        int ret;
 268
 269        drm_gem_object_reference(&obj->base);
 270        list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
 271                if (i915_vma_unbind(vma))
 272                        break;
 273
 274        ret = i915_gem_object_put_pages(obj);
 275        drm_gem_object_unreference(&obj->base);
 276
 277        return ret;
 278}
 279
 280int
 281i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
 282                            int align)
 283{
 284        drm_dma_handle_t *phys;
 285        int ret;
 286
 287        if (obj->phys_handle) {
 288                if ((unsigned long)obj->phys_handle->vaddr & (align -1))
 289                        return -EBUSY;
 290
 291                return 0;
 292        }
 293
 294        if (obj->madv != I915_MADV_WILLNEED)
 295                return -EFAULT;
 296
 297        if (obj->base.filp == NULL)
 298                return -EINVAL;
 299
 300        ret = drop_pages(obj);
 301        if (ret)
 302                return ret;
 303
 304        /* create a new object */
 305        phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
 306        if (!phys)
 307                return -ENOMEM;
 308
 309        obj->phys_handle = phys;
 310        obj->ops = &i915_gem_phys_ops;
 311
 312        return i915_gem_object_get_pages(obj);
 313}
 314
 315static int
 316i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 317                     struct drm_i915_gem_pwrite *args,
 318                     struct drm_file *file_priv)
 319{
 320        struct drm_device *dev = obj->base.dev;
 321        void *vaddr = obj->phys_handle->vaddr + args->offset;
 322        char __user *user_data = u64_to_user_ptr(args->data_ptr);
 323        int ret = 0;
 324
 325        /* We manually control the domain here and pretend that it
 326         * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 327         */
 328        ret = i915_gem_object_wait_rendering(obj, false);
 329        if (ret)
 330                return ret;
 331
 332        intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 333        if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
 334                unsigned long unwritten;
 335
 336                /* The physical object once assigned is fixed for the lifetime
 337                 * of the obj, so we can safely drop the lock and continue
 338                 * to access vaddr.
 339                 */
 340                mutex_unlock(&dev->struct_mutex);
 341                unwritten = copy_from_user(vaddr, user_data, args->size);
 342                mutex_lock(&dev->struct_mutex);
 343                if (unwritten) {
 344                        ret = -EFAULT;
 345                        goto out;
 346                }
 347        }
 348
 349        drm_clflush_virt_range(vaddr, args->size);
 350        i915_gem_chipset_flush(dev);
 351
 352out:
 353        intel_fb_obj_flush(obj, false, ORIGIN_CPU);
 354        return ret;
 355}
 356
 357void *i915_gem_object_alloc(struct drm_device *dev)
 358{
 359        struct drm_i915_private *dev_priv = dev->dev_private;
 360        return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
 361}
 362
 363void i915_gem_object_free(struct drm_i915_gem_object *obj)
 364{
 365        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
 366        kmem_cache_free(dev_priv->objects, obj);
 367}
 368
 369static int
 370i915_gem_create(struct drm_file *file,
 371                struct drm_device *dev,
 372                uint64_t size,
 373                uint32_t *handle_p)
 374{
 375        struct drm_i915_gem_object *obj;
 376        int ret;
 377        u32 handle;
 378
 379        size = roundup(size, PAGE_SIZE);
 380        if (size == 0)
 381                return -EINVAL;
 382
 383        /* Allocate the new object */
 384        obj = i915_gem_alloc_object(dev, size);
 385        if (obj == NULL)
 386                return -ENOMEM;
 387
 388        ret = drm_gem_handle_create(file, &obj->base, &handle);
 389        /* drop reference from allocate - handle holds it now */
 390        drm_gem_object_unreference_unlocked(&obj->base);
 391        if (ret)
 392                return ret;
 393
 394        *handle_p = handle;
 395        return 0;
 396}
 397
 398int
 399i915_gem_dumb_create(struct drm_file *file,
 400                     struct drm_device *dev,
 401                     struct drm_mode_create_dumb *args)
 402{
 403        /* have to work out size/pitch and return them */
 404        args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 405        args->size = args->pitch * args->height;
 406        return i915_gem_create(file, dev,
 407                               args->size, &args->handle);
 408}
 409
 410/**
 411 * Creates a new mm object and returns a handle to it.
 412 */
 413int
 414i915_gem_create_ioctl(struct drm_device *dev, void *data,
 415                      struct drm_file *file)
 416{
 417        struct drm_i915_gem_create *args = data;
 418
 419        return i915_gem_create(file, dev,
 420                               args->size, &args->handle);
 421}
 422
 423static inline int
 424__copy_to_user_swizzled(char __user *cpu_vaddr,
 425                        const char *gpu_vaddr, int gpu_offset,
 426                        int length)
 427{
 428        int ret, cpu_offset = 0;
 429
 430        while (length > 0) {
 431                int cacheline_end = ALIGN(gpu_offset + 1, 64);
 432                int this_length = min(cacheline_end - gpu_offset, length);
 433                int swizzled_gpu_offset = gpu_offset ^ 64;
 434
 435                ret = __copy_to_user(cpu_vaddr + cpu_offset,
 436                                     gpu_vaddr + swizzled_gpu_offset,
 437                                     this_length);
 438                if (ret)
 439                        return ret + length;
 440
 441                cpu_offset += this_length;
 442                gpu_offset += this_length;
 443                length -= this_length;
 444        }
 445
 446        return 0;
 447}
 448
 449static inline int
 450__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 451                          const char __user *cpu_vaddr,
 452                          int length)
 453{
 454        int ret, cpu_offset = 0;
 455
 456        while (length > 0) {
 457                int cacheline_end = ALIGN(gpu_offset + 1, 64);
 458                int this_length = min(cacheline_end - gpu_offset, length);
 459                int swizzled_gpu_offset = gpu_offset ^ 64;
 460
 461                ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 462                                       cpu_vaddr + cpu_offset,
 463                                       this_length);
 464                if (ret)
 465                        return ret + length;
 466
 467                cpu_offset += this_length;
 468                gpu_offset += this_length;
 469                length -= this_length;
 470        }
 471
 472        return 0;
 473}
 474
 475/*
 476 * Pins the specified object's pages and synchronizes the object with
 477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 478 * flush the object from the CPU cache.
 479 */
 480int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 481                                    int *needs_clflush)
 482{
 483        int ret;
 484
 485        *needs_clflush = 0;
 486
 487        if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
 488                return -EINVAL;
 489
 490        if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
 491                /* If we're not in the cpu read domain, set ourself into the gtt
 492                 * read domain and manually flush cachelines (if required). This
 493                 * optimizes for the case when the gpu will dirty the data
 494                 * anyway again before the next pread happens. */
 495                *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
 496                                                        obj->cache_level);
 497                ret = i915_gem_object_wait_rendering(obj, true);
 498                if (ret)
 499                        return ret;
 500        }
 501
 502        ret = i915_gem_object_get_pages(obj);
 503        if (ret)
 504                return ret;
 505
 506        i915_gem_object_pin_pages(obj);
 507
 508        return ret;
 509}
 510
 511/* Per-page copy function for the shmem pread fastpath.
 512 * Flushes invalid cachelines before reading the target if
 513 * needs_clflush is set. */
 514static int
 515shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
 516                 char __user *user_data,
 517                 bool page_do_bit17_swizzling, bool needs_clflush)
 518{
 519        char *vaddr;
 520        int ret;
 521
 522        if (unlikely(page_do_bit17_swizzling))
 523                return -EINVAL;
 524
 525        vaddr = kmap_atomic(page);
 526        if (needs_clflush)
 527                drm_clflush_virt_range(vaddr + shmem_page_offset,
 528                                       page_length);
 529        ret = __copy_to_user_inatomic(user_data,
 530                                      vaddr + shmem_page_offset,
 531                                      page_length);
 532        kunmap_atomic(vaddr);
 533
 534        return ret ? -EFAULT : 0;
 535}
 536
 537static void
 538shmem_clflush_swizzled_range(char *addr, unsigned long length,
 539                             bool swizzled)
 540{
 541        if (unlikely(swizzled)) {
 542                unsigned long start = (unsigned long) addr;
 543                unsigned long end = (unsigned long) addr + length;
 544
 545                /* For swizzling simply ensure that we always flush both
 546                 * channels. Lame, but simple and it works. Swizzled
 547                 * pwrite/pread is far from a hotpath - current userspace
 548                 * doesn't use it at all. */
 549                start = round_down(start, 128);
 550                end = round_up(end, 128);
 551
 552                drm_clflush_virt_range((void *)start, end - start);
 553        } else {
 554                drm_clflush_virt_range(addr, length);
 555        }
 556
 557}
 558
 559/* Only difference to the fast-path function is that this can handle bit17
 560 * and uses non-atomic copy and kmap functions. */
 561static int
 562shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
 563                 char __user *user_data,
 564                 bool page_do_bit17_swizzling, bool needs_clflush)
 565{
 566        char *vaddr;
 567        int ret;
 568
 569        vaddr = kmap(page);
 570        if (needs_clflush)
 571                shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 572                                             page_length,
 573                                             page_do_bit17_swizzling);
 574
 575        if (page_do_bit17_swizzling)
 576                ret = __copy_to_user_swizzled(user_data,
 577                                              vaddr, shmem_page_offset,
 578                                              page_length);
 579        else
 580                ret = __copy_to_user(user_data,
 581                                     vaddr + shmem_page_offset,
 582                                     page_length);
 583        kunmap(page);
 584
 585        return ret ? - EFAULT : 0;
 586}
 587
 588static int
 589i915_gem_shmem_pread(struct drm_device *dev,
 590                     struct drm_i915_gem_object *obj,
 591                     struct drm_i915_gem_pread *args,
 592                     struct drm_file *file)
 593{
 594        char __user *user_data;
 595        ssize_t remain;
 596        loff_t offset;
 597        int shmem_page_offset, page_length, ret = 0;
 598        int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 599        int prefaulted = 0;
 600        int needs_clflush = 0;
 601        struct sg_page_iter sg_iter;
 602
 603        user_data = u64_to_user_ptr(args->data_ptr);
 604        remain = args->size;
 605
 606        obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 607
 608        ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
 609        if (ret)
 610                return ret;
 611
 612        offset = args->offset;
 613
 614        for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 615                         offset >> PAGE_SHIFT) {
 616                struct page *page = sg_page_iter_page(&sg_iter);
 617
 618                if (remain <= 0)
 619                        break;
 620
 621                /* Operation in this page
 622                 *
 623                 * shmem_page_offset = offset within page in shmem file
 624                 * page_length = bytes to copy for this page
 625                 */
 626                shmem_page_offset = offset_in_page(offset);
 627                page_length = remain;
 628                if ((shmem_page_offset + page_length) > PAGE_SIZE)
 629                        page_length = PAGE_SIZE - shmem_page_offset;
 630
 631                page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 632                        (page_to_phys(page) & (1 << 17)) != 0;
 633
 634                ret = shmem_pread_fast(page, shmem_page_offset, page_length,
 635                                       user_data, page_do_bit17_swizzling,
 636                                       needs_clflush);
 637                if (ret == 0)
 638                        goto next_page;
 639
 640                mutex_unlock(&dev->struct_mutex);
 641
 642                if (likely(!i915.prefault_disable) && !prefaulted) {
 643                        ret = fault_in_multipages_writeable(user_data, remain);
 644                        /* Userspace is tricking us, but we've already clobbered
 645                         * its pages with the prefault and promised to write the
 646                         * data up to the first fault. Hence ignore any errors
 647                         * and just continue. */
 648                        (void)ret;
 649                        prefaulted = 1;
 650                }
 651
 652                ret = shmem_pread_slow(page, shmem_page_offset, page_length,
 653                                       user_data, page_do_bit17_swizzling,
 654                                       needs_clflush);
 655
 656                mutex_lock(&dev->struct_mutex);
 657
 658                if (ret)
 659                        goto out;
 660
 661next_page:
 662                remain -= page_length;
 663                user_data += page_length;
 664                offset += page_length;
 665        }
 666
 667out:
 668        i915_gem_object_unpin_pages(obj);
 669
 670        return ret;
 671}
 672
 673/**
 674 * Reads data from the object referenced by handle.
 675 *
 676 * On error, the contents of *data are undefined.
 677 */
 678int
 679i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 680                     struct drm_file *file)
 681{
 682        struct drm_i915_gem_pread *args = data;
 683        struct drm_i915_gem_object *obj;
 684        int ret = 0;
 685
 686        if (args->size == 0)
 687                return 0;
 688
 689        if (!access_ok(VERIFY_WRITE,
 690                       u64_to_user_ptr(args->data_ptr),
 691                       args->size))
 692                return -EFAULT;
 693
 694        ret = i915_mutex_lock_interruptible(dev);
 695        if (ret)
 696                return ret;
 697
 698        obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
 699        if (&obj->base == NULL) {
 700                ret = -ENOENT;
 701                goto unlock;
 702        }
 703
 704        /* Bounds check source.  */
 705        if (args->offset > obj->base.size ||
 706            args->size > obj->base.size - args->offset) {
 707                ret = -EINVAL;
 708                goto out;
 709        }
 710
 711        /* prime objects have no backing filp to GEM pread/pwrite
 712         * pages from.
 713         */
 714        if (!obj->base.filp) {
 715                ret = -EINVAL;
 716                goto out;
 717        }
 718
 719        trace_i915_gem_object_pread(obj, args->offset, args->size);
 720
 721        ret = i915_gem_shmem_pread(dev, obj, args, file);
 722
 723out:
 724        drm_gem_object_unreference(&obj->base);
 725unlock:
 726        mutex_unlock(&dev->struct_mutex);
 727        return ret;
 728}
 729
 730/* This is the fast write path which cannot handle
 731 * page faults in the source data
 732 */
 733
 734static inline int
 735fast_user_write(struct io_mapping *mapping,
 736                loff_t page_base, int page_offset,
 737                char __user *user_data,
 738                int length)
 739{
 740        void __iomem *vaddr_atomic;
 741        void *vaddr;
 742        unsigned long unwritten;
 743
 744        vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 745        /* We can use the cpu mem copy function because this is X86. */
 746        vaddr = (void __force*)vaddr_atomic + page_offset;
 747        unwritten = __copy_from_user_inatomic_nocache(vaddr,
 748                                                      user_data, length);
 749        io_mapping_unmap_atomic(vaddr_atomic);
 750        return unwritten;
 751}
 752
 753/**
 754 * This is the fast pwrite path, where we copy the data directly from the
 755 * user into the GTT, uncached.
 756 */
 757static int
 758i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 759                         struct drm_i915_gem_object *obj,
 760                         struct drm_i915_gem_pwrite *args,
 761                         struct drm_file *file)
 762{
 763        struct drm_i915_private *dev_priv = to_i915(dev);
 764        struct i915_ggtt *ggtt = &dev_priv->ggtt;
 765        ssize_t remain;
 766        loff_t offset, page_base;
 767        char __user *user_data;
 768        int page_offset, page_length, ret;
 769
 770        ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
 771        if (ret)
 772                goto out;
 773
 774        ret = i915_gem_object_set_to_gtt_domain(obj, true);
 775        if (ret)
 776                goto out_unpin;
 777
 778        ret = i915_gem_object_put_fence(obj);
 779        if (ret)
 780                goto out_unpin;
 781
 782        user_data = u64_to_user_ptr(args->data_ptr);
 783        remain = args->size;
 784
 785        offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
 786
 787        intel_fb_obj_invalidate(obj, ORIGIN_GTT);
 788
 789        while (remain > 0) {
 790                /* Operation in this page
 791                 *
 792                 * page_base = page offset within aperture
 793                 * page_offset = offset within page
 794                 * page_length = bytes to copy for this page
 795                 */
 796                page_base = offset & PAGE_MASK;
 797                page_offset = offset_in_page(offset);
 798                page_length = remain;
 799                if ((page_offset + remain) > PAGE_SIZE)
 800                        page_length = PAGE_SIZE - page_offset;
 801
 802                /* If we get a fault while copying data, then (presumably) our
 803                 * source page isn't available.  Return the error and we'll
 804                 * retry in the slow path.
 805                 */
 806                if (fast_user_write(ggtt->mappable, page_base,
 807                                    page_offset, user_data, page_length)) {
 808                        ret = -EFAULT;
 809                        goto out_flush;
 810                }
 811
 812                remain -= page_length;
 813                user_data += page_length;
 814                offset += page_length;
 815        }
 816
 817out_flush:
 818        intel_fb_obj_flush(obj, false, ORIGIN_GTT);
 819out_unpin:
 820        i915_gem_object_ggtt_unpin(obj);
 821out:
 822        return ret;
 823}
 824
 825/* Per-page copy function for the shmem pwrite fastpath.
 826 * Flushes invalid cachelines before writing to the target if
 827 * needs_clflush_before is set and flushes out any written cachelines after
 828 * writing if needs_clflush is set. */
 829static int
 830shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
 831                  char __user *user_data,
 832                  bool page_do_bit17_swizzling,
 833                  bool needs_clflush_before,
 834                  bool needs_clflush_after)
 835{
 836        char *vaddr;
 837        int ret;
 838
 839        if (unlikely(page_do_bit17_swizzling))
 840                return -EINVAL;
 841
 842        vaddr = kmap_atomic(page);
 843        if (needs_clflush_before)
 844                drm_clflush_virt_range(vaddr + shmem_page_offset,
 845                                       page_length);
 846        ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
 847                                        user_data, page_length);
 848        if (needs_clflush_after)
 849                drm_clflush_virt_range(vaddr + shmem_page_offset,
 850                                       page_length);
 851        kunmap_atomic(vaddr);
 852
 853        return ret ? -EFAULT : 0;
 854}
 855
 856/* Only difference to the fast-path function is that this can handle bit17
 857 * and uses non-atomic copy and kmap functions. */
 858static int
 859shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
 860                  char __user *user_data,
 861                  bool page_do_bit17_swizzling,
 862                  bool needs_clflush_before,
 863                  bool needs_clflush_after)
 864{
 865        char *vaddr;
 866        int ret;
 867
 868        vaddr = kmap(page);
 869        if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
 870                shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 871                                             page_length,
 872                                             page_do_bit17_swizzling);
 873        if (page_do_bit17_swizzling)
 874                ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
 875                                                user_data,
 876                                                page_length);
 877        else
 878                ret = __copy_from_user(vaddr + shmem_page_offset,
 879                                       user_data,
 880                                       page_length);
 881        if (needs_clflush_after)
 882                shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 883                                             page_length,
 884                                             page_do_bit17_swizzling);
 885        kunmap(page);
 886
 887        return ret ? -EFAULT : 0;
 888}
 889
 890static int
 891i915_gem_shmem_pwrite(struct drm_device *dev,
 892                      struct drm_i915_gem_object *obj,
 893                      struct drm_i915_gem_pwrite *args,
 894                      struct drm_file *file)
 895{
 896        ssize_t remain;
 897        loff_t offset;
 898        char __user *user_data;
 899        int shmem_page_offset, page_length, ret = 0;
 900        int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 901        int hit_slowpath = 0;
 902        int needs_clflush_after = 0;
 903        int needs_clflush_before = 0;
 904        struct sg_page_iter sg_iter;
 905
 906        user_data = u64_to_user_ptr(args->data_ptr);
 907        remain = args->size;
 908
 909        obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 910
 911        if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 912                /* If we're not in the cpu write domain, set ourself into the gtt
 913                 * write domain and manually flush cachelines (if required). This
 914                 * optimizes for the case when the gpu will use the data
 915                 * right away and we therefore have to clflush anyway. */
 916                needs_clflush_after = cpu_write_needs_clflush(obj);
 917                ret = i915_gem_object_wait_rendering(obj, false);
 918                if (ret)
 919                        return ret;
 920        }
 921        /* Same trick applies to invalidate partially written cachelines read
 922         * before writing. */
 923        if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
 924                needs_clflush_before =
 925                        !cpu_cache_is_coherent(dev, obj->cache_level);
 926
 927        ret = i915_gem_object_get_pages(obj);
 928        if (ret)
 929                return ret;
 930
 931        intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 932
 933        i915_gem_object_pin_pages(obj);
 934
 935        offset = args->offset;
 936        obj->dirty = 1;
 937
 938        for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 939                         offset >> PAGE_SHIFT) {
 940                struct page *page = sg_page_iter_page(&sg_iter);
 941                int partial_cacheline_write;
 942
 943                if (remain <= 0)
 944                        break;
 945
 946                /* Operation in this page
 947                 *
 948                 * shmem_page_offset = offset within page in shmem file
 949                 * page_length = bytes to copy for this page
 950                 */
 951                shmem_page_offset = offset_in_page(offset);
 952
 953                page_length = remain;
 954                if ((shmem_page_offset + page_length) > PAGE_SIZE)
 955                        page_length = PAGE_SIZE - shmem_page_offset;
 956
 957                /* If we don't overwrite a cacheline completely we need to be
 958                 * careful to have up-to-date data by first clflushing. Don't
 959                 * overcomplicate things and flush the entire patch. */
 960                partial_cacheline_write = needs_clflush_before &&
 961                        ((shmem_page_offset | page_length)
 962                                & (boot_cpu_data.x86_clflush_size - 1));
 963
 964                page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 965                        (page_to_phys(page) & (1 << 17)) != 0;
 966
 967                ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
 968                                        user_data, page_do_bit17_swizzling,
 969                                        partial_cacheline_write,
 970                                        needs_clflush_after);
 971                if (ret == 0)
 972                        goto next_page;
 973
 974                hit_slowpath = 1;
 975                mutex_unlock(&dev->struct_mutex);
 976                ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
 977                                        user_data, page_do_bit17_swizzling,
 978                                        partial_cacheline_write,
 979                                        needs_clflush_after);
 980
 981                mutex_lock(&dev->struct_mutex);
 982
 983                if (ret)
 984                        goto out;
 985
 986next_page:
 987                remain -= page_length;
 988                user_data += page_length;
 989                offset += page_length;
 990        }
 991
 992out:
 993        i915_gem_object_unpin_pages(obj);
 994
 995        if (hit_slowpath) {
 996                /*
 997                 * Fixup: Flush cpu caches in case we didn't flush the dirty
 998                 * cachelines in-line while writing and the object moved
 999                 * out of the cpu write domain while we've dropped the lock.
1000                 */
1001                if (!needs_clflush_after &&
1002                    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003                        if (i915_gem_clflush_object(obj, obj->pin_display))
1004                                needs_clflush_after = true;
1005                }
1006        }
1007
1008        if (needs_clflush_after)
1009                i915_gem_chipset_flush(dev);
1010        else
1011                obj->cache_dirty = true;
1012
1013        intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014        return ret;
1015}
1016
1017/**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022int
1023i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024                      struct drm_file *file)
1025{
1026        struct drm_i915_private *dev_priv = dev->dev_private;
1027        struct drm_i915_gem_pwrite *args = data;
1028        struct drm_i915_gem_object *obj;
1029        int ret;
1030
1031        if (args->size == 0)
1032                return 0;
1033
1034        if (!access_ok(VERIFY_READ,
1035                       u64_to_user_ptr(args->data_ptr),
1036                       args->size))
1037                return -EFAULT;
1038
1039        if (likely(!i915.prefault_disable)) {
1040                ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1041                                                   args->size);
1042                if (ret)
1043                        return -EFAULT;
1044        }
1045
1046        intel_runtime_pm_get(dev_priv);
1047
1048        ret = i915_mutex_lock_interruptible(dev);
1049        if (ret)
1050                goto put_rpm;
1051
1052        obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1053        if (&obj->base == NULL) {
1054                ret = -ENOENT;
1055                goto unlock;
1056        }
1057
1058        /* Bounds check destination. */
1059        if (args->offset > obj->base.size ||
1060            args->size > obj->base.size - args->offset) {
1061                ret = -EINVAL;
1062                goto out;
1063        }
1064
1065        /* prime objects have no backing filp to GEM pread/pwrite
1066         * pages from.
1067         */
1068        if (!obj->base.filp) {
1069                ret = -EINVAL;
1070                goto out;
1071        }
1072
1073        trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075        ret = -EFAULT;
1076        /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077         * it would end up going through the fenced access, and we'll get
1078         * different detiling behavior between reading and writing.
1079         * pread/pwrite currently are reading and writing from the CPU
1080         * perspective, requiring manual detiling by the client.
1081         */
1082        if (obj->tiling_mode == I915_TILING_NONE &&
1083            obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084            cpu_write_needs_clflush(obj)) {
1085                ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086                /* Note that the gtt paths might fail with non-page-backed user
1087                 * pointers (e.g. gtt mappings when moving data between
1088                 * textures). Fallback to the shmem path in that case. */
1089        }
1090
1091        if (ret == -EFAULT || ret == -ENOSPC) {
1092                if (obj->phys_handle)
1093                        ret = i915_gem_phys_pwrite(obj, args, file);
1094                else
1095                        ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096        }
1097
1098out:
1099        drm_gem_object_unreference(&obj->base);
1100unlock:
1101        mutex_unlock(&dev->struct_mutex);
1102put_rpm:
1103        intel_runtime_pm_put(dev_priv);
1104
1105        return ret;
1106}
1107
1108static int
1109i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110{
1111        if (__i915_terminally_wedged(reset_counter))
1112                return -EIO;
1113
1114        if (__i915_reset_in_progress(reset_counter)) {
1115                /* Non-interruptible callers can't handle -EAGAIN, hence return
1116                 * -EIO unconditionally for these. */
1117                if (!interruptible)
1118                        return -EIO;
1119
1120                return -EAGAIN;
1121        }
1122
1123        return 0;
1124}
1125
1126static void fake_irq(unsigned long data)
1127{
1128        wake_up_process((struct task_struct *)data);
1129}
1130
1131static bool missed_irq(struct drm_i915_private *dev_priv,
1132                       struct intel_engine_cs *engine)
1133{
1134        return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135}
1136
1137static unsigned long local_clock_us(unsigned *cpu)
1138{
1139        unsigned long t;
1140
1141        /* Cheaply and approximately convert from nanoseconds to microseconds.
1142         * The result and subsequent calculations are also defined in the same
1143         * approximate microseconds units. The principal source of timing
1144         * error here is from the simple truncation.
1145         *
1146         * Note that local_clock() is only defined wrt to the current CPU;
1147         * the comparisons are no longer valid if we switch CPUs. Instead of
1148         * blocking preemption for the entire busywait, we can detect the CPU
1149         * switch and use that as indicator of system load and a reason to
1150         * stop busywaiting, see busywait_stop().
1151         */
1152        *cpu = get_cpu();
1153        t = local_clock() >> 10;
1154        put_cpu();
1155
1156        return t;
1157}
1158
1159static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160{
1161        unsigned this_cpu;
1162
1163        if (time_after(local_clock_us(&this_cpu), timeout))
1164                return true;
1165
1166        return this_cpu != cpu;
1167}
1168
1169static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170{
1171        unsigned long timeout;
1172        unsigned cpu;
1173
1174        /* When waiting for high frequency requests, e.g. during synchronous
1175         * rendering split between the CPU and GPU, the finite amount of time
1176         * required to set up the irq and wait upon it limits the response
1177         * rate. By busywaiting on the request completion for a short while we
1178         * can service the high frequency waits as quick as possible. However,
1179         * if it is a slow request, we want to sleep as quickly as possible.
1180         * The tradeoff between waiting and sleeping is roughly the time it
1181         * takes to sleep on a request, on the order of a microsecond.
1182         */
1183
1184        if (req->engine->irq_refcount)
1185                return -EBUSY;
1186
1187        /* Only spin if we know the GPU is processing this request */
1188        if (!i915_gem_request_started(req, true))
1189                return -EAGAIN;
1190
1191        timeout = local_clock_us(&cpu) + 5;
1192        while (!need_resched()) {
1193                if (i915_gem_request_completed(req, true))
1194                        return 0;
1195
1196                if (signal_pending_state(state, current))
1197                        break;
1198
1199                if (busywait_stop(timeout, cpu))
1200                        break;
1201
1202                cpu_relax_lowlatency();
1203        }
1204
1205        if (i915_gem_request_completed(req, false))
1206                return 0;
1207
1208        return -EAGAIN;
1209}
1210
1211/**
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
1224 * Returns 0 if the request was found within the alloted time. Else returns the
1225 * errno with remaining time filled in timeout argument.
1226 */
1227int __i915_wait_request(struct drm_i915_gem_request *req,
1228                        bool interruptible,
1229                        s64 *timeout,
1230                        struct intel_rps_client *rps)
1231{
1232        struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233        struct drm_device *dev = engine->dev;
1234        struct drm_i915_private *dev_priv = dev->dev_private;
1235        const bool irq_test_in_progress =
1236                ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1237        int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1238        DEFINE_WAIT(wait);
1239        unsigned long timeout_expire;
1240        s64 before = 0; /* Only to silence a compiler warning. */
1241        int ret;
1242
1243        WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1244
1245        if (list_empty(&req->list))
1246                return 0;
1247
1248        if (i915_gem_request_completed(req, true))
1249                return 0;
1250
1251        timeout_expire = 0;
1252        if (timeout) {
1253                if (WARN_ON(*timeout < 0))
1254                        return -EINVAL;
1255
1256                if (*timeout == 0)
1257                        return -ETIME;
1258
1259                timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1260
1261                /*
1262                 * Record current time in case interrupted by signal, or wedged.
1263                 */
1264                before = ktime_get_raw_ns();
1265        }
1266
1267        if (INTEL_INFO(dev_priv)->gen >= 6)
1268                gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1269
1270        trace_i915_gem_request_wait_begin(req);
1271
1272        /* Optimistic spin for the next jiffie before touching IRQs */
1273        ret = __i915_spin_request(req, state);
1274        if (ret == 0)
1275                goto out;
1276
1277        if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1278                ret = -ENODEV;
1279                goto out;
1280        }
1281
1282        for (;;) {
1283                struct timer_list timer;
1284
1285                prepare_to_wait(&engine->irq_queue, &wait, state);
1286
1287                /* We need to check whether any gpu reset happened in between
1288                 * the request being submitted and now. If a reset has occurred,
1289                 * the request is effectively complete (we either are in the
1290                 * process of or have discarded the rendering and completely
1291                 * reset the GPU. The results of the request are lost and we
1292                 * are free to continue on with the original operation.
1293                 */
1294                if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1295                        ret = 0;
1296                        break;
1297                }
1298
1299                if (i915_gem_request_completed(req, false)) {
1300                        ret = 0;
1301                        break;
1302                }
1303
1304                if (signal_pending_state(state, current)) {
1305                        ret = -ERESTARTSYS;
1306                        break;
1307                }
1308
1309                if (timeout && time_after_eq(jiffies, timeout_expire)) {
1310                        ret = -ETIME;
1311                        break;
1312                }
1313
1314                timer.function = NULL;
1315                if (timeout || missed_irq(dev_priv, engine)) {
1316                        unsigned long expire;
1317
1318                        setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1319                        expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1320                        mod_timer(&timer, expire);
1321                }
1322
1323                io_schedule();
1324
1325                if (timer.function) {
1326                        del_singleshot_timer_sync(&timer);
1327                        destroy_timer_on_stack(&timer);
1328                }
1329        }
1330        if (!irq_test_in_progress)
1331                engine->irq_put(engine);
1332
1333        finish_wait(&engine->irq_queue, &wait);
1334
1335out:
1336        trace_i915_gem_request_wait_end(req);
1337
1338        if (timeout) {
1339                s64 tres = *timeout - (ktime_get_raw_ns() - before);
1340
1341                *timeout = tres < 0 ? 0 : tres;
1342
1343                /*
1344                 * Apparently ktime isn't accurate enough and occasionally has a
1345                 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1346                 * things up to make the test happy. We allow up to 1 jiffy.
1347                 *
1348                 * This is a regrssion from the timespec->ktime conversion.
1349                 */
1350                if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1351                        *timeout = 0;
1352        }
1353
1354        return ret;
1355}
1356
1357int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1358                                   struct drm_file *file)
1359{
1360        struct drm_i915_file_private *file_priv;
1361
1362        WARN_ON(!req || !file || req->file_priv);
1363
1364        if (!req || !file)
1365                return -EINVAL;
1366
1367        if (req->file_priv)
1368                return -EINVAL;
1369
1370        file_priv = file->driver_priv;
1371
1372        spin_lock(&file_priv->mm.lock);
1373        req->file_priv = file_priv;
1374        list_add_tail(&req->client_list, &file_priv->mm.request_list);
1375        spin_unlock(&file_priv->mm.lock);
1376
1377        req->pid = get_pid(task_pid(current));
1378
1379        return 0;
1380}
1381
1382static inline void
1383i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1384{
1385        struct drm_i915_file_private *file_priv = request->file_priv;
1386
1387        if (!file_priv)
1388                return;
1389
1390        spin_lock(&file_priv->mm.lock);
1391        list_del(&request->client_list);
1392        request->file_priv = NULL;
1393        spin_unlock(&file_priv->mm.lock);
1394
1395        put_pid(request->pid);
1396        request->pid = NULL;
1397}
1398
1399static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1400{
1401        trace_i915_gem_request_retire(request);
1402
1403        /* We know the GPU must have read the request to have
1404         * sent us the seqno + interrupt, so use the position
1405         * of tail of the request to update the last known position
1406         * of the GPU head.
1407         *
1408         * Note this requires that we are always called in request
1409         * completion order.
1410         */
1411        request->ringbuf->last_retired_head = request->postfix;
1412
1413        list_del_init(&request->list);
1414        i915_gem_request_remove_from_client(request);
1415
1416        i915_gem_request_unreference(request);
1417}
1418
1419static void
1420__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1421{
1422        struct intel_engine_cs *engine = req->engine;
1423        struct drm_i915_gem_request *tmp;
1424
1425        lockdep_assert_held(&engine->dev->struct_mutex);
1426
1427        if (list_empty(&req->list))
1428                return;
1429
1430        do {
1431                tmp = list_first_entry(&engine->request_list,
1432                                       typeof(*tmp), list);
1433
1434                i915_gem_request_retire(tmp);
1435        } while (tmp != req);
1436
1437        WARN_ON(i915_verify_lists(engine->dev));
1438}
1439
1440/**
1441 * Waits for a request to be signaled, and cleans up the
1442 * request and object lists appropriately for that event.
1443 */
1444int
1445i915_wait_request(struct drm_i915_gem_request *req)
1446{
1447        struct drm_i915_private *dev_priv = req->i915;
1448        bool interruptible;
1449        int ret;
1450
1451        interruptible = dev_priv->mm.interruptible;
1452
1453        BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1454
1455        ret = __i915_wait_request(req, interruptible, NULL, NULL);
1456        if (ret)
1457                return ret;
1458
1459        /* If the GPU hung, we want to keep the requests to find the guilty. */
1460        if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1461                __i915_gem_request_retire__upto(req);
1462
1463        return 0;
1464}
1465
1466/**
1467 * Ensures that all rendering to the object has completed and the object is
1468 * safe to unbind from the GTT or access from the CPU.
1469 */
1470int
1471i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1472                               bool readonly)
1473{
1474        int ret, i;
1475
1476        if (!obj->active)
1477                return 0;
1478
1479        if (readonly) {
1480                if (obj->last_write_req != NULL) {
1481                        ret = i915_wait_request(obj->last_write_req);
1482                        if (ret)
1483                                return ret;
1484
1485                        i = obj->last_write_req->engine->id;
1486                        if (obj->last_read_req[i] == obj->last_write_req)
1487                                i915_gem_object_retire__read(obj, i);
1488                        else
1489                                i915_gem_object_retire__write(obj);
1490                }
1491        } else {
1492                for (i = 0; i < I915_NUM_ENGINES; i++) {
1493                        if (obj->last_read_req[i] == NULL)
1494                                continue;
1495
1496                        ret = i915_wait_request(obj->last_read_req[i]);
1497                        if (ret)
1498                                return ret;
1499
1500                        i915_gem_object_retire__read(obj, i);
1501                }
1502                GEM_BUG_ON(obj->active);
1503        }
1504
1505        return 0;
1506}
1507
1508static void
1509i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1510                               struct drm_i915_gem_request *req)
1511{
1512        int ring = req->engine->id;
1513
1514        if (obj->last_read_req[ring] == req)
1515                i915_gem_object_retire__read(obj, ring);
1516        else if (obj->last_write_req == req)
1517                i915_gem_object_retire__write(obj);
1518
1519        if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1520                __i915_gem_request_retire__upto(req);
1521}
1522
1523/* A nonblocking variant of the above wait. This is a highly dangerous routine
1524 * as the object state may change during this call.
1525 */
1526static __must_check int
1527i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1528                                            struct intel_rps_client *rps,
1529                                            bool readonly)
1530{
1531        struct drm_device *dev = obj->base.dev;
1532        struct drm_i915_private *dev_priv = dev->dev_private;
1533        struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1534        int ret, i, n = 0;
1535
1536        BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1537        BUG_ON(!dev_priv->mm.interruptible);
1538
1539        if (!obj->active)
1540                return 0;
1541
1542        if (readonly) {
1543                struct drm_i915_gem_request *req;
1544
1545                req = obj->last_write_req;
1546                if (req == NULL)
1547                        return 0;
1548
1549                requests[n++] = i915_gem_request_reference(req);
1550        } else {
1551                for (i = 0; i < I915_NUM_ENGINES; i++) {
1552                        struct drm_i915_gem_request *req;
1553
1554                        req = obj->last_read_req[i];
1555                        if (req == NULL)
1556                                continue;
1557
1558                        requests[n++] = i915_gem_request_reference(req);
1559                }
1560        }
1561
1562        mutex_unlock(&dev->struct_mutex);
1563        ret = 0;
1564        for (i = 0; ret == 0 && i < n; i++)
1565                ret = __i915_wait_request(requests[i], true, NULL, rps);
1566        mutex_lock(&dev->struct_mutex);
1567
1568        for (i = 0; i < n; i++) {
1569                if (ret == 0)
1570                        i915_gem_object_retire_request(obj, requests[i]);
1571                i915_gem_request_unreference(requests[i]);
1572        }
1573
1574        return ret;
1575}
1576
1577static struct intel_rps_client *to_rps_client(struct drm_file *file)
1578{
1579        struct drm_i915_file_private *fpriv = file->driver_priv;
1580        return &fpriv->rps;
1581}
1582
1583/**
1584 * Called when user space prepares to use an object with the CPU, either
1585 * through the mmap ioctl's mapping or a GTT mapping.
1586 */
1587int
1588i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1589                          struct drm_file *file)
1590{
1591        struct drm_i915_gem_set_domain *args = data;
1592        struct drm_i915_gem_object *obj;
1593        uint32_t read_domains = args->read_domains;
1594        uint32_t write_domain = args->write_domain;
1595        int ret;
1596
1597        /* Only handle setting domains to types used by the CPU. */
1598        if (write_domain & I915_GEM_GPU_DOMAINS)
1599                return -EINVAL;
1600
1601        if (read_domains & I915_GEM_GPU_DOMAINS)
1602                return -EINVAL;
1603
1604        /* Having something in the write domain implies it's in the read
1605         * domain, and only that read domain.  Enforce that in the request.
1606         */
1607        if (write_domain != 0 && read_domains != write_domain)
1608                return -EINVAL;
1609
1610        ret = i915_mutex_lock_interruptible(dev);
1611        if (ret)
1612                return ret;
1613
1614        obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1615        if (&obj->base == NULL) {
1616                ret = -ENOENT;
1617                goto unlock;
1618        }
1619
1620        /* Try to flush the object off the GPU without holding the lock.
1621         * We will repeat the flush holding the lock in the normal manner
1622         * to catch cases where we are gazumped.
1623         */
1624        ret = i915_gem_object_wait_rendering__nonblocking(obj,
1625                                                          to_rps_client(file),
1626                                                          !write_domain);
1627        if (ret)
1628                goto unref;
1629
1630        if (read_domains & I915_GEM_DOMAIN_GTT)
1631                ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1632        else
1633                ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1634
1635        if (write_domain != 0)
1636                intel_fb_obj_invalidate(obj,
1637                                        write_domain == I915_GEM_DOMAIN_GTT ?
1638                                        ORIGIN_GTT : ORIGIN_CPU);
1639
1640unref:
1641        drm_gem_object_unreference(&obj->base);
1642unlock:
1643        mutex_unlock(&dev->struct_mutex);
1644        return ret;
1645}
1646
1647/**
1648 * Called when user space has done writes to this buffer
1649 */
1650int
1651i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1652                         struct drm_file *file)
1653{
1654        struct drm_i915_gem_sw_finish *args = data;
1655        struct drm_i915_gem_object *obj;
1656        int ret = 0;
1657
1658        ret = i915_mutex_lock_interruptible(dev);
1659        if (ret)
1660                return ret;
1661
1662        obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1663        if (&obj->base == NULL) {
1664                ret = -ENOENT;
1665                goto unlock;
1666        }
1667
1668        /* Pinned buffers may be scanout, so flush the cache */
1669        if (obj->pin_display)
1670                i915_gem_object_flush_cpu_write_domain(obj);
1671
1672        drm_gem_object_unreference(&obj->base);
1673unlock:
1674        mutex_unlock(&dev->struct_mutex);
1675        return ret;
1676}
1677
1678/**
1679 * Maps the contents of an object, returning the address it is mapped
1680 * into.
1681 *
1682 * While the mapping holds a reference on the contents of the object, it doesn't
1683 * imply a ref on the object itself.
1684 *
1685 * IMPORTANT:
1686 *
1687 * DRM driver writers who look a this function as an example for how to do GEM
1688 * mmap support, please don't implement mmap support like here. The modern way
1689 * to implement DRM mmap support is with an mmap offset ioctl (like
1690 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1691 * That way debug tooling like valgrind will understand what's going on, hiding
1692 * the mmap call in a driver private ioctl will break that. The i915 driver only
1693 * does cpu mmaps this way because we didn't know better.
1694 */
1695int
1696i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1697                    struct drm_file *file)
1698{
1699        struct drm_i915_gem_mmap *args = data;
1700        struct drm_gem_object *obj;
1701        unsigned long addr;
1702
1703        if (args->flags & ~(I915_MMAP_WC))
1704                return -EINVAL;
1705
1706        if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1707                return -ENODEV;
1708
1709        obj = drm_gem_object_lookup(file, args->handle);
1710        if (obj == NULL)
1711                return -ENOENT;
1712
1713        /* prime objects have no backing filp to GEM mmap
1714         * pages from.
1715         */
1716        if (!obj->filp) {
1717                drm_gem_object_unreference_unlocked(obj);
1718                return -EINVAL;
1719        }
1720
1721        addr = vm_mmap(obj->filp, 0, args->size,
1722                       PROT_READ | PROT_WRITE, MAP_SHARED,
1723                       args->offset);
1724        if (args->flags & I915_MMAP_WC) {
1725                struct mm_struct *mm = current->mm;
1726                struct vm_area_struct *vma;
1727
1728                if (down_write_killable(&mm->mmap_sem)) {
1729                        drm_gem_object_unreference_unlocked(obj);
1730                        return -EINTR;
1731                }
1732                vma = find_vma(mm, addr);
1733                if (vma)
1734                        vma->vm_page_prot =
1735                                pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1736                else
1737                        addr = -ENOMEM;
1738                up_write(&mm->mmap_sem);
1739        }
1740        drm_gem_object_unreference_unlocked(obj);
1741        if (IS_ERR((void *)addr))
1742                return addr;
1743
1744        args->addr_ptr = (uint64_t) addr;
1745
1746        return 0;
1747}
1748
1749/**
1750 * i915_gem_fault - fault a page into the GTT
1751 * @vma: VMA in question
1752 * @vmf: fault info
1753 *
1754 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1755 * from userspace.  The fault handler takes care of binding the object to
1756 * the GTT (if needed), allocating and programming a fence register (again,
1757 * only if needed based on whether the old reg is still valid or the object
1758 * is tiled) and inserting a new PTE into the faulting process.
1759 *
1760 * Note that the faulting process may involve evicting existing objects
1761 * from the GTT and/or fence registers to make room.  So performance may
1762 * suffer if the GTT working set is large or there are few fence registers
1763 * left.
1764 */
1765int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1766{
1767        struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1768        struct drm_device *dev = obj->base.dev;
1769        struct drm_i915_private *dev_priv = to_i915(dev);
1770        struct i915_ggtt *ggtt = &dev_priv->ggtt;
1771        struct i915_ggtt_view view = i915_ggtt_view_normal;
1772        pgoff_t page_offset;
1773        unsigned long pfn;
1774        int ret = 0;
1775        bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1776
1777        intel_runtime_pm_get(dev_priv);
1778
1779        /* We don't use vmf->pgoff since that has the fake offset */
1780        page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1781                PAGE_SHIFT;
1782
1783        ret = i915_mutex_lock_interruptible(dev);
1784        if (ret)
1785                goto out;
1786
1787        trace_i915_gem_object_fault(obj, page_offset, true, write);
1788
1789        /* Try to flush the object off the GPU first without holding the lock.
1790         * Upon reacquiring the lock, we will perform our sanity checks and then
1791         * repeat the flush holding the lock in the normal manner to catch cases
1792         * where we are gazumped.
1793         */
1794        ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1795        if (ret)
1796                goto unlock;
1797
1798        /* Access to snoopable pages through the GTT is incoherent. */
1799        if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1800                ret = -EFAULT;
1801                goto unlock;
1802        }
1803
1804        /* Use a partial view if the object is bigger than the aperture. */
1805        if (obj->base.size >= ggtt->mappable_end &&
1806            obj->tiling_mode == I915_TILING_NONE) {
1807                static const unsigned int chunk_size = 256; // 1 MiB
1808
1809                memset(&view, 0, sizeof(view));
1810                view.type = I915_GGTT_VIEW_PARTIAL;
1811                view.params.partial.offset = rounddown(page_offset, chunk_size);
1812                view.params.partial.size =
1813                        min_t(unsigned int,
1814                              chunk_size,
1815                              (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1816                              view.params.partial.offset);
1817        }
1818
1819        /* Now pin it into the GTT if needed */
1820        ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1821        if (ret)
1822                goto unlock;
1823
1824        ret = i915_gem_object_set_to_gtt_domain(obj, write);
1825        if (ret)
1826                goto unpin;
1827
1828        ret = i915_gem_object_get_fence(obj);
1829        if (ret)
1830                goto unpin;
1831
1832        /* Finally, remap it using the new GTT offset */
1833        pfn = ggtt->mappable_base +
1834                i915_gem_obj_ggtt_offset_view(obj, &view);
1835        pfn >>= PAGE_SHIFT;
1836
1837        if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1838                /* Overriding existing pages in partial view does not cause
1839                 * us any trouble as TLBs are still valid because the fault
1840                 * is due to userspace losing part of the mapping or never
1841                 * having accessed it before (at this partials' range).
1842                 */
1843                unsigned long base = vma->vm_start +
1844                                     (view.params.partial.offset << PAGE_SHIFT);
1845                unsigned int i;
1846
1847                for (i = 0; i < view.params.partial.size; i++) {
1848                        ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1849                        if (ret)
1850                                break;
1851                }
1852
1853                obj->fault_mappable = true;
1854        } else {
1855                if (!obj->fault_mappable) {
1856                        unsigned long size = min_t(unsigned long,
1857                                                   vma->vm_end - vma->vm_start,
1858                                                   obj->base.size);
1859                        int i;
1860
1861                        for (i = 0; i < size >> PAGE_SHIFT; i++) {
1862                                ret = vm_insert_pfn(vma,
1863                                                    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1864                                                    pfn + i);
1865                                if (ret)
1866                                        break;
1867                        }
1868
1869                        obj->fault_mappable = true;
1870                } else
1871                        ret = vm_insert_pfn(vma,
1872                                            (unsigned long)vmf->virtual_address,
1873                                            pfn + page_offset);
1874        }
1875unpin:
1876        i915_gem_object_ggtt_unpin_view(obj, &view);
1877unlock:
1878        mutex_unlock(&dev->struct_mutex);
1879out:
1880        switch (ret) {
1881        case -EIO:
1882                /*
1883                 * We eat errors when the gpu is terminally wedged to avoid
1884                 * userspace unduly crashing (gl has no provisions for mmaps to
1885                 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1886                 * and so needs to be reported.
1887                 */
1888                if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1889                        ret = VM_FAULT_SIGBUS;
1890                        break;
1891                }
1892        case -EAGAIN:
1893                /*
1894                 * EAGAIN means the gpu is hung and we'll wait for the error
1895                 * handler to reset everything when re-faulting in
1896                 * i915_mutex_lock_interruptible.
1897                 */
1898        case 0:
1899        case -ERESTARTSYS:
1900        case -EINTR:
1901        case -EBUSY:
1902                /*
1903                 * EBUSY is ok: this just means that another thread
1904                 * already did the job.
1905                 */
1906                ret = VM_FAULT_NOPAGE;
1907                break;
1908        case -ENOMEM:
1909                ret = VM_FAULT_OOM;
1910                break;
1911        case -ENOSPC:
1912        case -EFAULT:
1913                ret = VM_FAULT_SIGBUS;
1914                break;
1915        default:
1916                WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1917                ret = VM_FAULT_SIGBUS;
1918                break;
1919        }
1920
1921        intel_runtime_pm_put(dev_priv);
1922        return ret;
1923}
1924
1925/**
1926 * i915_gem_release_mmap - remove physical page mappings
1927 * @obj: obj in question
1928 *
1929 * Preserve the reservation of the mmapping with the DRM core code, but
1930 * relinquish ownership of the pages back to the system.
1931 *
1932 * It is vital that we remove the page mapping if we have mapped a tiled
1933 * object through the GTT and then lose the fence register due to
1934 * resource pressure. Similarly if the object has been moved out of the
1935 * aperture, than pages mapped into userspace must be revoked. Removing the
1936 * mapping will then trigger a page fault on the next user access, allowing
1937 * fixup by i915_gem_fault().
1938 */
1939void
1940i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1941{
1942        /* Serialisation between user GTT access and our code depends upon
1943         * revoking the CPU's PTE whilst the mutex is held. The next user
1944         * pagefault then has to wait until we release the mutex.
1945         */
1946        lockdep_assert_held(&obj->base.dev->struct_mutex);
1947
1948        if (!obj->fault_mappable)
1949                return;
1950
1951        drm_vma_node_unmap(&obj->base.vma_node,
1952                           obj->base.dev->anon_inode->i_mapping);
1953
1954        /* Ensure that the CPU's PTE are revoked and there are not outstanding
1955         * memory transactions from userspace before we return. The TLB
1956         * flushing implied above by changing the PTE above *should* be
1957         * sufficient, an extra barrier here just provides us with a bit
1958         * of paranoid documentation about our requirement to serialise
1959         * memory writes before touching registers / GSM.
1960         */
1961        wmb();
1962
1963        obj->fault_mappable = false;
1964}
1965
1966void
1967i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1968{
1969        struct drm_i915_gem_object *obj;
1970
1971        list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1972                i915_gem_release_mmap(obj);
1973}
1974
1975uint32_t
1976i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1977{
1978        uint32_t gtt_size;
1979
1980        if (INTEL_INFO(dev)->gen >= 4 ||
1981            tiling_mode == I915_TILING_NONE)
1982                return size;
1983
1984        /* Previous chips need a power-of-two fence region when tiling */
1985        if (INTEL_INFO(dev)->gen == 3)
1986                gtt_size = 1024*1024;
1987        else
1988                gtt_size = 512*1024;
1989
1990        while (gtt_size < size)
1991                gtt_size <<= 1;
1992
1993        return gtt_size;
1994}
1995
1996/**
1997 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1998 * @obj: object to check
1999 *
2000 * Return the required GTT alignment for an object, taking into account
2001 * potential fence register mapping.
2002 */
2003uint32_t
2004i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2005                           int tiling_mode, bool fenced)
2006{
2007        /*
2008         * Minimum alignment is 4k (GTT page size), but might be greater
2009         * if a fence register is needed for the object.
2010         */
2011        if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2012            tiling_mode == I915_TILING_NONE)
2013                return 4096;
2014
2015        /*
2016         * Previous chips need to be aligned to the size of the smallest
2017         * fence register that can contain the object.
2018         */
2019        return i915_gem_get_gtt_size(dev, size, tiling_mode);
2020}
2021
2022static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2023{
2024        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2025        int ret;
2026
2027        dev_priv->mm.shrinker_no_lock_stealing = true;
2028
2029        ret = drm_gem_create_mmap_offset(&obj->base);
2030        if (ret != -ENOSPC)
2031                goto out;
2032
2033        /* Badly fragmented mmap space? The only way we can recover
2034         * space is by destroying unwanted objects. We can't randomly release
2035         * mmap_offsets as userspace expects them to be persistent for the
2036         * lifetime of the objects. The closest we can is to release the
2037         * offsets on purgeable objects by truncating it and marking it purged,
2038         * which prevents userspace from ever using that object again.
2039         */
2040        i915_gem_shrink(dev_priv,
2041                        obj->base.size >> PAGE_SHIFT,
2042                        I915_SHRINK_BOUND |
2043                        I915_SHRINK_UNBOUND |
2044                        I915_SHRINK_PURGEABLE);
2045        ret = drm_gem_create_mmap_offset(&obj->base);
2046        if (ret != -ENOSPC)
2047                goto out;
2048
2049        i915_gem_shrink_all(dev_priv);
2050        ret = drm_gem_create_mmap_offset(&obj->base);
2051out:
2052        dev_priv->mm.shrinker_no_lock_stealing = false;
2053
2054        return ret;
2055}
2056
2057static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2058{
2059        drm_gem_free_mmap_offset(&obj->base);
2060}
2061
2062int
2063i915_gem_mmap_gtt(struct drm_file *file,
2064                  struct drm_device *dev,
2065                  uint32_t handle,
2066                  uint64_t *offset)
2067{
2068        struct drm_i915_gem_object *obj;
2069        int ret;
2070
2071        ret = i915_mutex_lock_interruptible(dev);
2072        if (ret)
2073                return ret;
2074
2075        obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2076        if (&obj->base == NULL) {
2077                ret = -ENOENT;
2078                goto unlock;
2079        }
2080
2081        if (obj->madv != I915_MADV_WILLNEED) {
2082                DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2083                ret = -EFAULT;
2084                goto out;
2085        }
2086
2087        ret = i915_gem_object_create_mmap_offset(obj);
2088        if (ret)
2089                goto out;
2090
2091        *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2092
2093out:
2094        drm_gem_object_unreference(&obj->base);
2095unlock:
2096        mutex_unlock(&dev->struct_mutex);
2097        return ret;
2098}
2099
2100/**
2101 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2102 * @dev: DRM device
2103 * @data: GTT mapping ioctl data
2104 * @file: GEM object info
2105 *
2106 * Simply returns the fake offset to userspace so it can mmap it.
2107 * The mmap call will end up in drm_gem_mmap(), which will set things
2108 * up so we can get faults in the handler above.
2109 *
2110 * The fault handler will take care of binding the object into the GTT
2111 * (since it may have been evicted to make room for something), allocating
2112 * a fence register, and mapping the appropriate aperture address into
2113 * userspace.
2114 */
2115int
2116i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2117                        struct drm_file *file)
2118{
2119        struct drm_i915_gem_mmap_gtt *args = data;
2120
2121        return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2122}
2123
2124/* Immediately discard the backing storage */
2125static void
2126i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2127{
2128        i915_gem_object_free_mmap_offset(obj);
2129
2130        if (obj->base.filp == NULL)
2131                return;
2132
2133        /* Our goal here is to return as much of the memory as
2134         * is possible back to the system as we are called from OOM.
2135         * To do this we must instruct the shmfs to drop all of its
2136         * backing pages, *now*.
2137         */
2138        shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2139        obj->madv = __I915_MADV_PURGED;
2140}
2141
2142/* Try to discard unwanted pages */
2143static void
2144i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2145{
2146        struct address_space *mapping;
2147
2148        switch (obj->madv) {
2149        case I915_MADV_DONTNEED:
2150                i915_gem_object_truncate(obj);
2151        case __I915_MADV_PURGED:
2152                return;
2153        }
2154
2155        if (obj->base.filp == NULL)
2156                return;
2157
2158        mapping = file_inode(obj->base.filp)->i_mapping,
2159        invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2160}
2161
2162static void
2163i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2164{
2165        struct sg_page_iter sg_iter;
2166        int ret;
2167
2168        BUG_ON(obj->madv == __I915_MADV_PURGED);
2169
2170        ret = i915_gem_object_set_to_cpu_domain(obj, true);
2171        if (WARN_ON(ret)) {
2172                /* In the event of a disaster, abandon all caches and
2173                 * hope for the best.
2174                 */
2175                i915_gem_clflush_object(obj, true);
2176                obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2177        }
2178
2179        i915_gem_gtt_finish_object(obj);
2180
2181        if (i915_gem_object_needs_bit17_swizzle(obj))
2182                i915_gem_object_save_bit_17_swizzle(obj);
2183
2184        if (obj->madv == I915_MADV_DONTNEED)
2185                obj->dirty = 0;
2186
2187        for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2188                struct page *page = sg_page_iter_page(&sg_iter);
2189
2190                if (obj->dirty)
2191                        set_page_dirty(page);
2192
2193                if (obj->madv == I915_MADV_WILLNEED)
2194                        mark_page_accessed(page);
2195
2196                put_page(page);
2197        }
2198        obj->dirty = 0;
2199
2200        sg_free_table(obj->pages);
2201        kfree(obj->pages);
2202}
2203
2204int
2205i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2206{
2207        const struct drm_i915_gem_object_ops *ops = obj->ops;
2208
2209        if (obj->pages == NULL)
2210                return 0;
2211
2212        if (obj->pages_pin_count)
2213                return -EBUSY;
2214
2215        BUG_ON(i915_gem_obj_bound_any(obj));
2216
2217        /* ->put_pages might need to allocate memory for the bit17 swizzle
2218         * array, hence protect them from being reaped by removing them from gtt
2219         * lists early. */
2220        list_del(&obj->global_list);
2221
2222        if (obj->mapping) {
2223                if (is_vmalloc_addr(obj->mapping))
2224                        vunmap(obj->mapping);
2225                else
2226                        kunmap(kmap_to_page(obj->mapping));
2227                obj->mapping = NULL;
2228        }
2229
2230        ops->put_pages(obj);
2231        obj->pages = NULL;
2232
2233        i915_gem_object_invalidate(obj);
2234
2235        return 0;
2236}
2237
2238static int
2239i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2240{
2241        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2242        int page_count, i;
2243        struct address_space *mapping;
2244        struct sg_table *st;
2245        struct scatterlist *sg;
2246        struct sg_page_iter sg_iter;
2247        struct page *page;
2248        unsigned long last_pfn = 0;     /* suppress gcc warning */
2249        int ret;
2250        gfp_t gfp;
2251
2252        /* Assert that the object is not currently in any GPU domain. As it
2253         * wasn't in the GTT, there shouldn't be any way it could have been in
2254         * a GPU cache
2255         */
2256        BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2257        BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2258
2259        st = kmalloc(sizeof(*st), GFP_KERNEL);
2260        if (st == NULL)
2261                return -ENOMEM;
2262
2263        page_count = obj->base.size / PAGE_SIZE;
2264        if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2265                kfree(st);
2266                return -ENOMEM;
2267        }
2268
2269        /* Get the list of pages out of our struct file.  They'll be pinned
2270         * at this point until we release them.
2271         *
2272         * Fail silently without starting the shrinker
2273         */
2274        mapping = file_inode(obj->base.filp)->i_mapping;
2275        gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2276        gfp |= __GFP_NORETRY | __GFP_NOWARN;
2277        sg = st->sgl;
2278        st->nents = 0;
2279        for (i = 0; i < page_count; i++) {
2280                page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2281                if (IS_ERR(page)) {
2282                        i915_gem_shrink(dev_priv,
2283                                        page_count,
2284                                        I915_SHRINK_BOUND |
2285                                        I915_SHRINK_UNBOUND |
2286                                        I915_SHRINK_PURGEABLE);
2287                        page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2288                }
2289                if (IS_ERR(page)) {
2290                        /* We've tried hard to allocate the memory by reaping
2291                         * our own buffer, now let the real VM do its job and
2292                         * go down in flames if truly OOM.
2293                         */
2294                        i915_gem_shrink_all(dev_priv);
2295                        page = shmem_read_mapping_page(mapping, i);
2296                        if (IS_ERR(page)) {
2297                                ret = PTR_ERR(page);
2298                                goto err_pages;
2299                        }
2300                }
2301#ifdef CONFIG_SWIOTLB
2302                if (swiotlb_nr_tbl()) {
2303                        st->nents++;
2304                        sg_set_page(sg, page, PAGE_SIZE, 0);
2305                        sg = sg_next(sg);
2306                        continue;
2307                }
2308#endif
2309                if (!i || page_to_pfn(page) != last_pfn + 1) {
2310                        if (i)
2311                                sg = sg_next(sg);
2312                        st->nents++;
2313                        sg_set_page(sg, page, PAGE_SIZE, 0);
2314                } else {
2315                        sg->length += PAGE_SIZE;
2316                }
2317                last_pfn = page_to_pfn(page);
2318
2319                /* Check that the i965g/gm workaround works. */
2320                WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2321        }
2322#ifdef CONFIG_SWIOTLB
2323        if (!swiotlb_nr_tbl())
2324#endif
2325                sg_mark_end(sg);
2326        obj->pages = st;
2327
2328        ret = i915_gem_gtt_prepare_object(obj);
2329        if (ret)
2330                goto err_pages;
2331
2332        if (i915_gem_object_needs_bit17_swizzle(obj))
2333                i915_gem_object_do_bit_17_swizzle(obj);
2334
2335        if (obj->tiling_mode != I915_TILING_NONE &&
2336            dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2337                i915_gem_object_pin_pages(obj);
2338
2339        return 0;
2340
2341err_pages:
2342        sg_mark_end(sg);
2343        for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2344                put_page(sg_page_iter_page(&sg_iter));
2345        sg_free_table(st);
2346        kfree(st);
2347
2348        /* shmemfs first checks if there is enough memory to allocate the page
2349         * and reports ENOSPC should there be insufficient, along with the usual
2350         * ENOMEM for a genuine allocation failure.
2351         *
2352         * We use ENOSPC in our driver to mean that we have run out of aperture
2353         * space and so want to translate the error from shmemfs back to our
2354         * usual understanding of ENOMEM.
2355         */
2356        if (ret == -ENOSPC)
2357                ret = -ENOMEM;
2358
2359        return ret;
2360}
2361
2362/* Ensure that the associated pages are gathered from the backing storage
2363 * and pinned into our object. i915_gem_object_get_pages() may be called
2364 * multiple times before they are released by a single call to
2365 * i915_gem_object_put_pages() - once the pages are no longer referenced
2366 * either as a result of memory pressure (reaping pages under the shrinker)
2367 * or as the object is itself released.
2368 */
2369int
2370i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2371{
2372        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2373        const struct drm_i915_gem_object_ops *ops = obj->ops;
2374        int ret;
2375
2376        if (obj->pages)
2377                return 0;
2378
2379        if (obj->madv != I915_MADV_WILLNEED) {
2380                DRM_DEBUG("Attempting to obtain a purgeable object\n");
2381                return -EFAULT;
2382        }
2383
2384        BUG_ON(obj->pages_pin_count);
2385
2386        ret = ops->get_pages(obj);
2387        if (ret)
2388                return ret;
2389
2390        list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2391
2392        obj->get_page.sg = obj->pages->sgl;
2393        obj->get_page.last = 0;
2394
2395        return 0;
2396}
2397
2398void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2399{
2400        int ret;
2401
2402        lockdep_assert_held(&obj->base.dev->struct_mutex);
2403
2404        ret = i915_gem_object_get_pages(obj);
2405        if (ret)
2406                return ERR_PTR(ret);
2407
2408        i915_gem_object_pin_pages(obj);
2409
2410        if (obj->mapping == NULL) {
2411                struct page **pages;
2412
2413                pages = NULL;
2414                if (obj->base.size == PAGE_SIZE)
2415                        obj->mapping = kmap(sg_page(obj->pages->sgl));
2416                else
2417                        pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2418                                               sizeof(*pages),
2419                                               GFP_TEMPORARY);
2420                if (pages != NULL) {
2421                        struct sg_page_iter sg_iter;
2422                        int n;
2423
2424                        n = 0;
2425                        for_each_sg_page(obj->pages->sgl, &sg_iter,
2426                                         obj->pages->nents, 0)
2427                                pages[n++] = sg_page_iter_page(&sg_iter);
2428
2429                        obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2430                        drm_free_large(pages);
2431                }
2432                if (obj->mapping == NULL) {
2433                        i915_gem_object_unpin_pages(obj);
2434                        return ERR_PTR(-ENOMEM);
2435                }
2436        }
2437
2438        return obj->mapping;
2439}
2440
2441void i915_vma_move_to_active(struct i915_vma *vma,
2442                             struct drm_i915_gem_request *req)
2443{
2444        struct drm_i915_gem_object *obj = vma->obj;
2445        struct intel_engine_cs *engine;
2446
2447        engine = i915_gem_request_get_engine(req);
2448
2449        /* Add a reference if we're newly entering the active list. */
2450        if (obj->active == 0)
2451                drm_gem_object_reference(&obj->base);
2452        obj->active |= intel_engine_flag(engine);
2453
2454        list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2455        i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2456
2457        list_move_tail(&vma->vm_link, &vma->vm->active_list);
2458}
2459
2460static void
2461i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2462{
2463        GEM_BUG_ON(obj->last_write_req == NULL);
2464        GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2465
2466        i915_gem_request_assign(&obj->last_write_req, NULL);
2467        intel_fb_obj_flush(obj, true, ORIGIN_CS);
2468}
2469
2470static void
2471i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2472{
2473        struct i915_vma *vma;
2474
2475        GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2476        GEM_BUG_ON(!(obj->active & (1 << ring)));
2477
2478        list_del_init(&obj->engine_list[ring]);
2479        i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2480
2481        if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2482                i915_gem_object_retire__write(obj);
2483
2484        obj->active &= ~(1 << ring);
2485        if (obj->active)
2486                return;
2487
2488        /* Bump our place on the bound list to keep it roughly in LRU order
2489         * so that we don't steal from recently used but inactive objects
2490         * (unless we are forced to ofc!)
2491         */
2492        list_move_tail(&obj->global_list,
2493                       &to_i915(obj->base.dev)->mm.bound_list);
2494
2495        list_for_each_entry(vma, &obj->vma_list, obj_link) {
2496                if (!list_empty(&vma->vm_link))
2497                        list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2498        }
2499
2500        i915_gem_request_assign(&obj->last_fenced_req, NULL);
2501        drm_gem_object_unreference(&obj->base);
2502}
2503
2504static int
2505i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2506{
2507        struct drm_i915_private *dev_priv = dev->dev_private;
2508        struct intel_engine_cs *engine;
2509        int ret;
2510
2511        /* Carefully retire all requests without writing to the rings */
2512        for_each_engine(engine, dev_priv) {
2513                ret = intel_engine_idle(engine);
2514                if (ret)
2515                        return ret;
2516        }
2517        i915_gem_retire_requests(dev);
2518
2519        /* Finally reset hw state */
2520        for_each_engine(engine, dev_priv)
2521                intel_ring_init_seqno(engine, seqno);
2522
2523        return 0;
2524}
2525
2526int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2527{
2528        struct drm_i915_private *dev_priv = dev->dev_private;
2529        int ret;
2530
2531        if (seqno == 0)
2532                return -EINVAL;
2533
2534        /* HWS page needs to be set less than what we
2535         * will inject to ring
2536         */
2537        ret = i915_gem_init_seqno(dev, seqno - 1);
2538        if (ret)
2539                return ret;
2540
2541        /* Carefully set the last_seqno value so that wrap
2542         * detection still works
2543         */
2544        dev_priv->next_seqno = seqno;
2545        dev_priv->last_seqno = seqno - 1;
2546        if (dev_priv->last_seqno == 0)
2547                dev_priv->last_seqno--;
2548
2549        return 0;
2550}
2551
2552int
2553i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2554{
2555        struct drm_i915_private *dev_priv = dev->dev_private;
2556
2557        /* reserve 0 for non-seqno */
2558        if (dev_priv->next_seqno == 0) {
2559                int ret = i915_gem_init_seqno(dev, 0);
2560                if (ret)
2561                        return ret;
2562
2563                dev_priv->next_seqno = 1;
2564        }
2565
2566        *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2567        return 0;
2568}
2569
2570/*
2571 * NB: This function is not allowed to fail. Doing so would mean the the
2572 * request is not being tracked for completion but the work itself is
2573 * going to happen on the hardware. This would be a Bad Thing(tm).
2574 */
2575void __i915_add_request(struct drm_i915_gem_request *request,
2576                        struct drm_i915_gem_object *obj,
2577                        bool flush_caches)
2578{
2579        struct intel_engine_cs *engine;
2580        struct drm_i915_private *dev_priv;
2581        struct intel_ringbuffer *ringbuf;
2582        u32 request_start;
2583        int ret;
2584
2585        if (WARN_ON(request == NULL))
2586                return;
2587
2588        engine = request->engine;
2589        dev_priv = request->i915;
2590        ringbuf = request->ringbuf;
2591
2592        /*
2593         * To ensure that this call will not fail, space for its emissions
2594         * should already have been reserved in the ring buffer. Let the ring
2595         * know that it is time to use that space up.
2596         */
2597        intel_ring_reserved_space_use(ringbuf);
2598
2599        request_start = intel_ring_get_tail(ringbuf);
2600        /*
2601         * Emit any outstanding flushes - execbuf can fail to emit the flush
2602         * after having emitted the batchbuffer command. Hence we need to fix
2603         * things up similar to emitting the lazy request. The difference here
2604         * is that the flush _must_ happen before the next request, no matter
2605         * what.
2606         */
2607        if (flush_caches) {
2608                if (i915.enable_execlists)
2609                        ret = logical_ring_flush_all_caches(request);
2610                else
2611                        ret = intel_ring_flush_all_caches(request);
2612                /* Not allowed to fail! */
2613                WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2614        }
2615
2616        trace_i915_gem_request_add(request);
2617
2618        request->head = request_start;
2619
2620        /* Whilst this request exists, batch_obj will be on the
2621         * active_list, and so will hold the active reference. Only when this
2622         * request is retired will the the batch_obj be moved onto the
2623         * inactive_list and lose its active reference. Hence we do not need
2624         * to explicitly hold another reference here.
2625         */
2626        request->batch_obj = obj;
2627
2628        /* Seal the request and mark it as pending execution. Note that
2629         * we may inspect this state, without holding any locks, during
2630         * hangcheck. Hence we apply the barrier to ensure that we do not
2631         * see a more recent value in the hws than we are tracking.
2632         */
2633        request->emitted_jiffies = jiffies;
2634        request->previous_seqno = engine->last_submitted_seqno;
2635        smp_store_mb(engine->last_submitted_seqno, request->seqno);
2636        list_add_tail(&request->list, &engine->request_list);
2637
2638        /* Record the position of the start of the request so that
2639         * should we detect the updated seqno part-way through the
2640         * GPU processing the request, we never over-estimate the
2641         * position of the head.
2642         */
2643        request->postfix = intel_ring_get_tail(ringbuf);
2644
2645        if (i915.enable_execlists)
2646                ret = engine->emit_request(request);
2647        else {
2648                ret = engine->add_request(request);
2649
2650                request->tail = intel_ring_get_tail(ringbuf);
2651        }
2652        /* Not allowed to fail! */
2653        WARN(ret, "emit|add_request failed: %d!\n", ret);
2654
2655        i915_queue_hangcheck(engine->dev);
2656
2657        queue_delayed_work(dev_priv->wq,
2658                           &dev_priv->mm.retire_work,
2659                           round_jiffies_up_relative(HZ));
2660        intel_mark_busy(dev_priv->dev);
2661
2662        /* Sanity check that the reserved size was large enough. */
2663        intel_ring_reserved_space_end(ringbuf);
2664}
2665
2666static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2667                                   const struct intel_context *ctx)
2668{
2669        unsigned long elapsed;
2670
2671        elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2672
2673        if (ctx->hang_stats.banned)
2674                return true;
2675
2676        if (ctx->hang_stats.ban_period_seconds &&
2677            elapsed <= ctx->hang_stats.ban_period_seconds) {
2678                if (!i915_gem_context_is_default(ctx)) {
2679                        DRM_DEBUG("context hanging too fast, banning!\n");
2680                        return true;
2681                } else if (i915_stop_ring_allow_ban(dev_priv)) {
2682                        if (i915_stop_ring_allow_warn(dev_priv))
2683                                DRM_ERROR("gpu hanging too fast, banning!\n");
2684                        return true;
2685                }
2686        }
2687
2688        return false;
2689}
2690
2691static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2692                                  struct intel_context *ctx,
2693                                  const bool guilty)
2694{
2695        struct i915_ctx_hang_stats *hs;
2696
2697        if (WARN_ON(!ctx))
2698                return;
2699
2700        hs = &ctx->hang_stats;
2701
2702        if (guilty) {
2703                hs->banned = i915_context_is_banned(dev_priv, ctx);
2704                hs->batch_active++;
2705                hs->guilty_ts = get_seconds();
2706        } else {
2707                hs->batch_pending++;
2708        }
2709}
2710
2711void i915_gem_request_free(struct kref *req_ref)
2712{
2713        struct drm_i915_gem_request *req = container_of(req_ref,
2714                                                 typeof(*req), ref);
2715        struct intel_context *ctx = req->ctx;
2716
2717        if (req->file_priv)
2718                i915_gem_request_remove_from_client(req);
2719
2720        if (ctx) {
2721                if (i915.enable_execlists && ctx != req->i915->kernel_context)
2722                        intel_lr_context_unpin(ctx, req->engine);
2723
2724                i915_gem_context_unreference(ctx);
2725        }
2726
2727        kmem_cache_free(req->i915->requests, req);
2728}
2729
2730static inline int
2731__i915_gem_request_alloc(struct intel_engine_cs *engine,
2732                         struct intel_context *ctx,
2733                         struct drm_i915_gem_request **req_out)
2734{
2735        struct drm_i915_private *dev_priv = to_i915(engine->dev);
2736        unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2737        struct drm_i915_gem_request *req;
2738        int ret;
2739
2740        if (!req_out)
2741                return -EINVAL;
2742
2743        *req_out = NULL;
2744
2745        /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2746         * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2747         * and restart.
2748         */
2749        ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2750        if (ret)
2751                return ret;
2752
2753        req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2754        if (req == NULL)
2755                return -ENOMEM;
2756
2757        ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2758        if (ret)
2759                goto err;
2760
2761        kref_init(&req->ref);
2762        req->i915 = dev_priv;
2763        req->engine = engine;
2764        req->reset_counter = reset_counter;
2765        req->ctx  = ctx;
2766        i915_gem_context_reference(req->ctx);
2767
2768        if (i915.enable_execlists)
2769                ret = intel_logical_ring_alloc_request_extras(req);
2770        else
2771                ret = intel_ring_alloc_request_extras(req);
2772        if (ret) {
2773                i915_gem_context_unreference(req->ctx);
2774                goto err;
2775        }
2776
2777        /*
2778         * Reserve space in the ring buffer for all the commands required to
2779         * eventually emit this request. This is to guarantee that the
2780         * i915_add_request() call can't fail. Note that the reserve may need
2781         * to be redone if the request is not actually submitted straight
2782         * away, e.g. because a GPU scheduler has deferred it.
2783         */
2784        if (i915.enable_execlists)
2785                ret = intel_logical_ring_reserve_space(req);
2786        else
2787                ret = intel_ring_reserve_space(req);
2788        if (ret) {
2789                /*
2790                 * At this point, the request is fully allocated even if not
2791                 * fully prepared. Thus it can be cleaned up using the proper
2792                 * free code.
2793                 */
2794                intel_ring_reserved_space_cancel(req->ringbuf);
2795                i915_gem_request_unreference(req);
2796                return ret;
2797        }
2798
2799        *req_out = req;
2800        return 0;
2801
2802err:
2803        kmem_cache_free(dev_priv->requests, req);
2804        return ret;
2805}
2806
2807/**
2808 * i915_gem_request_alloc - allocate a request structure
2809 *
2810 * @engine: engine that we wish to issue the request on.
2811 * @ctx: context that the request will be associated with.
2812 *       This can be NULL if the request is not directly related to
2813 *       any specific user context, in which case this function will
2814 *       choose an appropriate context to use.
2815 *
2816 * Returns a pointer to the allocated request if successful,
2817 * or an error code if not.
2818 */
2819struct drm_i915_gem_request *
2820i915_gem_request_alloc(struct intel_engine_cs *engine,
2821                       struct intel_context *ctx)
2822{
2823        struct drm_i915_gem_request *req;
2824        int err;
2825
2826        if (ctx == NULL)
2827                ctx = to_i915(engine->dev)->kernel_context;
2828        err = __i915_gem_request_alloc(engine, ctx, &req);
2829        return err ? ERR_PTR(err) : req;
2830}
2831
2832struct drm_i915_gem_request *
2833i915_gem_find_active_request(struct intel_engine_cs *engine)
2834{
2835        struct drm_i915_gem_request *request;
2836
2837        list_for_each_entry(request, &engine->request_list, list) {
2838                if (i915_gem_request_completed(request, false))
2839                        continue;
2840
2841                return request;
2842        }
2843
2844        return NULL;
2845}
2846
2847static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2848                                       struct intel_engine_cs *engine)
2849{
2850        struct drm_i915_gem_request *request;
2851        bool ring_hung;
2852
2853        request = i915_gem_find_active_request(engine);
2854
2855        if (request == NULL)
2856                return;
2857
2858        ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2859
2860        i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2861
2862        list_for_each_entry_continue(request, &engine->request_list, list)
2863                i915_set_reset_status(dev_priv, request->ctx, false);
2864}
2865
2866static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2867                                        struct intel_engine_cs *engine)
2868{
2869        struct intel_ringbuffer *buffer;
2870
2871        while (!list_empty(&engine->active_list)) {
2872                struct drm_i915_gem_object *obj;
2873
2874                obj = list_first_entry(&engine->active_list,
2875                                       struct drm_i915_gem_object,
2876                                       engine_list[engine->id]);
2877
2878                i915_gem_object_retire__read(obj, engine->id);
2879        }
2880
2881        /*
2882         * Clear the execlists queue up before freeing the requests, as those
2883         * are the ones that keep the context and ringbuffer backing objects
2884         * pinned in place.
2885         */
2886
2887        if (i915.enable_execlists) {
2888                /* Ensure irq handler finishes or is cancelled. */
2889                tasklet_kill(&engine->irq_tasklet);
2890
2891                spin_lock_bh(&engine->execlist_lock);
2892                /* list_splice_tail_init checks for empty lists */
2893                list_splice_tail_init(&engine->execlist_queue,
2894                                      &engine->execlist_retired_req_list);
2895                spin_unlock_bh(&engine->execlist_lock);
2896
2897                intel_execlists_retire_requests(engine);
2898        }
2899
2900        /*
2901         * We must free the requests after all the corresponding objects have
2902         * been moved off active lists. Which is the same order as the normal
2903         * retire_requests function does. This is important if object hold
2904         * implicit references on things like e.g. ppgtt address spaces through
2905         * the request.
2906         */
2907        while (!list_empty(&engine->request_list)) {
2908                struct drm_i915_gem_request *request;
2909
2910                request = list_first_entry(&engine->request_list,
2911                                           struct drm_i915_gem_request,
2912                                           list);
2913
2914                i915_gem_request_retire(request);
2915        }
2916
2917        /* Having flushed all requests from all queues, we know that all
2918         * ringbuffers must now be empty. However, since we do not reclaim
2919         * all space when retiring the request (to prevent HEADs colliding
2920         * with rapid ringbuffer wraparound) the amount of available space
2921         * upon reset is less than when we start. Do one more pass over
2922         * all the ringbuffers to reset last_retired_head.
2923         */
2924        list_for_each_entry(buffer, &engine->buffers, link) {
2925                buffer->last_retired_head = buffer->tail;
2926                intel_ring_update_space(buffer);
2927        }
2928
2929        intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2930}
2931
2932void i915_gem_reset(struct drm_device *dev)
2933{
2934        struct drm_i915_private *dev_priv = dev->dev_private;
2935        struct intel_engine_cs *engine;
2936
2937        /*
2938         * Before we free the objects from the requests, we need to inspect
2939         * them for finding the guilty party. As the requests only borrow
2940         * their reference to the objects, the inspection must be done first.
2941         */
2942        for_each_engine(engine, dev_priv)
2943                i915_gem_reset_engine_status(dev_priv, engine);
2944
2945        for_each_engine(engine, dev_priv)
2946                i915_gem_reset_engine_cleanup(dev_priv, engine);
2947
2948        i915_gem_context_reset(dev);
2949
2950        i915_gem_restore_fences(dev);
2951
2952        WARN_ON(i915_verify_lists(dev));
2953}
2954
2955/**
2956 * This function clears the request list as sequence numbers are passed.
2957 */
2958void
2959i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2960{
2961        WARN_ON(i915_verify_lists(engine->dev));
2962
2963        /* Retire requests first as we use it above for the early return.
2964         * If we retire requests last, we may use a later seqno and so clear
2965         * the requests lists without clearing the active list, leading to
2966         * confusion.
2967         */
2968        while (!list_empty(&engine->request_list)) {
2969                struct drm_i915_gem_request *request;
2970
2971                request = list_first_entry(&engine->request_list,
2972                                           struct drm_i915_gem_request,
2973                                           list);
2974
2975                if (!i915_gem_request_completed(request, true))
2976                        break;
2977
2978                i915_gem_request_retire(request);
2979        }
2980
2981        /* Move any buffers on the active list that are no longer referenced
2982         * by the ringbuffer to the flushing/inactive lists as appropriate,
2983         * before we free the context associated with the requests.
2984         */
2985        while (!list_empty(&engine->active_list)) {
2986                struct drm_i915_gem_object *obj;
2987
2988                obj = list_first_entry(&engine->active_list,
2989                                       struct drm_i915_gem_object,
2990                                       engine_list[engine->id]);
2991
2992                if (!list_empty(&obj->last_read_req[engine->id]->list))
2993                        break;
2994
2995                i915_gem_object_retire__read(obj, engine->id);
2996        }
2997
2998        if (unlikely(engine->trace_irq_req &&
2999                     i915_gem_request_completed(engine->trace_irq_req, true))) {
3000                engine->irq_put(engine);
3001                i915_gem_request_assign(&engine->trace_irq_req, NULL);
3002        }
3003
3004        WARN_ON(i915_verify_lists(engine->dev));
3005}
3006
3007bool
3008i915_gem_retire_requests(struct drm_device *dev)
3009{
3010        struct drm_i915_private *dev_priv = dev->dev_private;
3011        struct intel_engine_cs *engine;
3012        bool idle = true;
3013
3014        for_each_engine(engine, dev_priv) {
3015                i915_gem_retire_requests_ring(engine);
3016                idle &= list_empty(&engine->request_list);
3017                if (i915.enable_execlists) {
3018                        spin_lock_bh(&engine->execlist_lock);
3019                        idle &= list_empty(&engine->execlist_queue);
3020                        spin_unlock_bh(&engine->execlist_lock);
3021
3022                        intel_execlists_retire_requests(engine);
3023                }
3024        }
3025
3026        if (idle)
3027                mod_delayed_work(dev_priv->wq,
3028                                   &dev_priv->mm.idle_work,
3029                                   msecs_to_jiffies(100));
3030
3031        return idle;
3032}
3033
3034static void
3035i915_gem_retire_work_handler(struct work_struct *work)
3036{
3037        struct drm_i915_private *dev_priv =
3038                container_of(work, typeof(*dev_priv), mm.retire_work.work);
3039        struct drm_device *dev = dev_priv->dev;
3040        bool idle;
3041
3042        /* Come back later if the device is busy... */
3043        idle = false;
3044        if (mutex_trylock(&dev->struct_mutex)) {
3045                idle = i915_gem_retire_requests(dev);
3046                mutex_unlock(&dev->struct_mutex);
3047        }
3048        if (!idle)
3049                queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3050                                   round_jiffies_up_relative(HZ));
3051}
3052
3053static void
3054i915_gem_idle_work_handler(struct work_struct *work)
3055{
3056        struct drm_i915_private *dev_priv =
3057                container_of(work, typeof(*dev_priv), mm.idle_work.work);
3058        struct drm_device *dev = dev_priv->dev;
3059        struct intel_engine_cs *engine;
3060
3061        for_each_engine(engine, dev_priv)
3062                if (!list_empty(&engine->request_list))
3063                        return;
3064
3065        /* we probably should sync with hangcheck here, using cancel_work_sync.
3066         * Also locking seems to be fubar here, engine->request_list is protected
3067         * by dev->struct_mutex. */
3068
3069        intel_mark_idle(dev);
3070
3071        if (mutex_trylock(&dev->struct_mutex)) {
3072                for_each_engine(engine, dev_priv)
3073                        i915_gem_batch_pool_fini(&engine->batch_pool);
3074
3075                mutex_unlock(&dev->struct_mutex);
3076        }
3077}
3078
3079/**
3080 * Ensures that an object will eventually get non-busy by flushing any required
3081 * write domains, emitting any outstanding lazy request and retiring and
3082 * completed requests.
3083 */
3084static int
3085i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3086{
3087        int i;
3088
3089        if (!obj->active)
3090                return 0;
3091
3092        for (i = 0; i < I915_NUM_ENGINES; i++) {
3093                struct drm_i915_gem_request *req;
3094
3095                req = obj->last_read_req[i];
3096                if (req == NULL)
3097                        continue;
3098
3099                if (list_empty(&req->list))
3100                        goto retire;
3101
3102                if (i915_gem_request_completed(req, true)) {
3103                        __i915_gem_request_retire__upto(req);
3104retire:
3105                        i915_gem_object_retire__read(obj, i);
3106                }
3107        }
3108
3109        return 0;
3110}
3111
3112/**
3113 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3114 * @DRM_IOCTL_ARGS: standard ioctl arguments
3115 *
3116 * Returns 0 if successful, else an error is returned with the remaining time in
3117 * the timeout parameter.
3118 *  -ETIME: object is still busy after timeout
3119 *  -ERESTARTSYS: signal interrupted the wait
3120 *  -ENONENT: object doesn't exist
3121 * Also possible, but rare:
3122 *  -EAGAIN: GPU wedged
3123 *  -ENOMEM: damn
3124 *  -ENODEV: Internal IRQ fail
3125 *  -E?: The add request failed
3126 *
3127 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3128 * non-zero timeout parameter the wait ioctl will wait for the given number of
3129 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3130 * without holding struct_mutex the object may become re-busied before this
3131 * function completes. A similar but shorter * race condition exists in the busy
3132 * ioctl
3133 */
3134int
3135i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3136{
3137        struct drm_i915_gem_wait *args = data;
3138        struct drm_i915_gem_object *obj;
3139        struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3140        int i, n = 0;
3141        int ret;
3142
3143        if (args->flags != 0)
3144                return -EINVAL;
3145
3146        ret = i915_mutex_lock_interruptible(dev);
3147        if (ret)
3148                return ret;
3149
3150        obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3151        if (&obj->base == NULL) {
3152                mutex_unlock(&dev->struct_mutex);
3153                return -ENOENT;
3154        }
3155
3156        /* Need to make sure the object gets inactive eventually. */
3157        ret = i915_gem_object_flush_active(obj);
3158        if (ret)
3159                goto out;
3160
3161        if (!obj->active)
3162                goto out;
3163
3164        /* Do this after OLR check to make sure we make forward progress polling
3165         * on this IOCTL with a timeout == 0 (like busy ioctl)
3166         */
3167        if (args->timeout_ns == 0) {
3168                ret = -ETIME;
3169                goto out;
3170        }
3171
3172        drm_gem_object_unreference(&obj->base);
3173
3174        for (i = 0; i < I915_NUM_ENGINES; i++) {
3175                if (obj->last_read_req[i] == NULL)
3176                        continue;
3177
3178                req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3179        }
3180
3181        mutex_unlock(&dev->struct_mutex);
3182
3183        for (i = 0; i < n; i++) {
3184                if (ret == 0)
3185                        ret = __i915_wait_request(req[i], true,
3186                                                  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3187                                                  to_rps_client(file));
3188                i915_gem_request_unreference__unlocked(req[i]);
3189        }
3190        return ret;
3191
3192out:
3193        drm_gem_object_unreference(&obj->base);
3194        mutex_unlock(&dev->struct_mutex);
3195        return ret;
3196}
3197
3198static int
3199__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3200                       struct intel_engine_cs *to,
3201                       struct drm_i915_gem_request *from_req,
3202                       struct drm_i915_gem_request **to_req)
3203{
3204        struct intel_engine_cs *from;
3205        int ret;
3206
3207        from = i915_gem_request_get_engine(from_req);
3208        if (to == from)
3209                return 0;
3210
3211        if (i915_gem_request_completed(from_req, true))
3212                return 0;
3213
3214        if (!i915_semaphore_is_enabled(obj->base.dev)) {
3215                struct drm_i915_private *i915 = to_i915(obj->base.dev);
3216                ret = __i915_wait_request(from_req,
3217                                          i915->mm.interruptible,
3218                                          NULL,
3219                                          &i915->rps.semaphores);
3220                if (ret)
3221                        return ret;
3222
3223                i915_gem_object_retire_request(obj, from_req);
3224        } else {
3225                int idx = intel_ring_sync_index(from, to);
3226                u32 seqno = i915_gem_request_get_seqno(from_req);
3227
3228                WARN_ON(!to_req);
3229
3230                if (seqno <= from->semaphore.sync_seqno[idx])
3231                        return 0;
3232
3233                if (*to_req == NULL) {
3234                        struct drm_i915_gem_request *req;
3235
3236                        req = i915_gem_request_alloc(to, NULL);
3237                        if (IS_ERR(req))
3238                                return PTR_ERR(req);
3239
3240                        *to_req = req;
3241                }
3242
3243                trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3244                ret = to->semaphore.sync_to(*to_req, from, seqno);
3245                if (ret)
3246                        return ret;
3247
3248                /* We use last_read_req because sync_to()
3249                 * might have just caused seqno wrap under
3250                 * the radar.
3251                 */
3252                from->semaphore.sync_seqno[idx] =
3253                        i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3254        }
3255
3256        return 0;
3257}
3258
3259/**
3260 * i915_gem_object_sync - sync an object to a ring.
3261 *
3262 * @obj: object which may be in use on another ring.
3263 * @to: ring we wish to use the object on. May be NULL.
3264 * @to_req: request we wish to use the object for. See below.
3265 *          This will be allocated and returned if a request is
3266 *          required but not passed in.
3267 *
3268 * This code is meant to abstract object synchronization with the GPU.
3269 * Calling with NULL implies synchronizing the object with the CPU
3270 * rather than a particular GPU ring. Conceptually we serialise writes
3271 * between engines inside the GPU. We only allow one engine to write
3272 * into a buffer at any time, but multiple readers. To ensure each has
3273 * a coherent view of memory, we must:
3274 *
3275 * - If there is an outstanding write request to the object, the new
3276 *   request must wait for it to complete (either CPU or in hw, requests
3277 *   on the same ring will be naturally ordered).
3278 *
3279 * - If we are a write request (pending_write_domain is set), the new
3280 *   request must wait for outstanding read requests to complete.
3281 *
3282 * For CPU synchronisation (NULL to) no request is required. For syncing with
3283 * rings to_req must be non-NULL. However, a request does not have to be
3284 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3285 * request will be allocated automatically and returned through *to_req. Note
3286 * that it is not guaranteed that commands will be emitted (because the system
3287 * might already be idle). Hence there is no need to create a request that
3288 * might never have any work submitted. Note further that if a request is
3289 * returned in *to_req, it is the responsibility of the caller to submit
3290 * that request (after potentially adding more work to it).
3291 *
3292 * Returns 0 if successful, else propagates up the lower layer error.
3293 */
3294int
3295i915_gem_object_sync(struct drm_i915_gem_object *obj,
3296                     struct intel_engine_cs *to,
3297                     struct drm_i915_gem_request **to_req)
3298{
3299        const bool readonly = obj->base.pending_write_domain == 0;
3300        struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3301        int ret, i, n;
3302
3303        if (!obj->active)
3304                return 0;
3305
3306        if (to == NULL)
3307                return i915_gem_object_wait_rendering(obj, readonly);
3308
3309        n = 0;
3310        if (readonly) {
3311                if (obj->last_write_req)
3312                        req[n++] = obj->last_write_req;
3313        } else {
3314                for (i = 0; i < I915_NUM_ENGINES; i++)
3315                        if (obj->last_read_req[i])
3316                                req[n++] = obj->last_read_req[i];
3317        }
3318        for (i = 0; i < n; i++) {
3319                ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3320                if (ret)
3321                        return ret;
3322        }
3323
3324        return 0;
3325}
3326
3327static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3328{
3329        u32 old_write_domain, old_read_domains;
3330
3331        /* Force a pagefault for domain tracking on next user access */
3332        i915_gem_release_mmap(obj);
3333
3334        if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3335                return;
3336
3337        old_read_domains = obj->base.read_domains;
3338        old_write_domain = obj->base.write_domain;
3339
3340        obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3341        obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3342
3343        trace_i915_gem_object_change_domain(obj,
3344                                            old_read_domains,
3345                                            old_write_domain);
3346}
3347
3348static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3349{
3350        struct drm_i915_gem_object *obj = vma->obj;
3351        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3352        int ret;
3353
3354        if (list_empty(&vma->obj_link))
3355                return 0;
3356
3357        if (!drm_mm_node_allocated(&vma->node)) {
3358                i915_gem_vma_destroy(vma);
3359                return 0;
3360        }
3361
3362        if (vma->pin_count)
3363                return -EBUSY;
3364
3365        BUG_ON(obj->pages == NULL);
3366
3367        if (wait) {
3368                ret = i915_gem_object_wait_rendering(obj, false);
3369                if (ret)
3370                        return ret;
3371        }
3372
3373        if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3374                i915_gem_object_finish_gtt(obj);
3375
3376                /* release the fence reg _after_ flushing */
3377                ret = i915_gem_object_put_fence(obj);
3378                if (ret)
3379                        return ret;
3380        }
3381
3382        trace_i915_vma_unbind(vma);
3383
3384        vma->vm->unbind_vma(vma);
3385        vma->bound = 0;
3386
3387        list_del_init(&vma->vm_link);
3388        if (vma->is_ggtt) {
3389                if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3390                        obj->map_and_fenceable = false;
3391                } else if (vma->ggtt_view.pages) {
3392                        sg_free_table(vma->ggtt_view.pages);
3393                        kfree(vma->ggtt_view.pages);
3394                }
3395                vma->ggtt_view.pages = NULL;
3396        }
3397
3398        drm_mm_remove_node(&vma->node);
3399        i915_gem_vma_destroy(vma);
3400
3401        /* Since the unbound list is global, only move to that list if
3402         * no more VMAs exist. */
3403        if (list_empty(&obj->vma_list))
3404                list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3405
3406        /* And finally now the object is completely decoupled from this vma,
3407         * we can drop its hold on the backing storage and allow it to be
3408         * reaped by the shrinker.
3409         */
3410        i915_gem_object_unpin_pages(obj);
3411
3412        return 0;
3413}
3414
3415int i915_vma_unbind(struct i915_vma *vma)
3416{
3417        return __i915_vma_unbind(vma, true);
3418}
3419
3420int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3421{
3422        return __i915_vma_unbind(vma, false);
3423}
3424
3425int i915_gpu_idle(struct drm_device *dev)
3426{
3427        struct drm_i915_private *dev_priv = dev->dev_private;
3428        struct intel_engine_cs *engine;
3429        int ret;
3430
3431        /* Flush everything onto the inactive list. */
3432        for_each_engine(engine, dev_priv) {
3433                if (!i915.enable_execlists) {
3434                        struct drm_i915_gem_request *req;
3435
3436                        req = i915_gem_request_alloc(engine, NULL);
3437                        if (IS_ERR(req))
3438                                return PTR_ERR(req);
3439
3440                        ret = i915_switch_context(req);
3441                        i915_add_request_no_flush(req);
3442                        if (ret)
3443                                return ret;
3444                }
3445
3446                ret = intel_engine_idle(engine);
3447                if (ret)
3448                        return ret;
3449        }
3450
3451        WARN_ON(i915_verify_lists(dev));
3452        return 0;
3453}
3454
3455static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3456                                     unsigned long cache_level)
3457{
3458        struct drm_mm_node *gtt_space = &vma->node;
3459        struct drm_mm_node *other;
3460
3461        /*
3462         * On some machines we have to be careful when putting differing types
3463         * of snoopable memory together to avoid the prefetcher crossing memory
3464         * domains and dying. During vm initialisation, we decide whether or not
3465         * these constraints apply and set the drm_mm.color_adjust
3466         * appropriately.
3467         */
3468        if (vma->vm->mm.color_adjust == NULL)
3469                return true;
3470
3471        if (!drm_mm_node_allocated(gtt_space))
3472                return true;
3473
3474        if (list_empty(&gtt_space->node_list))
3475                return true;
3476
3477        other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3478        if (other->allocated && !other->hole_follows && other->color != cache_level)
3479                return false;
3480
3481        other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3482        if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3483                return false;
3484
3485        return true;
3486}
3487
3488/**
3489 * Finds free space in the GTT aperture and binds the object or a view of it
3490 * there.
3491 */
3492static struct i915_vma *
3493i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3494                           struct i915_address_space *vm,
3495                           const struct i915_ggtt_view *ggtt_view,
3496                           unsigned alignment,
3497                           uint64_t flags)
3498{
3499        struct drm_device *dev = obj->base.dev;
3500        struct drm_i915_private *dev_priv = to_i915(dev);
3501        struct i915_ggtt *ggtt = &dev_priv->ggtt;
3502        u32 fence_alignment, unfenced_alignment;
3503        u32 search_flag, alloc_flag;
3504        u64 start, end;
3505        u64 size, fence_size;
3506        struct i915_vma *vma;
3507        int ret;
3508
3509        if (i915_is_ggtt(vm)) {
3510                u32 view_size;
3511
3512                if (WARN_ON(!ggtt_view))
3513                        return ERR_PTR(-EINVAL);
3514
3515                view_size = i915_ggtt_view_size(obj, ggtt_view);
3516
3517                fence_size = i915_gem_get_gtt_size(dev,
3518                                                   view_size,
3519                                                   obj->tiling_mode);
3520                fence_alignment = i915_gem_get_gtt_alignment(dev,
3521                                                             view_size,
3522                                                             obj->tiling_mode,
3523                                                             true);
3524                unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3525                                                                view_size,
3526                                                                obj->tiling_mode,
3527                                                                false);
3528                size = flags & PIN_MAPPABLE ? fence_size : view_size;
3529        } else {
3530                fence_size = i915_gem_get_gtt_size(dev,
3531                                                   obj->base.size,
3532                                                   obj->tiling_mode);
3533                fence_alignment = i915_gem_get_gtt_alignment(dev,
3534                                                             obj->base.size,
3535                                                             obj->tiling_mode,
3536                                                             true);
3537                unfenced_alignment =
3538                        i915_gem_get_gtt_alignment(dev,
3539                                                   obj->base.size,
3540                                                   obj->tiling_mode,
3541                                                   false);
3542                size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3543        }
3544
3545        start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3546        end = vm->total;
3547        if (flags & PIN_MAPPABLE)
3548                end = min_t(u64, end, ggtt->mappable_end);
3549        if (flags & PIN_ZONE_4G)
3550                end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3551
3552        if (alignment == 0)
3553                alignment = flags & PIN_MAPPABLE ? fence_alignment :
3554                                                unfenced_alignment;
3555        if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3556                DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3557                          ggtt_view ? ggtt_view->type : 0,
3558                          alignment);
3559                return ERR_PTR(-EINVAL);
3560        }
3561
3562        /* If binding the object/GGTT view requires more space than the entire
3563         * aperture has, reject it early before evicting everything in a vain
3564         * attempt to find space.
3565         */
3566        if (size > end) {
3567                DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3568                          ggtt_view ? ggtt_view->type : 0,
3569                          size,
3570                          flags & PIN_MAPPABLE ? "mappable" : "total",
3571                          end);
3572                return ERR_PTR(-E2BIG);
3573        }
3574
3575        ret = i915_gem_object_get_pages(obj);
3576        if (ret)
3577                return ERR_PTR(ret);
3578
3579        i915_gem_object_pin_pages(obj);
3580
3581        vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3582                          i915_gem_obj_lookup_or_create_vma(obj, vm);
3583
3584        if (IS_ERR(vma))
3585                goto err_unpin;
3586
3587        if (flags & PIN_OFFSET_FIXED) {
3588                uint64_t offset = flags & PIN_OFFSET_MASK;
3589
3590                if (offset & (alignment - 1) || offset + size > end) {
3591                        ret = -EINVAL;
3592                        goto err_free_vma;
3593                }
3594                vma->node.start = offset;
3595                vma->node.size = size;
3596                vma->node.color = obj->cache_level;
3597                ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3598                if (ret) {
3599                        ret = i915_gem_evict_for_vma(vma);
3600                        if (ret == 0)
3601                                ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3602                }
3603                if (ret)
3604                        goto err_free_vma;
3605        } else {
3606                if (flags & PIN_HIGH) {
3607                        search_flag = DRM_MM_SEARCH_BELOW;
3608                        alloc_flag = DRM_MM_CREATE_TOP;
3609                } else {
3610                        search_flag = DRM_MM_SEARCH_DEFAULT;
3611                        alloc_flag = DRM_MM_CREATE_DEFAULT;
3612                }
3613
3614search_free:
3615                ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3616                                                          size, alignment,
3617                                                          obj->cache_level,
3618                                                          start, end,
3619                                                          search_flag,
3620                                                          alloc_flag);
3621                if (ret) {
3622                        ret = i915_gem_evict_something(dev, vm, size, alignment,
3623                                                       obj->cache_level,
3624                                                       start, end,
3625                                                       flags);
3626                        if (ret == 0)
3627                                goto search_free;
3628
3629                        goto err_free_vma;
3630                }
3631        }
3632        if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3633                ret = -EINVAL;
3634                goto err_remove_node;
3635        }
3636
3637        trace_i915_vma_bind(vma, flags);
3638        ret = i915_vma_bind(vma, obj->cache_level, flags);
3639        if (ret)
3640                goto err_remove_node;
3641
3642        list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3643        list_add_tail(&vma->vm_link, &vm->inactive_list);
3644
3645        return vma;
3646
3647err_remove_node:
3648        drm_mm_remove_node(&vma->node);
3649err_free_vma:
3650        i915_gem_vma_destroy(vma);
3651        vma = ERR_PTR(ret);
3652err_unpin:
3653        i915_gem_object_unpin_pages(obj);
3654        return vma;
3655}
3656
3657bool
3658i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3659                        bool force)
3660{
3661        /* If we don't have a page list set up, then we're not pinned
3662         * to GPU, and we can ignore the cache flush because it'll happen
3663         * again at bind time.
3664         */
3665        if (obj->pages == NULL)
3666                return false;
3667
3668        /*
3669         * Stolen memory is always coherent with the GPU as it is explicitly
3670         * marked as wc by the system, or the system is cache-coherent.
3671         */
3672        if (obj->stolen || obj->phys_handle)
3673                return false;
3674
3675        /* If the GPU is snooping the contents of the CPU cache,
3676         * we do not need to manually clear the CPU cache lines.  However,
3677         * the caches are only snooped when the render cache is
3678         * flushed/invalidated.  As we always have to emit invalidations
3679         * and flushes when moving into and out of the RENDER domain, correct
3680         * snooping behaviour occurs naturally as the result of our domain
3681         * tracking.
3682         */
3683        if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3684                obj->cache_dirty = true;
3685                return false;
3686        }
3687
3688        trace_i915_gem_object_clflush(obj);
3689        drm_clflush_sg(obj->pages);
3690        obj->cache_dirty = false;
3691
3692        return true;
3693}
3694
3695/** Flushes the GTT write domain for the object if it's dirty. */
3696static void
3697i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3698{
3699        uint32_t old_write_domain;
3700
3701        if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3702                return;
3703
3704        /* No actual flushing is required for the GTT write domain.  Writes
3705         * to it immediately go to main memory as far as we know, so there's
3706         * no chipset flush.  It also doesn't land in render cache.
3707         *
3708         * However, we do have to enforce the order so that all writes through
3709         * the GTT land before any writes to the device, such as updates to
3710         * the GATT itself.
3711         */
3712        wmb();
3713
3714        old_write_domain = obj->base.write_domain;
3715        obj->base.write_domain = 0;
3716
3717        intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3718
3719        trace_i915_gem_object_change_domain(obj,
3720                                            obj->base.read_domains,
3721                                            old_write_domain);
3722}
3723
3724/** Flushes the CPU write domain for the object if it's dirty. */
3725static void
3726i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3727{
3728        uint32_t old_write_domain;
3729
3730        if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3731                return;
3732
3733        if (i915_gem_clflush_object(obj, obj->pin_display))
3734                i915_gem_chipset_flush(obj->base.dev);
3735
3736        old_write_domain = obj->base.write_domain;
3737        obj->base.write_domain = 0;
3738
3739        intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3740
3741        trace_i915_gem_object_change_domain(obj,
3742                                            obj->base.read_domains,
3743                                            old_write_domain);
3744}
3745
3746/**
3747 * Moves a single object to the GTT read, and possibly write domain.
3748 *
3749 * This function returns when the move is complete, including waiting on
3750 * flushes to occur.
3751 */
3752int
3753i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3754{
3755        struct drm_device *dev = obj->base.dev;
3756        struct drm_i915_private *dev_priv = to_i915(dev);
3757        struct i915_ggtt *ggtt = &dev_priv->ggtt;
3758        uint32_t old_write_domain, old_read_domains;
3759        struct i915_vma *vma;
3760        int ret;
3761
3762        if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3763                return 0;
3764
3765        ret = i915_gem_object_wait_rendering(obj, !write);
3766        if (ret)
3767                return ret;
3768
3769        /* Flush and acquire obj->pages so that we are coherent through
3770         * direct access in memory with previous cached writes through
3771         * shmemfs and that our cache domain tracking remains valid.
3772         * For example, if the obj->filp was moved to swap without us
3773         * being notified and releasing the pages, we would mistakenly
3774         * continue to assume that the obj remained out of the CPU cached
3775         * domain.
3776         */
3777        ret = i915_gem_object_get_pages(obj);
3778        if (ret)
3779                return ret;
3780
3781        i915_gem_object_flush_cpu_write_domain(obj);
3782
3783        /* Serialise direct access to this object with the barriers for
3784         * coherent writes from the GPU, by effectively invalidating the
3785         * GTT domain upon first access.
3786         */
3787        if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3788                mb();
3789
3790        old_write_domain = obj->base.write_domain;
3791        old_read_domains = obj->base.read_domains;
3792
3793        /* It should now be out of any other write domains, and we can update
3794         * the domain values for our changes.
3795         */
3796        BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3797        obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3798        if (write) {
3799                obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3800                obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3801                obj->dirty = 1;
3802        }
3803
3804        trace_i915_gem_object_change_domain(obj,
3805                                            old_read_domains,
3806                                            old_write_domain);
3807
3808        /* And bump the LRU for this access */
3809        vma = i915_gem_obj_to_ggtt(obj);
3810        if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3811                list_move_tail(&vma->vm_link,
3812                               &ggtt->base.inactive_list);
3813
3814        return 0;
3815}
3816
3817/**
3818 * Changes the cache-level of an object across all VMA.
3819 *
3820 * After this function returns, the object will be in the new cache-level
3821 * across all GTT and the contents of the backing storage will be coherent,
3822 * with respect to the new cache-level. In order to keep the backing storage
3823 * coherent for all users, we only allow a single cache level to be set
3824 * globally on the object and prevent it from being changed whilst the
3825 * hardware is reading from the object. That is if the object is currently
3826 * on the scanout it will be set to uncached (or equivalent display
3827 * cache coherency) and all non-MOCS GPU access will also be uncached so
3828 * that all direct access to the scanout remains coherent.
3829 */
3830int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3831                                    enum i915_cache_level cache_level)
3832{
3833        struct drm_device *dev = obj->base.dev;
3834        struct i915_vma *vma, *next;
3835        bool bound = false;
3836        int ret = 0;
3837
3838        if (obj->cache_level == cache_level)
3839                goto out;
3840
3841        /* Inspect the list of currently bound VMA and unbind any that would
3842         * be invalid given the new cache-level. This is principally to
3843         * catch the issue of the CS prefetch crossing page boundaries and
3844         * reading an invalid PTE on older architectures.
3845         */
3846        list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3847                if (!drm_mm_node_allocated(&vma->node))
3848                        continue;
3849
3850                if (vma->pin_count) {
3851                        DRM_DEBUG("can not change the cache level of pinned objects\n");
3852                        return -EBUSY;
3853                }
3854
3855                if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3856                        ret = i915_vma_unbind(vma);
3857                        if (ret)
3858                                return ret;
3859                } else
3860                        bound = true;
3861        }
3862
3863        /* We can reuse the existing drm_mm nodes but need to change the
3864         * cache-level on the PTE. We could simply unbind them all and
3865         * rebind with the correct cache-level on next use. However since
3866         * we already have a valid slot, dma mapping, pages etc, we may as
3867         * rewrite the PTE in the belief that doing so tramples upon less
3868         * state and so involves less work.
3869         */
3870        if (bound) {
3871                /* Before we change the PTE, the GPU must not be accessing it.
3872                 * If we wait upon the object, we know that all the bound
3873                 * VMA are no longer active.
3874                 */
3875                ret = i915_gem_object_wait_rendering(obj, false);
3876                if (ret)
3877                        return ret;
3878
3879                if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3880                        /* Access to snoopable pages through the GTT is
3881                         * incoherent and on some machines causes a hard
3882                         * lockup. Relinquish the CPU mmaping to force
3883                         * userspace to refault in the pages and we can
3884                         * then double check if the GTT mapping is still
3885                         * valid for that pointer access.
3886                         */
3887                        i915_gem_release_mmap(obj);
3888
3889                        /* As we no longer need a fence for GTT access,
3890                         * we can relinquish it now (and so prevent having
3891                         * to steal a fence from someone else on the next
3892                         * fence request). Note GPU activity would have
3893                         * dropped the fence as all snoopable access is
3894                         * supposed to be linear.
3895                         */
3896                        ret = i915_gem_object_put_fence(obj);
3897                        if (ret)
3898                                return ret;
3899                } else {
3900                        /* We either have incoherent backing store and
3901                         * so no GTT access or the architecture is fully
3902                         * coherent. In such cases, existing GTT mmaps
3903                         * ignore the cache bit in the PTE and we can
3904                         * rewrite it without confusing the GPU or having
3905                         * to force userspace to fault back in its mmaps.
3906                         */
3907                }
3908
3909                list_for_each_entry(vma, &obj->vma_list, obj_link) {
3910                        if (!drm_mm_node_allocated(&vma->node))
3911                                continue;
3912
3913                        ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3914                        if (ret)
3915                                return ret;
3916                }
3917        }
3918
3919        list_for_each_entry(vma, &obj->vma_list, obj_link)
3920                vma->node.color = cache_level;
3921        obj->cache_level = cache_level;
3922
3923out:
3924        /* Flush the dirty CPU caches to the backing storage so that the
3925         * object is now coherent at its new cache level (with respect
3926         * to the access domain).
3927         */
3928        if (obj->cache_dirty &&
3929            obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3930            cpu_write_needs_clflush(obj)) {
3931                if (i915_gem_clflush_object(obj, true))
3932                        i915_gem_chipset_flush(obj->base.dev);
3933        }
3934
3935        return 0;
3936}
3937
3938int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3939                               struct drm_file *file)
3940{
3941        struct drm_i915_gem_caching *args = data;
3942        struct drm_i915_gem_object *obj;
3943
3944        obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3945        if (&obj->base == NULL)
3946                return -ENOENT;
3947
3948        switch (obj->cache_level) {
3949        case I915_CACHE_LLC:
3950        case I915_CACHE_L3_LLC:
3951                args->caching = I915_CACHING_CACHED;
3952                break;
3953
3954        case I915_CACHE_WT:
3955                args->caching = I915_CACHING_DISPLAY;
3956                break;
3957
3958        default:
3959                args->caching = I915_CACHING_NONE;
3960                break;
3961        }
3962
3963        drm_gem_object_unreference_unlocked(&obj->base);
3964        return 0;
3965}
3966
3967int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3968                               struct drm_file *file)
3969{
3970        struct drm_i915_private *dev_priv = dev->dev_private;
3971        struct drm_i915_gem_caching *args = data;
3972        struct drm_i915_gem_object *obj;
3973        enum i915_cache_level level;
3974        int ret;
3975
3976        switch (args->caching) {
3977        case I915_CACHING_NONE:
3978                level = I915_CACHE_NONE;
3979                break;
3980        case I915_CACHING_CACHED:
3981                /*
3982                 * Due to a HW issue on BXT A stepping, GPU stores via a
3983                 * snooped mapping may leave stale data in a corresponding CPU
3984                 * cacheline, whereas normally such cachelines would get
3985                 * invalidated.
3986                 */
3987                if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3988                        return -ENODEV;
3989
3990                level = I915_CACHE_LLC;
3991                break;
3992        case I915_CACHING_DISPLAY:
3993                level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3994                break;
3995        default:
3996                return -EINVAL;
3997        }
3998
3999        intel_runtime_pm_get(dev_priv);
4000
4001        ret = i915_mutex_lock_interruptible(dev);
4002        if (ret)
4003                goto rpm_put;
4004
4005        obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4006        if (&obj->base == NULL) {
4007                ret = -ENOENT;
4008                goto unlock;
4009        }
4010
4011        ret = i915_gem_object_set_cache_level(obj, level);
4012
4013        drm_gem_object_unreference(&obj->base);
4014unlock:
4015        mutex_unlock(&dev->struct_mutex);
4016rpm_put:
4017        intel_runtime_pm_put(dev_priv);
4018
4019        return ret;
4020}
4021
4022/*
4023 * Prepare buffer for display plane (scanout, cursors, etc).
4024 * Can be called from an uninterruptible phase (modesetting) and allows
4025 * any flushes to be pipelined (for pageflips).
4026 */
4027int
4028i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4029                                     u32 alignment,
4030                                     const struct i915_ggtt_view *view)
4031{
4032        u32 old_read_domains, old_write_domain;
4033        int ret;
4034
4035        /* Mark the pin_display early so that we account for the
4036         * display coherency whilst setting up the cache domains.
4037         */
4038        obj->pin_display++;
4039
4040        /* The display engine is not coherent with the LLC cache on gen6.  As
4041         * a result, we make sure that the pinning that is about to occur is
4042         * done with uncached PTEs. This is lowest common denominator for all
4043         * chipsets.
4044         *
4045         * However for gen6+, we could do better by using the GFDT bit instead
4046         * of uncaching, which would allow us to flush all the LLC-cached data
4047         * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4048         */
4049        ret = i915_gem_object_set_cache_level(obj,
4050                                              HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4051        if (ret)
4052                goto err_unpin_display;
4053
4054        /* As the user may map the buffer once pinned in the display plane
4055         * (e.g. libkms for the bootup splash), we have to ensure that we
4056         * always use map_and_fenceable for all scanout buffers.
4057         */
4058        ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4059                                       view->type == I915_GGTT_VIEW_NORMAL ?
4060                                       PIN_MAPPABLE : 0);
4061        if (ret)
4062                goto err_unpin_display;
4063
4064        i915_gem_object_flush_cpu_write_domain(obj);
4065
4066        old_write_domain = obj->base.write_domain;
4067        old_read_domains = obj->base.read_domains;
4068
4069        /* It should now be out of any other write domains, and we can update
4070         * the domain values for our changes.
4071         */
4072        obj->base.write_domain = 0;
4073        obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4074
4075        trace_i915_gem_object_change_domain(obj,
4076                                            old_read_domains,
4077                                            old_write_domain);
4078
4079        return 0;
4080
4081err_unpin_display:
4082        obj->pin_display--;
4083        return ret;
4084}
4085
4086void
4087i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4088                                         const struct i915_ggtt_view *view)
4089{
4090        if (WARN_ON(obj->pin_display == 0))
4091                return;
4092
4093        i915_gem_object_ggtt_unpin_view(obj, view);
4094
4095        obj->pin_display--;
4096}
4097
4098/**
4099 * Moves a single object to the CPU read, and possibly write domain.
4100 *
4101 * This function returns when the move is complete, including waiting on
4102 * flushes to occur.
4103 */
4104int
4105i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4106{
4107        uint32_t old_write_domain, old_read_domains;
4108        int ret;
4109
4110        if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4111                return 0;
4112
4113        ret = i915_gem_object_wait_rendering(obj, !write);
4114        if (ret)
4115                return ret;
4116
4117        i915_gem_object_flush_gtt_write_domain(obj);
4118
4119        old_write_domain = obj->base.write_domain;
4120        old_read_domains = obj->base.read_domains;
4121
4122        /* Flush the CPU cache if it's still invalid. */
4123        if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4124                i915_gem_clflush_object(obj, false);
4125
4126                obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4127        }
4128
4129        /* It should now be out of any other write domains, and we can update
4130         * the domain values for our changes.
4131         */
4132        BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4133
4134        /* If we're writing through the CPU, then the GPU read domains will
4135         * need to be invalidated at next use.
4136         */
4137        if (write) {
4138                obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4139                obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4140        }
4141
4142        trace_i915_gem_object_change_domain(obj,
4143                                            old_read_domains,
4144                                            old_write_domain);
4145
4146        return 0;
4147}
4148
4149/* Throttle our rendering by waiting until the ring has completed our requests
4150 * emitted over 20 msec ago.
4151 *
4152 * Note that if we were to use the current jiffies each time around the loop,
4153 * we wouldn't escape the function with any frames outstanding if the time to
4154 * render a frame was over 20ms.
4155 *
4156 * This should get us reasonable parallelism between CPU and GPU but also
4157 * relatively low latency when blocking on a particular request to finish.
4158 */
4159static int
4160i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4161{
4162        struct drm_i915_private *dev_priv = dev->dev_private;
4163        struct drm_i915_file_private *file_priv = file->driver_priv;
4164        unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4165        struct drm_i915_gem_request *request, *target = NULL;
4166        int ret;
4167
4168        ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4169        if (ret)
4170                return ret;
4171
4172        /* ABI: return -EIO if already wedged */
4173        if (i915_terminally_wedged(&dev_priv->gpu_error))
4174                return -EIO;
4175
4176        spin_lock(&file_priv->mm.lock);
4177        list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4178                if (time_after_eq(request->emitted_jiffies, recent_enough))
4179                        break;
4180
4181                /*
4182                 * Note that the request might not have been submitted yet.
4183                 * In which case emitted_jiffies will be zero.
4184                 */
4185                if (!request->emitted_jiffies)
4186                        continue;
4187
4188                target = request;
4189        }
4190        if (target)
4191                i915_gem_request_reference(target);
4192        spin_unlock(&file_priv->mm.lock);
4193
4194        if (target == NULL)
4195                return 0;
4196
4197        ret = __i915_wait_request(target, true, NULL, NULL);
4198        if (ret == 0)
4199                queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4200
4201        i915_gem_request_unreference__unlocked(target);
4202
4203        return ret;
4204}
4205
4206static bool
4207i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4208{
4209        struct drm_i915_gem_object *obj = vma->obj;
4210
4211        if (alignment &&
4212            vma->node.start & (alignment - 1))
4213                return true;
4214
4215        if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4216                return true;
4217
4218        if (flags & PIN_OFFSET_BIAS &&
4219            vma->node.start < (flags & PIN_OFFSET_MASK))
4220                return true;
4221
4222        if (flags & PIN_OFFSET_FIXED &&
4223            vma->node.start != (flags & PIN_OFFSET_MASK))
4224                return true;
4225
4226        return false;
4227}
4228
4229void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4230{
4231        struct drm_i915_gem_object *obj = vma->obj;
4232        bool mappable, fenceable;
4233        u32 fence_size, fence_alignment;
4234
4235        fence_size = i915_gem_get_gtt_size(obj->base.dev,
4236                                           obj->base.size,
4237                                           obj->tiling_mode);
4238        fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4239                                                     obj->base.size,
4240                                                     obj->tiling_mode,
4241                                                     true);
4242
4243        fenceable = (vma->node.size == fence_size &&
4244                     (vma->node.start & (fence_alignment - 1)) == 0);
4245
4246        mappable = (vma->node.start + fence_size <=
4247                    to_i915(obj->base.dev)->ggtt.mappable_end);
4248
4249        obj->map_and_fenceable = mappable && fenceable;
4250}
4251
4252static int
4253i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4254                       struct i915_address_space *vm,
4255                       const struct i915_ggtt_view *ggtt_view,
4256                       uint32_t alignment,
4257                       uint64_t flags)
4258{
4259        struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4260        struct i915_vma *vma;
4261        unsigned bound;
4262        int ret;
4263
4264        if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4265                return -ENODEV;
4266
4267        if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4268                return -EINVAL;
4269
4270        if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4271                return -EINVAL;
4272
4273        if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4274                return -EINVAL;
4275
4276        vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4277                          i915_gem_obj_to_vma(obj, vm);
4278
4279        if (vma) {
4280                if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4281                        return -EBUSY;
4282
4283                if (i915_vma_misplaced(vma, alignment, flags)) {
4284                        WARN(vma->pin_count,
4285                             "bo is already pinned in %s with incorrect alignment:"
4286                             " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4287                             " obj->map_and_fenceable=%d\n",
4288                             ggtt_view ? "ggtt" : "ppgtt",
4289                             upper_32_bits(vma->node.start),
4290                             lower_32_bits(vma->node.start),
4291                             alignment,
4292                             !!(flags & PIN_MAPPABLE),
4293                             obj->map_and_fenceable);
4294                        ret = i915_vma_unbind(vma);
4295                        if (ret)
4296                                return ret;
4297
4298                        vma = NULL;
4299                }
4300        }
4301
4302        bound = vma ? vma->bound : 0;
4303        if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4304                vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4305                                                 flags);
4306                if (IS_ERR(vma))
4307                        return PTR_ERR(vma);
4308        } else {
4309                ret = i915_vma_bind(vma, obj->cache_level, flags);
4310                if (ret)
4311                        return ret;
4312        }
4313
4314        if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4315            (bound ^ vma->bound) & GLOBAL_BIND) {
4316                __i915_vma_set_map_and_fenceable(vma);
4317                WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4318        }
4319
4320        vma->pin_count++;
4321        return 0;
4322}
4323
4324int
4325i915_gem_object_pin(struct drm_i915_gem_object *obj,
4326                    struct i915_address_space *vm,
4327                    uint32_t alignment,
4328                    uint64_t flags)
4329{
4330        return i915_gem_object_do_pin(obj, vm,
4331                                      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4332                                      alignment, flags);
4333}
4334
4335int
4336i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4337                         const struct i915_ggtt_view *view,
4338                         uint32_t alignment,
4339                         uint64_t flags)
4340{
4341        struct drm_device *dev = obj->base.dev;
4342        struct drm_i915_private *dev_priv = to_i915(dev);
4343        struct i915_ggtt *ggtt = &dev_priv->ggtt;
4344
4345        BUG_ON(!view);
4346
4347        return i915_gem_object_do_pin(obj, &ggtt->base, view,
4348                                      alignment, flags | PIN_GLOBAL);
4349}
4350
4351void
4352i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4353                                const struct i915_ggtt_view *view)
4354{
4355        struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4356
4357        WARN_ON(vma->pin_count == 0);
4358        WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4359
4360        --vma->pin_count;
4361}
4362
4363int
4364i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4365                    struct drm_file *file)
4366{
4367        struct drm_i915_gem_busy *args = data;
4368        struct drm_i915_gem_object *obj;
4369        int ret;
4370
4371        ret = i915_mutex_lock_interruptible(dev);
4372        if (ret)
4373                return ret;
4374
4375        obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4376        if (&obj->base == NULL) {
4377                ret = -ENOENT;
4378                goto unlock;
4379        }
4380
4381        /* Count all active objects as busy, even if they are currently not used
4382         * by the gpu. Users of this interface expect objects to eventually
4383         * become non-busy without any further actions, therefore emit any
4384         * necessary flushes here.
4385         */
4386        ret = i915_gem_object_flush_active(obj);
4387        if (ret)
4388                goto unref;
4389
4390        args->busy = 0;
4391        if (obj->active) {
4392                int i;
4393
4394                for (i = 0; i < I915_NUM_ENGINES; i++) {
4395                        struct drm_i915_gem_request *req;
4396
4397                        req = obj->last_read_req[i];
4398                        if (req)
4399                                args->busy |= 1 << (16 + req->engine->exec_id);
4400                }
4401                if (obj->last_write_req)
4402                        args->busy |= obj->last_write_req->engine->exec_id;
4403        }
4404
4405unref:
4406        drm_gem_object_unreference(&obj->base);
4407unlock:
4408        mutex_unlock(&dev->struct_mutex);
4409        return ret;
4410}
4411
4412int
4413i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4414                        struct drm_file *file_priv)
4415{
4416        return i915_gem_ring_throttle(dev, file_priv);
4417}
4418
4419int
4420i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4421                       struct drm_file *file_priv)
4422{
4423        struct drm_i915_private *dev_priv = dev->dev_private;
4424        struct drm_i915_gem_madvise *args = data;
4425        struct drm_i915_gem_object *obj;
4426        int ret;
4427
4428        switch (args->madv) {
4429        case I915_MADV_DONTNEED:
4430        case I915_MADV_WILLNEED:
4431            break;
4432        default:
4433            return -EINVAL;
4434        }
4435
4436        ret = i915_mutex_lock_interruptible(dev);
4437        if (ret)
4438                return ret;
4439
4440        obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4441        if (&obj->base == NULL) {
4442                ret = -ENOENT;
4443                goto unlock;
4444        }
4445
4446        if (i915_gem_obj_is_pinned(obj)) {
4447                ret = -EINVAL;
4448                goto out;
4449        }
4450
4451        if (obj->pages &&
4452            obj->tiling_mode != I915_TILING_NONE &&
4453            dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4454                if (obj->madv == I915_MADV_WILLNEED)
4455                        i915_gem_object_unpin_pages(obj);
4456                if (args->madv == I915_MADV_WILLNEED)
4457                        i915_gem_object_pin_pages(obj);
4458        }
4459
4460        if (obj->madv != __I915_MADV_PURGED)
4461                obj->madv = args->madv;
4462
4463        /* if the object is no longer attached, discard its backing storage */
4464        if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4465                i915_gem_object_truncate(obj);
4466
4467        args->retained = obj->madv != __I915_MADV_PURGED;
4468
4469out:
4470        drm_gem_object_unreference(&obj->base);
4471unlock:
4472        mutex_unlock(&dev->struct_mutex);
4473        return ret;
4474}
4475
4476void i915_gem_object_init(struct drm_i915_gem_object *obj,
4477                          const struct drm_i915_gem_object_ops *ops)
4478{
4479        int i;
4480
4481        INIT_LIST_HEAD(&obj->global_list);
4482        for (i = 0; i < I915_NUM_ENGINES; i++)
4483                INIT_LIST_HEAD(&obj->engine_list[i]);
4484        INIT_LIST_HEAD(&obj->obj_exec_link);
4485        INIT_LIST_HEAD(&obj->vma_list);
4486        INIT_LIST_HEAD(&obj->batch_pool_link);
4487
4488        obj->ops = ops;
4489
4490        obj->fence_reg = I915_FENCE_REG_NONE;
4491        obj->madv = I915_MADV_WILLNEED;
4492
4493        i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4494}
4495
4496static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4497        .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4498        .get_pages = i915_gem_object_get_pages_gtt,
4499        .put_pages = i915_gem_object_put_pages_gtt,
4500};
4501
4502struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4503                                                  size_t size)
4504{
4505        struct drm_i915_gem_object *obj;
4506        struct address_space *mapping;
4507        gfp_t mask;
4508
4509        obj = i915_gem_object_alloc(dev);
4510        if (obj == NULL)
4511                return NULL;
4512
4513        if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4514                i915_gem_object_free(obj);
4515                return NULL;
4516        }
4517
4518        mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4519        if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4520                /* 965gm cannot relocate objects above 4GiB. */
4521                mask &= ~__GFP_HIGHMEM;
4522                mask |= __GFP_DMA32;
4523        }
4524
4525        mapping = file_inode(obj->base.filp)->i_mapping;
4526        mapping_set_gfp_mask(mapping, mask);
4527
4528        i915_gem_object_init(obj, &i915_gem_object_ops);
4529
4530        obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4531        obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4532
4533        if (HAS_LLC(dev)) {
4534                /* On some devices, we can have the GPU use the LLC (the CPU
4535                 * cache) for about a 10% performance improvement
4536                 * compared to uncached.  Graphics requests other than
4537                 * display scanout are coherent with the CPU in
4538                 * accessing this cache.  This means in this mode we
4539                 * don't need to clflush on the CPU side, and on the
4540                 * GPU side we only need to flush internal caches to
4541                 * get data visible to the CPU.
4542                 *
4543                 * However, we maintain the display planes as UC, and so
4544                 * need to rebind when first used as such.
4545                 */
4546                obj->cache_level = I915_CACHE_LLC;
4547        } else
4548                obj->cache_level = I915_CACHE_NONE;
4549
4550        trace_i915_gem_object_create(obj);
4551
4552        return obj;
4553}
4554
4555static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4556{
4557        /* If we are the last user of the backing storage (be it shmemfs
4558         * pages or stolen etc), we know that the pages are going to be
4559         * immediately released. In this case, we can then skip copying
4560         * back the contents from the GPU.
4561         */
4562
4563        if (obj->madv != I915_MADV_WILLNEED)
4564                return false;
4565
4566        if (obj->base.filp == NULL)
4567                return true;
4568
4569        /* At first glance, this looks racy, but then again so would be
4570         * userspace racing mmap against close. However, the first external
4571         * reference to the filp can only be obtained through the
4572         * i915_gem_mmap_ioctl() which safeguards us against the user
4573         * acquiring such a reference whilst we are in the middle of
4574         * freeing the object.
4575         */
4576        return atomic_long_read(&obj->base.filp->f_count) == 1;
4577}
4578
4579void i915_gem_free_object(struct drm_gem_object *gem_obj)
4580{
4581        struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4582        struct drm_device *dev = obj->base.dev;
4583        struct drm_i915_private *dev_priv = dev->dev_private;
4584        struct i915_vma *vma, *next;
4585
4586        intel_runtime_pm_get(dev_priv);
4587
4588        trace_i915_gem_object_destroy(obj);
4589
4590        list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4591                int ret;
4592
4593                vma->pin_count = 0;
4594                ret = i915_vma_unbind(vma);
4595                if (WARN_ON(ret == -ERESTARTSYS)) {
4596                        bool was_interruptible;
4597
4598                        was_interruptible = dev_priv->mm.interruptible;
4599                        dev_priv->mm.interruptible = false;
4600
4601                        WARN_ON(i915_vma_unbind(vma));
4602
4603                        dev_priv->mm.interruptible = was_interruptible;
4604                }
4605        }
4606
4607        /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4608         * before progressing. */
4609        if (obj->stolen)
4610                i915_gem_object_unpin_pages(obj);
4611
4612        WARN_ON(obj->frontbuffer_bits);
4613
4614        if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4615            dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4616            obj->tiling_mode != I915_TILING_NONE)
4617                i915_gem_object_unpin_pages(obj);
4618
4619        if (WARN_ON(obj->pages_pin_count))
4620                obj->pages_pin_count = 0;
4621        if (discard_backing_storage(obj))
4622                obj->madv = I915_MADV_DONTNEED;
4623        i915_gem_object_put_pages(obj);
4624        i915_gem_object_free_mmap_offset(obj);
4625
4626        BUG_ON(obj->pages);
4627
4628        if (obj->base.import_attach)
4629                drm_prime_gem_destroy(&obj->base, NULL);
4630
4631        if (obj->ops->release)
4632                obj->ops->release(obj);
4633
4634        drm_gem_object_release(&obj->base);
4635        i915_gem_info_remove_obj(dev_priv, obj->base.size);
4636
4637        kfree(obj->bit_17);
4638        i915_gem_object_free(obj);
4639
4640        intel_runtime_pm_put(dev_priv);
4641}
4642
4643struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4644                                     struct i915_address_space *vm)
4645{
4646        struct i915_vma *vma;
4647        list_for_each_entry(vma, &obj->vma_list, obj_link) {
4648                if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4649                    vma->vm == vm)
4650                        return vma;
4651        }
4652        return NULL;
4653}
4654
4655struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4656                                           const struct i915_ggtt_view *view)
4657{
4658        struct drm_device *dev = obj->base.dev;
4659        struct drm_i915_private *dev_priv = to_i915(dev);
4660        struct i915_ggtt *ggtt = &dev_priv->ggtt;
4661        struct i915_vma *vma;
4662
4663        BUG_ON(!view);
4664
4665        list_for_each_entry(vma, &obj->vma_list, obj_link)
4666                if (vma->vm == &ggtt->base &&
4667                    i915_ggtt_view_equal(&vma->ggtt_view, view))
4668                        return vma;
4669        return NULL;
4670}
4671
4672void i915_gem_vma_destroy(struct i915_vma *vma)
4673{
4674        WARN_ON(vma->node.allocated);
4675
4676        /* Keep the vma as a placeholder in the execbuffer reservation lists */
4677        if (!list_empty(&vma->exec_list))
4678                return;
4679
4680        if (!vma->is_ggtt)
4681                i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4682
4683        list_del(&vma->obj_link);
4684
4685        kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4686}
4687
4688static void
4689i915_gem_stop_engines(struct drm_device *dev)
4690{
4691        struct drm_i915_private *dev_priv = dev->dev_private;
4692        struct intel_engine_cs *engine;
4693
4694        for_each_engine(engine, dev_priv)
4695                dev_priv->gt.stop_engine(engine);
4696}
4697
4698int
4699i915_gem_suspend(struct drm_device *dev)
4700{
4701        struct drm_i915_private *dev_priv = dev->dev_private;
4702        int ret = 0;
4703
4704        mutex_lock(&dev->struct_mutex);
4705        ret = i915_gpu_idle(dev);
4706        if (ret)
4707                goto err;
4708
4709        i915_gem_retire_requests(dev);
4710
4711        i915_gem_stop_engines(dev);
4712        mutex_unlock(&dev->struct_mutex);
4713
4714        cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4715        cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4716        flush_delayed_work(&dev_priv->mm.idle_work);
4717
4718        /* Assert that we sucessfully flushed all the work and
4719         * reset the GPU back to its idle, low power state.
4720         */
4721        WARN_ON(dev_priv->mm.busy);
4722
4723        return 0;
4724
4725err:
4726        mutex_unlock(&dev->struct_mutex);
4727        return ret;
4728}
4729
4730int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4731{
4732        struct intel_engine_cs *engine = req->engine;
4733        struct drm_device *dev = engine->dev;
4734        struct drm_i915_private *dev_priv = dev->dev_private;
4735        u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4736        int i, ret;
4737
4738        if (!HAS_L3_DPF(dev) || !remap_info)
4739                return 0;
4740
4741        ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4742        if (ret)
4743                return ret;
4744
4745        /*
4746         * Note: We do not worry about the concurrent register cacheline hang
4747         * here because no other code should access these registers other than
4748         * at initialization time.
4749         */
4750        for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4751                intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4752                intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4753                intel_ring_emit(engine, remap_info[i]);
4754        }
4755
4756        intel_ring_advance(engine);
4757
4758        return ret;
4759}
4760
4761void i915_gem_init_swizzling(struct drm_device *dev)
4762{
4763        struct drm_i915_private *dev_priv = dev->dev_private;
4764
4765        if (INTEL_INFO(dev)->gen < 5 ||
4766            dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4767                return;
4768
4769        I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4770                                 DISP_TILE_SURFACE_SWIZZLING);
4771
4772        if (IS_GEN5(dev))
4773                return;
4774
4775        I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4776        if (IS_GEN6(dev))
4777                I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4778        else if (IS_GEN7(dev))
4779                I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4780        else if (IS_GEN8(dev))
4781                I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4782        else
4783                BUG();
4784}
4785
4786static void init_unused_ring(struct drm_device *dev, u32 base)
4787{
4788        struct drm_i915_private *dev_priv = dev->dev_private;
4789
4790        I915_WRITE(RING_CTL(base), 0);
4791        I915_WRITE(RING_HEAD(base), 0);
4792        I915_WRITE(RING_TAIL(base), 0);
4793        I915_WRITE(RING_START(base), 0);
4794}
4795
4796static void init_unused_rings(struct drm_device *dev)
4797{
4798        if (IS_I830(dev)) {
4799                init_unused_ring(dev, PRB1_BASE);
4800                init_unused_ring(dev, SRB0_BASE);
4801                init_unused_ring(dev, SRB1_BASE);
4802                init_unused_ring(dev, SRB2_BASE);
4803                init_unused_ring(dev, SRB3_BASE);
4804        } else if (IS_GEN2(dev)) {
4805                init_unused_ring(dev, SRB0_BASE);
4806                init_unused_ring(dev, SRB1_BASE);
4807        } else if (IS_GEN3(dev)) {
4808                init_unused_ring(dev, PRB1_BASE);
4809                init_unused_ring(dev, PRB2_BASE);
4810        }
4811}
4812
4813int i915_gem_init_engines(struct drm_device *dev)
4814{
4815        struct drm_i915_private *dev_priv = dev->dev_private;
4816        int ret;
4817
4818        ret = intel_init_render_ring_buffer(dev);
4819        if (ret)
4820                return ret;
4821
4822        if (HAS_BSD(dev)) {
4823                ret = intel_init_bsd_ring_buffer(dev);
4824                if (ret)
4825                        goto cleanup_render_ring;
4826        }
4827
4828        if (HAS_BLT(dev)) {
4829                ret = intel_init_blt_ring_buffer(dev);
4830                if (ret)
4831                        goto cleanup_bsd_ring;
4832        }
4833
4834        if (HAS_VEBOX(dev)) {
4835                ret = intel_init_vebox_ring_buffer(dev);
4836                if (ret)
4837                        goto cleanup_blt_ring;
4838        }
4839
4840        if (HAS_BSD2(dev)) {
4841                ret = intel_init_bsd2_ring_buffer(dev);
4842                if (ret)
4843                        goto cleanup_vebox_ring;
4844        }
4845
4846        return 0;
4847
4848cleanup_vebox_ring:
4849        intel_cleanup_engine(&dev_priv->engine[VECS]);
4850cleanup_blt_ring:
4851        intel_cleanup_engine(&dev_priv->engine[BCS]);
4852cleanup_bsd_ring:
4853        intel_cleanup_engine(&dev_priv->engine[VCS]);
4854cleanup_render_ring:
4855        intel_cleanup_engine(&dev_priv->engine[RCS]);
4856
4857        return ret;
4858}
4859
4860int
4861i915_gem_init_hw(struct drm_device *dev)
4862{
4863        struct drm_i915_private *dev_priv = dev->dev_private;
4864        struct intel_engine_cs *engine;
4865        int ret, j;
4866
4867        /* Double layer security blanket, see i915_gem_init() */
4868        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4869
4870        if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4871                I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4872
4873        if (IS_HASWELL(dev))
4874                I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4875                           LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4876
4877        if (HAS_PCH_NOP(dev)) {
4878                if (IS_IVYBRIDGE(dev)) {
4879                        u32 temp = I915_READ(GEN7_MSG_CTL);
4880                        temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4881                        I915_WRITE(GEN7_MSG_CTL, temp);
4882                } else if (INTEL_INFO(dev)->gen >= 7) {
4883                        u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4884                        temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4885                        I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4886                }
4887        }
4888
4889        i915_gem_init_swizzling(dev);
4890
4891        /*
4892         * At least 830 can leave some of the unused rings
4893         * "active" (ie. head != tail) after resume which
4894         * will prevent c3 entry. Makes sure all unused rings
4895         * are totally idle.
4896         */
4897        init_unused_rings(dev);
4898
4899        BUG_ON(!dev_priv->kernel_context);
4900
4901        ret = i915_ppgtt_init_hw(dev);
4902        if (ret) {
4903                DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4904                goto out;
4905        }
4906
4907        /* Need to do basic initialisation of all rings first: */
4908        for_each_engine(engine, dev_priv) {
4909                ret = engine->init_hw(engine);
4910                if (ret)
4911                        goto out;
4912        }
4913
4914        intel_mocs_init_l3cc_table(dev);
4915
4916        /* We can't enable contexts until all firmware is loaded */
4917        if (HAS_GUC_UCODE(dev)) {
4918                ret = intel_guc_ucode_load(dev);
4919                if (ret) {
4920                        DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4921                        ret = -EIO;
4922                        goto out;
4923                }
4924        }
4925
4926        /*
4927         * Increment the next seqno by 0x100 so we have a visible break
4928         * on re-initialisation
4929         */
4930        ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4931        if (ret)
4932                goto out;
4933
4934        /* Now it is safe to go back round and do everything else: */
4935        for_each_engine(engine, dev_priv) {
4936                struct drm_i915_gem_request *req;
4937
4938                req = i915_gem_request_alloc(engine, NULL);
4939                if (IS_ERR(req)) {
4940                        ret = PTR_ERR(req);
4941                        break;
4942                }
4943
4944                if (engine->id == RCS) {
4945                        for (j = 0; j < NUM_L3_SLICES(dev); j++) {
4946                                ret = i915_gem_l3_remap(req, j);
4947                                if (ret)
4948                                        goto err_request;
4949                        }
4950                }
4951
4952                ret = i915_ppgtt_init_ring(req);
4953                if (ret)
4954                        goto err_request;
4955
4956                ret = i915_gem_context_enable(req);
4957                if (ret)
4958                        goto err_request;
4959
4960err_request:
4961                i915_add_request_no_flush(req);
4962                if (ret) {
4963                        DRM_ERROR("Failed to enable %s, error=%d\n",
4964                                  engine->name, ret);
4965                        i915_gem_cleanup_engines(dev);
4966                        break;
4967                }
4968        }
4969
4970out:
4971        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4972        return ret;
4973}
4974
4975int i915_gem_init(struct drm_device *dev)
4976{
4977        struct drm_i915_private *dev_priv = dev->dev_private;
4978        int ret;
4979
4980        i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4981                        i915.enable_execlists);
4982
4983        mutex_lock(&dev->struct_mutex);
4984
4985        if (!i915.enable_execlists) {
4986                dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4987                dev_priv->gt.init_engines = i915_gem_init_engines;
4988                dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4989                dev_priv->gt.stop_engine = intel_stop_engine;
4990        } else {
4991                dev_priv->gt.execbuf_submit = intel_execlists_submission;
4992                dev_priv->gt.init_engines = intel_logical_rings_init;
4993                dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4994                dev_priv->gt.stop_engine = intel_logical_ring_stop;
4995        }
4996
4997        /* This is just a security blanket to placate dragons.
4998         * On some systems, we very sporadically observe that the first TLBs
4999         * used by the CS may be stale, despite us poking the TLB reset. If
5000         * we hold the forcewake during initialisation these problems
5001         * just magically go away.
5002         */
5003        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5004
5005        ret = i915_gem_init_userptr(dev);
5006        if (ret)
5007                goto out_unlock;
5008
5009        i915_gem_init_ggtt(dev);
5010
5011        ret = i915_gem_context_init(dev);
5012        if (ret)
5013                goto out_unlock;
5014
5015        ret = dev_priv->gt.init_engines(dev);
5016        if (ret)
5017                goto out_unlock;
5018
5019        ret = i915_gem_init_hw(dev);
5020        if (ret == -EIO) {
5021                /* Allow ring initialisation to fail by marking the GPU as
5022                 * wedged. But we only want to do this where the GPU is angry,
5023                 * for all other failure, such as an allocation failure, bail.
5024                 */
5025                DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5026                atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5027                ret = 0;
5028        }
5029
5030out_unlock:
5031        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5032        mutex_unlock(&dev->struct_mutex);
5033
5034        return ret;
5035}
5036
5037void
5038i915_gem_cleanup_engines(struct drm_device *dev)
5039{
5040        struct drm_i915_private *dev_priv = dev->dev_private;
5041        struct intel_engine_cs *engine;
5042
5043        for_each_engine(engine, dev_priv)
5044                dev_priv->gt.cleanup_engine(engine);
5045
5046        if (i915.enable_execlists)
5047                /*
5048                 * Neither the BIOS, ourselves or any other kernel
5049                 * expects the system to be in execlists mode on startup,
5050                 * so we need to reset the GPU back to legacy mode.
5051                 */
5052                intel_gpu_reset(dev, ALL_ENGINES);
5053}
5054
5055static void
5056init_engine_lists(struct intel_engine_cs *engine)
5057{
5058        INIT_LIST_HEAD(&engine->active_list);
5059        INIT_LIST_HEAD(&engine->request_list);
5060}
5061
5062void
5063i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5064{
5065        struct drm_device *dev = dev_priv->dev;
5066
5067        if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5068            !IS_CHERRYVIEW(dev_priv))
5069                dev_priv->num_fence_regs = 32;
5070        else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5071                 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5072                dev_priv->num_fence_regs = 16;
5073        else
5074                dev_priv->num_fence_regs = 8;
5075
5076        if (intel_vgpu_active(dev))
5077                dev_priv->num_fence_regs =
5078                                I915_READ(vgtif_reg(avail_rs.fence_num));
5079
5080        /* Initialize fence registers to zero */
5081        i915_gem_restore_fences(dev);
5082
5083        i915_gem_detect_bit_6_swizzle(dev);
5084}
5085
5086void
5087i915_gem_load_init(struct drm_device *dev)
5088{
5089        struct drm_i915_private *dev_priv = dev->dev_private;
5090        int i;
5091
5092        dev_priv->objects =
5093                kmem_cache_create("i915_gem_object",
5094                                  sizeof(struct drm_i915_gem_object), 0,
5095                                  SLAB_HWCACHE_ALIGN,
5096                                  NULL);
5097        dev_priv->vmas =
5098                kmem_cache_create("i915_gem_vma",
5099                                  sizeof(struct i915_vma), 0,
5100                                  SLAB_HWCACHE_ALIGN,
5101                                  NULL);
5102        dev_priv->requests =
5103                kmem_cache_create("i915_gem_request",
5104                                  sizeof(struct drm_i915_gem_request), 0,
5105                                  SLAB_HWCACHE_ALIGN,
5106                                  NULL);
5107
5108        INIT_LIST_HEAD(&dev_priv->vm_list);
5109        INIT_LIST_HEAD(&dev_priv->context_list);
5110        INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5111        INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5112        INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5113        for (i = 0; i < I915_NUM_ENGINES; i++)
5114                init_engine_lists(&dev_priv->engine[i]);
5115        for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5116                INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5117        INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5118                          i915_gem_retire_work_handler);
5119        INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5120                          i915_gem_idle_work_handler);
5121        init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5122
5123        dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5124
5125        /*
5126         * Set initial sequence number for requests.
5127         * Using this number allows the wraparound to happen early,
5128         * catching any obvious problems.
5129         */
5130        dev_priv->next_seqno = ((u32)~0 - 0x1100);
5131        dev_priv->last_seqno = ((u32)~0 - 0x1101);
5132
5133        INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5134
5135        init_waitqueue_head(&dev_priv->pending_flip_queue);
5136
5137        dev_priv->mm.interruptible = true;
5138
5139        mutex_init(&dev_priv->fb_tracking.lock);
5140}
5141
5142void i915_gem_load_cleanup(struct drm_device *dev)
5143{
5144        struct drm_i915_private *dev_priv = to_i915(dev);
5145
5146        kmem_cache_destroy(dev_priv->requests);
5147        kmem_cache_destroy(dev_priv->vmas);
5148        kmem_cache_destroy(dev_priv->objects);
5149}
5150
5151void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5152{
5153        struct drm_i915_file_private *file_priv = file->driver_priv;
5154
5155        /* Clean up our request list when the client is going away, so that
5156         * later retire_requests won't dereference our soon-to-be-gone
5157         * file_priv.
5158         */
5159        spin_lock(&file_priv->mm.lock);
5160        while (!list_empty(&file_priv->mm.request_list)) {
5161                struct drm_i915_gem_request *request;
5162
5163                request = list_first_entry(&file_priv->mm.request_list,
5164                                           struct drm_i915_gem_request,
5165                                           client_list);
5166                list_del(&request->client_list);
5167                request->file_priv = NULL;
5168        }
5169        spin_unlock(&file_priv->mm.lock);
5170
5171        if (!list_empty(&file_priv->rps.link)) {
5172                spin_lock(&to_i915(dev)->rps.client_lock);
5173                list_del(&file_priv->rps.link);
5174                spin_unlock(&to_i915(dev)->rps.client_lock);
5175        }
5176}
5177
5178int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5179{
5180        struct drm_i915_file_private *file_priv;
5181        int ret;
5182
5183        DRM_DEBUG_DRIVER("\n");
5184
5185        file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5186        if (!file_priv)
5187                return -ENOMEM;
5188
5189        file->driver_priv = file_priv;
5190        file_priv->dev_priv = dev->dev_private;
5191        file_priv->file = file;
5192        INIT_LIST_HEAD(&file_priv->rps.link);
5193
5194        spin_lock_init(&file_priv->mm.lock);
5195        INIT_LIST_HEAD(&file_priv->mm.request_list);
5196
5197        file_priv->bsd_ring = -1;
5198
5199        ret = i915_gem_context_open(dev, file);
5200        if (ret)
5201                kfree(file_priv);
5202
5203        return ret;
5204}
5205
5206/**
5207 * i915_gem_track_fb - update frontbuffer tracking
5208 * @old: current GEM buffer for the frontbuffer slots
5209 * @new: new GEM buffer for the frontbuffer slots
5210 * @frontbuffer_bits: bitmask of frontbuffer slots
5211 *
5212 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5213 * from @old and setting them in @new. Both @old and @new can be NULL.
5214 */
5215void i915_gem_track_fb(struct drm_i915_gem_object *old,
5216                       struct drm_i915_gem_object *new,
5217                       unsigned frontbuffer_bits)
5218{
5219        if (old) {
5220                WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5221                WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5222                old->frontbuffer_bits &= ~frontbuffer_bits;
5223        }
5224
5225        if (new) {
5226                WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5227                WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5228                new->frontbuffer_bits |= frontbuffer_bits;
5229        }
5230}
5231
5232/* All the new VM stuff */
5233u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5234                        struct i915_address_space *vm)
5235{
5236        struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5237        struct i915_vma *vma;
5238
5239        WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5240
5241        list_for_each_entry(vma, &o->vma_list, obj_link) {
5242                if (vma->is_ggtt &&
5243                    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5244                        continue;
5245                if (vma->vm == vm)
5246                        return vma->node.start;
5247        }
5248
5249        WARN(1, "%s vma for this object not found.\n",
5250             i915_is_ggtt(vm) ? "global" : "ppgtt");
5251        return -1;
5252}
5253
5254u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5255                                  const struct i915_ggtt_view *view)
5256{
5257        struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5258        struct i915_ggtt *ggtt = &dev_priv->ggtt;
5259        struct i915_vma *vma;
5260
5261        list_for_each_entry(vma, &o->vma_list, obj_link)
5262                if (vma->vm == &ggtt->base &&
5263                    i915_ggtt_view_equal(&vma->ggtt_view, view))
5264                        return vma->node.start;
5265
5266        WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5267        return -1;
5268}
5269
5270bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5271                        struct i915_address_space *vm)
5272{
5273        struct i915_vma *vma;
5274
5275        list_for_each_entry(vma, &o->vma_list, obj_link) {
5276                if (vma->is_ggtt &&
5277                    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5278                        continue;
5279                if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5280                        return true;
5281        }
5282
5283        return false;
5284}
5285
5286bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5287                                  const struct i915_ggtt_view *view)
5288{
5289        struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5290        struct i915_ggtt *ggtt = &dev_priv->ggtt;
5291        struct i915_vma *vma;
5292
5293        list_for_each_entry(vma, &o->vma_list, obj_link)
5294                if (vma->vm == &ggtt->base &&
5295                    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5296                    drm_mm_node_allocated(&vma->node))
5297                        return true;
5298
5299        return false;
5300}
5301
5302bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5303{
5304        struct i915_vma *vma;
5305
5306        list_for_each_entry(vma, &o->vma_list, obj_link)
5307                if (drm_mm_node_allocated(&vma->node))
5308                        return true;
5309
5310        return false;
5311}
5312
5313unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5314                                struct i915_address_space *vm)
5315{
5316        struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5317        struct i915_vma *vma;
5318
5319        WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5320
5321        BUG_ON(list_empty(&o->vma_list));
5322
5323        list_for_each_entry(vma, &o->vma_list, obj_link) {
5324                if (vma->is_ggtt &&
5325                    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5326                        continue;
5327                if (vma->vm == vm)
5328                        return vma->node.size;
5329        }
5330        return 0;
5331}
5332
5333bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5334{
5335        struct i915_vma *vma;
5336        list_for_each_entry(vma, &obj->vma_list, obj_link)
5337                if (vma->pin_count > 0)
5338                        return true;
5339
5340        return false;
5341}
5342
5343/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5344struct page *
5345i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5346{
5347        struct page *page;
5348
5349        /* Only default objects have per-page dirty tracking */
5350        if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5351                return NULL;
5352
5353        page = i915_gem_object_get_page(obj, n);
5354        set_page_dirty(page);
5355        return page;
5356}
5357
5358/* Allocate a new GEM object and fill it with the supplied data */
5359struct drm_i915_gem_object *
5360i915_gem_object_create_from_data(struct drm_device *dev,
5361                                 const void *data, size_t size)
5362{
5363        struct drm_i915_gem_object *obj;
5364        struct sg_table *sg;
5365        size_t bytes;
5366        int ret;
5367
5368        obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5369        if (IS_ERR_OR_NULL(obj))
5370                return obj;
5371
5372        ret = i915_gem_object_set_to_cpu_domain(obj, true);
5373        if (ret)
5374                goto fail;
5375
5376        ret = i915_gem_object_get_pages(obj);
5377        if (ret)
5378                goto fail;
5379
5380        i915_gem_object_pin_pages(obj);
5381        sg = obj->pages;
5382        bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5383        obj->dirty = 1;         /* Backing store is now out of date */
5384        i915_gem_object_unpin_pages(obj);
5385
5386        if (WARN_ON(bytes != size)) {
5387                DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5388                ret = -EFAULT;
5389                goto fail;
5390        }
5391
5392        return obj;
5393
5394fail:
5395        drm_gem_object_unreference(&obj->base);
5396        return ERR_PTR(ret);
5397}
5398