linux/drivers/gpu/drm/i915/intel_display.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2006-2007 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *      Eric Anholt <eric@anholt.net>
  25 */
  26
  27#include <linux/dmi.h>
  28#include <linux/module.h>
  29#include <linux/input.h>
  30#include <linux/i2c.h>
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/vgaarb.h>
  34#include <drm/drm_edid.h>
  35#include <drm/drmP.h>
  36#include "intel_drv.h"
  37#include <drm/i915_drm.h>
  38#include "i915_drv.h"
  39#include "intel_dsi.h"
  40#include "i915_trace.h"
  41#include <drm/drm_atomic.h>
  42#include <drm/drm_atomic_helper.h>
  43#include <drm/drm_dp_helper.h>
  44#include <drm/drm_crtc_helper.h>
  45#include <drm/drm_plane_helper.h>
  46#include <drm/drm_rect.h>
  47#include <linux/dma_remapping.h>
  48#include <linux/reservation.h>
  49#include <linux/dma-buf.h>
  50
  51/* Primary plane formats for gen <= 3 */
  52static const uint32_t i8xx_primary_formats[] = {
  53        DRM_FORMAT_C8,
  54        DRM_FORMAT_RGB565,
  55        DRM_FORMAT_XRGB1555,
  56        DRM_FORMAT_XRGB8888,
  57};
  58
  59/* Primary plane formats for gen >= 4 */
  60static const uint32_t i965_primary_formats[] = {
  61        DRM_FORMAT_C8,
  62        DRM_FORMAT_RGB565,
  63        DRM_FORMAT_XRGB8888,
  64        DRM_FORMAT_XBGR8888,
  65        DRM_FORMAT_XRGB2101010,
  66        DRM_FORMAT_XBGR2101010,
  67};
  68
  69static const uint32_t skl_primary_formats[] = {
  70        DRM_FORMAT_C8,
  71        DRM_FORMAT_RGB565,
  72        DRM_FORMAT_XRGB8888,
  73        DRM_FORMAT_XBGR8888,
  74        DRM_FORMAT_ARGB8888,
  75        DRM_FORMAT_ABGR8888,
  76        DRM_FORMAT_XRGB2101010,
  77        DRM_FORMAT_XBGR2101010,
  78        DRM_FORMAT_YUYV,
  79        DRM_FORMAT_YVYU,
  80        DRM_FORMAT_UYVY,
  81        DRM_FORMAT_VYUY,
  82};
  83
  84/* Cursor formats */
  85static const uint32_t intel_cursor_formats[] = {
  86        DRM_FORMAT_ARGB8888,
  87};
  88
  89static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  90                                struct intel_crtc_state *pipe_config);
  91static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  92                                   struct intel_crtc_state *pipe_config);
  93
  94static int intel_framebuffer_init(struct drm_device *dev,
  95                                  struct intel_framebuffer *ifb,
  96                                  struct drm_mode_fb_cmd2 *mode_cmd,
  97                                  struct drm_i915_gem_object *obj);
  98static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
  99static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
 100static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
 101static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
 102                                         struct intel_link_m_n *m_n,
 103                                         struct intel_link_m_n *m2_n2);
 104static void ironlake_set_pipeconf(struct drm_crtc *crtc);
 105static void haswell_set_pipeconf(struct drm_crtc *crtc);
 106static void haswell_set_pipemisc(struct drm_crtc *crtc);
 107static void vlv_prepare_pll(struct intel_crtc *crtc,
 108                            const struct intel_crtc_state *pipe_config);
 109static void chv_prepare_pll(struct intel_crtc *crtc,
 110                            const struct intel_crtc_state *pipe_config);
 111static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
 112static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
 113static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
 114        struct intel_crtc_state *crtc_state);
 115static void skylake_pfit_enable(struct intel_crtc *crtc);
 116static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
 117static void ironlake_pfit_enable(struct intel_crtc *crtc);
 118static void intel_modeset_setup_hw_state(struct drm_device *dev);
 119static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
 120
 121typedef struct {
 122        int     min, max;
 123} intel_range_t;
 124
 125typedef struct {
 126        int     dot_limit;
 127        int     p2_slow, p2_fast;
 128} intel_p2_t;
 129
 130typedef struct intel_limit intel_limit_t;
 131struct intel_limit {
 132        intel_range_t   dot, vco, n, m, m1, m2, p, p1;
 133        intel_p2_t          p2;
 134};
 135
 136/* returns HPLL frequency in kHz */
 137static int valleyview_get_vco(struct drm_i915_private *dev_priv)
 138{
 139        int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
 140
 141        /* Obtain SKU information */
 142        mutex_lock(&dev_priv->sb_lock);
 143        hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
 144                CCK_FUSE_HPLL_FREQ_MASK;
 145        mutex_unlock(&dev_priv->sb_lock);
 146
 147        return vco_freq[hpll_freq] * 1000;
 148}
 149
 150int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
 151                      const char *name, u32 reg, int ref_freq)
 152{
 153        u32 val;
 154        int divider;
 155
 156        mutex_lock(&dev_priv->sb_lock);
 157        val = vlv_cck_read(dev_priv, reg);
 158        mutex_unlock(&dev_priv->sb_lock);
 159
 160        divider = val & CCK_FREQUENCY_VALUES;
 161
 162        WARN((val & CCK_FREQUENCY_STATUS) !=
 163             (divider << CCK_FREQUENCY_STATUS_SHIFT),
 164             "%s change in progress\n", name);
 165
 166        return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
 167}
 168
 169static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
 170                                  const char *name, u32 reg)
 171{
 172        if (dev_priv->hpll_freq == 0)
 173                dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
 174
 175        return vlv_get_cck_clock(dev_priv, name, reg,
 176                                 dev_priv->hpll_freq);
 177}
 178
 179static int
 180intel_pch_rawclk(struct drm_i915_private *dev_priv)
 181{
 182        return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
 183}
 184
 185static int
 186intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
 187{
 188        return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
 189                                      CCK_DISPLAY_REF_CLOCK_CONTROL);
 190}
 191
 192static int
 193intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
 194{
 195        uint32_t clkcfg;
 196
 197        /* hrawclock is 1/4 the FSB frequency */
 198        clkcfg = I915_READ(CLKCFG);
 199        switch (clkcfg & CLKCFG_FSB_MASK) {
 200        case CLKCFG_FSB_400:
 201                return 100000;
 202        case CLKCFG_FSB_533:
 203                return 133333;
 204        case CLKCFG_FSB_667:
 205                return 166667;
 206        case CLKCFG_FSB_800:
 207                return 200000;
 208        case CLKCFG_FSB_1067:
 209                return 266667;
 210        case CLKCFG_FSB_1333:
 211                return 333333;
 212        /* these two are just a guess; one of them might be right */
 213        case CLKCFG_FSB_1600:
 214        case CLKCFG_FSB_1600_ALT:
 215                return 400000;
 216        default:
 217                return 133333;
 218        }
 219}
 220
 221static void intel_update_rawclk(struct drm_i915_private *dev_priv)
 222{
 223        if (HAS_PCH_SPLIT(dev_priv))
 224                dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
 225        else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 226                dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
 227        else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
 228                dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
 229        else
 230                return; /* no rawclk on other platforms, or no need to know it */
 231
 232        DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
 233}
 234
 235static void intel_update_czclk(struct drm_i915_private *dev_priv)
 236{
 237        if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
 238                return;
 239
 240        dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
 241                                                      CCK_CZ_CLOCK_CONTROL);
 242
 243        DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
 244}
 245
 246static inline u32 /* units of 100MHz */
 247intel_fdi_link_freq(struct drm_i915_private *dev_priv,
 248                    const struct intel_crtc_state *pipe_config)
 249{
 250        if (HAS_DDI(dev_priv))
 251                return pipe_config->port_clock; /* SPLL */
 252        else if (IS_GEN5(dev_priv))
 253                return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
 254        else
 255                return 270000;
 256}
 257
 258static const intel_limit_t intel_limits_i8xx_dac = {
 259        .dot = { .min = 25000, .max = 350000 },
 260        .vco = { .min = 908000, .max = 1512000 },
 261        .n = { .min = 2, .max = 16 },
 262        .m = { .min = 96, .max = 140 },
 263        .m1 = { .min = 18, .max = 26 },
 264        .m2 = { .min = 6, .max = 16 },
 265        .p = { .min = 4, .max = 128 },
 266        .p1 = { .min = 2, .max = 33 },
 267        .p2 = { .dot_limit = 165000,
 268                .p2_slow = 4, .p2_fast = 2 },
 269};
 270
 271static const intel_limit_t intel_limits_i8xx_dvo = {
 272        .dot = { .min = 25000, .max = 350000 },
 273        .vco = { .min = 908000, .max = 1512000 },
 274        .n = { .min = 2, .max = 16 },
 275        .m = { .min = 96, .max = 140 },
 276        .m1 = { .min = 18, .max = 26 },
 277        .m2 = { .min = 6, .max = 16 },
 278        .p = { .min = 4, .max = 128 },
 279        .p1 = { .min = 2, .max = 33 },
 280        .p2 = { .dot_limit = 165000,
 281                .p2_slow = 4, .p2_fast = 4 },
 282};
 283
 284static const intel_limit_t intel_limits_i8xx_lvds = {
 285        .dot = { .min = 25000, .max = 350000 },
 286        .vco = { .min = 908000, .max = 1512000 },
 287        .n = { .min = 2, .max = 16 },
 288        .m = { .min = 96, .max = 140 },
 289        .m1 = { .min = 18, .max = 26 },
 290        .m2 = { .min = 6, .max = 16 },
 291        .p = { .min = 4, .max = 128 },
 292        .p1 = { .min = 1, .max = 6 },
 293        .p2 = { .dot_limit = 165000,
 294                .p2_slow = 14, .p2_fast = 7 },
 295};
 296
 297static const intel_limit_t intel_limits_i9xx_sdvo = {
 298        .dot = { .min = 20000, .max = 400000 },
 299        .vco = { .min = 1400000, .max = 2800000 },
 300        .n = { .min = 1, .max = 6 },
 301        .m = { .min = 70, .max = 120 },
 302        .m1 = { .min = 8, .max = 18 },
 303        .m2 = { .min = 3, .max = 7 },
 304        .p = { .min = 5, .max = 80 },
 305        .p1 = { .min = 1, .max = 8 },
 306        .p2 = { .dot_limit = 200000,
 307                .p2_slow = 10, .p2_fast = 5 },
 308};
 309
 310static const intel_limit_t intel_limits_i9xx_lvds = {
 311        .dot = { .min = 20000, .max = 400000 },
 312        .vco = { .min = 1400000, .max = 2800000 },
 313        .n = { .min = 1, .max = 6 },
 314        .m = { .min = 70, .max = 120 },
 315        .m1 = { .min = 8, .max = 18 },
 316        .m2 = { .min = 3, .max = 7 },
 317        .p = { .min = 7, .max = 98 },
 318        .p1 = { .min = 1, .max = 8 },
 319        .p2 = { .dot_limit = 112000,
 320                .p2_slow = 14, .p2_fast = 7 },
 321};
 322
 323
 324static const intel_limit_t intel_limits_g4x_sdvo = {
 325        .dot = { .min = 25000, .max = 270000 },
 326        .vco = { .min = 1750000, .max = 3500000},
 327        .n = { .min = 1, .max = 4 },
 328        .m = { .min = 104, .max = 138 },
 329        .m1 = { .min = 17, .max = 23 },
 330        .m2 = { .min = 5, .max = 11 },
 331        .p = { .min = 10, .max = 30 },
 332        .p1 = { .min = 1, .max = 3},
 333        .p2 = { .dot_limit = 270000,
 334                .p2_slow = 10,
 335                .p2_fast = 10
 336        },
 337};
 338
 339static const intel_limit_t intel_limits_g4x_hdmi = {
 340        .dot = { .min = 22000, .max = 400000 },
 341        .vco = { .min = 1750000, .max = 3500000},
 342        .n = { .min = 1, .max = 4 },
 343        .m = { .min = 104, .max = 138 },
 344        .m1 = { .min = 16, .max = 23 },
 345        .m2 = { .min = 5, .max = 11 },
 346        .p = { .min = 5, .max = 80 },
 347        .p1 = { .min = 1, .max = 8},
 348        .p2 = { .dot_limit = 165000,
 349                .p2_slow = 10, .p2_fast = 5 },
 350};
 351
 352static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
 353        .dot = { .min = 20000, .max = 115000 },
 354        .vco = { .min = 1750000, .max = 3500000 },
 355        .n = { .min = 1, .max = 3 },
 356        .m = { .min = 104, .max = 138 },
 357        .m1 = { .min = 17, .max = 23 },
 358        .m2 = { .min = 5, .max = 11 },
 359        .p = { .min = 28, .max = 112 },
 360        .p1 = { .min = 2, .max = 8 },
 361        .p2 = { .dot_limit = 0,
 362                .p2_slow = 14, .p2_fast = 14
 363        },
 364};
 365
 366static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
 367        .dot = { .min = 80000, .max = 224000 },
 368        .vco = { .min = 1750000, .max = 3500000 },
 369        .n = { .min = 1, .max = 3 },
 370        .m = { .min = 104, .max = 138 },
 371        .m1 = { .min = 17, .max = 23 },
 372        .m2 = { .min = 5, .max = 11 },
 373        .p = { .min = 14, .max = 42 },
 374        .p1 = { .min = 2, .max = 6 },
 375        .p2 = { .dot_limit = 0,
 376                .p2_slow = 7, .p2_fast = 7
 377        },
 378};
 379
 380static const intel_limit_t intel_limits_pineview_sdvo = {
 381        .dot = { .min = 20000, .max = 400000},
 382        .vco = { .min = 1700000, .max = 3500000 },
 383        /* Pineview's Ncounter is a ring counter */
 384        .n = { .min = 3, .max = 6 },
 385        .m = { .min = 2, .max = 256 },
 386        /* Pineview only has one combined m divider, which we treat as m2. */
 387        .m1 = { .min = 0, .max = 0 },
 388        .m2 = { .min = 0, .max = 254 },
 389        .p = { .min = 5, .max = 80 },
 390        .p1 = { .min = 1, .max = 8 },
 391        .p2 = { .dot_limit = 200000,
 392                .p2_slow = 10, .p2_fast = 5 },
 393};
 394
 395static const intel_limit_t intel_limits_pineview_lvds = {
 396        .dot = { .min = 20000, .max = 400000 },
 397        .vco = { .min = 1700000, .max = 3500000 },
 398        .n = { .min = 3, .max = 6 },
 399        .m = { .min = 2, .max = 256 },
 400        .m1 = { .min = 0, .max = 0 },
 401        .m2 = { .min = 0, .max = 254 },
 402        .p = { .min = 7, .max = 112 },
 403        .p1 = { .min = 1, .max = 8 },
 404        .p2 = { .dot_limit = 112000,
 405                .p2_slow = 14, .p2_fast = 14 },
 406};
 407
 408/* Ironlake / Sandybridge
 409 *
 410 * We calculate clock using (register_value + 2) for N/M1/M2, so here
 411 * the range value for them is (actual_value - 2).
 412 */
 413static const intel_limit_t intel_limits_ironlake_dac = {
 414        .dot = { .min = 25000, .max = 350000 },
 415        .vco = { .min = 1760000, .max = 3510000 },
 416        .n = { .min = 1, .max = 5 },
 417        .m = { .min = 79, .max = 127 },
 418        .m1 = { .min = 12, .max = 22 },
 419        .m2 = { .min = 5, .max = 9 },
 420        .p = { .min = 5, .max = 80 },
 421        .p1 = { .min = 1, .max = 8 },
 422        .p2 = { .dot_limit = 225000,
 423                .p2_slow = 10, .p2_fast = 5 },
 424};
 425
 426static const intel_limit_t intel_limits_ironlake_single_lvds = {
 427        .dot = { .min = 25000, .max = 350000 },
 428        .vco = { .min = 1760000, .max = 3510000 },
 429        .n = { .min = 1, .max = 3 },
 430        .m = { .min = 79, .max = 118 },
 431        .m1 = { .min = 12, .max = 22 },
 432        .m2 = { .min = 5, .max = 9 },
 433        .p = { .min = 28, .max = 112 },
 434        .p1 = { .min = 2, .max = 8 },
 435        .p2 = { .dot_limit = 225000,
 436                .p2_slow = 14, .p2_fast = 14 },
 437};
 438
 439static const intel_limit_t intel_limits_ironlake_dual_lvds = {
 440        .dot = { .min = 25000, .max = 350000 },
 441        .vco = { .min = 1760000, .max = 3510000 },
 442        .n = { .min = 1, .max = 3 },
 443        .m = { .min = 79, .max = 127 },
 444        .m1 = { .min = 12, .max = 22 },
 445        .m2 = { .min = 5, .max = 9 },
 446        .p = { .min = 14, .max = 56 },
 447        .p1 = { .min = 2, .max = 8 },
 448        .p2 = { .dot_limit = 225000,
 449                .p2_slow = 7, .p2_fast = 7 },
 450};
 451
 452/* LVDS 100mhz refclk limits. */
 453static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
 454        .dot = { .min = 25000, .max = 350000 },
 455        .vco = { .min = 1760000, .max = 3510000 },
 456        .n = { .min = 1, .max = 2 },
 457        .m = { .min = 79, .max = 126 },
 458        .m1 = { .min = 12, .max = 22 },
 459        .m2 = { .min = 5, .max = 9 },
 460        .p = { .min = 28, .max = 112 },
 461        .p1 = { .min = 2, .max = 8 },
 462        .p2 = { .dot_limit = 225000,
 463                .p2_slow = 14, .p2_fast = 14 },
 464};
 465
 466static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
 467        .dot = { .min = 25000, .max = 350000 },
 468        .vco = { .min = 1760000, .max = 3510000 },
 469        .n = { .min = 1, .max = 3 },
 470        .m = { .min = 79, .max = 126 },
 471        .m1 = { .min = 12, .max = 22 },
 472        .m2 = { .min = 5, .max = 9 },
 473        .p = { .min = 14, .max = 42 },
 474        .p1 = { .min = 2, .max = 6 },
 475        .p2 = { .dot_limit = 225000,
 476                .p2_slow = 7, .p2_fast = 7 },
 477};
 478
 479static const intel_limit_t intel_limits_vlv = {
 480         /*
 481          * These are the data rate limits (measured in fast clocks)
 482          * since those are the strictest limits we have. The fast
 483          * clock and actual rate limits are more relaxed, so checking
 484          * them would make no difference.
 485          */
 486        .dot = { .min = 25000 * 5, .max = 270000 * 5 },
 487        .vco = { .min = 4000000, .max = 6000000 },
 488        .n = { .min = 1, .max = 7 },
 489        .m1 = { .min = 2, .max = 3 },
 490        .m2 = { .min = 11, .max = 156 },
 491        .p1 = { .min = 2, .max = 3 },
 492        .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
 493};
 494
 495static const intel_limit_t intel_limits_chv = {
 496        /*
 497         * These are the data rate limits (measured in fast clocks)
 498         * since those are the strictest limits we have.  The fast
 499         * clock and actual rate limits are more relaxed, so checking
 500         * them would make no difference.
 501         */
 502        .dot = { .min = 25000 * 5, .max = 540000 * 5},
 503        .vco = { .min = 4800000, .max = 6480000 },
 504        .n = { .min = 1, .max = 1 },
 505        .m1 = { .min = 2, .max = 2 },
 506        .m2 = { .min = 24 << 22, .max = 175 << 22 },
 507        .p1 = { .min = 2, .max = 4 },
 508        .p2 = { .p2_slow = 1, .p2_fast = 14 },
 509};
 510
 511static const intel_limit_t intel_limits_bxt = {
 512        /* FIXME: find real dot limits */
 513        .dot = { .min = 0, .max = INT_MAX },
 514        .vco = { .min = 4800000, .max = 6700000 },
 515        .n = { .min = 1, .max = 1 },
 516        .m1 = { .min = 2, .max = 2 },
 517        /* FIXME: find real m2 limits */
 518        .m2 = { .min = 2 << 22, .max = 255 << 22 },
 519        .p1 = { .min = 2, .max = 4 },
 520        .p2 = { .p2_slow = 1, .p2_fast = 20 },
 521};
 522
 523static bool
 524needs_modeset(struct drm_crtc_state *state)
 525{
 526        return drm_atomic_crtc_needs_modeset(state);
 527}
 528
 529/**
 530 * Returns whether any output on the specified pipe is of the specified type
 531 */
 532bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
 533{
 534        struct drm_device *dev = crtc->base.dev;
 535        struct intel_encoder *encoder;
 536
 537        for_each_encoder_on_crtc(dev, &crtc->base, encoder)
 538                if (encoder->type == type)
 539                        return true;
 540
 541        return false;
 542}
 543
 544/**
 545 * Returns whether any output on the specified pipe will have the specified
 546 * type after a staged modeset is complete, i.e., the same as
 547 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
 548 * encoder->crtc.
 549 */
 550static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
 551                                      int type)
 552{
 553        struct drm_atomic_state *state = crtc_state->base.state;
 554        struct drm_connector *connector;
 555        struct drm_connector_state *connector_state;
 556        struct intel_encoder *encoder;
 557        int i, num_connectors = 0;
 558
 559        for_each_connector_in_state(state, connector, connector_state, i) {
 560                if (connector_state->crtc != crtc_state->base.crtc)
 561                        continue;
 562
 563                num_connectors++;
 564
 565                encoder = to_intel_encoder(connector_state->best_encoder);
 566                if (encoder->type == type)
 567                        return true;
 568        }
 569
 570        WARN_ON(num_connectors == 0);
 571
 572        return false;
 573}
 574
 575/*
 576 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
 577 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
 578 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
 579 * The helpers' return value is the rate of the clock that is fed to the
 580 * display engine's pipe which can be the above fast dot clock rate or a
 581 * divided-down version of it.
 582 */
 583/* m1 is reserved as 0 in Pineview, n is a ring counter */
 584static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
 585{
 586        clock->m = clock->m2 + 2;
 587        clock->p = clock->p1 * clock->p2;
 588        if (WARN_ON(clock->n == 0 || clock->p == 0))
 589                return 0;
 590        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 591        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 592
 593        return clock->dot;
 594}
 595
 596static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
 597{
 598        return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
 599}
 600
 601static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
 602{
 603        clock->m = i9xx_dpll_compute_m(clock);
 604        clock->p = clock->p1 * clock->p2;
 605        if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
 606                return 0;
 607        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
 608        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 609
 610        return clock->dot;
 611}
 612
 613static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
 614{
 615        clock->m = clock->m1 * clock->m2;
 616        clock->p = clock->p1 * clock->p2;
 617        if (WARN_ON(clock->n == 0 || clock->p == 0))
 618                return 0;
 619        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 620        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 621
 622        return clock->dot / 5;
 623}
 624
 625int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
 626{
 627        clock->m = clock->m1 * clock->m2;
 628        clock->p = clock->p1 * clock->p2;
 629        if (WARN_ON(clock->n == 0 || clock->p == 0))
 630                return 0;
 631        clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
 632                        clock->n << 22);
 633        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 634
 635        return clock->dot / 5;
 636}
 637
 638#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
 639/**
 640 * Returns whether the given set of divisors are valid for a given refclk with
 641 * the given connectors.
 642 */
 643
 644static bool intel_PLL_is_valid(struct drm_device *dev,
 645                               const intel_limit_t *limit,
 646                               const intel_clock_t *clock)
 647{
 648        if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
 649                INTELPllInvalid("n out of range\n");
 650        if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
 651                INTELPllInvalid("p1 out of range\n");
 652        if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
 653                INTELPllInvalid("m2 out of range\n");
 654        if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
 655                INTELPllInvalid("m1 out of range\n");
 656
 657        if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
 658            !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
 659                if (clock->m1 <= clock->m2)
 660                        INTELPllInvalid("m1 <= m2\n");
 661
 662        if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
 663                if (clock->p < limit->p.min || limit->p.max < clock->p)
 664                        INTELPllInvalid("p out of range\n");
 665                if (clock->m < limit->m.min || limit->m.max < clock->m)
 666                        INTELPllInvalid("m out of range\n");
 667        }
 668
 669        if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
 670                INTELPllInvalid("vco out of range\n");
 671        /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
 672         * connector, etc., rather than just a single range.
 673         */
 674        if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
 675                INTELPllInvalid("dot out of range\n");
 676
 677        return true;
 678}
 679
 680static int
 681i9xx_select_p2_div(const intel_limit_t *limit,
 682                   const struct intel_crtc_state *crtc_state,
 683                   int target)
 684{
 685        struct drm_device *dev = crtc_state->base.crtc->dev;
 686
 687        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 688                /*
 689                 * For LVDS just rely on its current settings for dual-channel.
 690                 * We haven't figured out how to reliably set up different
 691                 * single/dual channel state, if we even can.
 692                 */
 693                if (intel_is_dual_link_lvds(dev))
 694                        return limit->p2.p2_fast;
 695                else
 696                        return limit->p2.p2_slow;
 697        } else {
 698                if (target < limit->p2.dot_limit)
 699                        return limit->p2.p2_slow;
 700                else
 701                        return limit->p2.p2_fast;
 702        }
 703}
 704
 705/*
 706 * Returns a set of divisors for the desired target clock with the given
 707 * refclk, or FALSE.  The returned values represent the clock equation:
 708 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 709 *
 710 * Target and reference clocks are specified in kHz.
 711 *
 712 * If match_clock is provided, then best_clock P divider must match the P
 713 * divider from @match_clock used for LVDS downclocking.
 714 */
 715static bool
 716i9xx_find_best_dpll(const intel_limit_t *limit,
 717                    struct intel_crtc_state *crtc_state,
 718                    int target, int refclk, intel_clock_t *match_clock,
 719                    intel_clock_t *best_clock)
 720{
 721        struct drm_device *dev = crtc_state->base.crtc->dev;
 722        intel_clock_t clock;
 723        int err = target;
 724
 725        memset(best_clock, 0, sizeof(*best_clock));
 726
 727        clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 728
 729        for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 730             clock.m1++) {
 731                for (clock.m2 = limit->m2.min;
 732                     clock.m2 <= limit->m2.max; clock.m2++) {
 733                        if (clock.m2 >= clock.m1)
 734                                break;
 735                        for (clock.n = limit->n.min;
 736                             clock.n <= limit->n.max; clock.n++) {
 737                                for (clock.p1 = limit->p1.min;
 738                                        clock.p1 <= limit->p1.max; clock.p1++) {
 739                                        int this_err;
 740
 741                                        i9xx_calc_dpll_params(refclk, &clock);
 742                                        if (!intel_PLL_is_valid(dev, limit,
 743                                                                &clock))
 744                                                continue;
 745                                        if (match_clock &&
 746                                            clock.p != match_clock->p)
 747                                                continue;
 748
 749                                        this_err = abs(clock.dot - target);
 750                                        if (this_err < err) {
 751                                                *best_clock = clock;
 752                                                err = this_err;
 753                                        }
 754                                }
 755                        }
 756                }
 757        }
 758
 759        return (err != target);
 760}
 761
 762/*
 763 * Returns a set of divisors for the desired target clock with the given
 764 * refclk, or FALSE.  The returned values represent the clock equation:
 765 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 766 *
 767 * Target and reference clocks are specified in kHz.
 768 *
 769 * If match_clock is provided, then best_clock P divider must match the P
 770 * divider from @match_clock used for LVDS downclocking.
 771 */
 772static bool
 773pnv_find_best_dpll(const intel_limit_t *limit,
 774                   struct intel_crtc_state *crtc_state,
 775                   int target, int refclk, intel_clock_t *match_clock,
 776                   intel_clock_t *best_clock)
 777{
 778        struct drm_device *dev = crtc_state->base.crtc->dev;
 779        intel_clock_t clock;
 780        int err = target;
 781
 782        memset(best_clock, 0, sizeof(*best_clock));
 783
 784        clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 785
 786        for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 787             clock.m1++) {
 788                for (clock.m2 = limit->m2.min;
 789                     clock.m2 <= limit->m2.max; clock.m2++) {
 790                        for (clock.n = limit->n.min;
 791                             clock.n <= limit->n.max; clock.n++) {
 792                                for (clock.p1 = limit->p1.min;
 793                                        clock.p1 <= limit->p1.max; clock.p1++) {
 794                                        int this_err;
 795
 796                                        pnv_calc_dpll_params(refclk, &clock);
 797                                        if (!intel_PLL_is_valid(dev, limit,
 798                                                                &clock))
 799                                                continue;
 800                                        if (match_clock &&
 801                                            clock.p != match_clock->p)
 802                                                continue;
 803
 804                                        this_err = abs(clock.dot - target);
 805                                        if (this_err < err) {
 806                                                *best_clock = clock;
 807                                                err = this_err;
 808                                        }
 809                                }
 810                        }
 811                }
 812        }
 813
 814        return (err != target);
 815}
 816
 817/*
 818 * Returns a set of divisors for the desired target clock with the given
 819 * refclk, or FALSE.  The returned values represent the clock equation:
 820 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 821 *
 822 * Target and reference clocks are specified in kHz.
 823 *
 824 * If match_clock is provided, then best_clock P divider must match the P
 825 * divider from @match_clock used for LVDS downclocking.
 826 */
 827static bool
 828g4x_find_best_dpll(const intel_limit_t *limit,
 829                   struct intel_crtc_state *crtc_state,
 830                   int target, int refclk, intel_clock_t *match_clock,
 831                   intel_clock_t *best_clock)
 832{
 833        struct drm_device *dev = crtc_state->base.crtc->dev;
 834        intel_clock_t clock;
 835        int max_n;
 836        bool found = false;
 837        /* approximately equals target * 0.00585 */
 838        int err_most = (target >> 8) + (target >> 9);
 839
 840        memset(best_clock, 0, sizeof(*best_clock));
 841
 842        clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 843
 844        max_n = limit->n.max;
 845        /* based on hardware requirement, prefer smaller n to precision */
 846        for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 847                /* based on hardware requirement, prefere larger m1,m2 */
 848                for (clock.m1 = limit->m1.max;
 849                     clock.m1 >= limit->m1.min; clock.m1--) {
 850                        for (clock.m2 = limit->m2.max;
 851                             clock.m2 >= limit->m2.min; clock.m2--) {
 852                                for (clock.p1 = limit->p1.max;
 853                                     clock.p1 >= limit->p1.min; clock.p1--) {
 854                                        int this_err;
 855
 856                                        i9xx_calc_dpll_params(refclk, &clock);
 857                                        if (!intel_PLL_is_valid(dev, limit,
 858                                                                &clock))
 859                                                continue;
 860
 861                                        this_err = abs(clock.dot - target);
 862                                        if (this_err < err_most) {
 863                                                *best_clock = clock;
 864                                                err_most = this_err;
 865                                                max_n = clock.n;
 866                                                found = true;
 867                                        }
 868                                }
 869                        }
 870                }
 871        }
 872        return found;
 873}
 874
 875/*
 876 * Check if the calculated PLL configuration is more optimal compared to the
 877 * best configuration and error found so far. Return the calculated error.
 878 */
 879static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
 880                               const intel_clock_t *calculated_clock,
 881                               const intel_clock_t *best_clock,
 882                               unsigned int best_error_ppm,
 883                               unsigned int *error_ppm)
 884{
 885        /*
 886         * For CHV ignore the error and consider only the P value.
 887         * Prefer a bigger P value based on HW requirements.
 888         */
 889        if (IS_CHERRYVIEW(dev)) {
 890                *error_ppm = 0;
 891
 892                return calculated_clock->p > best_clock->p;
 893        }
 894
 895        if (WARN_ON_ONCE(!target_freq))
 896                return false;
 897
 898        *error_ppm = div_u64(1000000ULL *
 899                                abs(target_freq - calculated_clock->dot),
 900                             target_freq);
 901        /*
 902         * Prefer a better P value over a better (smaller) error if the error
 903         * is small. Ensure this preference for future configurations too by
 904         * setting the error to 0.
 905         */
 906        if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
 907                *error_ppm = 0;
 908
 909                return true;
 910        }
 911
 912        return *error_ppm + 10 < best_error_ppm;
 913}
 914
 915/*
 916 * Returns a set of divisors for the desired target clock with the given
 917 * refclk, or FALSE.  The returned values represent the clock equation:
 918 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 919 */
 920static bool
 921vlv_find_best_dpll(const intel_limit_t *limit,
 922                   struct intel_crtc_state *crtc_state,
 923                   int target, int refclk, intel_clock_t *match_clock,
 924                   intel_clock_t *best_clock)
 925{
 926        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 927        struct drm_device *dev = crtc->base.dev;
 928        intel_clock_t clock;
 929        unsigned int bestppm = 1000000;
 930        /* min update 19.2 MHz */
 931        int max_n = min(limit->n.max, refclk / 19200);
 932        bool found = false;
 933
 934        target *= 5; /* fast clock */
 935
 936        memset(best_clock, 0, sizeof(*best_clock));
 937
 938        /* based on hardware requirement, prefer smaller n to precision */
 939        for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 940                for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 941                        for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
 942                             clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 943                                clock.p = clock.p1 * clock.p2;
 944                                /* based on hardware requirement, prefer bigger m1,m2 values */
 945                                for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
 946                                        unsigned int ppm;
 947
 948                                        clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
 949                                                                     refclk * clock.m1);
 950
 951                                        vlv_calc_dpll_params(refclk, &clock);
 952
 953                                        if (!intel_PLL_is_valid(dev, limit,
 954                                                                &clock))
 955                                                continue;
 956
 957                                        if (!vlv_PLL_is_optimal(dev, target,
 958                                                                &clock,
 959                                                                best_clock,
 960                                                                bestppm, &ppm))
 961                                                continue;
 962
 963                                        *best_clock = clock;
 964                                        bestppm = ppm;
 965                                        found = true;
 966                                }
 967                        }
 968                }
 969        }
 970
 971        return found;
 972}
 973
 974/*
 975 * Returns a set of divisors for the desired target clock with the given
 976 * refclk, or FALSE.  The returned values represent the clock equation:
 977 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
 978 */
 979static bool
 980chv_find_best_dpll(const intel_limit_t *limit,
 981                   struct intel_crtc_state *crtc_state,
 982                   int target, int refclk, intel_clock_t *match_clock,
 983                   intel_clock_t *best_clock)
 984{
 985        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 986        struct drm_device *dev = crtc->base.dev;
 987        unsigned int best_error_ppm;
 988        intel_clock_t clock;
 989        uint64_t m2;
 990        int found = false;
 991
 992        memset(best_clock, 0, sizeof(*best_clock));
 993        best_error_ppm = 1000000;
 994
 995        /*
 996         * Based on hardware doc, the n always set to 1, and m1 always
 997         * set to 2.  If requires to support 200Mhz refclk, we need to
 998         * revisit this because n may not 1 anymore.
 999         */
1000        clock.n = 1, clock.m1 = 2;
1001        target *= 5;    /* fast clock */
1002
1003        for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1004                for (clock.p2 = limit->p2.p2_fast;
1005                                clock.p2 >= limit->p2.p2_slow;
1006                                clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1007                        unsigned int error_ppm;
1008
1009                        clock.p = clock.p1 * clock.p2;
1010
1011                        m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1012                                        clock.n) << 22, refclk * clock.m1);
1013
1014                        if (m2 > INT_MAX/clock.m1)
1015                                continue;
1016
1017                        clock.m2 = m2;
1018
1019                        chv_calc_dpll_params(refclk, &clock);
1020
1021                        if (!intel_PLL_is_valid(dev, limit, &clock))
1022                                continue;
1023
1024                        if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1025                                                best_error_ppm, &error_ppm))
1026                                continue;
1027
1028                        *best_clock = clock;
1029                        best_error_ppm = error_ppm;
1030                        found = true;
1031                }
1032        }
1033
1034        return found;
1035}
1036
1037bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1038                        intel_clock_t *best_clock)
1039{
1040        int refclk = 100000;
1041        const intel_limit_t *limit = &intel_limits_bxt;
1042
1043        return chv_find_best_dpll(limit, crtc_state,
1044                                  target_clock, refclk, NULL, best_clock);
1045}
1046
1047bool intel_crtc_active(struct drm_crtc *crtc)
1048{
1049        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1050
1051        /* Be paranoid as we can arrive here with only partial
1052         * state retrieved from the hardware during setup.
1053         *
1054         * We can ditch the adjusted_mode.crtc_clock check as soon
1055         * as Haswell has gained clock readout/fastboot support.
1056         *
1057         * We can ditch the crtc->primary->fb check as soon as we can
1058         * properly reconstruct framebuffers.
1059         *
1060         * FIXME: The intel_crtc->active here should be switched to
1061         * crtc->state->active once we have proper CRTC states wired up
1062         * for atomic.
1063         */
1064        return intel_crtc->active && crtc->primary->state->fb &&
1065                intel_crtc->config->base.adjusted_mode.crtc_clock;
1066}
1067
1068enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1069                                             enum pipe pipe)
1070{
1071        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1072        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1073
1074        return intel_crtc->config->cpu_transcoder;
1075}
1076
1077static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1078{
1079        struct drm_i915_private *dev_priv = dev->dev_private;
1080        i915_reg_t reg = PIPEDSL(pipe);
1081        u32 line1, line2;
1082        u32 line_mask;
1083
1084        if (IS_GEN2(dev))
1085                line_mask = DSL_LINEMASK_GEN2;
1086        else
1087                line_mask = DSL_LINEMASK_GEN3;
1088
1089        line1 = I915_READ(reg) & line_mask;
1090        msleep(5);
1091        line2 = I915_READ(reg) & line_mask;
1092
1093        return line1 == line2;
1094}
1095
1096/*
1097 * intel_wait_for_pipe_off - wait for pipe to turn off
1098 * @crtc: crtc whose pipe to wait for
1099 *
1100 * After disabling a pipe, we can't wait for vblank in the usual way,
1101 * spinning on the vblank interrupt status bit, since we won't actually
1102 * see an interrupt when the pipe is disabled.
1103 *
1104 * On Gen4 and above:
1105 *   wait for the pipe register state bit to turn off
1106 *
1107 * Otherwise:
1108 *   wait for the display line value to settle (it usually
1109 *   ends up stopping at the start of the next frame).
1110 *
1111 */
1112static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1113{
1114        struct drm_device *dev = crtc->base.dev;
1115        struct drm_i915_private *dev_priv = dev->dev_private;
1116        enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1117        enum pipe pipe = crtc->pipe;
1118
1119        if (INTEL_INFO(dev)->gen >= 4) {
1120                i915_reg_t reg = PIPECONF(cpu_transcoder);
1121
1122                /* Wait for the Pipe State to go off */
1123                if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1124                             100))
1125                        WARN(1, "pipe_off wait timed out\n");
1126        } else {
1127                /* Wait for the display line to settle */
1128                if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1129                        WARN(1, "pipe_off wait timed out\n");
1130        }
1131}
1132
1133/* Only for pre-ILK configs */
1134void assert_pll(struct drm_i915_private *dev_priv,
1135                enum pipe pipe, bool state)
1136{
1137        u32 val;
1138        bool cur_state;
1139
1140        val = I915_READ(DPLL(pipe));
1141        cur_state = !!(val & DPLL_VCO_ENABLE);
1142        I915_STATE_WARN(cur_state != state,
1143             "PLL state assertion failure (expected %s, current %s)\n",
1144                        onoff(state), onoff(cur_state));
1145}
1146
1147/* XXX: the dsi pll is shared between MIPI DSI ports */
1148void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1149{
1150        u32 val;
1151        bool cur_state;
1152
1153        mutex_lock(&dev_priv->sb_lock);
1154        val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1155        mutex_unlock(&dev_priv->sb_lock);
1156
1157        cur_state = val & DSI_PLL_VCO_EN;
1158        I915_STATE_WARN(cur_state != state,
1159             "DSI PLL state assertion failure (expected %s, current %s)\n",
1160                        onoff(state), onoff(cur_state));
1161}
1162
1163static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1164                          enum pipe pipe, bool state)
1165{
1166        bool cur_state;
1167        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1168                                                                      pipe);
1169
1170        if (HAS_DDI(dev_priv)) {
1171                /* DDI does not have a specific FDI_TX register */
1172                u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1173                cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1174        } else {
1175                u32 val = I915_READ(FDI_TX_CTL(pipe));
1176                cur_state = !!(val & FDI_TX_ENABLE);
1177        }
1178        I915_STATE_WARN(cur_state != state,
1179             "FDI TX state assertion failure (expected %s, current %s)\n",
1180                        onoff(state), onoff(cur_state));
1181}
1182#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1183#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1184
1185static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1186                          enum pipe pipe, bool state)
1187{
1188        u32 val;
1189        bool cur_state;
1190
1191        val = I915_READ(FDI_RX_CTL(pipe));
1192        cur_state = !!(val & FDI_RX_ENABLE);
1193        I915_STATE_WARN(cur_state != state,
1194             "FDI RX state assertion failure (expected %s, current %s)\n",
1195                        onoff(state), onoff(cur_state));
1196}
1197#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1198#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1199
1200static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1201                                      enum pipe pipe)
1202{
1203        u32 val;
1204
1205        /* ILK FDI PLL is always enabled */
1206        if (INTEL_INFO(dev_priv)->gen == 5)
1207                return;
1208
1209        /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1210        if (HAS_DDI(dev_priv))
1211                return;
1212
1213        val = I915_READ(FDI_TX_CTL(pipe));
1214        I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1215}
1216
1217void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1218                       enum pipe pipe, bool state)
1219{
1220        u32 val;
1221        bool cur_state;
1222
1223        val = I915_READ(FDI_RX_CTL(pipe));
1224        cur_state = !!(val & FDI_RX_PLL_ENABLE);
1225        I915_STATE_WARN(cur_state != state,
1226             "FDI RX PLL assertion failure (expected %s, current %s)\n",
1227                        onoff(state), onoff(cur_state));
1228}
1229
1230void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1231                           enum pipe pipe)
1232{
1233        struct drm_device *dev = dev_priv->dev;
1234        i915_reg_t pp_reg;
1235        u32 val;
1236        enum pipe panel_pipe = PIPE_A;
1237        bool locked = true;
1238
1239        if (WARN_ON(HAS_DDI(dev)))
1240                return;
1241
1242        if (HAS_PCH_SPLIT(dev)) {
1243                u32 port_sel;
1244
1245                pp_reg = PCH_PP_CONTROL;
1246                port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1247
1248                if (port_sel == PANEL_PORT_SELECT_LVDS &&
1249                    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1250                        panel_pipe = PIPE_B;
1251                /* XXX: else fix for eDP */
1252        } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1253                /* presumably write lock depends on pipe, not port select */
1254                pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1255                panel_pipe = pipe;
1256        } else {
1257                pp_reg = PP_CONTROL;
1258                if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1259                        panel_pipe = PIPE_B;
1260        }
1261
1262        val = I915_READ(pp_reg);
1263        if (!(val & PANEL_POWER_ON) ||
1264            ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1265                locked = false;
1266
1267        I915_STATE_WARN(panel_pipe == pipe && locked,
1268             "panel assertion failure, pipe %c regs locked\n",
1269             pipe_name(pipe));
1270}
1271
1272static void assert_cursor(struct drm_i915_private *dev_priv,
1273                          enum pipe pipe, bool state)
1274{
1275        struct drm_device *dev = dev_priv->dev;
1276        bool cur_state;
1277
1278        if (IS_845G(dev) || IS_I865G(dev))
1279                cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1280        else
1281                cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1282
1283        I915_STATE_WARN(cur_state != state,
1284             "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1285                        pipe_name(pipe), onoff(state), onoff(cur_state));
1286}
1287#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1288#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1289
1290void assert_pipe(struct drm_i915_private *dev_priv,
1291                 enum pipe pipe, bool state)
1292{
1293        bool cur_state;
1294        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1295                                                                      pipe);
1296        enum intel_display_power_domain power_domain;
1297
1298        /* if we need the pipe quirk it must be always on */
1299        if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1300            (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1301                state = true;
1302
1303        power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1304        if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1305                u32 val = I915_READ(PIPECONF(cpu_transcoder));
1306                cur_state = !!(val & PIPECONF_ENABLE);
1307
1308                intel_display_power_put(dev_priv, power_domain);
1309        } else {
1310                cur_state = false;
1311        }
1312
1313        I915_STATE_WARN(cur_state != state,
1314             "pipe %c assertion failure (expected %s, current %s)\n",
1315                        pipe_name(pipe), onoff(state), onoff(cur_state));
1316}
1317
1318static void assert_plane(struct drm_i915_private *dev_priv,
1319                         enum plane plane, bool state)
1320{
1321        u32 val;
1322        bool cur_state;
1323
1324        val = I915_READ(DSPCNTR(plane));
1325        cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1326        I915_STATE_WARN(cur_state != state,
1327             "plane %c assertion failure (expected %s, current %s)\n",
1328                        plane_name(plane), onoff(state), onoff(cur_state));
1329}
1330
1331#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1332#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1333
1334static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1335                                   enum pipe pipe)
1336{
1337        struct drm_device *dev = dev_priv->dev;
1338        int i;
1339
1340        /* Primary planes are fixed to pipes on gen4+ */
1341        if (INTEL_INFO(dev)->gen >= 4) {
1342                u32 val = I915_READ(DSPCNTR(pipe));
1343                I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1344                     "plane %c assertion failure, should be disabled but not\n",
1345                     plane_name(pipe));
1346                return;
1347        }
1348
1349        /* Need to check both planes against the pipe */
1350        for_each_pipe(dev_priv, i) {
1351                u32 val = I915_READ(DSPCNTR(i));
1352                enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1353                        DISPPLANE_SEL_PIPE_SHIFT;
1354                I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1355                     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1356                     plane_name(i), pipe_name(pipe));
1357        }
1358}
1359
1360static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1361                                    enum pipe pipe)
1362{
1363        struct drm_device *dev = dev_priv->dev;
1364        int sprite;
1365
1366        if (INTEL_INFO(dev)->gen >= 9) {
1367                for_each_sprite(dev_priv, pipe, sprite) {
1368                        u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1369                        I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1370                             "plane %d assertion failure, should be off on pipe %c but is still active\n",
1371                             sprite, pipe_name(pipe));
1372                }
1373        } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1374                for_each_sprite(dev_priv, pipe, sprite) {
1375                        u32 val = I915_READ(SPCNTR(pipe, sprite));
1376                        I915_STATE_WARN(val & SP_ENABLE,
1377                             "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1378                             sprite_name(pipe, sprite), pipe_name(pipe));
1379                }
1380        } else if (INTEL_INFO(dev)->gen >= 7) {
1381                u32 val = I915_READ(SPRCTL(pipe));
1382                I915_STATE_WARN(val & SPRITE_ENABLE,
1383                     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1384                     plane_name(pipe), pipe_name(pipe));
1385        } else if (INTEL_INFO(dev)->gen >= 5) {
1386                u32 val = I915_READ(DVSCNTR(pipe));
1387                I915_STATE_WARN(val & DVS_ENABLE,
1388                     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1389                     plane_name(pipe), pipe_name(pipe));
1390        }
1391}
1392
1393static void assert_vblank_disabled(struct drm_crtc *crtc)
1394{
1395        if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1396                drm_crtc_vblank_put(crtc);
1397}
1398
1399void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1400                                    enum pipe pipe)
1401{
1402        u32 val;
1403        bool enabled;
1404
1405        val = I915_READ(PCH_TRANSCONF(pipe));
1406        enabled = !!(val & TRANS_ENABLE);
1407        I915_STATE_WARN(enabled,
1408             "transcoder assertion failed, should be off on pipe %c but is still active\n",
1409             pipe_name(pipe));
1410}
1411
1412static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1413                            enum pipe pipe, u32 port_sel, u32 val)
1414{
1415        if ((val & DP_PORT_EN) == 0)
1416                return false;
1417
1418        if (HAS_PCH_CPT(dev_priv)) {
1419                u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1420                if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1421                        return false;
1422        } else if (IS_CHERRYVIEW(dev_priv)) {
1423                if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1424                        return false;
1425        } else {
1426                if ((val & DP_PIPE_MASK) != (pipe << 30))
1427                        return false;
1428        }
1429        return true;
1430}
1431
1432static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1433                              enum pipe pipe, u32 val)
1434{
1435        if ((val & SDVO_ENABLE) == 0)
1436                return false;
1437
1438        if (HAS_PCH_CPT(dev_priv)) {
1439                if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1440                        return false;
1441        } else if (IS_CHERRYVIEW(dev_priv)) {
1442                if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1443                        return false;
1444        } else {
1445                if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1446                        return false;
1447        }
1448        return true;
1449}
1450
1451static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1452                              enum pipe pipe, u32 val)
1453{
1454        if ((val & LVDS_PORT_EN) == 0)
1455                return false;
1456
1457        if (HAS_PCH_CPT(dev_priv)) {
1458                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1459                        return false;
1460        } else {
1461                if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1462                        return false;
1463        }
1464        return true;
1465}
1466
1467static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1468                              enum pipe pipe, u32 val)
1469{
1470        if ((val & ADPA_DAC_ENABLE) == 0)
1471                return false;
1472        if (HAS_PCH_CPT(dev_priv)) {
1473                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1474                        return false;
1475        } else {
1476                if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1477                        return false;
1478        }
1479        return true;
1480}
1481
1482static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1483                                   enum pipe pipe, i915_reg_t reg,
1484                                   u32 port_sel)
1485{
1486        u32 val = I915_READ(reg);
1487        I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1488             "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1489             i915_mmio_reg_offset(reg), pipe_name(pipe));
1490
1491        I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1492             && (val & DP_PIPEB_SELECT),
1493             "IBX PCH dp port still using transcoder B\n");
1494}
1495
1496static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1497                                     enum pipe pipe, i915_reg_t reg)
1498{
1499        u32 val = I915_READ(reg);
1500        I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1501             "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1502             i915_mmio_reg_offset(reg), pipe_name(pipe));
1503
1504        I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1505             && (val & SDVO_PIPE_B_SELECT),
1506             "IBX PCH hdmi port still using transcoder B\n");
1507}
1508
1509static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1510                                      enum pipe pipe)
1511{
1512        u32 val;
1513
1514        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1515        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1516        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1517
1518        val = I915_READ(PCH_ADPA);
1519        I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1520             "PCH VGA enabled on transcoder %c, should be disabled\n",
1521             pipe_name(pipe));
1522
1523        val = I915_READ(PCH_LVDS);
1524        I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1525             "PCH LVDS enabled on transcoder %c, should be disabled\n",
1526             pipe_name(pipe));
1527
1528        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1529        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1530        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1531}
1532
1533static void _vlv_enable_pll(struct intel_crtc *crtc,
1534                            const struct intel_crtc_state *pipe_config)
1535{
1536        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1537        enum pipe pipe = crtc->pipe;
1538
1539        I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1540        POSTING_READ(DPLL(pipe));
1541        udelay(150);
1542
1543        if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1544                DRM_ERROR("DPLL %d failed to lock\n", pipe);
1545}
1546
1547static void vlv_enable_pll(struct intel_crtc *crtc,
1548                           const struct intel_crtc_state *pipe_config)
1549{
1550        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1551        enum pipe pipe = crtc->pipe;
1552
1553        assert_pipe_disabled(dev_priv, pipe);
1554
1555        /* PLL is protected by panel, make sure we can write it */
1556        assert_panel_unlocked(dev_priv, pipe);
1557
1558        if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1559                _vlv_enable_pll(crtc, pipe_config);
1560
1561        I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1562        POSTING_READ(DPLL_MD(pipe));
1563}
1564
1565
1566static void _chv_enable_pll(struct intel_crtc *crtc,
1567                            const struct intel_crtc_state *pipe_config)
1568{
1569        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1570        enum pipe pipe = crtc->pipe;
1571        enum dpio_channel port = vlv_pipe_to_channel(pipe);
1572        u32 tmp;
1573
1574        mutex_lock(&dev_priv->sb_lock);
1575
1576        /* Enable back the 10bit clock to display controller */
1577        tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1578        tmp |= DPIO_DCLKP_EN;
1579        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1580
1581        mutex_unlock(&dev_priv->sb_lock);
1582
1583        /*
1584         * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1585         */
1586        udelay(1);
1587
1588        /* Enable PLL */
1589        I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1590
1591        /* Check PLL is locked */
1592        if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1593                DRM_ERROR("PLL %d failed to lock\n", pipe);
1594}
1595
1596static void chv_enable_pll(struct intel_crtc *crtc,
1597                           const struct intel_crtc_state *pipe_config)
1598{
1599        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1600        enum pipe pipe = crtc->pipe;
1601
1602        assert_pipe_disabled(dev_priv, pipe);
1603
1604        /* PLL is protected by panel, make sure we can write it */
1605        assert_panel_unlocked(dev_priv, pipe);
1606
1607        if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1608                _chv_enable_pll(crtc, pipe_config);
1609
1610        if (pipe != PIPE_A) {
1611                /*
1612                 * WaPixelRepeatModeFixForC0:chv
1613                 *
1614                 * DPLLCMD is AWOL. Use chicken bits to propagate
1615                 * the value from DPLLBMD to either pipe B or C.
1616                 */
1617                I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1618                I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1619                I915_WRITE(CBR4_VLV, 0);
1620                dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1621
1622                /*
1623                 * DPLLB VGA mode also seems to cause problems.
1624                 * We should always have it disabled.
1625                 */
1626                WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1627        } else {
1628                I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1629                POSTING_READ(DPLL_MD(pipe));
1630        }
1631}
1632
1633static int intel_num_dvo_pipes(struct drm_device *dev)
1634{
1635        struct intel_crtc *crtc;
1636        int count = 0;
1637
1638        for_each_intel_crtc(dev, crtc)
1639                count += crtc->base.state->active &&
1640                        intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1641
1642        return count;
1643}
1644
1645static void i9xx_enable_pll(struct intel_crtc *crtc)
1646{
1647        struct drm_device *dev = crtc->base.dev;
1648        struct drm_i915_private *dev_priv = dev->dev_private;
1649        i915_reg_t reg = DPLL(crtc->pipe);
1650        u32 dpll = crtc->config->dpll_hw_state.dpll;
1651
1652        assert_pipe_disabled(dev_priv, crtc->pipe);
1653
1654        /* PLL is protected by panel, make sure we can write it */
1655        if (IS_MOBILE(dev) && !IS_I830(dev))
1656                assert_panel_unlocked(dev_priv, crtc->pipe);
1657
1658        /* Enable DVO 2x clock on both PLLs if necessary */
1659        if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1660                /*
1661                 * It appears to be important that we don't enable this
1662                 * for the current pipe before otherwise configuring the
1663                 * PLL. No idea how this should be handled if multiple
1664                 * DVO outputs are enabled simultaneosly.
1665                 */
1666                dpll |= DPLL_DVO_2X_MODE;
1667                I915_WRITE(DPLL(!crtc->pipe),
1668                           I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1669        }
1670
1671        /*
1672         * Apparently we need to have VGA mode enabled prior to changing
1673         * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1674         * dividers, even though the register value does change.
1675         */
1676        I915_WRITE(reg, 0);
1677
1678        I915_WRITE(reg, dpll);
1679
1680        /* Wait for the clocks to stabilize. */
1681        POSTING_READ(reg);
1682        udelay(150);
1683
1684        if (INTEL_INFO(dev)->gen >= 4) {
1685                I915_WRITE(DPLL_MD(crtc->pipe),
1686                           crtc->config->dpll_hw_state.dpll_md);
1687        } else {
1688                /* The pixel multiplier can only be updated once the
1689                 * DPLL is enabled and the clocks are stable.
1690                 *
1691                 * So write it again.
1692                 */
1693                I915_WRITE(reg, dpll);
1694        }
1695
1696        /* We do this three times for luck */
1697        I915_WRITE(reg, dpll);
1698        POSTING_READ(reg);
1699        udelay(150); /* wait for warmup */
1700        I915_WRITE(reg, dpll);
1701        POSTING_READ(reg);
1702        udelay(150); /* wait for warmup */
1703        I915_WRITE(reg, dpll);
1704        POSTING_READ(reg);
1705        udelay(150); /* wait for warmup */
1706}
1707
1708/**
1709 * i9xx_disable_pll - disable a PLL
1710 * @dev_priv: i915 private structure
1711 * @pipe: pipe PLL to disable
1712 *
1713 * Disable the PLL for @pipe, making sure the pipe is off first.
1714 *
1715 * Note!  This is for pre-ILK only.
1716 */
1717static void i9xx_disable_pll(struct intel_crtc *crtc)
1718{
1719        struct drm_device *dev = crtc->base.dev;
1720        struct drm_i915_private *dev_priv = dev->dev_private;
1721        enum pipe pipe = crtc->pipe;
1722
1723        /* Disable DVO 2x clock on both PLLs if necessary */
1724        if (IS_I830(dev) &&
1725            intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1726            !intel_num_dvo_pipes(dev)) {
1727                I915_WRITE(DPLL(PIPE_B),
1728                           I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1729                I915_WRITE(DPLL(PIPE_A),
1730                           I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1731        }
1732
1733        /* Don't disable pipe or pipe PLLs if needed */
1734        if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1735            (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1736                return;
1737
1738        /* Make sure the pipe isn't still relying on us */
1739        assert_pipe_disabled(dev_priv, pipe);
1740
1741        I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1742        POSTING_READ(DPLL(pipe));
1743}
1744
1745static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1746{
1747        u32 val;
1748
1749        /* Make sure the pipe isn't still relying on us */
1750        assert_pipe_disabled(dev_priv, pipe);
1751
1752        val = DPLL_INTEGRATED_REF_CLK_VLV |
1753                DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1754        if (pipe != PIPE_A)
1755                val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1756
1757        I915_WRITE(DPLL(pipe), val);
1758        POSTING_READ(DPLL(pipe));
1759}
1760
1761static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1762{
1763        enum dpio_channel port = vlv_pipe_to_channel(pipe);
1764        u32 val;
1765
1766        /* Make sure the pipe isn't still relying on us */
1767        assert_pipe_disabled(dev_priv, pipe);
1768
1769        val = DPLL_SSC_REF_CLK_CHV |
1770                DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1771        if (pipe != PIPE_A)
1772                val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1773
1774        I915_WRITE(DPLL(pipe), val);
1775        POSTING_READ(DPLL(pipe));
1776
1777        mutex_lock(&dev_priv->sb_lock);
1778
1779        /* Disable 10bit clock to display controller */
1780        val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1781        val &= ~DPIO_DCLKP_EN;
1782        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1783
1784        mutex_unlock(&dev_priv->sb_lock);
1785}
1786
1787void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1788                         struct intel_digital_port *dport,
1789                         unsigned int expected_mask)
1790{
1791        u32 port_mask;
1792        i915_reg_t dpll_reg;
1793
1794        switch (dport->port) {
1795        case PORT_B:
1796                port_mask = DPLL_PORTB_READY_MASK;
1797                dpll_reg = DPLL(0);
1798                break;
1799        case PORT_C:
1800                port_mask = DPLL_PORTC_READY_MASK;
1801                dpll_reg = DPLL(0);
1802                expected_mask <<= 4;
1803                break;
1804        case PORT_D:
1805                port_mask = DPLL_PORTD_READY_MASK;
1806                dpll_reg = DPIO_PHY_STATUS;
1807                break;
1808        default:
1809                BUG();
1810        }
1811
1812        if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1813                WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1814                     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1815}
1816
1817static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1818                                           enum pipe pipe)
1819{
1820        struct drm_device *dev = dev_priv->dev;
1821        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1822        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1823        i915_reg_t reg;
1824        uint32_t val, pipeconf_val;
1825
1826        /* Make sure PCH DPLL is enabled */
1827        assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1828
1829        /* FDI must be feeding us bits for PCH ports */
1830        assert_fdi_tx_enabled(dev_priv, pipe);
1831        assert_fdi_rx_enabled(dev_priv, pipe);
1832
1833        if (HAS_PCH_CPT(dev)) {
1834                /* Workaround: Set the timing override bit before enabling the
1835                 * pch transcoder. */
1836                reg = TRANS_CHICKEN2(pipe);
1837                val = I915_READ(reg);
1838                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1839                I915_WRITE(reg, val);
1840        }
1841
1842        reg = PCH_TRANSCONF(pipe);
1843        val = I915_READ(reg);
1844        pipeconf_val = I915_READ(PIPECONF(pipe));
1845
1846        if (HAS_PCH_IBX(dev_priv)) {
1847                /*
1848                 * Make the BPC in transcoder be consistent with
1849                 * that in pipeconf reg. For HDMI we must use 8bpc
1850                 * here for both 8bpc and 12bpc.
1851                 */
1852                val &= ~PIPECONF_BPC_MASK;
1853                if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1854                        val |= PIPECONF_8BPC;
1855                else
1856                        val |= pipeconf_val & PIPECONF_BPC_MASK;
1857        }
1858
1859        val &= ~TRANS_INTERLACE_MASK;
1860        if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1861                if (HAS_PCH_IBX(dev_priv) &&
1862                    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1863                        val |= TRANS_LEGACY_INTERLACED_ILK;
1864                else
1865                        val |= TRANS_INTERLACED;
1866        else
1867                val |= TRANS_PROGRESSIVE;
1868
1869        I915_WRITE(reg, val | TRANS_ENABLE);
1870        if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1871                DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1872}
1873
1874static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1875                                      enum transcoder cpu_transcoder)
1876{
1877        u32 val, pipeconf_val;
1878
1879        /* FDI must be feeding us bits for PCH ports */
1880        assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1881        assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1882
1883        /* Workaround: set timing override bit. */
1884        val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1885        val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1886        I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1887
1888        val = TRANS_ENABLE;
1889        pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1890
1891        if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1892            PIPECONF_INTERLACED_ILK)
1893                val |= TRANS_INTERLACED;
1894        else
1895                val |= TRANS_PROGRESSIVE;
1896
1897        I915_WRITE(LPT_TRANSCONF, val);
1898        if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1899                DRM_ERROR("Failed to enable PCH transcoder\n");
1900}
1901
1902static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1903                                            enum pipe pipe)
1904{
1905        struct drm_device *dev = dev_priv->dev;
1906        i915_reg_t reg;
1907        uint32_t val;
1908
1909        /* FDI relies on the transcoder */
1910        assert_fdi_tx_disabled(dev_priv, pipe);
1911        assert_fdi_rx_disabled(dev_priv, pipe);
1912
1913        /* Ports must be off as well */
1914        assert_pch_ports_disabled(dev_priv, pipe);
1915
1916        reg = PCH_TRANSCONF(pipe);
1917        val = I915_READ(reg);
1918        val &= ~TRANS_ENABLE;
1919        I915_WRITE(reg, val);
1920        /* wait for PCH transcoder off, transcoder state */
1921        if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1922                DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1923
1924        if (HAS_PCH_CPT(dev)) {
1925                /* Workaround: Clear the timing override chicken bit again. */
1926                reg = TRANS_CHICKEN2(pipe);
1927                val = I915_READ(reg);
1928                val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1929                I915_WRITE(reg, val);
1930        }
1931}
1932
1933static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1934{
1935        u32 val;
1936
1937        val = I915_READ(LPT_TRANSCONF);
1938        val &= ~TRANS_ENABLE;
1939        I915_WRITE(LPT_TRANSCONF, val);
1940        /* wait for PCH transcoder off, transcoder state */
1941        if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1942                DRM_ERROR("Failed to disable PCH transcoder\n");
1943
1944        /* Workaround: clear timing override bit. */
1945        val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1946        val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1947        I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1948}
1949
1950/**
1951 * intel_enable_pipe - enable a pipe, asserting requirements
1952 * @crtc: crtc responsible for the pipe
1953 *
1954 * Enable @crtc's pipe, making sure that various hardware specific requirements
1955 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1956 */
1957static void intel_enable_pipe(struct intel_crtc *crtc)
1958{
1959        struct drm_device *dev = crtc->base.dev;
1960        struct drm_i915_private *dev_priv = dev->dev_private;
1961        enum pipe pipe = crtc->pipe;
1962        enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1963        enum pipe pch_transcoder;
1964        i915_reg_t reg;
1965        u32 val;
1966
1967        DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1968
1969        assert_planes_disabled(dev_priv, pipe);
1970        assert_cursor_disabled(dev_priv, pipe);
1971        assert_sprites_disabled(dev_priv, pipe);
1972
1973        if (HAS_PCH_LPT(dev_priv))
1974                pch_transcoder = TRANSCODER_A;
1975        else
1976                pch_transcoder = pipe;
1977
1978        /*
1979         * A pipe without a PLL won't actually be able to drive bits from
1980         * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1981         * need the check.
1982         */
1983        if (HAS_GMCH_DISPLAY(dev_priv))
1984                if (crtc->config->has_dsi_encoder)
1985                        assert_dsi_pll_enabled(dev_priv);
1986                else
1987                        assert_pll_enabled(dev_priv, pipe);
1988        else {
1989                if (crtc->config->has_pch_encoder) {
1990                        /* if driving the PCH, we need FDI enabled */
1991                        assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1992                        assert_fdi_tx_pll_enabled(dev_priv,
1993                                                  (enum pipe) cpu_transcoder);
1994                }
1995                /* FIXME: assert CPU port conditions for SNB+ */
1996        }
1997
1998        reg = PIPECONF(cpu_transcoder);
1999        val = I915_READ(reg);
2000        if (val & PIPECONF_ENABLE) {
2001                WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2002                          (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2003                return;
2004        }
2005
2006        I915_WRITE(reg, val | PIPECONF_ENABLE);
2007        POSTING_READ(reg);
2008
2009        /*
2010         * Until the pipe starts DSL will read as 0, which would cause
2011         * an apparent vblank timestamp jump, which messes up also the
2012         * frame count when it's derived from the timestamps. So let's
2013         * wait for the pipe to start properly before we call
2014         * drm_crtc_vblank_on()
2015         */
2016        if (dev->max_vblank_count == 0 &&
2017            wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2018                DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
2019}
2020
2021/**
2022 * intel_disable_pipe - disable a pipe, asserting requirements
2023 * @crtc: crtc whose pipes is to be disabled
2024 *
2025 * Disable the pipe of @crtc, making sure that various hardware
2026 * specific requirements are met, if applicable, e.g. plane
2027 * disabled, panel fitter off, etc.
2028 *
2029 * Will wait until the pipe has shut down before returning.
2030 */
2031static void intel_disable_pipe(struct intel_crtc *crtc)
2032{
2033        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2034        enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2035        enum pipe pipe = crtc->pipe;
2036        i915_reg_t reg;
2037        u32 val;
2038
2039        DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2040
2041        /*
2042         * Make sure planes won't keep trying to pump pixels to us,
2043         * or we might hang the display.
2044         */
2045        assert_planes_disabled(dev_priv, pipe);
2046        assert_cursor_disabled(dev_priv, pipe);
2047        assert_sprites_disabled(dev_priv, pipe);
2048
2049        reg = PIPECONF(cpu_transcoder);
2050        val = I915_READ(reg);
2051        if ((val & PIPECONF_ENABLE) == 0)
2052                return;
2053
2054        /*
2055         * Double wide has implications for planes
2056         * so best keep it disabled when not needed.
2057         */
2058        if (crtc->config->double_wide)
2059                val &= ~PIPECONF_DOUBLE_WIDE;
2060
2061        /* Don't disable pipe or pipe PLLs if needed */
2062        if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2063            !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2064                val &= ~PIPECONF_ENABLE;
2065
2066        I915_WRITE(reg, val);
2067        if ((val & PIPECONF_ENABLE) == 0)
2068                intel_wait_for_pipe_off(crtc);
2069}
2070
2071static bool need_vtd_wa(struct drm_device *dev)
2072{
2073#ifdef CONFIG_INTEL_IOMMU
2074        if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2075                return true;
2076#endif
2077        return false;
2078}
2079
2080static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2081{
2082        return IS_GEN2(dev_priv) ? 2048 : 4096;
2083}
2084
2085static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2086                                           uint64_t fb_modifier, unsigned int cpp)
2087{
2088        switch (fb_modifier) {
2089        case DRM_FORMAT_MOD_NONE:
2090                return cpp;
2091        case I915_FORMAT_MOD_X_TILED:
2092                if (IS_GEN2(dev_priv))
2093                        return 128;
2094                else
2095                        return 512;
2096        case I915_FORMAT_MOD_Y_TILED:
2097                if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2098                        return 128;
2099                else
2100                        return 512;
2101        case I915_FORMAT_MOD_Yf_TILED:
2102                switch (cpp) {
2103                case 1:
2104                        return 64;
2105                case 2:
2106                case 4:
2107                        return 128;
2108                case 8:
2109                case 16:
2110                        return 256;
2111                default:
2112                        MISSING_CASE(cpp);
2113                        return cpp;
2114                }
2115                break;
2116        default:
2117                MISSING_CASE(fb_modifier);
2118                return cpp;
2119        }
2120}
2121
2122unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2123                               uint64_t fb_modifier, unsigned int cpp)
2124{
2125        if (fb_modifier == DRM_FORMAT_MOD_NONE)
2126                return 1;
2127        else
2128                return intel_tile_size(dev_priv) /
2129                        intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2130}
2131
2132/* Return the tile dimensions in pixel units */
2133static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2134                            unsigned int *tile_width,
2135                            unsigned int *tile_height,
2136                            uint64_t fb_modifier,
2137                            unsigned int cpp)
2138{
2139        unsigned int tile_width_bytes =
2140                intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2141
2142        *tile_width = tile_width_bytes / cpp;
2143        *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2144}
2145
2146unsigned int
2147intel_fb_align_height(struct drm_device *dev, unsigned int height,
2148                      uint32_t pixel_format, uint64_t fb_modifier)
2149{
2150        unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2151        unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2152
2153        return ALIGN(height, tile_height);
2154}
2155
2156unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2157{
2158        unsigned int size = 0;
2159        int i;
2160
2161        for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2162                size += rot_info->plane[i].width * rot_info->plane[i].height;
2163
2164        return size;
2165}
2166
2167static void
2168intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2169                        const struct drm_framebuffer *fb,
2170                        unsigned int rotation)
2171{
2172        if (intel_rotation_90_or_270(rotation)) {
2173                *view = i915_ggtt_view_rotated;
2174                view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2175        } else {
2176                *view = i915_ggtt_view_normal;
2177        }
2178}
2179
2180static void
2181intel_fill_fb_info(struct drm_i915_private *dev_priv,
2182                   struct drm_framebuffer *fb)
2183{
2184        struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2185        unsigned int tile_size, tile_width, tile_height, cpp;
2186
2187        tile_size = intel_tile_size(dev_priv);
2188
2189        cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2190        intel_tile_dims(dev_priv, &tile_width, &tile_height,
2191                        fb->modifier[0], cpp);
2192
2193        info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2194        info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
2195
2196        if (info->pixel_format == DRM_FORMAT_NV12) {
2197                cpp = drm_format_plane_cpp(fb->pixel_format, 1);
2198                intel_tile_dims(dev_priv, &tile_width, &tile_height,
2199                                fb->modifier[1], cpp);
2200
2201                info->uv_offset = fb->offsets[1];
2202                info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2203                info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
2204        }
2205}
2206
2207static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2208{
2209        if (INTEL_INFO(dev_priv)->gen >= 9)
2210                return 256 * 1024;
2211        else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2212                 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2213                return 128 * 1024;
2214        else if (INTEL_INFO(dev_priv)->gen >= 4)
2215                return 4 * 1024;
2216        else
2217                return 0;
2218}
2219
2220static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2221                                         uint64_t fb_modifier)
2222{
2223        switch (fb_modifier) {
2224        case DRM_FORMAT_MOD_NONE:
2225                return intel_linear_alignment(dev_priv);
2226        case I915_FORMAT_MOD_X_TILED:
2227                if (INTEL_INFO(dev_priv)->gen >= 9)
2228                        return 256 * 1024;
2229                return 0;
2230        case I915_FORMAT_MOD_Y_TILED:
2231        case I915_FORMAT_MOD_Yf_TILED:
2232                return 1 * 1024 * 1024;
2233        default:
2234                MISSING_CASE(fb_modifier);
2235                return 0;
2236        }
2237}
2238
2239int
2240intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2241                           unsigned int rotation)
2242{
2243        struct drm_device *dev = fb->dev;
2244        struct drm_i915_private *dev_priv = dev->dev_private;
2245        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2246        struct i915_ggtt_view view;
2247        u32 alignment;
2248        int ret;
2249
2250        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2251
2252        alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2253
2254        intel_fill_fb_ggtt_view(&view, fb, rotation);
2255
2256        /* Note that the w/a also requires 64 PTE of padding following the
2257         * bo. We currently fill all unused PTE with the shadow page and so
2258         * we should always have valid PTE following the scanout preventing
2259         * the VT-d warning.
2260         */
2261        if (need_vtd_wa(dev) && alignment < 256 * 1024)
2262                alignment = 256 * 1024;
2263
2264        /*
2265         * Global gtt pte registers are special registers which actually forward
2266         * writes to a chunk of system memory. Which means that there is no risk
2267         * that the register values disappear as soon as we call
2268         * intel_runtime_pm_put(), so it is correct to wrap only the
2269         * pin/unpin/fence and not more.
2270         */
2271        intel_runtime_pm_get(dev_priv);
2272
2273        ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2274                                                   &view);
2275        if (ret)
2276                goto err_pm;
2277
2278        /* Install a fence for tiled scan-out. Pre-i965 always needs a
2279         * fence, whereas 965+ only requires a fence if using
2280         * framebuffer compression.  For simplicity, we always install
2281         * a fence as the cost is not that onerous.
2282         */
2283        if (view.type == I915_GGTT_VIEW_NORMAL) {
2284                ret = i915_gem_object_get_fence(obj);
2285                if (ret == -EDEADLK) {
2286                        /*
2287                         * -EDEADLK means there are no free fences
2288                         * no pending flips.
2289                         *
2290                         * This is propagated to atomic, but it uses
2291                         * -EDEADLK to force a locking recovery, so
2292                         * change the returned error to -EBUSY.
2293                         */
2294                        ret = -EBUSY;
2295                        goto err_unpin;
2296                } else if (ret)
2297                        goto err_unpin;
2298
2299                i915_gem_object_pin_fence(obj);
2300        }
2301
2302        intel_runtime_pm_put(dev_priv);
2303        return 0;
2304
2305err_unpin:
2306        i915_gem_object_unpin_from_display_plane(obj, &view);
2307err_pm:
2308        intel_runtime_pm_put(dev_priv);
2309        return ret;
2310}
2311
2312static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2313{
2314        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2315        struct i915_ggtt_view view;
2316
2317        WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2318
2319        intel_fill_fb_ggtt_view(&view, fb, rotation);
2320
2321        if (view.type == I915_GGTT_VIEW_NORMAL)
2322                i915_gem_object_unpin_fence(obj);
2323
2324        i915_gem_object_unpin_from_display_plane(obj, &view);
2325}
2326
2327/*
2328 * Adjust the tile offset by moving the difference into
2329 * the x/y offsets.
2330 *
2331 * Input tile dimensions and pitch must already be
2332 * rotated to match x and y, and in pixel units.
2333 */
2334static u32 intel_adjust_tile_offset(int *x, int *y,
2335                                    unsigned int tile_width,
2336                                    unsigned int tile_height,
2337                                    unsigned int tile_size,
2338                                    unsigned int pitch_tiles,
2339                                    u32 old_offset,
2340                                    u32 new_offset)
2341{
2342        unsigned int tiles;
2343
2344        WARN_ON(old_offset & (tile_size - 1));
2345        WARN_ON(new_offset & (tile_size - 1));
2346        WARN_ON(new_offset > old_offset);
2347
2348        tiles = (old_offset - new_offset) / tile_size;
2349
2350        *y += tiles / pitch_tiles * tile_height;
2351        *x += tiles % pitch_tiles * tile_width;
2352
2353        return new_offset;
2354}
2355
2356/*
2357 * Computes the linear offset to the base tile and adjusts
2358 * x, y. bytes per pixel is assumed to be a power-of-two.
2359 *
2360 * In the 90/270 rotated case, x and y are assumed
2361 * to be already rotated to match the rotated GTT view, and
2362 * pitch is the tile_height aligned framebuffer height.
2363 */
2364u32 intel_compute_tile_offset(int *x, int *y,
2365                              const struct drm_framebuffer *fb, int plane,
2366                              unsigned int pitch,
2367                              unsigned int rotation)
2368{
2369        const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2370        uint64_t fb_modifier = fb->modifier[plane];
2371        unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2372        u32 offset, offset_aligned, alignment;
2373
2374        alignment = intel_surf_alignment(dev_priv, fb_modifier);
2375        if (alignment)
2376                alignment--;
2377
2378        if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2379                unsigned int tile_size, tile_width, tile_height;
2380                unsigned int tile_rows, tiles, pitch_tiles;
2381
2382                tile_size = intel_tile_size(dev_priv);
2383                intel_tile_dims(dev_priv, &tile_width, &tile_height,
2384                                fb_modifier, cpp);
2385
2386                if (intel_rotation_90_or_270(rotation)) {
2387                        pitch_tiles = pitch / tile_height;
2388                        swap(tile_width, tile_height);
2389                } else {
2390                        pitch_tiles = pitch / (tile_width * cpp);
2391                }
2392
2393                tile_rows = *y / tile_height;
2394                *y %= tile_height;
2395
2396                tiles = *x / tile_width;
2397                *x %= tile_width;
2398
2399                offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2400                offset_aligned = offset & ~alignment;
2401
2402                intel_adjust_tile_offset(x, y, tile_width, tile_height,
2403                                         tile_size, pitch_tiles,
2404                                         offset, offset_aligned);
2405        } else {
2406                offset = *y * pitch + *x * cpp;
2407                offset_aligned = offset & ~alignment;
2408
2409                *y = (offset & alignment) / pitch;
2410                *x = ((offset & alignment) - *y * pitch) / cpp;
2411        }
2412
2413        return offset_aligned;
2414}
2415
2416static int i9xx_format_to_fourcc(int format)
2417{
2418        switch (format) {
2419        case DISPPLANE_8BPP:
2420                return DRM_FORMAT_C8;
2421        case DISPPLANE_BGRX555:
2422                return DRM_FORMAT_XRGB1555;
2423        case DISPPLANE_BGRX565:
2424                return DRM_FORMAT_RGB565;
2425        default:
2426        case DISPPLANE_BGRX888:
2427                return DRM_FORMAT_XRGB8888;
2428        case DISPPLANE_RGBX888:
2429                return DRM_FORMAT_XBGR8888;
2430        case DISPPLANE_BGRX101010:
2431                return DRM_FORMAT_XRGB2101010;
2432        case DISPPLANE_RGBX101010:
2433                return DRM_FORMAT_XBGR2101010;
2434        }
2435}
2436
2437static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2438{
2439        switch (format) {
2440        case PLANE_CTL_FORMAT_RGB_565:
2441                return DRM_FORMAT_RGB565;
2442        default:
2443        case PLANE_CTL_FORMAT_XRGB_8888:
2444                if (rgb_order) {
2445                        if (alpha)
2446                                return DRM_FORMAT_ABGR8888;
2447                        else
2448                                return DRM_FORMAT_XBGR8888;
2449                } else {
2450                        if (alpha)
2451                                return DRM_FORMAT_ARGB8888;
2452                        else
2453                                return DRM_FORMAT_XRGB8888;
2454                }
2455        case PLANE_CTL_FORMAT_XRGB_2101010:
2456                if (rgb_order)
2457                        return DRM_FORMAT_XBGR2101010;
2458                else
2459                        return DRM_FORMAT_XRGB2101010;
2460        }
2461}
2462
2463static bool
2464intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2465                              struct intel_initial_plane_config *plane_config)
2466{
2467        struct drm_device *dev = crtc->base.dev;
2468        struct drm_i915_private *dev_priv = to_i915(dev);
2469        struct i915_ggtt *ggtt = &dev_priv->ggtt;
2470        struct drm_i915_gem_object *obj = NULL;
2471        struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2472        struct drm_framebuffer *fb = &plane_config->fb->base;
2473        u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2474        u32 size_aligned = round_up(plane_config->base + plane_config->size,
2475                                    PAGE_SIZE);
2476
2477        size_aligned -= base_aligned;
2478
2479        if (plane_config->size == 0)
2480                return false;
2481
2482        /* If the FB is too big, just don't use it since fbdev is not very
2483         * important and we should probably use that space with FBC or other
2484         * features. */
2485        if (size_aligned * 2 > ggtt->stolen_usable_size)
2486                return false;
2487
2488        mutex_lock(&dev->struct_mutex);
2489
2490        obj = i915_gem_object_create_stolen_for_preallocated(dev,
2491                                                             base_aligned,
2492                                                             base_aligned,
2493                                                             size_aligned);
2494        if (!obj) {
2495                mutex_unlock(&dev->struct_mutex);
2496                return false;
2497        }
2498
2499        obj->tiling_mode = plane_config->tiling;
2500        if (obj->tiling_mode == I915_TILING_X)
2501                obj->stride = fb->pitches[0];
2502
2503        mode_cmd.pixel_format = fb->pixel_format;
2504        mode_cmd.width = fb->width;
2505        mode_cmd.height = fb->height;
2506        mode_cmd.pitches[0] = fb->pitches[0];
2507        mode_cmd.modifier[0] = fb->modifier[0];
2508        mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2509
2510        if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2511                                   &mode_cmd, obj)) {
2512                DRM_DEBUG_KMS("intel fb init failed\n");
2513                goto out_unref_obj;
2514        }
2515
2516        mutex_unlock(&dev->struct_mutex);
2517
2518        DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2519        return true;
2520
2521out_unref_obj:
2522        drm_gem_object_unreference(&obj->base);
2523        mutex_unlock(&dev->struct_mutex);
2524        return false;
2525}
2526
2527/* Update plane->state->fb to match plane->fb after driver-internal updates */
2528static void
2529update_state_fb(struct drm_plane *plane)
2530{
2531        if (plane->fb == plane->state->fb)
2532                return;
2533
2534        if (plane->state->fb)
2535                drm_framebuffer_unreference(plane->state->fb);
2536        plane->state->fb = plane->fb;
2537        if (plane->state->fb)
2538                drm_framebuffer_reference(plane->state->fb);
2539}
2540
2541static void
2542intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2543                             struct intel_initial_plane_config *plane_config)
2544{
2545        struct drm_device *dev = intel_crtc->base.dev;
2546        struct drm_i915_private *dev_priv = dev->dev_private;
2547        struct drm_crtc *c;
2548        struct intel_crtc *i;
2549        struct drm_i915_gem_object *obj;
2550        struct drm_plane *primary = intel_crtc->base.primary;
2551        struct drm_plane_state *plane_state = primary->state;
2552        struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2553        struct intel_plane *intel_plane = to_intel_plane(primary);
2554        struct intel_plane_state *intel_state =
2555                to_intel_plane_state(plane_state);
2556        struct drm_framebuffer *fb;
2557
2558        if (!plane_config->fb)
2559                return;
2560
2561        if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2562                fb = &plane_config->fb->base;
2563                goto valid_fb;
2564        }
2565
2566        kfree(plane_config->fb);
2567
2568        /*
2569         * Failed to alloc the obj, check to see if we should share
2570         * an fb with another CRTC instead
2571         */
2572        for_each_crtc(dev, c) {
2573                i = to_intel_crtc(c);
2574
2575                if (c == &intel_crtc->base)
2576                        continue;
2577
2578                if (!i->active)
2579                        continue;
2580
2581                fb = c->primary->fb;
2582                if (!fb)
2583                        continue;
2584
2585                obj = intel_fb_obj(fb);
2586                if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2587                        drm_framebuffer_reference(fb);
2588                        goto valid_fb;
2589                }
2590        }
2591
2592        /*
2593         * We've failed to reconstruct the BIOS FB.  Current display state
2594         * indicates that the primary plane is visible, but has a NULL FB,
2595         * which will lead to problems later if we don't fix it up.  The
2596         * simplest solution is to just disable the primary plane now and
2597         * pretend the BIOS never had it enabled.
2598         */
2599        to_intel_plane_state(plane_state)->visible = false;
2600        crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2601        intel_pre_disable_primary_noatomic(&intel_crtc->base);
2602        intel_plane->disable_plane(primary, &intel_crtc->base);
2603
2604        return;
2605
2606valid_fb:
2607        plane_state->src_x = 0;
2608        plane_state->src_y = 0;
2609        plane_state->src_w = fb->width << 16;
2610        plane_state->src_h = fb->height << 16;
2611
2612        plane_state->crtc_x = 0;
2613        plane_state->crtc_y = 0;
2614        plane_state->crtc_w = fb->width;
2615        plane_state->crtc_h = fb->height;
2616
2617        intel_state->src.x1 = plane_state->src_x;
2618        intel_state->src.y1 = plane_state->src_y;
2619        intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2620        intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2621        intel_state->dst.x1 = plane_state->crtc_x;
2622        intel_state->dst.y1 = plane_state->crtc_y;
2623        intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2624        intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2625
2626        obj = intel_fb_obj(fb);
2627        if (obj->tiling_mode != I915_TILING_NONE)
2628                dev_priv->preserve_bios_swizzle = true;
2629
2630        drm_framebuffer_reference(fb);
2631        primary->fb = primary->state->fb = fb;
2632        primary->crtc = primary->state->crtc = &intel_crtc->base;
2633        intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2634        obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2635}
2636
2637static void i9xx_update_primary_plane(struct drm_plane *primary,
2638                                      const struct intel_crtc_state *crtc_state,
2639                                      const struct intel_plane_state *plane_state)
2640{
2641        struct drm_device *dev = primary->dev;
2642        struct drm_i915_private *dev_priv = dev->dev_private;
2643        struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2644        struct drm_framebuffer *fb = plane_state->base.fb;
2645        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2646        int plane = intel_crtc->plane;
2647        u32 linear_offset;
2648        u32 dspcntr;
2649        i915_reg_t reg = DSPCNTR(plane);
2650        unsigned int rotation = plane_state->base.rotation;
2651        int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2652        int x = plane_state->src.x1 >> 16;
2653        int y = plane_state->src.y1 >> 16;
2654
2655        dspcntr = DISPPLANE_GAMMA_ENABLE;
2656
2657        dspcntr |= DISPLAY_PLANE_ENABLE;
2658
2659        if (INTEL_INFO(dev)->gen < 4) {
2660                if (intel_crtc->pipe == PIPE_B)
2661                        dspcntr |= DISPPLANE_SEL_PIPE_B;
2662
2663                /* pipesrc and dspsize control the size that is scaled from,
2664                 * which should always be the user's requested size.
2665                 */
2666                I915_WRITE(DSPSIZE(plane),
2667                           ((crtc_state->pipe_src_h - 1) << 16) |
2668                           (crtc_state->pipe_src_w - 1));
2669                I915_WRITE(DSPPOS(plane), 0);
2670        } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2671                I915_WRITE(PRIMSIZE(plane),
2672                           ((crtc_state->pipe_src_h - 1) << 16) |
2673                           (crtc_state->pipe_src_w - 1));
2674                I915_WRITE(PRIMPOS(plane), 0);
2675                I915_WRITE(PRIMCNSTALPHA(plane), 0);
2676        }
2677
2678        switch (fb->pixel_format) {
2679        case DRM_FORMAT_C8:
2680                dspcntr |= DISPPLANE_8BPP;
2681                break;
2682        case DRM_FORMAT_XRGB1555:
2683                dspcntr |= DISPPLANE_BGRX555;
2684                break;
2685        case DRM_FORMAT_RGB565:
2686                dspcntr |= DISPPLANE_BGRX565;
2687                break;
2688        case DRM_FORMAT_XRGB8888:
2689                dspcntr |= DISPPLANE_BGRX888;
2690                break;
2691        case DRM_FORMAT_XBGR8888:
2692                dspcntr |= DISPPLANE_RGBX888;
2693                break;
2694        case DRM_FORMAT_XRGB2101010:
2695                dspcntr |= DISPPLANE_BGRX101010;
2696                break;
2697        case DRM_FORMAT_XBGR2101010:
2698                dspcntr |= DISPPLANE_RGBX101010;
2699                break;
2700        default:
2701                BUG();
2702        }
2703
2704        if (INTEL_INFO(dev)->gen >= 4 &&
2705            obj->tiling_mode != I915_TILING_NONE)
2706                dspcntr |= DISPPLANE_TILED;
2707
2708        if (IS_G4X(dev))
2709                dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2710
2711        linear_offset = y * fb->pitches[0] + x * cpp;
2712
2713        if (INTEL_INFO(dev)->gen >= 4) {
2714                intel_crtc->dspaddr_offset =
2715                        intel_compute_tile_offset(&x, &y, fb, 0,
2716                                                  fb->pitches[0], rotation);
2717                linear_offset -= intel_crtc->dspaddr_offset;
2718        } else {
2719                intel_crtc->dspaddr_offset = linear_offset;
2720        }
2721
2722        if (rotation == BIT(DRM_ROTATE_180)) {
2723                dspcntr |= DISPPLANE_ROTATE_180;
2724
2725                x += (crtc_state->pipe_src_w - 1);
2726                y += (crtc_state->pipe_src_h - 1);
2727
2728                /* Finding the last pixel of the last line of the display
2729                data and adding to linear_offset*/
2730                linear_offset +=
2731                        (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2732                        (crtc_state->pipe_src_w - 1) * cpp;
2733        }
2734
2735        intel_crtc->adjusted_x = x;
2736        intel_crtc->adjusted_y = y;
2737
2738        I915_WRITE(reg, dspcntr);
2739
2740        I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2741        if (INTEL_INFO(dev)->gen >= 4) {
2742                I915_WRITE(DSPSURF(plane),
2743                           i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2744                I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2745                I915_WRITE(DSPLINOFF(plane), linear_offset);
2746        } else
2747                I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2748        POSTING_READ(reg);
2749}
2750
2751static void i9xx_disable_primary_plane(struct drm_plane *primary,
2752                                       struct drm_crtc *crtc)
2753{
2754        struct drm_device *dev = crtc->dev;
2755        struct drm_i915_private *dev_priv = dev->dev_private;
2756        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2757        int plane = intel_crtc->plane;
2758
2759        I915_WRITE(DSPCNTR(plane), 0);
2760        if (INTEL_INFO(dev_priv)->gen >= 4)
2761                I915_WRITE(DSPSURF(plane), 0);
2762        else
2763                I915_WRITE(DSPADDR(plane), 0);
2764        POSTING_READ(DSPCNTR(plane));
2765}
2766
2767static void ironlake_update_primary_plane(struct drm_plane *primary,
2768                                          const struct intel_crtc_state *crtc_state,
2769                                          const struct intel_plane_state *plane_state)
2770{
2771        struct drm_device *dev = primary->dev;
2772        struct drm_i915_private *dev_priv = dev->dev_private;
2773        struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2774        struct drm_framebuffer *fb = plane_state->base.fb;
2775        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2776        int plane = intel_crtc->plane;
2777        u32 linear_offset;
2778        u32 dspcntr;
2779        i915_reg_t reg = DSPCNTR(plane);
2780        unsigned int rotation = plane_state->base.rotation;
2781        int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2782        int x = plane_state->src.x1 >> 16;
2783        int y = plane_state->src.y1 >> 16;
2784
2785        dspcntr = DISPPLANE_GAMMA_ENABLE;
2786        dspcntr |= DISPLAY_PLANE_ENABLE;
2787
2788        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2789                dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2790
2791        switch (fb->pixel_format) {
2792        case DRM_FORMAT_C8:
2793                dspcntr |= DISPPLANE_8BPP;
2794                break;
2795        case DRM_FORMAT_RGB565:
2796                dspcntr |= DISPPLANE_BGRX565;
2797                break;
2798        case DRM_FORMAT_XRGB8888:
2799                dspcntr |= DISPPLANE_BGRX888;
2800                break;
2801        case DRM_FORMAT_XBGR8888:
2802                dspcntr |= DISPPLANE_RGBX888;
2803                break;
2804        case DRM_FORMAT_XRGB2101010:
2805                dspcntr |= DISPPLANE_BGRX101010;
2806                break;
2807        case DRM_FORMAT_XBGR2101010:
2808                dspcntr |= DISPPLANE_RGBX101010;
2809                break;
2810        default:
2811                BUG();
2812        }
2813
2814        if (obj->tiling_mode != I915_TILING_NONE)
2815                dspcntr |= DISPPLANE_TILED;
2816
2817        if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2818                dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2819
2820        linear_offset = y * fb->pitches[0] + x * cpp;
2821        intel_crtc->dspaddr_offset =
2822                intel_compute_tile_offset(&x, &y, fb, 0,
2823                                          fb->pitches[0], rotation);
2824        linear_offset -= intel_crtc->dspaddr_offset;
2825        if (rotation == BIT(DRM_ROTATE_180)) {
2826                dspcntr |= DISPPLANE_ROTATE_180;
2827
2828                if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2829                        x += (crtc_state->pipe_src_w - 1);
2830                        y += (crtc_state->pipe_src_h - 1);
2831
2832                        /* Finding the last pixel of the last line of the display
2833                        data and adding to linear_offset*/
2834                        linear_offset +=
2835                                (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
2836                                (crtc_state->pipe_src_w - 1) * cpp;
2837                }
2838        }
2839
2840        intel_crtc->adjusted_x = x;
2841        intel_crtc->adjusted_y = y;
2842
2843        I915_WRITE(reg, dspcntr);
2844
2845        I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2846        I915_WRITE(DSPSURF(plane),
2847                   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2848        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2849                I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2850        } else {
2851                I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2852                I915_WRITE(DSPLINOFF(plane), linear_offset);
2853        }
2854        POSTING_READ(reg);
2855}
2856
2857u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2858                              uint64_t fb_modifier, uint32_t pixel_format)
2859{
2860        if (fb_modifier == DRM_FORMAT_MOD_NONE) {
2861                return 64;
2862        } else {
2863                int cpp = drm_format_plane_cpp(pixel_format, 0);
2864
2865                return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2866        }
2867}
2868
2869u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2870                           struct drm_i915_gem_object *obj,
2871                           unsigned int plane)
2872{
2873        struct i915_ggtt_view view;
2874        struct i915_vma *vma;
2875        u64 offset;
2876
2877        intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
2878                                intel_plane->base.state->rotation);
2879
2880        vma = i915_gem_obj_to_ggtt_view(obj, &view);
2881        if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2882                view.type))
2883                return -1;
2884
2885        offset = vma->node.start;
2886
2887        if (plane == 1) {
2888                offset += vma->ggtt_view.params.rotated.uv_start_page *
2889                          PAGE_SIZE;
2890        }
2891
2892        WARN_ON(upper_32_bits(offset));
2893
2894        return lower_32_bits(offset);
2895}
2896
2897static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2898{
2899        struct drm_device *dev = intel_crtc->base.dev;
2900        struct drm_i915_private *dev_priv = dev->dev_private;
2901
2902        I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2903        I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2904        I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2905}
2906
2907/*
2908 * This function detaches (aka. unbinds) unused scalers in hardware
2909 */
2910static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2911{
2912        struct intel_crtc_scaler_state *scaler_state;
2913        int i;
2914
2915        scaler_state = &intel_crtc->config->scaler_state;
2916
2917        /* loop through and disable scalers that aren't in use */
2918        for (i = 0; i < intel_crtc->num_scalers; i++) {
2919                if (!scaler_state->scalers[i].in_use)
2920                        skl_detach_scaler(intel_crtc, i);
2921        }
2922}
2923
2924u32 skl_plane_ctl_format(uint32_t pixel_format)
2925{
2926        switch (pixel_format) {
2927        case DRM_FORMAT_C8:
2928                return PLANE_CTL_FORMAT_INDEXED;
2929        case DRM_FORMAT_RGB565:
2930                return PLANE_CTL_FORMAT_RGB_565;
2931        case DRM_FORMAT_XBGR8888:
2932                return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2933        case DRM_FORMAT_XRGB8888:
2934                return PLANE_CTL_FORMAT_XRGB_8888;
2935        /*
2936         * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2937         * to be already pre-multiplied. We need to add a knob (or a different
2938         * DRM_FORMAT) for user-space to configure that.
2939         */
2940        case DRM_FORMAT_ABGR8888:
2941                return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2942                        PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2943        case DRM_FORMAT_ARGB8888:
2944                return PLANE_CTL_FORMAT_XRGB_8888 |
2945                        PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2946        case DRM_FORMAT_XRGB2101010:
2947                return PLANE_CTL_FORMAT_XRGB_2101010;
2948        case DRM_FORMAT_XBGR2101010:
2949                return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2950        case DRM_FORMAT_YUYV:
2951                return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2952        case DRM_FORMAT_YVYU:
2953                return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2954        case DRM_FORMAT_UYVY:
2955                return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2956        case DRM_FORMAT_VYUY:
2957                return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2958        default:
2959                MISSING_CASE(pixel_format);
2960        }
2961
2962        return 0;
2963}
2964
2965u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2966{
2967        switch (fb_modifier) {
2968        case DRM_FORMAT_MOD_NONE:
2969                break;
2970        case I915_FORMAT_MOD_X_TILED:
2971                return PLANE_CTL_TILED_X;
2972        case I915_FORMAT_MOD_Y_TILED:
2973                return PLANE_CTL_TILED_Y;
2974        case I915_FORMAT_MOD_Yf_TILED:
2975                return PLANE_CTL_TILED_YF;
2976        default:
2977                MISSING_CASE(fb_modifier);
2978        }
2979
2980        return 0;
2981}
2982
2983u32 skl_plane_ctl_rotation(unsigned int rotation)
2984{
2985        switch (rotation) {
2986        case BIT(DRM_ROTATE_0):
2987                break;
2988        /*
2989         * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2990         * while i915 HW rotation is clockwise, thats why this swapping.
2991         */
2992        case BIT(DRM_ROTATE_90):
2993                return PLANE_CTL_ROTATE_270;
2994        case BIT(DRM_ROTATE_180):
2995                return PLANE_CTL_ROTATE_180;
2996        case BIT(DRM_ROTATE_270):
2997                return PLANE_CTL_ROTATE_90;
2998        default:
2999                MISSING_CASE(rotation);
3000        }
3001
3002        return 0;
3003}
3004
3005static void skylake_update_primary_plane(struct drm_plane *plane,
3006                                         const struct intel_crtc_state *crtc_state,
3007                                         const struct intel_plane_state *plane_state)
3008{
3009        struct drm_device *dev = plane->dev;
3010        struct drm_i915_private *dev_priv = dev->dev_private;
3011        struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3012        struct drm_framebuffer *fb = plane_state->base.fb;
3013        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3014        int pipe = intel_crtc->pipe;
3015        u32 plane_ctl, stride_div, stride;
3016        u32 tile_height, plane_offset, plane_size;
3017        unsigned int rotation = plane_state->base.rotation;
3018        int x_offset, y_offset;
3019        u32 surf_addr;
3020        int scaler_id = plane_state->scaler_id;
3021        int src_x = plane_state->src.x1 >> 16;
3022        int src_y = plane_state->src.y1 >> 16;
3023        int src_w = drm_rect_width(&plane_state->src) >> 16;
3024        int src_h = drm_rect_height(&plane_state->src) >> 16;
3025        int dst_x = plane_state->dst.x1;
3026        int dst_y = plane_state->dst.y1;
3027        int dst_w = drm_rect_width(&plane_state->dst);
3028        int dst_h = drm_rect_height(&plane_state->dst);
3029
3030        plane_ctl = PLANE_CTL_ENABLE |
3031                    PLANE_CTL_PIPE_GAMMA_ENABLE |
3032                    PLANE_CTL_PIPE_CSC_ENABLE;
3033
3034        plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3035        plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3036        plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3037        plane_ctl |= skl_plane_ctl_rotation(rotation);
3038
3039        stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3040                                               fb->pixel_format);
3041        surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3042
3043        WARN_ON(drm_rect_width(&plane_state->src) == 0);
3044
3045        if (intel_rotation_90_or_270(rotation)) {
3046                int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3047
3048                /* stride = Surface height in tiles */
3049                tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3050                stride = DIV_ROUND_UP(fb->height, tile_height);
3051                x_offset = stride * tile_height - src_y - src_h;
3052                y_offset = src_x;
3053                plane_size = (src_w - 1) << 16 | (src_h - 1);
3054        } else {
3055                stride = fb->pitches[0] / stride_div;
3056                x_offset = src_x;
3057                y_offset = src_y;
3058                plane_size = (src_h - 1) << 16 | (src_w - 1);
3059        }
3060        plane_offset = y_offset << 16 | x_offset;
3061
3062        intel_crtc->adjusted_x = x_offset;
3063        intel_crtc->adjusted_y = y_offset;
3064
3065        I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3066        I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3067        I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3068        I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3069
3070        if (scaler_id >= 0) {
3071                uint32_t ps_ctrl = 0;
3072
3073                WARN_ON(!dst_w || !dst_h);
3074                ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3075                        crtc_state->scaler_state.scalers[scaler_id].mode;
3076                I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3077                I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3078                I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3079                I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3080                I915_WRITE(PLANE_POS(pipe, 0), 0);
3081        } else {
3082                I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3083        }
3084
3085        I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3086
3087        POSTING_READ(PLANE_SURF(pipe, 0));
3088}
3089
3090static void skylake_disable_primary_plane(struct drm_plane *primary,
3091                                          struct drm_crtc *crtc)
3092{
3093        struct drm_device *dev = crtc->dev;
3094        struct drm_i915_private *dev_priv = dev->dev_private;
3095        int pipe = to_intel_crtc(crtc)->pipe;
3096
3097        I915_WRITE(PLANE_CTL(pipe, 0), 0);
3098        I915_WRITE(PLANE_SURF(pipe, 0), 0);
3099        POSTING_READ(PLANE_SURF(pipe, 0));
3100}
3101
3102/* Assume fb object is pinned & idle & fenced and just update base pointers */
3103static int
3104intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3105                           int x, int y, enum mode_set_atomic state)
3106{
3107        /* Support for kgdboc is disabled, this needs a major rework. */
3108        DRM_ERROR("legacy panic handler not supported any more.\n");
3109
3110        return -ENODEV;
3111}
3112
3113static void intel_complete_page_flips(struct drm_device *dev)
3114{
3115        struct drm_crtc *crtc;
3116
3117        for_each_crtc(dev, crtc) {
3118                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3119                enum plane plane = intel_crtc->plane;
3120
3121                intel_prepare_page_flip(dev, plane);
3122                intel_finish_page_flip_plane(dev, plane);
3123        }
3124}
3125
3126static void intel_update_primary_planes(struct drm_device *dev)
3127{
3128        struct drm_crtc *crtc;
3129
3130        for_each_crtc(dev, crtc) {
3131                struct intel_plane *plane = to_intel_plane(crtc->primary);
3132                struct intel_plane_state *plane_state;
3133
3134                drm_modeset_lock_crtc(crtc, &plane->base);
3135                plane_state = to_intel_plane_state(plane->base.state);
3136
3137                if (plane_state->visible)
3138                        plane->update_plane(&plane->base,
3139                                            to_intel_crtc_state(crtc->state),
3140                                            plane_state);
3141
3142                drm_modeset_unlock_crtc(crtc);
3143        }
3144}
3145
3146void intel_prepare_reset(struct drm_device *dev)
3147{
3148        /* no reset support for gen2 */
3149        if (IS_GEN2(dev))
3150                return;
3151
3152        /* reset doesn't touch the display */
3153        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3154                return;
3155
3156        drm_modeset_lock_all(dev);
3157        /*
3158         * Disabling the crtcs gracefully seems nicer. Also the
3159         * g33 docs say we should at least disable all the planes.
3160         */
3161        intel_display_suspend(dev);
3162}
3163
3164void intel_finish_reset(struct drm_device *dev)
3165{
3166        struct drm_i915_private *dev_priv = to_i915(dev);
3167
3168        /*
3169         * Flips in the rings will be nuked by the reset,
3170         * so complete all pending flips so that user space
3171         * will get its events and not get stuck.
3172         */
3173        intel_complete_page_flips(dev);
3174
3175        /* no reset support for gen2 */
3176        if (IS_GEN2(dev))
3177                return;
3178
3179        /* reset doesn't touch the display */
3180        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3181                /*
3182                 * Flips in the rings have been nuked by the reset,
3183                 * so update the base address of all primary
3184                 * planes to the the last fb to make sure we're
3185                 * showing the correct fb after a reset.
3186                 *
3187                 * FIXME: Atomic will make this obsolete since we won't schedule
3188                 * CS-based flips (which might get lost in gpu resets) any more.
3189                 */
3190                intel_update_primary_planes(dev);
3191                return;
3192        }
3193
3194        /*
3195         * The display has been reset as well,
3196         * so need a full re-initialization.
3197         */
3198        intel_runtime_pm_disable_interrupts(dev_priv);
3199        intel_runtime_pm_enable_interrupts(dev_priv);
3200
3201        intel_modeset_init_hw(dev);
3202
3203        spin_lock_irq(&dev_priv->irq_lock);
3204        if (dev_priv->display.hpd_irq_setup)
3205                dev_priv->display.hpd_irq_setup(dev);
3206        spin_unlock_irq(&dev_priv->irq_lock);
3207
3208        intel_display_resume(dev);
3209
3210        intel_hpd_init(dev_priv);
3211
3212        drm_modeset_unlock_all(dev);
3213}
3214
3215static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3216{
3217        struct drm_device *dev = crtc->dev;
3218        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3219        unsigned reset_counter;
3220        bool pending;
3221
3222        reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3223        if (intel_crtc->reset_counter != reset_counter)
3224                return false;
3225
3226        spin_lock_irq(&dev->event_lock);
3227        pending = to_intel_crtc(crtc)->unpin_work != NULL;
3228        spin_unlock_irq(&dev->event_lock);
3229
3230        return pending;
3231}
3232
3233static void intel_update_pipe_config(struct intel_crtc *crtc,
3234                                     struct intel_crtc_state *old_crtc_state)
3235{
3236        struct drm_device *dev = crtc->base.dev;
3237        struct drm_i915_private *dev_priv = dev->dev_private;
3238        struct intel_crtc_state *pipe_config =
3239                to_intel_crtc_state(crtc->base.state);
3240
3241        /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3242        crtc->base.mode = crtc->base.state->mode;
3243
3244        DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3245                      old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3246                      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3247
3248        /*
3249         * Update pipe size and adjust fitter if needed: the reason for this is
3250         * that in compute_mode_changes we check the native mode (not the pfit
3251         * mode) to see if we can flip rather than do a full mode set. In the
3252         * fastboot case, we'll flip, but if we don't update the pipesrc and
3253         * pfit state, we'll end up with a big fb scanned out into the wrong
3254         * sized surface.
3255         */
3256
3257        I915_WRITE(PIPESRC(crtc->pipe),
3258                   ((pipe_config->pipe_src_w - 1) << 16) |
3259                   (pipe_config->pipe_src_h - 1));
3260
3261        /* on skylake this is done by detaching scalers */
3262        if (INTEL_INFO(dev)->gen >= 9) {
3263                skl_detach_scalers(crtc);
3264
3265                if (pipe_config->pch_pfit.enabled)
3266                        skylake_pfit_enable(crtc);
3267        } else if (HAS_PCH_SPLIT(dev)) {
3268                if (pipe_config->pch_pfit.enabled)
3269                        ironlake_pfit_enable(crtc);
3270                else if (old_crtc_state->pch_pfit.enabled)
3271                        ironlake_pfit_disable(crtc, true);
3272        }
3273}
3274
3275static void intel_fdi_normal_train(struct drm_crtc *crtc)
3276{
3277        struct drm_device *dev = crtc->dev;
3278        struct drm_i915_private *dev_priv = dev->dev_private;
3279        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3280        int pipe = intel_crtc->pipe;
3281        i915_reg_t reg;
3282        u32 temp;
3283
3284        /* enable normal train */
3285        reg = FDI_TX_CTL(pipe);
3286        temp = I915_READ(reg);
3287        if (IS_IVYBRIDGE(dev)) {
3288                temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3289                temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3290        } else {
3291                temp &= ~FDI_LINK_TRAIN_NONE;
3292                temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3293        }
3294        I915_WRITE(reg, temp);
3295
3296        reg = FDI_RX_CTL(pipe);
3297        temp = I915_READ(reg);
3298        if (HAS_PCH_CPT(dev)) {
3299                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3300                temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3301        } else {
3302                temp &= ~FDI_LINK_TRAIN_NONE;
3303                temp |= FDI_LINK_TRAIN_NONE;
3304        }
3305        I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3306
3307        /* wait one idle pattern time */
3308        POSTING_READ(reg);
3309        udelay(1000);
3310
3311        /* IVB wants error correction enabled */
3312        if (IS_IVYBRIDGE(dev))
3313                I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3314                           FDI_FE_ERRC_ENABLE);
3315}
3316
3317/* The FDI link training functions for ILK/Ibexpeak. */
3318static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3319{
3320        struct drm_device *dev = crtc->dev;
3321        struct drm_i915_private *dev_priv = dev->dev_private;
3322        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3323        int pipe = intel_crtc->pipe;
3324        i915_reg_t reg;
3325        u32 temp, tries;
3326
3327        /* FDI needs bits from pipe first */
3328        assert_pipe_enabled(dev_priv, pipe);
3329
3330        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3331           for train result */
3332        reg = FDI_RX_IMR(pipe);
3333        temp = I915_READ(reg);
3334        temp &= ~FDI_RX_SYMBOL_LOCK;
3335        temp &= ~FDI_RX_BIT_LOCK;
3336        I915_WRITE(reg, temp);
3337        I915_READ(reg);
3338        udelay(150);
3339
3340        /* enable CPU FDI TX and PCH FDI RX */
3341        reg = FDI_TX_CTL(pipe);
3342        temp = I915_READ(reg);
3343        temp &= ~FDI_DP_PORT_WIDTH_MASK;
3344        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3345        temp &= ~FDI_LINK_TRAIN_NONE;
3346        temp |= FDI_LINK_TRAIN_PATTERN_1;
3347        I915_WRITE(reg, temp | FDI_TX_ENABLE);
3348
3349        reg = FDI_RX_CTL(pipe);
3350        temp = I915_READ(reg);
3351        temp &= ~FDI_LINK_TRAIN_NONE;
3352        temp |= FDI_LINK_TRAIN_PATTERN_1;
3353        I915_WRITE(reg, temp | FDI_RX_ENABLE);
3354
3355        POSTING_READ(reg);
3356        udelay(150);
3357
3358        /* Ironlake workaround, enable clock pointer after FDI enable*/
3359        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3360        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3361                   FDI_RX_PHASE_SYNC_POINTER_EN);
3362
3363        reg = FDI_RX_IIR(pipe);
3364        for (tries = 0; tries < 5; tries++) {
3365                temp = I915_READ(reg);
3366                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3367
3368                if ((temp & FDI_RX_BIT_LOCK)) {
3369                        DRM_DEBUG_KMS("FDI train 1 done.\n");
3370                        I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3371                        break;
3372                }
3373        }
3374        if (tries == 5)
3375                DRM_ERROR("FDI train 1 fail!\n");
3376
3377        /* Train 2 */
3378        reg = FDI_TX_CTL(pipe);
3379        temp = I915_READ(reg);
3380        temp &= ~FDI_LINK_TRAIN_NONE;
3381        temp |= FDI_LINK_TRAIN_PATTERN_2;
3382        I915_WRITE(reg, temp);
3383
3384        reg = FDI_RX_CTL(pipe);
3385        temp = I915_READ(reg);
3386        temp &= ~FDI_LINK_TRAIN_NONE;
3387        temp |= FDI_LINK_TRAIN_PATTERN_2;
3388        I915_WRITE(reg, temp);
3389
3390        POSTING_READ(reg);
3391        udelay(150);
3392
3393        reg = FDI_RX_IIR(pipe);
3394        for (tries = 0; tries < 5; tries++) {
3395                temp = I915_READ(reg);
3396                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3397
3398                if (temp & FDI_RX_SYMBOL_LOCK) {
3399                        I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3400                        DRM_DEBUG_KMS("FDI train 2 done.\n");
3401                        break;
3402                }
3403        }
3404        if (tries == 5)
3405                DRM_ERROR("FDI train 2 fail!\n");
3406
3407        DRM_DEBUG_KMS("FDI train done\n");
3408
3409}
3410
3411static const int snb_b_fdi_train_param[] = {
3412        FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3413        FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3414        FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3415        FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3416};
3417
3418/* The FDI link training functions for SNB/Cougarpoint. */
3419static void gen6_fdi_link_train(struct drm_crtc *crtc)
3420{
3421        struct drm_device *dev = crtc->dev;
3422        struct drm_i915_private *dev_priv = dev->dev_private;
3423        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3424        int pipe = intel_crtc->pipe;
3425        i915_reg_t reg;
3426        u32 temp, i, retry;
3427
3428        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3429           for train result */
3430        reg = FDI_RX_IMR(pipe);
3431        temp = I915_READ(reg);
3432        temp &= ~FDI_RX_SYMBOL_LOCK;
3433        temp &= ~FDI_RX_BIT_LOCK;
3434        I915_WRITE(reg, temp);
3435
3436        POSTING_READ(reg);
3437        udelay(150);
3438
3439        /* enable CPU FDI TX and PCH FDI RX */
3440        reg = FDI_TX_CTL(pipe);
3441        temp = I915_READ(reg);
3442        temp &= ~FDI_DP_PORT_WIDTH_MASK;
3443        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3444        temp &= ~FDI_LINK_TRAIN_NONE;
3445        temp |= FDI_LINK_TRAIN_PATTERN_1;
3446        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3447        /* SNB-B */
3448        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3449        I915_WRITE(reg, temp | FDI_TX_ENABLE);
3450
3451        I915_WRITE(FDI_RX_MISC(pipe),
3452                   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3453
3454        reg = FDI_RX_CTL(pipe);
3455        temp = I915_READ(reg);
3456        if (HAS_PCH_CPT(dev)) {
3457                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3458                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3459        } else {
3460                temp &= ~FDI_LINK_TRAIN_NONE;
3461                temp |= FDI_LINK_TRAIN_PATTERN_1;
3462        }
3463        I915_WRITE(reg, temp | FDI_RX_ENABLE);
3464
3465        POSTING_READ(reg);
3466        udelay(150);
3467
3468        for (i = 0; i < 4; i++) {
3469                reg = FDI_TX_CTL(pipe);
3470                temp = I915_READ(reg);
3471                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3472                temp |= snb_b_fdi_train_param[i];
3473                I915_WRITE(reg, temp);
3474
3475                POSTING_READ(reg);
3476                udelay(500);
3477
3478                for (retry = 0; retry < 5; retry++) {
3479                        reg = FDI_RX_IIR(pipe);
3480                        temp = I915_READ(reg);
3481                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3482                        if (temp & FDI_RX_BIT_LOCK) {
3483                                I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3484                                DRM_DEBUG_KMS("FDI train 1 done.\n");
3485                                break;
3486                        }
3487                        udelay(50);
3488                }
3489                if (retry < 5)
3490                        break;
3491        }
3492        if (i == 4)
3493                DRM_ERROR("FDI train 1 fail!\n");
3494
3495        /* Train 2 */
3496        reg = FDI_TX_CTL(pipe);
3497        temp = I915_READ(reg);
3498        temp &= ~FDI_LINK_TRAIN_NONE;
3499        temp |= FDI_LINK_TRAIN_PATTERN_2;
3500        if (IS_GEN6(dev)) {
3501                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3502                /* SNB-B */
3503                temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3504        }
3505        I915_WRITE(reg, temp);
3506
3507        reg = FDI_RX_CTL(pipe);
3508        temp = I915_READ(reg);
3509        if (HAS_PCH_CPT(dev)) {
3510                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3511                temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3512        } else {
3513                temp &= ~FDI_LINK_TRAIN_NONE;
3514                temp |= FDI_LINK_TRAIN_PATTERN_2;
3515        }
3516        I915_WRITE(reg, temp);
3517
3518        POSTING_READ(reg);
3519        udelay(150);
3520
3521        for (i = 0; i < 4; i++) {
3522                reg = FDI_TX_CTL(pipe);
3523                temp = I915_READ(reg);
3524                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3525                temp |= snb_b_fdi_train_param[i];
3526                I915_WRITE(reg, temp);
3527
3528                POSTING_READ(reg);
3529                udelay(500);
3530
3531                for (retry = 0; retry < 5; retry++) {
3532                        reg = FDI_RX_IIR(pipe);
3533                        temp = I915_READ(reg);
3534                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3535                        if (temp & FDI_RX_SYMBOL_LOCK) {
3536                                I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3537                                DRM_DEBUG_KMS("FDI train 2 done.\n");
3538                                break;
3539                        }
3540                        udelay(50);
3541                }
3542                if (retry < 5)
3543                        break;
3544        }
3545        if (i == 4)
3546                DRM_ERROR("FDI train 2 fail!\n");
3547
3548        DRM_DEBUG_KMS("FDI train done.\n");
3549}
3550
3551/* Manual link training for Ivy Bridge A0 parts */
3552static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3553{
3554        struct drm_device *dev = crtc->dev;
3555        struct drm_i915_private *dev_priv = dev->dev_private;
3556        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3557        int pipe = intel_crtc->pipe;
3558        i915_reg_t reg;
3559        u32 temp, i, j;
3560
3561        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3562           for train result */
3563        reg = FDI_RX_IMR(pipe);
3564        temp = I915_READ(reg);
3565        temp &= ~FDI_RX_SYMBOL_LOCK;
3566        temp &= ~FDI_RX_BIT_LOCK;
3567        I915_WRITE(reg, temp);
3568
3569        POSTING_READ(reg);
3570        udelay(150);
3571
3572        DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3573                      I915_READ(FDI_RX_IIR(pipe)));
3574
3575        /* Try each vswing and preemphasis setting twice before moving on */
3576        for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3577                /* disable first in case we need to retry */
3578                reg = FDI_TX_CTL(pipe);
3579                temp = I915_READ(reg);
3580                temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3581                temp &= ~FDI_TX_ENABLE;
3582                I915_WRITE(reg, temp);
3583
3584                reg = FDI_RX_CTL(pipe);
3585                temp = I915_READ(reg);
3586                temp &= ~FDI_LINK_TRAIN_AUTO;
3587                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3588                temp &= ~FDI_RX_ENABLE;
3589                I915_WRITE(reg, temp);
3590
3591                /* enable CPU FDI TX and PCH FDI RX */
3592                reg = FDI_TX_CTL(pipe);
3593                temp = I915_READ(reg);
3594                temp &= ~FDI_DP_PORT_WIDTH_MASK;
3595                temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3596                temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3597                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3598                temp |= snb_b_fdi_train_param[j/2];
3599                temp |= FDI_COMPOSITE_SYNC;
3600                I915_WRITE(reg, temp | FDI_TX_ENABLE);
3601
3602                I915_WRITE(FDI_RX_MISC(pipe),
3603                           FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3604
3605                reg = FDI_RX_CTL(pipe);
3606                temp = I915_READ(reg);
3607                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3608                temp |= FDI_COMPOSITE_SYNC;
3609                I915_WRITE(reg, temp | FDI_RX_ENABLE);
3610
3611                POSTING_READ(reg);
3612                udelay(1); /* should be 0.5us */
3613
3614                for (i = 0; i < 4; i++) {
3615                        reg = FDI_RX_IIR(pipe);
3616                        temp = I915_READ(reg);
3617                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3618
3619                        if (temp & FDI_RX_BIT_LOCK ||
3620                            (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3621                                I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3622                                DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3623                                              i);
3624                                break;
3625                        }
3626                        udelay(1); /* should be 0.5us */
3627                }
3628                if (i == 4) {
3629                        DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3630                        continue;
3631                }
3632
3633                /* Train 2 */
3634                reg = FDI_TX_CTL(pipe);
3635                temp = I915_READ(reg);
3636                temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3637                temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3638                I915_WRITE(reg, temp);
3639
3640                reg = FDI_RX_CTL(pipe);
3641                temp = I915_READ(reg);
3642                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3643                temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3644                I915_WRITE(reg, temp);
3645
3646                POSTING_READ(reg);
3647                udelay(2); /* should be 1.5us */
3648
3649                for (i = 0; i < 4; i++) {
3650                        reg = FDI_RX_IIR(pipe);
3651                        temp = I915_READ(reg);
3652                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3653
3654                        if (temp & FDI_RX_SYMBOL_LOCK ||
3655                            (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3656                                I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3657                                DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3658                                              i);
3659                                goto train_done;
3660                        }
3661                        udelay(2); /* should be 1.5us */
3662                }
3663                if (i == 4)
3664                        DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3665        }
3666
3667train_done:
3668        DRM_DEBUG_KMS("FDI train done.\n");
3669}
3670
3671static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3672{
3673        struct drm_device *dev = intel_crtc->base.dev;
3674        struct drm_i915_private *dev_priv = dev->dev_private;
3675        int pipe = intel_crtc->pipe;
3676        i915_reg_t reg;
3677        u32 temp;
3678
3679        /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3680        reg = FDI_RX_CTL(pipe);
3681        temp = I915_READ(reg);
3682        temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3683        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3684        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3685        I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3686
3687        POSTING_READ(reg);
3688        udelay(200);
3689
3690        /* Switch from Rawclk to PCDclk */
3691        temp = I915_READ(reg);
3692        I915_WRITE(reg, temp | FDI_PCDCLK);
3693
3694        POSTING_READ(reg);
3695        udelay(200);
3696
3697        /* Enable CPU FDI TX PLL, always on for Ironlake */
3698        reg = FDI_TX_CTL(pipe);
3699        temp = I915_READ(reg);
3700        if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3701                I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3702
3703                POSTING_READ(reg);
3704                udelay(100);
3705        }
3706}
3707
3708static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3709{
3710        struct drm_device *dev = intel_crtc->base.dev;
3711        struct drm_i915_private *dev_priv = dev->dev_private;
3712        int pipe = intel_crtc->pipe;
3713        i915_reg_t reg;
3714        u32 temp;
3715
3716        /* Switch from PCDclk to Rawclk */
3717        reg = FDI_RX_CTL(pipe);
3718        temp = I915_READ(reg);
3719        I915_WRITE(reg, temp & ~FDI_PCDCLK);
3720
3721        /* Disable CPU FDI TX PLL */
3722        reg = FDI_TX_CTL(pipe);
3723        temp = I915_READ(reg);
3724        I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3725
3726        POSTING_READ(reg);
3727        udelay(100);
3728
3729        reg = FDI_RX_CTL(pipe);
3730        temp = I915_READ(reg);
3731        I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3732
3733        /* Wait for the clocks to turn off. */
3734        POSTING_READ(reg);
3735        udelay(100);
3736}
3737
3738static void ironlake_fdi_disable(struct drm_crtc *crtc)
3739{
3740        struct drm_device *dev = crtc->dev;
3741        struct drm_i915_private *dev_priv = dev->dev_private;
3742        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3743        int pipe = intel_crtc->pipe;
3744        i915_reg_t reg;
3745        u32 temp;
3746
3747        /* disable CPU FDI tx and PCH FDI rx */
3748        reg = FDI_TX_CTL(pipe);
3749        temp = I915_READ(reg);
3750        I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3751        POSTING_READ(reg);
3752
3753        reg = FDI_RX_CTL(pipe);
3754        temp = I915_READ(reg);
3755        temp &= ~(0x7 << 16);
3756        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3757        I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3758
3759        POSTING_READ(reg);
3760        udelay(100);
3761
3762        /* Ironlake workaround, disable clock pointer after downing FDI */
3763        if (HAS_PCH_IBX(dev))
3764                I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3765
3766        /* still set train pattern 1 */
3767        reg = FDI_TX_CTL(pipe);
3768        temp = I915_READ(reg);
3769        temp &= ~FDI_LINK_TRAIN_NONE;
3770        temp |= FDI_LINK_TRAIN_PATTERN_1;
3771        I915_WRITE(reg, temp);
3772
3773        reg = FDI_RX_CTL(pipe);
3774        temp = I915_READ(reg);
3775        if (HAS_PCH_CPT(dev)) {
3776                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3777                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3778        } else {
3779                temp &= ~FDI_LINK_TRAIN_NONE;
3780                temp |= FDI_LINK_TRAIN_PATTERN_1;
3781        }
3782        /* BPC in FDI rx is consistent with that in PIPECONF */
3783        temp &= ~(0x07 << 16);
3784        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3785        I915_WRITE(reg, temp);
3786
3787        POSTING_READ(reg);
3788        udelay(100);
3789}
3790
3791bool intel_has_pending_fb_unpin(struct drm_device *dev)
3792{
3793        struct intel_crtc *crtc;
3794
3795        /* Note that we don't need to be called with mode_config.lock here
3796         * as our list of CRTC objects is static for the lifetime of the
3797         * device and so cannot disappear as we iterate. Similarly, we can
3798         * happily treat the predicates as racy, atomic checks as userspace
3799         * cannot claim and pin a new fb without at least acquring the
3800         * struct_mutex and so serialising with us.
3801         */
3802        for_each_intel_crtc(dev, crtc) {
3803                if (atomic_read(&crtc->unpin_work_count) == 0)
3804                        continue;
3805
3806                if (crtc->unpin_work)
3807                        intel_wait_for_vblank(dev, crtc->pipe);
3808
3809                return true;
3810        }
3811
3812        return false;
3813}
3814
3815static void page_flip_completed(struct intel_crtc *intel_crtc)
3816{
3817        struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3818        struct intel_unpin_work *work = intel_crtc->unpin_work;
3819
3820        /* ensure that the unpin work is consistent wrt ->pending. */
3821        smp_rmb();
3822        intel_crtc->unpin_work = NULL;
3823
3824        if (work->event)
3825                drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
3826
3827        drm_crtc_vblank_put(&intel_crtc->base);
3828
3829        wake_up_all(&dev_priv->pending_flip_queue);
3830        queue_work(dev_priv->wq, &work->work);
3831
3832        trace_i915_flip_complete(intel_crtc->plane,
3833                                 work->pending_flip_obj);
3834}
3835
3836static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3837{
3838        struct drm_device *dev = crtc->dev;
3839        struct drm_i915_private *dev_priv = dev->dev_private;
3840        long ret;
3841
3842        WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3843
3844        ret = wait_event_interruptible_timeout(
3845                                        dev_priv->pending_flip_queue,
3846                                        !intel_crtc_has_pending_flip(crtc),
3847                                        60*HZ);
3848
3849        if (ret < 0)
3850                return ret;
3851
3852        if (ret == 0) {
3853                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3854
3855                spin_lock_irq(&dev->event_lock);
3856                if (intel_crtc->unpin_work) {
3857                        WARN_ONCE(1, "Removing stuck page flip\n");
3858                        page_flip_completed(intel_crtc);
3859                }
3860                spin_unlock_irq(&dev->event_lock);
3861        }
3862
3863        return 0;
3864}
3865
3866static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3867{
3868        u32 temp;
3869
3870        I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3871
3872        mutex_lock(&dev_priv->sb_lock);
3873
3874        temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3875        temp |= SBI_SSCCTL_DISABLE;
3876        intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3877
3878        mutex_unlock(&dev_priv->sb_lock);
3879}
3880
3881/* Program iCLKIP clock to the desired frequency */
3882static void lpt_program_iclkip(struct drm_crtc *crtc)
3883{
3884        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3885        int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3886        u32 divsel, phaseinc, auxdiv, phasedir = 0;
3887        u32 temp;
3888
3889        lpt_disable_iclkip(dev_priv);
3890
3891        /* The iCLK virtual clock root frequency is in MHz,
3892         * but the adjusted_mode->crtc_clock in in KHz. To get the
3893         * divisors, it is necessary to divide one by another, so we
3894         * convert the virtual clock precision to KHz here for higher
3895         * precision.
3896         */
3897        for (auxdiv = 0; auxdiv < 2; auxdiv++) {
3898                u32 iclk_virtual_root_freq = 172800 * 1000;
3899                u32 iclk_pi_range = 64;
3900                u32 desired_divisor;
3901
3902                desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3903                                                    clock << auxdiv);
3904                divsel = (desired_divisor / iclk_pi_range) - 2;
3905                phaseinc = desired_divisor % iclk_pi_range;
3906
3907                /*
3908                 * Near 20MHz is a corner case which is
3909                 * out of range for the 7-bit divisor
3910                 */
3911                if (divsel <= 0x7f)
3912                        break;
3913        }
3914
3915        /* This should not happen with any sane values */
3916        WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3917                ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3918        WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3919                ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3920
3921        DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3922                        clock,
3923                        auxdiv,
3924                        divsel,
3925                        phasedir,
3926                        phaseinc);
3927
3928        mutex_lock(&dev_priv->sb_lock);
3929
3930        /* Program SSCDIVINTPHASE6 */
3931        temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3932        temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3933        temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3934        temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3935        temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3936        temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3937        temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3938        intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3939
3940        /* Program SSCAUXDIV */
3941        temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3942        temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3943        temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3944        intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3945
3946        /* Enable modulator and associated divider */
3947        temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3948        temp &= ~SBI_SSCCTL_DISABLE;
3949        intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3950
3951        mutex_unlock(&dev_priv->sb_lock);
3952
3953        /* Wait for initialization time */
3954        udelay(24);
3955
3956        I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3957}
3958
3959int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3960{
3961        u32 divsel, phaseinc, auxdiv;
3962        u32 iclk_virtual_root_freq = 172800 * 1000;
3963        u32 iclk_pi_range = 64;
3964        u32 desired_divisor;
3965        u32 temp;
3966
3967        if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3968                return 0;
3969
3970        mutex_lock(&dev_priv->sb_lock);
3971
3972        temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3973        if (temp & SBI_SSCCTL_DISABLE) {
3974                mutex_unlock(&dev_priv->sb_lock);
3975                return 0;
3976        }
3977
3978        temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3979        divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3980                SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3981        phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3982                SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3983
3984        temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3985        auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3986                SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3987
3988        mutex_unlock(&dev_priv->sb_lock);
3989
3990        desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3991
3992        return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3993                                 desired_divisor << auxdiv);
3994}
3995
3996static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3997                                                enum pipe pch_transcoder)
3998{
3999        struct drm_device *dev = crtc->base.dev;
4000        struct drm_i915_private *dev_priv = dev->dev_private;
4001        enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4002
4003        I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4004                   I915_READ(HTOTAL(cpu_transcoder)));
4005        I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4006                   I915_READ(HBLANK(cpu_transcoder)));
4007        I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4008                   I915_READ(HSYNC(cpu_transcoder)));
4009
4010        I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4011                   I915_READ(VTOTAL(cpu_transcoder)));
4012        I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4013                   I915_READ(VBLANK(cpu_transcoder)));
4014        I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4015                   I915_READ(VSYNC(cpu_transcoder)));
4016        I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4017                   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4018}
4019
4020static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4021{
4022        struct drm_i915_private *dev_priv = dev->dev_private;
4023        uint32_t temp;
4024
4025        temp = I915_READ(SOUTH_CHICKEN1);
4026        if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4027                return;
4028
4029        WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4030        WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4031
4032        temp &= ~FDI_BC_BIFURCATION_SELECT;
4033        if (enable)
4034                temp |= FDI_BC_BIFURCATION_SELECT;
4035
4036        DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4037        I915_WRITE(SOUTH_CHICKEN1, temp);
4038        POSTING_READ(SOUTH_CHICKEN1);
4039}
4040
4041static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4042{
4043        struct drm_device *dev = intel_crtc->base.dev;
4044
4045        switch (intel_crtc->pipe) {
4046        case PIPE_A:
4047                break;
4048        case PIPE_B:
4049                if (intel_crtc->config->fdi_lanes > 2)
4050                        cpt_set_fdi_bc_bifurcation(dev, false);
4051                else
4052                        cpt_set_fdi_bc_bifurcation(dev, true);
4053
4054                break;
4055        case PIPE_C:
4056                cpt_set_fdi_bc_bifurcation(dev, true);
4057
4058                break;
4059        default:
4060                BUG();
4061        }
4062}
4063
4064/* Return which DP Port should be selected for Transcoder DP control */
4065static enum port
4066intel_trans_dp_port_sel(struct drm_crtc *crtc)
4067{
4068        struct drm_device *dev = crtc->dev;
4069        struct intel_encoder *encoder;
4070
4071        for_each_encoder_on_crtc(dev, crtc, encoder) {
4072                if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4073                    encoder->type == INTEL_OUTPUT_EDP)
4074                        return enc_to_dig_port(&encoder->base)->port;
4075        }
4076
4077        return -1;
4078}
4079
4080/*
4081 * Enable PCH resources required for PCH ports:
4082 *   - PCH PLLs
4083 *   - FDI training & RX/TX
4084 *   - update transcoder timings
4085 *   - DP transcoding bits
4086 *   - transcoder
4087 */
4088static void ironlake_pch_enable(struct drm_crtc *crtc)
4089{
4090        struct drm_device *dev = crtc->dev;
4091        struct drm_i915_private *dev_priv = dev->dev_private;
4092        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4093        int pipe = intel_crtc->pipe;
4094        u32 temp;
4095
4096        assert_pch_transcoder_disabled(dev_priv, pipe);
4097
4098        if (IS_IVYBRIDGE(dev))
4099                ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4100
4101        /* Write the TU size bits before fdi link training, so that error
4102         * detection works. */
4103        I915_WRITE(FDI_RX_TUSIZE1(pipe),
4104                   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4105
4106        /* For PCH output, training FDI link */
4107        dev_priv->display.fdi_link_train(crtc);
4108
4109        /* We need to program the right clock selection before writing the pixel
4110         * mutliplier into the DPLL. */
4111        if (HAS_PCH_CPT(dev)) {
4112                u32 sel;
4113
4114                temp = I915_READ(PCH_DPLL_SEL);
4115                temp |= TRANS_DPLL_ENABLE(pipe);
4116                sel = TRANS_DPLLB_SEL(pipe);
4117                if (intel_crtc->config->shared_dpll ==
4118                    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4119                        temp |= sel;
4120                else
4121                        temp &= ~sel;
4122                I915_WRITE(PCH_DPLL_SEL, temp);
4123        }
4124
4125        /* XXX: pch pll's can be enabled any time before we enable the PCH
4126         * transcoder, and we actually should do this to not upset any PCH
4127         * transcoder that already use the clock when we share it.
4128         *
4129         * Note that enable_shared_dpll tries to do the right thing, but
4130         * get_shared_dpll unconditionally resets the pll - we need that to have
4131         * the right LVDS enable sequence. */
4132        intel_enable_shared_dpll(intel_crtc);
4133
4134        /* set transcoder timing, panel must allow it */
4135        assert_panel_unlocked(dev_priv, pipe);
4136        ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4137
4138        intel_fdi_normal_train(crtc);
4139
4140        /* For PCH DP, enable TRANS_DP_CTL */
4141        if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4142                const struct drm_display_mode *adjusted_mode =
4143                        &intel_crtc->config->base.adjusted_mode;
4144                u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4145                i915_reg_t reg = TRANS_DP_CTL(pipe);
4146                temp = I915_READ(reg);
4147                temp &= ~(TRANS_DP_PORT_SEL_MASK |
4148                          TRANS_DP_SYNC_MASK |
4149                          TRANS_DP_BPC_MASK);
4150                temp |= TRANS_DP_OUTPUT_ENABLE;
4151                temp |= bpc << 9; /* same format but at 11:9 */
4152
4153                if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4154                        temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4155                if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4156                        temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4157
4158                switch (intel_trans_dp_port_sel(crtc)) {
4159                case PORT_B:
4160                        temp |= TRANS_DP_PORT_SEL_B;
4161                        break;
4162                case PORT_C:
4163                        temp |= TRANS_DP_PORT_SEL_C;
4164                        break;
4165                case PORT_D:
4166                        temp |= TRANS_DP_PORT_SEL_D;
4167                        break;
4168                default:
4169                        BUG();
4170                }
4171
4172                I915_WRITE(reg, temp);
4173        }
4174
4175        ironlake_enable_pch_transcoder(dev_priv, pipe);
4176}
4177
4178static void lpt_pch_enable(struct drm_crtc *crtc)
4179{
4180        struct drm_device *dev = crtc->dev;
4181        struct drm_i915_private *dev_priv = dev->dev_private;
4182        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4183        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4184
4185        assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4186
4187        lpt_program_iclkip(crtc);
4188
4189        /* Set transcoder timing. */
4190        ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4191
4192        lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4193}
4194
4195static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4196{
4197        struct drm_i915_private *dev_priv = dev->dev_private;
4198        i915_reg_t dslreg = PIPEDSL(pipe);
4199        u32 temp;
4200
4201        temp = I915_READ(dslreg);
4202        udelay(500);
4203        if (wait_for(I915_READ(dslreg) != temp, 5)) {
4204                if (wait_for(I915_READ(dslreg) != temp, 5))
4205                        DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4206        }
4207}
4208
4209static int
4210skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4211                  unsigned scaler_user, int *scaler_id, unsigned int rotation,
4212                  int src_w, int src_h, int dst_w, int dst_h)
4213{
4214        struct intel_crtc_scaler_state *scaler_state =
4215                &crtc_state->scaler_state;
4216        struct intel_crtc *intel_crtc =
4217                to_intel_crtc(crtc_state->base.crtc);
4218        int need_scaling;
4219
4220        need_scaling = intel_rotation_90_or_270(rotation) ?
4221                (src_h != dst_w || src_w != dst_h):
4222                (src_w != dst_w || src_h != dst_h);
4223
4224        /*
4225         * if plane is being disabled or scaler is no more required or force detach
4226         *  - free scaler binded to this plane/crtc
4227         *  - in order to do this, update crtc->scaler_usage
4228         *
4229         * Here scaler state in crtc_state is set free so that
4230         * scaler can be assigned to other user. Actual register
4231         * update to free the scaler is done in plane/panel-fit programming.
4232         * For this purpose crtc/plane_state->scaler_id isn't reset here.
4233         */
4234        if (force_detach || !need_scaling) {
4235                if (*scaler_id >= 0) {
4236                        scaler_state->scaler_users &= ~(1 << scaler_user);
4237                        scaler_state->scalers[*scaler_id].in_use = 0;
4238
4239                        DRM_DEBUG_KMS("scaler_user index %u.%u: "
4240                                "Staged freeing scaler id %d scaler_users = 0x%x\n",
4241                                intel_crtc->pipe, scaler_user, *scaler_id,
4242                                scaler_state->scaler_users);
4243                        *scaler_id = -1;
4244                }
4245                return 0;
4246        }
4247
4248        /* range checks */
4249        if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4250                dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4251
4252                src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4253                dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4254                DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4255                        "size is out of scaler range\n",
4256                        intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4257                return -EINVAL;
4258        }
4259
4260        /* mark this plane as a scaler user in crtc_state */
4261        scaler_state->scaler_users |= (1 << scaler_user);
4262        DRM_DEBUG_KMS("scaler_user index %u.%u: "
4263                "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4264                intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4265                scaler_state->scaler_users);
4266
4267        return 0;
4268}
4269
4270/**
4271 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4272 *
4273 * @state: crtc's scaler state
4274 *
4275 * Return
4276 *     0 - scaler_usage updated successfully
4277 *    error - requested scaling cannot be supported or other error condition
4278 */
4279int skl_update_scaler_crtc(struct intel_crtc_state *state)
4280{
4281        struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4282        const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4283
4284        DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4285                      intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4286
4287        return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4288                &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
4289                state->pipe_src_w, state->pipe_src_h,
4290                adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4291}
4292
4293/**
4294 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4295 *
4296 * @state: crtc's scaler state
4297 * @plane_state: atomic plane state to update
4298 *
4299 * Return
4300 *     0 - scaler_usage updated successfully
4301 *    error - requested scaling cannot be supported or other error condition
4302 */
4303static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4304                                   struct intel_plane_state *plane_state)
4305{
4306
4307        struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4308        struct intel_plane *intel_plane =
4309                to_intel_plane(plane_state->base.plane);
4310        struct drm_framebuffer *fb = plane_state->base.fb;
4311        int ret;
4312
4313        bool force_detach = !fb || !plane_state->visible;
4314
4315        DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4316                      intel_plane->base.base.id, intel_crtc->pipe,
4317                      drm_plane_index(&intel_plane->base));
4318
4319        ret = skl_update_scaler(crtc_state, force_detach,
4320                                drm_plane_index(&intel_plane->base),
4321                                &plane_state->scaler_id,
4322                                plane_state->base.rotation,
4323                                drm_rect_width(&plane_state->src) >> 16,
4324                                drm_rect_height(&plane_state->src) >> 16,
4325                                drm_rect_width(&plane_state->dst),
4326                                drm_rect_height(&plane_state->dst));
4327
4328        if (ret || plane_state->scaler_id < 0)
4329                return ret;
4330
4331        /* check colorkey */
4332        if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4333                DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4334                              intel_plane->base.base.id);
4335                return -EINVAL;
4336        }
4337
4338        /* Check src format */
4339        switch (fb->pixel_format) {
4340        case DRM_FORMAT_RGB565:
4341        case DRM_FORMAT_XBGR8888:
4342        case DRM_FORMAT_XRGB8888:
4343        case DRM_FORMAT_ABGR8888:
4344        case DRM_FORMAT_ARGB8888:
4345        case DRM_FORMAT_XRGB2101010:
4346        case DRM_FORMAT_XBGR2101010:
4347        case DRM_FORMAT_YUYV:
4348        case DRM_FORMAT_YVYU:
4349        case DRM_FORMAT_UYVY:
4350        case DRM_FORMAT_VYUY:
4351                break;
4352        default:
4353                DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4354                        intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4355                return -EINVAL;
4356        }
4357
4358        return 0;
4359}
4360
4361static void skylake_scaler_disable(struct intel_crtc *crtc)
4362{
4363        int i;
4364
4365        for (i = 0; i < crtc->num_scalers; i++)
4366                skl_detach_scaler(crtc, i);
4367}
4368
4369static void skylake_pfit_enable(struct intel_crtc *crtc)
4370{
4371        struct drm_device *dev = crtc->base.dev;
4372        struct drm_i915_private *dev_priv = dev->dev_private;
4373        int pipe = crtc->pipe;
4374        struct intel_crtc_scaler_state *scaler_state =
4375                &crtc->config->scaler_state;
4376
4377        DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4378
4379        if (crtc->config->pch_pfit.enabled) {
4380                int id;
4381
4382                if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4383                        DRM_ERROR("Requesting pfit without getting a scaler first\n");
4384                        return;
4385                }
4386
4387                id = scaler_state->scaler_id;
4388                I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4389                        PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4390                I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4391                I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4392
4393                DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4394        }
4395}
4396
4397static void ironlake_pfit_enable(struct intel_crtc *crtc)
4398{
4399        struct drm_device *dev = crtc->base.dev;
4400        struct drm_i915_private *dev_priv = dev->dev_private;
4401        int pipe = crtc->pipe;
4402
4403        if (crtc->config->pch_pfit.enabled) {
4404                /* Force use of hard-coded filter coefficients
4405                 * as some pre-programmed values are broken,
4406                 * e.g. x201.
4407                 */
4408                if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4409                        I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4410                                                 PF_PIPE_SEL_IVB(pipe));
4411                else
4412                        I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4413                I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4414                I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4415        }
4416}
4417
4418void hsw_enable_ips(struct intel_crtc *crtc)
4419{
4420        struct drm_device *dev = crtc->base.dev;
4421        struct drm_i915_private *dev_priv = dev->dev_private;
4422
4423        if (!crtc->config->ips_enabled)
4424                return;
4425
4426        /*
4427         * We can only enable IPS after we enable a plane and wait for a vblank
4428         * This function is called from post_plane_update, which is run after
4429         * a vblank wait.
4430         */
4431
4432        assert_plane_enabled(dev_priv, crtc->plane);
4433        if (IS_BROADWELL(dev)) {
4434                mutex_lock(&dev_priv->rps.hw_lock);
4435                WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4436                mutex_unlock(&dev_priv->rps.hw_lock);
4437                /* Quoting Art Runyan: "its not safe to expect any particular
4438                 * value in IPS_CTL bit 31 after enabling IPS through the
4439                 * mailbox." Moreover, the mailbox may return a bogus state,
4440                 * so we need to just enable it and continue on.
4441                 */
4442        } else {
4443                I915_WRITE(IPS_CTL, IPS_ENABLE);
4444                /* The bit only becomes 1 in the next vblank, so this wait here
4445                 * is essentially intel_wait_for_vblank. If we don't have this
4446                 * and don't wait for vblanks until the end of crtc_enable, then
4447                 * the HW state readout code will complain that the expected
4448                 * IPS_CTL value is not the one we read. */
4449                if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4450                        DRM_ERROR("Timed out waiting for IPS enable\n");
4451        }
4452}
4453
4454void hsw_disable_ips(struct intel_crtc *crtc)
4455{
4456        struct drm_device *dev = crtc->base.dev;
4457        struct drm_i915_private *dev_priv = dev->dev_private;
4458
4459        if (!crtc->config->ips_enabled)
4460                return;
4461
4462        assert_plane_enabled(dev_priv, crtc->plane);
4463        if (IS_BROADWELL(dev)) {
4464                mutex_lock(&dev_priv->rps.hw_lock);
4465                WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4466                mutex_unlock(&dev_priv->rps.hw_lock);
4467                /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4468                if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4469                        DRM_ERROR("Timed out waiting for IPS disable\n");
4470        } else {
4471                I915_WRITE(IPS_CTL, 0);
4472                POSTING_READ(IPS_CTL);
4473        }
4474
4475        /* We need to wait for a vblank before we can disable the plane. */
4476        intel_wait_for_vblank(dev, crtc->pipe);
4477}
4478
4479static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4480{
4481        if (intel_crtc->overlay) {
4482                struct drm_device *dev = intel_crtc->base.dev;
4483                struct drm_i915_private *dev_priv = dev->dev_private;
4484
4485                mutex_lock(&dev->struct_mutex);
4486                dev_priv->mm.interruptible = false;
4487                (void) intel_overlay_switch_off(intel_crtc->overlay);
4488                dev_priv->mm.interruptible = true;
4489                mutex_unlock(&dev->struct_mutex);
4490        }
4491
4492        /* Let userspace switch the overlay on again. In most cases userspace
4493         * has to recompute where to put it anyway.
4494         */
4495}
4496
4497/**
4498 * intel_post_enable_primary - Perform operations after enabling primary plane
4499 * @crtc: the CRTC whose primary plane was just enabled
4500 *
4501 * Performs potentially sleeping operations that must be done after the primary
4502 * plane is enabled, such as updating FBC and IPS.  Note that this may be
4503 * called due to an explicit primary plane update, or due to an implicit
4504 * re-enable that is caused when a sprite plane is updated to no longer
4505 * completely hide the primary plane.
4506 */
4507static void
4508intel_post_enable_primary(struct drm_crtc *crtc)
4509{
4510        struct drm_device *dev = crtc->dev;
4511        struct drm_i915_private *dev_priv = dev->dev_private;
4512        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4513        int pipe = intel_crtc->pipe;
4514
4515        /*
4516         * FIXME IPS should be fine as long as one plane is
4517         * enabled, but in practice it seems to have problems
4518         * when going from primary only to sprite only and vice
4519         * versa.
4520         */
4521        hsw_enable_ips(intel_crtc);
4522
4523        /*
4524         * Gen2 reports pipe underruns whenever all planes are disabled.
4525         * So don't enable underrun reporting before at least some planes
4526         * are enabled.
4527         * FIXME: Need to fix the logic to work when we turn off all planes
4528         * but leave the pipe running.
4529         */
4530        if (IS_GEN2(dev))
4531                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4532
4533        /* Underruns don't always raise interrupts, so check manually. */
4534        intel_check_cpu_fifo_underruns(dev_priv);
4535        intel_check_pch_fifo_underruns(dev_priv);
4536}
4537
4538/* FIXME move all this to pre_plane_update() with proper state tracking */
4539static void
4540intel_pre_disable_primary(struct drm_crtc *crtc)
4541{
4542        struct drm_device *dev = crtc->dev;
4543        struct drm_i915_private *dev_priv = dev->dev_private;
4544        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4545        int pipe = intel_crtc->pipe;
4546
4547        /*
4548         * Gen2 reports pipe underruns whenever all planes are disabled.
4549         * So diasble underrun reporting before all the planes get disabled.
4550         * FIXME: Need to fix the logic to work when we turn off all planes
4551         * but leave the pipe running.
4552         */
4553        if (IS_GEN2(dev))
4554                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4555
4556        /*
4557         * FIXME IPS should be fine as long as one plane is
4558         * enabled, but in practice it seems to have problems
4559         * when going from primary only to sprite only and vice
4560         * versa.
4561         */
4562        hsw_disable_ips(intel_crtc);
4563}
4564
4565/* FIXME get rid of this and use pre_plane_update */
4566static void
4567intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4568{
4569        struct drm_device *dev = crtc->dev;
4570        struct drm_i915_private *dev_priv = dev->dev_private;
4571        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4572        int pipe = intel_crtc->pipe;
4573
4574        intel_pre_disable_primary(crtc);
4575
4576        /*
4577         * Vblank time updates from the shadow to live plane control register
4578         * are blocked if the memory self-refresh mode is active at that
4579         * moment. So to make sure the plane gets truly disabled, disable
4580         * first the self-refresh mode. The self-refresh enable bit in turn
4581         * will be checked/applied by the HW only at the next frame start
4582         * event which is after the vblank start event, so we need to have a
4583         * wait-for-vblank between disabling the plane and the pipe.
4584         */
4585        if (HAS_GMCH_DISPLAY(dev)) {
4586                intel_set_memory_cxsr(dev_priv, false);
4587                dev_priv->wm.vlv.cxsr = false;
4588                intel_wait_for_vblank(dev, pipe);
4589        }
4590}
4591
4592static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
4593{
4594        struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4595        struct drm_atomic_state *old_state = old_crtc_state->base.state;
4596        struct intel_crtc_state *pipe_config =
4597                to_intel_crtc_state(crtc->base.state);
4598        struct drm_device *dev = crtc->base.dev;
4599        struct drm_plane *primary = crtc->base.primary;
4600        struct drm_plane_state *old_pri_state =
4601                drm_atomic_get_existing_plane_state(old_state, primary);
4602
4603        intel_frontbuffer_flip(dev, pipe_config->fb_bits);
4604
4605        crtc->wm.cxsr_allowed = true;
4606
4607        if (pipe_config->update_wm_post && pipe_config->base.active)
4608                intel_update_watermarks(&crtc->base);
4609
4610        if (old_pri_state) {
4611                struct intel_plane_state *primary_state =
4612                        to_intel_plane_state(primary->state);
4613                struct intel_plane_state *old_primary_state =
4614                        to_intel_plane_state(old_pri_state);
4615
4616                intel_fbc_post_update(crtc);
4617
4618                if (primary_state->visible &&
4619                    (needs_modeset(&pipe_config->base) ||
4620                     !old_primary_state->visible))
4621                        intel_post_enable_primary(&crtc->base);
4622        }
4623}
4624
4625static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
4626{
4627        struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4628        struct drm_device *dev = crtc->base.dev;
4629        struct drm_i915_private *dev_priv = dev->dev_private;
4630        struct intel_crtc_state *pipe_config =
4631                to_intel_crtc_state(crtc->base.state);
4632        struct drm_atomic_state *old_state = old_crtc_state->base.state;
4633        struct drm_plane *primary = crtc->base.primary;
4634        struct drm_plane_state *old_pri_state =
4635                drm_atomic_get_existing_plane_state(old_state, primary);
4636        bool modeset = needs_modeset(&pipe_config->base);
4637
4638        if (old_pri_state) {
4639                struct intel_plane_state *primary_state =
4640                        to_intel_plane_state(primary->state);
4641                struct intel_plane_state *old_primary_state =
4642                        to_intel_plane_state(old_pri_state);
4643
4644                intel_fbc_pre_update(crtc);
4645
4646                if (old_primary_state->visible &&
4647                    (modeset || !primary_state->visible))
4648                        intel_pre_disable_primary(&crtc->base);
4649        }
4650
4651        if (pipe_config->disable_cxsr) {
4652                crtc->wm.cxsr_allowed = false;
4653
4654                /*
4655                 * Vblank time updates from the shadow to live plane control register
4656                 * are blocked if the memory self-refresh mode is active at that
4657                 * moment. So to make sure the plane gets truly disabled, disable
4658                 * first the self-refresh mode. The self-refresh enable bit in turn
4659                 * will be checked/applied by the HW only at the next frame start
4660                 * event which is after the vblank start event, so we need to have a
4661                 * wait-for-vblank between disabling the plane and the pipe.
4662                 */
4663                if (old_crtc_state->base.active) {
4664                        intel_set_memory_cxsr(dev_priv, false);
4665                        dev_priv->wm.vlv.cxsr = false;
4666                        intel_wait_for_vblank(dev, crtc->pipe);
4667                }
4668        }
4669
4670        /*
4671         * IVB workaround: must disable low power watermarks for at least
4672         * one frame before enabling scaling.  LP watermarks can be re-enabled
4673         * when scaling is disabled.
4674         *
4675         * WaCxSRDisabledForSpriteScaling:ivb
4676         */
4677        if (pipe_config->disable_lp_wm) {
4678                ilk_disable_lp_wm(dev);
4679                intel_wait_for_vblank(dev, crtc->pipe);
4680        }
4681
4682        /*
4683         * If we're doing a modeset, we're done.  No need to do any pre-vblank
4684         * watermark programming here.
4685         */
4686        if (needs_modeset(&pipe_config->base))
4687                return;
4688
4689        /*
4690         * For platforms that support atomic watermarks, program the
4691         * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
4692         * will be the intermediate values that are safe for both pre- and
4693         * post- vblank; when vblank happens, the 'active' values will be set
4694         * to the final 'target' values and we'll do this again to get the
4695         * optimal watermarks.  For gen9+ platforms, the values we program here
4696         * will be the final target values which will get automatically latched
4697         * at vblank time; no further programming will be necessary.
4698         *
4699         * If a platform hasn't been transitioned to atomic watermarks yet,
4700         * we'll continue to update watermarks the old way, if flags tell
4701         * us to.
4702         */
4703        if (dev_priv->display.initial_watermarks != NULL)
4704                dev_priv->display.initial_watermarks(pipe_config);
4705        else if (pipe_config->update_wm_pre)
4706                intel_update_watermarks(&crtc->base);
4707}
4708
4709static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4710{
4711        struct drm_device *dev = crtc->dev;
4712        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4713        struct drm_plane *p;
4714        int pipe = intel_crtc->pipe;
4715
4716        intel_crtc_dpms_overlay_disable(intel_crtc);
4717
4718        drm_for_each_plane_mask(p, dev, plane_mask)
4719                to_intel_plane(p)->disable_plane(p, crtc);
4720
4721        /*
4722         * FIXME: Once we grow proper nuclear flip support out of this we need
4723         * to compute the mask of flip planes precisely. For the time being
4724         * consider this a flip to a NULL plane.
4725         */
4726        intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4727}
4728
4729static void ironlake_crtc_enable(struct drm_crtc *crtc)
4730{
4731        struct drm_device *dev = crtc->dev;
4732        struct drm_i915_private *dev_priv = dev->dev_private;
4733        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4734        struct intel_encoder *encoder;
4735        int pipe = intel_crtc->pipe;
4736        struct intel_crtc_state *pipe_config =
4737                to_intel_crtc_state(crtc->state);
4738
4739        if (WARN_ON(intel_crtc->active))
4740                return;
4741
4742        /*
4743         * Sometimes spurious CPU pipe underruns happen during FDI
4744         * training, at least with VGA+HDMI cloning. Suppress them.
4745         *
4746         * On ILK we get an occasional spurious CPU pipe underruns
4747         * between eDP port A enable and vdd enable. Also PCH port
4748         * enable seems to result in the occasional CPU pipe underrun.
4749         *
4750         * Spurious PCH underruns also occur during PCH enabling.
4751         */
4752        if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4753                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4754        if (intel_crtc->config->has_pch_encoder)
4755                intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4756
4757        if (intel_crtc->config->has_pch_encoder)
4758                intel_prepare_shared_dpll(intel_crtc);
4759
4760        if (intel_crtc->config->has_dp_encoder)
4761                intel_dp_set_m_n(intel_crtc, M1_N1);
4762
4763        intel_set_pipe_timings(intel_crtc);
4764        intel_set_pipe_src_size(intel_crtc);
4765
4766        if (intel_crtc->config->has_pch_encoder) {
4767                intel_cpu_transcoder_set_m_n(intel_crtc,
4768                                     &intel_crtc->config->fdi_m_n, NULL);
4769        }
4770
4771        ironlake_set_pipeconf(crtc);
4772
4773        intel_crtc->active = true;
4774
4775        for_each_encoder_on_crtc(dev, crtc, encoder)
4776                if (encoder->pre_enable)
4777                        encoder->pre_enable(encoder);
4778
4779        if (intel_crtc->config->has_pch_encoder) {
4780                /* Note: FDI PLL enabling _must_ be done before we enable the
4781                 * cpu pipes, hence this is separate from all the other fdi/pch
4782                 * enabling. */
4783                ironlake_fdi_pll_enable(intel_crtc);
4784        } else {
4785                assert_fdi_tx_disabled(dev_priv, pipe);
4786                assert_fdi_rx_disabled(dev_priv, pipe);
4787        }
4788
4789        ironlake_pfit_enable(intel_crtc);
4790
4791        /*
4792         * On ILK+ LUT must be loaded before the pipe is running but with
4793         * clocks enabled
4794         */
4795        intel_color_load_luts(&pipe_config->base);
4796
4797        if (dev_priv->display.initial_watermarks != NULL)
4798                dev_priv->display.initial_watermarks(intel_crtc->config);
4799        intel_enable_pipe(intel_crtc);
4800
4801        if (intel_crtc->config->has_pch_encoder)
4802                ironlake_pch_enable(crtc);
4803
4804        assert_vblank_disabled(crtc);
4805        drm_crtc_vblank_on(crtc);
4806
4807        for_each_encoder_on_crtc(dev, crtc, encoder)
4808                encoder->enable(encoder);
4809
4810        if (HAS_PCH_CPT(dev))
4811                cpt_verify_modeset(dev, intel_crtc->pipe);
4812
4813        /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4814        if (intel_crtc->config->has_pch_encoder)
4815                intel_wait_for_vblank(dev, pipe);
4816        intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4817        intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4818}
4819
4820/* IPS only exists on ULT machines and is tied to pipe A. */
4821static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4822{
4823        return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4824}
4825
4826static void haswell_crtc_enable(struct drm_crtc *crtc)
4827{
4828        struct drm_device *dev = crtc->dev;
4829        struct drm_i915_private *dev_priv = dev->dev_private;
4830        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4831        struct intel_encoder *encoder;
4832        int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4833        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4834        struct intel_crtc_state *pipe_config =
4835                to_intel_crtc_state(crtc->state);
4836
4837        if (WARN_ON(intel_crtc->active))
4838                return;
4839
4840        if (intel_crtc->config->has_pch_encoder)
4841                intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4842                                                      false);
4843
4844        if (intel_crtc->config->shared_dpll)
4845                intel_enable_shared_dpll(intel_crtc);
4846
4847        if (intel_crtc->config->has_dp_encoder)
4848                intel_dp_set_m_n(intel_crtc, M1_N1);
4849
4850        if (!intel_crtc->config->has_dsi_encoder)
4851                intel_set_pipe_timings(intel_crtc);
4852
4853        intel_set_pipe_src_size(intel_crtc);
4854
4855        if (cpu_transcoder != TRANSCODER_EDP &&
4856            !transcoder_is_dsi(cpu_transcoder)) {
4857                I915_WRITE(PIPE_MULT(cpu_transcoder),
4858                           intel_crtc->config->pixel_multiplier - 1);
4859        }
4860
4861        if (intel_crtc->config->has_pch_encoder) {
4862                intel_cpu_transcoder_set_m_n(intel_crtc,
4863                                     &intel_crtc->config->fdi_m_n, NULL);
4864        }
4865
4866        if (!intel_crtc->config->has_dsi_encoder)
4867                haswell_set_pipeconf(crtc);
4868
4869        haswell_set_pipemisc(crtc);
4870
4871        intel_color_set_csc(&pipe_config->base);
4872
4873        intel_crtc->active = true;
4874
4875        if (intel_crtc->config->has_pch_encoder)
4876                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4877        else
4878                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4879
4880        for_each_encoder_on_crtc(dev, crtc, encoder) {
4881                if (encoder->pre_enable)
4882                        encoder->pre_enable(encoder);
4883        }
4884
4885        if (intel_crtc->config->has_pch_encoder)
4886                dev_priv->display.fdi_link_train(crtc);
4887
4888        if (!intel_crtc->config->has_dsi_encoder)
4889                intel_ddi_enable_pipe_clock(intel_crtc);
4890
4891        if (INTEL_INFO(dev)->gen >= 9)
4892                skylake_pfit_enable(intel_crtc);
4893        else
4894                ironlake_pfit_enable(intel_crtc);
4895
4896        /*
4897         * On ILK+ LUT must be loaded before the pipe is running but with
4898         * clocks enabled
4899         */
4900        intel_color_load_luts(&pipe_config->base);
4901
4902        intel_ddi_set_pipe_settings(crtc);
4903        if (!intel_crtc->config->has_dsi_encoder)
4904                intel_ddi_enable_transcoder_func(crtc);
4905
4906        if (dev_priv->display.initial_watermarks != NULL)
4907                dev_priv->display.initial_watermarks(pipe_config);
4908        else
4909                intel_update_watermarks(crtc);
4910
4911        /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4912        if (!intel_crtc->config->has_dsi_encoder)
4913                intel_enable_pipe(intel_crtc);
4914
4915        if (intel_crtc->config->has_pch_encoder)
4916                lpt_pch_enable(crtc);
4917
4918        if (intel_crtc->config->dp_encoder_is_mst)
4919                intel_ddi_set_vc_payload_alloc(crtc, true);
4920
4921        assert_vblank_disabled(crtc);
4922        drm_crtc_vblank_on(crtc);
4923
4924        for_each_encoder_on_crtc(dev, crtc, encoder) {
4925                encoder->enable(encoder);
4926                intel_opregion_notify_encoder(encoder, true);
4927        }
4928
4929        if (intel_crtc->config->has_pch_encoder) {
4930                intel_wait_for_vblank(dev, pipe);
4931                intel_wait_for_vblank(dev, pipe);
4932                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4933                intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4934                                                      true);
4935        }
4936
4937        /* If we change the relative order between pipe/planes enabling, we need
4938         * to change the workaround. */
4939        hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4940        if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4941                intel_wait_for_vblank(dev, hsw_workaround_pipe);
4942                intel_wait_for_vblank(dev, hsw_workaround_pipe);
4943        }
4944}
4945
4946static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
4947{
4948        struct drm_device *dev = crtc->base.dev;
4949        struct drm_i915_private *dev_priv = dev->dev_private;
4950        int pipe = crtc->pipe;
4951
4952        /* To avoid upsetting the power well on haswell only disable the pfit if
4953         * it's in use. The hw state code will make sure we get this right. */
4954        if (force || crtc->config->pch_pfit.enabled) {
4955                I915_WRITE(PF_CTL(pipe), 0);
4956                I915_WRITE(PF_WIN_POS(pipe), 0);
4957                I915_WRITE(PF_WIN_SZ(pipe), 0);
4958        }
4959}
4960
4961static void ironlake_crtc_disable(struct drm_crtc *crtc)
4962{
4963        struct drm_device *dev = crtc->dev;
4964        struct drm_i915_private *dev_priv = dev->dev_private;
4965        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4966        struct intel_encoder *encoder;
4967        int pipe = intel_crtc->pipe;
4968
4969        /*
4970         * Sometimes spurious CPU pipe underruns happen when the
4971         * pipe is already disabled, but FDI RX/TX is still enabled.
4972         * Happens at least with VGA+HDMI cloning. Suppress them.
4973         */
4974        if (intel_crtc->config->has_pch_encoder) {
4975                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4976                intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4977        }
4978
4979        for_each_encoder_on_crtc(dev, crtc, encoder)
4980                encoder->disable(encoder);
4981
4982        drm_crtc_vblank_off(crtc);
4983        assert_vblank_disabled(crtc);
4984
4985        intel_disable_pipe(intel_crtc);
4986
4987        ironlake_pfit_disable(intel_crtc, false);
4988
4989        if (intel_crtc->config->has_pch_encoder)
4990                ironlake_fdi_disable(crtc);
4991
4992        for_each_encoder_on_crtc(dev, crtc, encoder)
4993                if (encoder->post_disable)
4994                        encoder->post_disable(encoder);
4995
4996        if (intel_crtc->config->has_pch_encoder) {
4997                ironlake_disable_pch_transcoder(dev_priv, pipe);
4998
4999                if (HAS_PCH_CPT(dev)) {
5000                        i915_reg_t reg;
5001                        u32 temp;
5002
5003                        /* disable TRANS_DP_CTL */
5004                        reg = TRANS_DP_CTL(pipe);
5005                        temp = I915_READ(reg);
5006                        temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5007                                  TRANS_DP_PORT_SEL_MASK);
5008                        temp |= TRANS_DP_PORT_SEL_NONE;
5009                        I915_WRITE(reg, temp);
5010
5011                        /* disable DPLL_SEL */
5012                        temp = I915_READ(PCH_DPLL_SEL);
5013                        temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5014                        I915_WRITE(PCH_DPLL_SEL, temp);
5015                }
5016
5017                ironlake_fdi_pll_disable(intel_crtc);
5018        }
5019
5020        intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5021        intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5022}
5023
5024static void haswell_crtc_disable(struct drm_crtc *crtc)
5025{
5026        struct drm_device *dev = crtc->dev;
5027        struct drm_i915_private *dev_priv = dev->dev_private;
5028        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5029        struct intel_encoder *encoder;
5030        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5031
5032        if (intel_crtc->config->has_pch_encoder)
5033                intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5034                                                      false);
5035
5036        for_each_encoder_on_crtc(dev, crtc, encoder) {
5037                intel_opregion_notify_encoder(encoder, false);
5038                encoder->disable(encoder);
5039        }
5040
5041        drm_crtc_vblank_off(crtc);
5042        assert_vblank_disabled(crtc);
5043
5044        /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5045        if (!intel_crtc->config->has_dsi_encoder)
5046                intel_disable_pipe(intel_crtc);
5047
5048        if (intel_crtc->config->dp_encoder_is_mst)
5049                intel_ddi_set_vc_payload_alloc(crtc, false);
5050
5051        if (!intel_crtc->config->has_dsi_encoder)
5052                intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5053
5054        if (INTEL_INFO(dev)->gen >= 9)
5055                skylake_scaler_disable(intel_crtc);
5056        else
5057                ironlake_pfit_disable(intel_crtc, false);
5058
5059        if (!intel_crtc->config->has_dsi_encoder)
5060                intel_ddi_disable_pipe_clock(intel_crtc);
5061
5062        for_each_encoder_on_crtc(dev, crtc, encoder)
5063                if (encoder->post_disable)
5064                        encoder->post_disable(encoder);
5065
5066        if (intel_crtc->config->has_pch_encoder) {
5067                lpt_disable_pch_transcoder(dev_priv);
5068                lpt_disable_iclkip(dev_priv);
5069                intel_ddi_fdi_disable(crtc);
5070
5071                intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5072                                                      true);
5073        }
5074}
5075
5076static void i9xx_pfit_enable(struct intel_crtc *crtc)
5077{
5078        struct drm_device *dev = crtc->base.dev;
5079        struct drm_i915_private *dev_priv = dev->dev_private;
5080        struct intel_crtc_state *pipe_config = crtc->config;
5081
5082        if (!pipe_config->gmch_pfit.control)
5083                return;
5084
5085        /*
5086         * The panel fitter should only be adjusted whilst the pipe is disabled,
5087         * according to register description and PRM.
5088         */
5089        WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5090        assert_pipe_disabled(dev_priv, crtc->pipe);
5091
5092        I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5093        I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5094
5095        /* Border color in case we don't scale up to the full screen. Black by
5096         * default, change to something else for debugging. */
5097        I915_WRITE(BCLRPAT(crtc->pipe), 0);
5098}
5099
5100static enum intel_display_power_domain port_to_power_domain(enum port port)
5101{
5102        switch (port) {
5103        case PORT_A:
5104                return POWER_DOMAIN_PORT_DDI_A_LANES;
5105        case PORT_B:
5106                return POWER_DOMAIN_PORT_DDI_B_LANES;
5107        case PORT_C:
5108                return POWER_DOMAIN_PORT_DDI_C_LANES;
5109        case PORT_D:
5110                return POWER_DOMAIN_PORT_DDI_D_LANES;
5111        case PORT_E:
5112                return POWER_DOMAIN_PORT_DDI_E_LANES;
5113        default:
5114                MISSING_CASE(port);
5115                return POWER_DOMAIN_PORT_OTHER;
5116        }
5117}
5118
5119static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5120{
5121        switch (port) {
5122        case PORT_A:
5123                return POWER_DOMAIN_AUX_A;
5124        case PORT_B:
5125                return POWER_DOMAIN_AUX_B;
5126        case PORT_C:
5127                return POWER_DOMAIN_AUX_C;
5128        case PORT_D:
5129                return POWER_DOMAIN_AUX_D;
5130        case PORT_E:
5131                /* FIXME: Check VBT for actual wiring of PORT E */
5132                return POWER_DOMAIN_AUX_D;
5133        default:
5134                MISSING_CASE(port);
5135                return POWER_DOMAIN_AUX_A;
5136        }
5137}
5138
5139enum intel_display_power_domain
5140intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5141{
5142        struct drm_device *dev = intel_encoder->base.dev;
5143        struct intel_digital_port *intel_dig_port;
5144
5145        switch (intel_encoder->type) {
5146        case INTEL_OUTPUT_UNKNOWN:
5147                /* Only DDI platforms should ever use this output type */
5148                WARN_ON_ONCE(!HAS_DDI(dev));
5149        case INTEL_OUTPUT_DISPLAYPORT:
5150        case INTEL_OUTPUT_HDMI:
5151        case INTEL_OUTPUT_EDP:
5152                intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5153                return port_to_power_domain(intel_dig_port->port);
5154        case INTEL_OUTPUT_DP_MST:
5155                intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5156                return port_to_power_domain(intel_dig_port->port);
5157        case INTEL_OUTPUT_ANALOG:
5158                return POWER_DOMAIN_PORT_CRT;
5159        case INTEL_OUTPUT_DSI:
5160                return POWER_DOMAIN_PORT_DSI;
5161        default:
5162                return POWER_DOMAIN_PORT_OTHER;
5163        }
5164}
5165
5166enum intel_display_power_domain
5167intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5168{
5169        struct drm_device *dev = intel_encoder->base.dev;
5170        struct intel_digital_port *intel_dig_port;
5171
5172        switch (intel_encoder->type) {
5173        case INTEL_OUTPUT_UNKNOWN:
5174        case INTEL_OUTPUT_HDMI:
5175                /*
5176                 * Only DDI platforms should ever use these output types.
5177                 * We can get here after the HDMI detect code has already set
5178                 * the type of the shared encoder. Since we can't be sure
5179                 * what's the status of the given connectors, play safe and
5180                 * run the DP detection too.
5181                 */
5182                WARN_ON_ONCE(!HAS_DDI(dev));
5183        case INTEL_OUTPUT_DISPLAYPORT:
5184        case INTEL_OUTPUT_EDP:
5185                intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5186                return port_to_aux_power_domain(intel_dig_port->port);
5187        case INTEL_OUTPUT_DP_MST:
5188                intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5189                return port_to_aux_power_domain(intel_dig_port->port);
5190        default:
5191                MISSING_CASE(intel_encoder->type);
5192                return POWER_DOMAIN_AUX_A;
5193        }
5194}
5195
5196static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5197                                            struct intel_crtc_state *crtc_state)
5198{
5199        struct drm_device *dev = crtc->dev;
5200        struct drm_encoder *encoder;
5201        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5202        enum pipe pipe = intel_crtc->pipe;
5203        unsigned long mask;
5204        enum transcoder transcoder = crtc_state->cpu_transcoder;
5205
5206        if (!crtc_state->base.active)
5207                return 0;
5208
5209        mask = BIT(POWER_DOMAIN_PIPE(pipe));
5210        mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5211        if (crtc_state->pch_pfit.enabled ||
5212            crtc_state->pch_pfit.force_thru)
5213                mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5214
5215        drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5216                struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5217
5218                mask |= BIT(intel_display_port_power_domain(intel_encoder));
5219        }
5220
5221        if (crtc_state->shared_dpll)
5222                mask |= BIT(POWER_DOMAIN_PLLS);
5223
5224        return mask;
5225}
5226
5227static unsigned long
5228modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5229                               struct intel_crtc_state *crtc_state)
5230{
5231        struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5232        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5233        enum intel_display_power_domain domain;
5234        unsigned long domains, new_domains, old_domains;
5235
5236        old_domains = intel_crtc->enabled_power_domains;
5237        intel_crtc->enabled_power_domains = new_domains =
5238                get_crtc_power_domains(crtc, crtc_state);
5239
5240        domains = new_domains & ~old_domains;
5241
5242        for_each_power_domain(domain, domains)
5243                intel_display_power_get(dev_priv, domain);
5244
5245        return old_domains & ~new_domains;
5246}
5247
5248static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5249                                      unsigned long domains)
5250{
5251        enum intel_display_power_domain domain;
5252
5253        for_each_power_domain(domain, domains)
5254                intel_display_power_put(dev_priv, domain);
5255}
5256
5257static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5258{
5259        int max_cdclk_freq = dev_priv->max_cdclk_freq;
5260
5261        if (INTEL_INFO(dev_priv)->gen >= 9 ||
5262            IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5263                return max_cdclk_freq;
5264        else if (IS_CHERRYVIEW(dev_priv))
5265                return max_cdclk_freq*95/100;
5266        else if (INTEL_INFO(dev_priv)->gen < 4)
5267                return 2*max_cdclk_freq*90/100;
5268        else
5269                return max_cdclk_freq*90/100;
5270}
5271
5272static void intel_update_max_cdclk(struct drm_device *dev)
5273{
5274        struct drm_i915_private *dev_priv = dev->dev_private;
5275
5276        if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5277                u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5278
5279                if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5280                        dev_priv->max_cdclk_freq = 675000;
5281                else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5282                        dev_priv->max_cdclk_freq = 540000;
5283                else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5284                        dev_priv->max_cdclk_freq = 450000;
5285                else
5286                        dev_priv->max_cdclk_freq = 337500;
5287        } else if (IS_BROXTON(dev)) {
5288                dev_priv->max_cdclk_freq = 624000;
5289        } else if (IS_BROADWELL(dev))  {
5290                /*
5291                 * FIXME with extra cooling we can allow
5292                 * 540 MHz for ULX and 675 Mhz for ULT.
5293                 * How can we know if extra cooling is
5294                 * available? PCI ID, VTB, something else?
5295                 */
5296                if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5297                        dev_priv->max_cdclk_freq = 450000;
5298                else if (IS_BDW_ULX(dev))
5299                        dev_priv->max_cdclk_freq = 450000;
5300                else if (IS_BDW_ULT(dev))
5301                        dev_priv->max_cdclk_freq = 540000;
5302                else
5303                        dev_priv->max_cdclk_freq = 675000;
5304        } else if (IS_CHERRYVIEW(dev)) {
5305                dev_priv->max_cdclk_freq = 320000;
5306        } else if (IS_VALLEYVIEW(dev)) {
5307                dev_priv->max_cdclk_freq = 400000;
5308        } else {
5309                /* otherwise assume cdclk is fixed */
5310                dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5311        }
5312
5313        dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5314
5315        DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5316                         dev_priv->max_cdclk_freq);
5317
5318        DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5319                         dev_priv->max_dotclk_freq);
5320}
5321
5322static void intel_update_cdclk(struct drm_device *dev)
5323{
5324        struct drm_i915_private *dev_priv = dev->dev_private;
5325
5326        dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5327        DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5328                         dev_priv->cdclk_freq);
5329
5330        /*
5331         * Program the gmbus_freq based on the cdclk frequency.
5332         * BSpec erroneously claims we should aim for 4MHz, but
5333         * in fact 1MHz is the correct frequency.
5334         */
5335        if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5336                /*
5337                 * Program the gmbus_freq based on the cdclk frequency.
5338                 * BSpec erroneously claims we should aim for 4MHz, but
5339                 * in fact 1MHz is the correct frequency.
5340                 */
5341                I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5342        }
5343
5344        if (dev_priv->max_cdclk_freq == 0)
5345                intel_update_max_cdclk(dev);
5346}
5347
5348static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int frequency)
5349{
5350        uint32_t divider;
5351        uint32_t ratio;
5352        uint32_t current_freq;
5353        int ret;
5354
5355        /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5356        switch (frequency) {
5357        case 144000:
5358                divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5359                ratio = BXT_DE_PLL_RATIO(60);
5360                break;
5361        case 288000:
5362                divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5363                ratio = BXT_DE_PLL_RATIO(60);
5364                break;
5365        case 384000:
5366                divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5367                ratio = BXT_DE_PLL_RATIO(60);
5368                break;
5369        case 576000:
5370                divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5371                ratio = BXT_DE_PLL_RATIO(60);
5372                break;
5373        case 624000:
5374                divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5375                ratio = BXT_DE_PLL_RATIO(65);
5376                break;
5377        case 19200:
5378                /*
5379                 * Bypass frequency with DE PLL disabled. Init ratio, divider
5380                 * to suppress GCC warning.
5381                 */
5382                ratio = 0;
5383                divider = 0;
5384                break;
5385        default:
5386                DRM_ERROR("unsupported CDCLK freq %d", frequency);
5387
5388                return;
5389        }
5390
5391        mutex_lock(&dev_priv->rps.hw_lock);
5392        /* Inform power controller of upcoming frequency change */
5393        ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5394                                      0x80000000);
5395        mutex_unlock(&dev_priv->rps.hw_lock);
5396
5397        if (ret) {
5398                DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5399                          ret, frequency);
5400                return;
5401        }
5402
5403        current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5404        /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5405        current_freq = current_freq * 500 + 1000;
5406
5407        /*
5408         * DE PLL has to be disabled when
5409         * - setting to 19.2MHz (bypass, PLL isn't used)
5410         * - before setting to 624MHz (PLL needs toggling)
5411         * - before setting to any frequency from 624MHz (PLL needs toggling)
5412         */
5413        if (frequency == 19200 || frequency == 624000 ||
5414            current_freq == 624000) {
5415                I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5416                /* Timeout 200us */
5417                if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5418                             1))
5419                        DRM_ERROR("timout waiting for DE PLL unlock\n");
5420        }
5421
5422        if (frequency != 19200) {
5423                uint32_t val;
5424
5425                val = I915_READ(BXT_DE_PLL_CTL);
5426                val &= ~BXT_DE_PLL_RATIO_MASK;
5427                val |= ratio;
5428                I915_WRITE(BXT_DE_PLL_CTL, val);
5429
5430                I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5431                /* Timeout 200us */
5432                if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5433                        DRM_ERROR("timeout waiting for DE PLL lock\n");
5434
5435                val = I915_READ(CDCLK_CTL);
5436                val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5437                val |= divider;
5438                /*
5439                 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5440                 * enable otherwise.
5441                 */
5442                val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5443                if (frequency >= 500000)
5444                        val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5445
5446                val &= ~CDCLK_FREQ_DECIMAL_MASK;
5447                /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5448                val |= (frequency - 1000) / 500;
5449                I915_WRITE(CDCLK_CTL, val);
5450        }
5451
5452        mutex_lock(&dev_priv->rps.hw_lock);
5453        ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5454                                      DIV_ROUND_UP(frequency, 25000));
5455        mutex_unlock(&dev_priv->rps.hw_lock);
5456
5457        if (ret) {
5458                DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5459                          ret, frequency);
5460                return;
5461        }
5462
5463        intel_update_cdclk(dev_priv->dev);
5464}
5465
5466static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv)
5467{
5468        if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE))
5469                return false;
5470
5471        /* TODO: Check for a valid CDCLK rate */
5472
5473        if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) {
5474                DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n");
5475
5476                return false;
5477        }
5478
5479        if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) {
5480                DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n");
5481
5482                return false;
5483        }
5484
5485        return true;
5486}
5487
5488bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv)
5489{
5490        return broxton_cdclk_is_enabled(dev_priv);
5491}
5492
5493void broxton_init_cdclk(struct drm_i915_private *dev_priv)
5494{
5495        /* check if cd clock is enabled */
5496        if (broxton_cdclk_is_enabled(dev_priv)) {
5497                DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n");
5498                return;
5499        }
5500
5501        DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n");
5502
5503        /*
5504         * FIXME:
5505         * - The initial CDCLK needs to be read from VBT.
5506         *   Need to make this change after VBT has changes for BXT.
5507         * - check if setting the max (or any) cdclk freq is really necessary
5508         *   here, it belongs to modeset time
5509         */
5510        broxton_set_cdclk(dev_priv, 624000);
5511
5512        I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5513        POSTING_READ(DBUF_CTL);
5514
5515        udelay(10);
5516
5517        if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5518                DRM_ERROR("DBuf power enable timeout!\n");
5519}
5520
5521void broxton_uninit_cdclk(struct drm_i915_private *dev_priv)
5522{
5523        I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5524        POSTING_READ(DBUF_CTL);
5525
5526        udelay(10);
5527
5528        if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5529                DRM_ERROR("DBuf power disable timeout!\n");
5530
5531        /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5532        broxton_set_cdclk(dev_priv, 19200);
5533}
5534
5535static const struct skl_cdclk_entry {
5536        unsigned int freq;
5537        unsigned int vco;
5538} skl_cdclk_frequencies[] = {
5539        { .freq = 308570, .vco = 8640 },
5540        { .freq = 337500, .vco = 8100 },
5541        { .freq = 432000, .vco = 8640 },
5542        { .freq = 450000, .vco = 8100 },
5543        { .freq = 540000, .vco = 8100 },
5544        { .freq = 617140, .vco = 8640 },
5545        { .freq = 675000, .vco = 8100 },
5546};
5547
5548static unsigned int skl_cdclk_decimal(unsigned int freq)
5549{
5550        return (freq - 1000) / 500;
5551}
5552
5553static unsigned int skl_cdclk_get_vco(unsigned int freq)
5554{
5555        unsigned int i;
5556
5557        for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5558                const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5559
5560                if (e->freq == freq)
5561                        return e->vco;
5562        }
5563
5564        return 8100;
5565}
5566
5567static void
5568skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5569{
5570        unsigned int min_freq;
5571        u32 val;
5572
5573        /* select the minimum CDCLK before enabling DPLL 0 */
5574        val = I915_READ(CDCLK_CTL);
5575        val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5576        val |= CDCLK_FREQ_337_308;
5577
5578        if (required_vco == 8640)
5579                min_freq = 308570;
5580        else
5581                min_freq = 337500;
5582
5583        val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5584
5585        I915_WRITE(CDCLK_CTL, val);
5586        POSTING_READ(CDCLK_CTL);
5587
5588        /*
5589         * We always enable DPLL0 with the lowest link rate possible, but still
5590         * taking into account the VCO required to operate the eDP panel at the
5591         * desired frequency. The usual DP link rates operate with a VCO of
5592         * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5593         * The modeset code is responsible for the selection of the exact link
5594         * rate later on, with the constraint of choosing a frequency that
5595         * works with required_vco.
5596         */
5597        val = I915_READ(DPLL_CTRL1);
5598
5599        val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5600                 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5601        val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5602        if (required_vco == 8640)
5603                val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5604                                            SKL_DPLL0);
5605        else
5606                val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5607                                            SKL_DPLL0);
5608
5609        I915_WRITE(DPLL_CTRL1, val);
5610        POSTING_READ(DPLL_CTRL1);
5611
5612        I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5613
5614        if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5615                DRM_ERROR("DPLL0 not locked\n");
5616}
5617
5618static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5619{
5620        int ret;
5621        u32 val;
5622
5623        /* inform PCU we want to change CDCLK */
5624        val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5625        mutex_lock(&dev_priv->rps.hw_lock);
5626        ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5627        mutex_unlock(&dev_priv->rps.hw_lock);
5628
5629        return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5630}
5631
5632static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5633{
5634        unsigned int i;
5635
5636        for (i = 0; i < 15; i++) {
5637                if (skl_cdclk_pcu_ready(dev_priv))
5638                        return true;
5639                udelay(10);
5640        }
5641
5642        return false;
5643}
5644
5645static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5646{
5647        struct drm_device *dev = dev_priv->dev;
5648        u32 freq_select, pcu_ack;
5649
5650        DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5651
5652        if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5653                DRM_ERROR("failed to inform PCU about cdclk change\n");
5654                return;
5655        }
5656
5657        /* set CDCLK_CTL */
5658        switch(freq) {
5659        case 450000:
5660        case 432000:
5661                freq_select = CDCLK_FREQ_450_432;
5662                pcu_ack = 1;
5663                break;
5664        case 540000:
5665                freq_select = CDCLK_FREQ_540;
5666                pcu_ack = 2;
5667                break;
5668        case 308570:
5669        case 337500:
5670        default:
5671                freq_select = CDCLK_FREQ_337_308;
5672                pcu_ack = 0;
5673                break;
5674        case 617140:
5675        case 675000:
5676                freq_select = CDCLK_FREQ_675_617;
5677                pcu_ack = 3;
5678                break;
5679        }
5680
5681        I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5682        POSTING_READ(CDCLK_CTL);
5683
5684        /* inform PCU of the change */
5685        mutex_lock(&dev_priv->rps.hw_lock);
5686        sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5687        mutex_unlock(&dev_priv->rps.hw_lock);
5688
5689        intel_update_cdclk(dev);
5690}
5691
5692void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5693{
5694        /* disable DBUF power */
5695        I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5696        POSTING_READ(DBUF_CTL);
5697
5698        udelay(10);
5699
5700        if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5701                DRM_ERROR("DBuf power disable timeout\n");
5702
5703        /* disable DPLL0 */
5704        I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5705        if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5706                DRM_ERROR("Couldn't disable DPLL0\n");
5707}
5708
5709void skl_init_cdclk(struct drm_i915_private *dev_priv)
5710{
5711        unsigned int required_vco;
5712
5713        /* DPLL0 not enabled (happens on early BIOS versions) */
5714        if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5715                /* enable DPLL0 */
5716                required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5717                skl_dpll0_enable(dev_priv, required_vco);
5718        }
5719
5720        /* set CDCLK to the frequency the BIOS chose */
5721        skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5722
5723        /* enable DBUF power */
5724        I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5725        POSTING_READ(DBUF_CTL);
5726
5727        udelay(10);
5728
5729        if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5730                DRM_ERROR("DBuf power enable timeout\n");
5731}
5732
5733int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5734{
5735        uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5736        uint32_t cdctl = I915_READ(CDCLK_CTL);
5737        int freq = dev_priv->skl_boot_cdclk;
5738
5739        /*
5740         * check if the pre-os intialized the display
5741         * There is SWF18 scratchpad register defined which is set by the
5742         * pre-os which can be used by the OS drivers to check the status
5743         */
5744        if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5745                goto sanitize;
5746
5747        /* Is PLL enabled and locked ? */
5748        if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5749                goto sanitize;
5750
5751        /* DPLL okay; verify the cdclock
5752         *
5753         * Noticed in some instances that the freq selection is correct but
5754         * decimal part is programmed wrong from BIOS where pre-os does not
5755         * enable display. Verify the same as well.
5756         */
5757        if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5758                /* All well; nothing to sanitize */
5759                return false;
5760sanitize:
5761        /*
5762         * As of now initialize with max cdclk till
5763         * we get dynamic cdclk support
5764         * */
5765        dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5766        skl_init_cdclk(dev_priv);
5767
5768        /* we did have to sanitize */
5769        return true;
5770}
5771
5772/* Adjust CDclk dividers to allow high res or save power if possible */
5773static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5774{
5775        struct drm_i915_private *dev_priv = dev->dev_private;
5776        u32 val, cmd;
5777
5778        WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5779                                        != dev_priv->cdclk_freq);
5780
5781        if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5782                cmd = 2;
5783        else if (cdclk == 266667)
5784                cmd = 1;
5785        else
5786                cmd = 0;
5787
5788        mutex_lock(&dev_priv->rps.hw_lock);
5789        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5790        val &= ~DSPFREQGUAR_MASK;
5791        val |= (cmd << DSPFREQGUAR_SHIFT);
5792        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5793        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5794                      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5795                     50)) {
5796                DRM_ERROR("timed out waiting for CDclk change\n");
5797        }
5798        mutex_unlock(&dev_priv->rps.hw_lock);
5799
5800        mutex_lock(&dev_priv->sb_lock);
5801
5802        if (cdclk == 400000) {
5803                u32 divider;
5804
5805                divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5806
5807                /* adjust cdclk divider */
5808                val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5809                val &= ~CCK_FREQUENCY_VALUES;
5810                val |= divider;
5811                vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5812
5813                if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5814                              CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5815                             50))
5816                        DRM_ERROR("timed out waiting for CDclk change\n");
5817        }
5818
5819        /* adjust self-refresh exit latency value */
5820        val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5821        val &= ~0x7f;
5822
5823        /*
5824         * For high bandwidth configs, we set a higher latency in the bunit
5825         * so that the core display fetch happens in time to avoid underruns.
5826         */
5827        if (cdclk == 400000)
5828                val |= 4500 / 250; /* 4.5 usec */
5829        else
5830                val |= 3000 / 250; /* 3.0 usec */
5831        vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5832
5833        mutex_unlock(&dev_priv->sb_lock);
5834
5835        intel_update_cdclk(dev);
5836}
5837
5838static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5839{
5840        struct drm_i915_private *dev_priv = dev->dev_private;
5841        u32 val, cmd;
5842
5843        WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5844                                                != dev_priv->cdclk_freq);
5845
5846        switch (cdclk) {
5847        case 333333:
5848        case 320000:
5849        case 266667:
5850        case 200000:
5851                break;
5852        default:
5853                MISSING_CASE(cdclk);
5854                return;
5855        }
5856
5857        /*
5858         * Specs are full of misinformation, but testing on actual
5859         * hardware has shown that we just need to write the desired
5860         * CCK divider into the Punit register.
5861         */
5862        cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5863
5864        mutex_lock(&dev_priv->rps.hw_lock);
5865        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5866        val &= ~DSPFREQGUAR_MASK_CHV;
5867        val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5868        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5869        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5870                      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5871                     50)) {
5872                DRM_ERROR("timed out waiting for CDclk change\n");
5873        }
5874        mutex_unlock(&dev_priv->rps.hw_lock);
5875
5876        intel_update_cdclk(dev);
5877}
5878
5879static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5880                                 int max_pixclk)
5881{
5882        int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5883        int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5884
5885        /*
5886         * Really only a few cases to deal with, as only 4 CDclks are supported:
5887         *   200MHz
5888         *   267MHz
5889         *   320/333MHz (depends on HPLL freq)
5890         *   400MHz (VLV only)
5891         * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5892         * of the lower bin and adjust if needed.
5893         *
5894         * We seem to get an unstable or solid color picture at 200MHz.
5895         * Not sure what's wrong. For now use 200MHz only when all pipes
5896         * are off.
5897         */
5898        if (!IS_CHERRYVIEW(dev_priv) &&
5899            max_pixclk > freq_320*limit/100)
5900                return 400000;
5901        else if (max_pixclk > 266667*limit/100)
5902                return freq_320;
5903        else if (max_pixclk > 0)
5904                return 266667;
5905        else
5906                return 200000;
5907}
5908
5909static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5910                              int max_pixclk)
5911{
5912        /*
5913         * FIXME:
5914         * - remove the guardband, it's not needed on BXT
5915         * - set 19.2MHz bypass frequency if there are no active pipes
5916         */
5917        if (max_pixclk > 576000*9/10)
5918                return 624000;
5919        else if (max_pixclk > 384000*9/10)
5920                return 576000;
5921        else if (max_pixclk > 288000*9/10)
5922                return 384000;
5923        else if (max_pixclk > 144000*9/10)
5924                return 288000;
5925        else
5926                return 144000;
5927}
5928
5929/* Compute the max pixel clock for new configuration. */
5930static int intel_mode_max_pixclk(struct drm_device *dev,
5931                                 struct drm_atomic_state *state)
5932{
5933        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5934        struct drm_i915_private *dev_priv = dev->dev_private;
5935        struct drm_crtc *crtc;
5936        struct drm_crtc_state *crtc_state;
5937        unsigned max_pixclk = 0, i;
5938        enum pipe pipe;
5939
5940        memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5941               sizeof(intel_state->min_pixclk));
5942
5943        for_each_crtc_in_state(state, crtc, crtc_state, i) {
5944                int pixclk = 0;
5945
5946                if (crtc_state->enable)
5947                        pixclk = crtc_state->adjusted_mode.crtc_clock;
5948
5949                intel_state->min_pixclk[i] = pixclk;
5950        }
5951
5952        for_each_pipe(dev_priv, pipe)
5953                max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5954
5955        return max_pixclk;
5956}
5957
5958static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5959{
5960        struct drm_device *dev = state->dev;
5961        struct drm_i915_private *dev_priv = dev->dev_private;
5962        int max_pixclk = intel_mode_max_pixclk(dev, state);
5963        struct intel_atomic_state *intel_state =
5964                to_intel_atomic_state(state);
5965
5966        if (max_pixclk < 0)
5967                return max_pixclk;
5968
5969        intel_state->cdclk = intel_state->dev_cdclk =
5970                valleyview_calc_cdclk(dev_priv, max_pixclk);
5971
5972        if (!intel_state->active_crtcs)
5973                intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5974
5975        return 0;
5976}
5977
5978static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5979{
5980        struct drm_device *dev = state->dev;
5981        struct drm_i915_private *dev_priv = dev->dev_private;
5982        int max_pixclk = intel_mode_max_pixclk(dev, state);
5983        struct intel_atomic_state *intel_state =
5984                to_intel_atomic_state(state);
5985
5986        if (max_pixclk < 0)
5987                return max_pixclk;
5988
5989        intel_state->cdclk = intel_state->dev_cdclk =
5990                broxton_calc_cdclk(dev_priv, max_pixclk);
5991
5992        if (!intel_state->active_crtcs)
5993                intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
5994
5995        return 0;
5996}
5997
5998static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5999{
6000        unsigned int credits, default_credits;
6001
6002        if (IS_CHERRYVIEW(dev_priv))
6003                default_credits = PFI_CREDIT(12);
6004        else
6005                default_credits = PFI_CREDIT(8);
6006
6007        if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6008                /* CHV suggested value is 31 or 63 */
6009                if (IS_CHERRYVIEW(dev_priv))
6010                        credits = PFI_CREDIT_63;
6011                else
6012                        credits = PFI_CREDIT(15);
6013        } else {
6014                credits = default_credits;
6015        }
6016
6017        /*
6018         * WA - write default credits before re-programming
6019         * FIXME: should we also set the resend bit here?
6020         */
6021        I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6022                   default_credits);
6023
6024        I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6025                   credits | PFI_CREDIT_RESEND);
6026
6027        /*
6028         * FIXME is this guaranteed to clear
6029         * immediately or should we poll for it?
6030         */
6031        WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6032}
6033
6034static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6035{
6036        struct drm_device *dev = old_state->dev;
6037        struct drm_i915_private *dev_priv = dev->dev_private;
6038        struct intel_atomic_state *old_intel_state =
6039                to_intel_atomic_state(old_state);
6040        unsigned req_cdclk = old_intel_state->dev_cdclk;
6041
6042        /*
6043         * FIXME: We can end up here with all power domains off, yet
6044         * with a CDCLK frequency other than the minimum. To account
6045         * for this take the PIPE-A power domain, which covers the HW
6046         * blocks needed for the following programming. This can be
6047         * removed once it's guaranteed that we get here either with
6048         * the minimum CDCLK set, or the required power domains
6049         * enabled.
6050         */
6051        intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6052
6053        if (IS_CHERRYVIEW(dev))
6054                cherryview_set_cdclk(dev, req_cdclk);
6055        else
6056                valleyview_set_cdclk(dev, req_cdclk);
6057
6058        vlv_program_pfi_credits(dev_priv);
6059
6060        intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6061}
6062
6063static void valleyview_crtc_enable(struct drm_crtc *crtc)
6064{
6065        struct drm_device *dev = crtc->dev;
6066        struct drm_i915_private *dev_priv = to_i915(dev);
6067        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6068        struct intel_encoder *encoder;
6069        struct intel_crtc_state *pipe_config =
6070                to_intel_crtc_state(crtc->state);
6071        int pipe = intel_crtc->pipe;
6072
6073        if (WARN_ON(intel_crtc->active))
6074                return;
6075
6076        if (intel_crtc->config->has_dp_encoder)
6077                intel_dp_set_m_n(intel_crtc, M1_N1);
6078
6079        intel_set_pipe_timings(intel_crtc);
6080        intel_set_pipe_src_size(intel_crtc);
6081
6082        if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6083                struct drm_i915_private *dev_priv = dev->dev_private;
6084
6085                I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6086                I915_WRITE(CHV_CANVAS(pipe), 0);
6087        }
6088
6089        i9xx_set_pipeconf(intel_crtc);
6090
6091        intel_crtc->active = true;
6092
6093        intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6094
6095        for_each_encoder_on_crtc(dev, crtc, encoder)
6096                if (encoder->pre_pll_enable)
6097                        encoder->pre_pll_enable(encoder);
6098
6099        if (IS_CHERRYVIEW(dev)) {
6100                chv_prepare_pll(intel_crtc, intel_crtc->config);
6101                chv_enable_pll(intel_crtc, intel_crtc->config);
6102        } else {
6103                vlv_prepare_pll(intel_crtc, intel_crtc->config);
6104                vlv_enable_pll(intel_crtc, intel_crtc->config);
6105        }
6106
6107        for_each_encoder_on_crtc(dev, crtc, encoder)
6108                if (encoder->pre_enable)
6109                        encoder->pre_enable(encoder);
6110
6111        i9xx_pfit_enable(intel_crtc);
6112
6113        intel_color_load_luts(&pipe_config->base);
6114
6115        intel_update_watermarks(crtc);
6116        intel_enable_pipe(intel_crtc);
6117
6118        assert_vblank_disabled(crtc);
6119        drm_crtc_vblank_on(crtc);
6120
6121        for_each_encoder_on_crtc(dev, crtc, encoder)
6122                encoder->enable(encoder);
6123}
6124
6125static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6126{
6127        struct drm_device *dev = crtc->base.dev;
6128        struct drm_i915_private *dev_priv = dev->dev_private;
6129
6130        I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6131        I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6132}
6133
6134static void i9xx_crtc_enable(struct drm_crtc *crtc)
6135{
6136        struct drm_device *dev = crtc->dev;
6137        struct drm_i915_private *dev_priv = to_i915(dev);
6138        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6139        struct intel_encoder *encoder;
6140        struct intel_crtc_state *pipe_config =
6141                to_intel_crtc_state(crtc->state);
6142        enum pipe pipe = intel_crtc->pipe;
6143
6144        if (WARN_ON(intel_crtc->active))
6145                return;
6146
6147        i9xx_set_pll_dividers(intel_crtc);
6148
6149        if (intel_crtc->config->has_dp_encoder)
6150                intel_dp_set_m_n(intel_crtc, M1_N1);
6151
6152        intel_set_pipe_timings(intel_crtc);
6153        intel_set_pipe_src_size(intel_crtc);
6154
6155        i9xx_set_pipeconf(intel_crtc);
6156
6157        intel_crtc->active = true;
6158
6159        if (!IS_GEN2(dev))
6160                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6161
6162        for_each_encoder_on_crtc(dev, crtc, encoder)
6163                if (encoder->pre_enable)
6164                        encoder->pre_enable(encoder);
6165
6166        i9xx_enable_pll(intel_crtc);
6167
6168        i9xx_pfit_enable(intel_crtc);
6169
6170        intel_color_load_luts(&pipe_config->base);
6171
6172        intel_update_watermarks(crtc);
6173        intel_enable_pipe(intel_crtc);
6174
6175        assert_vblank_disabled(crtc);
6176        drm_crtc_vblank_on(crtc);
6177
6178        for_each_encoder_on_crtc(dev, crtc, encoder)
6179                encoder->enable(encoder);
6180}
6181
6182static void i9xx_pfit_disable(struct intel_crtc *crtc)
6183{
6184        struct drm_device *dev = crtc->base.dev;
6185        struct drm_i915_private *dev_priv = dev->dev_private;
6186
6187        if (!crtc->config->gmch_pfit.control)
6188                return;
6189
6190        assert_pipe_disabled(dev_priv, crtc->pipe);
6191
6192        DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6193                         I915_READ(PFIT_CONTROL));
6194        I915_WRITE(PFIT_CONTROL, 0);
6195}
6196
6197static void i9xx_crtc_disable(struct drm_crtc *crtc)
6198{
6199        struct drm_device *dev = crtc->dev;
6200        struct drm_i915_private *dev_priv = dev->dev_private;
6201        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6202        struct intel_encoder *encoder;
6203        int pipe = intel_crtc->pipe;
6204
6205        /*
6206         * On gen2 planes are double buffered but the pipe isn't, so we must
6207         * wait for planes to fully turn off before disabling the pipe.
6208         */
6209        if (IS_GEN2(dev))
6210                intel_wait_for_vblank(dev, pipe);
6211
6212        for_each_encoder_on_crtc(dev, crtc, encoder)
6213                encoder->disable(encoder);
6214
6215        drm_crtc_vblank_off(crtc);
6216        assert_vblank_disabled(crtc);
6217
6218        intel_disable_pipe(intel_crtc);
6219
6220        i9xx_pfit_disable(intel_crtc);
6221
6222        for_each_encoder_on_crtc(dev, crtc, encoder)
6223                if (encoder->post_disable)
6224                        encoder->post_disable(encoder);
6225
6226        if (!intel_crtc->config->has_dsi_encoder) {
6227                if (IS_CHERRYVIEW(dev))
6228                        chv_disable_pll(dev_priv, pipe);
6229                else if (IS_VALLEYVIEW(dev))
6230                        vlv_disable_pll(dev_priv, pipe);
6231                else
6232                        i9xx_disable_pll(intel_crtc);
6233        }
6234
6235        for_each_encoder_on_crtc(dev, crtc, encoder)
6236                if (encoder->post_pll_disable)
6237                        encoder->post_pll_disable(encoder);
6238
6239        if (!IS_GEN2(dev))
6240                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6241}
6242
6243static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6244{
6245        struct intel_encoder *encoder;
6246        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6247        struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6248        enum intel_display_power_domain domain;
6249        unsigned long domains;
6250
6251        if (!intel_crtc->active)
6252                return;
6253
6254        if (to_intel_plane_state(crtc->primary->state)->visible) {
6255                WARN_ON(intel_crtc->unpin_work);
6256
6257                intel_pre_disable_primary_noatomic(crtc);
6258
6259                intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6260                to_intel_plane_state(crtc->primary->state)->visible = false;
6261        }
6262
6263        dev_priv->display.crtc_disable(crtc);
6264
6265        DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6266                      crtc->base.id);
6267
6268        WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6269        crtc->state->active = false;
6270        intel_crtc->active = false;
6271        crtc->enabled = false;
6272        crtc->state->connector_mask = 0;
6273        crtc->state->encoder_mask = 0;
6274
6275        for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6276                encoder->base.crtc = NULL;
6277
6278        intel_fbc_disable(intel_crtc);
6279        intel_update_watermarks(crtc);
6280        intel_disable_shared_dpll(intel_crtc);
6281
6282        domains = intel_crtc->enabled_power_domains;
6283        for_each_power_domain(domain, domains)
6284                intel_display_power_put(dev_priv, domain);
6285        intel_crtc->enabled_power_domains = 0;
6286
6287        dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6288        dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6289}
6290
6291/*
6292 * turn all crtc's off, but do not adjust state
6293 * This has to be paired with a call to intel_modeset_setup_hw_state.
6294 */
6295int intel_display_suspend(struct drm_device *dev)
6296{
6297        struct drm_i915_private *dev_priv = to_i915(dev);
6298        struct drm_atomic_state *state;
6299        int ret;
6300
6301        state = drm_atomic_helper_suspend(dev);
6302        ret = PTR_ERR_OR_ZERO(state);
6303        if (ret)
6304                DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6305        else
6306                dev_priv->modeset_restore_state = state;
6307        return ret;
6308}
6309
6310void intel_encoder_destroy(struct drm_encoder *encoder)
6311{
6312        struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6313
6314        drm_encoder_cleanup(encoder);
6315        kfree(intel_encoder);
6316}
6317
6318/* Cross check the actual hw state with our own modeset state tracking (and it's
6319 * internal consistency). */
6320static void intel_connector_verify_state(struct intel_connector *connector)
6321{
6322        struct drm_crtc *crtc = connector->base.state->crtc;
6323
6324        DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6325                      connector->base.base.id,
6326                      connector->base.name);
6327
6328        if (connector->get_hw_state(connector)) {
6329                struct intel_encoder *encoder = connector->encoder;
6330                struct drm_connector_state *conn_state = connector->base.state;
6331
6332                I915_STATE_WARN(!crtc,
6333                         "connector enabled without attached crtc\n");
6334
6335                if (!crtc)
6336                        return;
6337
6338                I915_STATE_WARN(!crtc->state->active,
6339                      "connector is active, but attached crtc isn't\n");
6340
6341                if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6342                        return;
6343
6344                I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6345                        "atomic encoder doesn't match attached encoder\n");
6346
6347                I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6348                        "attached encoder crtc differs from connector crtc\n");
6349        } else {
6350                I915_STATE_WARN(crtc && crtc->state->active,
6351                        "attached crtc is active, but connector isn't\n");
6352                I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6353                        "best encoder set without crtc!\n");
6354        }
6355}
6356
6357int intel_connector_init(struct intel_connector *connector)
6358{
6359        drm_atomic_helper_connector_reset(&connector->base);
6360
6361        if (!connector->base.state)
6362                return -ENOMEM;
6363
6364        return 0;
6365}
6366
6367struct intel_connector *intel_connector_alloc(void)
6368{
6369        struct intel_connector *connector;
6370
6371        connector = kzalloc(sizeof *connector, GFP_KERNEL);
6372        if (!connector)
6373                return NULL;
6374
6375        if (intel_connector_init(connector) < 0) {
6376                kfree(connector);
6377                return NULL;
6378        }
6379
6380        return connector;
6381}
6382
6383/* Simple connector->get_hw_state implementation for encoders that support only
6384 * one connector and no cloning and hence the encoder state determines the state
6385 * of the connector. */
6386bool intel_connector_get_hw_state(struct intel_connector *connector)
6387{
6388        enum pipe pipe = 0;
6389        struct intel_encoder *encoder = connector->encoder;
6390
6391        return encoder->get_hw_state(encoder, &pipe);
6392}
6393
6394static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6395{
6396        if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6397                return crtc_state->fdi_lanes;
6398
6399        return 0;
6400}
6401
6402static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6403                                     struct intel_crtc_state *pipe_config)
6404{
6405        struct drm_atomic_state *state = pipe_config->base.state;
6406        struct intel_crtc *other_crtc;
6407        struct intel_crtc_state *other_crtc_state;
6408
6409        DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6410                      pipe_name(pipe), pipe_config->fdi_lanes);
6411        if (pipe_config->fdi_lanes > 4) {
6412                DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6413                              pipe_name(pipe), pipe_config->fdi_lanes);
6414                return -EINVAL;
6415        }
6416
6417        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6418                if (pipe_config->fdi_lanes > 2) {
6419                        DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6420                                      pipe_config->fdi_lanes);
6421                        return -EINVAL;
6422                } else {
6423                        return 0;
6424                }
6425        }
6426
6427        if (INTEL_INFO(dev)->num_pipes == 2)
6428                return 0;
6429
6430        /* Ivybridge 3 pipe is really complicated */
6431        switch (pipe) {
6432        case PIPE_A:
6433                return 0;
6434        case PIPE_B:
6435                if (pipe_config->fdi_lanes <= 2)
6436                        return 0;
6437
6438                other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6439                other_crtc_state =
6440                        intel_atomic_get_crtc_state(state, other_crtc);
6441                if (IS_ERR(other_crtc_state))
6442                        return PTR_ERR(other_crtc_state);
6443
6444                if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6445                        DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6446                                      pipe_name(pipe), pipe_config->fdi_lanes);
6447                        return -EINVAL;
6448                }
6449                return 0;
6450        case PIPE_C:
6451                if (pipe_config->fdi_lanes > 2) {
6452                        DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6453                                      pipe_name(pipe), pipe_config->fdi_lanes);
6454                        return -EINVAL;
6455                }
6456
6457                other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6458                other_crtc_state =
6459                        intel_atomic_get_crtc_state(state, other_crtc);
6460                if (IS_ERR(other_crtc_state))
6461                        return PTR_ERR(other_crtc_state);
6462
6463                if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6464                        DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6465                        return -EINVAL;
6466                }
6467                return 0;
6468        default:
6469                BUG();
6470        }
6471}
6472
6473#define RETRY 1
6474static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6475                                       struct intel_crtc_state *pipe_config)
6476{
6477        struct drm_device *dev = intel_crtc->base.dev;
6478        const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6479        int lane, link_bw, fdi_dotclock, ret;
6480        bool needs_recompute = false;
6481
6482retry:
6483        /* FDI is a binary signal running at ~2.7GHz, encoding
6484         * each output octet as 10 bits. The actual frequency
6485         * is stored as a divider into a 100MHz clock, and the
6486         * mode pixel clock is stored in units of 1KHz.
6487         * Hence the bw of each lane in terms of the mode signal
6488         * is:
6489         */
6490        link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6491
6492        fdi_dotclock = adjusted_mode->crtc_clock;
6493
6494        lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6495                                           pipe_config->pipe_bpp);
6496
6497        pipe_config->fdi_lanes = lane;
6498
6499        intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6500                               link_bw, &pipe_config->fdi_m_n);
6501
6502        ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6503        if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6504                pipe_config->pipe_bpp -= 2*3;
6505                DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6506                              pipe_config->pipe_bpp);
6507                needs_recompute = true;
6508                pipe_config->bw_constrained = true;
6509
6510                goto retry;
6511        }
6512
6513        if (needs_recompute)
6514                return RETRY;
6515
6516        return ret;
6517}
6518
6519static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6520                                     struct intel_crtc_state *pipe_config)
6521{
6522        if (pipe_config->pipe_bpp > 24)
6523                return false;
6524
6525        /* HSW can handle pixel rate up to cdclk? */
6526        if (IS_HASWELL(dev_priv))
6527                return true;
6528
6529        /*
6530         * We compare against max which means we must take
6531         * the increased cdclk requirement into account when
6532         * calculating the new cdclk.
6533         *
6534         * Should measure whether using a lower cdclk w/o IPS
6535         */
6536        return ilk_pipe_pixel_rate(pipe_config) <=
6537                dev_priv->max_cdclk_freq * 95 / 100;
6538}
6539
6540static void hsw_compute_ips_config(struct intel_crtc *crtc,
6541                                   struct intel_crtc_state *pipe_config)
6542{
6543        struct drm_device *dev = crtc->base.dev;
6544        struct drm_i915_private *dev_priv = dev->dev_private;
6545
6546        pipe_config->ips_enabled = i915.enable_ips &&
6547                hsw_crtc_supports_ips(crtc) &&
6548                pipe_config_supports_ips(dev_priv, pipe_config);
6549}
6550
6551static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6552{
6553        const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6554
6555        /* GDG double wide on either pipe, otherwise pipe A only */
6556        return INTEL_INFO(dev_priv)->gen < 4 &&
6557                (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6558}
6559
6560static int intel_crtc_compute_config(struct intel_crtc *crtc,
6561                                     struct intel_crtc_state *pipe_config)
6562{
6563        struct drm_device *dev = crtc->base.dev;
6564        struct drm_i915_private *dev_priv = dev->dev_private;
6565        const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6566
6567        /* FIXME should check pixel clock limits on all platforms */
6568        if (INTEL_INFO(dev)->gen < 4) {
6569                int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6570
6571                /*
6572                 * Enable double wide mode when the dot clock
6573                 * is > 90% of the (display) core speed.
6574                 */
6575                if (intel_crtc_supports_double_wide(crtc) &&
6576                    adjusted_mode->crtc_clock > clock_limit) {
6577                        clock_limit *= 2;
6578                        pipe_config->double_wide = true;
6579                }
6580
6581                if (adjusted_mode->crtc_clock > clock_limit) {
6582                        DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6583                                      adjusted_mode->crtc_clock, clock_limit,
6584                                      yesno(pipe_config->double_wide));
6585                        return -EINVAL;
6586                }
6587        }
6588
6589        /*
6590         * Pipe horizontal size must be even in:
6591         * - DVO ganged mode
6592         * - LVDS dual channel mode
6593         * - Double wide pipe
6594         */
6595        if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6596             intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6597                pipe_config->pipe_src_w &= ~1;
6598
6599        /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6600         * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6601         */
6602        if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6603                adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6604                return -EINVAL;
6605
6606        if (HAS_IPS(dev))
6607                hsw_compute_ips_config(crtc, pipe_config);
6608
6609        if (pipe_config->has_pch_encoder)
6610                return ironlake_fdi_compute_config(crtc, pipe_config);
6611
6612        return 0;
6613}
6614
6615static int skylake_get_display_clock_speed(struct drm_device *dev)
6616{
6617        struct drm_i915_private *dev_priv = to_i915(dev);
6618        uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6619        uint32_t cdctl = I915_READ(CDCLK_CTL);
6620        uint32_t linkrate;
6621
6622        if (!(lcpll1 & LCPLL_PLL_ENABLE))
6623                return 24000; /* 24MHz is the cd freq with NSSC ref */
6624
6625        if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6626                return 540000;
6627
6628        linkrate = (I915_READ(DPLL_CTRL1) &
6629                    DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6630
6631        if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6632            linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6633                /* vco 8640 */
6634                switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6635                case CDCLK_FREQ_450_432:
6636                        return 432000;
6637                case CDCLK_FREQ_337_308:
6638                        return 308570;
6639                case CDCLK_FREQ_675_617:
6640                        return 617140;
6641                default:
6642                        WARN(1, "Unknown cd freq selection\n");
6643                }
6644        } else {
6645                /* vco 8100 */
6646                switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6647                case CDCLK_FREQ_450_432:
6648                        return 450000;
6649                case CDCLK_FREQ_337_308:
6650                        return 337500;
6651                case CDCLK_FREQ_675_617:
6652                        return 675000;
6653                default:
6654                        WARN(1, "Unknown cd freq selection\n");
6655                }
6656        }
6657
6658        /* error case, do as if DPLL0 isn't enabled */
6659        return 24000;
6660}
6661
6662static int broxton_get_display_clock_speed(struct drm_device *dev)
6663{
6664        struct drm_i915_private *dev_priv = to_i915(dev);
6665        uint32_t cdctl = I915_READ(CDCLK_CTL);
6666        uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6667        uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6668        int cdclk;
6669
6670        if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6671                return 19200;
6672
6673        cdclk = 19200 * pll_ratio / 2;
6674
6675        switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6676        case BXT_CDCLK_CD2X_DIV_SEL_1:
6677                return cdclk;  /* 576MHz or 624MHz */
6678        case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6679                return cdclk * 2 / 3; /* 384MHz */
6680        case BXT_CDCLK_CD2X_DIV_SEL_2:
6681                return cdclk / 2; /* 288MHz */
6682        case BXT_CDCLK_CD2X_DIV_SEL_4:
6683                return cdclk / 4; /* 144MHz */
6684        }
6685
6686        /* error case, do as if DE PLL isn't enabled */
6687        return 19200;
6688}
6689
6690static int broadwell_get_display_clock_speed(struct drm_device *dev)
6691{
6692        struct drm_i915_private *dev_priv = dev->dev_private;
6693        uint32_t lcpll = I915_READ(LCPLL_CTL);
6694        uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6695
6696        if (lcpll & LCPLL_CD_SOURCE_FCLK)
6697                return 800000;
6698        else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6699                return 450000;
6700        else if (freq == LCPLL_CLK_FREQ_450)
6701                return 450000;
6702        else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6703                return 540000;
6704        else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6705                return 337500;
6706        else
6707                return 675000;
6708}
6709
6710static int haswell_get_display_clock_speed(struct drm_device *dev)
6711{
6712        struct drm_i915_private *dev_priv = dev->dev_private;
6713        uint32_t lcpll = I915_READ(LCPLL_CTL);
6714        uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6715
6716        if (lcpll & LCPLL_CD_SOURCE_FCLK)
6717                return 800000;
6718        else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6719                return 450000;
6720        else if (freq == LCPLL_CLK_FREQ_450)
6721                return 450000;
6722        else if (IS_HSW_ULT(dev))
6723                return 337500;
6724        else
6725                return 540000;
6726}
6727
6728static int valleyview_get_display_clock_speed(struct drm_device *dev)
6729{
6730        return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6731                                      CCK_DISPLAY_CLOCK_CONTROL);
6732}
6733
6734static int ilk_get_display_clock_speed(struct drm_device *dev)
6735{
6736        return 450000;
6737}
6738
6739static int i945_get_display_clock_speed(struct drm_device *dev)
6740{
6741        return 400000;
6742}
6743
6744static int i915_get_display_clock_speed(struct drm_device *dev)
6745{
6746        return 333333;
6747}
6748
6749static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6750{
6751        return 200000;
6752}
6753
6754static int pnv_get_display_clock_speed(struct drm_device *dev)
6755{
6756        u16 gcfgc = 0;
6757
6758        pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6759
6760        switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6761        case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6762                return 266667;
6763        case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6764                return 333333;
6765        case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6766                return 444444;
6767        case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6768                return 200000;
6769        default:
6770                DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6771        case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6772                return 133333;
6773        case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6774                return 166667;
6775        }
6776}
6777
6778static int i915gm_get_display_clock_speed(struct drm_device *dev)
6779{
6780        u16 gcfgc = 0;
6781
6782        pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6783
6784        if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6785                return 133333;
6786        else {
6787                switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6788                case GC_DISPLAY_CLOCK_333_MHZ:
6789                        return 333333;
6790                default:
6791                case GC_DISPLAY_CLOCK_190_200_MHZ:
6792                        return 190000;
6793                }
6794        }
6795}
6796
6797static int i865_get_display_clock_speed(struct drm_device *dev)
6798{
6799        return 266667;
6800}
6801
6802static int i85x_get_display_clock_speed(struct drm_device *dev)
6803{
6804        u16 hpllcc = 0;
6805
6806        /*
6807         * 852GM/852GMV only supports 133 MHz and the HPLLCC
6808         * encoding is different :(
6809         * FIXME is this the right way to detect 852GM/852GMV?
6810         */
6811        if (dev->pdev->revision == 0x1)
6812                return 133333;
6813
6814        pci_bus_read_config_word(dev->pdev->bus,
6815                                 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6816
6817        /* Assume that the hardware is in the high speed state.  This
6818         * should be the default.
6819         */
6820        switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6821        case GC_CLOCK_133_200:
6822        case GC_CLOCK_133_200_2:
6823        case GC_CLOCK_100_200:
6824                return 200000;
6825        case GC_CLOCK_166_250:
6826                return 250000;
6827        case GC_CLOCK_100_133:
6828                return 133333;
6829        case GC_CLOCK_133_266:
6830        case GC_CLOCK_133_266_2:
6831        case GC_CLOCK_166_266:
6832                return 266667;
6833        }
6834
6835        /* Shouldn't happen */
6836        return 0;
6837}
6838
6839static int i830_get_display_clock_speed(struct drm_device *dev)
6840{
6841        return 133333;
6842}
6843
6844static unsigned int intel_hpll_vco(struct drm_device *dev)
6845{
6846        struct drm_i915_private *dev_priv = dev->dev_private;
6847        static const unsigned int blb_vco[8] = {
6848                [0] = 3200000,
6849                [1] = 4000000,
6850                [2] = 5333333,
6851                [3] = 4800000,
6852                [4] = 6400000,
6853        };
6854        static const unsigned int pnv_vco[8] = {
6855                [0] = 3200000,
6856                [1] = 4000000,
6857                [2] = 5333333,
6858                [3] = 4800000,
6859                [4] = 2666667,
6860        };
6861        static const unsigned int cl_vco[8] = {
6862                [0] = 3200000,
6863                [1] = 4000000,
6864                [2] = 5333333,
6865                [3] = 6400000,
6866                [4] = 3333333,
6867                [5] = 3566667,
6868                [6] = 4266667,
6869        };
6870        static const unsigned int elk_vco[8] = {
6871                [0] = 3200000,
6872                [1] = 4000000,
6873                [2] = 5333333,
6874                [3] = 4800000,
6875        };
6876        static const unsigned int ctg_vco[8] = {
6877                [0] = 3200000,
6878                [1] = 4000000,
6879                [2] = 5333333,
6880                [3] = 6400000,
6881                [4] = 2666667,
6882                [5] = 4266667,
6883        };
6884        const unsigned int *vco_table;
6885        unsigned int vco;
6886        uint8_t tmp = 0;
6887
6888        /* FIXME other chipsets? */
6889        if (IS_GM45(dev))
6890                vco_table = ctg_vco;
6891        else if (IS_G4X(dev))
6892                vco_table = elk_vco;
6893        else if (IS_CRESTLINE(dev))
6894                vco_table = cl_vco;
6895        else if (IS_PINEVIEW(dev))
6896                vco_table = pnv_vco;
6897        else if (IS_G33(dev))
6898                vco_table = blb_vco;
6899        else
6900                return 0;
6901
6902        tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6903
6904        vco = vco_table[tmp & 0x7];
6905        if (vco == 0)
6906                DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6907        else
6908                DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6909
6910        return vco;
6911}
6912
6913static int gm45_get_display_clock_speed(struct drm_device *dev)
6914{
6915        unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6916        uint16_t tmp = 0;
6917
6918        pci_read_config_word(dev->pdev, GCFGC, &tmp);
6919
6920        cdclk_sel = (tmp >> 12) & 0x1;
6921
6922        switch (vco) {
6923        case 2666667:
6924        case 4000000:
6925        case 5333333:
6926                return cdclk_sel ? 333333 : 222222;
6927        case 3200000:
6928                return cdclk_sel ? 320000 : 228571;
6929        default:
6930                DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6931                return 222222;
6932        }
6933}
6934
6935static int i965gm_get_display_clock_speed(struct drm_device *dev)
6936{
6937        static const uint8_t div_3200[] = { 16, 10,  8 };
6938        static const uint8_t div_4000[] = { 20, 12, 10 };
6939        static const uint8_t div_5333[] = { 24, 16, 14 };
6940        const uint8_t *div_table;
6941        unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6942        uint16_t tmp = 0;
6943
6944        pci_read_config_word(dev->pdev, GCFGC, &tmp);
6945
6946        cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6947
6948        if (cdclk_sel >= ARRAY_SIZE(div_3200))
6949                goto fail;
6950
6951        switch (vco) {
6952        case 3200000:
6953                div_table = div_3200;
6954                break;
6955        case 4000000:
6956                div_table = div_4000;
6957                break;
6958        case 5333333:
6959                div_table = div_5333;
6960                break;
6961        default:
6962                goto fail;
6963        }
6964
6965        return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6966
6967fail:
6968        DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6969        return 200000;
6970}
6971
6972static int g33_get_display_clock_speed(struct drm_device *dev)
6973{
6974        static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6975        static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6976        static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6977        static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6978        const uint8_t *div_table;
6979        unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6980        uint16_t tmp = 0;
6981
6982        pci_read_config_word(dev->pdev, GCFGC, &tmp);
6983
6984        cdclk_sel = (tmp >> 4) & 0x7;
6985
6986        if (cdclk_sel >= ARRAY_SIZE(div_3200))
6987                goto fail;
6988
6989        switch (vco) {
6990        case 3200000:
6991                div_table = div_3200;
6992                break;
6993        case 4000000:
6994                div_table = div_4000;
6995                break;
6996        case 4800000:
6997                div_table = div_4800;
6998                break;
6999        case 5333333:
7000                div_table = div_5333;
7001                break;
7002        default:
7003                goto fail;
7004        }
7005
7006        return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7007
7008fail:
7009        DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7010        return 190476;
7011}
7012
7013static void
7014intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7015{
7016        while (*num > DATA_LINK_M_N_MASK ||
7017               *den > DATA_LINK_M_N_MASK) {
7018                *num >>= 1;
7019                *den >>= 1;
7020        }
7021}
7022
7023static void compute_m_n(unsigned int m, unsigned int n,
7024                        uint32_t *ret_m, uint32_t *ret_n)
7025{
7026        *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7027        *ret_m = div_u64((uint64_t) m * *ret_n, n);
7028        intel_reduce_m_n_ratio(ret_m, ret_n);
7029}
7030
7031void
7032intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7033                       int pixel_clock, int link_clock,
7034                       struct intel_link_m_n *m_n)
7035{
7036        m_n->tu = 64;
7037
7038        compute_m_n(bits_per_pixel * pixel_clock,
7039                    link_clock * nlanes * 8,
7040                    &m_n->gmch_m, &m_n->gmch_n);
7041
7042        compute_m_n(pixel_clock, link_clock,
7043                    &m_n->link_m, &m_n->link_n);
7044}
7045
7046static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7047{
7048        if (i915.panel_use_ssc >= 0)
7049                return i915.panel_use_ssc != 0;
7050        return dev_priv->vbt.lvds_use_ssc
7051                && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7052}
7053
7054static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7055{
7056        return (1 << dpll->n) << 16 | dpll->m2;
7057}
7058
7059static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7060{
7061        return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7062}
7063
7064static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7065                                     struct intel_crtc_state *crtc_state,
7066                                     intel_clock_t *reduced_clock)
7067{
7068        struct drm_device *dev = crtc->base.dev;
7069        u32 fp, fp2 = 0;
7070
7071        if (IS_PINEVIEW(dev)) {
7072                fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7073                if (reduced_clock)
7074                        fp2 = pnv_dpll_compute_fp(reduced_clock);
7075        } else {
7076                fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7077                if (reduced_clock)
7078                        fp2 = i9xx_dpll_compute_fp(reduced_clock);
7079        }
7080
7081        crtc_state->dpll_hw_state.fp0 = fp;
7082
7083        crtc->lowfreq_avail = false;
7084        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7085            reduced_clock) {
7086                crtc_state->dpll_hw_state.fp1 = fp2;
7087                crtc->lowfreq_avail = true;
7088        } else {
7089                crtc_state->dpll_hw_state.fp1 = fp;
7090        }
7091}
7092
7093static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7094                pipe)
7095{
7096        u32 reg_val;
7097
7098        /*
7099         * PLLB opamp always calibrates to max value of 0x3f, force enable it
7100         * and set it to a reasonable value instead.
7101         */
7102        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7103        reg_val &= 0xffffff00;
7104        reg_val |= 0x00000030;
7105        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7106
7107        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7108        reg_val &= 0x8cffffff;
7109        reg_val = 0x8c000000;
7110        vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7111
7112        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7113        reg_val &= 0xffffff00;
7114        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7115
7116        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7117        reg_val &= 0x00ffffff;
7118        reg_val |= 0xb0000000;
7119        vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7120}
7121
7122static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7123                                         struct intel_link_m_n *m_n)
7124{
7125        struct drm_device *dev = crtc->base.dev;
7126        struct drm_i915_private *dev_priv = dev->dev_private;
7127        int pipe = crtc->pipe;
7128
7129        I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7130        I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7131        I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7132        I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7133}
7134
7135static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7136                                         struct intel_link_m_n *m_n,
7137                                         struct intel_link_m_n *m2_n2)
7138{
7139        struct drm_device *dev = crtc->base.dev;
7140        struct drm_i915_private *dev_priv = dev->dev_private;
7141        int pipe = crtc->pipe;
7142        enum transcoder transcoder = crtc->config->cpu_transcoder;
7143
7144        if (INTEL_INFO(dev)->gen >= 5) {
7145                I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7146                I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7147                I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7148                I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7149                /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7150                 * for gen < 8) and if DRRS is supported (to make sure the
7151                 * registers are not unnecessarily accessed).
7152                 */
7153                if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7154                        crtc->config->has_drrs) {
7155                        I915_WRITE(PIPE_DATA_M2(transcoder),
7156                                        TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7157                        I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7158                        I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7159                        I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7160                }
7161        } else {
7162                I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7163                I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7164                I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7165                I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7166        }
7167}
7168
7169void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7170{
7171        struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7172
7173        if (m_n == M1_N1) {
7174                dp_m_n = &crtc->config->dp_m_n;
7175                dp_m2_n2 = &crtc->config->dp_m2_n2;
7176        } else if (m_n == M2_N2) {
7177
7178                /*
7179                 * M2_N2 registers are not supported. Hence m2_n2 divider value
7180                 * needs to be programmed into M1_N1.
7181                 */
7182                dp_m_n = &crtc->config->dp_m2_n2;
7183        } else {
7184                DRM_ERROR("Unsupported divider value\n");
7185                return;
7186        }
7187
7188        if (crtc->config->has_pch_encoder)
7189                intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7190        else
7191                intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7192}
7193
7194static void vlv_compute_dpll(struct intel_crtc *crtc,
7195                             struct intel_crtc_state *pipe_config)
7196{
7197        pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7198                DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7199        if (crtc->pipe != PIPE_A)
7200                pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7201
7202        /* DPLL not used with DSI, but still need the rest set up */
7203        if (!pipe_config->has_dsi_encoder)
7204                pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7205                        DPLL_EXT_BUFFER_ENABLE_VLV;
7206
7207        pipe_config->dpll_hw_state.dpll_md =
7208                (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7209}
7210
7211static void chv_compute_dpll(struct intel_crtc *crtc,
7212                             struct intel_crtc_state *pipe_config)
7213{
7214        pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7215                DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7216        if (crtc->pipe != PIPE_A)
7217                pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7218
7219        /* DPLL not used with DSI, but still need the rest set up */
7220        if (!pipe_config->has_dsi_encoder)
7221                pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7222
7223        pipe_config->dpll_hw_state.dpll_md =
7224                (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7225}
7226
7227static void vlv_prepare_pll(struct intel_crtc *crtc,
7228                            const struct intel_crtc_state *pipe_config)
7229{
7230        struct drm_device *dev = crtc->base.dev;
7231        struct drm_i915_private *dev_priv = dev->dev_private;
7232        enum pipe pipe = crtc->pipe;
7233        u32 mdiv;
7234        u32 bestn, bestm1, bestm2, bestp1, bestp2;
7235        u32 coreclk, reg_val;
7236
7237        /* Enable Refclk */
7238        I915_WRITE(DPLL(pipe),
7239                   pipe_config->dpll_hw_state.dpll &
7240                   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7241
7242        /* No need to actually set up the DPLL with DSI */
7243        if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7244                return;
7245
7246        mutex_lock(&dev_priv->sb_lock);
7247
7248        bestn = pipe_config->dpll.n;
7249        bestm1 = pipe_config->dpll.m1;
7250        bestm2 = pipe_config->dpll.m2;
7251        bestp1 = pipe_config->dpll.p1;
7252        bestp2 = pipe_config->dpll.p2;
7253
7254        /* See eDP HDMI DPIO driver vbios notes doc */
7255
7256        /* PLL B needs special handling */
7257        if (pipe == PIPE_B)
7258                vlv_pllb_recal_opamp(dev_priv, pipe);
7259
7260        /* Set up Tx target for periodic Rcomp update */
7261        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7262
7263        /* Disable target IRef on PLL */
7264        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7265        reg_val &= 0x00ffffff;
7266        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7267
7268        /* Disable fast lock */
7269        vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7270
7271        /* Set idtafcrecal before PLL is enabled */
7272        mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7273        mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7274        mdiv |= ((bestn << DPIO_N_SHIFT));
7275        mdiv |= (1 << DPIO_K_SHIFT);
7276
7277        /*
7278         * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7279         * but we don't support that).
7280         * Note: don't use the DAC post divider as it seems unstable.
7281         */
7282        mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7283        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7284
7285        mdiv |= DPIO_ENABLE_CALIBRATION;
7286        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7287
7288        /* Set HBR and RBR LPF coefficients */
7289        if (pipe_config->port_clock == 162000 ||
7290            intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7291            intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7292                vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7293                                 0x009f0003);
7294        else
7295                vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7296                                 0x00d0000f);
7297
7298        if (pipe_config->has_dp_encoder) {
7299                /* Use SSC source */
7300                if (pipe == PIPE_A)
7301                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7302                                         0x0df40000);
7303                else
7304                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7305                                         0x0df70000);
7306        } else { /* HDMI or VGA */
7307                /* Use bend source */
7308                if (pipe == PIPE_A)
7309                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7310                                         0x0df70000);
7311                else
7312                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7313                                         0x0df40000);
7314        }
7315
7316        coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7317        coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7318        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7319            intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7320                coreclk |= 0x01000000;
7321        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7322
7323        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7324        mutex_unlock(&dev_priv->sb_lock);
7325}
7326
7327static void chv_prepare_pll(struct intel_crtc *crtc,
7328                            const struct intel_crtc_state *pipe_config)
7329{
7330        struct drm_device *dev = crtc->base.dev;
7331        struct drm_i915_private *dev_priv = dev->dev_private;
7332        enum pipe pipe = crtc->pipe;
7333        enum dpio_channel port = vlv_pipe_to_channel(pipe);
7334        u32 loopfilter, tribuf_calcntr;
7335        u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7336        u32 dpio_val;
7337        int vco;
7338
7339        /* Enable Refclk and SSC */
7340        I915_WRITE(DPLL(pipe),
7341                   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7342
7343        /* No need to actually set up the DPLL with DSI */
7344        if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7345                return;
7346
7347        bestn = pipe_config->dpll.n;
7348        bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7349        bestm1 = pipe_config->dpll.m1;
7350        bestm2 = pipe_config->dpll.m2 >> 22;
7351        bestp1 = pipe_config->dpll.p1;
7352        bestp2 = pipe_config->dpll.p2;
7353        vco = pipe_config->dpll.vco;
7354        dpio_val = 0;
7355        loopfilter = 0;
7356
7357        mutex_lock(&dev_priv->sb_lock);
7358
7359        /* p1 and p2 divider */
7360        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7361                        5 << DPIO_CHV_S1_DIV_SHIFT |
7362                        bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7363                        bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7364                        1 << DPIO_CHV_K_DIV_SHIFT);
7365
7366        /* Feedback post-divider - m2 */
7367        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7368
7369        /* Feedback refclk divider - n and m1 */
7370        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7371                        DPIO_CHV_M1_DIV_BY_2 |
7372                        1 << DPIO_CHV_N_DIV_SHIFT);
7373
7374        /* M2 fraction division */
7375        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7376
7377        /* M2 fraction division enable */
7378        dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7379        dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7380        dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7381        if (bestm2_frac)
7382                dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7383        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7384
7385        /* Program digital lock detect threshold */
7386        dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7387        dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7388                                        DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7389        dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7390        if (!bestm2_frac)
7391                dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7392        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7393
7394        /* Loop filter */
7395        if (vco == 5400000) {
7396                loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7397                loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7398                loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7399                tribuf_calcntr = 0x9;
7400        } else if (vco <= 6200000) {
7401                loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7402                loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7403                loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7404                tribuf_calcntr = 0x9;
7405        } else if (vco <= 6480000) {
7406                loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7407                loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7408                loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7409                tribuf_calcntr = 0x8;
7410        } else {
7411                /* Not supported. Apply the same limits as in the max case */
7412                loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7413                loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7414                loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7415                tribuf_calcntr = 0;
7416        }
7417        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7418
7419        dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7420        dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7421        dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7422        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7423
7424        /* AFC Recal */
7425        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7426                        vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7427                        DPIO_AFC_RECAL);
7428
7429        mutex_unlock(&dev_priv->sb_lock);
7430}
7431
7432/**
7433 * vlv_force_pll_on - forcibly enable just the PLL
7434 * @dev_priv: i915 private structure
7435 * @pipe: pipe PLL to enable
7436 * @dpll: PLL configuration
7437 *
7438 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7439 * in cases where we need the PLL enabled even when @pipe is not going to
7440 * be enabled.
7441 */
7442int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7443                     const struct dpll *dpll)
7444{
7445        struct intel_crtc *crtc =
7446                to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7447        struct intel_crtc_state *pipe_config;
7448
7449        pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7450        if (!pipe_config)
7451                return -ENOMEM;
7452
7453        pipe_config->base.crtc = &crtc->base;
7454        pipe_config->pixel_multiplier = 1;
7455        pipe_config->dpll = *dpll;
7456
7457        if (IS_CHERRYVIEW(dev)) {
7458                chv_compute_dpll(crtc, pipe_config);
7459                chv_prepare_pll(crtc, pipe_config);
7460                chv_enable_pll(crtc, pipe_config);
7461        } else {
7462                vlv_compute_dpll(crtc, pipe_config);
7463                vlv_prepare_pll(crtc, pipe_config);
7464                vlv_enable_pll(crtc, pipe_config);
7465        }
7466
7467        kfree(pipe_config);
7468
7469        return 0;
7470}
7471
7472/**
7473 * vlv_force_pll_off - forcibly disable just the PLL
7474 * @dev_priv: i915 private structure
7475 * @pipe: pipe PLL to disable
7476 *
7477 * Disable the PLL for @pipe. To be used in cases where we need
7478 * the PLL enabled even when @pipe is not going to be enabled.
7479 */
7480void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7481{
7482        if (IS_CHERRYVIEW(dev))
7483                chv_disable_pll(to_i915(dev), pipe);
7484        else
7485                vlv_disable_pll(to_i915(dev), pipe);
7486}
7487
7488static void i9xx_compute_dpll(struct intel_crtc *crtc,
7489                              struct intel_crtc_state *crtc_state,
7490                              intel_clock_t *reduced_clock)
7491{
7492        struct drm_device *dev = crtc->base.dev;
7493        struct drm_i915_private *dev_priv = dev->dev_private;
7494        u32 dpll;
7495        bool is_sdvo;
7496        struct dpll *clock = &crtc_state->dpll;
7497
7498        i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7499
7500        is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7501                intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7502
7503        dpll = DPLL_VGA_MODE_DIS;
7504
7505        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7506                dpll |= DPLLB_MODE_LVDS;
7507        else
7508                dpll |= DPLLB_MODE_DAC_SERIAL;
7509
7510        if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7511                dpll |= (crtc_state->pixel_multiplier - 1)
7512                        << SDVO_MULTIPLIER_SHIFT_HIRES;
7513        }
7514
7515        if (is_sdvo)
7516                dpll |= DPLL_SDVO_HIGH_SPEED;
7517
7518        if (crtc_state->has_dp_encoder)
7519                dpll |= DPLL_SDVO_HIGH_SPEED;
7520
7521        /* compute bitmask from p1 value */
7522        if (IS_PINEVIEW(dev))
7523                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7524        else {
7525                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7526                if (IS_G4X(dev) && reduced_clock)
7527                        dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7528        }
7529        switch (clock->p2) {
7530        case 5:
7531                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7532                break;
7533        case 7:
7534                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7535                break;
7536        case 10:
7537                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7538                break;
7539        case 14:
7540                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7541                break;
7542        }
7543        if (INTEL_INFO(dev)->gen >= 4)
7544                dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7545
7546        if (crtc_state->sdvo_tv_clock)
7547                dpll |= PLL_REF_INPUT_TVCLKINBC;
7548        else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7549                 intel_panel_use_ssc(dev_priv))
7550                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7551        else
7552                dpll |= PLL_REF_INPUT_DREFCLK;
7553
7554        dpll |= DPLL_VCO_ENABLE;
7555        crtc_state->dpll_hw_state.dpll = dpll;
7556
7557        if (INTEL_INFO(dev)->gen >= 4) {
7558                u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7559                        << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7560                crtc_state->dpll_hw_state.dpll_md = dpll_md;
7561        }
7562}
7563
7564static void i8xx_compute_dpll(struct intel_crtc *crtc,
7565                              struct intel_crtc_state *crtc_state,
7566                              intel_clock_t *reduced_clock)
7567{
7568        struct drm_device *dev = crtc->base.dev;
7569        struct drm_i915_private *dev_priv = dev->dev_private;
7570        u32 dpll;
7571        struct dpll *clock = &crtc_state->dpll;
7572
7573        i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7574
7575        dpll = DPLL_VGA_MODE_DIS;
7576
7577        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7578                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7579        } else {
7580                if (clock->p1 == 2)
7581                        dpll |= PLL_P1_DIVIDE_BY_TWO;
7582                else
7583                        dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7584                if (clock->p2 == 4)
7585                        dpll |= PLL_P2_DIVIDE_BY_4;
7586        }
7587
7588        if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7589                dpll |= DPLL_DVO_2X_MODE;
7590
7591        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7592            intel_panel_use_ssc(dev_priv))
7593                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7594        else
7595                dpll |= PLL_REF_INPUT_DREFCLK;
7596
7597        dpll |= DPLL_VCO_ENABLE;
7598        crtc_state->dpll_hw_state.dpll = dpll;
7599}
7600
7601static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7602{
7603        struct drm_device *dev = intel_crtc->base.dev;
7604        struct drm_i915_private *dev_priv = dev->dev_private;
7605        enum pipe pipe = intel_crtc->pipe;
7606        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7607        const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7608        uint32_t crtc_vtotal, crtc_vblank_end;
7609        int vsyncshift = 0;
7610
7611        /* We need to be careful not to changed the adjusted mode, for otherwise
7612         * the hw state checker will get angry at the mismatch. */
7613        crtc_vtotal = adjusted_mode->crtc_vtotal;
7614        crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7615
7616        if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7617                /* the chip adds 2 halflines automatically */
7618                crtc_vtotal -= 1;
7619                crtc_vblank_end -= 1;
7620
7621                if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7622                        vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7623                else
7624                        vsyncshift = adjusted_mode->crtc_hsync_start -
7625                                adjusted_mode->crtc_htotal / 2;
7626                if (vsyncshift < 0)
7627                        vsyncshift += adjusted_mode->crtc_htotal;
7628        }
7629
7630        if (INTEL_INFO(dev)->gen > 3)
7631                I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7632
7633        I915_WRITE(HTOTAL(cpu_transcoder),
7634                   (adjusted_mode->crtc_hdisplay - 1) |
7635                   ((adjusted_mode->crtc_htotal - 1) << 16));
7636        I915_WRITE(HBLANK(cpu_transcoder),
7637                   (adjusted_mode->crtc_hblank_start - 1) |
7638                   ((adjusted_mode->crtc_hblank_end - 1) << 16));
7639        I915_WRITE(HSYNC(cpu_transcoder),
7640                   (adjusted_mode->crtc_hsync_start - 1) |
7641                   ((adjusted_mode->crtc_hsync_end - 1) << 16));
7642
7643        I915_WRITE(VTOTAL(cpu_transcoder),
7644                   (adjusted_mode->crtc_vdisplay - 1) |
7645                   ((crtc_vtotal - 1) << 16));
7646        I915_WRITE(VBLANK(cpu_transcoder),
7647                   (adjusted_mode->crtc_vblank_start - 1) |
7648                   ((crtc_vblank_end - 1) << 16));
7649        I915_WRITE(VSYNC(cpu_transcoder),
7650                   (adjusted_mode->crtc_vsync_start - 1) |
7651                   ((adjusted_mode->crtc_vsync_end - 1) << 16));
7652
7653        /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7654         * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7655         * documented on the DDI_FUNC_CTL register description, EDP Input Select
7656         * bits. */
7657        if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7658            (pipe == PIPE_B || pipe == PIPE_C))
7659                I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7660
7661}
7662
7663static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7664{
7665        struct drm_device *dev = intel_crtc->base.dev;
7666        struct drm_i915_private *dev_priv = dev->dev_private;
7667        enum pipe pipe = intel_crtc->pipe;
7668
7669        /* pipesrc controls the size that is scaled from, which should
7670         * always be the user's requested size.
7671         */
7672        I915_WRITE(PIPESRC(pipe),
7673                   ((intel_crtc->config->pipe_src_w - 1) << 16) |
7674                   (intel_crtc->config->pipe_src_h - 1));
7675}
7676
7677static void intel_get_pipe_timings(struct intel_crtc *crtc,
7678                                   struct intel_crtc_state *pipe_config)
7679{
7680        struct drm_device *dev = crtc->base.dev;
7681        struct drm_i915_private *dev_priv = dev->dev_private;
7682        enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7683        uint32_t tmp;
7684
7685        tmp = I915_READ(HTOTAL(cpu_transcoder));
7686        pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7687        pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7688        tmp = I915_READ(HBLANK(cpu_transcoder));
7689        pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7690        pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7691        tmp = I915_READ(HSYNC(cpu_transcoder));
7692        pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7693        pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7694
7695        tmp = I915_READ(VTOTAL(cpu_transcoder));
7696        pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7697        pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7698        tmp = I915_READ(VBLANK(cpu_transcoder));
7699        pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7700        pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7701        tmp = I915_READ(VSYNC(cpu_transcoder));
7702        pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7703        pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7704
7705        if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7706                pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7707                pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7708                pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7709        }
7710}
7711
7712static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7713                                    struct intel_crtc_state *pipe_config)
7714{
7715        struct drm_device *dev = crtc->base.dev;
7716        struct drm_i915_private *dev_priv = dev->dev_private;
7717        u32 tmp;
7718
7719        tmp = I915_READ(PIPESRC(crtc->pipe));
7720        pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7721        pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7722
7723        pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7724        pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7725}
7726
7727void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7728                                 struct intel_crtc_state *pipe_config)
7729{
7730        mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7731        mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7732        mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7733        mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7734
7735        mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7736        mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7737        mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7738        mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7739
7740        mode->flags = pipe_config->base.adjusted_mode.flags;
7741        mode->type = DRM_MODE_TYPE_DRIVER;
7742
7743        mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7744        mode->flags |= pipe_config->base.adjusted_mode.flags;
7745
7746        mode->hsync = drm_mode_hsync(mode);
7747        mode->vrefresh = drm_mode_vrefresh(mode);
7748        drm_mode_set_name(mode);
7749}
7750
7751static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7752{
7753        struct drm_device *dev = intel_crtc->base.dev;
7754        struct drm_i915_private *dev_priv = dev->dev_private;
7755        uint32_t pipeconf;
7756
7757        pipeconf = 0;
7758
7759        if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7760            (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7761                pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7762
7763        if (intel_crtc->config->double_wide)
7764                pipeconf |= PIPECONF_DOUBLE_WIDE;
7765
7766        /* only g4x and later have fancy bpc/dither controls */
7767        if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
7768                /* Bspec claims that we can't use dithering for 30bpp pipes. */
7769                if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7770                        pipeconf |= PIPECONF_DITHER_EN |
7771                                    PIPECONF_DITHER_TYPE_SP;
7772
7773                switch (intel_crtc->config->pipe_bpp) {
7774                case 18:
7775                        pipeconf |= PIPECONF_6BPC;
7776                        break;
7777                case 24:
7778                        pipeconf |= PIPECONF_8BPC;
7779                        break;
7780                case 30:
7781                        pipeconf |= PIPECONF_10BPC;
7782                        break;
7783                default:
7784                        /* Case prevented by intel_choose_pipe_bpp_dither. */
7785                        BUG();
7786                }
7787        }
7788
7789        if (HAS_PIPE_CXSR(dev)) {
7790                if (intel_crtc->lowfreq_avail) {
7791                        DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7792                        pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7793                } else {
7794                        DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7795                }
7796        }
7797
7798        if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7799                if (INTEL_INFO(dev)->gen < 4 ||
7800                    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7801                        pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7802                else
7803                        pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7804        } else
7805                pipeconf |= PIPECONF_PROGRESSIVE;
7806
7807        if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7808             intel_crtc->config->limited_color_range)
7809                pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7810
7811        I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7812        POSTING_READ(PIPECONF(intel_crtc->pipe));
7813}
7814
7815static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7816                                   struct intel_crtc_state *crtc_state)
7817{
7818        struct drm_device *dev = crtc->base.dev;
7819        struct drm_i915_private *dev_priv = dev->dev_private;
7820        const intel_limit_t *limit;
7821        int refclk = 48000;
7822
7823        memset(&crtc_state->dpll_hw_state, 0,
7824               sizeof(crtc_state->dpll_hw_state));
7825
7826        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7827                if (intel_panel_use_ssc(dev_priv)) {
7828                        refclk = dev_priv->vbt.lvds_ssc_freq;
7829                        DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7830                }
7831
7832                limit = &intel_limits_i8xx_lvds;
7833        } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7834                limit = &intel_limits_i8xx_dvo;
7835        } else {
7836                limit = &intel_limits_i8xx_dac;
7837        }
7838
7839        if (!crtc_state->clock_set &&
7840            !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7841                                 refclk, NULL, &crtc_state->dpll)) {
7842                DRM_ERROR("Couldn't find PLL settings for mode!\n");
7843                return -EINVAL;
7844        }
7845
7846        i8xx_compute_dpll(crtc, crtc_state, NULL);
7847
7848        return 0;
7849}
7850
7851static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7852                                  struct intel_crtc_state *crtc_state)
7853{
7854        struct drm_device *dev = crtc->base.dev;
7855        struct drm_i915_private *dev_priv = dev->dev_private;
7856        const intel_limit_t *limit;
7857        int refclk = 96000;
7858
7859        memset(&crtc_state->dpll_hw_state, 0,
7860               sizeof(crtc_state->dpll_hw_state));
7861
7862        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7863                if (intel_panel_use_ssc(dev_priv)) {
7864                        refclk = dev_priv->vbt.lvds_ssc_freq;
7865                        DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7866                }
7867
7868                if (intel_is_dual_link_lvds(dev))
7869                        limit = &intel_limits_g4x_dual_channel_lvds;
7870                else
7871                        limit = &intel_limits_g4x_single_channel_lvds;
7872        } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7873                   intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7874                limit = &intel_limits_g4x_hdmi;
7875        } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7876                limit = &intel_limits_g4x_sdvo;
7877        } else {
7878                /* The option is for other outputs */
7879                limit = &intel_limits_i9xx_sdvo;
7880        }
7881
7882        if (!crtc_state->clock_set &&
7883            !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7884                                refclk, NULL, &crtc_state->dpll)) {
7885                DRM_ERROR("Couldn't find PLL settings for mode!\n");
7886                return -EINVAL;
7887        }
7888
7889        i9xx_compute_dpll(crtc, crtc_state, NULL);
7890
7891        return 0;
7892}
7893
7894static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7895                                  struct intel_crtc_state *crtc_state)
7896{
7897        struct drm_device *dev = crtc->base.dev;
7898        struct drm_i915_private *dev_priv = dev->dev_private;
7899        const intel_limit_t *limit;
7900        int refclk = 96000;
7901
7902        memset(&crtc_state->dpll_hw_state, 0,
7903               sizeof(crtc_state->dpll_hw_state));
7904
7905        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7906                if (intel_panel_use_ssc(dev_priv)) {
7907                        refclk = dev_priv->vbt.lvds_ssc_freq;
7908                        DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7909                }
7910
7911                limit = &intel_limits_pineview_lvds;
7912        } else {
7913                limit = &intel_limits_pineview_sdvo;
7914        }
7915
7916        if (!crtc_state->clock_set &&
7917            !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7918                                refclk, NULL, &crtc_state->dpll)) {
7919                DRM_ERROR("Couldn't find PLL settings for mode!\n");
7920                return -EINVAL;
7921        }
7922
7923        i9xx_compute_dpll(crtc, crtc_state, NULL);
7924
7925        return 0;
7926}
7927
7928static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7929                                   struct intel_crtc_state *crtc_state)
7930{
7931        struct drm_device *dev = crtc->base.dev;
7932        struct drm_i915_private *dev_priv = dev->dev_private;
7933        const intel_limit_t *limit;
7934        int refclk = 96000;
7935
7936        memset(&crtc_state->dpll_hw_state, 0,
7937               sizeof(crtc_state->dpll_hw_state));
7938
7939        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7940                if (intel_panel_use_ssc(dev_priv)) {
7941                        refclk = dev_priv->vbt.lvds_ssc_freq;
7942                        DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7943                }
7944
7945                limit = &intel_limits_i9xx_lvds;
7946        } else {
7947                limit = &intel_limits_i9xx_sdvo;
7948        }
7949
7950        if (!crtc_state->clock_set &&
7951            !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7952                                 refclk, NULL, &crtc_state->dpll)) {
7953                DRM_ERROR("Couldn't find PLL settings for mode!\n");
7954                return -EINVAL;
7955        }
7956
7957        i9xx_compute_dpll(crtc, crtc_state, NULL);
7958
7959        return 0;
7960}
7961
7962static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7963                                  struct intel_crtc_state *crtc_state)
7964{
7965        int refclk = 100000;
7966        const intel_limit_t *limit = &intel_limits_chv;
7967
7968        memset(&crtc_state->dpll_hw_state, 0,
7969               sizeof(crtc_state->dpll_hw_state));
7970
7971        if (!crtc_state->clock_set &&
7972            !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7973                                refclk, NULL, &crtc_state->dpll)) {
7974                DRM_ERROR("Couldn't find PLL settings for mode!\n");
7975                return -EINVAL;
7976        }
7977
7978        chv_compute_dpll(crtc, crtc_state);
7979
7980        return 0;
7981}
7982
7983static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7984                                  struct intel_crtc_state *crtc_state)
7985{
7986        int refclk = 100000;
7987        const intel_limit_t *limit = &intel_limits_vlv;
7988
7989        memset(&crtc_state->dpll_hw_state, 0,
7990               sizeof(crtc_state->dpll_hw_state));
7991
7992        if (!crtc_state->clock_set &&
7993            !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7994                                refclk, NULL, &crtc_state->dpll)) {
7995                DRM_ERROR("Couldn't find PLL settings for mode!\n");
7996                return -EINVAL;
7997        }
7998
7999        vlv_compute_dpll(crtc, crtc_state);
8000
8001        return 0;
8002}
8003
8004static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8005                                 struct intel_crtc_state *pipe_config)
8006{
8007        struct drm_device *dev = crtc->base.dev;
8008        struct drm_i915_private *dev_priv = dev->dev_private;
8009        uint32_t tmp;
8010
8011        if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8012                return;
8013
8014        tmp = I915_READ(PFIT_CONTROL);
8015        if (!(tmp & PFIT_ENABLE))
8016                return;
8017
8018        /* Check whether the pfit is attached to our pipe. */
8019        if (INTEL_INFO(dev)->gen < 4) {
8020                if (crtc->pipe != PIPE_B)
8021                        return;
8022        } else {
8023                if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8024                        return;
8025        }
8026
8027        pipe_config->gmch_pfit.control = tmp;
8028        pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8029}
8030
8031static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8032                               struct intel_crtc_state *pipe_config)
8033{
8034        struct drm_device *dev = crtc->base.dev;
8035        struct drm_i915_private *dev_priv = dev->dev_private;
8036        int pipe = pipe_config->cpu_transcoder;
8037        intel_clock_t clock;
8038        u32 mdiv;
8039        int refclk = 100000;
8040
8041        /* In case of DSI, DPLL will not be used */
8042        if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8043                return;
8044
8045        mutex_lock(&dev_priv->sb_lock);
8046        mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8047        mutex_unlock(&dev_priv->sb_lock);
8048
8049        clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8050        clock.m2 = mdiv & DPIO_M2DIV_MASK;
8051        clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8052        clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8053        clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8054
8055        pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8056}
8057
8058static void
8059i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8060                              struct intel_initial_plane_config *plane_config)
8061{
8062        struct drm_device *dev = crtc->base.dev;
8063        struct drm_i915_private *dev_priv = dev->dev_private;
8064        u32 val, base, offset;
8065        int pipe = crtc->pipe, plane = crtc->plane;
8066        int fourcc, pixel_format;
8067        unsigned int aligned_height;
8068        struct drm_framebuffer *fb;
8069        struct intel_framebuffer *intel_fb;
8070
8071        val = I915_READ(DSPCNTR(plane));
8072        if (!(val & DISPLAY_PLANE_ENABLE))
8073                return;
8074
8075        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8076        if (!intel_fb) {
8077                DRM_DEBUG_KMS("failed to alloc fb\n");
8078                return;
8079        }
8080
8081        fb = &intel_fb->base;
8082
8083        if (INTEL_INFO(dev)->gen >= 4) {
8084                if (val & DISPPLANE_TILED) {
8085                        plane_config->tiling = I915_TILING_X;
8086                        fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8087                }
8088        }
8089
8090        pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8091        fourcc = i9xx_format_to_fourcc(pixel_format);
8092        fb->pixel_format = fourcc;
8093        fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8094
8095        if (INTEL_INFO(dev)->gen >= 4) {
8096                if (plane_config->tiling)
8097                        offset = I915_READ(DSPTILEOFF(plane));
8098                else
8099                        offset = I915_READ(DSPLINOFF(plane));
8100                base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8101        } else {
8102                base = I915_READ(DSPADDR(plane));
8103        }
8104        plane_config->base = base;
8105
8106        val = I915_READ(PIPESRC(pipe));
8107        fb->width = ((val >> 16) & 0xfff) + 1;
8108        fb->height = ((val >> 0) & 0xfff) + 1;
8109
8110        val = I915_READ(DSPSTRIDE(pipe));
8111        fb->pitches[0] = val & 0xffffffc0;
8112
8113        aligned_height = intel_fb_align_height(dev, fb->height,
8114                                               fb->pixel_format,
8115                                               fb->modifier[0]);
8116
8117        plane_config->size = fb->pitches[0] * aligned_height;
8118
8119        DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8120                      pipe_name(pipe), plane, fb->width, fb->height,
8121                      fb->bits_per_pixel, base, fb->pitches[0],
8122                      plane_config->size);
8123
8124        plane_config->fb = intel_fb;
8125}
8126
8127static void chv_crtc_clock_get(struct intel_crtc *crtc,
8128                               struct intel_crtc_state *pipe_config)
8129{
8130        struct drm_device *dev = crtc->base.dev;
8131        struct drm_i915_private *dev_priv = dev->dev_private;
8132        int pipe = pipe_config->cpu_transcoder;
8133        enum dpio_channel port = vlv_pipe_to_channel(pipe);
8134        intel_clock_t clock;
8135        u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8136        int refclk = 100000;
8137
8138        /* In case of DSI, DPLL will not be used */
8139        if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8140                return;
8141
8142        mutex_lock(&dev_priv->sb_lock);
8143        cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8144        pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8145        pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8146        pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8147        pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8148        mutex_unlock(&dev_priv->sb_lock);
8149
8150        clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8151        clock.m2 = (pll_dw0 & 0xff) << 22;
8152        if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8153                clock.m2 |= pll_dw2 & 0x3fffff;
8154        clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8155        clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8156        clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8157
8158        pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8159}
8160
8161static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8162                                 struct intel_crtc_state *pipe_config)
8163{
8164        struct drm_device *dev = crtc->base.dev;
8165        struct drm_i915_private *dev_priv = dev->dev_private;
8166        enum intel_display_power_domain power_domain;
8167        uint32_t tmp;
8168        bool ret;
8169
8170        power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8171        if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8172                return false;
8173
8174        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8175        pipe_config->shared_dpll = NULL;
8176
8177        ret = false;
8178
8179        tmp = I915_READ(PIPECONF(crtc->pipe));
8180        if (!(tmp & PIPECONF_ENABLE))
8181                goto out;
8182
8183        if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8184                switch (tmp & PIPECONF_BPC_MASK) {
8185                case PIPECONF_6BPC:
8186                        pipe_config->pipe_bpp = 18;
8187                        break;
8188                case PIPECONF_8BPC:
8189                        pipe_config->pipe_bpp = 24;
8190                        break;
8191                case PIPECONF_10BPC:
8192                        pipe_config->pipe_bpp = 30;
8193                        break;
8194                default:
8195                        break;
8196                }
8197        }
8198
8199        if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8200            (tmp & PIPECONF_COLOR_RANGE_SELECT))
8201                pipe_config->limited_color_range = true;
8202
8203        if (INTEL_INFO(dev)->gen < 4)
8204                pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8205
8206        intel_get_pipe_timings(crtc, pipe_config);
8207        intel_get_pipe_src_size(crtc, pipe_config);
8208
8209        i9xx_get_pfit_config(crtc, pipe_config);
8210
8211        if (INTEL_INFO(dev)->gen >= 4) {
8212                /* No way to read it out on pipes B and C */
8213                if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8214                        tmp = dev_priv->chv_dpll_md[crtc->pipe];
8215                else
8216                        tmp = I915_READ(DPLL_MD(crtc->pipe));
8217                pipe_config->pixel_multiplier =
8218                        ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8219                         >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8220                pipe_config->dpll_hw_state.dpll_md = tmp;
8221        } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8222                tmp = I915_READ(DPLL(crtc->pipe));
8223                pipe_config->pixel_multiplier =
8224                        ((tmp & SDVO_MULTIPLIER_MASK)
8225                         >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8226        } else {
8227                /* Note that on i915G/GM the pixel multiplier is in the sdvo
8228                 * port and will be fixed up in the encoder->get_config
8229                 * function. */
8230                pipe_config->pixel_multiplier = 1;
8231        }
8232        pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8233        if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8234                /*
8235                 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8236                 * on 830. Filter it out here so that we don't
8237                 * report errors due to that.
8238                 */
8239                if (IS_I830(dev))
8240                        pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8241
8242                pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8243                pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8244        } else {
8245                /* Mask out read-only status bits. */
8246                pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8247                                                     DPLL_PORTC_READY_MASK |
8248                                                     DPLL_PORTB_READY_MASK);
8249        }
8250
8251        if (IS_CHERRYVIEW(dev))
8252                chv_crtc_clock_get(crtc, pipe_config);
8253        else if (IS_VALLEYVIEW(dev))
8254                vlv_crtc_clock_get(crtc, pipe_config);
8255        else
8256                i9xx_crtc_clock_get(crtc, pipe_config);
8257
8258        /*
8259         * Normally the dotclock is filled in by the encoder .get_config()
8260         * but in case the pipe is enabled w/o any ports we need a sane
8261         * default.
8262         */
8263        pipe_config->base.adjusted_mode.crtc_clock =
8264                pipe_config->port_clock / pipe_config->pixel_multiplier;
8265
8266        ret = true;
8267
8268out:
8269        intel_display_power_put(dev_priv, power_domain);
8270
8271        return ret;
8272}
8273
8274static void ironlake_init_pch_refclk(struct drm_device *dev)
8275{
8276        struct drm_i915_private *dev_priv = dev->dev_private;
8277        struct intel_encoder *encoder;
8278        int i;
8279        u32 val, final;
8280        bool has_lvds = false;
8281        bool has_cpu_edp = false;
8282        bool has_panel = false;
8283        bool has_ck505 = false;
8284        bool can_ssc = false;
8285        bool using_ssc_source = false;
8286
8287        /* We need to take the global config into account */
8288        for_each_intel_encoder(dev, encoder) {
8289                switch (encoder->type) {
8290                case INTEL_OUTPUT_LVDS:
8291                        has_panel = true;
8292                        has_lvds = true;
8293                        break;
8294                case INTEL_OUTPUT_EDP:
8295                        has_panel = true;
8296                        if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8297                                has_cpu_edp = true;
8298                        break;
8299                default:
8300                        break;
8301                }
8302        }
8303
8304        if (HAS_PCH_IBX(dev)) {
8305                has_ck505 = dev_priv->vbt.display_clock_mode;
8306                can_ssc = has_ck505;
8307        } else {
8308                has_ck505 = false;
8309                can_ssc = true;
8310        }
8311
8312        /* Check if any DPLLs are using the SSC source */
8313        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8314                u32 temp = I915_READ(PCH_DPLL(i));
8315
8316                if (!(temp & DPLL_VCO_ENABLE))
8317                        continue;
8318
8319                if ((temp & PLL_REF_INPUT_MASK) ==
8320                    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8321                        using_ssc_source = true;
8322                        break;
8323                }
8324        }
8325
8326        DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8327                      has_panel, has_lvds, has_ck505, using_ssc_source);
8328
8329        /* Ironlake: try to setup display ref clock before DPLL
8330         * enabling. This is only under driver's control after
8331         * PCH B stepping, previous chipset stepping should be
8332         * ignoring this setting.
8333         */
8334        val = I915_READ(PCH_DREF_CONTROL);
8335
8336        /* As we must carefully and slowly disable/enable each source in turn,
8337         * compute the final state we want first and check if we need to
8338         * make any changes at all.
8339         */
8340        final = val;
8341        final &= ~DREF_NONSPREAD_SOURCE_MASK;
8342        if (has_ck505)
8343                final |= DREF_NONSPREAD_CK505_ENABLE;
8344        else
8345                final |= DREF_NONSPREAD_SOURCE_ENABLE;
8346
8347        final &= ~DREF_SSC_SOURCE_MASK;
8348        final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8349        final &= ~DREF_SSC1_ENABLE;
8350
8351        if (has_panel) {
8352                final |= DREF_SSC_SOURCE_ENABLE;
8353
8354                if (intel_panel_use_ssc(dev_priv) && can_ssc)
8355                        final |= DREF_SSC1_ENABLE;
8356
8357                if (has_cpu_edp) {
8358                        if (intel_panel_use_ssc(dev_priv) && can_ssc)
8359                                final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8360                        else
8361                                final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8362                } else
8363                        final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8364        } else if (using_ssc_source) {
8365                final |= DREF_SSC_SOURCE_ENABLE;
8366                final |= DREF_SSC1_ENABLE;
8367        }
8368
8369        if (final == val)
8370                return;
8371
8372        /* Always enable nonspread source */
8373        val &= ~DREF_NONSPREAD_SOURCE_MASK;
8374
8375        if (has_ck505)
8376                val |= DREF_NONSPREAD_CK505_ENABLE;
8377        else
8378                val |= DREF_NONSPREAD_SOURCE_ENABLE;
8379
8380        if (has_panel) {
8381                val &= ~DREF_SSC_SOURCE_MASK;
8382                val |= DREF_SSC_SOURCE_ENABLE;
8383
8384                /* SSC must be turned on before enabling the CPU output  */
8385                if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8386                        DRM_DEBUG_KMS("Using SSC on panel\n");
8387                        val |= DREF_SSC1_ENABLE;
8388                } else
8389                        val &= ~DREF_SSC1_ENABLE;
8390
8391                /* Get SSC going before enabling the outputs */
8392                I915_WRITE(PCH_DREF_CONTROL, val);
8393                POSTING_READ(PCH_DREF_CONTROL);
8394                udelay(200);
8395
8396                val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8397
8398                /* Enable CPU source on CPU attached eDP */
8399                if (has_cpu_edp) {
8400                        if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8401                                DRM_DEBUG_KMS("Using SSC on eDP\n");
8402                                val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8403                        } else
8404                                val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8405                } else
8406                        val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8407
8408                I915_WRITE(PCH_DREF_CONTROL, val);
8409                POSTING_READ(PCH_DREF_CONTROL);
8410                udelay(200);
8411        } else {
8412                DRM_DEBUG_KMS("Disabling CPU source output\n");
8413
8414                val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8415
8416                /* Turn off CPU output */
8417                val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8418
8419                I915_WRITE(PCH_DREF_CONTROL, val);
8420                POSTING_READ(PCH_DREF_CONTROL);
8421                udelay(200);
8422
8423                if (!using_ssc_source) {
8424                        DRM_DEBUG_KMS("Disabling SSC source\n");
8425
8426                        /* Turn off the SSC source */
8427                        val &= ~DREF_SSC_SOURCE_MASK;
8428                        val |= DREF_SSC_SOURCE_DISABLE;
8429
8430                        /* Turn off SSC1 */
8431                        val &= ~DREF_SSC1_ENABLE;
8432
8433                        I915_WRITE(PCH_DREF_CONTROL, val);
8434                        POSTING_READ(PCH_DREF_CONTROL);
8435                        udelay(200);
8436                }
8437        }
8438
8439        BUG_ON(val != final);
8440}
8441
8442static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8443{
8444        uint32_t tmp;
8445
8446        tmp = I915_READ(SOUTH_CHICKEN2);
8447        tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8448        I915_WRITE(SOUTH_CHICKEN2, tmp);
8449
8450        if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
8451                        FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8452                DRM_ERROR("FDI mPHY reset assert timeout\n");
8453
8454        tmp = I915_READ(SOUTH_CHICKEN2);
8455        tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8456        I915_WRITE(SOUTH_CHICKEN2, tmp);
8457
8458        if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
8459                         FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8460                DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8461}
8462
8463/* WaMPhyProgramming:hsw */
8464static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8465{
8466        uint32_t tmp;
8467
8468        tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8469        tmp &= ~(0xFF << 24);
8470        tmp |= (0x12 << 24);
8471        intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8472
8473        tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8474        tmp |= (1 << 11);
8475        intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8476
8477        tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8478        tmp |= (1 << 11);
8479        intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8480
8481        tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8482        tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8483        intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8484
8485        tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8486        tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8487        intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8488
8489        tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8490        tmp &= ~(7 << 13);
8491        tmp |= (5 << 13);
8492        intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8493
8494        tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8495        tmp &= ~(7 << 13);
8496        tmp |= (5 << 13);
8497        intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8498
8499        tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8500        tmp &= ~0xFF;
8501        tmp |= 0x1C;
8502        intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8503
8504        tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8505        tmp &= ~0xFF;
8506        tmp |= 0x1C;
8507        intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8508
8509        tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8510        tmp &= ~(0xFF << 16);
8511        tmp |= (0x1C << 16);
8512        intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8513
8514        tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8515        tmp &= ~(0xFF << 16);
8516        tmp |= (0x1C << 16);
8517        intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8518
8519        tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8520        tmp |= (1 << 27);
8521        intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8522
8523        tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8524        tmp |= (1 << 27);
8525        intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8526
8527        tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8528        tmp &= ~(0xF << 28);
8529        tmp |= (4 << 28);
8530        intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8531
8532        tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8533        tmp &= ~(0xF << 28);
8534        tmp |= (4 << 28);
8535        intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8536}
8537
8538/* Implements 3 different sequences from BSpec chapter "Display iCLK
8539 * Programming" based on the parameters passed:
8540 * - Sequence to enable CLKOUT_DP
8541 * - Sequence to enable CLKOUT_DP without spread
8542 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8543 */
8544static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8545                                 bool with_fdi)
8546{
8547        struct drm_i915_private *dev_priv = dev->dev_private;
8548        uint32_t reg, tmp;
8549
8550        if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8551                with_spread = true;
8552        if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8553                with_fdi = false;
8554
8555        mutex_lock(&dev_priv->sb_lock);
8556
8557        tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8558        tmp &= ~SBI_SSCCTL_DISABLE;
8559        tmp |= SBI_SSCCTL_PATHALT;
8560        intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8561
8562        udelay(24);
8563
8564        if (with_spread) {
8565                tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8566                tmp &= ~SBI_SSCCTL_PATHALT;
8567                intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8568
8569                if (with_fdi) {
8570                        lpt_reset_fdi_mphy(dev_priv);
8571                        lpt_program_fdi_mphy(dev_priv);
8572                }
8573        }
8574
8575        reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8576        tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8577        tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8578        intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8579
8580        mutex_unlock(&dev_priv->sb_lock);
8581}
8582
8583/* Sequence to disable CLKOUT_DP */
8584static void lpt_disable_clkout_dp(struct drm_device *dev)
8585{
8586        struct drm_i915_private *dev_priv = dev->dev_private;
8587        uint32_t reg, tmp;
8588
8589        mutex_lock(&dev_priv->sb_lock);
8590
8591        reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8592        tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8593        tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8594        intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8595
8596        tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8597        if (!(tmp & SBI_SSCCTL_DISABLE)) {
8598                if (!(tmp & SBI_SSCCTL_PATHALT)) {
8599                        tmp |= SBI_SSCCTL_PATHALT;
8600                        intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8601                        udelay(32);
8602                }
8603                tmp |= SBI_SSCCTL_DISABLE;
8604                intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8605        }
8606
8607        mutex_unlock(&dev_priv->sb_lock);
8608}
8609
8610#define BEND_IDX(steps) ((50 + (steps)) / 5)
8611
8612static const uint16_t sscdivintphase[] = {
8613        [BEND_IDX( 50)] = 0x3B23,
8614        [BEND_IDX( 45)] = 0x3B23,
8615        [BEND_IDX( 40)] = 0x3C23,
8616        [BEND_IDX( 35)] = 0x3C23,
8617        [BEND_IDX( 30)] = 0x3D23,
8618        [BEND_IDX( 25)] = 0x3D23,
8619        [BEND_IDX( 20)] = 0x3E23,
8620        [BEND_IDX( 15)] = 0x3E23,
8621        [BEND_IDX( 10)] = 0x3F23,
8622        [BEND_IDX(  5)] = 0x3F23,
8623        [BEND_IDX(  0)] = 0x0025,
8624        [BEND_IDX( -5)] = 0x0025,
8625        [BEND_IDX(-10)] = 0x0125,
8626        [BEND_IDX(-15)] = 0x0125,
8627        [BEND_IDX(-20)] = 0x0225,
8628        [BEND_IDX(-25)] = 0x0225,
8629        [BEND_IDX(-30)] = 0x0325,
8630        [BEND_IDX(-35)] = 0x0325,
8631        [BEND_IDX(-40)] = 0x0425,
8632        [BEND_IDX(-45)] = 0x0425,
8633        [BEND_IDX(-50)] = 0x0525,
8634};
8635
8636/*
8637 * Bend CLKOUT_DP
8638 * steps -50 to 50 inclusive, in steps of 5
8639 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8640 * change in clock period = -(steps / 10) * 5.787 ps
8641 */
8642static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8643{
8644        uint32_t tmp;
8645        int idx = BEND_IDX(steps);
8646
8647        if (WARN_ON(steps % 5 != 0))
8648                return;
8649
8650        if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8651                return;
8652
8653        mutex_lock(&dev_priv->sb_lock);
8654
8655        if (steps % 10 != 0)
8656                tmp = 0xAAAAAAAB;
8657        else
8658                tmp = 0x00000000;
8659        intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8660
8661        tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8662        tmp &= 0xffff0000;
8663        tmp |= sscdivintphase[idx];
8664        intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8665
8666        mutex_unlock(&dev_priv->sb_lock);
8667}
8668
8669#undef BEND_IDX
8670
8671static void lpt_init_pch_refclk(struct drm_device *dev)
8672{
8673        struct intel_encoder *encoder;
8674        bool has_vga = false;
8675
8676        for_each_intel_encoder(dev, encoder) {
8677                switch (encoder->type) {
8678                case INTEL_OUTPUT_ANALOG:
8679                        has_vga = true;
8680                        break;
8681                default:
8682                        break;
8683                }
8684        }
8685
8686        if (has_vga) {
8687                lpt_bend_clkout_dp(to_i915(dev), 0);
8688                lpt_enable_clkout_dp(dev, true, true);
8689        } else {
8690                lpt_disable_clkout_dp(dev);
8691        }
8692}
8693
8694/*
8695 * Initialize reference clocks when the driver loads
8696 */
8697void intel_init_pch_refclk(struct drm_device *dev)
8698{
8699        if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8700                ironlake_init_pch_refclk(dev);
8701        else if (HAS_PCH_LPT(dev))
8702                lpt_init_pch_refclk(dev);
8703}
8704
8705static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8706{
8707        struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8708        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8709        int pipe = intel_crtc->pipe;
8710        uint32_t val;
8711
8712        val = 0;
8713
8714        switch (intel_crtc->config->pipe_bpp) {
8715        case 18:
8716                val |= PIPECONF_6BPC;
8717                break;
8718        case 24:
8719                val |= PIPECONF_8BPC;
8720                break;
8721        case 30:
8722                val |= PIPECONF_10BPC;
8723                break;
8724        case 36:
8725                val |= PIPECONF_12BPC;
8726                break;
8727        default:
8728                /* Case prevented by intel_choose_pipe_bpp_dither. */
8729                BUG();
8730        }
8731
8732        if (intel_crtc->config->dither)
8733                val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8734
8735        if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8736                val |= PIPECONF_INTERLACED_ILK;
8737        else
8738                val |= PIPECONF_PROGRESSIVE;
8739
8740        if (intel_crtc->config->limited_color_range)
8741                val |= PIPECONF_COLOR_RANGE_SELECT;
8742
8743        I915_WRITE(PIPECONF(pipe), val);
8744        POSTING_READ(PIPECONF(pipe));
8745}
8746
8747static void haswell_set_pipeconf(struct drm_crtc *crtc)
8748{
8749        struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8750        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8751        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8752        u32 val = 0;
8753
8754        if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8755                val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8756
8757        if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8758                val |= PIPECONF_INTERLACED_ILK;
8759        else
8760                val |= PIPECONF_PROGRESSIVE;
8761
8762        I915_WRITE(PIPECONF(cpu_transcoder), val);
8763        POSTING_READ(PIPECONF(cpu_transcoder));
8764}
8765
8766static void haswell_set_pipemisc(struct drm_crtc *crtc)
8767{
8768        struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8769        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8770
8771        if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8772                u32 val = 0;
8773
8774                switch (intel_crtc->config->pipe_bpp) {
8775                case 18:
8776                        val |= PIPEMISC_DITHER_6_BPC;
8777                        break;
8778                case 24:
8779                        val |= PIPEMISC_DITHER_8_BPC;
8780                        break;
8781                case 30:
8782                        val |= PIPEMISC_DITHER_10_BPC;
8783                        break;
8784                case 36:
8785                        val |= PIPEMISC_DITHER_12_BPC;
8786                        break;
8787                default:
8788                        /* Case prevented by pipe_config_set_bpp. */
8789                        BUG();
8790                }
8791
8792                if (intel_crtc->config->dither)
8793                        val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8794
8795                I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8796        }
8797}
8798
8799int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8800{
8801        /*
8802         * Account for spread spectrum to avoid
8803         * oversubscribing the link. Max center spread
8804         * is 2.5%; use 5% for safety's sake.
8805         */
8806        u32 bps = target_clock * bpp * 21 / 20;
8807        return DIV_ROUND_UP(bps, link_bw * 8);
8808}
8809
8810static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8811{
8812        return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8813}
8814
8815static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8816                                  struct intel_crtc_state *crtc_state,
8817                                  intel_clock_t *reduced_clock)
8818{
8819        struct drm_crtc *crtc = &intel_crtc->base;
8820        struct drm_device *dev = crtc->dev;
8821        struct drm_i915_private *dev_priv = dev->dev_private;
8822        struct drm_atomic_state *state = crtc_state->base.state;
8823        struct drm_connector *connector;
8824        struct drm_connector_state *connector_state;
8825        struct intel_encoder *encoder;
8826        u32 dpll, fp, fp2;
8827        int factor, i;
8828        bool is_lvds = false, is_sdvo = false;
8829
8830        for_each_connector_in_state(state, connector, connector_state, i) {
8831                if (connector_state->crtc != crtc_state->base.crtc)
8832                        continue;
8833
8834                encoder = to_intel_encoder(connector_state->best_encoder);
8835
8836                switch (encoder->type) {
8837                case INTEL_OUTPUT_LVDS:
8838                        is_lvds = true;
8839                        break;
8840                case INTEL_OUTPUT_SDVO:
8841                case INTEL_OUTPUT_HDMI:
8842                        is_sdvo = true;
8843                        break;
8844                default:
8845                        break;
8846                }
8847        }
8848
8849        /* Enable autotuning of the PLL clock (if permissible) */
8850        factor = 21;
8851        if (is_lvds) {
8852                if ((intel_panel_use_ssc(dev_priv) &&
8853                     dev_priv->vbt.lvds_ssc_freq == 100000) ||
8854                    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8855                        factor = 25;
8856        } else if (crtc_state->sdvo_tv_clock)
8857                factor = 20;
8858
8859        fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8860
8861        if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8862                fp |= FP_CB_TUNE;
8863
8864        if (reduced_clock) {
8865                fp2 = i9xx_dpll_compute_fp(reduced_clock);
8866
8867                if (reduced_clock->m < factor * reduced_clock->n)
8868                        fp2 |= FP_CB_TUNE;
8869        } else {
8870                fp2 = fp;
8871        }
8872
8873        dpll = 0;
8874
8875        if (is_lvds)
8876                dpll |= DPLLB_MODE_LVDS;
8877        else
8878                dpll |= DPLLB_MODE_DAC_SERIAL;
8879
8880        dpll |= (crtc_state->pixel_multiplier - 1)
8881                << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8882
8883        if (is_sdvo)
8884                dpll |= DPLL_SDVO_HIGH_SPEED;
8885        if (crtc_state->has_dp_encoder)
8886                dpll |= DPLL_SDVO_HIGH_SPEED;
8887
8888        /* compute bitmask from p1 value */
8889        dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8890        /* also FPA1 */
8891        dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8892
8893        switch (crtc_state->dpll.p2) {
8894        case 5:
8895                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8896                break;
8897        case 7:
8898                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8899                break;
8900        case 10:
8901                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8902                break;
8903        case 14:
8904                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8905                break;
8906        }
8907
8908        if (is_lvds && intel_panel_use_ssc(dev_priv))
8909                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8910        else
8911                dpll |= PLL_REF_INPUT_DREFCLK;
8912
8913        dpll |= DPLL_VCO_ENABLE;
8914
8915        crtc_state->dpll_hw_state.dpll = dpll;
8916        crtc_state->dpll_hw_state.fp0 = fp;
8917        crtc_state->dpll_hw_state.fp1 = fp2;
8918}
8919
8920static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8921                                       struct intel_crtc_state *crtc_state)
8922{
8923        struct drm_device *dev = crtc->base.dev;
8924        struct drm_i915_private *dev_priv = dev->dev_private;
8925        intel_clock_t reduced_clock;
8926        bool has_reduced_clock = false;
8927        struct intel_shared_dpll *pll;
8928        const intel_limit_t *limit;
8929        int refclk = 120000;
8930
8931        memset(&crtc_state->dpll_hw_state, 0,
8932               sizeof(crtc_state->dpll_hw_state));
8933
8934        crtc->lowfreq_avail = false;
8935
8936        /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8937        if (!crtc_state->has_pch_encoder)
8938                return 0;
8939
8940        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8941                if (intel_panel_use_ssc(dev_priv)) {
8942                        DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8943                                      dev_priv->vbt.lvds_ssc_freq);
8944                        refclk = dev_priv->vbt.lvds_ssc_freq;
8945                }
8946
8947                if (intel_is_dual_link_lvds(dev)) {
8948                        if (refclk == 100000)
8949                                limit = &intel_limits_ironlake_dual_lvds_100m;
8950                        else
8951                                limit = &intel_limits_ironlake_dual_lvds;
8952                } else {
8953                        if (refclk == 100000)
8954                                limit = &intel_limits_ironlake_single_lvds_100m;
8955                        else
8956                                limit = &intel_limits_ironlake_single_lvds;
8957                }
8958        } else {
8959                limit = &intel_limits_ironlake_dac;
8960        }
8961
8962        if (!crtc_state->clock_set &&
8963            !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8964                                refclk, NULL, &crtc_state->dpll)) {
8965                DRM_ERROR("Couldn't find PLL settings for mode!\n");
8966                return -EINVAL;
8967        }
8968
8969        ironlake_compute_dpll(crtc, crtc_state,
8970                              has_reduced_clock ? &reduced_clock : NULL);
8971
8972        pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8973        if (pll == NULL) {
8974                DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8975                                 pipe_name(crtc->pipe));
8976                return -EINVAL;
8977        }
8978
8979        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8980            has_reduced_clock)
8981                crtc->lowfreq_avail = true;
8982
8983        return 0;
8984}
8985
8986static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8987                                         struct intel_link_m_n *m_n)
8988{
8989        struct drm_device *dev = crtc->base.dev;
8990        struct drm_i915_private *dev_priv = dev->dev_private;
8991        enum pipe pipe = crtc->pipe;
8992
8993        m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8994        m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8995        m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8996                & ~TU_SIZE_MASK;
8997        m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8998        m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8999                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9000}
9001
9002static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9003                                         enum transcoder transcoder,
9004                                         struct intel_link_m_n *m_n,
9005                                         struct intel_link_m_n *m2_n2)
9006{
9007        struct drm_device *dev = crtc->base.dev;
9008        struct drm_i915_private *dev_priv = dev->dev_private;
9009        enum pipe pipe = crtc->pipe;
9010
9011        if (INTEL_INFO(dev)->gen >= 5) {
9012                m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9013                m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9014                m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9015                        & ~TU_SIZE_MASK;
9016                m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9017                m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9018                            & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9019                /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9020                 * gen < 8) and if DRRS is supported (to make sure the
9021                 * registers are not unnecessarily read).
9022                 */
9023                if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9024                        crtc->config->has_drrs) {
9025                        m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9026                        m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9027                        m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9028                                        & ~TU_SIZE_MASK;
9029                        m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9030                        m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9031                                        & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9032                }
9033        } else {
9034                m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9035                m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9036                m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9037                        & ~TU_SIZE_MASK;
9038                m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9039                m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9040                            & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9041        }
9042}
9043
9044void intel_dp_get_m_n(struct intel_crtc *crtc,
9045                      struct intel_crtc_state *pipe_config)
9046{
9047        if (pipe_config->has_pch_encoder)
9048                intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9049        else
9050                intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9051                                             &pipe_config->dp_m_n,
9052                                             &pipe_config->dp_m2_n2);
9053}
9054
9055static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9056                                        struct intel_crtc_state *pipe_config)
9057{
9058        intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9059                                     &pipe_config->fdi_m_n, NULL);
9060}
9061
9062static void skylake_get_pfit_config(struct intel_crtc *crtc,
9063                                    struct intel_crtc_state *pipe_config)
9064{
9065        struct drm_device *dev = crtc->base.dev;
9066        struct drm_i915_private *dev_priv = dev->dev_private;
9067        struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9068        uint32_t ps_ctrl = 0;
9069        int id = -1;
9070        int i;
9071
9072        /* find scaler attached to this pipe */
9073        for (i = 0; i < crtc->num_scalers; i++) {
9074                ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9075                if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9076                        id = i;
9077                        pipe_config->pch_pfit.enabled = true;
9078                        pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9079                        pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9080                        break;
9081                }
9082        }
9083
9084        scaler_state->scaler_id = id;
9085        if (id >= 0) {
9086                scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9087        } else {
9088                scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9089        }
9090}
9091
9092static void
9093skylake_get_initial_plane_config(struct intel_crtc *crtc,
9094                                 struct intel_initial_plane_config *plane_config)
9095{
9096        struct drm_device *dev = crtc->base.dev;
9097        struct drm_i915_private *dev_priv = dev->dev_private;
9098        u32 val, base, offset, stride_mult, tiling;
9099        int pipe = crtc->pipe;
9100        int fourcc, pixel_format;
9101        unsigned int aligned_height;
9102        struct drm_framebuffer *fb;
9103        struct intel_framebuffer *intel_fb;
9104
9105        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9106        if (!intel_fb) {
9107                DRM_DEBUG_KMS("failed to alloc fb\n");
9108                return;
9109        }
9110
9111        fb = &intel_fb->base;
9112
9113        val = I915_READ(PLANE_CTL(pipe, 0));
9114        if (!(val & PLANE_CTL_ENABLE))
9115                goto error;
9116
9117        pixel_format = val & PLANE_CTL_FORMAT_MASK;
9118        fourcc = skl_format_to_fourcc(pixel_format,
9119                                      val & PLANE_CTL_ORDER_RGBX,
9120                                      val & PLANE_CTL_ALPHA_MASK);
9121        fb->pixel_format = fourcc;
9122        fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9123
9124        tiling = val & PLANE_CTL_TILED_MASK;
9125        switch (tiling) {
9126        case PLANE_CTL_TILED_LINEAR:
9127                fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9128                break;
9129        case PLANE_CTL_TILED_X:
9130                plane_config->tiling = I915_TILING_X;
9131                fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9132                break;
9133        case PLANE_CTL_TILED_Y:
9134                fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9135                break;
9136        case PLANE_CTL_TILED_YF:
9137                fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9138                break;
9139        default:
9140                MISSING_CASE(tiling);
9141                goto error;
9142        }
9143
9144        base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9145        plane_config->base = base;
9146
9147        offset = I915_READ(PLANE_OFFSET(pipe, 0));
9148
9149        val = I915_READ(PLANE_SIZE(pipe, 0));
9150        fb->height = ((val >> 16) & 0xfff) + 1;
9151        fb->width = ((val >> 0) & 0x1fff) + 1;
9152
9153        val = I915_READ(PLANE_STRIDE(pipe, 0));
9154        stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9155                                                fb->pixel_format);
9156        fb->pitches[0] = (val & 0x3ff) * stride_mult;
9157
9158        aligned_height = intel_fb_align_height(dev, fb->height,
9159                                               fb->pixel_format,
9160                                               fb->modifier[0]);
9161
9162        plane_config->size = fb->pitches[0] * aligned_height;
9163
9164        DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9165                      pipe_name(pipe), fb->width, fb->height,
9166                      fb->bits_per_pixel, base, fb->pitches[0],
9167                      plane_config->size);
9168
9169        plane_config->fb = intel_fb;
9170        return;
9171
9172error:
9173        kfree(fb);
9174}
9175
9176static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9177                                     struct intel_crtc_state *pipe_config)
9178{
9179        struct drm_device *dev = crtc->base.dev;
9180        struct drm_i915_private *dev_priv = dev->dev_private;
9181        uint32_t tmp;
9182
9183        tmp = I915_READ(PF_CTL(crtc->pipe));
9184
9185        if (tmp & PF_ENABLE) {
9186                pipe_config->pch_pfit.enabled = true;
9187                pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9188                pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9189
9190                /* We currently do not free assignements of panel fitters on
9191                 * ivb/hsw (since we don't use the higher upscaling modes which
9192                 * differentiates them) so just WARN about this case for now. */
9193                if (IS_GEN7(dev)) {
9194                        WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9195                                PF_PIPE_SEL_IVB(crtc->pipe));
9196                }
9197        }
9198}
9199
9200static void
9201ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9202                                  struct intel_initial_plane_config *plane_config)
9203{
9204        struct drm_device *dev = crtc->base.dev;
9205        struct drm_i915_private *dev_priv = dev->dev_private;
9206        u32 val, base, offset;
9207        int pipe = crtc->pipe;
9208        int fourcc, pixel_format;
9209        unsigned int aligned_height;
9210        struct drm_framebuffer *fb;
9211        struct intel_framebuffer *intel_fb;
9212
9213        val = I915_READ(DSPCNTR(pipe));
9214        if (!(val & DISPLAY_PLANE_ENABLE))
9215                return;
9216
9217        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9218        if (!intel_fb) {
9219                DRM_DEBUG_KMS("failed to alloc fb\n");
9220                return;
9221        }
9222
9223        fb = &intel_fb->base;
9224
9225        if (INTEL_INFO(dev)->gen >= 4) {
9226                if (val & DISPPLANE_TILED) {
9227                        plane_config->tiling = I915_TILING_X;
9228                        fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9229                }
9230        }
9231
9232        pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9233        fourcc = i9xx_format_to_fourcc(pixel_format);
9234        fb->pixel_format = fourcc;
9235        fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9236
9237        base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9238        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9239                offset = I915_READ(DSPOFFSET(pipe));
9240        } else {
9241                if (plane_config->tiling)
9242                        offset = I915_READ(DSPTILEOFF(pipe));
9243                else
9244                        offset = I915_READ(DSPLINOFF(pipe));
9245        }
9246        plane_config->base = base;
9247
9248        val = I915_READ(PIPESRC(pipe));
9249        fb->width = ((val >> 16) & 0xfff) + 1;
9250        fb->height = ((val >> 0) & 0xfff) + 1;
9251
9252        val = I915_READ(DSPSTRIDE(pipe));
9253        fb->pitches[0] = val & 0xffffffc0;
9254
9255        aligned_height = intel_fb_align_height(dev, fb->height,
9256                                               fb->pixel_format,
9257                                               fb->modifier[0]);
9258
9259        plane_config->size = fb->pitches[0] * aligned_height;
9260
9261        DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9262                      pipe_name(pipe), fb->width, fb->height,
9263                      fb->bits_per_pixel, base, fb->pitches[0],
9264                      plane_config->size);
9265
9266        plane_config->fb = intel_fb;
9267}
9268
9269static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9270                                     struct intel_crtc_state *pipe_config)
9271{
9272        struct drm_device *dev = crtc->base.dev;
9273        struct drm_i915_private *dev_priv = dev->dev_private;
9274        enum intel_display_power_domain power_domain;
9275        uint32_t tmp;
9276        bool ret;
9277
9278        power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9279        if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9280                return false;
9281
9282        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9283        pipe_config->shared_dpll = NULL;
9284
9285        ret = false;
9286        tmp = I915_READ(PIPECONF(crtc->pipe));
9287        if (!(tmp & PIPECONF_ENABLE))
9288                goto out;
9289
9290        switch (tmp & PIPECONF_BPC_MASK) {
9291        case PIPECONF_6BPC:
9292                pipe_config->pipe_bpp = 18;
9293                break;
9294        case PIPECONF_8BPC:
9295                pipe_config->pipe_bpp = 24;
9296                break;
9297        case PIPECONF_10BPC:
9298                pipe_config->pipe_bpp = 30;
9299                break;
9300        case PIPECONF_12BPC:
9301                pipe_config->pipe_bpp = 36;
9302                break;
9303        default:
9304                break;
9305        }
9306
9307        if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9308                pipe_config->limited_color_range = true;
9309
9310        if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9311                struct intel_shared_dpll *pll;
9312                enum intel_dpll_id pll_id;
9313
9314                pipe_config->has_pch_encoder = true;
9315
9316                tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9317                pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9318                                          FDI_DP_PORT_WIDTH_SHIFT) + 1;
9319
9320                ironlake_get_fdi_m_n_config(crtc, pipe_config);
9321
9322                if (HAS_PCH_IBX(dev_priv)) {
9323                        pll_id = (enum intel_dpll_id) crtc->pipe;
9324                } else {
9325                        tmp = I915_READ(PCH_DPLL_SEL);
9326                        if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9327                                pll_id = DPLL_ID_PCH_PLL_B;
9328                        else
9329                                pll_id= DPLL_ID_PCH_PLL_A;
9330                }
9331
9332                pipe_config->shared_dpll =
9333                        intel_get_shared_dpll_by_id(dev_priv, pll_id);
9334                pll = pipe_config->shared_dpll;
9335
9336                WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9337                                                 &pipe_config->dpll_hw_state));
9338
9339                tmp = pipe_config->dpll_hw_state.dpll;
9340                pipe_config->pixel_multiplier =
9341                        ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9342                         >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9343
9344                ironlake_pch_clock_get(crtc, pipe_config);
9345        } else {
9346                pipe_config->pixel_multiplier = 1;
9347        }
9348
9349        intel_get_pipe_timings(crtc, pipe_config);
9350        intel_get_pipe_src_size(crtc, pipe_config);
9351
9352        ironlake_get_pfit_config(crtc, pipe_config);
9353
9354        ret = true;
9355
9356out:
9357        intel_display_power_put(dev_priv, power_domain);
9358
9359        return ret;
9360}
9361
9362static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9363{
9364        struct drm_device *dev = dev_priv->dev;
9365        struct intel_crtc *crtc;
9366
9367        for_each_intel_crtc(dev, crtc)
9368                I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9369                     pipe_name(crtc->pipe));
9370
9371        I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9372        I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9373        I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9374        I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9375        I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9376        I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9377             "CPU PWM1 enabled\n");
9378        if (IS_HASWELL(dev))
9379                I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9380                     "CPU PWM2 enabled\n");
9381        I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9382             "PCH PWM1 enabled\n");
9383        I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9384             "Utility pin enabled\n");
9385        I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9386
9387        /*
9388         * In theory we can still leave IRQs enabled, as long as only the HPD
9389         * interrupts remain enabled. We used to check for that, but since it's
9390         * gen-specific and since we only disable LCPLL after we fully disable
9391         * the interrupts, the check below should be enough.
9392         */
9393        I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9394}
9395
9396static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9397{
9398        struct drm_device *dev = dev_priv->dev;
9399
9400        if (IS_HASWELL(dev))
9401                return I915_READ(D_COMP_HSW);
9402        else
9403                return I915_READ(D_COMP_BDW);
9404}
9405
9406static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9407{
9408        struct drm_device *dev = dev_priv->dev;
9409
9410        if (IS_HASWELL(dev)) {
9411                mutex_lock(&dev_priv->rps.hw_lock);
9412                if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9413                                            val))
9414                        DRM_ERROR("Failed to write to D_COMP\n");
9415                mutex_unlock(&dev_priv->rps.hw_lock);
9416        } else {
9417                I915_WRITE(D_COMP_BDW, val);
9418                POSTING_READ(D_COMP_BDW);
9419        }
9420}
9421
9422/*
9423 * This function implements pieces of two sequences from BSpec:
9424 * - Sequence for display software to disable LCPLL
9425 * - Sequence for display software to allow package C8+
9426 * The steps implemented here are just the steps that actually touch the LCPLL
9427 * register. Callers should take care of disabling all the display engine
9428 * functions, doing the mode unset, fixing interrupts, etc.
9429 */
9430static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9431                              bool switch_to_fclk, bool allow_power_down)
9432{
9433        uint32_t val;
9434
9435        assert_can_disable_lcpll(dev_priv);
9436
9437        val = I915_READ(LCPLL_CTL);
9438
9439        if (switch_to_fclk) {
9440                val |= LCPLL_CD_SOURCE_FCLK;
9441                I915_WRITE(LCPLL_CTL, val);
9442
9443                if (wait_for_us(I915_READ(LCPLL_CTL) &
9444                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9445                        DRM_ERROR("Switching to FCLK failed\n");
9446
9447                val = I915_READ(LCPLL_CTL);
9448        }
9449
9450        val |= LCPLL_PLL_DISABLE;
9451        I915_WRITE(LCPLL_CTL, val);
9452        POSTING_READ(LCPLL_CTL);
9453
9454        if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9455                DRM_ERROR("LCPLL still locked\n");
9456
9457        val = hsw_read_dcomp(dev_priv);
9458        val |= D_COMP_COMP_DISABLE;
9459        hsw_write_dcomp(dev_priv, val);
9460        ndelay(100);
9461
9462        if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9463                     1))
9464                DRM_ERROR("D_COMP RCOMP still in progress\n");
9465
9466        if (allow_power_down) {
9467                val = I915_READ(LCPLL_CTL);
9468                val |= LCPLL_POWER_DOWN_ALLOW;
9469                I915_WRITE(LCPLL_CTL, val);
9470                POSTING_READ(LCPLL_CTL);
9471        }
9472}
9473
9474/*
9475 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9476 * source.
9477 */
9478static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9479{
9480        uint32_t val;
9481
9482        val = I915_READ(LCPLL_CTL);
9483
9484        if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9485                    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9486                return;
9487
9488        /*
9489         * Make sure we're not on PC8 state before disabling PC8, otherwise
9490         * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9491         */
9492        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9493
9494        if (val & LCPLL_POWER_DOWN_ALLOW) {
9495                val &= ~LCPLL_POWER_DOWN_ALLOW;
9496                I915_WRITE(LCPLL_CTL, val);
9497                POSTING_READ(LCPLL_CTL);
9498        }
9499
9500        val = hsw_read_dcomp(dev_priv);
9501        val |= D_COMP_COMP_FORCE;
9502        val &= ~D_COMP_COMP_DISABLE;
9503        hsw_write_dcomp(dev_priv, val);
9504
9505        val = I915_READ(LCPLL_CTL);
9506        val &= ~LCPLL_PLL_DISABLE;
9507        I915_WRITE(LCPLL_CTL, val);
9508
9509        if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9510                DRM_ERROR("LCPLL not locked yet\n");
9511
9512        if (val & LCPLL_CD_SOURCE_FCLK) {
9513                val = I915_READ(LCPLL_CTL);
9514                val &= ~LCPLL_CD_SOURCE_FCLK;
9515                I915_WRITE(LCPLL_CTL, val);
9516
9517                if (wait_for_us((I915_READ(LCPLL_CTL) &
9518                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9519                        DRM_ERROR("Switching back to LCPLL failed\n");
9520        }
9521
9522        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9523        intel_update_cdclk(dev_priv->dev);
9524}
9525
9526/*
9527 * Package states C8 and deeper are really deep PC states that can only be
9528 * reached when all the devices on the system allow it, so even if the graphics
9529 * device allows PC8+, it doesn't mean the system will actually get to these
9530 * states. Our driver only allows PC8+ when going into runtime PM.
9531 *
9532 * The requirements for PC8+ are that all the outputs are disabled, the power
9533 * well is disabled and most interrupts are disabled, and these are also
9534 * requirements for runtime PM. When these conditions are met, we manually do
9535 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9536 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9537 * hang the machine.
9538 *
9539 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9540 * the state of some registers, so when we come back from PC8+ we need to
9541 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9542 * need to take care of the registers kept by RC6. Notice that this happens even
9543 * if we don't put the device in PCI D3 state (which is what currently happens
9544 * because of the runtime PM support).
9545 *
9546 * For more, read "Display Sequences for Package C8" on the hardware
9547 * documentation.
9548 */
9549void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9550{
9551        struct drm_device *dev = dev_priv->dev;
9552        uint32_t val;
9553
9554        DRM_DEBUG_KMS("Enabling package C8+\n");
9555
9556        if (HAS_PCH_LPT_LP(dev)) {
9557                val = I915_READ(SOUTH_DSPCLK_GATE_D);
9558                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9559                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9560        }
9561
9562        lpt_disable_clkout_dp(dev);
9563        hsw_disable_lcpll(dev_priv, true, true);
9564}
9565
9566void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9567{
9568        struct drm_device *dev = dev_priv->dev;
9569        uint32_t val;
9570
9571        DRM_DEBUG_KMS("Disabling package C8+\n");
9572
9573        hsw_restore_lcpll(dev_priv);
9574        lpt_init_pch_refclk(dev);
9575
9576        if (HAS_PCH_LPT_LP(dev)) {
9577                val = I915_READ(SOUTH_DSPCLK_GATE_D);
9578                val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9579                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9580        }
9581}
9582
9583static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9584{
9585        struct drm_device *dev = old_state->dev;
9586        struct intel_atomic_state *old_intel_state =
9587                to_intel_atomic_state(old_state);
9588        unsigned int req_cdclk = old_intel_state->dev_cdclk;
9589
9590        broxton_set_cdclk(to_i915(dev), req_cdclk);
9591}
9592
9593/* compute the max rate for new configuration */
9594static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9595{
9596        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9597        struct drm_i915_private *dev_priv = state->dev->dev_private;
9598        struct drm_crtc *crtc;
9599        struct drm_crtc_state *cstate;
9600        struct intel_crtc_state *crtc_state;
9601        unsigned max_pixel_rate = 0, i;
9602        enum pipe pipe;
9603
9604        memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9605               sizeof(intel_state->min_pixclk));
9606
9607        for_each_crtc_in_state(state, crtc, cstate, i) {
9608                int pixel_rate;
9609
9610                crtc_state = to_intel_crtc_state(cstate);
9611                if (!crtc_state->base.enable) {
9612                        intel_state->min_pixclk[i] = 0;
9613                        continue;
9614                }
9615
9616                pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9617
9618                /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9619                if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
9620                        pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9621
9622                intel_state->min_pixclk[i] = pixel_rate;
9623        }
9624
9625        for_each_pipe(dev_priv, pipe)
9626                max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9627
9628        return max_pixel_rate;
9629}
9630
9631static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9632{
9633        struct drm_i915_private *dev_priv = dev->dev_private;
9634        uint32_t val, data;
9635        int ret;
9636
9637        if (WARN((I915_READ(LCPLL_CTL) &
9638                  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9639                   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9640                   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9641                   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9642                 "trying to change cdclk frequency with cdclk not enabled\n"))
9643                return;
9644
9645        mutex_lock(&dev_priv->rps.hw_lock);
9646        ret = sandybridge_pcode_write(dev_priv,
9647                                      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9648        mutex_unlock(&dev_priv->rps.hw_lock);
9649        if (ret) {
9650                DRM_ERROR("failed to inform pcode about cdclk change\n");
9651                return;
9652        }
9653
9654        val = I915_READ(LCPLL_CTL);
9655        val |= LCPLL_CD_SOURCE_FCLK;
9656        I915_WRITE(LCPLL_CTL, val);
9657
9658        if (wait_for_us(I915_READ(LCPLL_CTL) &
9659                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9660                DRM_ERROR("Switching to FCLK failed\n");
9661
9662        val = I915_READ(LCPLL_CTL);
9663        val &= ~LCPLL_CLK_FREQ_MASK;
9664
9665        switch (cdclk) {
9666        case 450000:
9667                val |= LCPLL_CLK_FREQ_450;
9668                data = 0;
9669                break;
9670        case 540000:
9671                val |= LCPLL_CLK_FREQ_54O_BDW;
9672                data = 1;
9673                break;
9674        case 337500:
9675                val |= LCPLL_CLK_FREQ_337_5_BDW;
9676                data = 2;
9677                break;
9678        case 675000:
9679                val |= LCPLL_CLK_FREQ_675_BDW;
9680                data = 3;
9681                break;
9682        default:
9683                WARN(1, "invalid cdclk frequency\n");
9684                return;
9685        }
9686
9687        I915_WRITE(LCPLL_CTL, val);
9688
9689        val = I915_READ(LCPLL_CTL);
9690        val &= ~LCPLL_CD_SOURCE_FCLK;
9691        I915_WRITE(LCPLL_CTL, val);
9692
9693        if (wait_for_us((I915_READ(LCPLL_CTL) &
9694                        LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9695                DRM_ERROR("Switching back to LCPLL failed\n");
9696
9697        mutex_lock(&dev_priv->rps.hw_lock);
9698        sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9699        mutex_unlock(&dev_priv->rps.hw_lock);
9700
9701        I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9702
9703        intel_update_cdclk(dev);
9704
9705        WARN(cdclk != dev_priv->cdclk_freq,
9706             "cdclk requested %d kHz but got %d kHz\n",
9707             cdclk, dev_priv->cdclk_freq);
9708}
9709
9710static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9711{
9712        struct drm_i915_private *dev_priv = to_i915(state->dev);
9713        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9714        int max_pixclk = ilk_max_pixel_rate(state);
9715        int cdclk;
9716
9717        /*
9718         * FIXME should also account for plane ratio
9719         * once 64bpp pixel formats are supported.
9720         */
9721        if (max_pixclk > 540000)
9722                cdclk = 675000;
9723        else if (max_pixclk > 450000)
9724                cdclk = 540000;
9725        else if (max_pixclk > 337500)
9726                cdclk = 450000;
9727        else
9728                cdclk = 337500;
9729
9730        if (cdclk > dev_priv->max_cdclk_freq) {
9731                DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9732                              cdclk, dev_priv->max_cdclk_freq);
9733                return -EINVAL;
9734        }
9735
9736        intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9737        if (!intel_state->active_crtcs)
9738                intel_state->dev_cdclk = 337500;
9739
9740        return 0;
9741}
9742
9743static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9744{
9745        struct drm_device *dev = old_state->dev;
9746        struct intel_atomic_state *old_intel_state =
9747                to_intel_atomic_state(old_state);
9748        unsigned req_cdclk = old_intel_state->dev_cdclk;
9749
9750        broadwell_set_cdclk(dev, req_cdclk);
9751}
9752
9753static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9754                                      struct intel_crtc_state *crtc_state)
9755{
9756        struct intel_encoder *intel_encoder =
9757                intel_ddi_get_crtc_new_encoder(crtc_state);
9758
9759        if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9760                if (!intel_ddi_pll_select(crtc, crtc_state))
9761                        return -EINVAL;
9762        }
9763
9764        crtc->lowfreq_avail = false;
9765
9766        return 0;
9767}
9768
9769static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9770                                enum port port,
9771                                struct intel_crtc_state *pipe_config)
9772{
9773        enum intel_dpll_id id;
9774
9775        switch (port) {
9776        case PORT_A:
9777                pipe_config->ddi_pll_sel = SKL_DPLL0;
9778                id = DPLL_ID_SKL_DPLL0;
9779                break;
9780        case PORT_B:
9781                pipe_config->ddi_pll_sel = SKL_DPLL1;
9782                id = DPLL_ID_SKL_DPLL1;
9783                break;
9784        case PORT_C:
9785                pipe_config->ddi_pll_sel = SKL_DPLL2;
9786                id = DPLL_ID_SKL_DPLL2;
9787                break;
9788        default:
9789                DRM_ERROR("Incorrect port type\n");
9790                return;
9791        }
9792
9793        pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9794}
9795
9796static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9797                                enum port port,
9798                                struct intel_crtc_state *pipe_config)
9799{
9800        enum intel_dpll_id id;
9801        u32 temp;
9802
9803        temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9804        pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9805
9806        switch (pipe_config->ddi_pll_sel) {
9807        case SKL_DPLL0:
9808                id = DPLL_ID_SKL_DPLL0;
9809                break;
9810        case SKL_DPLL1:
9811                id = DPLL_ID_SKL_DPLL1;
9812                break;
9813        case SKL_DPLL2:
9814                id = DPLL_ID_SKL_DPLL2;
9815                break;
9816        case SKL_DPLL3:
9817                id = DPLL_ID_SKL_DPLL3;
9818                break;
9819        default:
9820                MISSING_CASE(pipe_config->ddi_pll_sel);
9821                return;
9822        }
9823
9824        pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9825}
9826
9827static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9828                                enum port port,
9829                                struct intel_crtc_state *pipe_config)
9830{
9831        enum intel_dpll_id id;
9832
9833        pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9834
9835        switch (pipe_config->ddi_pll_sel) {
9836        case PORT_CLK_SEL_WRPLL1:
9837                id = DPLL_ID_WRPLL1;
9838                break;
9839        case PORT_CLK_SEL_WRPLL2:
9840                id = DPLL_ID_WRPLL2;
9841                break;
9842        case PORT_CLK_SEL_SPLL:
9843                id = DPLL_ID_SPLL;
9844                break;
9845        case PORT_CLK_SEL_LCPLL_810:
9846                id = DPLL_ID_LCPLL_810;
9847                break;
9848        case PORT_CLK_SEL_LCPLL_1350:
9849                id = DPLL_ID_LCPLL_1350;
9850                break;
9851        case PORT_CLK_SEL_LCPLL_2700:
9852                id = DPLL_ID_LCPLL_2700;
9853                break;
9854        default:
9855                MISSING_CASE(pipe_config->ddi_pll_sel);
9856                /* fall through */
9857        case PORT_CLK_SEL_NONE:
9858                return;
9859        }
9860
9861        pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9862}
9863
9864static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9865                                     struct intel_crtc_state *pipe_config,
9866                                     unsigned long *power_domain_mask)
9867{
9868        struct drm_device *dev = crtc->base.dev;
9869        struct drm_i915_private *dev_priv = dev->dev_private;
9870        enum intel_display_power_domain power_domain;
9871        u32 tmp;
9872
9873        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9874
9875        /*
9876         * XXX: Do intel_display_power_get_if_enabled before reading this (for
9877         * consistency and less surprising code; it's in always on power).
9878         */
9879        tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9880        if (tmp & TRANS_DDI_FUNC_ENABLE) {
9881                enum pipe trans_edp_pipe;
9882                switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9883                default:
9884                        WARN(1, "unknown pipe linked to edp transcoder\n");
9885                case TRANS_DDI_EDP_INPUT_A_ONOFF:
9886                case TRANS_DDI_EDP_INPUT_A_ON:
9887                        trans_edp_pipe = PIPE_A;
9888                        break;
9889                case TRANS_DDI_EDP_INPUT_B_ONOFF:
9890                        trans_edp_pipe = PIPE_B;
9891                        break;
9892                case TRANS_DDI_EDP_INPUT_C_ONOFF:
9893                        trans_edp_pipe = PIPE_C;
9894                        break;
9895                }
9896
9897                if (trans_edp_pipe == crtc->pipe)
9898                        pipe_config->cpu_transcoder = TRANSCODER_EDP;
9899        }
9900
9901        power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9902        if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9903                return false;
9904        *power_domain_mask |= BIT(power_domain);
9905
9906        tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9907
9908        return tmp & PIPECONF_ENABLE;
9909}
9910
9911static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9912                                         struct intel_crtc_state *pipe_config,
9913                                         unsigned long *power_domain_mask)
9914{
9915        struct drm_device *dev = crtc->base.dev;
9916        struct drm_i915_private *dev_priv = dev->dev_private;
9917        enum intel_display_power_domain power_domain;
9918        enum port port;
9919        enum transcoder cpu_transcoder;
9920        u32 tmp;
9921
9922        pipe_config->has_dsi_encoder = false;
9923
9924        for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9925                if (port == PORT_A)
9926                        cpu_transcoder = TRANSCODER_DSI_A;
9927                else
9928                        cpu_transcoder = TRANSCODER_DSI_C;
9929
9930                power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9931                if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9932                        continue;
9933                *power_domain_mask |= BIT(power_domain);
9934
9935                /*
9936                 * The PLL needs to be enabled with a valid divider
9937                 * configuration, otherwise accessing DSI registers will hang
9938                 * the machine. See BSpec North Display Engine
9939                 * registers/MIPI[BXT]. We can break out here early, since we
9940                 * need the same DSI PLL to be enabled for both DSI ports.
9941                 */
9942                if (!intel_dsi_pll_is_enabled(dev_priv))
9943                        break;
9944
9945                /* XXX: this works for video mode only */
9946                tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9947                if (!(tmp & DPI_ENABLE))
9948                        continue;
9949
9950                tmp = I915_READ(MIPI_CTRL(port));
9951                if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9952                        continue;
9953
9954                pipe_config->cpu_transcoder = cpu_transcoder;
9955                pipe_config->has_dsi_encoder = true;
9956                break;
9957        }
9958
9959        return pipe_config->has_dsi_encoder;
9960}
9961
9962static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9963                                       struct intel_crtc_state *pipe_config)
9964{
9965        struct drm_device *dev = crtc->base.dev;
9966        struct drm_i915_private *dev_priv = dev->dev_private;
9967        struct intel_shared_dpll *pll;
9968        enum port port;
9969        uint32_t tmp;
9970
9971        tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9972
9973        port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9974
9975        if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9976                skylake_get_ddi_pll(dev_priv, port, pipe_config);
9977        else if (IS_BROXTON(dev))
9978                bxt_get_ddi_pll(dev_priv, port, pipe_config);
9979        else
9980                haswell_get_ddi_pll(dev_priv, port, pipe_config);
9981
9982        pll = pipe_config->shared_dpll;
9983        if (pll) {
9984                WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9985                                                 &pipe_config->dpll_hw_state));
9986        }
9987
9988        /*
9989         * Haswell has only FDI/PCH transcoder A. It is which is connected to
9990         * DDI E. So just check whether this pipe is wired to DDI E and whether
9991         * the PCH transcoder is on.
9992         */
9993        if (INTEL_INFO(dev)->gen < 9 &&
9994            (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9995                pipe_config->has_pch_encoder = true;
9996
9997                tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9998                pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9999                                          FDI_DP_PORT_WIDTH_SHIFT) + 1;
10000
10001                ironlake_get_fdi_m_n_config(crtc, pipe_config);
10002        }
10003}
10004
10005static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10006                                    struct intel_crtc_state *pipe_config)
10007{
10008        struct drm_device *dev = crtc->base.dev;
10009        struct drm_i915_private *dev_priv = dev->dev_private;
10010        enum intel_display_power_domain power_domain;
10011        unsigned long power_domain_mask;
10012        bool active;
10013
10014        power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10015        if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10016                return false;
10017        power_domain_mask = BIT(power_domain);
10018
10019        pipe_config->shared_dpll = NULL;
10020
10021        active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10022
10023        if (IS_BROXTON(dev_priv)) {
10024                bxt_get_dsi_transcoder_state(crtc, pipe_config,
10025                                             &power_domain_mask);
10026                WARN_ON(active && pipe_config->has_dsi_encoder);
10027                if (pipe_config->has_dsi_encoder)
10028                        active = true;
10029        }
10030
10031        if (!active)
10032                goto out;
10033
10034        if (!pipe_config->has_dsi_encoder) {
10035                haswell_get_ddi_port_state(crtc, pipe_config);
10036                intel_get_pipe_timings(crtc, pipe_config);
10037        }
10038
10039        intel_get_pipe_src_size(crtc, pipe_config);
10040
10041        pipe_config->gamma_mode =
10042                I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10043
10044        if (INTEL_INFO(dev)->gen >= 9) {
10045                skl_init_scalers(dev, crtc, pipe_config);
10046        }
10047
10048        if (INTEL_INFO(dev)->gen >= 9) {
10049                pipe_config->scaler_state.scaler_id = -1;
10050                pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10051        }
10052
10053        power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10054        if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10055                power_domain_mask |= BIT(power_domain);
10056                if (INTEL_INFO(dev)->gen >= 9)
10057                        skylake_get_pfit_config(crtc, pipe_config);
10058                else
10059                        ironlake_get_pfit_config(crtc, pipe_config);
10060        }
10061
10062        if (IS_HASWELL(dev))
10063                pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10064                        (I915_READ(IPS_CTL) & IPS_ENABLE);
10065
10066        if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10067            !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10068                pipe_config->pixel_multiplier =
10069                        I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10070        } else {
10071                pipe_config->pixel_multiplier = 1;
10072        }
10073
10074out:
10075        for_each_power_domain(power_domain, power_domain_mask)
10076                intel_display_power_put(dev_priv, power_domain);
10077
10078        return active;
10079}
10080
10081static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10082                               const struct intel_plane_state *plane_state)
10083{
10084        struct drm_device *dev = crtc->dev;
10085        struct drm_i915_private *dev_priv = dev->dev_private;
10086        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10087        uint32_t cntl = 0, size = 0;
10088
10089        if (plane_state && plane_state->visible) {
10090                unsigned int width = plane_state->base.crtc_w;
10091                unsigned int height = plane_state->base.crtc_h;
10092                unsigned int stride = roundup_pow_of_two(width) * 4;
10093
10094                switch (stride) {
10095                default:
10096                        WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10097                                  width, stride);
10098                        stride = 256;
10099                        /* fallthrough */
10100                case 256:
10101                case 512:
10102                case 1024:
10103                case 2048:
10104                        break;
10105                }
10106
10107                cntl |= CURSOR_ENABLE |
10108                        CURSOR_GAMMA_ENABLE |
10109                        CURSOR_FORMAT_ARGB |
10110                        CURSOR_STRIDE(stride);
10111
10112                size = (height << 12) | width;
10113        }
10114
10115        if (intel_crtc->cursor_cntl != 0 &&
10116            (intel_crtc->cursor_base != base ||
10117             intel_crtc->cursor_size != size ||
10118             intel_crtc->cursor_cntl != cntl)) {
10119                /* On these chipsets we can only modify the base/size/stride
10120                 * whilst the cursor is disabled.
10121                 */
10122                I915_WRITE(CURCNTR(PIPE_A), 0);
10123                POSTING_READ(CURCNTR(PIPE_A));
10124                intel_crtc->cursor_cntl = 0;
10125        }
10126
10127        if (intel_crtc->cursor_base != base) {
10128                I915_WRITE(CURBASE(PIPE_A), base);
10129                intel_crtc->cursor_base = base;
10130        }
10131
10132        if (intel_crtc->cursor_size != size) {
10133                I915_WRITE(CURSIZE, size);
10134                intel_crtc->cursor_size = size;
10135        }
10136
10137        if (intel_crtc->cursor_cntl != cntl) {
10138                I915_WRITE(CURCNTR(PIPE_A), cntl);
10139                POSTING_READ(CURCNTR(PIPE_A));
10140                intel_crtc->cursor_cntl = cntl;
10141        }
10142}
10143
10144static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10145                               const struct intel_plane_state *plane_state)
10146{
10147        struct drm_device *dev = crtc->dev;
10148        struct drm_i915_private *dev_priv = dev->dev_private;
10149        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10150        int pipe = intel_crtc->pipe;
10151        uint32_t cntl = 0;
10152
10153        if (plane_state && plane_state->visible) {
10154                cntl = MCURSOR_GAMMA_ENABLE;
10155                switch (plane_state->base.crtc_w) {
10156                        case 64:
10157                                cntl |= CURSOR_MODE_64_ARGB_AX;
10158                                break;
10159                        case 128:
10160                                cntl |= CURSOR_MODE_128_ARGB_AX;
10161                                break;
10162                        case 256:
10163                                cntl |= CURSOR_MODE_256_ARGB_AX;
10164                                break;
10165                        default:
10166                                MISSING_CASE(plane_state->base.crtc_w);
10167                                return;
10168                }
10169                cntl |= pipe << 28; /* Connect to correct pipe */
10170
10171                if (HAS_DDI(dev))
10172                        cntl |= CURSOR_PIPE_CSC_ENABLE;
10173
10174                if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10175                        cntl |= CURSOR_ROTATE_180;
10176        }
10177
10178        if (intel_crtc->cursor_cntl != cntl) {
10179                I915_WRITE(CURCNTR(pipe), cntl);
10180                POSTING_READ(CURCNTR(pipe));
10181                intel_crtc->cursor_cntl = cntl;
10182        }
10183
10184        /* and commit changes on next vblank */
10185        I915_WRITE(CURBASE(pipe), base);
10186        POSTING_READ(CURBASE(pipe));
10187
10188        intel_crtc->cursor_base = base;
10189}
10190
10191/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10192static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10193                                     const struct intel_plane_state *plane_state)
10194{
10195        struct drm_device *dev = crtc->dev;
10196        struct drm_i915_private *dev_priv = dev->dev_private;
10197        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10198        int pipe = intel_crtc->pipe;
10199        u32 base = intel_crtc->cursor_addr;
10200        u32 pos = 0;
10201
10202        if (plane_state) {
10203                int x = plane_state->base.crtc_x;
10204                int y = plane_state->base.crtc_y;
10205
10206                if (x < 0) {
10207                        pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10208                        x = -x;
10209                }
10210                pos |= x << CURSOR_X_SHIFT;
10211
10212                if (y < 0) {
10213                        pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10214                        y = -y;
10215                }
10216                pos |= y << CURSOR_Y_SHIFT;
10217
10218                /* ILK+ do this automagically */
10219                if (HAS_GMCH_DISPLAY(dev) &&
10220                    plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10221                        base += (plane_state->base.crtc_h *
10222                                 plane_state->base.crtc_w - 1) * 4;
10223                }
10224        }
10225
10226        I915_WRITE(CURPOS(pipe), pos);
10227
10228        if (IS_845G(dev) || IS_I865G(dev))
10229                i845_update_cursor(crtc, base, plane_state);
10230        else
10231                i9xx_update_cursor(crtc, base, plane_state);
10232}
10233
10234static bool cursor_size_ok(struct drm_device *dev,
10235                           uint32_t width, uint32_t height)
10236{
10237        if (width == 0 || height == 0)
10238                return false;
10239
10240        /*
10241         * 845g/865g are special in that they are only limited by
10242         * the width of their cursors, the height is arbitrary up to
10243         * the precision of the register. Everything else requires
10244         * square cursors, limited to a few power-of-two sizes.
10245         */
10246        if (IS_845G(dev) || IS_I865G(dev)) {
10247                if ((width & 63) != 0)
10248                        return false;
10249
10250                if (width > (IS_845G(dev) ? 64 : 512))
10251                        return false;
10252
10253                if (height > 1023)
10254                        return false;
10255        } else {
10256                switch (width | height) {
10257                case 256:
10258                case 128:
10259                        if (IS_GEN2(dev))
10260                                return false;
10261                case 64:
10262                        break;
10263                default:
10264                        return false;
10265                }
10266        }
10267
10268        return true;
10269}
10270
10271/* VESA 640x480x72Hz mode to set on the pipe */
10272static struct drm_display_mode load_detect_mode = {
10273        DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10274                 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10275};
10276
10277struct drm_framebuffer *
10278__intel_framebuffer_create(struct drm_device *dev,
10279                           struct drm_mode_fb_cmd2 *mode_cmd,
10280                           struct drm_i915_gem_object *obj)
10281{
10282        struct intel_framebuffer *intel_fb;
10283        int ret;
10284
10285        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10286        if (!intel_fb)
10287                return ERR_PTR(-ENOMEM);
10288
10289        ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10290        if (ret)
10291                goto err;
10292
10293        return &intel_fb->base;
10294
10295err:
10296        kfree(intel_fb);
10297        return ERR_PTR(ret);
10298}
10299
10300static struct drm_framebuffer *
10301intel_framebuffer_create(struct drm_device *dev,
10302                         struct drm_mode_fb_cmd2 *mode_cmd,
10303                         struct drm_i915_gem_object *obj)
10304{
10305        struct drm_framebuffer *fb;
10306        int ret;
10307
10308        ret = i915_mutex_lock_interruptible(dev);
10309        if (ret)
10310                return ERR_PTR(ret);
10311        fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10312        mutex_unlock(&dev->struct_mutex);
10313
10314        return fb;
10315}
10316
10317static u32
10318intel_framebuffer_pitch_for_width(int width, int bpp)
10319{
10320        u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10321        return ALIGN(pitch, 64);
10322}
10323
10324static u32
10325intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10326{
10327        u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10328        return PAGE_ALIGN(pitch * mode->vdisplay);
10329}
10330
10331static struct drm_framebuffer *
10332intel_framebuffer_create_for_mode(struct drm_device *dev,
10333                                  struct drm_display_mode *mode,
10334                                  int depth, int bpp)
10335{
10336        struct drm_framebuffer *fb;
10337        struct drm_i915_gem_object *obj;
10338        struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10339
10340        obj = i915_gem_alloc_object(dev,
10341                                    intel_framebuffer_size_for_mode(mode, bpp));
10342        if (obj == NULL)
10343                return ERR_PTR(-ENOMEM);
10344
10345        mode_cmd.width = mode->hdisplay;
10346        mode_cmd.height = mode->vdisplay;
10347        mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10348                                                                bpp);
10349        mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10350
10351        fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10352        if (IS_ERR(fb))
10353                drm_gem_object_unreference_unlocked(&obj->base);
10354
10355        return fb;
10356}
10357
10358static struct drm_framebuffer *
10359mode_fits_in_fbdev(struct drm_device *dev,
10360                   struct drm_display_mode *mode)
10361{
10362#ifdef CONFIG_DRM_FBDEV_EMULATION
10363        struct drm_i915_private *dev_priv = dev->dev_private;
10364        struct drm_i915_gem_object *obj;
10365        struct drm_framebuffer *fb;
10366
10367        if (!dev_priv->fbdev)
10368                return NULL;
10369
10370        if (!dev_priv->fbdev->fb)
10371                return NULL;
10372
10373        obj = dev_priv->fbdev->fb->obj;
10374        BUG_ON(!obj);
10375
10376        fb = &dev_priv->fbdev->fb->base;
10377        if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10378                                                               fb->bits_per_pixel))
10379                return NULL;
10380
10381        if (obj->base.size < mode->vdisplay * fb->pitches[0])
10382                return NULL;
10383
10384        drm_framebuffer_reference(fb);
10385        return fb;
10386#else
10387        return NULL;
10388#endif
10389}
10390
10391static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10392                                           struct drm_crtc *crtc,
10393                                           struct drm_display_mode *mode,
10394                                           struct drm_framebuffer *fb,
10395                                           int x, int y)
10396{
10397        struct drm_plane_state *plane_state;
10398        int hdisplay, vdisplay;
10399        int ret;
10400
10401        plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10402        if (IS_ERR(plane_state))
10403                return PTR_ERR(plane_state);
10404
10405        if (mode)
10406                drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10407        else
10408                hdisplay = vdisplay = 0;
10409
10410        ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10411        if (ret)
10412                return ret;
10413        drm_atomic_set_fb_for_plane(plane_state, fb);
10414        plane_state->crtc_x = 0;
10415        plane_state->crtc_y = 0;
10416        plane_state->crtc_w = hdisplay;
10417        plane_state->crtc_h = vdisplay;
10418        plane_state->src_x = x << 16;
10419        plane_state->src_y = y << 16;
10420        plane_state->src_w = hdisplay << 16;
10421        plane_state->src_h = vdisplay << 16;
10422
10423        return 0;
10424}
10425
10426bool intel_get_load_detect_pipe(struct drm_connector *connector,
10427                                struct drm_display_mode *mode,
10428                                struct intel_load_detect_pipe *old,
10429                                struct drm_modeset_acquire_ctx *ctx)
10430{
10431        struct intel_crtc *intel_crtc;
10432        struct intel_encoder *intel_encoder =
10433                intel_attached_encoder(connector);
10434        struct drm_crtc *possible_crtc;
10435        struct drm_encoder *encoder = &intel_encoder->base;
10436        struct drm_crtc *crtc = NULL;
10437        struct drm_device *dev = encoder->dev;
10438        struct drm_framebuffer *fb;
10439        struct drm_mode_config *config = &dev->mode_config;
10440        struct drm_atomic_state *state = NULL, *restore_state = NULL;
10441        struct drm_connector_state *connector_state;
10442        struct intel_crtc_state *crtc_state;
10443        int ret, i = -1;
10444
10445        DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10446                      connector->base.id, connector->name,
10447                      encoder->base.id, encoder->name);
10448
10449        old->restore_state = NULL;
10450
10451retry:
10452        ret = drm_modeset_lock(&config->connection_mutex, ctx);
10453        if (ret)
10454                goto fail;
10455
10456        /*
10457         * Algorithm gets a little messy:
10458         *
10459         *   - if the connector already has an assigned crtc, use it (but make
10460         *     sure it's on first)
10461         *
10462         *   - try to find the first unused crtc that can drive this connector,
10463         *     and use that if we find one
10464         */
10465
10466        /* See if we already have a CRTC for this connector */
10467        if (connector->state->crtc) {
10468                crtc = connector->state->crtc;
10469
10470                ret = drm_modeset_lock(&crtc->mutex, ctx);
10471                if (ret)
10472                        goto fail;
10473
10474                /* Make sure the crtc and connector are running */
10475                goto found;
10476        }
10477
10478        /* Find an unused one (if possible) */
10479        for_each_crtc(dev, possible_crtc) {
10480                i++;
10481                if (!(encoder->possible_crtcs & (1 << i)))
10482                        continue;
10483
10484                ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10485                if (ret)
10486                        goto fail;
10487
10488                if (possible_crtc->state->enable) {
10489                        drm_modeset_unlock(&possible_crtc->mutex);
10490                        continue;
10491                }
10492
10493                crtc = possible_crtc;
10494                break;
10495        }
10496
10497        /*
10498         * If we didn't find an unused CRTC, don't use any.
10499         */
10500        if (!crtc) {
10501                DRM_DEBUG_KMS("no pipe available for load-detect\n");
10502                goto fail;
10503        }
10504
10505found:
10506        intel_crtc = to_intel_crtc(crtc);
10507
10508        ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10509        if (ret)
10510                goto fail;
10511
10512        state = drm_atomic_state_alloc(dev);
10513        restore_state = drm_atomic_state_alloc(dev);
10514        if (!state || !restore_state) {
10515                ret = -ENOMEM;
10516                goto fail;
10517        }
10518
10519        state->acquire_ctx = ctx;
10520        restore_state->acquire_ctx = ctx;
10521
10522        connector_state = drm_atomic_get_connector_state(state, connector);
10523        if (IS_ERR(connector_state)) {
10524                ret = PTR_ERR(connector_state);
10525                goto fail;
10526        }
10527
10528        ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10529        if (ret)
10530                goto fail;
10531
10532        crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10533        if (IS_ERR(crtc_state)) {
10534                ret = PTR_ERR(crtc_state);
10535                goto fail;
10536        }
10537
10538        crtc_state->base.active = crtc_state->base.enable = true;
10539
10540        if (!mode)
10541                mode = &load_detect_mode;
10542
10543        /* We need a framebuffer large enough to accommodate all accesses
10544         * that the plane may generate whilst we perform load detection.
10545         * We can not rely on the fbcon either being present (we get called
10546         * during its initialisation to detect all boot displays, or it may
10547         * not even exist) or that it is large enough to satisfy the
10548         * requested mode.
10549         */
10550        fb = mode_fits_in_fbdev(dev, mode);
10551        if (fb == NULL) {
10552                DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10553                fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10554        } else
10555                DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10556        if (IS_ERR(fb)) {
10557                DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10558                goto fail;
10559        }
10560
10561        ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10562        if (ret)
10563                goto fail;
10564
10565        drm_framebuffer_unreference(fb);
10566
10567        ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10568        if (ret)
10569                goto fail;
10570
10571        ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10572        if (!ret)
10573                ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10574        if (!ret)
10575                ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10576        if (ret) {
10577                DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10578                goto fail;
10579        }
10580
10581        ret = drm_atomic_commit(state);
10582        if (ret) {
10583                DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10584                goto fail;
10585        }
10586
10587        old->restore_state = restore_state;
10588
10589        /* let the connector get through one full cycle before testing */
10590        intel_wait_for_vblank(dev, intel_crtc->pipe);
10591        return true;
10592
10593fail:
10594        drm_atomic_state_free(state);
10595        drm_atomic_state_free(restore_state);
10596        restore_state = state = NULL;
10597
10598        if (ret == -EDEADLK) {
10599                drm_modeset_backoff(ctx);
10600                goto retry;
10601        }
10602
10603        return false;
10604}
10605
10606void intel_release_load_detect_pipe(struct drm_connector *connector,
10607                                    struct intel_load_detect_pipe *old,
10608                                    struct drm_modeset_acquire_ctx *ctx)
10609{
10610        struct intel_encoder *intel_encoder =
10611                intel_attached_encoder(connector);
10612        struct drm_encoder *encoder = &intel_encoder->base;
10613        struct drm_atomic_state *state = old->restore_state;
10614        int ret;
10615
10616        DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10617                      connector->base.id, connector->name,
10618                      encoder->base.id, encoder->name);
10619
10620        if (!state)
10621                return;
10622
10623        ret = drm_atomic_commit(state);
10624        if (ret) {
10625                DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10626                drm_atomic_state_free(state);
10627        }
10628}
10629
10630static int i9xx_pll_refclk(struct drm_device *dev,
10631                           const struct intel_crtc_state *pipe_config)
10632{
10633        struct drm_i915_private *dev_priv = dev->dev_private;
10634        u32 dpll = pipe_config->dpll_hw_state.dpll;
10635
10636        if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10637                return dev_priv->vbt.lvds_ssc_freq;
10638        else if (HAS_PCH_SPLIT(dev))
10639                return 120000;
10640        else if (!IS_GEN2(dev))
10641                return 96000;
10642        else
10643                return 48000;
10644}
10645
10646/* Returns the clock of the currently programmed mode of the given pipe. */
10647static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10648                                struct intel_crtc_state *pipe_config)
10649{
10650        struct drm_device *dev = crtc->base.dev;
10651        struct drm_i915_private *dev_priv = dev->dev_private;
10652        int pipe = pipe_config->cpu_transcoder;
10653        u32 dpll = pipe_config->dpll_hw_state.dpll;
10654        u32 fp;
10655        intel_clock_t clock;
10656        int port_clock;
10657        int refclk = i9xx_pll_refclk(dev, pipe_config);
10658
10659        if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10660                fp = pipe_config->dpll_hw_state.fp0;
10661        else
10662                fp = pipe_config->dpll_hw_state.fp1;
10663
10664        clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10665        if (IS_PINEVIEW(dev)) {
10666                clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10667                clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10668        } else {
10669                clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10670                clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10671        }
10672
10673        if (!IS_GEN2(dev)) {
10674                if (IS_PINEVIEW(dev))
10675                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10676                                DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10677                else
10678                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10679                               DPLL_FPA01_P1_POST_DIV_SHIFT);
10680
10681                switch (dpll & DPLL_MODE_MASK) {
10682                case DPLLB_MODE_DAC_SERIAL:
10683                        clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10684                                5 : 10;
10685                        break;
10686                case DPLLB_MODE_LVDS:
10687                        clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10688                                7 : 14;
10689                        break;
10690                default:
10691                        DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10692                                  "mode\n", (int)(dpll & DPLL_MODE_MASK));
10693                        return;
10694                }
10695
10696                if (IS_PINEVIEW(dev))
10697                        port_clock = pnv_calc_dpll_params(refclk, &clock);
10698                else
10699                        port_clock = i9xx_calc_dpll_params(refclk, &clock);
10700        } else {
10701                u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10702                bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10703
10704                if (is_lvds) {
10705                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10706                                       DPLL_FPA01_P1_POST_DIV_SHIFT);
10707
10708                        if (lvds & LVDS_CLKB_POWER_UP)
10709                                clock.p2 = 7;
10710                        else
10711                                clock.p2 = 14;
10712                } else {
10713                        if (dpll & PLL_P1_DIVIDE_BY_TWO)
10714                                clock.p1 = 2;
10715                        else {
10716                                clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10717                                            DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10718                        }
10719                        if (dpll & PLL_P2_DIVIDE_BY_4)
10720                                clock.p2 = 4;
10721                        else
10722                                clock.p2 = 2;
10723                }
10724
10725                port_clock = i9xx_calc_dpll_params(refclk, &clock);
10726        }
10727
10728        /*
10729         * This value includes pixel_multiplier. We will use
10730         * port_clock to compute adjusted_mode.crtc_clock in the
10731         * encoder's get_config() function.
10732         */
10733        pipe_config->port_clock = port_clock;
10734}
10735
10736int intel_dotclock_calculate(int link_freq,
10737                             const struct intel_link_m_n *m_n)
10738{
10739        /*
10740         * The calculation for the data clock is:
10741         * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10742         * But we want to avoid losing precison if possible, so:
10743         * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10744         *
10745         * and the link clock is simpler:
10746         * link_clock = (m * link_clock) / n
10747         */
10748
10749        if (!m_n->link_n)
10750                return 0;
10751
10752        return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10753}
10754
10755static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10756                                   struct intel_crtc_state *pipe_config)
10757{
10758        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10759
10760        /* read out port_clock from the DPLL */
10761        i9xx_crtc_clock_get(crtc, pipe_config);
10762
10763        /*
10764         * In case there is an active pipe without active ports,
10765         * we may need some idea for the dotclock anyway.
10766         * Calculate one based on the FDI configuration.
10767         */
10768        pipe_config->base.adjusted_mode.crtc_clock =
10769                intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10770                                         &pipe_config->fdi_m_n);
10771}
10772
10773/** Returns the currently programmed mode of the given pipe. */
10774struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10775                                             struct drm_crtc *crtc)
10776{
10777        struct drm_i915_private *dev_priv = dev->dev_private;
10778        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10779        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10780        struct drm_display_mode *mode;
10781        struct intel_crtc_state *pipe_config;
10782        int htot = I915_READ(HTOTAL(cpu_transcoder));
10783        int hsync = I915_READ(HSYNC(cpu_transcoder));
10784        int vtot = I915_READ(VTOTAL(cpu_transcoder));
10785        int vsync = I915_READ(VSYNC(cpu_transcoder));
10786        enum pipe pipe = intel_crtc->pipe;
10787
10788        mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10789        if (!mode)
10790                return NULL;
10791
10792        pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10793        if (!pipe_config) {
10794                kfree(mode);
10795                return NULL;
10796        }
10797
10798        /*
10799         * Construct a pipe_config sufficient for getting the clock info
10800         * back out of crtc_clock_get.
10801         *
10802         * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10803         * to use a real value here instead.
10804         */
10805        pipe_config->cpu_transcoder = (enum transcoder) pipe;
10806        pipe_config->pixel_multiplier = 1;
10807        pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10808        pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10809        pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10810        i9xx_crtc_clock_get(intel_crtc, pipe_config);
10811
10812        mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10813        mode->hdisplay = (htot & 0xffff) + 1;
10814        mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10815        mode->hsync_start = (hsync & 0xffff) + 1;
10816        mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10817        mode->vdisplay = (vtot & 0xffff) + 1;
10818        mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10819        mode->vsync_start = (vsync & 0xffff) + 1;
10820        mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10821
10822        drm_mode_set_name(mode);
10823
10824        kfree(pipe_config);
10825
10826        return mode;
10827}
10828
10829void intel_mark_busy(struct drm_device *dev)
10830{
10831        struct drm_i915_private *dev_priv = dev->dev_private;
10832
10833        if (dev_priv->mm.busy)
10834                return;
10835
10836        intel_runtime_pm_get(dev_priv);
10837        i915_update_gfx_val(dev_priv);
10838        if (INTEL_INFO(dev)->gen >= 6)
10839                gen6_rps_busy(dev_priv);
10840        dev_priv->mm.busy = true;
10841}
10842
10843void intel_mark_idle(struct drm_device *dev)
10844{
10845        struct drm_i915_private *dev_priv = dev->dev_private;
10846
10847        if (!dev_priv->mm.busy)
10848                return;
10849
10850        dev_priv->mm.busy = false;
10851
10852        if (INTEL_INFO(dev)->gen >= 6)
10853                gen6_rps_idle(dev->dev_private);
10854
10855        intel_runtime_pm_put(dev_priv);
10856}
10857
10858static void intel_crtc_destroy(struct drm_crtc *crtc)
10859{
10860        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10861        struct drm_device *dev = crtc->dev;
10862        struct intel_unpin_work *work;
10863
10864        spin_lock_irq(&dev->event_lock);
10865        work = intel_crtc->unpin_work;
10866        intel_crtc->unpin_work = NULL;
10867        spin_unlock_irq(&dev->event_lock);
10868
10869        if (work) {
10870                cancel_work_sync(&work->work);
10871                kfree(work);
10872        }
10873
10874        drm_crtc_cleanup(crtc);
10875
10876        kfree(intel_crtc);
10877}
10878
10879static void intel_unpin_work_fn(struct work_struct *__work)
10880{
10881        struct intel_unpin_work *work =
10882                container_of(__work, struct intel_unpin_work, work);
10883        struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10884        struct drm_device *dev = crtc->base.dev;
10885        struct drm_plane *primary = crtc->base.primary;
10886
10887        mutex_lock(&dev->struct_mutex);
10888        intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
10889        drm_gem_object_unreference(&work->pending_flip_obj->base);
10890
10891        if (work->flip_queued_req)
10892                i915_gem_request_assign(&work->flip_queued_req, NULL);
10893        mutex_unlock(&dev->struct_mutex);
10894
10895        intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10896        intel_fbc_post_update(crtc);
10897        drm_framebuffer_unreference(work->old_fb);
10898
10899        BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10900        atomic_dec(&crtc->unpin_work_count);
10901
10902        kfree(work);
10903}
10904
10905static void do_intel_finish_page_flip(struct drm_device *dev,
10906                                      struct drm_crtc *crtc)
10907{
10908        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10909        struct intel_unpin_work *work;
10910        unsigned long flags;
10911
10912        /* Ignore early vblank irqs */
10913        if (intel_crtc == NULL)
10914                return;
10915
10916        /*
10917         * This is called both by irq handlers and the reset code (to complete
10918         * lost pageflips) so needs the full irqsave spinlocks.
10919         */
10920        spin_lock_irqsave(&dev->event_lock, flags);
10921        work = intel_crtc->unpin_work;
10922
10923        /* Ensure we don't miss a work->pending update ... */
10924        smp_rmb();
10925
10926        if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10927                spin_unlock_irqrestore(&dev->event_lock, flags);
10928                return;
10929        }
10930
10931        page_flip_completed(intel_crtc);
10932
10933        spin_unlock_irqrestore(&dev->event_lock, flags);
10934}
10935
10936void intel_finish_page_flip(struct drm_device *dev, int pipe)
10937{
10938        struct drm_i915_private *dev_priv = dev->dev_private;
10939        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10940
10941        do_intel_finish_page_flip(dev, crtc);
10942}
10943
10944void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10945{
10946        struct drm_i915_private *dev_priv = dev->dev_private;
10947        struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10948
10949        do_intel_finish_page_flip(dev, crtc);
10950}
10951
10952/* Is 'a' after or equal to 'b'? */
10953static bool g4x_flip_count_after_eq(u32 a, u32 b)
10954{
10955        return !((a - b) & 0x80000000);
10956}
10957
10958static bool page_flip_finished(struct intel_crtc *crtc)
10959{
10960        struct drm_device *dev = crtc->base.dev;
10961        struct drm_i915_private *dev_priv = dev->dev_private;
10962        unsigned reset_counter;
10963
10964        reset_counter = i915_reset_counter(&dev_priv->gpu_error);
10965        if (crtc->reset_counter != reset_counter)
10966                return true;
10967
10968        /*
10969         * The relevant registers doen't exist on pre-ctg.
10970         * As the flip done interrupt doesn't trigger for mmio
10971         * flips on gmch platforms, a flip count check isn't
10972         * really needed there. But since ctg has the registers,
10973         * include it in the check anyway.
10974         */
10975        if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10976                return true;
10977
10978        /*
10979         * BDW signals flip done immediately if the plane
10980         * is disabled, even if the plane enable is already
10981         * armed to occur at the next vblank :(
10982         */
10983
10984        /*
10985         * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10986         * used the same base address. In that case the mmio flip might
10987         * have completed, but the CS hasn't even executed the flip yet.
10988         *
10989         * A flip count check isn't enough as the CS might have updated
10990         * the base address just after start of vblank, but before we
10991         * managed to process the interrupt. This means we'd complete the
10992         * CS flip too soon.
10993         *
10994         * Combining both checks should get us a good enough result. It may
10995         * still happen that the CS flip has been executed, but has not
10996         * yet actually completed. But in case the base address is the same
10997         * anyway, we don't really care.
10998         */
10999        return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11000                crtc->unpin_work->gtt_offset &&
11001                g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11002                                    crtc->unpin_work->flip_count);
11003}
11004
11005void intel_prepare_page_flip(struct drm_device *dev, int plane)
11006{
11007        struct drm_i915_private *dev_priv = dev->dev_private;
11008        struct intel_crtc *intel_crtc =
11009                to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
11010        unsigned long flags;
11011
11012
11013        /*
11014         * This is called both by irq handlers and the reset code (to complete
11015         * lost pageflips) so needs the full irqsave spinlocks.
11016         *
11017         * NB: An MMIO update of the plane base pointer will also
11018         * generate a page-flip completion irq, i.e. every modeset
11019         * is also accompanied by a spurious intel_prepare_page_flip().
11020         */
11021        spin_lock_irqsave(&dev->event_lock, flags);
11022        if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
11023                atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
11024        spin_unlock_irqrestore(&dev->event_lock, flags);
11025}
11026
11027static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
11028{
11029        /* Ensure that the work item is consistent when activating it ... */
11030        smp_wmb();
11031        atomic_set(&work->pending, INTEL_FLIP_PENDING);
11032        /* and that it is marked active as soon as the irq could fire. */
11033        smp_wmb();
11034}
11035
11036static int intel_gen2_queue_flip(struct drm_device *dev,
11037                                 struct drm_crtc *crtc,
11038                                 struct drm_framebuffer *fb,
11039                                 struct drm_i915_gem_object *obj,
11040                                 struct drm_i915_gem_request *req,
11041                                 uint32_t flags)
11042{
11043        struct intel_engine_cs *engine = req->engine;
11044        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11045        u32 flip_mask;
11046        int ret;
11047
11048        ret = intel_ring_begin(req, 6);
11049        if (ret)
11050                return ret;
11051
11052        /* Can't queue multiple flips, so wait for the previous
11053         * one to finish before executing the next.
11054         */
11055        if (intel_crtc->plane)
11056                flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11057        else
11058                flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11059        intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11060        intel_ring_emit(engine, MI_NOOP);
11061        intel_ring_emit(engine, MI_DISPLAY_FLIP |
11062                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11063        intel_ring_emit(engine, fb->pitches[0]);
11064        intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11065        intel_ring_emit(engine, 0); /* aux display base address, unused */
11066
11067        intel_mark_page_flip_active(intel_crtc->unpin_work);
11068        return 0;
11069}
11070
11071static int intel_gen3_queue_flip(struct drm_device *dev,
11072                                 struct drm_crtc *crtc,
11073                                 struct drm_framebuffer *fb,
11074                                 struct drm_i915_gem_object *obj,
11075                                 struct drm_i915_gem_request *req,
11076                                 uint32_t flags)
11077{
11078        struct intel_engine_cs *engine = req->engine;
11079        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11080        u32 flip_mask;
11081        int ret;
11082
11083        ret = intel_ring_begin(req, 6);
11084        if (ret)
11085                return ret;
11086
11087        if (intel_crtc->plane)
11088                flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11089        else
11090                flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11091        intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11092        intel_ring_emit(engine, MI_NOOP);
11093        intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
11094                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11095        intel_ring_emit(engine, fb->pitches[0]);
11096        intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11097        intel_ring_emit(engine, MI_NOOP);
11098
11099        intel_mark_page_flip_active(intel_crtc->unpin_work);
11100        return 0;
11101}
11102
11103static int intel_gen4_queue_flip(struct drm_device *dev,
11104                                 struct drm_crtc *crtc,
11105                                 struct drm_framebuffer *fb,
11106                                 struct drm_i915_gem_object *obj,
11107                                 struct drm_i915_gem_request *req,
11108                                 uint32_t flags)
11109{
11110        struct intel_engine_cs *engine = req->engine;
11111        struct drm_i915_private *dev_priv = dev->dev_private;
11112        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11113        uint32_t pf, pipesrc;
11114        int ret;
11115
11116        ret = intel_ring_begin(req, 4);
11117        if (ret)
11118                return ret;
11119
11120        /* i965+ uses the linear or tiled offsets from the
11121         * Display Registers (which do not change across a page-flip)
11122         * so we need only reprogram the base address.
11123         */
11124        intel_ring_emit(engine, MI_DISPLAY_FLIP |
11125                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11126        intel_ring_emit(engine, fb->pitches[0]);
11127        intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
11128                        obj->tiling_mode);
11129
11130        /* XXX Enabling the panel-fitter across page-flip is so far
11131         * untested on non-native modes, so ignore it for now.
11132         * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11133         */
11134        pf = 0;
11135        pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11136        intel_ring_emit(engine, pf | pipesrc);
11137
11138        intel_mark_page_flip_active(intel_crtc->unpin_work);
11139        return 0;
11140}
11141
11142static int intel_gen6_queue_flip(struct drm_device *dev,
11143                                 struct drm_crtc *crtc,
11144                                 struct drm_framebuffer *fb,
11145                                 struct drm_i915_gem_object *obj,
11146                                 struct drm_i915_gem_request *req,
11147                                 uint32_t flags)
11148{
11149        struct intel_engine_cs *engine = req->engine;
11150        struct drm_i915_private *dev_priv = dev->dev_private;
11151        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11152        uint32_t pf, pipesrc;
11153        int ret;
11154
11155        ret = intel_ring_begin(req, 4);
11156        if (ret)
11157                return ret;
11158
11159        intel_ring_emit(engine, MI_DISPLAY_FLIP |
11160                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11161        intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11162        intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11163
11164        /* Contrary to the suggestions in the documentation,
11165         * "Enable Panel Fitter" does not seem to be required when page
11166         * flipping with a non-native mode, and worse causes a normal
11167         * modeset to fail.
11168         * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11169         */
11170        pf = 0;
11171        pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11172        intel_ring_emit(engine, pf | pipesrc);
11173
11174        intel_mark_page_flip_active(intel_crtc->unpin_work);
11175        return 0;
11176}
11177
11178static int intel_gen7_queue_flip(struct drm_device *dev,
11179                                 struct drm_crtc *crtc,
11180                                 struct drm_framebuffer *fb,
11181                                 struct drm_i915_gem_object *obj,
11182                                 struct drm_i915_gem_request *req,
11183                                 uint32_t flags)
11184{
11185        struct intel_engine_cs *engine = req->engine;
11186        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11187        uint32_t plane_bit = 0;
11188        int len, ret;
11189
11190        switch (intel_crtc->plane) {
11191        case PLANE_A:
11192                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11193                break;
11194        case PLANE_B:
11195                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11196                break;
11197        case PLANE_C:
11198                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11199                break;
11200        default:
11201                WARN_ONCE(1, "unknown plane in flip command\n");
11202                return -ENODEV;
11203        }
11204
11205        len = 4;
11206        if (engine->id == RCS) {
11207                len += 6;
11208                /*
11209                 * On Gen 8, SRM is now taking an extra dword to accommodate
11210                 * 48bits addresses, and we need a NOOP for the batch size to
11211                 * stay even.
11212                 */
11213                if (IS_GEN8(dev))
11214                        len += 2;
11215        }
11216
11217        /*
11218         * BSpec MI_DISPLAY_FLIP for IVB:
11219         * "The full packet must be contained within the same cache line."
11220         *
11221         * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11222         * cacheline, if we ever start emitting more commands before
11223         * the MI_DISPLAY_FLIP we may need to first emit everything else,
11224         * then do the cacheline alignment, and finally emit the
11225         * MI_DISPLAY_FLIP.
11226         */
11227        ret = intel_ring_cacheline_align(req);
11228        if (ret)
11229                return ret;
11230
11231        ret = intel_ring_begin(req, len);
11232        if (ret)
11233                return ret;
11234
11235        /* Unmask the flip-done completion message. Note that the bspec says that
11236         * we should do this for both the BCS and RCS, and that we must not unmask
11237         * more than one flip event at any time (or ensure that one flip message
11238         * can be sent by waiting for flip-done prior to queueing new flips).
11239         * Experimentation says that BCS works despite DERRMR masking all
11240         * flip-done completion events and that unmasking all planes at once
11241         * for the RCS also doesn't appear to drop events. Setting the DERRMR
11242         * to zero does lead to lockups within MI_DISPLAY_FLIP.
11243         */
11244        if (engine->id == RCS) {
11245                intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11246                intel_ring_emit_reg(engine, DERRMR);
11247                intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11248                                          DERRMR_PIPEB_PRI_FLIP_DONE |
11249                                          DERRMR_PIPEC_PRI_FLIP_DONE));
11250                if (IS_GEN8(dev))
11251                        intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
11252                                              MI_SRM_LRM_GLOBAL_GTT);
11253                else
11254                        intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
11255                                              MI_SRM_LRM_GLOBAL_GTT);
11256                intel_ring_emit_reg(engine, DERRMR);
11257                intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
11258                if (IS_GEN8(dev)) {
11259                        intel_ring_emit(engine, 0);
11260                        intel_ring_emit(engine, MI_NOOP);
11261                }
11262        }
11263
11264        intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11265        intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11266        intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11267        intel_ring_emit(engine, (MI_NOOP));
11268
11269        intel_mark_page_flip_active(intel_crtc->unpin_work);
11270        return 0;
11271}
11272
11273static bool use_mmio_flip(struct intel_engine_cs *engine,
11274                          struct drm_i915_gem_object *obj)
11275{
11276        /*
11277         * This is not being used for older platforms, because
11278         * non-availability of flip done interrupt forces us to use
11279         * CS flips. Older platforms derive flip done using some clever
11280         * tricks involving the flip_pending status bits and vblank irqs.
11281         * So using MMIO flips there would disrupt this mechanism.
11282         */
11283
11284        if (engine == NULL)
11285                return true;
11286
11287        if (INTEL_INFO(engine->dev)->gen < 5)
11288                return false;
11289
11290        if (i915.use_mmio_flip < 0)
11291                return false;
11292        else if (i915.use_mmio_flip > 0)
11293                return true;
11294        else if (i915.enable_execlists)
11295                return true;
11296        else if (obj->base.dma_buf &&
11297                 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11298                                                       false))
11299                return true;
11300        else
11301                return engine != i915_gem_request_get_engine(obj->last_write_req);
11302}
11303
11304static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11305                             unsigned int rotation,
11306                             struct intel_unpin_work *work)
11307{
11308        struct drm_device *dev = intel_crtc->base.dev;
11309        struct drm_i915_private *dev_priv = dev->dev_private;
11310        struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11311        const enum pipe pipe = intel_crtc->pipe;
11312        u32 ctl, stride, tile_height;
11313
11314        ctl = I915_READ(PLANE_CTL(pipe, 0));
11315        ctl &= ~PLANE_CTL_TILED_MASK;
11316        switch (fb->modifier[0]) {
11317        case DRM_FORMAT_MOD_NONE:
11318                break;
11319        case I915_FORMAT_MOD_X_TILED:
11320                ctl |= PLANE_CTL_TILED_X;
11321                break;
11322        case I915_FORMAT_MOD_Y_TILED:
11323                ctl |= PLANE_CTL_TILED_Y;
11324                break;
11325        case I915_FORMAT_MOD_Yf_TILED:
11326                ctl |= PLANE_CTL_TILED_YF;
11327                break;
11328        default:
11329                MISSING_CASE(fb->modifier[0]);
11330        }
11331
11332        /*
11333         * The stride is either expressed as a multiple of 64 bytes chunks for
11334         * linear buffers or in number of tiles for tiled buffers.
11335         */
11336        if (intel_rotation_90_or_270(rotation)) {
11337                /* stride = Surface height in tiles */
11338                tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
11339                stride = DIV_ROUND_UP(fb->height, tile_height);
11340        } else {
11341                stride = fb->pitches[0] /
11342                        intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11343                                                  fb->pixel_format);
11344        }
11345
11346        /*
11347         * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11348         * PLANE_SURF updates, the update is then guaranteed to be atomic.
11349         */
11350        I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11351        I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11352
11353        I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11354        POSTING_READ(PLANE_SURF(pipe, 0));
11355}
11356
11357static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11358                             struct intel_unpin_work *work)
11359{
11360        struct drm_device *dev = intel_crtc->base.dev;
11361        struct drm_i915_private *dev_priv = dev->dev_private;
11362        struct intel_framebuffer *intel_fb =
11363                to_intel_framebuffer(intel_crtc->base.primary->fb);
11364        struct drm_i915_gem_object *obj = intel_fb->obj;
11365        i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11366        u32 dspcntr;
11367
11368        dspcntr = I915_READ(reg);
11369
11370        if (obj->tiling_mode != I915_TILING_NONE)
11371                dspcntr |= DISPPLANE_TILED;
11372        else
11373                dspcntr &= ~DISPPLANE_TILED;
11374
11375        I915_WRITE(reg, dspcntr);
11376
11377        I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11378        POSTING_READ(DSPSURF(intel_crtc->plane));
11379}
11380
11381/*
11382 * XXX: This is the temporary way to update the plane registers until we get
11383 * around to using the usual plane update functions for MMIO flips
11384 */
11385static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11386{
11387        struct intel_crtc *crtc = mmio_flip->crtc;
11388        struct intel_unpin_work *work;
11389
11390        spin_lock_irq(&crtc->base.dev->event_lock);
11391        work = crtc->unpin_work;
11392        spin_unlock_irq(&crtc->base.dev->event_lock);
11393        if (work == NULL)
11394                return;
11395
11396        intel_mark_page_flip_active(work);
11397
11398        intel_pipe_update_start(crtc);
11399
11400        if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11401                skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11402        else
11403                /* use_mmio_flip() retricts MMIO flips to ilk+ */
11404                ilk_do_mmio_flip(crtc, work);
11405
11406        intel_pipe_update_end(crtc);
11407}
11408
11409static void intel_mmio_flip_work_func(struct work_struct *work)
11410{
11411        struct intel_mmio_flip *mmio_flip =
11412                container_of(work, struct intel_mmio_flip, work);
11413        struct intel_framebuffer *intel_fb =
11414                to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11415        struct drm_i915_gem_object *obj = intel_fb->obj;
11416
11417        if (mmio_flip->req) {
11418                WARN_ON(__i915_wait_request(mmio_flip->req,
11419                                            false, NULL,
11420                                            &mmio_flip->i915->rps.mmioflips));
11421                i915_gem_request_unreference__unlocked(mmio_flip->req);
11422        }
11423
11424        /* For framebuffer backed by dmabuf, wait for fence */
11425        if (obj->base.dma_buf)
11426                WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11427                                                            false, false,
11428                                                            MAX_SCHEDULE_TIMEOUT) < 0);
11429
11430        intel_do_mmio_flip(mmio_flip);
11431        kfree(mmio_flip);
11432}
11433
11434static int intel_queue_mmio_flip(struct drm_device *dev,
11435                                 struct drm_crtc *crtc,
11436                                 struct drm_i915_gem_object *obj)
11437{
11438        struct intel_mmio_flip *mmio_flip;
11439
11440        mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11441        if (mmio_flip == NULL)
11442                return -ENOMEM;
11443
11444        mmio_flip->i915 = to_i915(dev);
11445        mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11446        mmio_flip->crtc = to_intel_crtc(crtc);
11447        mmio_flip->rotation = crtc->primary->state->rotation;
11448
11449        INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11450        schedule_work(&mmio_flip->work);
11451
11452        return 0;
11453}
11454
11455static int intel_default_queue_flip(struct drm_device *dev,
11456                                    struct drm_crtc *crtc,
11457                                    struct drm_framebuffer *fb,
11458                                    struct drm_i915_gem_object *obj,
11459                                    struct drm_i915_gem_request *req,
11460                                    uint32_t flags)
11461{
11462        return -ENODEV;
11463}
11464
11465static bool __intel_pageflip_stall_check(struct drm_device *dev,
11466                                         struct drm_crtc *crtc)
11467{
11468        struct drm_i915_private *dev_priv = dev->dev_private;
11469        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11470        struct intel_unpin_work *work = intel_crtc->unpin_work;
11471        u32 addr;
11472
11473        if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11474                return true;
11475
11476        if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11477                return false;
11478
11479        if (!work->enable_stall_check)
11480                return false;
11481
11482        if (work->flip_ready_vblank == 0) {
11483                if (work->flip_queued_req &&
11484                    !i915_gem_request_completed(work->flip_queued_req, true))
11485                        return false;
11486
11487                work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11488        }
11489
11490        if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11491                return false;
11492
11493        /* Potential stall - if we see that the flip has happened,
11494         * assume a missed interrupt. */
11495        if (INTEL_INFO(dev)->gen >= 4)
11496                addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11497        else
11498                addr = I915_READ(DSPADDR(intel_crtc->plane));
11499
11500        /* There is a potential issue here with a false positive after a flip
11501         * to the same address. We could address this by checking for a
11502         * non-incrementing frame counter.
11503         */
11504        return addr == work->gtt_offset;
11505}
11506
11507void intel_check_page_flip(struct drm_device *dev, int pipe)
11508{
11509        struct drm_i915_private *dev_priv = dev->dev_private;
11510        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11511        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11512        struct intel_unpin_work *work;
11513
11514        WARN_ON(!in_interrupt());
11515
11516        if (crtc == NULL)
11517                return;
11518
11519        spin_lock(&dev->event_lock);
11520        work = intel_crtc->unpin_work;
11521        if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11522                WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11523                         work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11524                page_flip_completed(intel_crtc);
11525                work = NULL;
11526        }
11527        if (work != NULL &&
11528            drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11529                intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11530        spin_unlock(&dev->event_lock);
11531}
11532
11533static int intel_crtc_page_flip(struct drm_crtc *crtc,
11534                                struct drm_framebuffer *fb,
11535                                struct drm_pending_vblank_event *event,
11536                                uint32_t page_flip_flags)
11537{
11538        struct drm_device *dev = crtc->dev;
11539        struct drm_i915_private *dev_priv = dev->dev_private;
11540        struct drm_framebuffer *old_fb = crtc->primary->fb;
11541        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11542        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11543        struct drm_plane *primary = crtc->primary;
11544        enum pipe pipe = intel_crtc->pipe;
11545        struct intel_unpin_work *work;
11546        struct intel_engine_cs *engine;
11547        bool mmio_flip;
11548        struct drm_i915_gem_request *request = NULL;
11549        int ret;
11550
11551        /*
11552         * drm_mode_page_flip_ioctl() should already catch this, but double
11553         * check to be safe.  In the future we may enable pageflipping from
11554         * a disabled primary plane.
11555         */
11556        if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11557                return -EBUSY;
11558
11559        /* Can't change pixel format via MI display flips. */
11560        if (fb->pixel_format != crtc->primary->fb->pixel_format)
11561                return -EINVAL;
11562
11563        /*
11564         * TILEOFF/LINOFF registers can't be changed via MI display flips.
11565         * Note that pitch changes could also affect these register.
11566         */
11567        if (INTEL_INFO(dev)->gen > 3 &&
11568            (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11569             fb->pitches[0] != crtc->primary->fb->pitches[0]))
11570                return -EINVAL;
11571
11572        if (i915_terminally_wedged(&dev_priv->gpu_error))
11573                goto out_hang;
11574
11575        work = kzalloc(sizeof(*work), GFP_KERNEL);
11576        if (work == NULL)
11577                return -ENOMEM;
11578
11579        work->event = event;
11580        work->crtc = crtc;
11581        work->old_fb = old_fb;
11582        INIT_WORK(&work->work, intel_unpin_work_fn);
11583
11584        ret = drm_crtc_vblank_get(crtc);
11585        if (ret)
11586                goto free_work;
11587
11588        /* We borrow the event spin lock for protecting unpin_work */
11589        spin_lock_irq(&dev->event_lock);
11590        if (intel_crtc->unpin_work) {
11591                /* Before declaring the flip queue wedged, check if
11592                 * the hardware completed the operation behind our backs.
11593                 */
11594                if (__intel_pageflip_stall_check(dev, crtc)) {
11595                        DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11596                        page_flip_completed(intel_crtc);
11597                } else {
11598                        DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11599                        spin_unlock_irq(&dev->event_lock);
11600
11601                        drm_crtc_vblank_put(crtc);
11602                        kfree(work);
11603                        return -EBUSY;
11604                }
11605        }
11606        intel_crtc->unpin_work = work;
11607        spin_unlock_irq(&dev->event_lock);
11608
11609        if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11610                flush_workqueue(dev_priv->wq);
11611
11612        /* Reference the objects for the scheduled work. */
11613        drm_framebuffer_reference(work->old_fb);
11614        drm_gem_object_reference(&obj->base);
11615
11616        crtc->primary->fb = fb;
11617        update_state_fb(crtc->primary);
11618        intel_fbc_pre_update(intel_crtc);
11619
11620        work->pending_flip_obj = obj;
11621
11622        ret = i915_mutex_lock_interruptible(dev);
11623        if (ret)
11624                goto cleanup;
11625
11626        intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
11627        if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11628                ret = -EIO;
11629                goto cleanup;
11630        }
11631
11632        atomic_inc(&intel_crtc->unpin_work_count);
11633
11634        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11635                work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11636
11637        if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
11638                engine = &dev_priv->engine[BCS];
11639                if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11640                        /* vlv: DISPLAY_FLIP fails to change tiling */
11641                        engine = NULL;
11642        } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11643                engine = &dev_priv->engine[BCS];
11644        } else if (INTEL_INFO(dev)->gen >= 7) {
11645                engine = i915_gem_request_get_engine(obj->last_write_req);
11646                if (engine == NULL || engine->id != RCS)
11647                        engine = &dev_priv->engine[BCS];
11648        } else {
11649                engine = &dev_priv->engine[RCS];
11650        }
11651
11652        mmio_flip = use_mmio_flip(engine, obj);
11653
11654        /* When using CS flips, we want to emit semaphores between rings.
11655         * However, when using mmio flips we will create a task to do the
11656         * synchronisation, so all we want here is to pin the framebuffer
11657         * into the display plane and skip any waits.
11658         */
11659        if (!mmio_flip) {
11660                ret = i915_gem_object_sync(obj, engine, &request);
11661                if (ret)
11662                        goto cleanup_pending;
11663        }
11664
11665        ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
11666        if (ret)
11667                goto cleanup_pending;
11668
11669        work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11670                                                  obj, 0);
11671        work->gtt_offset += intel_crtc->dspaddr_offset;
11672
11673        if (mmio_flip) {
11674                ret = intel_queue_mmio_flip(dev, crtc, obj);
11675                if (ret)
11676                        goto cleanup_unpin;
11677
11678                i915_gem_request_assign(&work->flip_queued_req,
11679                                        obj->last_write_req);
11680        } else {
11681                if (!request) {
11682                        request = i915_gem_request_alloc(engine, NULL);
11683                        if (IS_ERR(request)) {
11684                                ret = PTR_ERR(request);
11685                                goto cleanup_unpin;
11686                        }
11687                }
11688
11689                ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11690                                                   page_flip_flags);
11691                if (ret)
11692                        goto cleanup_unpin;
11693
11694                i915_gem_request_assign(&work->flip_queued_req, request);
11695        }
11696
11697        if (request)
11698                i915_add_request_no_flush(request);
11699
11700        work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11701        work->enable_stall_check = true;
11702
11703        i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11704                          to_intel_plane(primary)->frontbuffer_bit);
11705        mutex_unlock(&dev->struct_mutex);
11706
11707        intel_frontbuffer_flip_prepare(dev,
11708                                       to_intel_plane(primary)->frontbuffer_bit);
11709
11710        trace_i915_flip_request(intel_crtc->plane, obj);
11711
11712        return 0;
11713
11714cleanup_unpin:
11715        intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
11716cleanup_pending:
11717        if (!IS_ERR_OR_NULL(request))
11718                i915_add_request_no_flush(request);
11719        atomic_dec(&intel_crtc->unpin_work_count);
11720        mutex_unlock(&dev->struct_mutex);
11721cleanup:
11722        crtc->primary->fb = old_fb;
11723        update_state_fb(crtc->primary);
11724
11725        drm_gem_object_unreference_unlocked(&obj->base);
11726        drm_framebuffer_unreference(work->old_fb);
11727
11728        spin_lock_irq(&dev->event_lock);
11729        intel_crtc->unpin_work = NULL;
11730        spin_unlock_irq(&dev->event_lock);
11731
11732        drm_crtc_vblank_put(crtc);
11733free_work:
11734        kfree(work);
11735
11736        if (ret == -EIO) {
11737                struct drm_atomic_state *state;
11738                struct drm_plane_state *plane_state;
11739
11740out_hang:
11741                state = drm_atomic_state_alloc(dev);
11742                if (!state)
11743                        return -ENOMEM;
11744                state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11745
11746retry:
11747                plane_state = drm_atomic_get_plane_state(state, primary);
11748                ret = PTR_ERR_OR_ZERO(plane_state);
11749                if (!ret) {
11750                        drm_atomic_set_fb_for_plane(plane_state, fb);
11751
11752                        ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11753                        if (!ret)
11754                                ret = drm_atomic_commit(state);
11755                }
11756
11757                if (ret == -EDEADLK) {
11758                        drm_modeset_backoff(state->acquire_ctx);
11759                        drm_atomic_state_clear(state);
11760                        goto retry;
11761                }
11762
11763                if (ret)
11764                        drm_atomic_state_free(state);
11765
11766                if (ret == 0 && event) {
11767                        spin_lock_irq(&dev->event_lock);
11768                        drm_crtc_send_vblank_event(crtc, event);
11769                        spin_unlock_irq(&dev->event_lock);
11770                }
11771        }
11772        return ret;
11773}
11774
11775
11776/**
11777 * intel_wm_need_update - Check whether watermarks need updating
11778 * @plane: drm plane
11779 * @state: new plane state
11780 *
11781 * Check current plane state versus the new one to determine whether
11782 * watermarks need to be recalculated.
11783 *
11784 * Returns true or false.
11785 */
11786static bool intel_wm_need_update(struct drm_plane *plane,
11787                                 struct drm_plane_state *state)
11788{
11789        struct intel_plane_state *new = to_intel_plane_state(state);
11790        struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11791
11792        /* Update watermarks on tiling or size changes. */
11793        if (new->visible != cur->visible)
11794                return true;
11795
11796        if (!cur->base.fb || !new->base.fb)
11797                return false;
11798
11799        if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11800            cur->base.rotation != new->base.rotation ||
11801            drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11802            drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11803            drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11804            drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11805                return true;
11806
11807        return false;
11808}
11809
11810static bool needs_scaling(struct intel_plane_state *state)
11811{
11812        int src_w = drm_rect_width(&state->src) >> 16;
11813        int src_h = drm_rect_height(&state->src) >> 16;
11814        int dst_w = drm_rect_width(&state->dst);
11815        int dst_h = drm_rect_height(&state->dst);
11816
11817        return (src_w != dst_w || src_h != dst_h);
11818}
11819
11820int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11821                                    struct drm_plane_state *plane_state)
11822{
11823        struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
11824        struct drm_crtc *crtc = crtc_state->crtc;
11825        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11826        struct drm_plane *plane = plane_state->plane;
11827        struct drm_device *dev = crtc->dev;
11828        struct drm_i915_private *dev_priv = to_i915(dev);
11829        struct intel_plane_state *old_plane_state =
11830                to_intel_plane_state(plane->state);
11831        int idx = intel_crtc->base.base.id, ret;
11832        bool mode_changed = needs_modeset(crtc_state);
11833        bool was_crtc_enabled = crtc->state->active;
11834        bool is_crtc_enabled = crtc_state->active;
11835        bool turn_off, turn_on, visible, was_visible;
11836        struct drm_framebuffer *fb = plane_state->fb;
11837
11838        if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11839            plane->type != DRM_PLANE_TYPE_CURSOR) {
11840                ret = skl_update_scaler_plane(
11841                        to_intel_crtc_state(crtc_state),
11842                        to_intel_plane_state(plane_state));
11843                if (ret)
11844                        return ret;
11845        }
11846
11847        was_visible = old_plane_state->visible;
11848        visible = to_intel_plane_state(plane_state)->visible;
11849
11850        if (!was_crtc_enabled && WARN_ON(was_visible))
11851                was_visible = false;
11852
11853        /*
11854         * Visibility is calculated as if the crtc was on, but
11855         * after scaler setup everything depends on it being off
11856         * when the crtc isn't active.
11857         */
11858        if (!is_crtc_enabled)
11859                to_intel_plane_state(plane_state)->visible = visible = false;
11860
11861        if (!was_visible && !visible)
11862                return 0;
11863
11864        if (fb != old_plane_state->base.fb)
11865                pipe_config->fb_changed = true;
11866
11867        turn_off = was_visible && (!visible || mode_changed);
11868        turn_on = visible && (!was_visible || mode_changed);
11869
11870        DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11871                         plane->base.id, fb ? fb->base.id : -1);
11872
11873        DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11874                         plane->base.id, was_visible, visible,
11875                         turn_off, turn_on, mode_changed);
11876
11877        if (turn_on) {
11878                pipe_config->update_wm_pre = true;
11879
11880                /* must disable cxsr around plane enable/disable */
11881                if (plane->type != DRM_PLANE_TYPE_CURSOR)
11882                        pipe_config->disable_cxsr = true;
11883        } else if (turn_off) {
11884                pipe_config->update_wm_post = true;
11885
11886                /* must disable cxsr around plane enable/disable */
11887                if (plane->type != DRM_PLANE_TYPE_CURSOR)
11888                        pipe_config->disable_cxsr = true;
11889        } else if (intel_wm_need_update(plane, plane_state)) {
11890                /* FIXME bollocks */
11891                pipe_config->update_wm_pre = true;
11892                pipe_config->update_wm_post = true;
11893        }
11894
11895        /* Pre-gen9 platforms need two-step watermark updates */
11896        if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11897            INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
11898                to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11899
11900        if (visible || was_visible)
11901                pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
11902
11903        /*
11904         * WaCxSRDisabledForSpriteScaling:ivb
11905         *
11906         * cstate->update_wm was already set above, so this flag will
11907         * take effect when we commit and program watermarks.
11908         */
11909        if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11910            needs_scaling(to_intel_plane_state(plane_state)) &&
11911            !needs_scaling(old_plane_state))
11912                pipe_config->disable_lp_wm = true;
11913
11914        return 0;
11915}
11916
11917static bool encoders_cloneable(const struct intel_encoder *a,
11918                               const struct intel_encoder *b)
11919{
11920        /* masks could be asymmetric, so check both ways */
11921        return a == b || (a->cloneable & (1 << b->type) &&
11922                          b->cloneable & (1 << a->type));
11923}
11924
11925static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11926                                         struct intel_crtc *crtc,
11927                                         struct intel_encoder *encoder)
11928{
11929        struct intel_encoder *source_encoder;
11930        struct drm_connector *connector;
11931        struct drm_connector_state *connector_state;
11932        int i;
11933
11934        for_each_connector_in_state(state, connector, connector_state, i) {
11935                if (connector_state->crtc != &crtc->base)
11936                        continue;
11937
11938                source_encoder =
11939                        to_intel_encoder(connector_state->best_encoder);
11940                if (!encoders_cloneable(encoder, source_encoder))
11941                        return false;
11942        }
11943
11944        return true;
11945}
11946
11947static bool check_encoder_cloning(struct drm_atomic_state *state,
11948                                  struct intel_crtc *crtc)
11949{
11950        struct intel_encoder *encoder;
11951        struct drm_connector *connector;
11952        struct drm_connector_state *connector_state;
11953        int i;
11954
11955        for_each_connector_in_state(state, connector, connector_state, i) {
11956                if (connector_state->crtc != &crtc->base)
11957                        continue;
11958
11959                encoder = to_intel_encoder(connector_state->best_encoder);
11960                if (!check_single_encoder_cloning(state, crtc, encoder))
11961                        return false;
11962        }
11963
11964        return true;
11965}
11966
11967static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11968                                   struct drm_crtc_state *crtc_state)
11969{
11970        struct drm_device *dev = crtc->dev;
11971        struct drm_i915_private *dev_priv = dev->dev_private;
11972        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11973        struct intel_crtc_state *pipe_config =
11974                to_intel_crtc_state(crtc_state);
11975        struct drm_atomic_state *state = crtc_state->state;
11976        int ret;
11977        bool mode_changed = needs_modeset(crtc_state);
11978
11979        if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11980                DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11981                return -EINVAL;
11982        }
11983
11984        if (mode_changed && !crtc_state->active)
11985                pipe_config->update_wm_post = true;
11986
11987        if (mode_changed && crtc_state->enable &&
11988            dev_priv->display.crtc_compute_clock &&
11989            !WARN_ON(pipe_config->shared_dpll)) {
11990                ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11991                                                           pipe_config);
11992                if (ret)
11993                        return ret;
11994        }
11995
11996        if (crtc_state->color_mgmt_changed) {
11997                ret = intel_color_check(crtc, crtc_state);
11998                if (ret)
11999                        return ret;
12000
12001                /*
12002                 * Changing color management on Intel hardware is
12003                 * handled as part of planes update.
12004                 */
12005                crtc_state->planes_changed = true;
12006        }
12007
12008        ret = 0;
12009        if (dev_priv->display.compute_pipe_wm) {
12010                ret = dev_priv->display.compute_pipe_wm(pipe_config);
12011                if (ret) {
12012                        DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12013                        return ret;
12014                }
12015        }
12016
12017        if (dev_priv->display.compute_intermediate_wm &&
12018            !to_intel_atomic_state(state)->skip_intermediate_wm) {
12019                if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12020                        return 0;
12021
12022                /*
12023                 * Calculate 'intermediate' watermarks that satisfy both the
12024                 * old state and the new state.  We can program these
12025                 * immediately.
12026                 */
12027                ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12028                                                                intel_crtc,
12029                                                                pipe_config);
12030                if (ret) {
12031                        DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12032                        return ret;
12033                }
12034        } else if (dev_priv->display.compute_intermediate_wm) {
12035                if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12036                        pipe_config->wm.intermediate = pipe_config->wm.optimal.ilk;
12037        }
12038
12039        if (INTEL_INFO(dev)->gen >= 9) {
12040                if (mode_changed)
12041                        ret = skl_update_scaler_crtc(pipe_config);
12042
12043                if (!ret)
12044                        ret = intel_atomic_setup_scalers(dev, intel_crtc,
12045                                                         pipe_config);
12046        }
12047
12048        return ret;
12049}
12050
12051static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12052        .mode_set_base_atomic = intel_pipe_set_base_atomic,
12053        .atomic_begin = intel_begin_crtc_commit,
12054        .atomic_flush = intel_finish_crtc_commit,
12055        .atomic_check = intel_crtc_atomic_check,
12056};
12057
12058static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12059{
12060        struct intel_connector *connector;
12061
12062        for_each_intel_connector(dev, connector) {
12063                if (connector->base.state->crtc)
12064                        drm_connector_unreference(&connector->base);
12065
12066                if (connector->base.encoder) {
12067                        connector->base.state->best_encoder =
12068                                connector->base.encoder;
12069                        connector->base.state->crtc =
12070                                connector->base.encoder->crtc;
12071
12072                        drm_connector_reference(&connector->base);
12073                } else {
12074                        connector->base.state->best_encoder = NULL;
12075                        connector->base.state->crtc = NULL;
12076                }
12077        }
12078}
12079
12080static void
12081connected_sink_compute_bpp(struct intel_connector *connector,
12082                           struct intel_crtc_state *pipe_config)
12083{
12084        int bpp = pipe_config->pipe_bpp;
12085
12086        DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12087                connector->base.base.id,
12088                connector->base.name);
12089
12090        /* Don't use an invalid EDID bpc value */
12091        if (connector->base.display_info.bpc &&
12092            connector->base.display_info.bpc * 3 < bpp) {
12093                DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12094                              bpp, connector->base.display_info.bpc*3);
12095                pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12096        }
12097
12098        /* Clamp bpp to default limit on screens without EDID 1.4 */
12099        if (connector->base.display_info.bpc == 0) {
12100                int type = connector->base.connector_type;
12101                int clamp_bpp = 24;
12102
12103                /* Fall back to 18 bpp when DP sink capability is unknown. */
12104                if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12105                    type == DRM_MODE_CONNECTOR_eDP)
12106                        clamp_bpp = 18;
12107
12108                if (bpp > clamp_bpp) {
12109                        DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12110                                      bpp, clamp_bpp);
12111                        pipe_config->pipe_bpp = clamp_bpp;
12112                }
12113        }
12114}
12115
12116static int
12117compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12118                          struct intel_crtc_state *pipe_config)
12119{
12120        struct drm_device *dev = crtc->base.dev;
12121        struct drm_atomic_state *state;
12122        struct drm_connector *connector;
12123        struct drm_connector_state *connector_state;
12124        int bpp, i;
12125
12126        if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12127                bpp = 10*3;
12128        else if (INTEL_INFO(dev)->gen >= 5)
12129                bpp = 12*3;
12130        else
12131                bpp = 8*3;
12132
12133
12134        pipe_config->pipe_bpp = bpp;
12135
12136        state = pipe_config->base.state;
12137
12138        /* Clamp display bpp to EDID value */
12139        for_each_connector_in_state(state, connector, connector_state, i) {
12140                if (connector_state->crtc != &crtc->base)
12141                        continue;
12142
12143                connected_sink_compute_bpp(to_intel_connector(connector),
12144                                           pipe_config);
12145        }
12146
12147        return bpp;
12148}
12149
12150static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12151{
12152        DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12153                        "type: 0x%x flags: 0x%x\n",
12154                mode->crtc_clock,
12155                mode->crtc_hdisplay, mode->crtc_hsync_start,
12156                mode->crtc_hsync_end, mode->crtc_htotal,
12157                mode->crtc_vdisplay, mode->crtc_vsync_start,
12158                mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12159}
12160
12161static void intel_dump_pipe_config(struct intel_crtc *crtc,
12162                                   struct intel_crtc_state *pipe_config,
12163                                   const char *context)
12164{
12165        struct drm_device *dev = crtc->base.dev;
12166        struct drm_plane *plane;
12167        struct intel_plane *intel_plane;
12168        struct intel_plane_state *state;
12169        struct drm_framebuffer *fb;
12170
12171        DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12172                      context, pipe_config, pipe_name(crtc->pipe));
12173
12174        DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12175        DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12176                      pipe_config->pipe_bpp, pipe_config->dither);
12177        DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12178                      pipe_config->has_pch_encoder,
12179                      pipe_config->fdi_lanes,
12180                      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12181                      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12182                      pipe_config->fdi_m_n.tu);
12183        DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12184                      pipe_config->has_dp_encoder,
12185                      pipe_config->lane_count,
12186                      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12187                      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12188                      pipe_config->dp_m_n.tu);
12189
12190        DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12191                      pipe_config->has_dp_encoder,
12192                      pipe_config->lane_count,
12193                      pipe_config->dp_m2_n2.gmch_m,
12194                      pipe_config->dp_m2_n2.gmch_n,
12195                      pipe_config->dp_m2_n2.link_m,
12196                      pipe_config->dp_m2_n2.link_n,
12197                      pipe_config->dp_m2_n2.tu);
12198
12199        DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12200                      pipe_config->has_audio,
12201                      pipe_config->has_infoframe);
12202
12203        DRM_DEBUG_KMS("requested mode:\n");
12204        drm_mode_debug_printmodeline(&pipe_config->base.mode);
12205        DRM_DEBUG_KMS("adjusted mode:\n");
12206        drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12207        intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12208        DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12209        DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12210                      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12211        DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12212                      crtc->num_scalers,
12213                      pipe_config->scaler_state.scaler_users,
12214                      pipe_config->scaler_state.scaler_id);
12215        DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12216                      pipe_config->gmch_pfit.control,
12217                      pipe_config->gmch_pfit.pgm_ratios,
12218                      pipe_config->gmch_pfit.lvds_border_bits);
12219        DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12220                      pipe_config->pch_pfit.pos,
12221                      pipe_config->pch_pfit.size,
12222                      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12223        DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12224        DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12225
12226        if (IS_BROXTON(dev)) {
12227                DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12228                              "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12229                              "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12230                              pipe_config->ddi_pll_sel,
12231                              pipe_config->dpll_hw_state.ebb0,
12232                              pipe_config->dpll_hw_state.ebb4,
12233                              pipe_config->dpll_hw_state.pll0,
12234                              pipe_config->dpll_hw_state.pll1,
12235                              pipe_config->dpll_hw_state.pll2,
12236                              pipe_config->dpll_hw_state.pll3,
12237                              pipe_config->dpll_hw_state.pll6,
12238                              pipe_config->dpll_hw_state.pll8,
12239                              pipe_config->dpll_hw_state.pll9,
12240                              pipe_config->dpll_hw_state.pll10,
12241                              pipe_config->dpll_hw_state.pcsdw12);
12242        } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12243                DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12244                              "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12245                              pipe_config->ddi_pll_sel,
12246                              pipe_config->dpll_hw_state.ctrl1,
12247                              pipe_config->dpll_hw_state.cfgcr1,
12248                              pipe_config->dpll_hw_state.cfgcr2);
12249        } else if (HAS_DDI(dev)) {
12250                DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12251                              pipe_config->ddi_pll_sel,
12252                              pipe_config->dpll_hw_state.wrpll,
12253                              pipe_config->dpll_hw_state.spll);
12254        } else {
12255                DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12256                              "fp0: 0x%x, fp1: 0x%x\n",
12257                              pipe_config->dpll_hw_state.dpll,
12258                              pipe_config->dpll_hw_state.dpll_md,
12259                              pipe_config->dpll_hw_state.fp0,
12260                              pipe_config->dpll_hw_state.fp1);
12261        }
12262
12263        DRM_DEBUG_KMS("planes on this crtc\n");
12264        list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12265                intel_plane = to_intel_plane(plane);
12266                if (intel_plane->pipe != crtc->pipe)
12267                        continue;
12268
12269                state = to_intel_plane_state(plane->state);
12270                fb = state->base.fb;
12271                if (!fb) {
12272                        DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12273                                "disabled, scaler_id = %d\n",
12274                                plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12275                                plane->base.id, intel_plane->pipe,
12276                                (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12277                                drm_plane_index(plane), state->scaler_id);
12278                        continue;
12279                }
12280
12281                DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12282                        plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12283                        plane->base.id, intel_plane->pipe,
12284                        crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12285                        drm_plane_index(plane));
12286                DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12287                        fb->base.id, fb->width, fb->height, fb->pixel_format);
12288                DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12289                        state->scaler_id,
12290                        state->src.x1 >> 16, state->src.y1 >> 16,
12291                        drm_rect_width(&state->src) >> 16,
12292                        drm_rect_height(&state->src) >> 16,
12293                        state->dst.x1, state->dst.y1,
12294                        drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12295        }
12296}
12297
12298static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12299{
12300        struct drm_device *dev = state->dev;
12301        struct drm_connector *connector;
12302        unsigned int used_ports = 0;
12303
12304        /*
12305         * Walk the connector list instead of the encoder
12306         * list to detect the problem on ddi platforms
12307         * where there's just one encoder per digital port.
12308         */
12309        drm_for_each_connector(connector, dev) {
12310                struct drm_connector_state *connector_state;
12311                struct intel_encoder *encoder;
12312
12313                connector_state = drm_atomic_get_existing_connector_state(state, connector);
12314                if (!connector_state)
12315                        connector_state = connector->state;
12316
12317                if (!connector_state->best_encoder)
12318                        continue;
12319
12320                encoder = to_intel_encoder(connector_state->best_encoder);
12321
12322                WARN_ON(!connector_state->crtc);
12323
12324                switch (encoder->type) {
12325                        unsigned int port_mask;
12326                case INTEL_OUTPUT_UNKNOWN:
12327                        if (WARN_ON(!HAS_DDI(dev)))
12328                                break;
12329                case INTEL_OUTPUT_DISPLAYPORT:
12330                case INTEL_OUTPUT_HDMI:
12331                case INTEL_OUTPUT_EDP:
12332                        port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12333
12334                        /* the same port mustn't appear more than once */
12335                        if (used_ports & port_mask)
12336                                return false;
12337
12338                        used_ports |= port_mask;
12339                default:
12340                        break;
12341                }
12342        }
12343
12344        return true;
12345}
12346
12347static void
12348clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12349{
12350        struct drm_crtc_state tmp_state;
12351        struct intel_crtc_scaler_state scaler_state;
12352        struct intel_dpll_hw_state dpll_hw_state;
12353        struct intel_shared_dpll *shared_dpll;
12354        uint32_t ddi_pll_sel;
12355        bool force_thru;
12356
12357        /* FIXME: before the switch to atomic started, a new pipe_config was
12358         * kzalloc'd. Code that depends on any field being zero should be
12359         * fixed, so that the crtc_state can be safely duplicated. For now,
12360         * only fields that are know to not cause problems are preserved. */
12361
12362        tmp_state = crtc_state->base;
12363        scaler_state = crtc_state->scaler_state;
12364        shared_dpll = crtc_state->shared_dpll;
12365        dpll_hw_state = crtc_state->dpll_hw_state;
12366        ddi_pll_sel = crtc_state->ddi_pll_sel;
12367        force_thru = crtc_state->pch_pfit.force_thru;
12368
12369        memset(crtc_state, 0, sizeof *crtc_state);
12370
12371        crtc_state->base = tmp_state;
12372        crtc_state->scaler_state = scaler_state;
12373        crtc_state->shared_dpll = shared_dpll;
12374        crtc_state->dpll_hw_state = dpll_hw_state;
12375        crtc_state->ddi_pll_sel = ddi_pll_sel;
12376        crtc_state->pch_pfit.force_thru = force_thru;
12377}
12378
12379static int
12380intel_modeset_pipe_config(struct drm_crtc *crtc,
12381                          struct intel_crtc_state *pipe_config)
12382{
12383        struct drm_atomic_state *state = pipe_config->base.state;
12384        struct intel_encoder *encoder;
12385        struct drm_connector *connector;
12386        struct drm_connector_state *connector_state;
12387        int base_bpp, ret = -EINVAL;
12388        int i;
12389        bool retry = true;
12390
12391        clear_intel_crtc_state(pipe_config);
12392
12393        pipe_config->cpu_transcoder =
12394                (enum transcoder) to_intel_crtc(crtc)->pipe;
12395
12396        /*
12397         * Sanitize sync polarity flags based on requested ones. If neither
12398         * positive or negative polarity is requested, treat this as meaning
12399         * negative polarity.
12400         */
12401        if (!(pipe_config->base.adjusted_mode.flags &
12402              (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12403                pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12404
12405        if (!(pipe_config->base.adjusted_mode.flags &
12406              (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12407                pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12408
12409        base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12410                                             pipe_config);
12411        if (base_bpp < 0)
12412                goto fail;
12413
12414        /*
12415         * Determine the real pipe dimensions. Note that stereo modes can
12416         * increase the actual pipe size due to the frame doubling and
12417         * insertion of additional space for blanks between the frame. This
12418         * is stored in the crtc timings. We use the requested mode to do this
12419         * computation to clearly distinguish it from the adjusted mode, which
12420         * can be changed by the connectors in the below retry loop.
12421         */
12422        drm_crtc_get_hv_timing(&pipe_config->base.mode,
12423                               &pipe_config->pipe_src_w,
12424                               &pipe_config->pipe_src_h);
12425
12426encoder_retry:
12427        /* Ensure the port clock defaults are reset when retrying. */
12428        pipe_config->port_clock = 0;
12429        pipe_config->pixel_multiplier = 1;
12430
12431        /* Fill in default crtc timings, allow encoders to overwrite them. */
12432        drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12433                              CRTC_STEREO_DOUBLE);
12434
12435        /* Pass our mode to the connectors and the CRTC to give them a chance to
12436         * adjust it according to limitations or connector properties, and also
12437         * a chance to reject the mode entirely.
12438         */
12439        for_each_connector_in_state(state, connector, connector_state, i) {
12440                if (connector_state->crtc != crtc)
12441                        continue;
12442
12443                encoder = to_intel_encoder(connector_state->best_encoder);
12444
12445                if (!(encoder->compute_config(encoder, pipe_config))) {
12446                        DRM_DEBUG_KMS("Encoder config failure\n");
12447                        goto fail;
12448                }
12449        }
12450
12451        /* Set default port clock if not overwritten by the encoder. Needs to be
12452         * done afterwards in case the encoder adjusts the mode. */
12453        if (!pipe_config->port_clock)
12454                pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12455                        * pipe_config->pixel_multiplier;
12456
12457        ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12458        if (ret < 0) {
12459                DRM_DEBUG_KMS("CRTC fixup failed\n");
12460                goto fail;
12461        }
12462
12463        if (ret == RETRY) {
12464                if (WARN(!retry, "loop in pipe configuration computation\n")) {
12465                        ret = -EINVAL;
12466                        goto fail;
12467                }
12468
12469                DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12470                retry = false;
12471                goto encoder_retry;
12472        }
12473
12474        /* Dithering seems to not pass-through bits correctly when it should, so
12475         * only enable it on 6bpc panels. */
12476        pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12477        DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12478                      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12479
12480fail:
12481        return ret;
12482}
12483
12484static void
12485intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12486{
12487        struct drm_crtc *crtc;
12488        struct drm_crtc_state *crtc_state;
12489        int i;
12490
12491        /* Double check state. */
12492        for_each_crtc_in_state(state, crtc, crtc_state, i) {
12493                to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12494
12495                /* Update hwmode for vblank functions */
12496                if (crtc->state->active)
12497                        crtc->hwmode = crtc->state->adjusted_mode;
12498                else
12499                        crtc->hwmode.crtc_clock = 0;
12500
12501                /*
12502                 * Update legacy state to satisfy fbc code. This can
12503                 * be removed when fbc uses the atomic state.
12504                 */
12505                if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12506                        struct drm_plane_state *plane_state = crtc->primary->state;
12507
12508                        crtc->primary->fb = plane_state->fb;
12509                        crtc->x = plane_state->src_x >> 16;
12510                        crtc->y = plane_state->src_y >> 16;
12511                }
12512        }
12513}
12514
12515static bool intel_fuzzy_clock_check(int clock1, int clock2)
12516{
12517        int diff;
12518
12519        if (clock1 == clock2)
12520                return true;
12521
12522        if (!clock1 || !clock2)
12523                return false;
12524
12525        diff = abs(clock1 - clock2);
12526
12527        if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12528                return true;
12529
12530        return false;
12531}
12532
12533#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12534        list_for_each_entry((intel_crtc), \
12535                            &(dev)->mode_config.crtc_list, \
12536                            base.head) \
12537                for_each_if (mask & (1 <<(intel_crtc)->pipe))
12538
12539static bool
12540intel_compare_m_n(unsigned int m, unsigned int n,
12541                  unsigned int m2, unsigned int n2,
12542                  bool exact)
12543{
12544        if (m == m2 && n == n2)
12545                return true;
12546
12547        if (exact || !m || !n || !m2 || !n2)
12548                return false;
12549
12550        BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12551
12552        if (n > n2) {
12553                while (n > n2) {
12554                        m2 <<= 1;
12555                        n2 <<= 1;
12556                }
12557        } else if (n < n2) {
12558                while (n < n2) {
12559                        m <<= 1;
12560                        n <<= 1;
12561                }
12562        }
12563
12564        if (n != n2)
12565                return false;
12566
12567        return intel_fuzzy_clock_check(m, m2);
12568}
12569
12570static bool
12571intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12572                       struct intel_link_m_n *m2_n2,
12573                       bool adjust)
12574{
12575        if (m_n->tu == m2_n2->tu &&
12576            intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12577                              m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12578            intel_compare_m_n(m_n->link_m, m_n->link_n,
12579                              m2_n2->link_m, m2_n2->link_n, !adjust)) {
12580                if (adjust)
12581                        *m2_n2 = *m_n;
12582
12583                return true;
12584        }
12585
12586        return false;
12587}
12588
12589static bool
12590intel_pipe_config_compare(struct drm_device *dev,
12591                          struct intel_crtc_state *current_config,
12592                          struct intel_crtc_state *pipe_config,
12593                          bool adjust)
12594{
12595        bool ret = true;
12596
12597#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12598        do { \
12599                if (!adjust) \
12600                        DRM_ERROR(fmt, ##__VA_ARGS__); \
12601                else \
12602                        DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12603        } while (0)
12604
12605#define PIPE_CONF_CHECK_X(name) \
12606        if (current_config->name != pipe_config->name) { \
12607                INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12608                          "(expected 0x%08x, found 0x%08x)\n", \
12609                          current_config->name, \
12610                          pipe_config->name); \
12611                ret = false; \
12612        }
12613
12614#define PIPE_CONF_CHECK_I(name) \
12615        if (current_config->name != pipe_config->name) { \
12616                INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12617                          "(expected %i, found %i)\n", \
12618                          current_config->name, \
12619                          pipe_config->name); \
12620                ret = false; \
12621        }
12622
12623#define PIPE_CONF_CHECK_P(name) \
12624        if (current_config->name != pipe_config->name) { \
12625                INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12626                          "(expected %p, found %p)\n", \
12627                          current_config->name, \
12628                          pipe_config->name); \
12629                ret = false; \
12630        }
12631
12632#define PIPE_CONF_CHECK_M_N(name) \
12633        if (!intel_compare_link_m_n(&current_config->name, \
12634                                    &pipe_config->name,\
12635                                    adjust)) { \
12636                INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12637                          "(expected tu %i gmch %i/%i link %i/%i, " \
12638                          "found tu %i, gmch %i/%i link %i/%i)\n", \
12639                          current_config->name.tu, \
12640                          current_config->name.gmch_m, \
12641                          current_config->name.gmch_n, \
12642                          current_config->name.link_m, \
12643                          current_config->name.link_n, \
12644                          pipe_config->name.tu, \
12645                          pipe_config->name.gmch_m, \
12646                          pipe_config->name.gmch_n, \
12647                          pipe_config->name.link_m, \
12648                          pipe_config->name.link_n); \
12649                ret = false; \
12650        }
12651
12652/* This is required for BDW+ where there is only one set of registers for
12653 * switching between high and low RR.
12654 * This macro can be used whenever a comparison has to be made between one
12655 * hw state and multiple sw state variables.
12656 */
12657#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12658        if (!intel_compare_link_m_n(&current_config->name, \
12659                                    &pipe_config->name, adjust) && \
12660            !intel_compare_link_m_n(&current_config->alt_name, \
12661                                    &pipe_config->name, adjust)) { \
12662                INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12663                          "(expected tu %i gmch %i/%i link %i/%i, " \
12664                          "or tu %i gmch %i/%i link %i/%i, " \
12665                          "found tu %i, gmch %i/%i link %i/%i)\n", \
12666                          current_config->name.tu, \
12667                          current_config->name.gmch_m, \
12668                          current_config->name.gmch_n, \
12669                          current_config->name.link_m, \
12670                          current_config->name.link_n, \
12671                          current_config->alt_name.tu, \
12672                          current_config->alt_name.gmch_m, \
12673                          current_config->alt_name.gmch_n, \
12674                          current_config->alt_name.link_m, \
12675                          current_config->alt_name.link_n, \
12676                          pipe_config->name.tu, \
12677                          pipe_config->name.gmch_m, \
12678                          pipe_config->name.gmch_n, \
12679                          pipe_config->name.link_m, \
12680                          pipe_config->name.link_n); \
12681                ret = false; \
12682        }
12683
12684#define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12685        if ((current_config->name ^ pipe_config->name) & (mask)) { \
12686                INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12687                          "(expected %i, found %i)\n", \
12688                          current_config->name & (mask), \
12689                          pipe_config->name & (mask)); \
12690                ret = false; \
12691        }
12692
12693#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12694        if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12695                INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12696                          "(expected %i, found %i)\n", \
12697                          current_config->name, \
12698                          pipe_config->name); \
12699                ret = false; \
12700        }
12701
12702#define PIPE_CONF_QUIRK(quirk)  \
12703        ((current_config->quirks | pipe_config->quirks) & (quirk))
12704
12705        PIPE_CONF_CHECK_I(cpu_transcoder);
12706
12707        PIPE_CONF_CHECK_I(has_pch_encoder);
12708        PIPE_CONF_CHECK_I(fdi_lanes);
12709        PIPE_CONF_CHECK_M_N(fdi_m_n);
12710
12711        PIPE_CONF_CHECK_I(has_dp_encoder);
12712        PIPE_CONF_CHECK_I(lane_count);
12713
12714        if (INTEL_INFO(dev)->gen < 8) {
12715                PIPE_CONF_CHECK_M_N(dp_m_n);
12716
12717                if (current_config->has_drrs)
12718                        PIPE_CONF_CHECK_M_N(dp_m2_n2);
12719        } else
12720                PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12721
12722        PIPE_CONF_CHECK_I(has_dsi_encoder);
12723
12724        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12725        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12726        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12727        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12728        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12729        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12730
12731        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12732        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12733        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12734        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12735        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12736        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12737
12738        PIPE_CONF_CHECK_I(pixel_multiplier);
12739        PIPE_CONF_CHECK_I(has_hdmi_sink);
12740        if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12741            IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
12742                PIPE_CONF_CHECK_I(limited_color_range);
12743        PIPE_CONF_CHECK_I(has_infoframe);
12744
12745        PIPE_CONF_CHECK_I(has_audio);
12746
12747        PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12748                              DRM_MODE_FLAG_INTERLACE);
12749
12750        if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12751                PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12752                                      DRM_MODE_FLAG_PHSYNC);
12753                PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12754                                      DRM_MODE_FLAG_NHSYNC);
12755                PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12756                                      DRM_MODE_FLAG_PVSYNC);
12757                PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12758                                      DRM_MODE_FLAG_NVSYNC);
12759        }
12760
12761        PIPE_CONF_CHECK_X(gmch_pfit.control);
12762        /* pfit ratios are autocomputed by the hw on gen4+ */
12763        if (INTEL_INFO(dev)->gen < 4)
12764                PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
12765        PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12766
12767        if (!adjust) {
12768                PIPE_CONF_CHECK_I(pipe_src_w);
12769                PIPE_CONF_CHECK_I(pipe_src_h);
12770
12771                PIPE_CONF_CHECK_I(pch_pfit.enabled);
12772                if (current_config->pch_pfit.enabled) {
12773                        PIPE_CONF_CHECK_X(pch_pfit.pos);
12774                        PIPE_CONF_CHECK_X(pch_pfit.size);
12775                }
12776
12777                PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12778        }
12779
12780        /* BDW+ don't expose a synchronous way to read the state */
12781        if (IS_HASWELL(dev))
12782                PIPE_CONF_CHECK_I(ips_enabled);
12783
12784        PIPE_CONF_CHECK_I(double_wide);
12785
12786        PIPE_CONF_CHECK_X(ddi_pll_sel);
12787
12788        PIPE_CONF_CHECK_P(shared_dpll);
12789        PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12790        PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12791        PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12792        PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12793        PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12794        PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12795        PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12796        PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12797        PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12798
12799        PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12800        PIPE_CONF_CHECK_X(dsi_pll.div);
12801
12802        if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12803                PIPE_CONF_CHECK_I(pipe_bpp);
12804
12805        PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12806        PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12807
12808#undef PIPE_CONF_CHECK_X
12809#undef PIPE_CONF_CHECK_I
12810#undef PIPE_CONF_CHECK_P
12811#undef PIPE_CONF_CHECK_FLAGS
12812#undef PIPE_CONF_CHECK_CLOCK_FUZZY
12813#undef PIPE_CONF_QUIRK
12814#undef INTEL_ERR_OR_DBG_KMS
12815
12816        return ret;
12817}
12818
12819static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12820                                           const struct intel_crtc_state *pipe_config)
12821{
12822        if (pipe_config->has_pch_encoder) {
12823                int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
12824                                                            &pipe_config->fdi_m_n);
12825                int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12826
12827                /*
12828                 * FDI already provided one idea for the dotclock.
12829                 * Yell if the encoder disagrees.
12830                 */
12831                WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12832                     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12833                     fdi_dotclock, dotclock);
12834        }
12835}
12836
12837static void verify_wm_state(struct drm_crtc *crtc,
12838                            struct drm_crtc_state *new_state)
12839{
12840        struct drm_device *dev = crtc->dev;
12841        struct drm_i915_private *dev_priv = dev->dev_private;
12842        struct skl_ddb_allocation hw_ddb, *sw_ddb;
12843        struct skl_ddb_entry *hw_entry, *sw_entry;
12844        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12845        const enum pipe pipe = intel_crtc->pipe;
12846        int plane;
12847
12848        if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
12849                return;
12850
12851        skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12852        sw_ddb = &dev_priv->wm.skl_hw.ddb;
12853
12854        /* planes */
12855        for_each_plane(dev_priv, pipe, plane) {
12856                hw_entry = &hw_ddb.plane[pipe][plane];
12857                sw_entry = &sw_ddb->plane[pipe][plane];
12858
12859                if (skl_ddb_entry_equal(hw_entry, sw_entry))
12860                        continue;
12861
12862                DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12863                          "(expected (%u,%u), found (%u,%u))\n",
12864                          pipe_name(pipe), plane + 1,
12865                          sw_entry->start, sw_entry->end,
12866                          hw_entry->start, hw_entry->end);
12867        }
12868
12869        /* cursor */
12870        hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12871        sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12872
12873        if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
12874                DRM_ERROR("mismatch in DDB state pipe %c cursor "
12875                          "(expected (%u,%u), found (%u,%u))\n",
12876                          pipe_name(pipe),
12877                          sw_entry->start, sw_entry->end,
12878                          hw_entry->start, hw_entry->end);
12879        }
12880}
12881
12882static void
12883verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
12884{
12885        struct drm_connector *connector;
12886
12887        drm_for_each_connector(connector, dev) {
12888                struct drm_encoder *encoder = connector->encoder;
12889                struct drm_connector_state *state = connector->state;
12890
12891                if (state->crtc != crtc)
12892                        continue;
12893
12894                intel_connector_verify_state(to_intel_connector(connector));
12895
12896                I915_STATE_WARN(state->best_encoder != encoder,
12897                     "connector's atomic encoder doesn't match legacy encoder\n");
12898        }
12899}
12900
12901static void
12902verify_encoder_state(struct drm_device *dev)
12903{
12904        struct intel_encoder *encoder;
12905        struct intel_connector *connector;
12906
12907        for_each_intel_encoder(dev, encoder) {
12908                bool enabled = false;
12909                enum pipe pipe;
12910
12911                DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12912                              encoder->base.base.id,
12913                              encoder->base.name);
12914
12915                for_each_intel_connector(dev, connector) {
12916                        if (connector->base.state->best_encoder != &encoder->base)
12917                                continue;
12918                        enabled = true;
12919
12920                        I915_STATE_WARN(connector->base.state->crtc !=
12921                                        encoder->base.crtc,
12922                             "connector's crtc doesn't match encoder crtc\n");
12923                }
12924
12925                I915_STATE_WARN(!!encoder->base.crtc != enabled,
12926                     "encoder's enabled state mismatch "
12927                     "(expected %i, found %i)\n",
12928                     !!encoder->base.crtc, enabled);
12929
12930                if (!encoder->base.crtc) {
12931                        bool active;
12932
12933                        active = encoder->get_hw_state(encoder, &pipe);
12934                        I915_STATE_WARN(active,
12935                             "encoder detached but still enabled on pipe %c.\n",
12936                             pipe_name(pipe));
12937                }
12938        }
12939}
12940
12941static void
12942verify_crtc_state(struct drm_crtc *crtc,
12943                  struct drm_crtc_state *old_crtc_state,
12944                  struct drm_crtc_state *new_crtc_state)
12945{
12946        struct drm_device *dev = crtc->dev;
12947        struct drm_i915_private *dev_priv = dev->dev_private;
12948        struct intel_encoder *encoder;
12949        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12950        struct intel_crtc_state *pipe_config, *sw_config;
12951        struct drm_atomic_state *old_state;
12952        bool active;
12953
12954        old_state = old_crtc_state->state;
12955        __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
12956        pipe_config = to_intel_crtc_state(old_crtc_state);
12957        memset(pipe_config, 0, sizeof(*pipe_config));
12958        pipe_config->base.crtc = crtc;
12959        pipe_config->base.state = old_state;
12960
12961        DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
12962
12963        active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
12964
12965        /* hw state is inconsistent with the pipe quirk */
12966        if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12967            (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12968                active = new_crtc_state->active;
12969
12970        I915_STATE_WARN(new_crtc_state->active != active,
12971             "crtc active state doesn't match with hw state "
12972             "(expected %i, found %i)\n", new_crtc_state->active, active);
12973
12974        I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12975             "transitional active state does not match atomic hw state "
12976             "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
12977
12978        for_each_encoder_on_crtc(dev, crtc, encoder) {
12979                enum pipe pipe;
12980
12981                active = encoder->get_hw_state(encoder, &pipe);
12982                I915_STATE_WARN(active != new_crtc_state->active,
12983                        "[ENCODER:%i] active %i with crtc active %i\n",
12984                        encoder->base.base.id, active, new_crtc_state->active);
12985
12986                I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12987                                "Encoder connected to wrong pipe %c\n",
12988                                pipe_name(pipe));
12989
12990                if (active)
12991                        encoder->get_config(encoder, pipe_config);
12992        }
12993
12994        if (!new_crtc_state->active)
12995                return;
12996
12997        intel_pipe_config_sanity_check(dev_priv, pipe_config);
12998
12999        sw_config = to_intel_crtc_state(crtc->state);
13000        if (!intel_pipe_config_compare(dev, sw_config,
13001                                       pipe_config, false)) {
13002                I915_STATE_WARN(1, "pipe state doesn't match!\n");
13003                intel_dump_pipe_config(intel_crtc, pipe_config,
13004                                       "[hw state]");
13005                intel_dump_pipe_config(intel_crtc, sw_config,
13006                                       "[sw state]");
13007        }
13008}
13009
13010static void
13011verify_single_dpll_state(struct drm_i915_private *dev_priv,
13012                         struct intel_shared_dpll *pll,
13013                         struct drm_crtc *crtc,
13014                         struct drm_crtc_state *new_state)
13015{
13016        struct intel_dpll_hw_state dpll_hw_state;
13017        unsigned crtc_mask;
13018        bool active;
13019
13020        memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13021
13022        DRM_DEBUG_KMS("%s\n", pll->name);
13023
13024        active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13025
13026        if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13027                I915_STATE_WARN(!pll->on && pll->active_mask,
13028                     "pll in active use but not on in sw tracking\n");
13029                I915_STATE_WARN(pll->on && !pll->active_mask,
13030                     "pll is on but not used by any active crtc\n");
13031                I915_STATE_WARN(pll->on != active,
13032                     "pll on state mismatch (expected %i, found %i)\n",
13033                     pll->on, active);
13034        }
13035
13036        if (!crtc) {
13037                I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13038                                "more active pll users than references: %x vs %x\n",
13039                                pll->active_mask, pll->config.crtc_mask);
13040
13041                return;
13042        }
13043
13044        crtc_mask = 1 << drm_crtc_index(crtc);
13045
13046        if (new_state->active)
13047                I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13048                                "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13049                                pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13050        else
13051                I915_STATE_WARN(pll->active_mask & crtc_mask,
13052                                "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13053                                pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13054
13055        I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13056                        "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13057                        crtc_mask, pll->config.crtc_mask);
13058
13059        I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13060                                          &dpll_hw_state,
13061                                          sizeof(dpll_hw_state)),
13062                        "pll hw state mismatch\n");
13063}
13064
13065static void
13066verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13067                         struct drm_crtc_state *old_crtc_state,
13068                         struct drm_crtc_state *new_crtc_state)
13069{
13070        struct drm_i915_private *dev_priv = dev->dev_private;
13071        struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13072        struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13073
13074        if (new_state->shared_dpll)
13075                verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13076
13077        if (old_state->shared_dpll &&
13078            old_state->shared_dpll != new_state->shared_dpll) {
13079                unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13080                struct intel_shared_dpll *pll = old_state->shared_dpll;
13081
13082                I915_STATE_WARN(pll->active_mask & crtc_mask,
13083                                "pll active mismatch (didn't expect pipe %c in active mask)\n",
13084                                pipe_name(drm_crtc_index(crtc)));
13085                I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13086                                "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13087                                pipe_name(drm_crtc_index(crtc)));
13088        }
13089}
13090
13091static void
13092intel_modeset_verify_crtc(struct drm_crtc *crtc,
13093                         struct drm_crtc_state *old_state,
13094                         struct drm_crtc_state *new_state)
13095{
13096        if (!needs_modeset(new_state) &&
13097            !to_intel_crtc_state(new_state)->update_pipe)
13098                return;
13099
13100        verify_wm_state(crtc, new_state);
13101        verify_connector_state(crtc->dev, crtc);
13102        verify_crtc_state(crtc, old_state, new_state);
13103        verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13104}
13105
13106static void
13107verify_disabled_dpll_state(struct drm_device *dev)
13108{
13109        struct drm_i915_private *dev_priv = dev->dev_private;
13110        int i;
13111
13112        for (i = 0; i < dev_priv->num_shared_dpll; i++)
13113                verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13114}
13115
13116static void
13117intel_modeset_verify_disabled(struct drm_device *dev)
13118{
13119        verify_encoder_state(dev);
13120        verify_connector_state(dev, NULL);
13121        verify_disabled_dpll_state(dev);
13122}
13123
13124static void update_scanline_offset(struct intel_crtc *crtc)
13125{
13126        struct drm_device *dev = crtc->base.dev;
13127
13128        /*
13129         * The scanline counter increments at the leading edge of hsync.
13130         *
13131         * On most platforms it starts counting from vtotal-1 on the
13132         * first active line. That means the scanline counter value is
13133         * always one less than what we would expect. Ie. just after
13134         * start of vblank, which also occurs at start of hsync (on the
13135         * last active line), the scanline counter will read vblank_start-1.
13136         *
13137         * On gen2 the scanline counter starts counting from 1 instead
13138         * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13139         * to keep the value positive), instead of adding one.
13140         *
13141         * On HSW+ the behaviour of the scanline counter depends on the output
13142         * type. For DP ports it behaves like most other platforms, but on HDMI
13143         * there's an extra 1 line difference. So we need to add two instead of
13144         * one to the value.
13145         */
13146        if (IS_GEN2(dev)) {
13147                const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13148                int vtotal;
13149
13150                vtotal = adjusted_mode->crtc_vtotal;
13151                if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13152                        vtotal /= 2;
13153
13154                crtc->scanline_offset = vtotal - 1;
13155        } else if (HAS_DDI(dev) &&
13156                   intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
13157                crtc->scanline_offset = 2;
13158        } else
13159                crtc->scanline_offset = 1;
13160}
13161
13162static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13163{
13164        struct drm_device *dev = state->dev;
13165        struct drm_i915_private *dev_priv = to_i915(dev);
13166        struct intel_shared_dpll_config *shared_dpll = NULL;
13167        struct drm_crtc *crtc;
13168        struct drm_crtc_state *crtc_state;
13169        int i;
13170
13171        if (!dev_priv->display.crtc_compute_clock)
13172                return;
13173
13174        for_each_crtc_in_state(state, crtc, crtc_state, i) {
13175                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13176                struct intel_shared_dpll *old_dpll =
13177                        to_intel_crtc_state(crtc->state)->shared_dpll;
13178
13179                if (!needs_modeset(crtc_state))
13180                        continue;
13181
13182                to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13183
13184                if (!old_dpll)
13185                        continue;
13186
13187                if (!shared_dpll)
13188                        shared_dpll = intel_atomic_get_shared_dpll_state(state);
13189
13190                intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13191        }
13192}
13193
13194/*
13195 * This implements the workaround described in the "notes" section of the mode
13196 * set sequence documentation. When going from no pipes or single pipe to
13197 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13198 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13199 */
13200static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13201{
13202        struct drm_crtc_state *crtc_state;
13203        struct intel_crtc *intel_crtc;
13204        struct drm_crtc *crtc;
13205        struct intel_crtc_state *first_crtc_state = NULL;
13206        struct intel_crtc_state *other_crtc_state = NULL;
13207        enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13208        int i;
13209
13210        /* look at all crtc's that are going to be enabled in during modeset */
13211        for_each_crtc_in_state(state, crtc, crtc_state, i) {
13212                intel_crtc = to_intel_crtc(crtc);
13213
13214                if (!crtc_state->active || !needs_modeset(crtc_state))
13215                        continue;
13216
13217                if (first_crtc_state) {
13218                        other_crtc_state = to_intel_crtc_state(crtc_state);
13219                        break;
13220                } else {
13221                        first_crtc_state = to_intel_crtc_state(crtc_state);
13222                        first_pipe = intel_crtc->pipe;
13223                }
13224        }
13225
13226        /* No workaround needed? */
13227        if (!first_crtc_state)
13228                return 0;
13229
13230        /* w/a possibly needed, check how many crtc's are already enabled. */
13231        for_each_intel_crtc(state->dev, intel_crtc) {
13232                struct intel_crtc_state *pipe_config;
13233
13234                pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13235                if (IS_ERR(pipe_config))
13236                        return PTR_ERR(pipe_config);
13237
13238                pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13239
13240                if (!pipe_config->base.active ||
13241                    needs_modeset(&pipe_config->base))
13242                        continue;
13243
13244                /* 2 or more enabled crtcs means no need for w/a */
13245                if (enabled_pipe != INVALID_PIPE)
13246                        return 0;
13247
13248                enabled_pipe = intel_crtc->pipe;
13249        }
13250
13251        if (enabled_pipe != INVALID_PIPE)
13252                first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13253        else if (other_crtc_state)
13254                other_crtc_state->hsw_workaround_pipe = first_pipe;
13255
13256        return 0;
13257}
13258
13259static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13260{
13261        struct drm_crtc *crtc;
13262        struct drm_crtc_state *crtc_state;
13263        int ret = 0;
13264
13265        /* add all active pipes to the state */
13266        for_each_crtc(state->dev, crtc) {
13267                crtc_state = drm_atomic_get_crtc_state(state, crtc);
13268                if (IS_ERR(crtc_state))
13269                        return PTR_ERR(crtc_state);
13270
13271                if (!crtc_state->active || needs_modeset(crtc_state))
13272                        continue;
13273
13274                crtc_state->mode_changed = true;
13275
13276                ret = drm_atomic_add_affected_connectors(state, crtc);
13277                if (ret)
13278                        break;
13279
13280                ret = drm_atomic_add_affected_planes(state, crtc);
13281                if (ret)
13282                        break;
13283        }
13284
13285        return ret;
13286}
13287
13288static int intel_modeset_checks(struct drm_atomic_state *state)
13289{
13290        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13291        struct drm_i915_private *dev_priv = state->dev->dev_private;
13292        struct drm_crtc *crtc;
13293        struct drm_crtc_state *crtc_state;
13294        int ret = 0, i;
13295
13296        if (!check_digital_port_conflicts(state)) {
13297                DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13298                return -EINVAL;
13299        }
13300
13301        intel_state->modeset = true;
13302        intel_state->active_crtcs = dev_priv->active_crtcs;
13303
13304        for_each_crtc_in_state(state, crtc, crtc_state, i) {
13305                if (crtc_state->active)
13306                        intel_state->active_crtcs |= 1 << i;
13307                else
13308                        intel_state->active_crtcs &= ~(1 << i);
13309        }
13310
13311        /*
13312         * See if the config requires any additional preparation, e.g.
13313         * to adjust global state with pipes off.  We need to do this
13314         * here so we can get the modeset_pipe updated config for the new
13315         * mode set on this crtc.  For other crtcs we need to use the
13316         * adjusted_mode bits in the crtc directly.
13317         */
13318        if (dev_priv->display.modeset_calc_cdclk) {
13319                ret = dev_priv->display.modeset_calc_cdclk(state);
13320
13321                if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
13322                        ret = intel_modeset_all_pipes(state);
13323
13324                if (ret < 0)
13325                        return ret;
13326
13327                DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13328                              intel_state->cdclk, intel_state->dev_cdclk);
13329        } else
13330                to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13331
13332        intel_modeset_clear_plls(state);
13333
13334        if (IS_HASWELL(dev_priv))
13335                return haswell_mode_set_planes_workaround(state);
13336
13337        return 0;
13338}
13339
13340/*
13341 * Handle calculation of various watermark data at the end of the atomic check
13342 * phase.  The code here should be run after the per-crtc and per-plane 'check'
13343 * handlers to ensure that all derived state has been updated.
13344 */
13345static void calc_watermark_data(struct drm_atomic_state *state)
13346{
13347        struct drm_device *dev = state->dev;
13348        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13349        struct drm_crtc *crtc;
13350        struct drm_crtc_state *cstate;
13351        struct drm_plane *plane;
13352        struct drm_plane_state *pstate;
13353
13354        /*
13355         * Calculate watermark configuration details now that derived
13356         * plane/crtc state is all properly updated.
13357         */
13358        drm_for_each_crtc(crtc, dev) {
13359                cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13360                        crtc->state;
13361
13362                if (cstate->active)
13363                        intel_state->wm_config.num_pipes_active++;
13364        }
13365        drm_for_each_legacy_plane(plane, dev) {
13366                pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13367                        plane->state;
13368
13369                if (!to_intel_plane_state(pstate)->visible)
13370                        continue;
13371
13372                intel_state->wm_config.sprites_enabled = true;
13373                if (pstate->crtc_w != pstate->src_w >> 16 ||
13374                    pstate->crtc_h != pstate->src_h >> 16)
13375                        intel_state->wm_config.sprites_scaled = true;
13376        }
13377}
13378
13379/**
13380 * intel_atomic_check - validate state object
13381 * @dev: drm device
13382 * @state: state to validate
13383 */
13384static int intel_atomic_check(struct drm_device *dev,
13385                              struct drm_atomic_state *state)
13386{
13387        struct drm_i915_private *dev_priv = to_i915(dev);
13388        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13389        struct drm_crtc *crtc;
13390        struct drm_crtc_state *crtc_state;
13391        int ret, i;
13392        bool any_ms = false;
13393
13394        ret = drm_atomic_helper_check_modeset(dev, state);
13395        if (ret)
13396                return ret;
13397
13398        for_each_crtc_in_state(state, crtc, crtc_state, i) {
13399                struct intel_crtc_state *pipe_config =
13400                        to_intel_crtc_state(crtc_state);
13401
13402                /* Catch I915_MODE_FLAG_INHERITED */
13403                if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13404                        crtc_state->mode_changed = true;
13405
13406                if (!crtc_state->enable) {
13407                        if (needs_modeset(crtc_state))
13408                                any_ms = true;
13409                        continue;
13410                }
13411
13412                if (!needs_modeset(crtc_state))
13413                        continue;
13414
13415                /* FIXME: For only active_changed we shouldn't need to do any
13416                 * state recomputation at all. */
13417
13418                ret = drm_atomic_add_affected_connectors(state, crtc);
13419                if (ret)
13420                        return ret;
13421
13422                ret = intel_modeset_pipe_config(crtc, pipe_config);
13423                if (ret)
13424                        return ret;
13425
13426                if (i915.fastboot &&
13427                    intel_pipe_config_compare(dev,
13428                                        to_intel_crtc_state(crtc->state),
13429                                        pipe_config, true)) {
13430                        crtc_state->mode_changed = false;
13431                        to_intel_crtc_state(crtc_state)->update_pipe = true;
13432                }
13433
13434                if (needs_modeset(crtc_state)) {
13435                        any_ms = true;
13436
13437                        ret = drm_atomic_add_affected_planes(state, crtc);
13438                        if (ret)
13439                                return ret;
13440                }
13441
13442                intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13443                                       needs_modeset(crtc_state) ?
13444                                       "[modeset]" : "[fastset]");
13445        }
13446
13447        if (any_ms) {
13448                ret = intel_modeset_checks(state);
13449
13450                if (ret)
13451                        return ret;
13452        } else
13453                intel_state->cdclk = dev_priv->cdclk_freq;
13454
13455        ret = drm_atomic_helper_check_planes(dev, state);
13456        if (ret)
13457                return ret;
13458
13459        intel_fbc_choose_crtc(dev_priv, state);
13460        calc_watermark_data(state);
13461
13462        return 0;
13463}
13464
13465static int intel_atomic_prepare_commit(struct drm_device *dev,
13466                                       struct drm_atomic_state *state,
13467                                       bool nonblock)
13468{
13469        struct drm_i915_private *dev_priv = dev->dev_private;
13470        struct drm_plane_state *plane_state;
13471        struct drm_crtc_state *crtc_state;
13472        struct drm_plane *plane;
13473        struct drm_crtc *crtc;
13474        int i, ret;
13475
13476        if (nonblock) {
13477                DRM_DEBUG_KMS("i915 does not yet support nonblocking commit\n");
13478                return -EINVAL;
13479        }
13480
13481        for_each_crtc_in_state(state, crtc, crtc_state, i) {
13482                if (state->legacy_cursor_update)
13483                        continue;
13484
13485                ret = intel_crtc_wait_for_pending_flips(crtc);
13486                if (ret)
13487                        return ret;
13488
13489                if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13490                        flush_workqueue(dev_priv->wq);
13491        }
13492
13493        ret = mutex_lock_interruptible(&dev->struct_mutex);
13494        if (ret)
13495                return ret;
13496
13497        ret = drm_atomic_helper_prepare_planes(dev, state);
13498        mutex_unlock(&dev->struct_mutex);
13499
13500        if (!ret && !nonblock) {
13501                for_each_plane_in_state(state, plane, plane_state, i) {
13502                        struct intel_plane_state *intel_plane_state =
13503                                to_intel_plane_state(plane_state);
13504
13505                        if (!intel_plane_state->wait_req)
13506                                continue;
13507
13508                        ret = __i915_wait_request(intel_plane_state->wait_req,
13509                                                  true, NULL, NULL);
13510                        if (ret) {
13511                                /* Any hang should be swallowed by the wait */
13512                                WARN_ON(ret == -EIO);
13513                                mutex_lock(&dev->struct_mutex);
13514                                drm_atomic_helper_cleanup_planes(dev, state);
13515                                mutex_unlock(&dev->struct_mutex);
13516                                break;
13517                        }
13518                }
13519        }
13520
13521        return ret;
13522}
13523
13524static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13525                                          struct drm_i915_private *dev_priv,
13526                                          unsigned crtc_mask)
13527{
13528        unsigned last_vblank_count[I915_MAX_PIPES];
13529        enum pipe pipe;
13530        int ret;
13531
13532        if (!crtc_mask)
13533                return;
13534
13535        for_each_pipe(dev_priv, pipe) {
13536                struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13537
13538                if (!((1 << pipe) & crtc_mask))
13539                        continue;
13540
13541                ret = drm_crtc_vblank_get(crtc);
13542                if (WARN_ON(ret != 0)) {
13543                        crtc_mask &= ~(1 << pipe);
13544                        continue;
13545                }
13546
13547                last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13548        }
13549
13550        for_each_pipe(dev_priv, pipe) {
13551                struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13552                long lret;
13553
13554                if (!((1 << pipe) & crtc_mask))
13555                        continue;
13556
13557                lret = wait_event_timeout(dev->vblank[pipe].queue,
13558                                last_vblank_count[pipe] !=
13559                                        drm_crtc_vblank_count(crtc),
13560                                msecs_to_jiffies(50));
13561
13562                WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
13563
13564                drm_crtc_vblank_put(crtc);
13565        }
13566}
13567
13568static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13569{
13570        /* fb updated, need to unpin old fb */
13571        if (crtc_state->fb_changed)
13572                return true;
13573
13574        /* wm changes, need vblank before final wm's */
13575        if (crtc_state->update_wm_post)
13576                return true;
13577
13578        /*
13579         * cxsr is re-enabled after vblank.
13580         * This is already handled by crtc_state->update_wm_post,
13581         * but added for clarity.
13582         */
13583        if (crtc_state->disable_cxsr)
13584                return true;
13585
13586        return false;
13587}
13588
13589/**
13590 * intel_atomic_commit - commit validated state object
13591 * @dev: DRM device
13592 * @state: the top-level driver state object
13593 * @nonblock: nonblocking commit
13594 *
13595 * This function commits a top-level state object that has been validated
13596 * with drm_atomic_helper_check().
13597 *
13598 * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13599 * we can only handle plane-related operations and do not yet support
13600 * nonblocking commit.
13601 *
13602 * RETURNS
13603 * Zero for success or -errno.
13604 */
13605static int intel_atomic_commit(struct drm_device *dev,
13606                               struct drm_atomic_state *state,
13607                               bool nonblock)
13608{
13609        struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13610        struct drm_i915_private *dev_priv = dev->dev_private;
13611        struct drm_crtc_state *old_crtc_state;
13612        struct drm_crtc *crtc;
13613        struct intel_crtc_state *intel_cstate;
13614        int ret = 0, i;
13615        bool hw_check = intel_state->modeset;
13616        unsigned long put_domains[I915_MAX_PIPES] = {};
13617        unsigned crtc_vblank_mask = 0;
13618
13619        ret = intel_atomic_prepare_commit(dev, state, nonblock);
13620        if (ret) {
13621                DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13622                return ret;
13623        }
13624
13625        drm_atomic_helper_swap_state(dev, state);
13626        dev_priv->wm.config = intel_state->wm_config;
13627        intel_shared_dpll_commit(state);
13628
13629        if (intel_state->modeset) {
13630                memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13631                       sizeof(intel_state->min_pixclk));
13632                dev_priv->active_crtcs = intel_state->active_crtcs;
13633                dev_priv->atomic_cdclk_freq = intel_state->cdclk;
13634
13635                intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13636        }
13637
13638        for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13639                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13640
13641                if (needs_modeset(crtc->state) ||
13642                    to_intel_crtc_state(crtc->state)->update_pipe) {
13643                        hw_check = true;
13644
13645                        put_domains[to_intel_crtc(crtc)->pipe] =
13646                                modeset_get_crtc_power_domains(crtc,
13647                                        to_intel_crtc_state(crtc->state));
13648                }
13649
13650                if (!needs_modeset(crtc->state))
13651                        continue;
13652
13653                intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13654
13655                if (old_crtc_state->active) {
13656                        intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
13657                        dev_priv->display.crtc_disable(crtc);
13658                        intel_crtc->active = false;
13659                        intel_fbc_disable(intel_crtc);
13660                        intel_disable_shared_dpll(intel_crtc);
13661
13662                        /*
13663                         * Underruns don't always raise
13664                         * interrupts, so check manually.
13665                         */
13666                        intel_check_cpu_fifo_underruns(dev_priv);
13667                        intel_check_pch_fifo_underruns(dev_priv);
13668
13669                        if (!crtc->state->active)
13670                                intel_update_watermarks(crtc);
13671                }
13672        }
13673
13674        /* Only after disabling all output pipelines that will be changed can we
13675         * update the the output configuration. */
13676        intel_modeset_update_crtc_state(state);
13677
13678        if (intel_state->modeset) {
13679                drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13680
13681                if (dev_priv->display.modeset_commit_cdclk &&
13682                    intel_state->dev_cdclk != dev_priv->cdclk_freq)
13683                        dev_priv->display.modeset_commit_cdclk(state);
13684
13685                intel_modeset_verify_disabled(dev);
13686        }
13687
13688        /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13689        for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13690                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13691                bool modeset = needs_modeset(crtc->state);
13692                struct intel_crtc_state *pipe_config =
13693                        to_intel_crtc_state(crtc->state);
13694                bool update_pipe = !modeset && pipe_config->update_pipe;
13695
13696                if (modeset && crtc->state->active) {
13697                        update_scanline_offset(to_intel_crtc(crtc));
13698                        dev_priv->display.crtc_enable(crtc);
13699                }
13700
13701                if (!modeset)
13702                        intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
13703
13704                if (crtc->state->active &&
13705                    drm_atomic_get_existing_plane_state(state, crtc->primary))
13706                        intel_fbc_enable(intel_crtc);
13707
13708                if (crtc->state->active &&
13709                    (crtc->state->planes_changed || update_pipe))
13710                        drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
13711
13712                if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13713                        crtc_vblank_mask |= 1 << i;
13714        }
13715
13716        /* FIXME: add subpixel order */
13717
13718        if (!state->legacy_cursor_update)
13719                intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
13720
13721        /*
13722         * Now that the vblank has passed, we can go ahead and program the
13723         * optimal watermarks on platforms that need two-step watermark
13724         * programming.
13725         *
13726         * TODO: Move this (and other cleanup) to an async worker eventually.
13727         */
13728        for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13729                intel_cstate = to_intel_crtc_state(crtc->state);
13730
13731                if (dev_priv->display.optimize_watermarks)
13732                        dev_priv->display.optimize_watermarks(intel_cstate);
13733        }
13734
13735        for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13736                intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13737
13738                if (put_domains[i])
13739                        modeset_put_power_domains(dev_priv, put_domains[i]);
13740
13741                intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
13742        }
13743
13744        if (intel_state->modeset)
13745                intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13746
13747        mutex_lock(&dev->struct_mutex);
13748        drm_atomic_helper_cleanup_planes(dev, state);
13749        mutex_unlock(&dev->struct_mutex);
13750
13751        drm_atomic_state_free(state);
13752
13753        /* As one of the primary mmio accessors, KMS has a high likelihood
13754         * of triggering bugs in unclaimed access. After we finish
13755         * modesetting, see if an error has been flagged, and if so
13756         * enable debugging for the next modeset - and hope we catch
13757         * the culprit.
13758         *
13759         * XXX note that we assume display power is on at this point.
13760         * This might hold true now but we need to add pm helper to check
13761         * unclaimed only when the hardware is on, as atomic commits
13762         * can happen also when the device is completely off.
13763         */
13764        intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13765
13766        return 0;
13767}
13768
13769void intel_crtc_restore_mode(struct drm_crtc *crtc)
13770{
13771        struct drm_device *dev = crtc->dev;
13772        struct drm_atomic_state *state;
13773        struct drm_crtc_state *crtc_state;
13774        int ret;
13775
13776        state = drm_atomic_state_alloc(dev);
13777        if (!state) {
13778                DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13779                              crtc->base.id);
13780                return;
13781        }
13782
13783        state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13784
13785retry:
13786        crtc_state = drm_atomic_get_crtc_state(state, crtc);
13787        ret = PTR_ERR_OR_ZERO(crtc_state);
13788        if (!ret) {
13789                if (!crtc_state->active)
13790                        goto out;
13791
13792                crtc_state->mode_changed = true;
13793                ret = drm_atomic_commit(state);
13794        }
13795
13796        if (ret == -EDEADLK) {
13797                drm_atomic_state_clear(state);
13798                drm_modeset_backoff(state->acquire_ctx);
13799                goto retry;
13800        }
13801
13802        if (ret)
13803out:
13804                drm_atomic_state_free(state);
13805}
13806
13807#undef for_each_intel_crtc_masked
13808
13809static const struct drm_crtc_funcs intel_crtc_funcs = {
13810        .gamma_set = drm_atomic_helper_legacy_gamma_set,
13811        .set_config = drm_atomic_helper_set_config,
13812        .set_property = drm_atomic_helper_crtc_set_property,
13813        .destroy = intel_crtc_destroy,
13814        .page_flip = intel_crtc_page_flip,
13815        .atomic_duplicate_state = intel_crtc_duplicate_state,
13816        .atomic_destroy_state = intel_crtc_destroy_state,
13817};
13818
13819/**
13820 * intel_prepare_plane_fb - Prepare fb for usage on plane
13821 * @plane: drm plane to prepare for
13822 * @fb: framebuffer to prepare for presentation
13823 *
13824 * Prepares a framebuffer for usage on a display plane.  Generally this
13825 * involves pinning the underlying object and updating the frontbuffer tracking
13826 * bits.  Some older platforms need special physical address handling for
13827 * cursor planes.
13828 *
13829 * Must be called with struct_mutex held.
13830 *
13831 * Returns 0 on success, negative error code on failure.
13832 */
13833int
13834intel_prepare_plane_fb(struct drm_plane *plane,
13835                       const struct drm_plane_state *new_state)
13836{
13837        struct drm_device *dev = plane->dev;
13838        struct drm_framebuffer *fb = new_state->fb;
13839        struct intel_plane *intel_plane = to_intel_plane(plane);
13840        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13841        struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13842        int ret = 0;
13843
13844        if (!obj && !old_obj)
13845                return 0;
13846
13847        if (old_obj) {
13848                struct drm_crtc_state *crtc_state =
13849                        drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13850
13851                /* Big Hammer, we also need to ensure that any pending
13852                 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13853                 * current scanout is retired before unpinning the old
13854                 * framebuffer. Note that we rely on userspace rendering
13855                 * into the buffer attached to the pipe they are waiting
13856                 * on. If not, userspace generates a GPU hang with IPEHR
13857                 * point to the MI_WAIT_FOR_EVENT.
13858                 *
13859                 * This should only fail upon a hung GPU, in which case we
13860                 * can safely continue.
13861                 */
13862                if (needs_modeset(crtc_state))
13863                        ret = i915_gem_object_wait_rendering(old_obj, true);
13864                if (ret) {
13865                        /* GPU hangs should have been swallowed by the wait */
13866                        WARN_ON(ret == -EIO);
13867                        return ret;
13868                }
13869        }
13870
13871        /* For framebuffer backed by dmabuf, wait for fence */
13872        if (obj && obj->base.dma_buf) {
13873                long lret;
13874
13875                lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13876                                                           false, true,
13877                                                           MAX_SCHEDULE_TIMEOUT);
13878                if (lret == -ERESTARTSYS)
13879                        return lret;
13880
13881                WARN(lret < 0, "waiting returns %li\n", lret);
13882        }
13883
13884        if (!obj) {
13885                ret = 0;
13886        } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13887            INTEL_INFO(dev)->cursor_needs_physical) {
13888                int align = IS_I830(dev) ? 16 * 1024 : 256;
13889                ret = i915_gem_object_attach_phys(obj, align);
13890                if (ret)
13891                        DRM_DEBUG_KMS("failed to attach phys object\n");
13892        } else {
13893                ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
13894        }
13895
13896        if (ret == 0) {
13897                if (obj) {
13898                        struct intel_plane_state *plane_state =
13899                                to_intel_plane_state(new_state);
13900
13901                        i915_gem_request_assign(&plane_state->wait_req,
13902                                                obj->last_write_req);
13903                }
13904
13905                i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13906        }
13907
13908        return ret;
13909}
13910
13911/**
13912 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13913 * @plane: drm plane to clean up for
13914 * @fb: old framebuffer that was on plane
13915 *
13916 * Cleans up a framebuffer that has just been removed from a plane.
13917 *
13918 * Must be called with struct_mutex held.
13919 */
13920void
13921intel_cleanup_plane_fb(struct drm_plane *plane,
13922                       const struct drm_plane_state *old_state)
13923{
13924        struct drm_device *dev = plane->dev;
13925        struct intel_plane *intel_plane = to_intel_plane(plane);
13926        struct intel_plane_state *old_intel_state;
13927        struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13928        struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13929
13930        old_intel_state = to_intel_plane_state(old_state);
13931
13932        if (!obj && !old_obj)
13933                return;
13934
13935        if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13936            !INTEL_INFO(dev)->cursor_needs_physical))
13937                intel_unpin_fb_obj(old_state->fb, old_state->rotation);
13938
13939        /* prepare_fb aborted? */
13940        if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13941            (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13942                i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13943
13944        i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13945}
13946
13947int
13948skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13949{
13950        int max_scale;
13951        struct drm_device *dev;
13952        struct drm_i915_private *dev_priv;
13953        int crtc_clock, cdclk;
13954
13955        if (!intel_crtc || !crtc_state->base.enable)
13956                return DRM_PLANE_HELPER_NO_SCALING;
13957
13958        dev = intel_crtc->base.dev;
13959        dev_priv = dev->dev_private;
13960        crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13961        cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13962
13963        if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13964                return DRM_PLANE_HELPER_NO_SCALING;
13965
13966        /*
13967         * skl max scale is lower of:
13968         *    close to 3 but not 3, -1 is for that purpose
13969         *            or
13970         *    cdclk/crtc_clock
13971         */
13972        max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13973
13974        return max_scale;
13975}
13976
13977static int
13978intel_check_primary_plane(struct drm_plane *plane,
13979                          struct intel_crtc_state *crtc_state,
13980                          struct intel_plane_state *state)
13981{
13982        struct drm_crtc *crtc = state->base.crtc;
13983        struct drm_framebuffer *fb = state->base.fb;
13984        int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13985        int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13986        bool can_position = false;
13987
13988        if (INTEL_INFO(plane->dev)->gen >= 9) {
13989                /* use scaler when colorkey is not required */
13990                if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13991                        min_scale = 1;
13992                        max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13993                }
13994                can_position = true;
13995        }
13996
13997        return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13998                                             &state->dst, &state->clip,
13999                                             min_scale, max_scale,
14000                                             can_position, true,
14001                                             &state->visible);
14002}
14003
14004static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14005                                    struct drm_crtc_state *old_crtc_state)
14006{
14007        struct drm_device *dev = crtc->dev;
14008        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14009        struct intel_crtc_state *old_intel_state =
14010                to_intel_crtc_state(old_crtc_state);
14011        bool modeset = needs_modeset(crtc->state);
14012
14013        /* Perform vblank evasion around commit operation */
14014        intel_pipe_update_start(intel_crtc);
14015
14016        if (modeset)
14017                return;
14018
14019        if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14020                intel_color_set_csc(crtc->state);
14021                intel_color_load_luts(crtc->state);
14022        }
14023
14024        if (to_intel_crtc_state(crtc->state)->update_pipe)
14025                intel_update_pipe_config(intel_crtc, old_intel_state);
14026        else if (INTEL_INFO(dev)->gen >= 9)
14027                skl_detach_scalers(intel_crtc);
14028}
14029
14030static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14031                                     struct drm_crtc_state *old_crtc_state)
14032{
14033        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14034
14035        intel_pipe_update_end(intel_crtc);
14036}
14037
14038/**
14039 * intel_plane_destroy - destroy a plane
14040 * @plane: plane to destroy
14041 *
14042 * Common destruction function for all types of planes (primary, cursor,
14043 * sprite).
14044 */
14045void intel_plane_destroy(struct drm_plane *plane)
14046{
14047        struct intel_plane *intel_plane = to_intel_plane(plane);
14048        drm_plane_cleanup(plane);
14049        kfree(intel_plane);
14050}
14051
14052const struct drm_plane_funcs intel_plane_funcs = {
14053        .update_plane = drm_atomic_helper_update_plane,
14054        .disable_plane = drm_atomic_helper_disable_plane,
14055        .destroy = intel_plane_destroy,
14056        .set_property = drm_atomic_helper_plane_set_property,
14057        .atomic_get_property = intel_plane_atomic_get_property,
14058        .atomic_set_property = intel_plane_atomic_set_property,
14059        .atomic_duplicate_state = intel_plane_duplicate_state,
14060        .atomic_destroy_state = intel_plane_destroy_state,
14061
14062};
14063
14064static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14065                                                    int pipe)
14066{
14067        struct intel_plane *primary = NULL;
14068        struct intel_plane_state *state = NULL;
14069        const uint32_t *intel_primary_formats;
14070        unsigned int num_formats;
14071        int ret;
14072
14073        primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14074        if (!primary)
14075                goto fail;
14076
14077        state = intel_create_plane_state(&primary->base);
14078        if (!state)
14079                goto fail;
14080        primary->base.state = &state->base;
14081
14082        primary->can_scale = false;
14083        primary->max_downscale = 1;
14084        if (INTEL_INFO(dev)->gen >= 9) {
14085                primary->can_scale = true;
14086                state->scaler_id = -1;
14087        }
14088        primary->pipe = pipe;
14089        primary->plane = pipe;
14090        primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14091        primary->check_plane = intel_check_primary_plane;
14092        if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14093                primary->plane = !pipe;
14094
14095        if (INTEL_INFO(dev)->gen >= 9) {
14096                intel_primary_formats = skl_primary_formats;
14097                num_formats = ARRAY_SIZE(skl_primary_formats);
14098
14099                primary->update_plane = skylake_update_primary_plane;
14100                primary->disable_plane = skylake_disable_primary_plane;
14101        } else if (HAS_PCH_SPLIT(dev)) {
14102                intel_primary_formats = i965_primary_formats;
14103                num_formats = ARRAY_SIZE(i965_primary_formats);
14104
14105                primary->update_plane = ironlake_update_primary_plane;
14106                primary->disable_plane = i9xx_disable_primary_plane;
14107        } else if (INTEL_INFO(dev)->gen >= 4) {
14108                intel_primary_formats = i965_primary_formats;
14109                num_formats = ARRAY_SIZE(i965_primary_formats);
14110
14111                primary->update_plane = i9xx_update_primary_plane;
14112                primary->disable_plane = i9xx_disable_primary_plane;
14113        } else {
14114                intel_primary_formats = i8xx_primary_formats;
14115                num_formats = ARRAY_SIZE(i8xx_primary_formats);
14116
14117                primary->update_plane = i9xx_update_primary_plane;
14118                primary->disable_plane = i9xx_disable_primary_plane;
14119        }
14120
14121        ret = drm_universal_plane_init(dev, &primary->base, 0,
14122                                       &intel_plane_funcs,
14123                                       intel_primary_formats, num_formats,
14124                                       DRM_PLANE_TYPE_PRIMARY, NULL);
14125        if (ret)
14126                goto fail;
14127
14128        if (INTEL_INFO(dev)->gen >= 4)
14129                intel_create_rotation_property(dev, primary);
14130
14131        drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14132
14133        return &primary->base;
14134
14135fail:
14136        kfree(state);
14137        kfree(primary);
14138
14139        return NULL;
14140}
14141
14142void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14143{
14144        if (!dev->mode_config.rotation_property) {
14145                unsigned long flags = BIT(DRM_ROTATE_0) |
14146                        BIT(DRM_ROTATE_180);
14147
14148                if (INTEL_INFO(dev)->gen >= 9)
14149                        flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14150
14151                dev->mode_config.rotation_property =
14152                        drm_mode_create_rotation_property(dev, flags);
14153        }
14154        if (dev->mode_config.rotation_property)
14155                drm_object_attach_property(&plane->base.base,
14156                                dev->mode_config.rotation_property,
14157                                plane->base.state->rotation);
14158}
14159
14160static int
14161intel_check_cursor_plane(struct drm_plane *plane,
14162                         struct intel_crtc_state *crtc_state,
14163                         struct intel_plane_state *state)
14164{
14165        struct drm_crtc *crtc = crtc_state->base.crtc;
14166        struct drm_framebuffer *fb = state->base.fb;
14167        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14168        enum pipe pipe = to_intel_plane(plane)->pipe;
14169        unsigned stride;
14170        int ret;
14171
14172        ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14173                                            &state->dst, &state->clip,
14174                                            DRM_PLANE_HELPER_NO_SCALING,
14175                                            DRM_PLANE_HELPER_NO_SCALING,
14176                                            true, true, &state->visible);
14177        if (ret)
14178                return ret;
14179
14180        /* if we want to turn off the cursor ignore width and height */
14181        if (!obj)
14182                return 0;
14183
14184        /* Check for which cursor types we support */
14185        if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
14186                DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14187                          state->base.crtc_w, state->base.crtc_h);
14188                return -EINVAL;
14189        }
14190
14191        stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14192        if (obj->base.size < stride * state->base.crtc_h) {
14193                DRM_DEBUG_KMS("buffer is too small\n");
14194                return -ENOMEM;
14195        }
14196
14197        if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
14198                DRM_DEBUG_KMS("cursor cannot be tiled\n");
14199                return -EINVAL;
14200        }
14201
14202        /*
14203         * There's something wrong with the cursor on CHV pipe C.
14204         * If it straddles the left edge of the screen then
14205         * moving it away from the edge or disabling it often
14206         * results in a pipe underrun, and often that can lead to
14207         * dead pipe (constant underrun reported, and it scans
14208         * out just a solid color). To recover from that, the
14209         * display power well must be turned off and on again.
14210         * Refuse the put the cursor into that compromised position.
14211         */
14212        if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14213            state->visible && state->base.crtc_x < 0) {
14214                DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14215                return -EINVAL;
14216        }
14217
14218        return 0;
14219}
14220
14221static void
14222intel_disable_cursor_plane(struct drm_plane *plane,
14223                           struct drm_crtc *crtc)
14224{
14225        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14226
14227        intel_crtc->cursor_addr = 0;
14228        intel_crtc_update_cursor(crtc, NULL);
14229}
14230
14231static void
14232intel_update_cursor_plane(struct drm_plane *plane,
14233                          const struct intel_crtc_state *crtc_state,
14234                          const struct intel_plane_state *state)
14235{
14236        struct drm_crtc *crtc = crtc_state->base.crtc;
14237        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14238        struct drm_device *dev = plane->dev;
14239        struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
14240        uint32_t addr;
14241
14242        if (!obj)
14243                addr = 0;
14244        else if (!INTEL_INFO(dev)->cursor_needs_physical)
14245                addr = i915_gem_obj_ggtt_offset(obj);
14246        else
14247                addr = obj->phys_handle->busaddr;
14248
14249        intel_crtc->cursor_addr = addr;
14250        intel_crtc_update_cursor(crtc, state);
14251}
14252
14253static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14254                                                   int pipe)
14255{
14256        struct intel_plane *cursor = NULL;
14257        struct intel_plane_state *state = NULL;
14258        int ret;
14259
14260        cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14261        if (!cursor)
14262                goto fail;
14263
14264        state = intel_create_plane_state(&cursor->base);
14265        if (!state)
14266                goto fail;
14267        cursor->base.state = &state->base;
14268
14269        cursor->can_scale = false;
14270        cursor->max_downscale = 1;
14271        cursor->pipe = pipe;
14272        cursor->plane = pipe;
14273        cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14274        cursor->check_plane = intel_check_cursor_plane;
14275        cursor->update_plane = intel_update_cursor_plane;
14276        cursor->disable_plane = intel_disable_cursor_plane;
14277
14278        ret = drm_universal_plane_init(dev, &cursor->base, 0,
14279                                       &intel_plane_funcs,
14280                                       intel_cursor_formats,
14281                                       ARRAY_SIZE(intel_cursor_formats),
14282                                       DRM_PLANE_TYPE_CURSOR, NULL);
14283        if (ret)
14284                goto fail;
14285
14286        if (INTEL_INFO(dev)->gen >= 4) {
14287                if (!dev->mode_config.rotation_property)
14288                        dev->mode_config.rotation_property =
14289                                drm_mode_create_rotation_property(dev,
14290                                                        BIT(DRM_ROTATE_0) |
14291                                                        BIT(DRM_ROTATE_180));
14292                if (dev->mode_config.rotation_property)
14293                        drm_object_attach_property(&cursor->base.base,
14294                                dev->mode_config.rotation_property,
14295                                state->base.rotation);
14296        }
14297
14298        if (INTEL_INFO(dev)->gen >=9)
14299                state->scaler_id = -1;
14300
14301        drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14302
14303        return &cursor->base;
14304
14305fail:
14306        kfree(state);
14307        kfree(cursor);
14308
14309        return NULL;
14310}
14311
14312static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14313        struct intel_crtc_state *crtc_state)
14314{
14315        int i;
14316        struct intel_scaler *intel_scaler;
14317        struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14318
14319        for (i = 0; i < intel_crtc->num_scalers; i++) {
14320                intel_scaler = &scaler_state->scalers[i];
14321                intel_scaler->in_use = 0;
14322                intel_scaler->mode = PS_SCALER_MODE_DYN;
14323        }
14324
14325        scaler_state->scaler_id = -1;
14326}
14327
14328static void intel_crtc_init(struct drm_device *dev, int pipe)
14329{
14330        struct drm_i915_private *dev_priv = dev->dev_private;
14331        struct intel_crtc *intel_crtc;
14332        struct intel_crtc_state *crtc_state = NULL;
14333        struct drm_plane *primary = NULL;
14334        struct drm_plane *cursor = NULL;
14335        int ret;
14336
14337        intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14338        if (intel_crtc == NULL)
14339                return;
14340
14341        crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14342        if (!crtc_state)
14343                goto fail;
14344        intel_crtc->config = crtc_state;
14345        intel_crtc->base.state = &crtc_state->base;
14346        crtc_state->base.crtc = &intel_crtc->base;
14347
14348        /* initialize shared scalers */
14349        if (INTEL_INFO(dev)->gen >= 9) {
14350                if (pipe == PIPE_C)
14351                        intel_crtc->num_scalers = 1;
14352                else
14353                        intel_crtc->num_scalers = SKL_NUM_SCALERS;
14354
14355                skl_init_scalers(dev, intel_crtc, crtc_state);
14356        }
14357
14358        primary = intel_primary_plane_create(dev, pipe);
14359        if (!primary)
14360                goto fail;
14361
14362        cursor = intel_cursor_plane_create(dev, pipe);
14363        if (!cursor)
14364                goto fail;
14365
14366        ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14367                                        cursor, &intel_crtc_funcs, NULL);
14368        if (ret)
14369                goto fail;
14370
14371        /*
14372         * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14373         * is hooked to pipe B. Hence we want plane A feeding pipe B.
14374         */
14375        intel_crtc->pipe = pipe;
14376        intel_crtc->plane = pipe;
14377        if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14378                DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14379                intel_crtc->plane = !pipe;
14380        }
14381
14382        intel_crtc->cursor_base = ~0;
14383        intel_crtc->cursor_cntl = ~0;
14384        intel_crtc->cursor_size = ~0;
14385
14386        intel_crtc->wm.cxsr_allowed = true;
14387
14388        BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14389               dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14390        dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14391        dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14392
14393        drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14394
14395        intel_color_init(&intel_crtc->base);
14396
14397        WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14398        return;
14399
14400fail:
14401        if (primary)
14402                drm_plane_cleanup(primary);
14403        if (cursor)
14404                drm_plane_cleanup(cursor);
14405        kfree(crtc_state);
14406        kfree(intel_crtc);
14407}
14408
14409enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14410{
14411        struct drm_encoder *encoder = connector->base.encoder;
14412        struct drm_device *dev = connector->base.dev;
14413
14414        WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14415
14416        if (!encoder || WARN_ON(!encoder->crtc))
14417                return INVALID_PIPE;
14418
14419        return to_intel_crtc(encoder->crtc)->pipe;
14420}
14421
14422int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14423                                struct drm_file *file)
14424{
14425        struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14426        struct drm_crtc *drmmode_crtc;
14427        struct intel_crtc *crtc;
14428
14429        drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14430
14431        if (!drmmode_crtc) {
14432                DRM_ERROR("no such CRTC id\n");
14433                return -ENOENT;
14434        }
14435
14436        crtc = to_intel_crtc(drmmode_crtc);
14437        pipe_from_crtc_id->pipe = crtc->pipe;
14438
14439        return 0;
14440}
14441
14442static int intel_encoder_clones(struct intel_encoder *encoder)
14443{
14444        struct drm_device *dev = encoder->base.dev;
14445        struct intel_encoder *source_encoder;
14446        int index_mask = 0;
14447        int entry = 0;
14448
14449        for_each_intel_encoder(dev, source_encoder) {
14450                if (encoders_cloneable(encoder, source_encoder))
14451                        index_mask |= (1 << entry);
14452
14453                entry++;
14454        }
14455
14456        return index_mask;
14457}
14458
14459static bool has_edp_a(struct drm_device *dev)
14460{
14461        struct drm_i915_private *dev_priv = dev->dev_private;
14462
14463        if (!IS_MOBILE(dev))
14464                return false;
14465
14466        if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14467                return false;
14468
14469        if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14470                return false;
14471
14472        return true;
14473}
14474
14475static bool intel_crt_present(struct drm_device *dev)
14476{
14477        struct drm_i915_private *dev_priv = dev->dev_private;
14478
14479        if (INTEL_INFO(dev)->gen >= 9)
14480                return false;
14481
14482        if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14483                return false;
14484
14485        if (IS_CHERRYVIEW(dev))
14486                return false;
14487
14488        if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14489                return false;
14490
14491        /* DDI E can't be used if DDI A requires 4 lanes */
14492        if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14493                return false;
14494
14495        if (!dev_priv->vbt.int_crt_support)
14496                return false;
14497
14498        return true;
14499}
14500
14501static void intel_setup_outputs(struct drm_device *dev)
14502{
14503        struct drm_i915_private *dev_priv = dev->dev_private;
14504        struct intel_encoder *encoder;
14505        bool dpd_is_edp = false;
14506
14507        intel_lvds_init(dev);
14508
14509        if (intel_crt_present(dev))
14510                intel_crt_init(dev);
14511
14512        if (IS_BROXTON(dev)) {
14513                /*
14514                 * FIXME: Broxton doesn't support port detection via the
14515                 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14516                 * detect the ports.
14517                 */
14518                intel_ddi_init(dev, PORT_A);
14519                intel_ddi_init(dev, PORT_B);
14520                intel_ddi_init(dev, PORT_C);
14521
14522                intel_dsi_init(dev);
14523        } else if (HAS_DDI(dev)) {
14524                int found;
14525
14526                /*
14527                 * Haswell uses DDI functions to detect digital outputs.
14528                 * On SKL pre-D0 the strap isn't connected, so we assume
14529                 * it's there.
14530                 */
14531                found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14532                /* WaIgnoreDDIAStrap: skl */
14533                if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14534                        intel_ddi_init(dev, PORT_A);
14535
14536                /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14537                 * register */
14538                found = I915_READ(SFUSE_STRAP);
14539
14540                if (found & SFUSE_STRAP_DDIB_DETECTED)
14541                        intel_ddi_init(dev, PORT_B);
14542                if (found & SFUSE_STRAP_DDIC_DETECTED)
14543                        intel_ddi_init(dev, PORT_C);
14544                if (found & SFUSE_STRAP_DDID_DETECTED)
14545                        intel_ddi_init(dev, PORT_D);
14546                /*
14547                 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14548                 */
14549                if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14550                    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14551                     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14552                     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14553                        intel_ddi_init(dev, PORT_E);
14554
14555        } else if (HAS_PCH_SPLIT(dev)) {
14556                int found;
14557                dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14558
14559                if (has_edp_a(dev))
14560                        intel_dp_init(dev, DP_A, PORT_A);
14561
14562                if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14563                        /* PCH SDVOB multiplex with HDMIB */
14564                        found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14565                        if (!found)
14566                                intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14567                        if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14568                                intel_dp_init(dev, PCH_DP_B, PORT_B);
14569                }
14570
14571                if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14572                        intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14573
14574                if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14575                        intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14576
14577                if (I915_READ(PCH_DP_C) & DP_DETECTED)
14578                        intel_dp_init(dev, PCH_DP_C, PORT_C);
14579
14580                if (I915_READ(PCH_DP_D) & DP_DETECTED)
14581                        intel_dp_init(dev, PCH_DP_D, PORT_D);
14582        } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
14583                bool has_edp, has_port;
14584
14585                /*
14586                 * The DP_DETECTED bit is the latched state of the DDC
14587                 * SDA pin at boot. However since eDP doesn't require DDC
14588                 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14589                 * eDP ports may have been muxed to an alternate function.
14590                 * Thus we can't rely on the DP_DETECTED bit alone to detect
14591                 * eDP ports. Consult the VBT as well as DP_DETECTED to
14592                 * detect eDP ports.
14593                 *
14594                 * Sadly the straps seem to be missing sometimes even for HDMI
14595                 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
14596                 * and VBT for the presence of the port. Additionally we can't
14597                 * trust the port type the VBT declares as we've seen at least
14598                 * HDMI ports that the VBT claim are DP or eDP.
14599                 */
14600                has_edp = intel_dp_is_edp(dev, PORT_B);
14601                has_port = intel_bios_is_port_present(dev_priv, PORT_B);
14602                if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
14603                        has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
14604                if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
14605                        intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14606
14607                has_edp = intel_dp_is_edp(dev, PORT_C);
14608                has_port = intel_bios_is_port_present(dev_priv, PORT_C);
14609                if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
14610                        has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
14611                if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
14612                        intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14613
14614                if (IS_CHERRYVIEW(dev)) {
14615                        /*
14616                         * eDP not supported on port D,
14617                         * so no need to worry about it
14618                         */
14619                        has_port = intel_bios_is_port_present(dev_priv, PORT_D);
14620                        if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
14621                                intel_dp_init(dev, CHV_DP_D, PORT_D);
14622                        if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
14623                                intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14624                }
14625
14626                intel_dsi_init(dev);
14627        } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14628                bool found = false;
14629
14630                if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14631                        DRM_DEBUG_KMS("probing SDVOB\n");
14632                        found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14633                        if (!found && IS_G4X(dev)) {
14634                                DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14635                                intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14636                        }
14637
14638                        if (!found && IS_G4X(dev))
14639                                intel_dp_init(dev, DP_B, PORT_B);
14640                }
14641
14642                /* Before G4X SDVOC doesn't have its own detect register */
14643
14644                if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14645                        DRM_DEBUG_KMS("probing SDVOC\n");
14646                        found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14647                }
14648
14649                if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14650
14651                        if (IS_G4X(dev)) {
14652                                DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14653                                intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14654                        }
14655                        if (IS_G4X(dev))
14656                                intel_dp_init(dev, DP_C, PORT_C);
14657                }
14658
14659                if (IS_G4X(dev) &&
14660                    (I915_READ(DP_D) & DP_DETECTED))
14661                        intel_dp_init(dev, DP_D, PORT_D);
14662        } else if (IS_GEN2(dev))
14663                intel_dvo_init(dev);
14664
14665        if (SUPPORTS_TV(dev))
14666                intel_tv_init(dev);
14667
14668        intel_psr_init(dev);
14669
14670        for_each_intel_encoder(dev, encoder) {
14671                encoder->base.possible_crtcs = encoder->crtc_mask;
14672                encoder->base.possible_clones =
14673                        intel_encoder_clones(encoder);
14674        }
14675
14676        intel_init_pch_refclk(dev);
14677
14678        drm_helper_move_panel_connectors_to_head(dev);
14679}
14680
14681static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14682{
14683        struct drm_device *dev = fb->dev;
14684        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14685
14686        drm_framebuffer_cleanup(fb);
14687        mutex_lock(&dev->struct_mutex);
14688        WARN_ON(!intel_fb->obj->framebuffer_references--);
14689        drm_gem_object_unreference(&intel_fb->obj->base);
14690        mutex_unlock(&dev->struct_mutex);
14691        kfree(intel_fb);
14692}
14693
14694static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14695                                                struct drm_file *file,
14696                                                unsigned int *handle)
14697{
14698        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14699        struct drm_i915_gem_object *obj = intel_fb->obj;
14700
14701        if (obj->userptr.mm) {
14702                DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14703                return -EINVAL;
14704        }
14705
14706        return drm_gem_handle_create(file, &obj->base, handle);
14707}
14708
14709static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14710                                        struct drm_file *file,
14711                                        unsigned flags, unsigned color,
14712                                        struct drm_clip_rect *clips,
14713                                        unsigned num_clips)
14714{
14715        struct drm_device *dev = fb->dev;
14716        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14717        struct drm_i915_gem_object *obj = intel_fb->obj;
14718
14719        mutex_lock(&dev->struct_mutex);
14720        intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14721        mutex_unlock(&dev->struct_mutex);
14722
14723        return 0;
14724}
14725
14726static const struct drm_framebuffer_funcs intel_fb_funcs = {
14727        .destroy = intel_user_framebuffer_destroy,
14728        .create_handle = intel_user_framebuffer_create_handle,
14729        .dirty = intel_user_framebuffer_dirty,
14730};
14731
14732static
14733u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14734                         uint32_t pixel_format)
14735{
14736        u32 gen = INTEL_INFO(dev)->gen;
14737
14738        if (gen >= 9) {
14739                int cpp = drm_format_plane_cpp(pixel_format, 0);
14740
14741                /* "The stride in bytes must not exceed the of the size of 8K
14742                 *  pixels and 32K bytes."
14743                 */
14744                return min(8192 * cpp, 32768);
14745        } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14746                return 32*1024;
14747        } else if (gen >= 4) {
14748                if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14749                        return 16*1024;
14750                else
14751                        return 32*1024;
14752        } else if (gen >= 3) {
14753                if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14754                        return 8*1024;
14755                else
14756                        return 16*1024;
14757        } else {
14758                /* XXX DSPC is limited to 4k tiled */
14759                return 8*1024;
14760        }
14761}
14762
14763static int intel_framebuffer_init(struct drm_device *dev,
14764                                  struct intel_framebuffer *intel_fb,
14765                                  struct drm_mode_fb_cmd2 *mode_cmd,
14766                                  struct drm_i915_gem_object *obj)
14767{
14768        struct drm_i915_private *dev_priv = to_i915(dev);
14769        unsigned int aligned_height;
14770        int ret;
14771        u32 pitch_limit, stride_alignment;
14772
14773        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14774
14775        if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14776                /* Enforce that fb modifier and tiling mode match, but only for
14777                 * X-tiled. This is needed for FBC. */
14778                if (!!(obj->tiling_mode == I915_TILING_X) !=
14779                    !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14780                        DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14781                        return -EINVAL;
14782                }
14783        } else {
14784                if (obj->tiling_mode == I915_TILING_X)
14785                        mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14786                else if (obj->tiling_mode == I915_TILING_Y) {
14787                        DRM_DEBUG("No Y tiling for legacy addfb\n");
14788                        return -EINVAL;
14789                }
14790        }
14791
14792        /* Passed in modifier sanity checking. */
14793        switch (mode_cmd->modifier[0]) {
14794        case I915_FORMAT_MOD_Y_TILED:
14795        case I915_FORMAT_MOD_Yf_TILED:
14796                if (INTEL_INFO(dev)->gen < 9) {
14797                        DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14798                                  mode_cmd->modifier[0]);
14799                        return -EINVAL;
14800                }
14801        case DRM_FORMAT_MOD_NONE:
14802        case I915_FORMAT_MOD_X_TILED:
14803                break;
14804        default:
14805                DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14806                          mode_cmd->modifier[0]);
14807                return -EINVAL;
14808        }
14809
14810        stride_alignment = intel_fb_stride_alignment(dev_priv,
14811                                                     mode_cmd->modifier[0],
14812                                                     mode_cmd->pixel_format);
14813        if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14814                DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14815                          mode_cmd->pitches[0], stride_alignment);
14816                return -EINVAL;
14817        }
14818
14819        pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14820                                           mode_cmd->pixel_format);
14821        if (mode_cmd->pitches[0] > pitch_limit) {
14822                DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14823                          mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14824                          "tiled" : "linear",
14825                          mode_cmd->pitches[0], pitch_limit);
14826                return -EINVAL;
14827        }
14828
14829        if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14830            mode_cmd->pitches[0] != obj->stride) {
14831                DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14832                          mode_cmd->pitches[0], obj->stride);
14833                return -EINVAL;
14834        }
14835
14836        /* Reject formats not supported by any plane early. */
14837        switch (mode_cmd->pixel_format) {
14838        case DRM_FORMAT_C8:
14839        case DRM_FORMAT_RGB565:
14840        case DRM_FORMAT_XRGB8888:
14841        case DRM_FORMAT_ARGB8888:
14842                break;
14843        case DRM_FORMAT_XRGB1555:
14844                if (INTEL_INFO(dev)->gen > 3) {
14845                        DRM_DEBUG("unsupported pixel format: %s\n",
14846                                  drm_get_format_name(mode_cmd->pixel_format));
14847                        return -EINVAL;
14848                }
14849                break;
14850        case DRM_FORMAT_ABGR8888:
14851                if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14852                    INTEL_INFO(dev)->gen < 9) {
14853                        DRM_DEBUG("unsupported pixel format: %s\n",
14854                                  drm_get_format_name(mode_cmd->pixel_format));
14855                        return -EINVAL;
14856                }
14857                break;
14858        case DRM_FORMAT_XBGR8888:
14859        case DRM_FORMAT_XRGB2101010:
14860        case DRM_FORMAT_XBGR2101010:
14861                if (INTEL_INFO(dev)->gen < 4) {
14862                        DRM_DEBUG("unsupported pixel format: %s\n",
14863                                  drm_get_format_name(mode_cmd->pixel_format));
14864                        return -EINVAL;
14865                }
14866                break;
14867        case DRM_FORMAT_ABGR2101010:
14868                if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
14869                        DRM_DEBUG("unsupported pixel format: %s\n",
14870                                  drm_get_format_name(mode_cmd->pixel_format));
14871                        return -EINVAL;
14872                }
14873                break;
14874        case DRM_FORMAT_YUYV:
14875        case DRM_FORMAT_UYVY:
14876        case DRM_FORMAT_YVYU:
14877        case DRM_FORMAT_VYUY:
14878                if (INTEL_INFO(dev)->gen < 5) {
14879                        DRM_DEBUG("unsupported pixel format: %s\n",
14880                                  drm_get_format_name(mode_cmd->pixel_format));
14881                        return -EINVAL;
14882                }
14883                break;
14884        default:
14885                DRM_DEBUG("unsupported pixel format: %s\n",
14886                          drm_get_format_name(mode_cmd->pixel_format));
14887                return -EINVAL;
14888        }
14889
14890        /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14891        if (mode_cmd->offsets[0] != 0)
14892                return -EINVAL;
14893
14894        aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14895                                               mode_cmd->pixel_format,
14896                                               mode_cmd->modifier[0]);
14897        /* FIXME drm helper for size checks (especially planar formats)? */
14898        if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14899                return -EINVAL;
14900
14901        drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14902        intel_fb->obj = obj;
14903
14904        intel_fill_fb_info(dev_priv, &intel_fb->base);
14905
14906        ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14907        if (ret) {
14908                DRM_ERROR("framebuffer init failed %d\n", ret);
14909                return ret;
14910        }
14911
14912        intel_fb->obj->framebuffer_references++;
14913
14914        return 0;
14915}
14916
14917static struct drm_framebuffer *
14918intel_user_framebuffer_create(struct drm_device *dev,
14919                              struct drm_file *filp,
14920                              const struct drm_mode_fb_cmd2 *user_mode_cmd)
14921{
14922        struct drm_framebuffer *fb;
14923        struct drm_i915_gem_object *obj;
14924        struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14925
14926        obj = to_intel_bo(drm_gem_object_lookup(filp, mode_cmd.handles[0]));
14927        if (&obj->base == NULL)
14928                return ERR_PTR(-ENOENT);
14929
14930        fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14931        if (IS_ERR(fb))
14932                drm_gem_object_unreference_unlocked(&obj->base);
14933
14934        return fb;
14935}
14936
14937#ifndef CONFIG_DRM_FBDEV_EMULATION
14938static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14939{
14940}
14941#endif
14942
14943static const struct drm_mode_config_funcs intel_mode_funcs = {
14944        .fb_create = intel_user_framebuffer_create,
14945        .output_poll_changed = intel_fbdev_output_poll_changed,
14946        .atomic_check = intel_atomic_check,
14947        .atomic_commit = intel_atomic_commit,
14948        .atomic_state_alloc = intel_atomic_state_alloc,
14949        .atomic_state_clear = intel_atomic_state_clear,
14950};
14951
14952/**
14953 * intel_init_display_hooks - initialize the display modesetting hooks
14954 * @dev_priv: device private
14955 */
14956void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14957{
14958        if (INTEL_INFO(dev_priv)->gen >= 9) {
14959                dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14960                dev_priv->display.get_initial_plane_config =
14961                        skylake_get_initial_plane_config;
14962                dev_priv->display.crtc_compute_clock =
14963                        haswell_crtc_compute_clock;
14964                dev_priv->display.crtc_enable = haswell_crtc_enable;
14965                dev_priv->display.crtc_disable = haswell_crtc_disable;
14966        } else if (HAS_DDI(dev_priv)) {
14967                dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14968                dev_priv->display.get_initial_plane_config =
14969                        ironlake_get_initial_plane_config;
14970                dev_priv->display.crtc_compute_clock =
14971                        haswell_crtc_compute_clock;
14972                dev_priv->display.crtc_enable = haswell_crtc_enable;
14973                dev_priv->display.crtc_disable = haswell_crtc_disable;
14974        } else if (HAS_PCH_SPLIT(dev_priv)) {
14975                dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14976                dev_priv->display.get_initial_plane_config =
14977                        ironlake_get_initial_plane_config;
14978                dev_priv->display.crtc_compute_clock =
14979                        ironlake_crtc_compute_clock;
14980                dev_priv->display.crtc_enable = ironlake_crtc_enable;
14981                dev_priv->display.crtc_disable = ironlake_crtc_disable;
14982        } else if (IS_CHERRYVIEW(dev_priv)) {
14983                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14984                dev_priv->display.get_initial_plane_config =
14985                        i9xx_get_initial_plane_config;
14986                dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14987                dev_priv->display.crtc_enable = valleyview_crtc_enable;
14988                dev_priv->display.crtc_disable = i9xx_crtc_disable;
14989        } else if (IS_VALLEYVIEW(dev_priv)) {
14990                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14991                dev_priv->display.get_initial_plane_config =
14992                        i9xx_get_initial_plane_config;
14993                dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14994                dev_priv->display.crtc_enable = valleyview_crtc_enable;
14995                dev_priv->display.crtc_disable = i9xx_crtc_disable;
14996        } else if (IS_G4X(dev_priv)) {
14997                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14998                dev_priv->display.get_initial_plane_config =
14999                        i9xx_get_initial_plane_config;
15000                dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15001                dev_priv->display.crtc_enable = i9xx_crtc_enable;
15002                dev_priv->display.crtc_disable = i9xx_crtc_disable;
15003        } else if (IS_PINEVIEW(dev_priv)) {
15004                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15005                dev_priv->display.get_initial_plane_config =
15006                        i9xx_get_initial_plane_config;
15007                dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15008                dev_priv->display.crtc_enable = i9xx_crtc_enable;
15009                dev_priv->display.crtc_disable = i9xx_crtc_disable;
15010        } else if (!IS_GEN2(dev_priv)) {
15011                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15012                dev_priv->display.get_initial_plane_config =
15013                        i9xx_get_initial_plane_config;
15014                dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15015                dev_priv->display.crtc_enable = i9xx_crtc_enable;
15016                dev_priv->display.crtc_disable = i9xx_crtc_disable;
15017        } else {
15018                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15019                dev_priv->display.get_initial_plane_config =
15020                        i9xx_get_initial_plane_config;
15021                dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15022                dev_priv->display.crtc_enable = i9xx_crtc_enable;
15023                dev_priv->display.crtc_disable = i9xx_crtc_disable;
15024        }
15025
15026        /* Returns the core display clock speed */
15027        if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15028                dev_priv->display.get_display_clock_speed =
15029                        skylake_get_display_clock_speed;
15030        else if (IS_BROXTON(dev_priv))
15031                dev_priv->display.get_display_clock_speed =
15032                        broxton_get_display_clock_speed;
15033        else if (IS_BROADWELL(dev_priv))
15034                dev_priv->display.get_display_clock_speed =
15035                        broadwell_get_display_clock_speed;
15036        else if (IS_HASWELL(dev_priv))
15037                dev_priv->display.get_display_clock_speed =
15038                        haswell_get_display_clock_speed;
15039        else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15040                dev_priv->display.get_display_clock_speed =
15041                        valleyview_get_display_clock_speed;
15042        else if (IS_GEN5(dev_priv))
15043                dev_priv->display.get_display_clock_speed =
15044                        ilk_get_display_clock_speed;
15045        else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15046                 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15047                dev_priv->display.get_display_clock_speed =
15048                        i945_get_display_clock_speed;
15049        else if (IS_GM45(dev_priv))
15050                dev_priv->display.get_display_clock_speed =
15051                        gm45_get_display_clock_speed;
15052        else if (IS_CRESTLINE(dev_priv))
15053                dev_priv->display.get_display_clock_speed =
15054                        i965gm_get_display_clock_speed;
15055        else if (IS_PINEVIEW(dev_priv))
15056                dev_priv->display.get_display_clock_speed =
15057                        pnv_get_display_clock_speed;
15058        else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15059                dev_priv->display.get_display_clock_speed =
15060                        g33_get_display_clock_speed;
15061        else if (IS_I915G(dev_priv))
15062                dev_priv->display.get_display_clock_speed =
15063                        i915_get_display_clock_speed;
15064        else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
15065                dev_priv->display.get_display_clock_speed =
15066                        i9xx_misc_get_display_clock_speed;
15067        else if (IS_I915GM(dev_priv))
15068                dev_priv->display.get_display_clock_speed =
15069                        i915gm_get_display_clock_speed;
15070        else if (IS_I865G(dev_priv))
15071                dev_priv->display.get_display_clock_speed =
15072                        i865_get_display_clock_speed;
15073        else if (IS_I85X(dev_priv))
15074                dev_priv->display.get_display_clock_speed =
15075                        i85x_get_display_clock_speed;
15076        else { /* 830 */
15077                WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
15078                dev_priv->display.get_display_clock_speed =
15079                        i830_get_display_clock_speed;
15080        }
15081
15082        if (IS_GEN5(dev_priv)) {
15083                dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
15084        } else if (IS_GEN6(dev_priv)) {
15085                dev_priv->display.fdi_link_train = gen6_fdi_link_train;
15086        } else if (IS_IVYBRIDGE(dev_priv)) {
15087                /* FIXME: detect B0+ stepping and use auto training */
15088                dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
15089        } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
15090                dev_priv->display.fdi_link_train = hsw_fdi_link_train;
15091                if (IS_BROADWELL(dev_priv)) {
15092                        dev_priv->display.modeset_commit_cdclk =
15093                                broadwell_modeset_commit_cdclk;
15094                        dev_priv->display.modeset_calc_cdclk =
15095                                broadwell_modeset_calc_cdclk;
15096                }
15097        } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15098                dev_priv->display.modeset_commit_cdclk =
15099                        valleyview_modeset_commit_cdclk;
15100                dev_priv->display.modeset_calc_cdclk =
15101                        valleyview_modeset_calc_cdclk;
15102        } else if (IS_BROXTON(dev_priv)) {
15103                dev_priv->display.modeset_commit_cdclk =
15104                        broxton_modeset_commit_cdclk;
15105                dev_priv->display.modeset_calc_cdclk =
15106                        broxton_modeset_calc_cdclk;
15107        }
15108
15109        switch (INTEL_INFO(dev_priv)->gen) {
15110        case 2:
15111                dev_priv->display.queue_flip = intel_gen2_queue_flip;
15112                break;
15113
15114        case 3:
15115                dev_priv->display.queue_flip = intel_gen3_queue_flip;
15116                break;
15117
15118        case 4:
15119        case 5:
15120                dev_priv->display.queue_flip = intel_gen4_queue_flip;
15121                break;
15122
15123        case 6:
15124                dev_priv->display.queue_flip = intel_gen6_queue_flip;
15125                break;
15126        case 7:
15127        case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
15128                dev_priv->display.queue_flip = intel_gen7_queue_flip;
15129                break;
15130        case 9:
15131                /* Drop through - unsupported since execlist only. */
15132        default:
15133                /* Default just returns -ENODEV to indicate unsupported */
15134                dev_priv->display.queue_flip = intel_default_queue_flip;
15135        }
15136}
15137
15138/*
15139 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15140 * resume, or other times.  This quirk makes sure that's the case for
15141 * affected systems.
15142 */
15143static void quirk_pipea_force(struct drm_device *dev)
15144{
15145        struct drm_i915_private *dev_priv = dev->dev_private;
15146
15147        dev_priv->quirks |= QUIRK_PIPEA_FORCE;
15148        DRM_INFO("applying pipe a force quirk\n");
15149}
15150
15151static void quirk_pipeb_force(struct drm_device *dev)
15152{
15153        struct drm_i915_private *dev_priv = dev->dev_private;
15154
15155        dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15156        DRM_INFO("applying pipe b force quirk\n");
15157}
15158
15159/*
15160 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15161 */
15162static void quirk_ssc_force_disable(struct drm_device *dev)
15163{
15164        struct drm_i915_private *dev_priv = dev->dev_private;
15165        dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
15166        DRM_INFO("applying lvds SSC disable quirk\n");
15167}
15168
15169/*
15170 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15171 * brightness value
15172 */
15173static void quirk_invert_brightness(struct drm_device *dev)
15174{
15175        struct drm_i915_private *dev_priv = dev->dev_private;
15176        dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
15177        DRM_INFO("applying inverted panel brightness quirk\n");
15178}
15179
15180/* Some VBT's incorrectly indicate no backlight is present */
15181static void quirk_backlight_present(struct drm_device *dev)
15182{
15183        struct drm_i915_private *dev_priv = dev->dev_private;
15184        dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15185        DRM_INFO("applying backlight present quirk\n");
15186}
15187
15188struct intel_quirk {
15189        int device;
15190        int subsystem_vendor;
15191        int subsystem_device;
15192        void (*hook)(struct drm_device *dev);
15193};
15194
15195/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15196struct intel_dmi_quirk {
15197        void (*hook)(struct drm_device *dev);
15198        const struct dmi_system_id (*dmi_id_list)[];
15199};
15200
15201static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15202{
15203        DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15204        return 1;
15205}
15206
15207static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15208        {
15209                .dmi_id_list = &(const struct dmi_system_id[]) {
15210                        {
15211                                .callback = intel_dmi_reverse_brightness,
15212                                .ident = "NCR Corporation",
15213                                .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15214                                            DMI_MATCH(DMI_PRODUCT_NAME, ""),
15215                                },
15216                        },
15217                        { }  /* terminating entry */
15218                },
15219                .hook = quirk_invert_brightness,
15220        },
15221};
15222
15223static struct intel_quirk intel_quirks[] = {
15224        /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15225        { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15226
15227        /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15228        { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15229
15230        /* 830 needs to leave pipe A & dpll A up */
15231        { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15232
15233        /* 830 needs to leave pipe B & dpll B up */
15234        { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15235
15236        /* Lenovo U160 cannot use SSC on LVDS */
15237        { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
15238
15239        /* Sony Vaio Y cannot use SSC on LVDS */
15240        { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
15241
15242        /* Acer Aspire 5734Z must invert backlight brightness */
15243        { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15244
15245        /* Acer/eMachines G725 */
15246        { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15247
15248        /* Acer/eMachines e725 */
15249        { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15250
15251        /* Acer/Packard Bell NCL20 */
15252        { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15253
15254        /* Acer Aspire 4736Z */
15255        { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
15256
15257        /* Acer Aspire 5336 */
15258        { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
15259
15260        /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15261        { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
15262
15263        /* Acer C720 Chromebook (Core i3 4005U) */
15264        { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15265
15266        /* Apple Macbook 2,1 (Core 2 T7400) */
15267        { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15268
15269        /* Apple Macbook 4,1 */
15270        { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15271
15272        /* Toshiba CB35 Chromebook (Celeron 2955U) */
15273        { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15274
15275        /* HP Chromebook 14 (Celeron 2955U) */
15276        { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15277
15278        /* Dell Chromebook 11 */
15279        { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15280
15281        /* Dell Chromebook 11 (2015 version) */
15282        { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15283};
15284
15285static void intel_init_quirks(struct drm_device *dev)
15286{
15287        struct pci_dev *d = dev->pdev;
15288        int i;
15289
15290        for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15291                struct intel_quirk *q = &intel_quirks[i];
15292
15293                if (d->device == q->device &&
15294                    (d->subsystem_vendor == q->subsystem_vendor ||
15295                     q->subsystem_vendor == PCI_ANY_ID) &&
15296                    (d->subsystem_device == q->subsystem_device ||
15297                     q->subsystem_device == PCI_ANY_ID))
15298                        q->hook(dev);
15299        }
15300        for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15301                if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15302                        intel_dmi_quirks[i].hook(dev);
15303        }
15304}
15305
15306/* Disable the VGA plane that we never use */
15307static void i915_disable_vga(struct drm_device *dev)
15308{
15309        struct drm_i915_private *dev_priv = dev->dev_private;
15310        u8 sr1;
15311        i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15312
15313        /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15314        vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15315        outb(SR01, VGA_SR_INDEX);
15316        sr1 = inb(VGA_SR_DATA);
15317        outb(sr1 | 1<<5, VGA_SR_DATA);
15318        vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15319        udelay(300);
15320
15321        I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15322        POSTING_READ(vga_reg);
15323}
15324
15325void intel_modeset_init_hw(struct drm_device *dev)
15326{
15327        struct drm_i915_private *dev_priv = dev->dev_private;
15328
15329        intel_update_cdclk(dev);
15330
15331        dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15332
15333        intel_init_clock_gating(dev);
15334        intel_enable_gt_powersave(dev);
15335}
15336
15337/*
15338 * Calculate what we think the watermarks should be for the state we've read
15339 * out of the hardware and then immediately program those watermarks so that
15340 * we ensure the hardware settings match our internal state.
15341 *
15342 * We can calculate what we think WM's should be by creating a duplicate of the
15343 * current state (which was constructed during hardware readout) and running it
15344 * through the atomic check code to calculate new watermark values in the
15345 * state object.
15346 */
15347static void sanitize_watermarks(struct drm_device *dev)
15348{
15349        struct drm_i915_private *dev_priv = to_i915(dev);
15350        struct drm_atomic_state *state;
15351        struct drm_crtc *crtc;
15352        struct drm_crtc_state *cstate;
15353        struct drm_modeset_acquire_ctx ctx;
15354        int ret;
15355        int i;
15356
15357        /* Only supported on platforms that use atomic watermark design */
15358        if (!dev_priv->display.optimize_watermarks)
15359                return;
15360
15361        /*
15362         * We need to hold connection_mutex before calling duplicate_state so
15363         * that the connector loop is protected.
15364         */
15365        drm_modeset_acquire_init(&ctx, 0);
15366retry:
15367        ret = drm_modeset_lock_all_ctx(dev, &ctx);
15368        if (ret == -EDEADLK) {
15369                drm_modeset_backoff(&ctx);
15370                goto retry;
15371        } else if (WARN_ON(ret)) {
15372                goto fail;
15373        }
15374
15375        state = drm_atomic_helper_duplicate_state(dev, &ctx);
15376        if (WARN_ON(IS_ERR(state)))
15377                goto fail;
15378
15379        /*
15380         * Hardware readout is the only time we don't want to calculate
15381         * intermediate watermarks (since we don't trust the current
15382         * watermarks).
15383         */
15384        to_intel_atomic_state(state)->skip_intermediate_wm = true;
15385
15386        ret = intel_atomic_check(dev, state);
15387        if (ret) {
15388                /*
15389                 * If we fail here, it means that the hardware appears to be
15390                 * programmed in a way that shouldn't be possible, given our
15391                 * understanding of watermark requirements.  This might mean a
15392                 * mistake in the hardware readout code or a mistake in the
15393                 * watermark calculations for a given platform.  Raise a WARN
15394                 * so that this is noticeable.
15395                 *
15396                 * If this actually happens, we'll have to just leave the
15397                 * BIOS-programmed watermarks untouched and hope for the best.
15398                 */
15399                WARN(true, "Could not determine valid watermarks for inherited state\n");
15400                goto fail;
15401        }
15402
15403        /* Write calculated watermark values back */
15404        to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15405        for_each_crtc_in_state(state, crtc, cstate, i) {
15406                struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15407
15408                cs->wm.need_postvbl_update = true;
15409                dev_priv->display.optimize_watermarks(cs);
15410        }
15411
15412        drm_atomic_state_free(state);
15413fail:
15414        drm_modeset_drop_locks(&ctx);
15415        drm_modeset_acquire_fini(&ctx);
15416}
15417
15418void intel_modeset_init(struct drm_device *dev)
15419{
15420        struct drm_i915_private *dev_priv = to_i915(dev);
15421        struct i915_ggtt *ggtt = &dev_priv->ggtt;
15422        int sprite, ret;
15423        enum pipe pipe;
15424        struct intel_crtc *crtc;
15425
15426        drm_mode_config_init(dev);
15427
15428        dev->mode_config.min_width = 0;
15429        dev->mode_config.min_height = 0;
15430
15431        dev->mode_config.preferred_depth = 24;
15432        dev->mode_config.prefer_shadow = 1;
15433
15434        dev->mode_config.allow_fb_modifiers = true;
15435
15436        dev->mode_config.funcs = &intel_mode_funcs;
15437
15438        intel_init_quirks(dev);
15439
15440        intel_init_pm(dev);
15441
15442        if (INTEL_INFO(dev)->num_pipes == 0)
15443                return;
15444
15445        /*
15446         * There may be no VBT; and if the BIOS enabled SSC we can
15447         * just keep using it to avoid unnecessary flicker.  Whereas if the
15448         * BIOS isn't using it, don't assume it will work even if the VBT
15449         * indicates as much.
15450         */
15451        if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15452                bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15453                                            DREF_SSC1_ENABLE);
15454
15455                if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15456                        DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15457                                     bios_lvds_use_ssc ? "en" : "dis",
15458                                     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15459                        dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15460                }
15461        }
15462
15463        if (IS_GEN2(dev)) {
15464                dev->mode_config.max_width = 2048;
15465                dev->mode_config.max_height = 2048;
15466        } else if (IS_GEN3(dev)) {
15467                dev->mode_config.max_width = 4096;
15468                dev->mode_config.max_height = 4096;
15469        } else {
15470                dev->mode_config.max_width = 8192;
15471                dev->mode_config.max_height = 8192;
15472        }
15473
15474        if (IS_845G(dev) || IS_I865G(dev)) {
15475                dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15476                dev->mode_config.cursor_height = 1023;
15477        } else if (IS_GEN2(dev)) {
15478                dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15479                dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15480        } else {
15481                dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15482                dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15483        }
15484
15485        dev->mode_config.fb_base = ggtt->mappable_base;
15486
15487        DRM_DEBUG_KMS("%d display pipe%s available.\n",
15488                      INTEL_INFO(dev)->num_pipes,
15489                      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15490
15491        for_each_pipe(dev_priv, pipe) {
15492                intel_crtc_init(dev, pipe);
15493                for_each_sprite(dev_priv, pipe, sprite) {
15494                        ret = intel_plane_init(dev, pipe, sprite);
15495                        if (ret)
15496                                DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15497                                              pipe_name(pipe), sprite_name(pipe, sprite), ret);
15498                }
15499        }
15500
15501        intel_update_czclk(dev_priv);
15502        intel_update_rawclk(dev_priv);
15503        intel_update_cdclk(dev);
15504
15505        intel_shared_dpll_init(dev);
15506
15507        /* Just disable it once at startup */
15508        i915_disable_vga(dev);
15509        intel_setup_outputs(dev);
15510
15511        drm_modeset_lock_all(dev);
15512        intel_modeset_setup_hw_state(dev);
15513        drm_modeset_unlock_all(dev);
15514
15515        for_each_intel_crtc(dev, crtc) {
15516                struct intel_initial_plane_config plane_config = {};
15517
15518                if (!crtc->active)
15519                        continue;
15520
15521                /*
15522                 * Note that reserving the BIOS fb up front prevents us
15523                 * from stuffing other stolen allocations like the ring
15524                 * on top.  This prevents some ugliness at boot time, and
15525                 * can even allow for smooth boot transitions if the BIOS
15526                 * fb is large enough for the active pipe configuration.
15527                 */
15528                dev_priv->display.get_initial_plane_config(crtc,
15529                                                           &plane_config);
15530
15531                /*
15532                 * If the fb is shared between multiple heads, we'll
15533                 * just get the first one.
15534                 */
15535                intel_find_initial_plane_obj(crtc, &plane_config);
15536        }
15537
15538        /*
15539         * Make sure hardware watermarks really match the state we read out.
15540         * Note that we need to do this after reconstructing the BIOS fb's
15541         * since the watermark calculation done here will use pstate->fb.
15542         */
15543        sanitize_watermarks(dev);
15544}
15545
15546static void intel_enable_pipe_a(struct drm_device *dev)
15547{
15548        struct intel_connector *connector;
15549        struct drm_connector *crt = NULL;
15550        struct intel_load_detect_pipe load_detect_temp;
15551        struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15552
15553        /* We can't just switch on the pipe A, we need to set things up with a
15554         * proper mode and output configuration. As a gross hack, enable pipe A
15555         * by enabling the load detect pipe once. */
15556        for_each_intel_connector(dev, connector) {
15557                if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15558                        crt = &connector->base;
15559                        break;
15560                }
15561        }
15562
15563        if (!crt)
15564                return;
15565
15566        if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15567                intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15568}
15569
15570static bool
15571intel_check_plane_mapping(struct intel_crtc *crtc)
15572{
15573        struct drm_device *dev = crtc->base.dev;
15574        struct drm_i915_private *dev_priv = dev->dev_private;
15575        u32 val;
15576
15577        if (INTEL_INFO(dev)->num_pipes == 1)
15578                return true;
15579
15580        val = I915_READ(DSPCNTR(!crtc->plane));
15581
15582        if ((val & DISPLAY_PLANE_ENABLE) &&
15583            (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15584                return false;
15585
15586        return true;
15587}
15588
15589static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15590{
15591        struct drm_device *dev = crtc->base.dev;
15592        struct intel_encoder *encoder;
15593
15594        for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15595                return true;
15596
15597        return false;
15598}
15599
15600static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15601{
15602        struct drm_device *dev = encoder->base.dev;
15603        struct intel_connector *connector;
15604
15605        for_each_connector_on_encoder(dev, &encoder->base, connector)
15606                return true;
15607
15608        return false;
15609}
15610
15611static void intel_sanitize_crtc(struct intel_crtc *crtc)
15612{
15613        struct drm_device *dev = crtc->base.dev;
15614        struct drm_i915_private *dev_priv = dev->dev_private;
15615        enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
15616
15617        /* Clear any frame start delays used for debugging left by the BIOS */
15618        if (!transcoder_is_dsi(cpu_transcoder)) {
15619                i915_reg_t reg = PIPECONF(cpu_transcoder);
15620
15621                I915_WRITE(reg,
15622                           I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15623        }
15624
15625        /* restore vblank interrupts to correct state */
15626        drm_crtc_vblank_reset(&crtc->base);
15627        if (crtc->active) {
15628                struct intel_plane *plane;
15629
15630                drm_crtc_vblank_on(&crtc->base);
15631
15632                /* Disable everything but the primary plane */
15633                for_each_intel_plane_on_crtc(dev, crtc, plane) {
15634                        if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15635                                continue;
15636
15637                        plane->disable_plane(&plane->base, &crtc->base);
15638                }
15639        }
15640
15641        /* We need to sanitize the plane -> pipe mapping first because this will
15642         * disable the crtc (and hence change the state) if it is wrong. Note
15643         * that gen4+ has a fixed plane -> pipe mapping.  */
15644        if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15645                bool plane;
15646
15647                DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15648                              crtc->base.base.id);
15649
15650                /* Pipe has the wrong plane attached and the plane is active.
15651                 * Temporarily change the plane mapping and disable everything
15652                 * ...  */
15653                plane = crtc->plane;
15654                to_intel_plane_state(crtc->base.primary->state)->visible = true;
15655                crtc->plane = !plane;
15656                intel_crtc_disable_noatomic(&crtc->base);
15657                crtc->plane = plane;
15658        }
15659
15660        if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15661            crtc->pipe == PIPE_A && !crtc->active) {
15662                /* BIOS forgot to enable pipe A, this mostly happens after
15663                 * resume. Force-enable the pipe to fix this, the update_dpms
15664                 * call below we restore the pipe to the right state, but leave
15665                 * the required bits on. */
15666                intel_enable_pipe_a(dev);
15667        }
15668
15669        /* Adjust the state of the output pipe according to whether we
15670         * have active connectors/encoders. */
15671        if (crtc->active && !intel_crtc_has_encoders(crtc))
15672                intel_crtc_disable_noatomic(&crtc->base);
15673
15674        if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15675                /*
15676                 * We start out with underrun reporting disabled to avoid races.
15677                 * For correct bookkeeping mark this on active crtcs.
15678                 *
15679                 * Also on gmch platforms we dont have any hardware bits to
15680                 * disable the underrun reporting. Which means we need to start
15681                 * out with underrun reporting disabled also on inactive pipes,
15682                 * since otherwise we'll complain about the garbage we read when
15683                 * e.g. coming up after runtime pm.
15684                 *
15685                 * No protection against concurrent access is required - at
15686                 * worst a fifo underrun happens which also sets this to false.
15687                 */
15688                crtc->cpu_fifo_underrun_disabled = true;
15689                crtc->pch_fifo_underrun_disabled = true;
15690        }
15691}
15692
15693static void intel_sanitize_encoder(struct intel_encoder *encoder)
15694{
15695        struct intel_connector *connector;
15696        struct drm_device *dev = encoder->base.dev;
15697
15698        /* We need to check both for a crtc link (meaning that the
15699         * encoder is active and trying to read from a pipe) and the
15700         * pipe itself being active. */
15701        bool has_active_crtc = encoder->base.crtc &&
15702                to_intel_crtc(encoder->base.crtc)->active;
15703
15704        if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
15705                DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15706                              encoder->base.base.id,
15707                              encoder->base.name);
15708
15709                /* Connector is active, but has no active pipe. This is
15710                 * fallout from our resume register restoring. Disable
15711                 * the encoder manually again. */
15712                if (encoder->base.crtc) {
15713                        DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15714                                      encoder->base.base.id,
15715                                      encoder->base.name);
15716                        encoder->disable(encoder);
15717                        if (encoder->post_disable)
15718                                encoder->post_disable(encoder);
15719                }
15720                encoder->base.crtc = NULL;
15721
15722                /* Inconsistent output/port/pipe state happens presumably due to
15723                 * a bug in one of the get_hw_state functions. Or someplace else
15724                 * in our code, like the register restore mess on resume. Clamp
15725                 * things to off as a safer default. */
15726                for_each_intel_connector(dev, connector) {
15727                        if (connector->encoder != encoder)
15728                                continue;
15729                        connector->base.dpms = DRM_MODE_DPMS_OFF;
15730                        connector->base.encoder = NULL;
15731                }
15732        }
15733        /* Enabled encoders without active connectors will be fixed in
15734         * the crtc fixup. */
15735}
15736
15737void i915_redisable_vga_power_on(struct drm_device *dev)
15738{
15739        struct drm_i915_private *dev_priv = dev->dev_private;
15740        i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15741
15742        if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15743                DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15744                i915_disable_vga(dev);
15745        }
15746}
15747
15748void i915_redisable_vga(struct drm_device *dev)
15749{
15750        struct drm_i915_private *dev_priv = dev->dev_private;
15751
15752        /* This function can be called both from intel_modeset_setup_hw_state or
15753         * at a very early point in our resume sequence, where the power well
15754         * structures are not yet restored. Since this function is at a very
15755         * paranoid "someone might have enabled VGA while we were not looking"
15756         * level, just check if the power well is enabled instead of trying to
15757         * follow the "don't touch the power well if we don't need it" policy
15758         * the rest of the driver uses. */
15759        if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
15760                return;
15761
15762        i915_redisable_vga_power_on(dev);
15763
15764        intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
15765}
15766
15767static bool primary_get_hw_state(struct intel_plane *plane)
15768{
15769        struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15770
15771        return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15772}
15773
15774/* FIXME read out full plane state for all planes */
15775static void readout_plane_state(struct intel_crtc *crtc)
15776{
15777        struct drm_plane *primary = crtc->base.primary;
15778        struct intel_plane_state *plane_state =
15779                to_intel_plane_state(primary->state);
15780
15781        plane_state->visible = crtc->active &&
15782                primary_get_hw_state(to_intel_plane(primary));
15783
15784        if (plane_state->visible)
15785                crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15786}
15787
15788static void intel_modeset_readout_hw_state(struct drm_device *dev)
15789{
15790        struct drm_i915_private *dev_priv = dev->dev_private;
15791        enum pipe pipe;
15792        struct intel_crtc *crtc;
15793        struct intel_encoder *encoder;
15794        struct intel_connector *connector;
15795        int i;
15796
15797        dev_priv->active_crtcs = 0;
15798
15799        for_each_intel_crtc(dev, crtc) {
15800                struct intel_crtc_state *crtc_state = crtc->config;
15801                int pixclk = 0;
15802
15803                __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
15804                memset(crtc_state, 0, sizeof(*crtc_state));
15805                crtc_state->base.crtc = &crtc->base;
15806
15807                crtc_state->base.active = crtc_state->base.enable =
15808                        dev_priv->display.get_pipe_config(crtc, crtc_state);
15809
15810                crtc->base.enabled = crtc_state->base.enable;
15811                crtc->active = crtc_state->base.active;
15812
15813                if (crtc_state->base.active) {
15814                        dev_priv->active_crtcs |= 1 << crtc->pipe;
15815
15816                        if (IS_BROADWELL(dev_priv)) {
15817                                pixclk = ilk_pipe_pixel_rate(crtc_state);
15818
15819                                /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15820                                if (crtc_state->ips_enabled)
15821                                        pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15822                        } else if (IS_VALLEYVIEW(dev_priv) ||
15823                                   IS_CHERRYVIEW(dev_priv) ||
15824                                   IS_BROXTON(dev_priv))
15825                                pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15826                        else
15827                                WARN_ON(dev_priv->display.modeset_calc_cdclk);
15828                }
15829
15830                dev_priv->min_pixclk[crtc->pipe] = pixclk;
15831
15832                readout_plane_state(crtc);
15833
15834                DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15835                              crtc->base.base.id,
15836                              crtc->active ? "enabled" : "disabled");
15837        }
15838
15839        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15840                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15841
15842                pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15843                                                  &pll->config.hw_state);
15844                pll->config.crtc_mask = 0;
15845                for_each_intel_crtc(dev, crtc) {
15846                        if (crtc->active && crtc->config->shared_dpll == pll)
15847                                pll->config.crtc_mask |= 1 << crtc->pipe;
15848                }
15849                pll->active_mask = pll->config.crtc_mask;
15850
15851                DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15852                              pll->name, pll->config.crtc_mask, pll->on);
15853        }
15854
15855        for_each_intel_encoder(dev, encoder) {
15856                pipe = 0;
15857
15858                if (encoder->get_hw_state(encoder, &pipe)) {
15859                        crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15860                        encoder->base.crtc = &crtc->base;
15861                        encoder->get_config(encoder, crtc->config);
15862                } else {
15863                        encoder->base.crtc = NULL;
15864                }
15865
15866                DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15867                              encoder->base.base.id,
15868                              encoder->base.name,
15869                              encoder->base.crtc ? "enabled" : "disabled",
15870                              pipe_name(pipe));
15871        }
15872
15873        for_each_intel_connector(dev, connector) {
15874                if (connector->get_hw_state(connector)) {
15875                        connector->base.dpms = DRM_MODE_DPMS_ON;
15876
15877                        encoder = connector->encoder;
15878                        connector->base.encoder = &encoder->base;
15879
15880                        if (encoder->base.crtc &&
15881                            encoder->base.crtc->state->active) {
15882                                /*
15883                                 * This has to be done during hardware readout
15884                                 * because anything calling .crtc_disable may
15885                                 * rely on the connector_mask being accurate.
15886                                 */
15887                                encoder->base.crtc->state->connector_mask |=
15888                                        1 << drm_connector_index(&connector->base);
15889                                encoder->base.crtc->state->encoder_mask |=
15890                                        1 << drm_encoder_index(&encoder->base);
15891                        }
15892
15893                } else {
15894                        connector->base.dpms = DRM_MODE_DPMS_OFF;
15895                        connector->base.encoder = NULL;
15896                }
15897                DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15898                              connector->base.base.id,
15899                              connector->base.name,
15900                              connector->base.encoder ? "enabled" : "disabled");
15901        }
15902
15903        for_each_intel_crtc(dev, crtc) {
15904                crtc->base.hwmode = crtc->config->base.adjusted_mode;
15905
15906                memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15907                if (crtc->base.state->active) {
15908                        intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15909                        intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15910                        WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15911
15912                        /*
15913                         * The initial mode needs to be set in order to keep
15914                         * the atomic core happy. It wants a valid mode if the
15915                         * crtc's enabled, so we do the above call.
15916                         *
15917                         * At this point some state updated by the connectors
15918                         * in their ->detect() callback has not run yet, so
15919                         * no recalculation can be done yet.
15920                         *
15921                         * Even if we could do a recalculation and modeset
15922                         * right now it would cause a double modeset if
15923                         * fbdev or userspace chooses a different initial mode.
15924                         *
15925                         * If that happens, someone indicated they wanted a
15926                         * mode change, which means it's safe to do a full
15927                         * recalculation.
15928                         */
15929                        crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15930
15931                        drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15932                        update_scanline_offset(crtc);
15933                }
15934
15935                intel_pipe_config_sanity_check(dev_priv, crtc->config);
15936        }
15937}
15938
15939/* Scan out the current hw modeset state,
15940 * and sanitizes it to the current state
15941 */
15942static void
15943intel_modeset_setup_hw_state(struct drm_device *dev)
15944{
15945        struct drm_i915_private *dev_priv = dev->dev_private;
15946        enum pipe pipe;
15947        struct intel_crtc *crtc;
15948        struct intel_encoder *encoder;
15949        int i;
15950
15951        intel_modeset_readout_hw_state(dev);
15952
15953        /* HW state is read out, now we need to sanitize this mess. */
15954        for_each_intel_encoder(dev, encoder) {
15955                intel_sanitize_encoder(encoder);
15956        }
15957
15958        for_each_pipe(dev_priv, pipe) {
15959                crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15960                intel_sanitize_crtc(crtc);
15961                intel_dump_pipe_config(crtc, crtc->config,
15962                                       "[setup_hw_state]");
15963        }
15964
15965        intel_modeset_update_connector_atomic_state(dev);
15966
15967        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15968                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15969
15970                if (!pll->on || pll->active_mask)
15971                        continue;
15972
15973                DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15974
15975                pll->funcs.disable(dev_priv, pll);
15976                pll->on = false;
15977        }
15978
15979        if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
15980                vlv_wm_get_hw_state(dev);
15981        else if (IS_GEN9(dev))
15982                skl_wm_get_hw_state(dev);
15983        else if (HAS_PCH_SPLIT(dev))
15984                ilk_wm_get_hw_state(dev);
15985
15986        for_each_intel_crtc(dev, crtc) {
15987                unsigned long put_domains;
15988
15989                put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15990                if (WARN_ON(put_domains))
15991                        modeset_put_power_domains(dev_priv, put_domains);
15992        }
15993        intel_display_set_init_power(dev_priv, false);
15994
15995        intel_fbc_init_pipe_state(dev_priv);
15996}
15997
15998void intel_display_resume(struct drm_device *dev)
15999{
16000        struct drm_i915_private *dev_priv = to_i915(dev);
16001        struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16002        struct drm_modeset_acquire_ctx ctx;
16003        int ret;
16004        bool setup = false;
16005
16006        dev_priv->modeset_restore_state = NULL;
16007
16008        /*
16009         * This is a cludge because with real atomic modeset mode_config.mutex
16010         * won't be taken. Unfortunately some probed state like
16011         * audio_codec_enable is still protected by mode_config.mutex, so lock
16012         * it here for now.
16013         */
16014        mutex_lock(&dev->mode_config.mutex);
16015        drm_modeset_acquire_init(&ctx, 0);
16016
16017retry:
16018        ret = drm_modeset_lock_all_ctx(dev, &ctx);
16019
16020        if (ret == 0 && !setup) {
16021                setup = true;
16022
16023                intel_modeset_setup_hw_state(dev);
16024                i915_redisable_vga(dev);
16025        }
16026
16027        if (ret == 0 && state) {
16028                struct drm_crtc_state *crtc_state;
16029                struct drm_crtc *crtc;
16030                int i;
16031
16032                state->acquire_ctx = &ctx;
16033
16034                /* ignore any reset values/BIOS leftovers in the WM registers */
16035                to_intel_atomic_state(state)->skip_intermediate_wm = true;
16036
16037                for_each_crtc_in_state(state, crtc, crtc_state, i) {
16038                        /*
16039                         * Force recalculation even if we restore
16040                         * current state. With fast modeset this may not result
16041                         * in a modeset when the state is compatible.
16042                         */
16043                        crtc_state->mode_changed = true;
16044                }
16045
16046                ret = drm_atomic_commit(state);
16047        }
16048
16049        if (ret == -EDEADLK) {
16050                drm_modeset_backoff(&ctx);
16051                goto retry;
16052        }
16053
16054        drm_modeset_drop_locks(&ctx);
16055        drm_modeset_acquire_fini(&ctx);
16056        mutex_unlock(&dev->mode_config.mutex);
16057
16058        if (ret) {
16059                DRM_ERROR("Restoring old state failed with %i\n", ret);
16060                drm_atomic_state_free(state);
16061        }
16062}
16063
16064void intel_modeset_gem_init(struct drm_device *dev)
16065{
16066        struct drm_crtc *c;
16067        struct drm_i915_gem_object *obj;
16068        int ret;
16069
16070        intel_init_gt_powersave(dev);
16071
16072        intel_modeset_init_hw(dev);
16073
16074        intel_setup_overlay(dev);
16075
16076        /*
16077         * Make sure any fbs we allocated at startup are properly
16078         * pinned & fenced.  When we do the allocation it's too early
16079         * for this.
16080         */
16081        for_each_crtc(dev, c) {
16082                obj = intel_fb_obj(c->primary->fb);
16083                if (obj == NULL)
16084                        continue;
16085
16086                mutex_lock(&dev->struct_mutex);
16087                ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16088                                                 c->primary->state->rotation);
16089                mutex_unlock(&dev->struct_mutex);
16090                if (ret) {
16091                        DRM_ERROR("failed to pin boot fb on pipe %d\n",
16092                                  to_intel_crtc(c)->pipe);
16093                        drm_framebuffer_unreference(c->primary->fb);
16094                        c->primary->fb = NULL;
16095                        c->primary->crtc = c->primary->state->crtc = NULL;
16096                        update_state_fb(c->primary);
16097                        c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
16098                }
16099        }
16100
16101        intel_backlight_register(dev);
16102}
16103
16104void intel_connector_unregister(struct intel_connector *intel_connector)
16105{
16106        struct drm_connector *connector = &intel_connector->base;
16107
16108        intel_panel_destroy_backlight(connector);
16109        drm_connector_unregister(connector);
16110}
16111
16112void intel_modeset_cleanup(struct drm_device *dev)
16113{
16114        struct drm_i915_private *dev_priv = dev->dev_private;
16115        struct intel_connector *connector;
16116
16117        intel_disable_gt_powersave(dev);
16118
16119        intel_backlight_unregister(dev);
16120
16121        /*
16122         * Interrupts and polling as the first thing to avoid creating havoc.
16123         * Too much stuff here (turning of connectors, ...) would
16124         * experience fancy races otherwise.
16125         */
16126        intel_irq_uninstall(dev_priv);
16127
16128        /*
16129         * Due to the hpd irq storm handling the hotplug work can re-arm the
16130         * poll handlers. Hence disable polling after hpd handling is shut down.
16131         */
16132        drm_kms_helper_poll_fini(dev);
16133
16134        intel_unregister_dsm_handler();
16135
16136        intel_fbc_global_disable(dev_priv);
16137
16138        /* flush any delayed tasks or pending work */
16139        flush_scheduled_work();
16140
16141        /* destroy the backlight and sysfs files before encoders/connectors */
16142        for_each_intel_connector(dev, connector)
16143                connector->unregister(connector);
16144
16145        drm_mode_config_cleanup(dev);
16146
16147        intel_cleanup_overlay(dev);
16148
16149        intel_cleanup_gt_powersave(dev);
16150
16151        intel_teardown_gmbus(dev);
16152}
16153
16154/*
16155 * Return which encoder is currently attached for connector.
16156 */
16157struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
16158{
16159        return &intel_attached_encoder(connector)->base;
16160}
16161
16162void intel_connector_attach_encoder(struct intel_connector *connector,
16163                                    struct intel_encoder *encoder)
16164{
16165        connector->encoder = encoder;
16166        drm_mode_connector_attach_encoder(&connector->base,
16167                                          &encoder->base);
16168}
16169
16170/*
16171 * set vga decode state - true == enable VGA decode
16172 */
16173int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16174{
16175        struct drm_i915_private *dev_priv = dev->dev_private;
16176        unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
16177        u16 gmch_ctrl;
16178
16179        if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16180                DRM_ERROR("failed to read control word\n");
16181                return -EIO;
16182        }
16183
16184        if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16185                return 0;
16186
16187        if (state)
16188                gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16189        else
16190                gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
16191
16192        if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16193                DRM_ERROR("failed to write control word\n");
16194                return -EIO;
16195        }
16196
16197        return 0;
16198}
16199
16200struct intel_display_error_state {
16201
16202        u32 power_well_driver;
16203
16204        int num_transcoders;
16205
16206        struct intel_cursor_error_state {
16207                u32 control;
16208                u32 position;
16209                u32 base;
16210                u32 size;
16211        } cursor[I915_MAX_PIPES];
16212
16213        struct intel_pipe_error_state {
16214                bool power_domain_on;
16215                u32 source;
16216                u32 stat;
16217        } pipe[I915_MAX_PIPES];
16218
16219        struct intel_plane_error_state {
16220                u32 control;
16221                u32 stride;
16222                u32 size;
16223                u32 pos;
16224                u32 addr;
16225                u32 surface;
16226                u32 tile_offset;
16227        } plane[I915_MAX_PIPES];
16228
16229        struct intel_transcoder_error_state {
16230                bool power_domain_on;
16231                enum transcoder cpu_transcoder;
16232
16233                u32 conf;
16234
16235                u32 htotal;
16236                u32 hblank;
16237                u32 hsync;
16238                u32 vtotal;
16239                u32 vblank;
16240                u32 vsync;
16241        } transcoder[4];
16242};
16243
16244struct intel_display_error_state *
16245intel_display_capture_error_state(struct drm_device *dev)
16246{
16247        struct drm_i915_private *dev_priv = dev->dev_private;
16248        struct intel_display_error_state *error;
16249        int transcoders[] = {
16250                TRANSCODER_A,
16251                TRANSCODER_B,
16252                TRANSCODER_C,
16253                TRANSCODER_EDP,
16254        };
16255        int i;
16256
16257        if (INTEL_INFO(dev)->num_pipes == 0)
16258                return NULL;
16259
16260        error = kzalloc(sizeof(*error), GFP_ATOMIC);
16261        if (error == NULL)
16262                return NULL;
16263
16264        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16265                error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16266
16267        for_each_pipe(dev_priv, i) {
16268                error->pipe[i].power_domain_on =
16269                        __intel_display_power_is_enabled(dev_priv,
16270                                                         POWER_DOMAIN_PIPE(i));
16271                if (!error->pipe[i].power_domain_on)
16272                        continue;
16273
16274                error->cursor[i].control = I915_READ(CURCNTR(i));
16275                error->cursor[i].position = I915_READ(CURPOS(i));
16276                error->cursor[i].base = I915_READ(CURBASE(i));
16277
16278                error->plane[i].control = I915_READ(DSPCNTR(i));
16279                error->plane[i].stride = I915_READ(DSPSTRIDE(i));
16280                if (INTEL_INFO(dev)->gen <= 3) {
16281                        error->plane[i].size = I915_READ(DSPSIZE(i));
16282                        error->plane[i].pos = I915_READ(DSPPOS(i));
16283                }
16284                if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16285                        error->plane[i].addr = I915_READ(DSPADDR(i));
16286                if (INTEL_INFO(dev)->gen >= 4) {
16287                        error->plane[i].surface = I915_READ(DSPSURF(i));
16288                        error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16289                }
16290
16291                error->pipe[i].source = I915_READ(PIPESRC(i));
16292
16293                if (HAS_GMCH_DISPLAY(dev))
16294                        error->pipe[i].stat = I915_READ(PIPESTAT(i));
16295        }
16296
16297        /* Note: this does not include DSI transcoders. */
16298        error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16299        if (HAS_DDI(dev_priv))
16300                error->num_transcoders++; /* Account for eDP. */
16301
16302        for (i = 0; i < error->num_transcoders; i++) {
16303                enum transcoder cpu_transcoder = transcoders[i];
16304
16305                error->transcoder[i].power_domain_on =
16306                        __intel_display_power_is_enabled(dev_priv,
16307                                POWER_DOMAIN_TRANSCODER(cpu_transcoder));
16308                if (!error->transcoder[i].power_domain_on)
16309                        continue;
16310
16311                error->transcoder[i].cpu_transcoder = cpu_transcoder;
16312
16313                error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16314                error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16315                error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16316                error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16317                error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16318                error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16319                error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
16320        }
16321
16322        return error;
16323}
16324
16325#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16326
16327void
16328intel_display_print_error_state(struct drm_i915_error_state_buf *m,
16329                                struct drm_device *dev,
16330                                struct intel_display_error_state *error)
16331{
16332        struct drm_i915_private *dev_priv = dev->dev_private;
16333        int i;
16334
16335        if (!error)
16336                return;
16337
16338        err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
16339        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
16340                err_printf(m, "PWR_WELL_CTL2: %08x\n",
16341                           error->power_well_driver);
16342        for_each_pipe(dev_priv, i) {
16343                err_printf(m, "Pipe [%d]:\n", i);
16344                err_printf(m, "  Power: %s\n",
16345                           onoff(error->pipe[i].power_domain_on));
16346                err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
16347                err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
16348
16349                err_printf(m, "Plane [%d]:\n", i);
16350                err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
16351                err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
16352                if (INTEL_INFO(dev)->gen <= 3) {
16353                        err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
16354                        err_printf(m, "  POS: %08x\n", error->plane[i].pos);
16355                }
16356                if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16357                        err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
16358                if (INTEL_INFO(dev)->gen >= 4) {
16359                        err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
16360                        err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
16361                }
16362
16363                err_printf(m, "Cursor [%d]:\n", i);
16364                err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
16365                err_printf(m, "  POS: %08x\n", error->cursor[i].position);
16366                err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
16367        }
16368
16369        for (i = 0; i < error->num_transcoders; i++) {
16370                err_printf(m, "CPU transcoder: %s\n",
16371                           transcoder_name(error->transcoder[i].cpu_transcoder));
16372                err_printf(m, "  Power: %s\n",
16373                           onoff(error->transcoder[i].power_domain_on));
16374                err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
16375                err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
16376                err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
16377                err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
16378                err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
16379                err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
16380                err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
16381        }
16382}
16383