linux/drivers/md/bcache/super.c
<<
>>
Prefs
   1/*
   2 * bcache setup/teardown code, and some metadata io - read a superblock and
   3 * figure out what to do with it.
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "extents.h"
  13#include "request.h"
  14#include "writeback.h"
  15
  16#include <linux/blkdev.h>
  17#include <linux/buffer_head.h>
  18#include <linux/debugfs.h>
  19#include <linux/genhd.h>
  20#include <linux/idr.h>
  21#include <linux/kthread.h>
  22#include <linux/module.h>
  23#include <linux/random.h>
  24#include <linux/reboot.h>
  25#include <linux/sysfs.h>
  26
  27MODULE_LICENSE("GPL");
  28MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
  29
  30static const char bcache_magic[] = {
  31        0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
  32        0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
  33};
  34
  35static const char invalid_uuid[] = {
  36        0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
  37        0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
  38};
  39
  40/* Default is -1; we skip past it for struct cached_dev's cache mode */
  41const char * const bch_cache_modes[] = {
  42        "default",
  43        "writethrough",
  44        "writeback",
  45        "writearound",
  46        "none",
  47        NULL
  48};
  49
  50static struct kobject *bcache_kobj;
  51struct mutex bch_register_lock;
  52LIST_HEAD(bch_cache_sets);
  53static LIST_HEAD(uncached_devices);
  54
  55static int bcache_major;
  56static DEFINE_IDA(bcache_minor);
  57static wait_queue_head_t unregister_wait;
  58struct workqueue_struct *bcache_wq;
  59
  60#define BTREE_MAX_PAGES         (256 * 1024 / PAGE_SIZE)
  61
  62/* Superblock */
  63
  64static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
  65                              struct page **res)
  66{
  67        const char *err;
  68        struct cache_sb *s;
  69        struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
  70        unsigned i;
  71
  72        if (!bh)
  73                return "IO error";
  74
  75        s = (struct cache_sb *) bh->b_data;
  76
  77        sb->offset              = le64_to_cpu(s->offset);
  78        sb->version             = le64_to_cpu(s->version);
  79
  80        memcpy(sb->magic,       s->magic, 16);
  81        memcpy(sb->uuid,        s->uuid, 16);
  82        memcpy(sb->set_uuid,    s->set_uuid, 16);
  83        memcpy(sb->label,       s->label, SB_LABEL_SIZE);
  84
  85        sb->flags               = le64_to_cpu(s->flags);
  86        sb->seq                 = le64_to_cpu(s->seq);
  87        sb->last_mount          = le32_to_cpu(s->last_mount);
  88        sb->first_bucket        = le16_to_cpu(s->first_bucket);
  89        sb->keys                = le16_to_cpu(s->keys);
  90
  91        for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
  92                sb->d[i] = le64_to_cpu(s->d[i]);
  93
  94        pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
  95                 sb->version, sb->flags, sb->seq, sb->keys);
  96
  97        err = "Not a bcache superblock";
  98        if (sb->offset != SB_SECTOR)
  99                goto err;
 100
 101        if (memcmp(sb->magic, bcache_magic, 16))
 102                goto err;
 103
 104        err = "Too many journal buckets";
 105        if (sb->keys > SB_JOURNAL_BUCKETS)
 106                goto err;
 107
 108        err = "Bad checksum";
 109        if (s->csum != csum_set(s))
 110                goto err;
 111
 112        err = "Bad UUID";
 113        if (bch_is_zero(sb->uuid, 16))
 114                goto err;
 115
 116        sb->block_size  = le16_to_cpu(s->block_size);
 117
 118        err = "Superblock block size smaller than device block size";
 119        if (sb->block_size << 9 < bdev_logical_block_size(bdev))
 120                goto err;
 121
 122        switch (sb->version) {
 123        case BCACHE_SB_VERSION_BDEV:
 124                sb->data_offset = BDEV_DATA_START_DEFAULT;
 125                break;
 126        case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
 127                sb->data_offset = le64_to_cpu(s->data_offset);
 128
 129                err = "Bad data offset";
 130                if (sb->data_offset < BDEV_DATA_START_DEFAULT)
 131                        goto err;
 132
 133                break;
 134        case BCACHE_SB_VERSION_CDEV:
 135        case BCACHE_SB_VERSION_CDEV_WITH_UUID:
 136                sb->nbuckets    = le64_to_cpu(s->nbuckets);
 137                sb->block_size  = le16_to_cpu(s->block_size);
 138                sb->bucket_size = le16_to_cpu(s->bucket_size);
 139
 140                sb->nr_in_set   = le16_to_cpu(s->nr_in_set);
 141                sb->nr_this_dev = le16_to_cpu(s->nr_this_dev);
 142
 143                err = "Too many buckets";
 144                if (sb->nbuckets > LONG_MAX)
 145                        goto err;
 146
 147                err = "Not enough buckets";
 148                if (sb->nbuckets < 1 << 7)
 149                        goto err;
 150
 151                err = "Bad block/bucket size";
 152                if (!is_power_of_2(sb->block_size) ||
 153                    sb->block_size > PAGE_SECTORS ||
 154                    !is_power_of_2(sb->bucket_size) ||
 155                    sb->bucket_size < PAGE_SECTORS)
 156                        goto err;
 157
 158                err = "Invalid superblock: device too small";
 159                if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
 160                        goto err;
 161
 162                err = "Bad UUID";
 163                if (bch_is_zero(sb->set_uuid, 16))
 164                        goto err;
 165
 166                err = "Bad cache device number in set";
 167                if (!sb->nr_in_set ||
 168                    sb->nr_in_set <= sb->nr_this_dev ||
 169                    sb->nr_in_set > MAX_CACHES_PER_SET)
 170                        goto err;
 171
 172                err = "Journal buckets not sequential";
 173                for (i = 0; i < sb->keys; i++)
 174                        if (sb->d[i] != sb->first_bucket + i)
 175                                goto err;
 176
 177                err = "Too many journal buckets";
 178                if (sb->first_bucket + sb->keys > sb->nbuckets)
 179                        goto err;
 180
 181                err = "Invalid superblock: first bucket comes before end of super";
 182                if (sb->first_bucket * sb->bucket_size < 16)
 183                        goto err;
 184
 185                break;
 186        default:
 187                err = "Unsupported superblock version";
 188                goto err;
 189        }
 190
 191        sb->last_mount = get_seconds();
 192        err = NULL;
 193
 194        get_page(bh->b_page);
 195        *res = bh->b_page;
 196err:
 197        put_bh(bh);
 198        return err;
 199}
 200
 201static void write_bdev_super_endio(struct bio *bio)
 202{
 203        struct cached_dev *dc = bio->bi_private;
 204        /* XXX: error checking */
 205
 206        closure_put(&dc->sb_write);
 207}
 208
 209static void __write_super(struct cache_sb *sb, struct bio *bio)
 210{
 211        struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
 212        unsigned i;
 213
 214        bio->bi_iter.bi_sector  = SB_SECTOR;
 215        bio->bi_rw              = REQ_SYNC|REQ_META;
 216        bio->bi_iter.bi_size    = SB_SIZE;
 217        bch_bio_map(bio, NULL);
 218
 219        out->offset             = cpu_to_le64(sb->offset);
 220        out->version            = cpu_to_le64(sb->version);
 221
 222        memcpy(out->uuid,       sb->uuid, 16);
 223        memcpy(out->set_uuid,   sb->set_uuid, 16);
 224        memcpy(out->label,      sb->label, SB_LABEL_SIZE);
 225
 226        out->flags              = cpu_to_le64(sb->flags);
 227        out->seq                = cpu_to_le64(sb->seq);
 228
 229        out->last_mount         = cpu_to_le32(sb->last_mount);
 230        out->first_bucket       = cpu_to_le16(sb->first_bucket);
 231        out->keys               = cpu_to_le16(sb->keys);
 232
 233        for (i = 0; i < sb->keys; i++)
 234                out->d[i] = cpu_to_le64(sb->d[i]);
 235
 236        out->csum = csum_set(out);
 237
 238        pr_debug("ver %llu, flags %llu, seq %llu",
 239                 sb->version, sb->flags, sb->seq);
 240
 241        submit_bio(REQ_WRITE, bio);
 242}
 243
 244static void bch_write_bdev_super_unlock(struct closure *cl)
 245{
 246        struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
 247
 248        up(&dc->sb_write_mutex);
 249}
 250
 251void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
 252{
 253        struct closure *cl = &dc->sb_write;
 254        struct bio *bio = &dc->sb_bio;
 255
 256        down(&dc->sb_write_mutex);
 257        closure_init(cl, parent);
 258
 259        bio_reset(bio);
 260        bio->bi_bdev    = dc->bdev;
 261        bio->bi_end_io  = write_bdev_super_endio;
 262        bio->bi_private = dc;
 263
 264        closure_get(cl);
 265        __write_super(&dc->sb, bio);
 266
 267        closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
 268}
 269
 270static void write_super_endio(struct bio *bio)
 271{
 272        struct cache *ca = bio->bi_private;
 273
 274        bch_count_io_errors(ca, bio->bi_error, "writing superblock");
 275        closure_put(&ca->set->sb_write);
 276}
 277
 278static void bcache_write_super_unlock(struct closure *cl)
 279{
 280        struct cache_set *c = container_of(cl, struct cache_set, sb_write);
 281
 282        up(&c->sb_write_mutex);
 283}
 284
 285void bcache_write_super(struct cache_set *c)
 286{
 287        struct closure *cl = &c->sb_write;
 288        struct cache *ca;
 289        unsigned i;
 290
 291        down(&c->sb_write_mutex);
 292        closure_init(cl, &c->cl);
 293
 294        c->sb.seq++;
 295
 296        for_each_cache(ca, c, i) {
 297                struct bio *bio = &ca->sb_bio;
 298
 299                ca->sb.version          = BCACHE_SB_VERSION_CDEV_WITH_UUID;
 300                ca->sb.seq              = c->sb.seq;
 301                ca->sb.last_mount       = c->sb.last_mount;
 302
 303                SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
 304
 305                bio_reset(bio);
 306                bio->bi_bdev    = ca->bdev;
 307                bio->bi_end_io  = write_super_endio;
 308                bio->bi_private = ca;
 309
 310                closure_get(cl);
 311                __write_super(&ca->sb, bio);
 312        }
 313
 314        closure_return_with_destructor(cl, bcache_write_super_unlock);
 315}
 316
 317/* UUID io */
 318
 319static void uuid_endio(struct bio *bio)
 320{
 321        struct closure *cl = bio->bi_private;
 322        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 323
 324        cache_set_err_on(bio->bi_error, c, "accessing uuids");
 325        bch_bbio_free(bio, c);
 326        closure_put(cl);
 327}
 328
 329static void uuid_io_unlock(struct closure *cl)
 330{
 331        struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
 332
 333        up(&c->uuid_write_mutex);
 334}
 335
 336static void uuid_io(struct cache_set *c, unsigned long rw,
 337                    struct bkey *k, struct closure *parent)
 338{
 339        struct closure *cl = &c->uuid_write;
 340        struct uuid_entry *u;
 341        unsigned i;
 342        char buf[80];
 343
 344        BUG_ON(!parent);
 345        down(&c->uuid_write_mutex);
 346        closure_init(cl, parent);
 347
 348        for (i = 0; i < KEY_PTRS(k); i++) {
 349                struct bio *bio = bch_bbio_alloc(c);
 350
 351                bio->bi_rw      = REQ_SYNC|REQ_META|rw;
 352                bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
 353
 354                bio->bi_end_io  = uuid_endio;
 355                bio->bi_private = cl;
 356                bch_bio_map(bio, c->uuids);
 357
 358                bch_submit_bbio(bio, c, k, i);
 359
 360                if (!(rw & WRITE))
 361                        break;
 362        }
 363
 364        bch_extent_to_text(buf, sizeof(buf), k);
 365        pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
 366
 367        for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
 368                if (!bch_is_zero(u->uuid, 16))
 369                        pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
 370                                 u - c->uuids, u->uuid, u->label,
 371                                 u->first_reg, u->last_reg, u->invalidated);
 372
 373        closure_return_with_destructor(cl, uuid_io_unlock);
 374}
 375
 376static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
 377{
 378        struct bkey *k = &j->uuid_bucket;
 379
 380        if (__bch_btree_ptr_invalid(c, k))
 381                return "bad uuid pointer";
 382
 383        bkey_copy(&c->uuid_bucket, k);
 384        uuid_io(c, READ_SYNC, k, cl);
 385
 386        if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
 387                struct uuid_entry_v0    *u0 = (void *) c->uuids;
 388                struct uuid_entry       *u1 = (void *) c->uuids;
 389                int i;
 390
 391                closure_sync(cl);
 392
 393                /*
 394                 * Since the new uuid entry is bigger than the old, we have to
 395                 * convert starting at the highest memory address and work down
 396                 * in order to do it in place
 397                 */
 398
 399                for (i = c->nr_uuids - 1;
 400                     i >= 0;
 401                     --i) {
 402                        memcpy(u1[i].uuid,      u0[i].uuid, 16);
 403                        memcpy(u1[i].label,     u0[i].label, 32);
 404
 405                        u1[i].first_reg         = u0[i].first_reg;
 406                        u1[i].last_reg          = u0[i].last_reg;
 407                        u1[i].invalidated       = u0[i].invalidated;
 408
 409                        u1[i].flags     = 0;
 410                        u1[i].sectors   = 0;
 411                }
 412        }
 413
 414        return NULL;
 415}
 416
 417static int __uuid_write(struct cache_set *c)
 418{
 419        BKEY_PADDED(key) k;
 420        struct closure cl;
 421        closure_init_stack(&cl);
 422
 423        lockdep_assert_held(&bch_register_lock);
 424
 425        if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
 426                return 1;
 427
 428        SET_KEY_SIZE(&k.key, c->sb.bucket_size);
 429        uuid_io(c, REQ_WRITE, &k.key, &cl);
 430        closure_sync(&cl);
 431
 432        bkey_copy(&c->uuid_bucket, &k.key);
 433        bkey_put(c, &k.key);
 434        return 0;
 435}
 436
 437int bch_uuid_write(struct cache_set *c)
 438{
 439        int ret = __uuid_write(c);
 440
 441        if (!ret)
 442                bch_journal_meta(c, NULL);
 443
 444        return ret;
 445}
 446
 447static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
 448{
 449        struct uuid_entry *u;
 450
 451        for (u = c->uuids;
 452             u < c->uuids + c->nr_uuids; u++)
 453                if (!memcmp(u->uuid, uuid, 16))
 454                        return u;
 455
 456        return NULL;
 457}
 458
 459static struct uuid_entry *uuid_find_empty(struct cache_set *c)
 460{
 461        static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
 462        return uuid_find(c, zero_uuid);
 463}
 464
 465/*
 466 * Bucket priorities/gens:
 467 *
 468 * For each bucket, we store on disk its
 469   * 8 bit gen
 470   * 16 bit priority
 471 *
 472 * See alloc.c for an explanation of the gen. The priority is used to implement
 473 * lru (and in the future other) cache replacement policies; for most purposes
 474 * it's just an opaque integer.
 475 *
 476 * The gens and the priorities don't have a whole lot to do with each other, and
 477 * it's actually the gens that must be written out at specific times - it's no
 478 * big deal if the priorities don't get written, if we lose them we just reuse
 479 * buckets in suboptimal order.
 480 *
 481 * On disk they're stored in a packed array, and in as many buckets are required
 482 * to fit them all. The buckets we use to store them form a list; the journal
 483 * header points to the first bucket, the first bucket points to the second
 484 * bucket, et cetera.
 485 *
 486 * This code is used by the allocation code; periodically (whenever it runs out
 487 * of buckets to allocate from) the allocation code will invalidate some
 488 * buckets, but it can't use those buckets until their new gens are safely on
 489 * disk.
 490 */
 491
 492static void prio_endio(struct bio *bio)
 493{
 494        struct cache *ca = bio->bi_private;
 495
 496        cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
 497        bch_bbio_free(bio, ca->set);
 498        closure_put(&ca->prio);
 499}
 500
 501static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
 502{
 503        struct closure *cl = &ca->prio;
 504        struct bio *bio = bch_bbio_alloc(ca->set);
 505
 506        closure_init_stack(cl);
 507
 508        bio->bi_iter.bi_sector  = bucket * ca->sb.bucket_size;
 509        bio->bi_bdev            = ca->bdev;
 510        bio->bi_rw              = REQ_SYNC|REQ_META|rw;
 511        bio->bi_iter.bi_size    = bucket_bytes(ca);
 512
 513        bio->bi_end_io  = prio_endio;
 514        bio->bi_private = ca;
 515        bch_bio_map(bio, ca->disk_buckets);
 516
 517        closure_bio_submit(bio, &ca->prio);
 518        closure_sync(cl);
 519}
 520
 521void bch_prio_write(struct cache *ca)
 522{
 523        int i;
 524        struct bucket *b;
 525        struct closure cl;
 526
 527        closure_init_stack(&cl);
 528
 529        lockdep_assert_held(&ca->set->bucket_lock);
 530
 531        ca->disk_buckets->seq++;
 532
 533        atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
 534                        &ca->meta_sectors_written);
 535
 536        //pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
 537        //       fifo_used(&ca->free_inc), fifo_used(&ca->unused));
 538
 539        for (i = prio_buckets(ca) - 1; i >= 0; --i) {
 540                long bucket;
 541                struct prio_set *p = ca->disk_buckets;
 542                struct bucket_disk *d = p->data;
 543                struct bucket_disk *end = d + prios_per_bucket(ca);
 544
 545                for (b = ca->buckets + i * prios_per_bucket(ca);
 546                     b < ca->buckets + ca->sb.nbuckets && d < end;
 547                     b++, d++) {
 548                        d->prio = cpu_to_le16(b->prio);
 549                        d->gen = b->gen;
 550                }
 551
 552                p->next_bucket  = ca->prio_buckets[i + 1];
 553                p->magic        = pset_magic(&ca->sb);
 554                p->csum         = bch_crc64(&p->magic, bucket_bytes(ca) - 8);
 555
 556                bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
 557                BUG_ON(bucket == -1);
 558
 559                mutex_unlock(&ca->set->bucket_lock);
 560                prio_io(ca, bucket, REQ_WRITE);
 561                mutex_lock(&ca->set->bucket_lock);
 562
 563                ca->prio_buckets[i] = bucket;
 564                atomic_dec_bug(&ca->buckets[bucket].pin);
 565        }
 566
 567        mutex_unlock(&ca->set->bucket_lock);
 568
 569        bch_journal_meta(ca->set, &cl);
 570        closure_sync(&cl);
 571
 572        mutex_lock(&ca->set->bucket_lock);
 573
 574        /*
 575         * Don't want the old priorities to get garbage collected until after we
 576         * finish writing the new ones, and they're journalled
 577         */
 578        for (i = 0; i < prio_buckets(ca); i++) {
 579                if (ca->prio_last_buckets[i])
 580                        __bch_bucket_free(ca,
 581                                &ca->buckets[ca->prio_last_buckets[i]]);
 582
 583                ca->prio_last_buckets[i] = ca->prio_buckets[i];
 584        }
 585}
 586
 587static void prio_read(struct cache *ca, uint64_t bucket)
 588{
 589        struct prio_set *p = ca->disk_buckets;
 590        struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
 591        struct bucket *b;
 592        unsigned bucket_nr = 0;
 593
 594        for (b = ca->buckets;
 595             b < ca->buckets + ca->sb.nbuckets;
 596             b++, d++) {
 597                if (d == end) {
 598                        ca->prio_buckets[bucket_nr] = bucket;
 599                        ca->prio_last_buckets[bucket_nr] = bucket;
 600                        bucket_nr++;
 601
 602                        prio_io(ca, bucket, READ_SYNC);
 603
 604                        if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
 605                                pr_warn("bad csum reading priorities");
 606
 607                        if (p->magic != pset_magic(&ca->sb))
 608                                pr_warn("bad magic reading priorities");
 609
 610                        bucket = p->next_bucket;
 611                        d = p->data;
 612                }
 613
 614                b->prio = le16_to_cpu(d->prio);
 615                b->gen = b->last_gc = d->gen;
 616        }
 617}
 618
 619/* Bcache device */
 620
 621static int open_dev(struct block_device *b, fmode_t mode)
 622{
 623        struct bcache_device *d = b->bd_disk->private_data;
 624        if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
 625                return -ENXIO;
 626
 627        closure_get(&d->cl);
 628        return 0;
 629}
 630
 631static void release_dev(struct gendisk *b, fmode_t mode)
 632{
 633        struct bcache_device *d = b->private_data;
 634        closure_put(&d->cl);
 635}
 636
 637static int ioctl_dev(struct block_device *b, fmode_t mode,
 638                     unsigned int cmd, unsigned long arg)
 639{
 640        struct bcache_device *d = b->bd_disk->private_data;
 641        return d->ioctl(d, mode, cmd, arg);
 642}
 643
 644static const struct block_device_operations bcache_ops = {
 645        .open           = open_dev,
 646        .release        = release_dev,
 647        .ioctl          = ioctl_dev,
 648        .owner          = THIS_MODULE,
 649};
 650
 651void bcache_device_stop(struct bcache_device *d)
 652{
 653        if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
 654                closure_queue(&d->cl);
 655}
 656
 657static void bcache_device_unlink(struct bcache_device *d)
 658{
 659        lockdep_assert_held(&bch_register_lock);
 660
 661        if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
 662                unsigned i;
 663                struct cache *ca;
 664
 665                sysfs_remove_link(&d->c->kobj, d->name);
 666                sysfs_remove_link(&d->kobj, "cache");
 667
 668                for_each_cache(ca, d->c, i)
 669                        bd_unlink_disk_holder(ca->bdev, d->disk);
 670        }
 671}
 672
 673static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
 674                               const char *name)
 675{
 676        unsigned i;
 677        struct cache *ca;
 678
 679        for_each_cache(ca, d->c, i)
 680                bd_link_disk_holder(ca->bdev, d->disk);
 681
 682        snprintf(d->name, BCACHEDEVNAME_SIZE,
 683                 "%s%u", name, d->id);
 684
 685        WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
 686             sysfs_create_link(&c->kobj, &d->kobj, d->name),
 687             "Couldn't create device <-> cache set symlinks");
 688
 689        clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
 690}
 691
 692static void bcache_device_detach(struct bcache_device *d)
 693{
 694        lockdep_assert_held(&bch_register_lock);
 695
 696        if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
 697                struct uuid_entry *u = d->c->uuids + d->id;
 698
 699                SET_UUID_FLASH_ONLY(u, 0);
 700                memcpy(u->uuid, invalid_uuid, 16);
 701                u->invalidated = cpu_to_le32(get_seconds());
 702                bch_uuid_write(d->c);
 703        }
 704
 705        bcache_device_unlink(d);
 706
 707        d->c->devices[d->id] = NULL;
 708        closure_put(&d->c->caching);
 709        d->c = NULL;
 710}
 711
 712static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
 713                                 unsigned id)
 714{
 715        d->id = id;
 716        d->c = c;
 717        c->devices[id] = d;
 718
 719        closure_get(&c->caching);
 720}
 721
 722static void bcache_device_free(struct bcache_device *d)
 723{
 724        lockdep_assert_held(&bch_register_lock);
 725
 726        pr_info("%s stopped", d->disk->disk_name);
 727
 728        if (d->c)
 729                bcache_device_detach(d);
 730        if (d->disk && d->disk->flags & GENHD_FL_UP)
 731                del_gendisk(d->disk);
 732        if (d->disk && d->disk->queue)
 733                blk_cleanup_queue(d->disk->queue);
 734        if (d->disk) {
 735                ida_simple_remove(&bcache_minor, d->disk->first_minor);
 736                put_disk(d->disk);
 737        }
 738
 739        if (d->bio_split)
 740                bioset_free(d->bio_split);
 741        kvfree(d->full_dirty_stripes);
 742        kvfree(d->stripe_sectors_dirty);
 743
 744        closure_debug_destroy(&d->cl);
 745}
 746
 747static int bcache_device_init(struct bcache_device *d, unsigned block_size,
 748                              sector_t sectors)
 749{
 750        struct request_queue *q;
 751        size_t n;
 752        int minor;
 753
 754        if (!d->stripe_size)
 755                d->stripe_size = 1 << 31;
 756
 757        d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
 758
 759        if (!d->nr_stripes ||
 760            d->nr_stripes > INT_MAX ||
 761            d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
 762                pr_err("nr_stripes too large");
 763                return -ENOMEM;
 764        }
 765
 766        n = d->nr_stripes * sizeof(atomic_t);
 767        d->stripe_sectors_dirty = n < PAGE_SIZE << 6
 768                ? kzalloc(n, GFP_KERNEL)
 769                : vzalloc(n);
 770        if (!d->stripe_sectors_dirty)
 771                return -ENOMEM;
 772
 773        n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
 774        d->full_dirty_stripes = n < PAGE_SIZE << 6
 775                ? kzalloc(n, GFP_KERNEL)
 776                : vzalloc(n);
 777        if (!d->full_dirty_stripes)
 778                return -ENOMEM;
 779
 780        minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
 781        if (minor < 0)
 782                return minor;
 783
 784        if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
 785            !(d->disk = alloc_disk(1))) {
 786                ida_simple_remove(&bcache_minor, minor);
 787                return -ENOMEM;
 788        }
 789
 790        set_capacity(d->disk, sectors);
 791        snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
 792
 793        d->disk->major          = bcache_major;
 794        d->disk->first_minor    = minor;
 795        d->disk->fops           = &bcache_ops;
 796        d->disk->private_data   = d;
 797
 798        q = blk_alloc_queue(GFP_KERNEL);
 799        if (!q)
 800                return -ENOMEM;
 801
 802        blk_queue_make_request(q, NULL);
 803        d->disk->queue                  = q;
 804        q->queuedata                    = d;
 805        q->backing_dev_info.congested_data = d;
 806        q->limits.max_hw_sectors        = UINT_MAX;
 807        q->limits.max_sectors           = UINT_MAX;
 808        q->limits.max_segment_size      = UINT_MAX;
 809        q->limits.max_segments          = BIO_MAX_PAGES;
 810        blk_queue_max_discard_sectors(q, UINT_MAX);
 811        q->limits.discard_granularity   = 512;
 812        q->limits.io_min                = block_size;
 813        q->limits.logical_block_size    = block_size;
 814        q->limits.physical_block_size   = block_size;
 815        set_bit(QUEUE_FLAG_NONROT,      &d->disk->queue->queue_flags);
 816        clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
 817        set_bit(QUEUE_FLAG_DISCARD,     &d->disk->queue->queue_flags);
 818
 819        blk_queue_write_cache(q, true, true);
 820
 821        return 0;
 822}
 823
 824/* Cached device */
 825
 826static void calc_cached_dev_sectors(struct cache_set *c)
 827{
 828        uint64_t sectors = 0;
 829        struct cached_dev *dc;
 830
 831        list_for_each_entry(dc, &c->cached_devs, list)
 832                sectors += bdev_sectors(dc->bdev);
 833
 834        c->cached_dev_sectors = sectors;
 835}
 836
 837void bch_cached_dev_run(struct cached_dev *dc)
 838{
 839        struct bcache_device *d = &dc->disk;
 840        char buf[SB_LABEL_SIZE + 1];
 841        char *env[] = {
 842                "DRIVER=bcache",
 843                kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
 844                NULL,
 845                NULL,
 846        };
 847
 848        memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
 849        buf[SB_LABEL_SIZE] = '\0';
 850        env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
 851
 852        if (atomic_xchg(&dc->running, 1)) {
 853                kfree(env[1]);
 854                kfree(env[2]);
 855                return;
 856        }
 857
 858        if (!d->c &&
 859            BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
 860                struct closure cl;
 861                closure_init_stack(&cl);
 862
 863                SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
 864                bch_write_bdev_super(dc, &cl);
 865                closure_sync(&cl);
 866        }
 867
 868        add_disk(d->disk);
 869        bd_link_disk_holder(dc->bdev, dc->disk.disk);
 870        /* won't show up in the uevent file, use udevadm monitor -e instead
 871         * only class / kset properties are persistent */
 872        kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
 873        kfree(env[1]);
 874        kfree(env[2]);
 875
 876        if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
 877            sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
 878                pr_debug("error creating sysfs link");
 879}
 880
 881static void cached_dev_detach_finish(struct work_struct *w)
 882{
 883        struct cached_dev *dc = container_of(w, struct cached_dev, detach);
 884        char buf[BDEVNAME_SIZE];
 885        struct closure cl;
 886        closure_init_stack(&cl);
 887
 888        BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
 889        BUG_ON(atomic_read(&dc->count));
 890
 891        mutex_lock(&bch_register_lock);
 892
 893        memset(&dc->sb.set_uuid, 0, 16);
 894        SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
 895
 896        bch_write_bdev_super(dc, &cl);
 897        closure_sync(&cl);
 898
 899        bcache_device_detach(&dc->disk);
 900        list_move(&dc->list, &uncached_devices);
 901
 902        clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
 903        clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
 904
 905        mutex_unlock(&bch_register_lock);
 906
 907        pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
 908
 909        /* Drop ref we took in cached_dev_detach() */
 910        closure_put(&dc->disk.cl);
 911}
 912
 913void bch_cached_dev_detach(struct cached_dev *dc)
 914{
 915        lockdep_assert_held(&bch_register_lock);
 916
 917        if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
 918                return;
 919
 920        if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
 921                return;
 922
 923        /*
 924         * Block the device from being closed and freed until we're finished
 925         * detaching
 926         */
 927        closure_get(&dc->disk.cl);
 928
 929        bch_writeback_queue(dc);
 930        cached_dev_put(dc);
 931}
 932
 933int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
 934{
 935        uint32_t rtime = cpu_to_le32(get_seconds());
 936        struct uuid_entry *u;
 937        char buf[BDEVNAME_SIZE];
 938
 939        bdevname(dc->bdev, buf);
 940
 941        if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
 942                return -ENOENT;
 943
 944        if (dc->disk.c) {
 945                pr_err("Can't attach %s: already attached", buf);
 946                return -EINVAL;
 947        }
 948
 949        if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
 950                pr_err("Can't attach %s: shutting down", buf);
 951                return -EINVAL;
 952        }
 953
 954        if (dc->sb.block_size < c->sb.block_size) {
 955                /* Will die */
 956                pr_err("Couldn't attach %s: block size less than set's block size",
 957                       buf);
 958                return -EINVAL;
 959        }
 960
 961        u = uuid_find(c, dc->sb.uuid);
 962
 963        if (u &&
 964            (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
 965             BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
 966                memcpy(u->uuid, invalid_uuid, 16);
 967                u->invalidated = cpu_to_le32(get_seconds());
 968                u = NULL;
 969        }
 970
 971        if (!u) {
 972                if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
 973                        pr_err("Couldn't find uuid for %s in set", buf);
 974                        return -ENOENT;
 975                }
 976
 977                u = uuid_find_empty(c);
 978                if (!u) {
 979                        pr_err("Not caching %s, no room for UUID", buf);
 980                        return -EINVAL;
 981                }
 982        }
 983
 984        /* Deadlocks since we're called via sysfs...
 985        sysfs_remove_file(&dc->kobj, &sysfs_attach);
 986         */
 987
 988        if (bch_is_zero(u->uuid, 16)) {
 989                struct closure cl;
 990                closure_init_stack(&cl);
 991
 992                memcpy(u->uuid, dc->sb.uuid, 16);
 993                memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
 994                u->first_reg = u->last_reg = rtime;
 995                bch_uuid_write(c);
 996
 997                memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
 998                SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
 999
1000                bch_write_bdev_super(dc, &cl);
1001                closure_sync(&cl);
1002        } else {
1003                u->last_reg = rtime;
1004                bch_uuid_write(c);
1005        }
1006
1007        bcache_device_attach(&dc->disk, c, u - c->uuids);
1008        list_move(&dc->list, &c->cached_devs);
1009        calc_cached_dev_sectors(c);
1010
1011        smp_wmb();
1012        /*
1013         * dc->c must be set before dc->count != 0 - paired with the mb in
1014         * cached_dev_get()
1015         */
1016        atomic_set(&dc->count, 1);
1017
1018        /* Block writeback thread, but spawn it */
1019        down_write(&dc->writeback_lock);
1020        if (bch_cached_dev_writeback_start(dc)) {
1021                up_write(&dc->writeback_lock);
1022                return -ENOMEM;
1023        }
1024
1025        if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1026                bch_sectors_dirty_init(dc);
1027                atomic_set(&dc->has_dirty, 1);
1028                atomic_inc(&dc->count);
1029                bch_writeback_queue(dc);
1030        }
1031
1032        bch_cached_dev_run(dc);
1033        bcache_device_link(&dc->disk, c, "bdev");
1034
1035        /* Allow the writeback thread to proceed */
1036        up_write(&dc->writeback_lock);
1037
1038        pr_info("Caching %s as %s on set %pU",
1039                bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1040                dc->disk.c->sb.set_uuid);
1041        return 0;
1042}
1043
1044void bch_cached_dev_release(struct kobject *kobj)
1045{
1046        struct cached_dev *dc = container_of(kobj, struct cached_dev,
1047                                             disk.kobj);
1048        kfree(dc);
1049        module_put(THIS_MODULE);
1050}
1051
1052static void cached_dev_free(struct closure *cl)
1053{
1054        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1055
1056        cancel_delayed_work_sync(&dc->writeback_rate_update);
1057        if (!IS_ERR_OR_NULL(dc->writeback_thread))
1058                kthread_stop(dc->writeback_thread);
1059
1060        mutex_lock(&bch_register_lock);
1061
1062        if (atomic_read(&dc->running))
1063                bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1064        bcache_device_free(&dc->disk);
1065        list_del(&dc->list);
1066
1067        mutex_unlock(&bch_register_lock);
1068
1069        if (!IS_ERR_OR_NULL(dc->bdev))
1070                blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1071
1072        wake_up(&unregister_wait);
1073
1074        kobject_put(&dc->disk.kobj);
1075}
1076
1077static void cached_dev_flush(struct closure *cl)
1078{
1079        struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1080        struct bcache_device *d = &dc->disk;
1081
1082        mutex_lock(&bch_register_lock);
1083        bcache_device_unlink(d);
1084        mutex_unlock(&bch_register_lock);
1085
1086        bch_cache_accounting_destroy(&dc->accounting);
1087        kobject_del(&d->kobj);
1088
1089        continue_at(cl, cached_dev_free, system_wq);
1090}
1091
1092static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1093{
1094        int ret;
1095        struct io *io;
1096        struct request_queue *q = bdev_get_queue(dc->bdev);
1097
1098        __module_get(THIS_MODULE);
1099        INIT_LIST_HEAD(&dc->list);
1100        closure_init(&dc->disk.cl, NULL);
1101        set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1102        kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1103        INIT_WORK(&dc->detach, cached_dev_detach_finish);
1104        sema_init(&dc->sb_write_mutex, 1);
1105        INIT_LIST_HEAD(&dc->io_lru);
1106        spin_lock_init(&dc->io_lock);
1107        bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1108
1109        dc->sequential_cutoff           = 4 << 20;
1110
1111        for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1112                list_add(&io->lru, &dc->io_lru);
1113                hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1114        }
1115
1116        dc->disk.stripe_size = q->limits.io_opt >> 9;
1117
1118        if (dc->disk.stripe_size)
1119                dc->partial_stripes_expensive =
1120                        q->limits.raid_partial_stripes_expensive;
1121
1122        ret = bcache_device_init(&dc->disk, block_size,
1123                         dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1124        if (ret)
1125                return ret;
1126
1127        set_capacity(dc->disk.disk,
1128                     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1129
1130        dc->disk.disk->queue->backing_dev_info.ra_pages =
1131                max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1132                    q->backing_dev_info.ra_pages);
1133
1134        bch_cached_dev_request_init(dc);
1135        bch_cached_dev_writeback_init(dc);
1136        return 0;
1137}
1138
1139/* Cached device - bcache superblock */
1140
1141static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1142                                 struct block_device *bdev,
1143                                 struct cached_dev *dc)
1144{
1145        char name[BDEVNAME_SIZE];
1146        const char *err = "cannot allocate memory";
1147        struct cache_set *c;
1148
1149        memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1150        dc->bdev = bdev;
1151        dc->bdev->bd_holder = dc;
1152
1153        bio_init(&dc->sb_bio);
1154        dc->sb_bio.bi_max_vecs  = 1;
1155        dc->sb_bio.bi_io_vec    = dc->sb_bio.bi_inline_vecs;
1156        dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1157        get_page(sb_page);
1158
1159        if (cached_dev_init(dc, sb->block_size << 9))
1160                goto err;
1161
1162        err = "error creating kobject";
1163        if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1164                        "bcache"))
1165                goto err;
1166        if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1167                goto err;
1168
1169        pr_info("registered backing device %s", bdevname(bdev, name));
1170
1171        list_add(&dc->list, &uncached_devices);
1172        list_for_each_entry(c, &bch_cache_sets, list)
1173                bch_cached_dev_attach(dc, c);
1174
1175        if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1176            BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1177                bch_cached_dev_run(dc);
1178
1179        return;
1180err:
1181        pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1182        bcache_device_stop(&dc->disk);
1183}
1184
1185/* Flash only volumes */
1186
1187void bch_flash_dev_release(struct kobject *kobj)
1188{
1189        struct bcache_device *d = container_of(kobj, struct bcache_device,
1190                                               kobj);
1191        kfree(d);
1192}
1193
1194static void flash_dev_free(struct closure *cl)
1195{
1196        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1197        mutex_lock(&bch_register_lock);
1198        bcache_device_free(d);
1199        mutex_unlock(&bch_register_lock);
1200        kobject_put(&d->kobj);
1201}
1202
1203static void flash_dev_flush(struct closure *cl)
1204{
1205        struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1206
1207        mutex_lock(&bch_register_lock);
1208        bcache_device_unlink(d);
1209        mutex_unlock(&bch_register_lock);
1210        kobject_del(&d->kobj);
1211        continue_at(cl, flash_dev_free, system_wq);
1212}
1213
1214static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1215{
1216        struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1217                                          GFP_KERNEL);
1218        if (!d)
1219                return -ENOMEM;
1220
1221        closure_init(&d->cl, NULL);
1222        set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1223
1224        kobject_init(&d->kobj, &bch_flash_dev_ktype);
1225
1226        if (bcache_device_init(d, block_bytes(c), u->sectors))
1227                goto err;
1228
1229        bcache_device_attach(d, c, u - c->uuids);
1230        bch_flash_dev_request_init(d);
1231        add_disk(d->disk);
1232
1233        if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1234                goto err;
1235
1236        bcache_device_link(d, c, "volume");
1237
1238        return 0;
1239err:
1240        kobject_put(&d->kobj);
1241        return -ENOMEM;
1242}
1243
1244static int flash_devs_run(struct cache_set *c)
1245{
1246        int ret = 0;
1247        struct uuid_entry *u;
1248
1249        for (u = c->uuids;
1250             u < c->uuids + c->nr_uuids && !ret;
1251             u++)
1252                if (UUID_FLASH_ONLY(u))
1253                        ret = flash_dev_run(c, u);
1254
1255        return ret;
1256}
1257
1258int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1259{
1260        struct uuid_entry *u;
1261
1262        if (test_bit(CACHE_SET_STOPPING, &c->flags))
1263                return -EINTR;
1264
1265        if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1266                return -EPERM;
1267
1268        u = uuid_find_empty(c);
1269        if (!u) {
1270                pr_err("Can't create volume, no room for UUID");
1271                return -EINVAL;
1272        }
1273
1274        get_random_bytes(u->uuid, 16);
1275        memset(u->label, 0, 32);
1276        u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1277
1278        SET_UUID_FLASH_ONLY(u, 1);
1279        u->sectors = size >> 9;
1280
1281        bch_uuid_write(c);
1282
1283        return flash_dev_run(c, u);
1284}
1285
1286/* Cache set */
1287
1288__printf(2, 3)
1289bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1290{
1291        va_list args;
1292
1293        if (c->on_error != ON_ERROR_PANIC &&
1294            test_bit(CACHE_SET_STOPPING, &c->flags))
1295                return false;
1296
1297        /* XXX: we can be called from atomic context
1298        acquire_console_sem();
1299        */
1300
1301        printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1302
1303        va_start(args, fmt);
1304        vprintk(fmt, args);
1305        va_end(args);
1306
1307        printk(", disabling caching\n");
1308
1309        if (c->on_error == ON_ERROR_PANIC)
1310                panic("panic forced after error\n");
1311
1312        bch_cache_set_unregister(c);
1313        return true;
1314}
1315
1316void bch_cache_set_release(struct kobject *kobj)
1317{
1318        struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1319        kfree(c);
1320        module_put(THIS_MODULE);
1321}
1322
1323static void cache_set_free(struct closure *cl)
1324{
1325        struct cache_set *c = container_of(cl, struct cache_set, cl);
1326        struct cache *ca;
1327        unsigned i;
1328
1329        if (!IS_ERR_OR_NULL(c->debug))
1330                debugfs_remove(c->debug);
1331
1332        bch_open_buckets_free(c);
1333        bch_btree_cache_free(c);
1334        bch_journal_free(c);
1335
1336        for_each_cache(ca, c, i)
1337                if (ca) {
1338                        ca->set = NULL;
1339                        c->cache[ca->sb.nr_this_dev] = NULL;
1340                        kobject_put(&ca->kobj);
1341                }
1342
1343        bch_bset_sort_state_free(&c->sort);
1344        free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1345
1346        if (c->moving_gc_wq)
1347                destroy_workqueue(c->moving_gc_wq);
1348        if (c->bio_split)
1349                bioset_free(c->bio_split);
1350        if (c->fill_iter)
1351                mempool_destroy(c->fill_iter);
1352        if (c->bio_meta)
1353                mempool_destroy(c->bio_meta);
1354        if (c->search)
1355                mempool_destroy(c->search);
1356        kfree(c->devices);
1357
1358        mutex_lock(&bch_register_lock);
1359        list_del(&c->list);
1360        mutex_unlock(&bch_register_lock);
1361
1362        pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1363        wake_up(&unregister_wait);
1364
1365        closure_debug_destroy(&c->cl);
1366        kobject_put(&c->kobj);
1367}
1368
1369static void cache_set_flush(struct closure *cl)
1370{
1371        struct cache_set *c = container_of(cl, struct cache_set, caching);
1372        struct cache *ca;
1373        struct btree *b;
1374        unsigned i;
1375
1376        if (!c)
1377                closure_return(cl);
1378
1379        bch_cache_accounting_destroy(&c->accounting);
1380
1381        kobject_put(&c->internal);
1382        kobject_del(&c->kobj);
1383
1384        if (c->gc_thread)
1385                kthread_stop(c->gc_thread);
1386
1387        if (!IS_ERR_OR_NULL(c->root))
1388                list_add(&c->root->list, &c->btree_cache);
1389
1390        /* Should skip this if we're unregistering because of an error */
1391        list_for_each_entry(b, &c->btree_cache, list) {
1392                mutex_lock(&b->write_lock);
1393                if (btree_node_dirty(b))
1394                        __bch_btree_node_write(b, NULL);
1395                mutex_unlock(&b->write_lock);
1396        }
1397
1398        for_each_cache(ca, c, i)
1399                if (ca->alloc_thread)
1400                        kthread_stop(ca->alloc_thread);
1401
1402        if (c->journal.cur) {
1403                cancel_delayed_work_sync(&c->journal.work);
1404                /* flush last journal entry if needed */
1405                c->journal.work.work.func(&c->journal.work.work);
1406        }
1407
1408        closure_return(cl);
1409}
1410
1411static void __cache_set_unregister(struct closure *cl)
1412{
1413        struct cache_set *c = container_of(cl, struct cache_set, caching);
1414        struct cached_dev *dc;
1415        size_t i;
1416
1417        mutex_lock(&bch_register_lock);
1418
1419        for (i = 0; i < c->nr_uuids; i++)
1420                if (c->devices[i]) {
1421                        if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1422                            test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1423                                dc = container_of(c->devices[i],
1424                                                  struct cached_dev, disk);
1425                                bch_cached_dev_detach(dc);
1426                        } else {
1427                                bcache_device_stop(c->devices[i]);
1428                        }
1429                }
1430
1431        mutex_unlock(&bch_register_lock);
1432
1433        continue_at(cl, cache_set_flush, system_wq);
1434}
1435
1436void bch_cache_set_stop(struct cache_set *c)
1437{
1438        if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1439                closure_queue(&c->caching);
1440}
1441
1442void bch_cache_set_unregister(struct cache_set *c)
1443{
1444        set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1445        bch_cache_set_stop(c);
1446}
1447
1448#define alloc_bucket_pages(gfp, c)                      \
1449        ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1450
1451struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1452{
1453        int iter_size;
1454        struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1455        if (!c)
1456                return NULL;
1457
1458        __module_get(THIS_MODULE);
1459        closure_init(&c->cl, NULL);
1460        set_closure_fn(&c->cl, cache_set_free, system_wq);
1461
1462        closure_init(&c->caching, &c->cl);
1463        set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1464
1465        /* Maybe create continue_at_noreturn() and use it here? */
1466        closure_set_stopped(&c->cl);
1467        closure_put(&c->cl);
1468
1469        kobject_init(&c->kobj, &bch_cache_set_ktype);
1470        kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1471
1472        bch_cache_accounting_init(&c->accounting, &c->cl);
1473
1474        memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1475        c->sb.block_size        = sb->block_size;
1476        c->sb.bucket_size       = sb->bucket_size;
1477        c->sb.nr_in_set         = sb->nr_in_set;
1478        c->sb.last_mount        = sb->last_mount;
1479        c->bucket_bits          = ilog2(sb->bucket_size);
1480        c->block_bits           = ilog2(sb->block_size);
1481        c->nr_uuids             = bucket_bytes(c) / sizeof(struct uuid_entry);
1482
1483        c->btree_pages          = bucket_pages(c);
1484        if (c->btree_pages > BTREE_MAX_PAGES)
1485                c->btree_pages = max_t(int, c->btree_pages / 4,
1486                                       BTREE_MAX_PAGES);
1487
1488        sema_init(&c->sb_write_mutex, 1);
1489        mutex_init(&c->bucket_lock);
1490        init_waitqueue_head(&c->btree_cache_wait);
1491        init_waitqueue_head(&c->bucket_wait);
1492        sema_init(&c->uuid_write_mutex, 1);
1493
1494        spin_lock_init(&c->btree_gc_time.lock);
1495        spin_lock_init(&c->btree_split_time.lock);
1496        spin_lock_init(&c->btree_read_time.lock);
1497
1498        bch_moving_init_cache_set(c);
1499
1500        INIT_LIST_HEAD(&c->list);
1501        INIT_LIST_HEAD(&c->cached_devs);
1502        INIT_LIST_HEAD(&c->btree_cache);
1503        INIT_LIST_HEAD(&c->btree_cache_freeable);
1504        INIT_LIST_HEAD(&c->btree_cache_freed);
1505        INIT_LIST_HEAD(&c->data_buckets);
1506
1507        c->search = mempool_create_slab_pool(32, bch_search_cache);
1508        if (!c->search)
1509                goto err;
1510
1511        iter_size = (sb->bucket_size / sb->block_size + 1) *
1512                sizeof(struct btree_iter_set);
1513
1514        if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1515            !(c->bio_meta = mempool_create_kmalloc_pool(2,
1516                                sizeof(struct bbio) + sizeof(struct bio_vec) *
1517                                bucket_pages(c))) ||
1518            !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1519            !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1520            !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1521            !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1522            bch_journal_alloc(c) ||
1523            bch_btree_cache_alloc(c) ||
1524            bch_open_buckets_alloc(c) ||
1525            bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1526                goto err;
1527
1528        c->congested_read_threshold_us  = 2000;
1529        c->congested_write_threshold_us = 20000;
1530        c->error_limit  = 8 << IO_ERROR_SHIFT;
1531
1532        return c;
1533err:
1534        bch_cache_set_unregister(c);
1535        return NULL;
1536}
1537
1538static void run_cache_set(struct cache_set *c)
1539{
1540        const char *err = "cannot allocate memory";
1541        struct cached_dev *dc, *t;
1542        struct cache *ca;
1543        struct closure cl;
1544        unsigned i;
1545
1546        closure_init_stack(&cl);
1547
1548        for_each_cache(ca, c, i)
1549                c->nbuckets += ca->sb.nbuckets;
1550
1551        if (CACHE_SYNC(&c->sb)) {
1552                LIST_HEAD(journal);
1553                struct bkey *k;
1554                struct jset *j;
1555
1556                err = "cannot allocate memory for journal";
1557                if (bch_journal_read(c, &journal))
1558                        goto err;
1559
1560                pr_debug("btree_journal_read() done");
1561
1562                err = "no journal entries found";
1563                if (list_empty(&journal))
1564                        goto err;
1565
1566                j = &list_entry(journal.prev, struct journal_replay, list)->j;
1567
1568                err = "IO error reading priorities";
1569                for_each_cache(ca, c, i)
1570                        prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1571
1572                /*
1573                 * If prio_read() fails it'll call cache_set_error and we'll
1574                 * tear everything down right away, but if we perhaps checked
1575                 * sooner we could avoid journal replay.
1576                 */
1577
1578                k = &j->btree_root;
1579
1580                err = "bad btree root";
1581                if (__bch_btree_ptr_invalid(c, k))
1582                        goto err;
1583
1584                err = "error reading btree root";
1585                c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1586                if (IS_ERR_OR_NULL(c->root))
1587                        goto err;
1588
1589                list_del_init(&c->root->list);
1590                rw_unlock(true, c->root);
1591
1592                err = uuid_read(c, j, &cl);
1593                if (err)
1594                        goto err;
1595
1596                err = "error in recovery";
1597                if (bch_btree_check(c))
1598                        goto err;
1599
1600                bch_journal_mark(c, &journal);
1601                bch_initial_gc_finish(c);
1602                pr_debug("btree_check() done");
1603
1604                /*
1605                 * bcache_journal_next() can't happen sooner, or
1606                 * btree_gc_finish() will give spurious errors about last_gc >
1607                 * gc_gen - this is a hack but oh well.
1608                 */
1609                bch_journal_next(&c->journal);
1610
1611                err = "error starting allocator thread";
1612                for_each_cache(ca, c, i)
1613                        if (bch_cache_allocator_start(ca))
1614                                goto err;
1615
1616                /*
1617                 * First place it's safe to allocate: btree_check() and
1618                 * btree_gc_finish() have to run before we have buckets to
1619                 * allocate, and bch_bucket_alloc_set() might cause a journal
1620                 * entry to be written so bcache_journal_next() has to be called
1621                 * first.
1622                 *
1623                 * If the uuids were in the old format we have to rewrite them
1624                 * before the next journal entry is written:
1625                 */
1626                if (j->version < BCACHE_JSET_VERSION_UUID)
1627                        __uuid_write(c);
1628
1629                bch_journal_replay(c, &journal);
1630        } else {
1631                pr_notice("invalidating existing data");
1632
1633                for_each_cache(ca, c, i) {
1634                        unsigned j;
1635
1636                        ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1637                                              2, SB_JOURNAL_BUCKETS);
1638
1639                        for (j = 0; j < ca->sb.keys; j++)
1640                                ca->sb.d[j] = ca->sb.first_bucket + j;
1641                }
1642
1643                bch_initial_gc_finish(c);
1644
1645                err = "error starting allocator thread";
1646                for_each_cache(ca, c, i)
1647                        if (bch_cache_allocator_start(ca))
1648                                goto err;
1649
1650                mutex_lock(&c->bucket_lock);
1651                for_each_cache(ca, c, i)
1652                        bch_prio_write(ca);
1653                mutex_unlock(&c->bucket_lock);
1654
1655                err = "cannot allocate new UUID bucket";
1656                if (__uuid_write(c))
1657                        goto err;
1658
1659                err = "cannot allocate new btree root";
1660                c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1661                if (IS_ERR_OR_NULL(c->root))
1662                        goto err;
1663
1664                mutex_lock(&c->root->write_lock);
1665                bkey_copy_key(&c->root->key, &MAX_KEY);
1666                bch_btree_node_write(c->root, &cl);
1667                mutex_unlock(&c->root->write_lock);
1668
1669                bch_btree_set_root(c->root);
1670                rw_unlock(true, c->root);
1671
1672                /*
1673                 * We don't want to write the first journal entry until
1674                 * everything is set up - fortunately journal entries won't be
1675                 * written until the SET_CACHE_SYNC() here:
1676                 */
1677                SET_CACHE_SYNC(&c->sb, true);
1678
1679                bch_journal_next(&c->journal);
1680                bch_journal_meta(c, &cl);
1681        }
1682
1683        err = "error starting gc thread";
1684        if (bch_gc_thread_start(c))
1685                goto err;
1686
1687        closure_sync(&cl);
1688        c->sb.last_mount = get_seconds();
1689        bcache_write_super(c);
1690
1691        list_for_each_entry_safe(dc, t, &uncached_devices, list)
1692                bch_cached_dev_attach(dc, c);
1693
1694        flash_devs_run(c);
1695
1696        set_bit(CACHE_SET_RUNNING, &c->flags);
1697        return;
1698err:
1699        closure_sync(&cl);
1700        /* XXX: test this, it's broken */
1701        bch_cache_set_error(c, "%s", err);
1702}
1703
1704static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1705{
1706        return ca->sb.block_size        == c->sb.block_size &&
1707                ca->sb.bucket_size      == c->sb.bucket_size &&
1708                ca->sb.nr_in_set        == c->sb.nr_in_set;
1709}
1710
1711static const char *register_cache_set(struct cache *ca)
1712{
1713        char buf[12];
1714        const char *err = "cannot allocate memory";
1715        struct cache_set *c;
1716
1717        list_for_each_entry(c, &bch_cache_sets, list)
1718                if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1719                        if (c->cache[ca->sb.nr_this_dev])
1720                                return "duplicate cache set member";
1721
1722                        if (!can_attach_cache(ca, c))
1723                                return "cache sb does not match set";
1724
1725                        if (!CACHE_SYNC(&ca->sb))
1726                                SET_CACHE_SYNC(&c->sb, false);
1727
1728                        goto found;
1729                }
1730
1731        c = bch_cache_set_alloc(&ca->sb);
1732        if (!c)
1733                return err;
1734
1735        err = "error creating kobject";
1736        if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1737            kobject_add(&c->internal, &c->kobj, "internal"))
1738                goto err;
1739
1740        if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1741                goto err;
1742
1743        bch_debug_init_cache_set(c);
1744
1745        list_add(&c->list, &bch_cache_sets);
1746found:
1747        sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1748        if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1749            sysfs_create_link(&c->kobj, &ca->kobj, buf))
1750                goto err;
1751
1752        if (ca->sb.seq > c->sb.seq) {
1753                c->sb.version           = ca->sb.version;
1754                memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1755                c->sb.flags             = ca->sb.flags;
1756                c->sb.seq               = ca->sb.seq;
1757                pr_debug("set version = %llu", c->sb.version);
1758        }
1759
1760        kobject_get(&ca->kobj);
1761        ca->set = c;
1762        ca->set->cache[ca->sb.nr_this_dev] = ca;
1763        c->cache_by_alloc[c->caches_loaded++] = ca;
1764
1765        if (c->caches_loaded == c->sb.nr_in_set)
1766                run_cache_set(c);
1767
1768        return NULL;
1769err:
1770        bch_cache_set_unregister(c);
1771        return err;
1772}
1773
1774/* Cache device */
1775
1776void bch_cache_release(struct kobject *kobj)
1777{
1778        struct cache *ca = container_of(kobj, struct cache, kobj);
1779        unsigned i;
1780
1781        if (ca->set) {
1782                BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1783                ca->set->cache[ca->sb.nr_this_dev] = NULL;
1784        }
1785
1786        free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1787        kfree(ca->prio_buckets);
1788        vfree(ca->buckets);
1789
1790        free_heap(&ca->heap);
1791        free_fifo(&ca->free_inc);
1792
1793        for (i = 0; i < RESERVE_NR; i++)
1794                free_fifo(&ca->free[i]);
1795
1796        if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1797                put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1798
1799        if (!IS_ERR_OR_NULL(ca->bdev))
1800                blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1801
1802        kfree(ca);
1803        module_put(THIS_MODULE);
1804}
1805
1806static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1807{
1808        size_t free;
1809        struct bucket *b;
1810
1811        __module_get(THIS_MODULE);
1812        kobject_init(&ca->kobj, &bch_cache_ktype);
1813
1814        bio_init(&ca->journal.bio);
1815        ca->journal.bio.bi_max_vecs = 8;
1816        ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1817
1818        free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1819
1820        if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1821            !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1822            !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1823            !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1824            !init_fifo(&ca->free_inc,   free << 2, GFP_KERNEL) ||
1825            !init_heap(&ca->heap,       free << 3, GFP_KERNEL) ||
1826            !(ca->buckets       = vzalloc(sizeof(struct bucket) *
1827                                          ca->sb.nbuckets)) ||
1828            !(ca->prio_buckets  = kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1829                                          2, GFP_KERNEL)) ||
1830            !(ca->disk_buckets  = alloc_bucket_pages(GFP_KERNEL, ca)))
1831                return -ENOMEM;
1832
1833        ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1834
1835        for_each_bucket(b, ca)
1836                atomic_set(&b->pin, 0);
1837
1838        return 0;
1839}
1840
1841static int register_cache(struct cache_sb *sb, struct page *sb_page,
1842                                struct block_device *bdev, struct cache *ca)
1843{
1844        char name[BDEVNAME_SIZE];
1845        const char *err = NULL;
1846        int ret = 0;
1847
1848        memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1849        ca->bdev = bdev;
1850        ca->bdev->bd_holder = ca;
1851
1852        bio_init(&ca->sb_bio);
1853        ca->sb_bio.bi_max_vecs  = 1;
1854        ca->sb_bio.bi_io_vec    = ca->sb_bio.bi_inline_vecs;
1855        ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1856        get_page(sb_page);
1857
1858        if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1859                ca->discard = CACHE_DISCARD(&ca->sb);
1860
1861        ret = cache_alloc(sb, ca);
1862        if (ret != 0)
1863                goto err;
1864
1865        if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1866                err = "error calling kobject_add";
1867                ret = -ENOMEM;
1868                goto out;
1869        }
1870
1871        mutex_lock(&bch_register_lock);
1872        err = register_cache_set(ca);
1873        mutex_unlock(&bch_register_lock);
1874
1875        if (err) {
1876                ret = -ENODEV;
1877                goto out;
1878        }
1879
1880        pr_info("registered cache device %s", bdevname(bdev, name));
1881
1882out:
1883        kobject_put(&ca->kobj);
1884
1885err:
1886        if (err)
1887                pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1888
1889        return ret;
1890}
1891
1892/* Global interfaces/init */
1893
1894static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1895                               const char *, size_t);
1896
1897kobj_attribute_write(register,          register_bcache);
1898kobj_attribute_write(register_quiet,    register_bcache);
1899
1900static bool bch_is_open_backing(struct block_device *bdev) {
1901        struct cache_set *c, *tc;
1902        struct cached_dev *dc, *t;
1903
1904        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1905                list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1906                        if (dc->bdev == bdev)
1907                                return true;
1908        list_for_each_entry_safe(dc, t, &uncached_devices, list)
1909                if (dc->bdev == bdev)
1910                        return true;
1911        return false;
1912}
1913
1914static bool bch_is_open_cache(struct block_device *bdev) {
1915        struct cache_set *c, *tc;
1916        struct cache *ca;
1917        unsigned i;
1918
1919        list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1920                for_each_cache(ca, c, i)
1921                        if (ca->bdev == bdev)
1922                                return true;
1923        return false;
1924}
1925
1926static bool bch_is_open(struct block_device *bdev) {
1927        return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1928}
1929
1930static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1931                               const char *buffer, size_t size)
1932{
1933        ssize_t ret = size;
1934        const char *err = "cannot allocate memory";
1935        char *path = NULL;
1936        struct cache_sb *sb = NULL;
1937        struct block_device *bdev = NULL;
1938        struct page *sb_page = NULL;
1939
1940        if (!try_module_get(THIS_MODULE))
1941                return -EBUSY;
1942
1943        if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1944            !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1945                goto err;
1946
1947        err = "failed to open device";
1948        bdev = blkdev_get_by_path(strim(path),
1949                                  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1950                                  sb);
1951        if (IS_ERR(bdev)) {
1952                if (bdev == ERR_PTR(-EBUSY)) {
1953                        bdev = lookup_bdev(strim(path));
1954                        mutex_lock(&bch_register_lock);
1955                        if (!IS_ERR(bdev) && bch_is_open(bdev))
1956                                err = "device already registered";
1957                        else
1958                                err = "device busy";
1959                        mutex_unlock(&bch_register_lock);
1960                        if (attr == &ksysfs_register_quiet)
1961                                goto out;
1962                }
1963                goto err;
1964        }
1965
1966        err = "failed to set blocksize";
1967        if (set_blocksize(bdev, 4096))
1968                goto err_close;
1969
1970        err = read_super(sb, bdev, &sb_page);
1971        if (err)
1972                goto err_close;
1973
1974        if (SB_IS_BDEV(sb)) {
1975                struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1976                if (!dc)
1977                        goto err_close;
1978
1979                mutex_lock(&bch_register_lock);
1980                register_bdev(sb, sb_page, bdev, dc);
1981                mutex_unlock(&bch_register_lock);
1982        } else {
1983                struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1984                if (!ca)
1985                        goto err_close;
1986
1987                if (register_cache(sb, sb_page, bdev, ca) != 0)
1988                        goto err_close;
1989        }
1990out:
1991        if (sb_page)
1992                put_page(sb_page);
1993        kfree(sb);
1994        kfree(path);
1995        module_put(THIS_MODULE);
1996        return ret;
1997
1998err_close:
1999        blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2000err:
2001        pr_info("error opening %s: %s", path, err);
2002        ret = -EINVAL;
2003        goto out;
2004}
2005
2006static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2007{
2008        if (code == SYS_DOWN ||
2009            code == SYS_HALT ||
2010            code == SYS_POWER_OFF) {
2011                DEFINE_WAIT(wait);
2012                unsigned long start = jiffies;
2013                bool stopped = false;
2014
2015                struct cache_set *c, *tc;
2016                struct cached_dev *dc, *tdc;
2017
2018                mutex_lock(&bch_register_lock);
2019
2020                if (list_empty(&bch_cache_sets) &&
2021                    list_empty(&uncached_devices))
2022                        goto out;
2023
2024                pr_info("Stopping all devices:");
2025
2026                list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2027                        bch_cache_set_stop(c);
2028
2029                list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2030                        bcache_device_stop(&dc->disk);
2031
2032                /* What's a condition variable? */
2033                while (1) {
2034                        long timeout = start + 2 * HZ - jiffies;
2035
2036                        stopped = list_empty(&bch_cache_sets) &&
2037                                list_empty(&uncached_devices);
2038
2039                        if (timeout < 0 || stopped)
2040                                break;
2041
2042                        prepare_to_wait(&unregister_wait, &wait,
2043                                        TASK_UNINTERRUPTIBLE);
2044
2045                        mutex_unlock(&bch_register_lock);
2046                        schedule_timeout(timeout);
2047                        mutex_lock(&bch_register_lock);
2048                }
2049
2050                finish_wait(&unregister_wait, &wait);
2051
2052                if (stopped)
2053                        pr_info("All devices stopped");
2054                else
2055                        pr_notice("Timeout waiting for devices to be closed");
2056out:
2057                mutex_unlock(&bch_register_lock);
2058        }
2059
2060        return NOTIFY_DONE;
2061}
2062
2063static struct notifier_block reboot = {
2064        .notifier_call  = bcache_reboot,
2065        .priority       = INT_MAX, /* before any real devices */
2066};
2067
2068static void bcache_exit(void)
2069{
2070        bch_debug_exit();
2071        bch_request_exit();
2072        if (bcache_kobj)
2073                kobject_put(bcache_kobj);
2074        if (bcache_wq)
2075                destroy_workqueue(bcache_wq);
2076        if (bcache_major)
2077                unregister_blkdev(bcache_major, "bcache");
2078        unregister_reboot_notifier(&reboot);
2079}
2080
2081static int __init bcache_init(void)
2082{
2083        static const struct attribute *files[] = {
2084                &ksysfs_register.attr,
2085                &ksysfs_register_quiet.attr,
2086                NULL
2087        };
2088
2089        mutex_init(&bch_register_lock);
2090        init_waitqueue_head(&unregister_wait);
2091        register_reboot_notifier(&reboot);
2092        closure_debug_init();
2093
2094        bcache_major = register_blkdev(0, "bcache");
2095        if (bcache_major < 0) {
2096                unregister_reboot_notifier(&reboot);
2097                return bcache_major;
2098        }
2099
2100        if (!(bcache_wq = create_workqueue("bcache")) ||
2101            !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2102            sysfs_create_files(bcache_kobj, files) ||
2103            bch_request_init() ||
2104            bch_debug_init(bcache_kobj))
2105                goto err;
2106
2107        return 0;
2108err:
2109        bcache_exit();
2110        return -ENOMEM;
2111}
2112
2113module_exit(bcache_exit);
2114module_init(bcache_init);
2115