linux/drivers/misc/panel.c
<<
>>
Prefs
   1/*
   2 * Front panel driver for Linux
   3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version
   8 * 2 of the License, or (at your option) any later version.
   9 *
  10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
  11 * connected to a parallel printer port.
  12 *
  13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  14 * serial module compatible with Samsung's KS0074. The pins may be connected in
  15 * any combination, everything is programmable.
  16 *
  17 * The keypad consists in a matrix of push buttons connecting input pins to
  18 * data output pins or to the ground. The combinations have to be hard-coded
  19 * in the driver, though several profiles exist and adding new ones is easy.
  20 *
  21 * Several profiles are provided for commonly found LCD+keypad modules on the
  22 * market, such as those found in Nexcom's appliances.
  23 *
  24 * FIXME:
  25 *      - the initialization/deinitialization process is very dirty and should
  26 *        be rewritten. It may even be buggy.
  27 *
  28 * TODO:
  29 *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  30 *      - make the LCD a part of a virtual screen of Vx*Vy
  31 *      - make the inputs list smp-safe
  32 *      - change the keyboard to a double mapping : signals -> key_id -> values
  33 *        so that applications can change values without knowing signals
  34 *
  35 */
  36
  37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  38
  39#include <linux/module.h>
  40
  41#include <linux/types.h>
  42#include <linux/errno.h>
  43#include <linux/signal.h>
  44#include <linux/sched.h>
  45#include <linux/spinlock.h>
  46#include <linux/interrupt.h>
  47#include <linux/miscdevice.h>
  48#include <linux/slab.h>
  49#include <linux/ioport.h>
  50#include <linux/fcntl.h>
  51#include <linux/init.h>
  52#include <linux/delay.h>
  53#include <linux/kernel.h>
  54#include <linux/ctype.h>
  55#include <linux/parport.h>
  56#include <linux/list.h>
  57#include <linux/notifier.h>
  58#include <linux/reboot.h>
  59#include <generated/utsrelease.h>
  60
  61#include <linux/io.h>
  62#include <linux/uaccess.h>
  63
  64#define LCD_MINOR               156
  65#define KEYPAD_MINOR            185
  66
  67#define PANEL_VERSION           "0.9.5"
  68
  69#define LCD_MAXBYTES            256     /* max burst write */
  70
  71#define KEYPAD_BUFFER           64
  72
  73/* poll the keyboard this every second */
  74#define INPUT_POLL_TIME         (HZ / 50)
  75/* a key starts to repeat after this times INPUT_POLL_TIME */
  76#define KEYPAD_REP_START        (10)
  77/* a key repeats this times INPUT_POLL_TIME */
  78#define KEYPAD_REP_DELAY        (2)
  79
  80/* keep the light on this times INPUT_POLL_TIME for each flash */
  81#define FLASH_LIGHT_TEMPO       (200)
  82
  83/* converts an r_str() input to an active high, bits string : 000BAOSE */
  84#define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  85
  86#define PNL_PBUSY               0x80    /* inverted input, active low */
  87#define PNL_PACK                0x40    /* direct input, active low */
  88#define PNL_POUTPA              0x20    /* direct input, active high */
  89#define PNL_PSELECD             0x10    /* direct input, active high */
  90#define PNL_PERRORP             0x08    /* direct input, active low */
  91
  92#define PNL_PBIDIR              0x20    /* bi-directional ports */
  93/* high to read data in or-ed with data out */
  94#define PNL_PINTEN              0x10
  95#define PNL_PSELECP             0x08    /* inverted output, active low */
  96#define PNL_PINITP              0x04    /* direct output, active low */
  97#define PNL_PAUTOLF             0x02    /* inverted output, active low */
  98#define PNL_PSTROBE             0x01    /* inverted output */
  99
 100#define PNL_PD0                 0x01
 101#define PNL_PD1                 0x02
 102#define PNL_PD2                 0x04
 103#define PNL_PD3                 0x08
 104#define PNL_PD4                 0x10
 105#define PNL_PD5                 0x20
 106#define PNL_PD6                 0x40
 107#define PNL_PD7                 0x80
 108
 109#define PIN_NONE                0
 110#define PIN_STROBE              1
 111#define PIN_D0                  2
 112#define PIN_D1                  3
 113#define PIN_D2                  4
 114#define PIN_D3                  5
 115#define PIN_D4                  6
 116#define PIN_D5                  7
 117#define PIN_D6                  8
 118#define PIN_D7                  9
 119#define PIN_AUTOLF              14
 120#define PIN_INITP               16
 121#define PIN_SELECP              17
 122#define PIN_NOT_SET             127
 123
 124#define LCD_FLAG_S              0x0001
 125#define LCD_FLAG_ID             0x0002
 126#define LCD_FLAG_B              0x0004  /* blink on */
 127#define LCD_FLAG_C              0x0008  /* cursor on */
 128#define LCD_FLAG_D              0x0010  /* display on */
 129#define LCD_FLAG_F              0x0020  /* large font mode */
 130#define LCD_FLAG_N              0x0040  /* 2-rows mode */
 131#define LCD_FLAG_L              0x0080  /* backlight enabled */
 132
 133/* LCD commands */
 134#define LCD_CMD_DISPLAY_CLEAR   0x01    /* Clear entire display */
 135
 136#define LCD_CMD_ENTRY_MODE      0x04    /* Set entry mode */
 137#define LCD_CMD_CURSOR_INC      0x02    /* Increment cursor */
 138
 139#define LCD_CMD_DISPLAY_CTRL    0x08    /* Display control */
 140#define LCD_CMD_DISPLAY_ON      0x04    /* Set display on */
 141#define LCD_CMD_CURSOR_ON       0x02    /* Set cursor on */
 142#define LCD_CMD_BLINK_ON        0x01    /* Set blink on */
 143
 144#define LCD_CMD_SHIFT           0x10    /* Shift cursor/display */
 145#define LCD_CMD_DISPLAY_SHIFT   0x08    /* Shift display instead of cursor */
 146#define LCD_CMD_SHIFT_RIGHT     0x04    /* Shift display/cursor to the right */
 147
 148#define LCD_CMD_FUNCTION_SET    0x20    /* Set function */
 149#define LCD_CMD_DATA_LEN_8BITS  0x10    /* Set data length to 8 bits */
 150#define LCD_CMD_TWO_LINES       0x08    /* Set to two display lines */
 151#define LCD_CMD_FONT_5X10_DOTS  0x04    /* Set char font to 5x10 dots */
 152
 153#define LCD_CMD_SET_CGRAM_ADDR  0x40    /* Set char generator RAM address */
 154
 155#define LCD_CMD_SET_DDRAM_ADDR  0x80    /* Set display data RAM address */
 156
 157#define LCD_ESCAPE_LEN          24      /* max chars for LCD escape command */
 158#define LCD_ESCAPE_CHAR 27      /* use char 27 for escape command */
 159
 160#define NOT_SET                 -1
 161
 162/* macros to simplify use of the parallel port */
 163#define r_ctr(x)        (parport_read_control((x)->port))
 164#define r_dtr(x)        (parport_read_data((x)->port))
 165#define r_str(x)        (parport_read_status((x)->port))
 166#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 167#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 168
 169/* this defines which bits are to be used and which ones to be ignored */
 170/* logical or of the output bits involved in the scan matrix */
 171static __u8 scan_mask_o;
 172/* logical or of the input bits involved in the scan matrix */
 173static __u8 scan_mask_i;
 174
 175enum input_type {
 176        INPUT_TYPE_STD,
 177        INPUT_TYPE_KBD,
 178};
 179
 180enum input_state {
 181        INPUT_ST_LOW,
 182        INPUT_ST_RISING,
 183        INPUT_ST_HIGH,
 184        INPUT_ST_FALLING,
 185};
 186
 187struct logical_input {
 188        struct list_head list;
 189        __u64 mask;
 190        __u64 value;
 191        enum input_type type;
 192        enum input_state state;
 193        __u8 rise_time, fall_time;
 194        __u8 rise_timer, fall_timer, high_timer;
 195
 196        union {
 197                struct {        /* valid when type == INPUT_TYPE_STD */
 198                        void (*press_fct)(int);
 199                        void (*release_fct)(int);
 200                        int press_data;
 201                        int release_data;
 202                } std;
 203                struct {        /* valid when type == INPUT_TYPE_KBD */
 204                        /* strings can be non null-terminated */
 205                        char press_str[sizeof(void *) + sizeof(int)];
 206                        char repeat_str[sizeof(void *) + sizeof(int)];
 207                        char release_str[sizeof(void *) + sizeof(int)];
 208                } kbd;
 209        } u;
 210};
 211
 212static LIST_HEAD(logical_inputs);       /* list of all defined logical inputs */
 213
 214/* physical contacts history
 215 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 216 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 217 * corresponds to the ground.
 218 * Within each group, bits are stored in the same order as read on the port :
 219 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 220 * So, each __u64 is represented like this :
 221 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 222 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 223 */
 224
 225/* what has just been read from the I/O ports */
 226static __u64 phys_read;
 227/* previous phys_read */
 228static __u64 phys_read_prev;
 229/* stabilized phys_read (phys_read|phys_read_prev) */
 230static __u64 phys_curr;
 231/* previous phys_curr */
 232static __u64 phys_prev;
 233/* 0 means that at least one logical signal needs be computed */
 234static char inputs_stable;
 235
 236/* these variables are specific to the keypad */
 237static struct {
 238        bool enabled;
 239} keypad;
 240
 241static char keypad_buffer[KEYPAD_BUFFER];
 242static int keypad_buflen;
 243static int keypad_start;
 244static char keypressed;
 245static wait_queue_head_t keypad_read_wait;
 246
 247/* lcd-specific variables */
 248static struct {
 249        bool enabled;
 250        bool initialized;
 251        bool must_clear;
 252
 253        int height;
 254        int width;
 255        int bwidth;
 256        int hwidth;
 257        int charset;
 258        int proto;
 259        int light_tempo;
 260
 261        /* TODO: use union here? */
 262        struct {
 263                int e;
 264                int rs;
 265                int rw;
 266                int cl;
 267                int da;
 268                int bl;
 269        } pins;
 270
 271        /* contains the LCD config state */
 272        unsigned long int flags;
 273
 274        /* Contains the LCD X and Y offset */
 275        struct {
 276                unsigned long int x;
 277                unsigned long int y;
 278        } addr;
 279
 280        /* Current escape sequence and it's length or -1 if outside */
 281        struct {
 282                char buf[LCD_ESCAPE_LEN + 1];
 283                int len;
 284        } esc_seq;
 285} lcd;
 286
 287/* Needed only for init */
 288static int selected_lcd_type = NOT_SET;
 289
 290/*
 291 * Bit masks to convert LCD signals to parallel port outputs.
 292 * _d_ are values for data port, _c_ are for control port.
 293 * [0] = signal OFF, [1] = signal ON, [2] = mask
 294 */
 295#define BIT_CLR         0
 296#define BIT_SET         1
 297#define BIT_MSK         2
 298#define BIT_STATES      3
 299/*
 300 * one entry for each bit on the LCD
 301 */
 302#define LCD_BIT_E       0
 303#define LCD_BIT_RS      1
 304#define LCD_BIT_RW      2
 305#define LCD_BIT_BL      3
 306#define LCD_BIT_CL      4
 307#define LCD_BIT_DA      5
 308#define LCD_BITS        6
 309
 310/*
 311 * each bit can be either connected to a DATA or CTRL port
 312 */
 313#define LCD_PORT_C      0
 314#define LCD_PORT_D      1
 315#define LCD_PORTS       2
 316
 317static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 318
 319/*
 320 * LCD protocols
 321 */
 322#define LCD_PROTO_PARALLEL      0
 323#define LCD_PROTO_SERIAL        1
 324#define LCD_PROTO_TI_DA8XX_LCD  2
 325
 326/*
 327 * LCD character sets
 328 */
 329#define LCD_CHARSET_NORMAL      0
 330#define LCD_CHARSET_KS0074      1
 331
 332/*
 333 * LCD types
 334 */
 335#define LCD_TYPE_NONE           0
 336#define LCD_TYPE_CUSTOM         1
 337#define LCD_TYPE_OLD            2
 338#define LCD_TYPE_KS0074         3
 339#define LCD_TYPE_HANTRONIX      4
 340#define LCD_TYPE_NEXCOM         5
 341
 342/*
 343 * keypad types
 344 */
 345#define KEYPAD_TYPE_NONE        0
 346#define KEYPAD_TYPE_OLD         1
 347#define KEYPAD_TYPE_NEW         2
 348#define KEYPAD_TYPE_NEXCOM      3
 349
 350/*
 351 * panel profiles
 352 */
 353#define PANEL_PROFILE_CUSTOM    0
 354#define PANEL_PROFILE_OLD       1
 355#define PANEL_PROFILE_NEW       2
 356#define PANEL_PROFILE_HANTRONIX 3
 357#define PANEL_PROFILE_NEXCOM    4
 358#define PANEL_PROFILE_LARGE     5
 359
 360/*
 361 * Construct custom config from the kernel's configuration
 362 */
 363#define DEFAULT_PARPORT         0
 364#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 365#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
 366#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
 367#define DEFAULT_LCD_HEIGHT      2
 368#define DEFAULT_LCD_WIDTH       40
 369#define DEFAULT_LCD_BWIDTH      40
 370#define DEFAULT_LCD_HWIDTH      64
 371#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 372#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 373
 374#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 375#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 376#define DEFAULT_LCD_PIN_RW      PIN_INITP
 377#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 378#define DEFAULT_LCD_PIN_SDA     PIN_D0
 379#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 380
 381#ifdef CONFIG_PANEL_PARPORT
 382#undef DEFAULT_PARPORT
 383#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 384#endif
 385
 386#ifdef CONFIG_PANEL_PROFILE
 387#undef DEFAULT_PROFILE
 388#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 389#endif
 390
 391#if DEFAULT_PROFILE == 0        /* custom */
 392#ifdef CONFIG_PANEL_KEYPAD
 393#undef DEFAULT_KEYPAD_TYPE
 394#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
 395#endif
 396
 397#ifdef CONFIG_PANEL_LCD
 398#undef DEFAULT_LCD_TYPE
 399#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
 400#endif
 401
 402#ifdef CONFIG_PANEL_LCD_HEIGHT
 403#undef DEFAULT_LCD_HEIGHT
 404#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 405#endif
 406
 407#ifdef CONFIG_PANEL_LCD_WIDTH
 408#undef DEFAULT_LCD_WIDTH
 409#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 410#endif
 411
 412#ifdef CONFIG_PANEL_LCD_BWIDTH
 413#undef DEFAULT_LCD_BWIDTH
 414#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 415#endif
 416
 417#ifdef CONFIG_PANEL_LCD_HWIDTH
 418#undef DEFAULT_LCD_HWIDTH
 419#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 420#endif
 421
 422#ifdef CONFIG_PANEL_LCD_CHARSET
 423#undef DEFAULT_LCD_CHARSET
 424#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 425#endif
 426
 427#ifdef CONFIG_PANEL_LCD_PROTO
 428#undef DEFAULT_LCD_PROTO
 429#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 430#endif
 431
 432#ifdef CONFIG_PANEL_LCD_PIN_E
 433#undef DEFAULT_LCD_PIN_E
 434#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 435#endif
 436
 437#ifdef CONFIG_PANEL_LCD_PIN_RS
 438#undef DEFAULT_LCD_PIN_RS
 439#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 440#endif
 441
 442#ifdef CONFIG_PANEL_LCD_PIN_RW
 443#undef DEFAULT_LCD_PIN_RW
 444#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 445#endif
 446
 447#ifdef CONFIG_PANEL_LCD_PIN_SCL
 448#undef DEFAULT_LCD_PIN_SCL
 449#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 450#endif
 451
 452#ifdef CONFIG_PANEL_LCD_PIN_SDA
 453#undef DEFAULT_LCD_PIN_SDA
 454#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 455#endif
 456
 457#ifdef CONFIG_PANEL_LCD_PIN_BL
 458#undef DEFAULT_LCD_PIN_BL
 459#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 460#endif
 461
 462#endif /* DEFAULT_PROFILE == 0 */
 463
 464/* global variables */
 465
 466/* Device single-open policy control */
 467static atomic_t lcd_available = ATOMIC_INIT(1);
 468static atomic_t keypad_available = ATOMIC_INIT(1);
 469
 470static struct pardevice *pprt;
 471
 472static int keypad_initialized;
 473
 474static void (*lcd_write_cmd)(int);
 475static void (*lcd_write_data)(int);
 476static void (*lcd_clear_fast)(void);
 477
 478static DEFINE_SPINLOCK(pprt_lock);
 479static struct timer_list scan_timer;
 480
 481MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 482
 483static int parport = DEFAULT_PARPORT;
 484module_param(parport, int, 0000);
 485MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 486
 487static int profile = DEFAULT_PROFILE;
 488module_param(profile, int, 0000);
 489MODULE_PARM_DESC(profile,
 490                 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 491                 "4=16x2 nexcom; default=40x2, old kp");
 492
 493static int keypad_type = NOT_SET;
 494module_param(keypad_type, int, 0000);
 495MODULE_PARM_DESC(keypad_type,
 496                 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 497
 498static int lcd_type = NOT_SET;
 499module_param(lcd_type, int, 0000);
 500MODULE_PARM_DESC(lcd_type,
 501                 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
 502
 503static int lcd_height = NOT_SET;
 504module_param(lcd_height, int, 0000);
 505MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 506
 507static int lcd_width = NOT_SET;
 508module_param(lcd_width, int, 0000);
 509MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 510
 511static int lcd_bwidth = NOT_SET;        /* internal buffer width (usually 40) */
 512module_param(lcd_bwidth, int, 0000);
 513MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 514
 515static int lcd_hwidth = NOT_SET;        /* hardware buffer width (usually 64) */
 516module_param(lcd_hwidth, int, 0000);
 517MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 518
 519static int lcd_charset = NOT_SET;
 520module_param(lcd_charset, int, 0000);
 521MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 522
 523static int lcd_proto = NOT_SET;
 524module_param(lcd_proto, int, 0000);
 525MODULE_PARM_DESC(lcd_proto,
 526                 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 527
 528/*
 529 * These are the parallel port pins the LCD control signals are connected to.
 530 * Set this to 0 if the signal is not used. Set it to its opposite value
 531 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 532 * pin has not been explicitly specified.
 533 *
 534 * WARNING! no check will be performed about collisions with keypad !
 535 */
 536
 537static int lcd_e_pin  = PIN_NOT_SET;
 538module_param(lcd_e_pin, int, 0000);
 539MODULE_PARM_DESC(lcd_e_pin,
 540                 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 541
 542static int lcd_rs_pin = PIN_NOT_SET;
 543module_param(lcd_rs_pin, int, 0000);
 544MODULE_PARM_DESC(lcd_rs_pin,
 545                 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 546
 547static int lcd_rw_pin = PIN_NOT_SET;
 548module_param(lcd_rw_pin, int, 0000);
 549MODULE_PARM_DESC(lcd_rw_pin,
 550                 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 551
 552static int lcd_cl_pin = PIN_NOT_SET;
 553module_param(lcd_cl_pin, int, 0000);
 554MODULE_PARM_DESC(lcd_cl_pin,
 555                 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 556
 557static int lcd_da_pin = PIN_NOT_SET;
 558module_param(lcd_da_pin, int, 0000);
 559MODULE_PARM_DESC(lcd_da_pin,
 560                 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 561
 562static int lcd_bl_pin = PIN_NOT_SET;
 563module_param(lcd_bl_pin, int, 0000);
 564MODULE_PARM_DESC(lcd_bl_pin,
 565                 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 566
 567/* Deprecated module parameters - consider not using them anymore */
 568
 569static int lcd_enabled = NOT_SET;
 570module_param(lcd_enabled, int, 0000);
 571MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 572
 573static int keypad_enabled = NOT_SET;
 574module_param(keypad_enabled, int, 0000);
 575MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 576
 577static const unsigned char *lcd_char_conv;
 578
 579/* for some LCD drivers (ks0074) we need a charset conversion table. */
 580static const unsigned char lcd_char_conv_ks0074[256] = {
 581        /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 582        /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 583        /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 584        /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 585        /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 586        /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 587        /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 588        /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 589        /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 590        /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 591        /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 592        /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 593        /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 594        /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 595        /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 596        /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 597        /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 598        /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 599        /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 600        /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 601        /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 602        /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 603        /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 604        /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 605        /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 606        /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 607        /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 608        /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 609        /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 610        /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 611        /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 612        /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 613        /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 614};
 615
 616static const char old_keypad_profile[][4][9] = {
 617        {"S0", "Left\n", "Left\n", ""},
 618        {"S1", "Down\n", "Down\n", ""},
 619        {"S2", "Up\n", "Up\n", ""},
 620        {"S3", "Right\n", "Right\n", ""},
 621        {"S4", "Esc\n", "Esc\n", ""},
 622        {"S5", "Ret\n", "Ret\n", ""},
 623        {"", "", "", ""}
 624};
 625
 626/* signals, press, repeat, release */
 627static const char new_keypad_profile[][4][9] = {
 628        {"S0", "Left\n", "Left\n", ""},
 629        {"S1", "Down\n", "Down\n", ""},
 630        {"S2", "Up\n", "Up\n", ""},
 631        {"S3", "Right\n", "Right\n", ""},
 632        {"S4s5", "", "Esc\n", "Esc\n"},
 633        {"s4S5", "", "Ret\n", "Ret\n"},
 634        {"S4S5", "Help\n", "", ""},
 635        /* add new signals above this line */
 636        {"", "", "", ""}
 637};
 638
 639/* signals, press, repeat, release */
 640static const char nexcom_keypad_profile[][4][9] = {
 641        {"a-p-e-", "Down\n", "Down\n", ""},
 642        {"a-p-E-", "Ret\n", "Ret\n", ""},
 643        {"a-P-E-", "Esc\n", "Esc\n", ""},
 644        {"a-P-e-", "Up\n", "Up\n", ""},
 645        /* add new signals above this line */
 646        {"", "", "", ""}
 647};
 648
 649static const char (*keypad_profile)[4][9] = old_keypad_profile;
 650
 651static DECLARE_BITMAP(bits, LCD_BITS);
 652
 653static void lcd_get_bits(unsigned int port, int *val)
 654{
 655        unsigned int bit, state;
 656
 657        for (bit = 0; bit < LCD_BITS; bit++) {
 658                state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
 659                *val &= lcd_bits[port][bit][BIT_MSK];
 660                *val |= lcd_bits[port][bit][state];
 661        }
 662}
 663
 664static void init_scan_timer(void);
 665
 666/* sets data port bits according to current signals values */
 667static int set_data_bits(void)
 668{
 669        int val;
 670
 671        val = r_dtr(pprt);
 672        lcd_get_bits(LCD_PORT_D, &val);
 673        w_dtr(pprt, val);
 674        return val;
 675}
 676
 677/* sets ctrl port bits according to current signals values */
 678static int set_ctrl_bits(void)
 679{
 680        int val;
 681
 682        val = r_ctr(pprt);
 683        lcd_get_bits(LCD_PORT_C, &val);
 684        w_ctr(pprt, val);
 685        return val;
 686}
 687
 688/* sets ctrl & data port bits according to current signals values */
 689static void panel_set_bits(void)
 690{
 691        set_data_bits();
 692        set_ctrl_bits();
 693}
 694
 695/*
 696 * Converts a parallel port pin (from -25 to 25) to data and control ports
 697 * masks, and data and control port bits. The signal will be considered
 698 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 699 *
 700 * Result will be used this way :
 701 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 702 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 703 */
 704static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 705{
 706        int d_bit, c_bit, inv;
 707
 708        d_val[0] = 0;
 709        c_val[0] = 0;
 710        d_val[1] = 0;
 711        c_val[1] = 0;
 712        d_val[2] = 0xFF;
 713        c_val[2] = 0xFF;
 714
 715        if (pin == 0)
 716                return;
 717
 718        inv = (pin < 0);
 719        if (inv)
 720                pin = -pin;
 721
 722        d_bit = 0;
 723        c_bit = 0;
 724
 725        switch (pin) {
 726        case PIN_STROBE:        /* strobe, inverted */
 727                c_bit = PNL_PSTROBE;
 728                inv = !inv;
 729                break;
 730        case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 731                d_bit = 1 << (pin - 2);
 732                break;
 733        case PIN_AUTOLF:        /* autofeed, inverted */
 734                c_bit = PNL_PAUTOLF;
 735                inv = !inv;
 736                break;
 737        case PIN_INITP:         /* init, direct */
 738                c_bit = PNL_PINITP;
 739                break;
 740        case PIN_SELECP:        /* select_in, inverted */
 741                c_bit = PNL_PSELECP;
 742                inv = !inv;
 743                break;
 744        default:                /* unknown pin, ignore */
 745                break;
 746        }
 747
 748        if (c_bit) {
 749                c_val[2] &= ~c_bit;
 750                c_val[!inv] = c_bit;
 751        } else if (d_bit) {
 752                d_val[2] &= ~d_bit;
 753                d_val[!inv] = d_bit;
 754        }
 755}
 756
 757/* sleeps that many milliseconds with a reschedule */
 758static void long_sleep(int ms)
 759{
 760        if (in_interrupt())
 761                mdelay(ms);
 762        else
 763                schedule_timeout_interruptible(msecs_to_jiffies(ms));
 764}
 765
 766/*
 767 * send a serial byte to the LCD panel. The caller is responsible for locking
 768 * if needed.
 769 */
 770static void lcd_send_serial(int byte)
 771{
 772        int bit;
 773
 774        /*
 775         * the data bit is set on D0, and the clock on STROBE.
 776         * LCD reads D0 on STROBE's rising edge.
 777         */
 778        for (bit = 0; bit < 8; bit++) {
 779                clear_bit(LCD_BIT_CL, bits);    /* CLK low */
 780                panel_set_bits();
 781                if (byte & 1) {
 782                        set_bit(LCD_BIT_DA, bits);
 783                } else {
 784                        clear_bit(LCD_BIT_DA, bits);
 785                }
 786
 787                panel_set_bits();
 788                udelay(2);  /* maintain the data during 2 us before CLK up */
 789                set_bit(LCD_BIT_CL, bits);      /* CLK high */
 790                panel_set_bits();
 791                udelay(1);  /* maintain the strobe during 1 us */
 792                byte >>= 1;
 793        }
 794}
 795
 796/* turn the backlight on or off */
 797static void lcd_backlight(int on)
 798{
 799        if (lcd.pins.bl == PIN_NONE)
 800                return;
 801
 802        /* The backlight is activated by setting the AUTOFEED line to +5V  */
 803        spin_lock_irq(&pprt_lock);
 804        if (on)
 805                set_bit(LCD_BIT_BL, bits);
 806        else
 807                clear_bit(LCD_BIT_BL, bits);
 808        panel_set_bits();
 809        spin_unlock_irq(&pprt_lock);
 810}
 811
 812/* send a command to the LCD panel in serial mode */
 813static void lcd_write_cmd_s(int cmd)
 814{
 815        spin_lock_irq(&pprt_lock);
 816        lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 817        lcd_send_serial(cmd & 0x0F);
 818        lcd_send_serial((cmd >> 4) & 0x0F);
 819        udelay(40);             /* the shortest command takes at least 40 us */
 820        spin_unlock_irq(&pprt_lock);
 821}
 822
 823/* send data to the LCD panel in serial mode */
 824static void lcd_write_data_s(int data)
 825{
 826        spin_lock_irq(&pprt_lock);
 827        lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 828        lcd_send_serial(data & 0x0F);
 829        lcd_send_serial((data >> 4) & 0x0F);
 830        udelay(40);             /* the shortest data takes at least 40 us */
 831        spin_unlock_irq(&pprt_lock);
 832}
 833
 834/* send a command to the LCD panel in 8 bits parallel mode */
 835static void lcd_write_cmd_p8(int cmd)
 836{
 837        spin_lock_irq(&pprt_lock);
 838        /* present the data to the data port */
 839        w_dtr(pprt, cmd);
 840        udelay(20);     /* maintain the data during 20 us before the strobe */
 841
 842        set_bit(LCD_BIT_E, bits);
 843        clear_bit(LCD_BIT_RS, bits);
 844        clear_bit(LCD_BIT_RW, bits);
 845        set_ctrl_bits();
 846
 847        udelay(40);     /* maintain the strobe during 40 us */
 848
 849        clear_bit(LCD_BIT_E, bits);
 850        set_ctrl_bits();
 851
 852        udelay(120);    /* the shortest command takes at least 120 us */
 853        spin_unlock_irq(&pprt_lock);
 854}
 855
 856/* send data to the LCD panel in 8 bits parallel mode */
 857static void lcd_write_data_p8(int data)
 858{
 859        spin_lock_irq(&pprt_lock);
 860        /* present the data to the data port */
 861        w_dtr(pprt, data);
 862        udelay(20);     /* maintain the data during 20 us before the strobe */
 863
 864        set_bit(LCD_BIT_E, bits);
 865        set_bit(LCD_BIT_RS, bits);
 866        clear_bit(LCD_BIT_RW, bits);
 867        set_ctrl_bits();
 868
 869        udelay(40);     /* maintain the strobe during 40 us */
 870
 871        clear_bit(LCD_BIT_E, bits);
 872        set_ctrl_bits();
 873
 874        udelay(45);     /* the shortest data takes at least 45 us */
 875        spin_unlock_irq(&pprt_lock);
 876}
 877
 878/* send a command to the TI LCD panel */
 879static void lcd_write_cmd_tilcd(int cmd)
 880{
 881        spin_lock_irq(&pprt_lock);
 882        /* present the data to the control port */
 883        w_ctr(pprt, cmd);
 884        udelay(60);
 885        spin_unlock_irq(&pprt_lock);
 886}
 887
 888/* send data to the TI LCD panel */
 889static void lcd_write_data_tilcd(int data)
 890{
 891        spin_lock_irq(&pprt_lock);
 892        /* present the data to the data port */
 893        w_dtr(pprt, data);
 894        udelay(60);
 895        spin_unlock_irq(&pprt_lock);
 896}
 897
 898static void lcd_gotoxy(void)
 899{
 900        lcd_write_cmd(LCD_CMD_SET_DDRAM_ADDR
 901                      | (lcd.addr.y ? lcd.hwidth : 0)
 902                      /*
 903                       * we force the cursor to stay at the end of the
 904                       * line if it wants to go farther
 905                       */
 906                      | ((lcd.addr.x < lcd.bwidth) ? lcd.addr.x &
 907                         (lcd.hwidth - 1) : lcd.bwidth - 1));
 908}
 909
 910static void lcd_print(char c)
 911{
 912        if (lcd.addr.x < lcd.bwidth) {
 913                if (lcd_char_conv)
 914                        c = lcd_char_conv[(unsigned char)c];
 915                lcd_write_data(c);
 916                lcd.addr.x++;
 917        }
 918        /* prevents the cursor from wrapping onto the next line */
 919        if (lcd.addr.x == lcd.bwidth)
 920                lcd_gotoxy();
 921}
 922
 923/* fills the display with spaces and resets X/Y */
 924static void lcd_clear_fast_s(void)
 925{
 926        int pos;
 927
 928        lcd.addr.x = 0;
 929        lcd.addr.y = 0;
 930        lcd_gotoxy();
 931
 932        spin_lock_irq(&pprt_lock);
 933        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
 934                lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 935                lcd_send_serial(' ' & 0x0F);
 936                lcd_send_serial((' ' >> 4) & 0x0F);
 937                /* the shortest data takes at least 40 us */
 938                udelay(40);
 939        }
 940        spin_unlock_irq(&pprt_lock);
 941
 942        lcd.addr.x = 0;
 943        lcd.addr.y = 0;
 944        lcd_gotoxy();
 945}
 946
 947/* fills the display with spaces and resets X/Y */
 948static void lcd_clear_fast_p8(void)
 949{
 950        int pos;
 951
 952        lcd.addr.x = 0;
 953        lcd.addr.y = 0;
 954        lcd_gotoxy();
 955
 956        spin_lock_irq(&pprt_lock);
 957        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
 958                /* present the data to the data port */
 959                w_dtr(pprt, ' ');
 960
 961                /* maintain the data during 20 us before the strobe */
 962                udelay(20);
 963
 964                set_bit(LCD_BIT_E, bits);
 965                set_bit(LCD_BIT_RS, bits);
 966                clear_bit(LCD_BIT_RW, bits);
 967                set_ctrl_bits();
 968
 969                /* maintain the strobe during 40 us */
 970                udelay(40);
 971
 972                clear_bit(LCD_BIT_E, bits);
 973                set_ctrl_bits();
 974
 975                /* the shortest data takes at least 45 us */
 976                udelay(45);
 977        }
 978        spin_unlock_irq(&pprt_lock);
 979
 980        lcd.addr.x = 0;
 981        lcd.addr.y = 0;
 982        lcd_gotoxy();
 983}
 984
 985/* fills the display with spaces and resets X/Y */
 986static void lcd_clear_fast_tilcd(void)
 987{
 988        int pos;
 989
 990        lcd.addr.x = 0;
 991        lcd.addr.y = 0;
 992        lcd_gotoxy();
 993
 994        spin_lock_irq(&pprt_lock);
 995        for (pos = 0; pos < lcd.height * lcd.hwidth; pos++) {
 996                /* present the data to the data port */
 997                w_dtr(pprt, ' ');
 998                udelay(60);
 999        }
1000
1001        spin_unlock_irq(&pprt_lock);
1002
1003        lcd.addr.x = 0;
1004        lcd.addr.y = 0;
1005        lcd_gotoxy();
1006}
1007
1008/* clears the display and resets X/Y */
1009static void lcd_clear_display(void)
1010{
1011        lcd_write_cmd(LCD_CMD_DISPLAY_CLEAR);
1012        lcd.addr.x = 0;
1013        lcd.addr.y = 0;
1014        /* we must wait a few milliseconds (15) */
1015        long_sleep(15);
1016}
1017
1018static void lcd_init_display(void)
1019{
1020        lcd.flags = ((lcd.height > 1) ? LCD_FLAG_N : 0)
1021            | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
1022
1023        long_sleep(20);         /* wait 20 ms after power-up for the paranoid */
1024
1025        /* 8bits, 1 line, small fonts; let's do it 3 times */
1026        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1027        long_sleep(10);
1028        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1029        long_sleep(10);
1030        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS);
1031        long_sleep(10);
1032
1033        /* set font height and lines number */
1034        lcd_write_cmd(LCD_CMD_FUNCTION_SET | LCD_CMD_DATA_LEN_8BITS
1035                      | ((lcd.flags & LCD_FLAG_F) ? LCD_CMD_FONT_5X10_DOTS : 0)
1036                      | ((lcd.flags & LCD_FLAG_N) ? LCD_CMD_TWO_LINES : 0)
1037            );
1038        long_sleep(10);
1039
1040        /* display off, cursor off, blink off */
1041        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL);
1042        long_sleep(10);
1043
1044        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL      /* set display mode */
1045                      | ((lcd.flags & LCD_FLAG_D) ? LCD_CMD_DISPLAY_ON : 0)
1046                      | ((lcd.flags & LCD_FLAG_C) ? LCD_CMD_CURSOR_ON : 0)
1047                      | ((lcd.flags & LCD_FLAG_B) ? LCD_CMD_BLINK_ON : 0)
1048            );
1049
1050        lcd_backlight((lcd.flags & LCD_FLAG_L) ? 1 : 0);
1051
1052        long_sleep(10);
1053
1054        /* entry mode set : increment, cursor shifting */
1055        lcd_write_cmd(LCD_CMD_ENTRY_MODE | LCD_CMD_CURSOR_INC);
1056
1057        lcd_clear_display();
1058}
1059
1060/*
1061 * These are the file operation function for user access to /dev/lcd
1062 * This function can also be called from inside the kernel, by
1063 * setting file and ppos to NULL.
1064 *
1065 */
1066
1067static inline int handle_lcd_special_code(void)
1068{
1069        /* LCD special codes */
1070
1071        int processed = 0;
1072
1073        char *esc = lcd.esc_seq.buf + 2;
1074        int oldflags = lcd.flags;
1075
1076        /* check for display mode flags */
1077        switch (*esc) {
1078        case 'D':       /* Display ON */
1079                lcd.flags |= LCD_FLAG_D;
1080                processed = 1;
1081                break;
1082        case 'd':       /* Display OFF */
1083                lcd.flags &= ~LCD_FLAG_D;
1084                processed = 1;
1085                break;
1086        case 'C':       /* Cursor ON */
1087                lcd.flags |= LCD_FLAG_C;
1088                processed = 1;
1089                break;
1090        case 'c':       /* Cursor OFF */
1091                lcd.flags &= ~LCD_FLAG_C;
1092                processed = 1;
1093                break;
1094        case 'B':       /* Blink ON */
1095                lcd.flags |= LCD_FLAG_B;
1096                processed = 1;
1097                break;
1098        case 'b':       /* Blink OFF */
1099                lcd.flags &= ~LCD_FLAG_B;
1100                processed = 1;
1101                break;
1102        case '+':       /* Back light ON */
1103                lcd.flags |= LCD_FLAG_L;
1104                processed = 1;
1105                break;
1106        case '-':       /* Back light OFF */
1107                lcd.flags &= ~LCD_FLAG_L;
1108                processed = 1;
1109                break;
1110        case '*':
1111                /* flash back light using the keypad timer */
1112                if (scan_timer.function) {
1113                        if (lcd.light_tempo == 0 &&
1114                            ((lcd.flags & LCD_FLAG_L) == 0))
1115                                lcd_backlight(1);
1116                        lcd.light_tempo = FLASH_LIGHT_TEMPO;
1117                }
1118                processed = 1;
1119                break;
1120        case 'f':       /* Small Font */
1121                lcd.flags &= ~LCD_FLAG_F;
1122                processed = 1;
1123                break;
1124        case 'F':       /* Large Font */
1125                lcd.flags |= LCD_FLAG_F;
1126                processed = 1;
1127                break;
1128        case 'n':       /* One Line */
1129                lcd.flags &= ~LCD_FLAG_N;
1130                processed = 1;
1131                break;
1132        case 'N':       /* Two Lines */
1133                lcd.flags |= LCD_FLAG_N;
1134                break;
1135        case 'l':       /* Shift Cursor Left */
1136                if (lcd.addr.x > 0) {
1137                        /* back one char if not at end of line */
1138                        if (lcd.addr.x < lcd.bwidth)
1139                                lcd_write_cmd(LCD_CMD_SHIFT);
1140                        lcd.addr.x--;
1141                }
1142                processed = 1;
1143                break;
1144        case 'r':       /* shift cursor right */
1145                if (lcd.addr.x < lcd.width) {
1146                        /* allow the cursor to pass the end of the line */
1147                        if (lcd.addr.x < (lcd.bwidth - 1))
1148                                lcd_write_cmd(LCD_CMD_SHIFT |
1149                                                LCD_CMD_SHIFT_RIGHT);
1150                        lcd.addr.x++;
1151                }
1152                processed = 1;
1153                break;
1154        case 'L':       /* shift display left */
1155                lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT);
1156                processed = 1;
1157                break;
1158        case 'R':       /* shift display right */
1159                lcd_write_cmd(LCD_CMD_SHIFT | LCD_CMD_DISPLAY_SHIFT |
1160                                LCD_CMD_SHIFT_RIGHT);
1161                processed = 1;
1162                break;
1163        case 'k': {     /* kill end of line */
1164                int x;
1165
1166                for (x = lcd.addr.x; x < lcd.bwidth; x++)
1167                        lcd_write_data(' ');
1168
1169                /* restore cursor position */
1170                lcd_gotoxy();
1171                processed = 1;
1172                break;
1173        }
1174        case 'I':       /* reinitialize display */
1175                lcd_init_display();
1176                processed = 1;
1177                break;
1178        case 'G': {
1179                /* Generator : LGcxxxxx...xx; must have <c> between '0'
1180                 * and '7', representing the numerical ASCII code of the
1181                 * redefined character, and <xx...xx> a sequence of 16
1182                 * hex digits representing 8 bytes for each character.
1183                 * Most LCDs will only use 5 lower bits of the 7 first
1184                 * bytes.
1185                 */
1186
1187                unsigned char cgbytes[8];
1188                unsigned char cgaddr;
1189                int cgoffset;
1190                int shift;
1191                char value;
1192                int addr;
1193
1194                if (!strchr(esc, ';'))
1195                        break;
1196
1197                esc++;
1198
1199                cgaddr = *(esc++) - '0';
1200                if (cgaddr > 7) {
1201                        processed = 1;
1202                        break;
1203                }
1204
1205                cgoffset = 0;
1206                shift = 0;
1207                value = 0;
1208                while (*esc && cgoffset < 8) {
1209                        shift ^= 4;
1210                        if (*esc >= '0' && *esc <= '9') {
1211                                value |= (*esc - '0') << shift;
1212                        } else if (*esc >= 'A' && *esc <= 'Z') {
1213                                value |= (*esc - 'A' + 10) << shift;
1214                        } else if (*esc >= 'a' && *esc <= 'z') {
1215                                value |= (*esc - 'a' + 10) << shift;
1216                        } else {
1217                                esc++;
1218                                continue;
1219                        }
1220
1221                        if (shift == 0) {
1222                                cgbytes[cgoffset++] = value;
1223                                value = 0;
1224                        }
1225
1226                        esc++;
1227                }
1228
1229                lcd_write_cmd(LCD_CMD_SET_CGRAM_ADDR | (cgaddr * 8));
1230                for (addr = 0; addr < cgoffset; addr++)
1231                        lcd_write_data(cgbytes[addr]);
1232
1233                /* ensures that we stop writing to CGRAM */
1234                lcd_gotoxy();
1235                processed = 1;
1236                break;
1237        }
1238        case 'x':       /* gotoxy : LxXXX[yYYY]; */
1239        case 'y':       /* gotoxy : LyYYY[xXXX]; */
1240                if (!strchr(esc, ';'))
1241                        break;
1242
1243                while (*esc) {
1244                        if (*esc == 'x') {
1245                                esc++;
1246                                if (kstrtoul(esc, 10, &lcd.addr.x) < 0)
1247                                        break;
1248                        } else if (*esc == 'y') {
1249                                esc++;
1250                                if (kstrtoul(esc, 10, &lcd.addr.y) < 0)
1251                                        break;
1252                        } else {
1253                                break;
1254                        }
1255                }
1256
1257                lcd_gotoxy();
1258                processed = 1;
1259                break;
1260        }
1261
1262        /* TODO: This indent party here got ugly, clean it! */
1263        /* Check whether one flag was changed */
1264        if (oldflags != lcd.flags) {
1265                /* check whether one of B,C,D flags were changed */
1266                if ((oldflags ^ lcd.flags) &
1267                    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1268                        /* set display mode */
1269                        lcd_write_cmd(LCD_CMD_DISPLAY_CTRL
1270                                      | ((lcd.flags & LCD_FLAG_D)
1271                                                      ? LCD_CMD_DISPLAY_ON : 0)
1272                                      | ((lcd.flags & LCD_FLAG_C)
1273                                                      ? LCD_CMD_CURSOR_ON : 0)
1274                                      | ((lcd.flags & LCD_FLAG_B)
1275                                                      ? LCD_CMD_BLINK_ON : 0));
1276                /* check whether one of F,N flags was changed */
1277                else if ((oldflags ^ lcd.flags) & (LCD_FLAG_F | LCD_FLAG_N))
1278                        lcd_write_cmd(LCD_CMD_FUNCTION_SET
1279                                      | LCD_CMD_DATA_LEN_8BITS
1280                                      | ((lcd.flags & LCD_FLAG_F)
1281                                                      ? LCD_CMD_TWO_LINES : 0)
1282                                      | ((lcd.flags & LCD_FLAG_N)
1283                                                      ? LCD_CMD_FONT_5X10_DOTS
1284                                                                      : 0));
1285                /* check whether L flag was changed */
1286                else if ((oldflags ^ lcd.flags) & (LCD_FLAG_L)) {
1287                        if (lcd.flags & (LCD_FLAG_L))
1288                                lcd_backlight(1);
1289                        else if (lcd.light_tempo == 0)
1290                                /*
1291                                 * switch off the light only when the tempo
1292                                 * lighting is gone
1293                                 */
1294                                lcd_backlight(0);
1295                }
1296        }
1297
1298        return processed;
1299}
1300
1301static void lcd_write_char(char c)
1302{
1303        /* first, we'll test if we're in escape mode */
1304        if ((c != '\n') && lcd.esc_seq.len >= 0) {
1305                /* yes, let's add this char to the buffer */
1306                lcd.esc_seq.buf[lcd.esc_seq.len++] = c;
1307                lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1308        } else {
1309                /* aborts any previous escape sequence */
1310                lcd.esc_seq.len = -1;
1311
1312                switch (c) {
1313                case LCD_ESCAPE_CHAR:
1314                        /* start of an escape sequence */
1315                        lcd.esc_seq.len = 0;
1316                        lcd.esc_seq.buf[lcd.esc_seq.len] = 0;
1317                        break;
1318                case '\b':
1319                        /* go back one char and clear it */
1320                        if (lcd.addr.x > 0) {
1321                                /*
1322                                 * check if we're not at the
1323                                 * end of the line
1324                                 */
1325                                if (lcd.addr.x < lcd.bwidth)
1326                                        /* back one char */
1327                                        lcd_write_cmd(LCD_CMD_SHIFT);
1328                                lcd.addr.x--;
1329                        }
1330                        /* replace with a space */
1331                        lcd_write_data(' ');
1332                        /* back one char again */
1333                        lcd_write_cmd(LCD_CMD_SHIFT);
1334                        break;
1335                case '\014':
1336                        /* quickly clear the display */
1337                        lcd_clear_fast();
1338                        break;
1339                case '\n':
1340                        /*
1341                         * flush the remainder of the current line and
1342                         * go to the beginning of the next line
1343                         */
1344                        for (; lcd.addr.x < lcd.bwidth; lcd.addr.x++)
1345                                lcd_write_data(' ');
1346                        lcd.addr.x = 0;
1347                        lcd.addr.y = (lcd.addr.y + 1) % lcd.height;
1348                        lcd_gotoxy();
1349                        break;
1350                case '\r':
1351                        /* go to the beginning of the same line */
1352                        lcd.addr.x = 0;
1353                        lcd_gotoxy();
1354                        break;
1355                case '\t':
1356                        /* print a space instead of the tab */
1357                        lcd_print(' ');
1358                        break;
1359                default:
1360                        /* simply print this char */
1361                        lcd_print(c);
1362                        break;
1363                }
1364        }
1365
1366        /*
1367         * now we'll see if we're in an escape mode and if the current
1368         * escape sequence can be understood.
1369         */
1370        if (lcd.esc_seq.len >= 2) {
1371                int processed = 0;
1372
1373                if (!strcmp(lcd.esc_seq.buf, "[2J")) {
1374                        /* clear the display */
1375                        lcd_clear_fast();
1376                        processed = 1;
1377                } else if (!strcmp(lcd.esc_seq.buf, "[H")) {
1378                        /* cursor to home */
1379                        lcd.addr.x = 0;
1380                        lcd.addr.y = 0;
1381                        lcd_gotoxy();
1382                        processed = 1;
1383                }
1384                /* codes starting with ^[[L */
1385                else if ((lcd.esc_seq.len >= 3) &&
1386                         (lcd.esc_seq.buf[0] == '[') &&
1387                         (lcd.esc_seq.buf[1] == 'L')) {
1388                        processed = handle_lcd_special_code();
1389                }
1390
1391                /* LCD special escape codes */
1392                /*
1393                 * flush the escape sequence if it's been processed
1394                 * or if it is getting too long.
1395                 */
1396                if (processed || (lcd.esc_seq.len >= LCD_ESCAPE_LEN))
1397                        lcd.esc_seq.len = -1;
1398        } /* escape codes */
1399}
1400
1401static ssize_t lcd_write(struct file *file,
1402                         const char __user *buf, size_t count, loff_t *ppos)
1403{
1404        const char __user *tmp = buf;
1405        char c;
1406
1407        for (; count-- > 0; (*ppos)++, tmp++) {
1408                if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1409                        /*
1410                         * let's be a little nice with other processes
1411                         * that need some CPU
1412                         */
1413                        schedule();
1414
1415                if (get_user(c, tmp))
1416                        return -EFAULT;
1417
1418                lcd_write_char(c);
1419        }
1420
1421        return tmp - buf;
1422}
1423
1424static int lcd_open(struct inode *inode, struct file *file)
1425{
1426        if (!atomic_dec_and_test(&lcd_available))
1427                return -EBUSY;  /* open only once at a time */
1428
1429        if (file->f_mode & FMODE_READ)  /* device is write-only */
1430                return -EPERM;
1431
1432        if (lcd.must_clear) {
1433                lcd_clear_display();
1434                lcd.must_clear = false;
1435        }
1436        return nonseekable_open(inode, file);
1437}
1438
1439static int lcd_release(struct inode *inode, struct file *file)
1440{
1441        atomic_inc(&lcd_available);
1442        return 0;
1443}
1444
1445static const struct file_operations lcd_fops = {
1446        .write   = lcd_write,
1447        .open    = lcd_open,
1448        .release = lcd_release,
1449        .llseek  = no_llseek,
1450};
1451
1452static struct miscdevice lcd_dev = {
1453        .minor  = LCD_MINOR,
1454        .name   = "lcd",
1455        .fops   = &lcd_fops,
1456};
1457
1458/* public function usable from the kernel for any purpose */
1459static void panel_lcd_print(const char *s)
1460{
1461        const char *tmp = s;
1462        int count = strlen(s);
1463
1464        if (lcd.enabled && lcd.initialized) {
1465                for (; count-- > 0; tmp++) {
1466                        if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1467                                /*
1468                                 * let's be a little nice with other processes
1469                                 * that need some CPU
1470                                 */
1471                                schedule();
1472
1473                        lcd_write_char(*tmp);
1474                }
1475        }
1476}
1477
1478/* initialize the LCD driver */
1479static void lcd_init(void)
1480{
1481        switch (selected_lcd_type) {
1482        case LCD_TYPE_OLD:
1483                /* parallel mode, 8 bits */
1484                lcd.proto = LCD_PROTO_PARALLEL;
1485                lcd.charset = LCD_CHARSET_NORMAL;
1486                lcd.pins.e = PIN_STROBE;
1487                lcd.pins.rs = PIN_AUTOLF;
1488
1489                lcd.width = 40;
1490                lcd.bwidth = 40;
1491                lcd.hwidth = 64;
1492                lcd.height = 2;
1493                break;
1494        case LCD_TYPE_KS0074:
1495                /* serial mode, ks0074 */
1496                lcd.proto = LCD_PROTO_SERIAL;
1497                lcd.charset = LCD_CHARSET_KS0074;
1498                lcd.pins.bl = PIN_AUTOLF;
1499                lcd.pins.cl = PIN_STROBE;
1500                lcd.pins.da = PIN_D0;
1501
1502                lcd.width = 16;
1503                lcd.bwidth = 40;
1504                lcd.hwidth = 16;
1505                lcd.height = 2;
1506                break;
1507        case LCD_TYPE_NEXCOM:
1508                /* parallel mode, 8 bits, generic */
1509                lcd.proto = LCD_PROTO_PARALLEL;
1510                lcd.charset = LCD_CHARSET_NORMAL;
1511                lcd.pins.e = PIN_AUTOLF;
1512                lcd.pins.rs = PIN_SELECP;
1513                lcd.pins.rw = PIN_INITP;
1514
1515                lcd.width = 16;
1516                lcd.bwidth = 40;
1517                lcd.hwidth = 64;
1518                lcd.height = 2;
1519                break;
1520        case LCD_TYPE_CUSTOM:
1521                /* customer-defined */
1522                lcd.proto = DEFAULT_LCD_PROTO;
1523                lcd.charset = DEFAULT_LCD_CHARSET;
1524                /* default geometry will be set later */
1525                break;
1526        case LCD_TYPE_HANTRONIX:
1527                /* parallel mode, 8 bits, hantronix-like */
1528        default:
1529                lcd.proto = LCD_PROTO_PARALLEL;
1530                lcd.charset = LCD_CHARSET_NORMAL;
1531                lcd.pins.e = PIN_STROBE;
1532                lcd.pins.rs = PIN_SELECP;
1533
1534                lcd.width = 16;
1535                lcd.bwidth = 40;
1536                lcd.hwidth = 64;
1537                lcd.height = 2;
1538                break;
1539        }
1540
1541        /* Overwrite with module params set on loading */
1542        if (lcd_height != NOT_SET)
1543                lcd.height = lcd_height;
1544        if (lcd_width != NOT_SET)
1545                lcd.width = lcd_width;
1546        if (lcd_bwidth != NOT_SET)
1547                lcd.bwidth = lcd_bwidth;
1548        if (lcd_hwidth != NOT_SET)
1549                lcd.hwidth = lcd_hwidth;
1550        if (lcd_charset != NOT_SET)
1551                lcd.charset = lcd_charset;
1552        if (lcd_proto != NOT_SET)
1553                lcd.proto = lcd_proto;
1554        if (lcd_e_pin != PIN_NOT_SET)
1555                lcd.pins.e = lcd_e_pin;
1556        if (lcd_rs_pin != PIN_NOT_SET)
1557                lcd.pins.rs = lcd_rs_pin;
1558        if (lcd_rw_pin != PIN_NOT_SET)
1559                lcd.pins.rw = lcd_rw_pin;
1560        if (lcd_cl_pin != PIN_NOT_SET)
1561                lcd.pins.cl = lcd_cl_pin;
1562        if (lcd_da_pin != PIN_NOT_SET)
1563                lcd.pins.da = lcd_da_pin;
1564        if (lcd_bl_pin != PIN_NOT_SET)
1565                lcd.pins.bl = lcd_bl_pin;
1566
1567        /* this is used to catch wrong and default values */
1568        if (lcd.width <= 0)
1569                lcd.width = DEFAULT_LCD_WIDTH;
1570        if (lcd.bwidth <= 0)
1571                lcd.bwidth = DEFAULT_LCD_BWIDTH;
1572        if (lcd.hwidth <= 0)
1573                lcd.hwidth = DEFAULT_LCD_HWIDTH;
1574        if (lcd.height <= 0)
1575                lcd.height = DEFAULT_LCD_HEIGHT;
1576
1577        if (lcd.proto == LCD_PROTO_SERIAL) {    /* SERIAL */
1578                lcd_write_cmd = lcd_write_cmd_s;
1579                lcd_write_data = lcd_write_data_s;
1580                lcd_clear_fast = lcd_clear_fast_s;
1581
1582                if (lcd.pins.cl == PIN_NOT_SET)
1583                        lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1584                if (lcd.pins.da == PIN_NOT_SET)
1585                        lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1586
1587        } else if (lcd.proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
1588                lcd_write_cmd = lcd_write_cmd_p8;
1589                lcd_write_data = lcd_write_data_p8;
1590                lcd_clear_fast = lcd_clear_fast_p8;
1591
1592                if (lcd.pins.e == PIN_NOT_SET)
1593                        lcd.pins.e = DEFAULT_LCD_PIN_E;
1594                if (lcd.pins.rs == PIN_NOT_SET)
1595                        lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1596                if (lcd.pins.rw == PIN_NOT_SET)
1597                        lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1598        } else {
1599                lcd_write_cmd = lcd_write_cmd_tilcd;
1600                lcd_write_data = lcd_write_data_tilcd;
1601                lcd_clear_fast = lcd_clear_fast_tilcd;
1602        }
1603
1604        if (lcd.pins.bl == PIN_NOT_SET)
1605                lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1606
1607        if (lcd.pins.e == PIN_NOT_SET)
1608                lcd.pins.e = PIN_NONE;
1609        if (lcd.pins.rs == PIN_NOT_SET)
1610                lcd.pins.rs = PIN_NONE;
1611        if (lcd.pins.rw == PIN_NOT_SET)
1612                lcd.pins.rw = PIN_NONE;
1613        if (lcd.pins.bl == PIN_NOT_SET)
1614                lcd.pins.bl = PIN_NONE;
1615        if (lcd.pins.cl == PIN_NOT_SET)
1616                lcd.pins.cl = PIN_NONE;
1617        if (lcd.pins.da == PIN_NOT_SET)
1618                lcd.pins.da = PIN_NONE;
1619
1620        if (lcd.charset == NOT_SET)
1621                lcd.charset = DEFAULT_LCD_CHARSET;
1622
1623        if (lcd.charset == LCD_CHARSET_KS0074)
1624                lcd_char_conv = lcd_char_conv_ks0074;
1625        else
1626                lcd_char_conv = NULL;
1627
1628        if (lcd.pins.bl != PIN_NONE)
1629                init_scan_timer();
1630
1631        pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1632                    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1633        pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1634                    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1635        pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1636                    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1637        pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1638                    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1639        pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1640                    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1641        pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1642                    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1643
1644        /*
1645         * before this line, we must NOT send anything to the display.
1646         * Since lcd_init_display() needs to write data, we have to
1647         * enable mark the LCD initialized just before.
1648         */
1649        lcd.initialized = true;
1650        lcd_init_display();
1651
1652        /* display a short message */
1653#ifdef CONFIG_PANEL_CHANGE_MESSAGE
1654#ifdef CONFIG_PANEL_BOOT_MESSAGE
1655        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1656#endif
1657#else
1658        panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1659                        PANEL_VERSION);
1660#endif
1661        lcd.addr.x = 0;
1662        lcd.addr.y = 0;
1663        /* clear the display on the next device opening */
1664        lcd.must_clear = true;
1665        lcd_gotoxy();
1666}
1667
1668/*
1669 * These are the file operation function for user access to /dev/keypad
1670 */
1671
1672static ssize_t keypad_read(struct file *file,
1673                           char __user *buf, size_t count, loff_t *ppos)
1674{
1675        unsigned i = *ppos;
1676        char __user *tmp = buf;
1677
1678        if (keypad_buflen == 0) {
1679                if (file->f_flags & O_NONBLOCK)
1680                        return -EAGAIN;
1681
1682                if (wait_event_interruptible(keypad_read_wait,
1683                                             keypad_buflen != 0))
1684                        return -EINTR;
1685        }
1686
1687        for (; count-- > 0 && (keypad_buflen > 0);
1688             ++i, ++tmp, --keypad_buflen) {
1689                put_user(keypad_buffer[keypad_start], tmp);
1690                keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1691        }
1692        *ppos = i;
1693
1694        return tmp - buf;
1695}
1696
1697static int keypad_open(struct inode *inode, struct file *file)
1698{
1699        if (!atomic_dec_and_test(&keypad_available))
1700                return -EBUSY;  /* open only once at a time */
1701
1702        if (file->f_mode & FMODE_WRITE) /* device is read-only */
1703                return -EPERM;
1704
1705        keypad_buflen = 0;      /* flush the buffer on opening */
1706        return 0;
1707}
1708
1709static int keypad_release(struct inode *inode, struct file *file)
1710{
1711        atomic_inc(&keypad_available);
1712        return 0;
1713}
1714
1715static const struct file_operations keypad_fops = {
1716        .read    = keypad_read,         /* read */
1717        .open    = keypad_open,         /* open */
1718        .release = keypad_release,      /* close */
1719        .llseek  = default_llseek,
1720};
1721
1722static struct miscdevice keypad_dev = {
1723        .minor  = KEYPAD_MINOR,
1724        .name   = "keypad",
1725        .fops   = &keypad_fops,
1726};
1727
1728static void keypad_send_key(const char *string, int max_len)
1729{
1730        /* send the key to the device only if a process is attached to it. */
1731        if (!atomic_read(&keypad_available)) {
1732                while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1733                        keypad_buffer[(keypad_start + keypad_buflen++) %
1734                                      KEYPAD_BUFFER] = *string++;
1735                }
1736                wake_up_interruptible(&keypad_read_wait);
1737        }
1738}
1739
1740/* this function scans all the bits involving at least one logical signal,
1741 * and puts the results in the bitfield "phys_read" (one bit per established
1742 * contact), and sets "phys_read_prev" to "phys_read".
1743 *
1744 * Note: to debounce input signals, we will only consider as switched a signal
1745 * which is stable across 2 measures. Signals which are different between two
1746 * reads will be kept as they previously were in their logical form (phys_prev).
1747 * A signal which has just switched will have a 1 in
1748 * (phys_read ^ phys_read_prev).
1749 */
1750static void phys_scan_contacts(void)
1751{
1752        int bit, bitval;
1753        char oldval;
1754        char bitmask;
1755        char gndmask;
1756
1757        phys_prev = phys_curr;
1758        phys_read_prev = phys_read;
1759        phys_read = 0;          /* flush all signals */
1760
1761        /* keep track of old value, with all outputs disabled */
1762        oldval = r_dtr(pprt) | scan_mask_o;
1763        /* activate all keyboard outputs (active low) */
1764        w_dtr(pprt, oldval & ~scan_mask_o);
1765
1766        /* will have a 1 for each bit set to gnd */
1767        bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1768        /* disable all matrix signals */
1769        w_dtr(pprt, oldval);
1770
1771        /* now that all outputs are cleared, the only active input bits are
1772         * directly connected to the ground
1773         */
1774
1775        /* 1 for each grounded input */
1776        gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1777
1778        /* grounded inputs are signals 40-44 */
1779        phys_read |= (__u64)gndmask << 40;
1780
1781        if (bitmask != gndmask) {
1782                /*
1783                 * since clearing the outputs changed some inputs, we know
1784                 * that some input signals are currently tied to some outputs.
1785                 * So we'll scan them.
1786                 */
1787                for (bit = 0; bit < 8; bit++) {
1788                        bitval = BIT(bit);
1789
1790                        if (!(scan_mask_o & bitval))    /* skip unused bits */
1791                                continue;
1792
1793                        w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1794                        bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1795                        phys_read |= (__u64)bitmask << (5 * bit);
1796                }
1797                w_dtr(pprt, oldval);    /* disable all outputs */
1798        }
1799        /*
1800         * this is easy: use old bits when they are flapping,
1801         * use new ones when stable
1802         */
1803        phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1804                    (phys_read & ~(phys_read ^ phys_read_prev));
1805}
1806
1807static inline int input_state_high(struct logical_input *input)
1808{
1809#if 0
1810        /* FIXME:
1811         * this is an invalid test. It tries to catch
1812         * transitions from single-key to multiple-key, but
1813         * doesn't take into account the contacts polarity.
1814         * The only solution to the problem is to parse keys
1815         * from the most complex to the simplest combinations,
1816         * and mark them as 'caught' once a combination
1817         * matches, then unmatch it for all other ones.
1818         */
1819
1820        /* try to catch dangerous transitions cases :
1821         * someone adds a bit, so this signal was a false
1822         * positive resulting from a transition. We should
1823         * invalidate the signal immediately and not call the
1824         * release function.
1825         * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1826         */
1827        if (((phys_prev & input->mask) == input->value) &&
1828            ((phys_curr & input->mask) >  input->value)) {
1829                input->state = INPUT_ST_LOW; /* invalidate */
1830                return 1;
1831        }
1832#endif
1833
1834        if ((phys_curr & input->mask) == input->value) {
1835                if ((input->type == INPUT_TYPE_STD) &&
1836                    (input->high_timer == 0)) {
1837                        input->high_timer++;
1838                        if (input->u.std.press_fct)
1839                                input->u.std.press_fct(input->u.std.press_data);
1840                } else if (input->type == INPUT_TYPE_KBD) {
1841                        /* will turn on the light */
1842                        keypressed = 1;
1843
1844                        if (input->high_timer == 0) {
1845                                char *press_str = input->u.kbd.press_str;
1846
1847                                if (press_str[0]) {
1848                                        int s = sizeof(input->u.kbd.press_str);
1849
1850                                        keypad_send_key(press_str, s);
1851                                }
1852                        }
1853
1854                        if (input->u.kbd.repeat_str[0]) {
1855                                char *repeat_str = input->u.kbd.repeat_str;
1856
1857                                if (input->high_timer >= KEYPAD_REP_START) {
1858                                        int s = sizeof(input->u.kbd.repeat_str);
1859
1860                                        input->high_timer -= KEYPAD_REP_DELAY;
1861                                        keypad_send_key(repeat_str, s);
1862                                }
1863                                /* we will need to come back here soon */
1864                                inputs_stable = 0;
1865                        }
1866
1867                        if (input->high_timer < 255)
1868                                input->high_timer++;
1869                }
1870                return 1;
1871        }
1872
1873        /* else signal falling down. Let's fall through. */
1874        input->state = INPUT_ST_FALLING;
1875        input->fall_timer = 0;
1876
1877        return 0;
1878}
1879
1880static inline void input_state_falling(struct logical_input *input)
1881{
1882#if 0
1883        /* FIXME !!! same comment as in input_state_high */
1884        if (((phys_prev & input->mask) == input->value) &&
1885            ((phys_curr & input->mask) >  input->value)) {
1886                input->state = INPUT_ST_LOW;    /* invalidate */
1887                return;
1888        }
1889#endif
1890
1891        if ((phys_curr & input->mask) == input->value) {
1892                if (input->type == INPUT_TYPE_KBD) {
1893                        /* will turn on the light */
1894                        keypressed = 1;
1895
1896                        if (input->u.kbd.repeat_str[0]) {
1897                                char *repeat_str = input->u.kbd.repeat_str;
1898
1899                                if (input->high_timer >= KEYPAD_REP_START) {
1900                                        int s = sizeof(input->u.kbd.repeat_str);
1901
1902                                        input->high_timer -= KEYPAD_REP_DELAY;
1903                                        keypad_send_key(repeat_str, s);
1904                                }
1905                                /* we will need to come back here soon */
1906                                inputs_stable = 0;
1907                        }
1908
1909                        if (input->high_timer < 255)
1910                                input->high_timer++;
1911                }
1912                input->state = INPUT_ST_HIGH;
1913        } else if (input->fall_timer >= input->fall_time) {
1914                /* call release event */
1915                if (input->type == INPUT_TYPE_STD) {
1916                        void (*release_fct)(int) = input->u.std.release_fct;
1917
1918                        if (release_fct)
1919                                release_fct(input->u.std.release_data);
1920                } else if (input->type == INPUT_TYPE_KBD) {
1921                        char *release_str = input->u.kbd.release_str;
1922
1923                        if (release_str[0]) {
1924                                int s = sizeof(input->u.kbd.release_str);
1925
1926                                keypad_send_key(release_str, s);
1927                        }
1928                }
1929
1930                input->state = INPUT_ST_LOW;
1931        } else {
1932                input->fall_timer++;
1933                inputs_stable = 0;
1934        }
1935}
1936
1937static void panel_process_inputs(void)
1938{
1939        struct list_head *item;
1940        struct logical_input *input;
1941
1942        keypressed = 0;
1943        inputs_stable = 1;
1944        list_for_each(item, &logical_inputs) {
1945                input = list_entry(item, struct logical_input, list);
1946
1947                switch (input->state) {
1948                case INPUT_ST_LOW:
1949                        if ((phys_curr & input->mask) != input->value)
1950                                break;
1951                        /* if all needed ones were already set previously,
1952                         * this means that this logical signal has been
1953                         * activated by the releasing of another combined
1954                         * signal, so we don't want to match.
1955                         * eg: AB -(release B)-> A -(release A)-> 0 :
1956                         *     don't match A.
1957                         */
1958                        if ((phys_prev & input->mask) == input->value)
1959                                break;
1960                        input->rise_timer = 0;
1961                        input->state = INPUT_ST_RISING;
1962                        /* no break here, fall through */
1963                case INPUT_ST_RISING:
1964                        if ((phys_curr & input->mask) != input->value) {
1965                                input->state = INPUT_ST_LOW;
1966                                break;
1967                        }
1968                        if (input->rise_timer < input->rise_time) {
1969                                inputs_stable = 0;
1970                                input->rise_timer++;
1971                                break;
1972                        }
1973                        input->high_timer = 0;
1974                        input->state = INPUT_ST_HIGH;
1975                        /* no break here, fall through */
1976                case INPUT_ST_HIGH:
1977                        if (input_state_high(input))
1978                                break;
1979                        /* no break here, fall through */
1980                case INPUT_ST_FALLING:
1981                        input_state_falling(input);
1982                }
1983        }
1984}
1985
1986static void panel_scan_timer(void)
1987{
1988        if (keypad.enabled && keypad_initialized) {
1989                if (spin_trylock_irq(&pprt_lock)) {
1990                        phys_scan_contacts();
1991
1992                        /* no need for the parport anymore */
1993                        spin_unlock_irq(&pprt_lock);
1994                }
1995
1996                if (!inputs_stable || phys_curr != phys_prev)
1997                        panel_process_inputs();
1998        }
1999
2000        if (lcd.enabled && lcd.initialized) {
2001                if (keypressed) {
2002                        if (lcd.light_tempo == 0 &&
2003                            ((lcd.flags & LCD_FLAG_L) == 0))
2004                                lcd_backlight(1);
2005                        lcd.light_tempo = FLASH_LIGHT_TEMPO;
2006                } else if (lcd.light_tempo > 0) {
2007                        lcd.light_tempo--;
2008                        if (lcd.light_tempo == 0 &&
2009                            ((lcd.flags & LCD_FLAG_L) == 0))
2010                                lcd_backlight(0);
2011                }
2012        }
2013
2014        mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
2015}
2016
2017static void init_scan_timer(void)
2018{
2019        if (scan_timer.function)
2020                return;         /* already started */
2021
2022        setup_timer(&scan_timer, (void *)&panel_scan_timer, 0);
2023        scan_timer.expires = jiffies + INPUT_POLL_TIME;
2024        add_timer(&scan_timer);
2025}
2026
2027/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
2028 * if <omask> or <imask> are non-null, they will be or'ed with the bits
2029 * corresponding to out and in bits respectively.
2030 * returns 1 if ok, 0 if error (in which case, nothing is written).
2031 */
2032static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
2033                          u8 *imask, u8 *omask)
2034{
2035        const char sigtab[] = "EeSsPpAaBb";
2036        u8 im, om;
2037        __u64 m, v;
2038
2039        om = 0;
2040        im = 0;
2041        m = 0ULL;
2042        v = 0ULL;
2043        while (*name) {
2044                int in, out, bit, neg;
2045                const char *idx;
2046
2047                idx = strchr(sigtab, *name);
2048                if (!idx)
2049                        return 0;       /* input name not found */
2050
2051                in = idx - sigtab;
2052                neg = (in & 1); /* odd (lower) names are negated */
2053                in >>= 1;
2054                im |= BIT(in);
2055
2056                name++;
2057                if (*name >= '0' && *name <= '7') {
2058                        out = *name - '0';
2059                        om |= BIT(out);
2060                } else if (*name == '-') {
2061                        out = 8;
2062                } else {
2063                        return 0;       /* unknown bit name */
2064                }
2065
2066                bit = (out * 5) + in;
2067
2068                m |= 1ULL << bit;
2069                if (!neg)
2070                        v |= 1ULL << bit;
2071                name++;
2072        }
2073        *mask = m;
2074        *value = v;
2075        if (imask)
2076                *imask |= im;
2077        if (omask)
2078                *omask |= om;
2079        return 1;
2080}
2081
2082/* tries to bind a key to the signal name <name>. The key will send the
2083 * strings <press>, <repeat>, <release> for these respective events.
2084 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
2085 */
2086static struct logical_input *panel_bind_key(const char *name, const char *press,
2087                                            const char *repeat,
2088                                            const char *release)
2089{
2090        struct logical_input *key;
2091
2092        key = kzalloc(sizeof(*key), GFP_KERNEL);
2093        if (!key)
2094                return NULL;
2095
2096        if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
2097                             &scan_mask_o)) {
2098                kfree(key);
2099                return NULL;
2100        }
2101
2102        key->type = INPUT_TYPE_KBD;
2103        key->state = INPUT_ST_LOW;
2104        key->rise_time = 1;
2105        key->fall_time = 1;
2106
2107        strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2108        strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2109        strncpy(key->u.kbd.release_str, release,
2110                sizeof(key->u.kbd.release_str));
2111        list_add(&key->list, &logical_inputs);
2112        return key;
2113}
2114
2115#if 0
2116/* tries to bind a callback function to the signal name <name>. The function
2117 * <press_fct> will be called with the <press_data> arg when the signal is
2118 * activated, and so on for <release_fct>/<release_data>
2119 * Returns the pointer to the new signal if ok, NULL if the signal could not
2120 * be bound.
2121 */
2122static struct logical_input *panel_bind_callback(char *name,
2123                                                 void (*press_fct)(int),
2124                                                 int press_data,
2125                                                 void (*release_fct)(int),
2126                                                 int release_data)
2127{
2128        struct logical_input *callback;
2129
2130        callback = kmalloc(sizeof(*callback), GFP_KERNEL);
2131        if (!callback)
2132                return NULL;
2133
2134        memset(callback, 0, sizeof(struct logical_input));
2135        if (!input_name2mask(name, &callback->mask, &callback->value,
2136                             &scan_mask_i, &scan_mask_o))
2137                return NULL;
2138
2139        callback->type = INPUT_TYPE_STD;
2140        callback->state = INPUT_ST_LOW;
2141        callback->rise_time = 1;
2142        callback->fall_time = 1;
2143        callback->u.std.press_fct = press_fct;
2144        callback->u.std.press_data = press_data;
2145        callback->u.std.release_fct = release_fct;
2146        callback->u.std.release_data = release_data;
2147        list_add(&callback->list, &logical_inputs);
2148        return callback;
2149}
2150#endif
2151
2152static void keypad_init(void)
2153{
2154        int keynum;
2155
2156        init_waitqueue_head(&keypad_read_wait);
2157        keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
2158
2159        /* Let's create all known keys */
2160
2161        for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2162                panel_bind_key(keypad_profile[keynum][0],
2163                               keypad_profile[keynum][1],
2164                               keypad_profile[keynum][2],
2165                               keypad_profile[keynum][3]);
2166        }
2167
2168        init_scan_timer();
2169        keypad_initialized = 1;
2170}
2171
2172/**************************************************/
2173/* device initialization                          */
2174/**************************************************/
2175
2176static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2177                            void *unused)
2178{
2179        if (lcd.enabled && lcd.initialized) {
2180                switch (code) {
2181                case SYS_DOWN:
2182                        panel_lcd_print
2183                            ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2184                        break;
2185                case SYS_HALT:
2186                        panel_lcd_print
2187                            ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2188                        break;
2189                case SYS_POWER_OFF:
2190                        panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2191                        break;
2192                default:
2193                        break;
2194                }
2195        }
2196        return NOTIFY_DONE;
2197}
2198
2199static struct notifier_block panel_notifier = {
2200        panel_notify_sys,
2201        NULL,
2202        0
2203};
2204
2205static void panel_attach(struct parport *port)
2206{
2207        struct pardev_cb panel_cb;
2208
2209        if (port->number != parport)
2210                return;
2211
2212        if (pprt) {
2213                pr_err("%s: port->number=%d parport=%d, already registered!\n",
2214                       __func__, port->number, parport);
2215                return;
2216        }
2217
2218        memset(&panel_cb, 0, sizeof(panel_cb));
2219        panel_cb.private = &pprt;
2220        /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
2221
2222        pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
2223        if (!pprt) {
2224                pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2225                       __func__, port->number, parport);
2226                return;
2227        }
2228
2229        if (parport_claim(pprt)) {
2230                pr_err("could not claim access to parport%d. Aborting.\n",
2231                       parport);
2232                goto err_unreg_device;
2233        }
2234
2235        /* must init LCD first, just in case an IRQ from the keypad is
2236         * generated at keypad init
2237         */
2238        if (lcd.enabled) {
2239                lcd_init();
2240                if (misc_register(&lcd_dev))
2241                        goto err_unreg_device;
2242        }
2243
2244        if (keypad.enabled) {
2245                keypad_init();
2246                if (misc_register(&keypad_dev))
2247                        goto err_lcd_unreg;
2248        }
2249        register_reboot_notifier(&panel_notifier);
2250        return;
2251
2252err_lcd_unreg:
2253        if (lcd.enabled)
2254                misc_deregister(&lcd_dev);
2255err_unreg_device:
2256        parport_unregister_device(pprt);
2257        pprt = NULL;
2258}
2259
2260static void panel_detach(struct parport *port)
2261{
2262        if (port->number != parport)
2263                return;
2264
2265        if (!pprt) {
2266                pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2267                       __func__, port->number, parport);
2268                return;
2269        }
2270        if (scan_timer.function)
2271                del_timer_sync(&scan_timer);
2272
2273        if (pprt) {
2274                if (keypad.enabled) {
2275                        misc_deregister(&keypad_dev);
2276                        keypad_initialized = 0;
2277                }
2278
2279                if (lcd.enabled) {
2280                        panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2281                                        "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2282                        misc_deregister(&lcd_dev);
2283                        lcd.initialized = false;
2284                }
2285
2286                /* TODO: free all input signals */
2287                parport_release(pprt);
2288                parport_unregister_device(pprt);
2289                pprt = NULL;
2290                unregister_reboot_notifier(&panel_notifier);
2291        }
2292}
2293
2294static struct parport_driver panel_driver = {
2295        .name = "panel",
2296        .match_port = panel_attach,
2297        .detach = panel_detach,
2298        .devmodel = true,
2299};
2300
2301/* init function */
2302static int __init panel_init_module(void)
2303{
2304        int selected_keypad_type = NOT_SET, err;
2305
2306        /* take care of an eventual profile */
2307        switch (profile) {
2308        case PANEL_PROFILE_CUSTOM:
2309                /* custom profile */
2310                selected_keypad_type = DEFAULT_KEYPAD_TYPE;
2311                selected_lcd_type = DEFAULT_LCD_TYPE;
2312                break;
2313        case PANEL_PROFILE_OLD:
2314                /* 8 bits, 2*16, old keypad */
2315                selected_keypad_type = KEYPAD_TYPE_OLD;
2316                selected_lcd_type = LCD_TYPE_OLD;
2317
2318                /* TODO: This two are a little hacky, sort it out later */
2319                if (lcd_width == NOT_SET)
2320                        lcd_width = 16;
2321                if (lcd_hwidth == NOT_SET)
2322                        lcd_hwidth = 16;
2323                break;
2324        case PANEL_PROFILE_NEW:
2325                /* serial, 2*16, new keypad */
2326                selected_keypad_type = KEYPAD_TYPE_NEW;
2327                selected_lcd_type = LCD_TYPE_KS0074;
2328                break;
2329        case PANEL_PROFILE_HANTRONIX:
2330                /* 8 bits, 2*16 hantronix-like, no keypad */
2331                selected_keypad_type = KEYPAD_TYPE_NONE;
2332                selected_lcd_type = LCD_TYPE_HANTRONIX;
2333                break;
2334        case PANEL_PROFILE_NEXCOM:
2335                /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2336                selected_keypad_type = KEYPAD_TYPE_NEXCOM;
2337                selected_lcd_type = LCD_TYPE_NEXCOM;
2338                break;
2339        case PANEL_PROFILE_LARGE:
2340                /* 8 bits, 2*40, old keypad */
2341                selected_keypad_type = KEYPAD_TYPE_OLD;
2342                selected_lcd_type = LCD_TYPE_OLD;
2343                break;
2344        }
2345
2346        /*
2347         * Overwrite selection with module param values (both keypad and lcd),
2348         * where the deprecated params have lower prio.
2349         */
2350        if (keypad_enabled != NOT_SET)
2351                selected_keypad_type = keypad_enabled;
2352        if (keypad_type != NOT_SET)
2353                selected_keypad_type = keypad_type;
2354
2355        keypad.enabled = (selected_keypad_type > 0);
2356
2357        if (lcd_enabled != NOT_SET)
2358                selected_lcd_type = lcd_enabled;
2359        if (lcd_type != NOT_SET)
2360                selected_lcd_type = lcd_type;
2361
2362        lcd.enabled = (selected_lcd_type > 0);
2363
2364        if (lcd.enabled) {
2365                /*
2366                 * Init lcd struct with load-time values to preserve exact
2367                 * current functionality (at least for now).
2368                 */
2369                lcd.height = lcd_height;
2370                lcd.width = lcd_width;
2371                lcd.bwidth = lcd_bwidth;
2372                lcd.hwidth = lcd_hwidth;
2373                lcd.charset = lcd_charset;
2374                lcd.proto = lcd_proto;
2375                lcd.pins.e = lcd_e_pin;
2376                lcd.pins.rs = lcd_rs_pin;
2377                lcd.pins.rw = lcd_rw_pin;
2378                lcd.pins.cl = lcd_cl_pin;
2379                lcd.pins.da = lcd_da_pin;
2380                lcd.pins.bl = lcd_bl_pin;
2381
2382                /* Leave it for now, just in case */
2383                lcd.esc_seq.len = -1;
2384        }
2385
2386        switch (selected_keypad_type) {
2387        case KEYPAD_TYPE_OLD:
2388                keypad_profile = old_keypad_profile;
2389                break;
2390        case KEYPAD_TYPE_NEW:
2391                keypad_profile = new_keypad_profile;
2392                break;
2393        case KEYPAD_TYPE_NEXCOM:
2394                keypad_profile = nexcom_keypad_profile;
2395                break;
2396        default:
2397                keypad_profile = NULL;
2398                break;
2399        }
2400
2401        if (!lcd.enabled && !keypad.enabled) {
2402                /* no device enabled, let's exit */
2403                pr_err("driver version " PANEL_VERSION " disabled.\n");
2404                return -ENODEV;
2405        }
2406
2407        err = parport_register_driver(&panel_driver);
2408        if (err) {
2409                pr_err("could not register with parport. Aborting.\n");
2410                return err;
2411        }
2412
2413        if (pprt)
2414                pr_info("driver version " PANEL_VERSION
2415                        " registered on parport%d (io=0x%lx).\n", parport,
2416                        pprt->port->base);
2417        else
2418                pr_info("driver version " PANEL_VERSION
2419                        " not yet registered\n");
2420        return 0;
2421}
2422
2423static void __exit panel_cleanup_module(void)
2424{
2425        parport_unregister_driver(&panel_driver);
2426}
2427
2428module_init(panel_init_module);
2429module_exit(panel_cleanup_module);
2430MODULE_AUTHOR("Willy Tarreau");
2431MODULE_LICENSE("GPL");
2432
2433/*
2434 * Local variables:
2435 *  c-indent-level: 4
2436 *  tab-width: 8
2437 * End:
2438 */
2439