linux/drivers/mtd/ubi/wl.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
  19 */
  20
  21/*
  22 * UBI wear-leveling sub-system.
  23 *
  24 * This sub-system is responsible for wear-leveling. It works in terms of
  25 * physical eraseblocks and erase counters and knows nothing about logical
  26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  30 *
  31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  33 *
  34 * When physical eraseblocks are returned to the WL sub-system by means of the
  35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  36 * done asynchronously in context of the per-UBI device background thread,
  37 * which is also managed by the WL sub-system.
  38 *
  39 * The wear-leveling is ensured by means of moving the contents of used
  40 * physical eraseblocks with low erase counter to free physical eraseblocks
  41 * with high erase counter.
  42 *
  43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  44 * bad.
  45 *
  46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  47 * in a physical eraseblock, it has to be moved. Technically this is the same
  48 * as moving it for wear-leveling reasons.
  49 *
  50 * As it was said, for the UBI sub-system all physical eraseblocks are either
  51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  54 *
  55 * When the WL sub-system returns a physical eraseblock, the physical
  56 * eraseblock is protected from being moved for some "time". For this reason,
  57 * the physical eraseblock is not directly moved from the @wl->free tree to the
  58 * @wl->used tree. There is a protection queue in between where this
  59 * physical eraseblock is temporarily stored (@wl->pq).
  60 *
  61 * All this protection stuff is needed because:
  62 *  o we don't want to move physical eraseblocks just after we have given them
  63 *    to the user; instead, we first want to let users fill them up with data;
  64 *
  65 *  o there is a chance that the user will put the physical eraseblock very
  66 *    soon, so it makes sense not to move it for some time, but wait.
  67 *
  68 * Physical eraseblocks stay protected only for limited time. But the "time" is
  69 * measured in erase cycles in this case. This is implemented with help of the
  70 * protection queue. Eraseblocks are put to the tail of this queue when they
  71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  72 * head of the queue on each erase operation (for any eraseblock). So the
  73 * length of the queue defines how may (global) erase cycles PEBs are protected.
  74 *
  75 * To put it differently, each physical eraseblock has 2 main states: free and
  76 * used. The former state corresponds to the @wl->free tree. The latter state
  77 * is split up on several sub-states:
  78 * o the WL movement is allowed (@wl->used tree);
  79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  80 *   erroneous - e.g., there was a read error;
  81 * o the WL movement is temporarily prohibited (@wl->pq queue);
  82 * o scrubbing is needed (@wl->scrub tree).
  83 *
  84 * Depending on the sub-state, wear-leveling entries of the used physical
  85 * eraseblocks may be kept in one of those structures.
  86 *
  87 * Note, in this implementation, we keep a small in-RAM object for each physical
  88 * eraseblock. This is surely not a scalable solution. But it appears to be good
  89 * enough for moderately large flashes and it is simple. In future, one may
  90 * re-work this sub-system and make it more scalable.
  91 *
  92 * At the moment this sub-system does not utilize the sequence number, which
  93 * was introduced relatively recently. But it would be wise to do this because
  94 * the sequence number of a logical eraseblock characterizes how old is it. For
  95 * example, when we move a PEB with low erase counter, and we need to pick the
  96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  97 * pick target PEB with an average EC if our PEB is not very "old". This is a
  98 * room for future re-works of the WL sub-system.
  99 */
 100
 101#include <linux/slab.h>
 102#include <linux/crc32.h>
 103#include <linux/freezer.h>
 104#include <linux/kthread.h>
 105#include "ubi.h"
 106#include "wl.h"
 107
 108/* Number of physical eraseblocks reserved for wear-leveling purposes */
 109#define WL_RESERVED_PEBS 1
 110
 111/*
 112 * Maximum difference between two erase counters. If this threshold is
 113 * exceeded, the WL sub-system starts moving data from used physical
 114 * eraseblocks with low erase counter to free physical eraseblocks with high
 115 * erase counter.
 116 */
 117#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 118
 119/*
 120 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 121 * physical eraseblock to move to. The simplest way would be just to pick the
 122 * one with the highest erase counter. But in certain workloads this could lead
 123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 124 * situation when the picked physical eraseblock is constantly erased after the
 125 * data is written to it. So, we have a constant which limits the highest erase
 126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 127 * does not pick eraseblocks with erase counter greater than the lowest erase
 128 * counter plus %WL_FREE_MAX_DIFF.
 129 */
 130#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 131
 132/*
 133 * Maximum number of consecutive background thread failures which is enough to
 134 * switch to read-only mode.
 135 */
 136#define WL_MAX_FAILURES 32
 137
 138static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
 139static int self_check_in_wl_tree(const struct ubi_device *ubi,
 140                                 struct ubi_wl_entry *e, struct rb_root *root);
 141static int self_check_in_pq(const struct ubi_device *ubi,
 142                            struct ubi_wl_entry *e);
 143
 144/**
 145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 146 * @e: the wear-leveling entry to add
 147 * @root: the root of the tree
 148 *
 149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 150 * the @ubi->used and @ubi->free RB-trees.
 151 */
 152static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 153{
 154        struct rb_node **p, *parent = NULL;
 155
 156        p = &root->rb_node;
 157        while (*p) {
 158                struct ubi_wl_entry *e1;
 159
 160                parent = *p;
 161                e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 162
 163                if (e->ec < e1->ec)
 164                        p = &(*p)->rb_left;
 165                else if (e->ec > e1->ec)
 166                        p = &(*p)->rb_right;
 167                else {
 168                        ubi_assert(e->pnum != e1->pnum);
 169                        if (e->pnum < e1->pnum)
 170                                p = &(*p)->rb_left;
 171                        else
 172                                p = &(*p)->rb_right;
 173                }
 174        }
 175
 176        rb_link_node(&e->u.rb, parent, p);
 177        rb_insert_color(&e->u.rb, root);
 178}
 179
 180/**
 181 * wl_tree_destroy - destroy a wear-leveling entry.
 182 * @ubi: UBI device description object
 183 * @e: the wear-leveling entry to add
 184 *
 185 * This function destroys a wear leveling entry and removes
 186 * the reference from the lookup table.
 187 */
 188static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
 189{
 190        ubi->lookuptbl[e->pnum] = NULL;
 191        kmem_cache_free(ubi_wl_entry_slab, e);
 192}
 193
 194/**
 195 * do_work - do one pending work.
 196 * @ubi: UBI device description object
 197 *
 198 * This function returns zero in case of success and a negative error code in
 199 * case of failure.
 200 */
 201static int do_work(struct ubi_device *ubi)
 202{
 203        int err;
 204        struct ubi_work *wrk;
 205
 206        cond_resched();
 207
 208        /*
 209         * @ubi->work_sem is used to synchronize with the workers. Workers take
 210         * it in read mode, so many of them may be doing works at a time. But
 211         * the queue flush code has to be sure the whole queue of works is
 212         * done, and it takes the mutex in write mode.
 213         */
 214        down_read(&ubi->work_sem);
 215        spin_lock(&ubi->wl_lock);
 216        if (list_empty(&ubi->works)) {
 217                spin_unlock(&ubi->wl_lock);
 218                up_read(&ubi->work_sem);
 219                return 0;
 220        }
 221
 222        wrk = list_entry(ubi->works.next, struct ubi_work, list);
 223        list_del(&wrk->list);
 224        ubi->works_count -= 1;
 225        ubi_assert(ubi->works_count >= 0);
 226        spin_unlock(&ubi->wl_lock);
 227
 228        /*
 229         * Call the worker function. Do not touch the work structure
 230         * after this call as it will have been freed or reused by that
 231         * time by the worker function.
 232         */
 233        err = wrk->func(ubi, wrk, 0);
 234        if (err)
 235                ubi_err(ubi, "work failed with error code %d", err);
 236        up_read(&ubi->work_sem);
 237
 238        return err;
 239}
 240
 241/**
 242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 243 * @e: the wear-leveling entry to check
 244 * @root: the root of the tree
 245 *
 246 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 247 * is not.
 248 */
 249static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 250{
 251        struct rb_node *p;
 252
 253        p = root->rb_node;
 254        while (p) {
 255                struct ubi_wl_entry *e1;
 256
 257                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 258
 259                if (e->pnum == e1->pnum) {
 260                        ubi_assert(e == e1);
 261                        return 1;
 262                }
 263
 264                if (e->ec < e1->ec)
 265                        p = p->rb_left;
 266                else if (e->ec > e1->ec)
 267                        p = p->rb_right;
 268                else {
 269                        ubi_assert(e->pnum != e1->pnum);
 270                        if (e->pnum < e1->pnum)
 271                                p = p->rb_left;
 272                        else
 273                                p = p->rb_right;
 274                }
 275        }
 276
 277        return 0;
 278}
 279
 280/**
 281 * prot_queue_add - add physical eraseblock to the protection queue.
 282 * @ubi: UBI device description object
 283 * @e: the physical eraseblock to add
 284 *
 285 * This function adds @e to the tail of the protection queue @ubi->pq, where
 286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 288 * be locked.
 289 */
 290static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 291{
 292        int pq_tail = ubi->pq_head - 1;
 293
 294        if (pq_tail < 0)
 295                pq_tail = UBI_PROT_QUEUE_LEN - 1;
 296        ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 297        list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 298        dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 299}
 300
 301/**
 302 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 303 * @ubi: UBI device description object
 304 * @root: the RB-tree where to look for
 305 * @diff: maximum possible difference from the smallest erase counter
 306 *
 307 * This function looks for a wear leveling entry with erase counter closest to
 308 * min + @diff, where min is the smallest erase counter.
 309 */
 310static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
 311                                          struct rb_root *root, int diff)
 312{
 313        struct rb_node *p;
 314        struct ubi_wl_entry *e, *prev_e = NULL;
 315        int max;
 316
 317        e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 318        max = e->ec + diff;
 319
 320        p = root->rb_node;
 321        while (p) {
 322                struct ubi_wl_entry *e1;
 323
 324                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 325                if (e1->ec >= max)
 326                        p = p->rb_left;
 327                else {
 328                        p = p->rb_right;
 329                        prev_e = e;
 330                        e = e1;
 331                }
 332        }
 333
 334        /* If no fastmap has been written and this WL entry can be used
 335         * as anchor PEB, hold it back and return the second best WL entry
 336         * such that fastmap can use the anchor PEB later. */
 337        if (prev_e && !ubi->fm_disabled &&
 338            !ubi->fm && e->pnum < UBI_FM_MAX_START)
 339                return prev_e;
 340
 341        return e;
 342}
 343
 344/**
 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
 346 * @ubi: UBI device description object
 347 * @root: the RB-tree where to look for
 348 *
 349 * This function looks for a wear leveling entry with medium erase counter,
 350 * but not greater or equivalent than the lowest erase counter plus
 351 * %WL_FREE_MAX_DIFF/2.
 352 */
 353static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
 354                                               struct rb_root *root)
 355{
 356        struct ubi_wl_entry *e, *first, *last;
 357
 358        first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 359        last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
 360
 361        if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
 362                e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
 363
 364                /* If no fastmap has been written and this WL entry can be used
 365                 * as anchor PEB, hold it back and return the second best
 366                 * WL entry such that fastmap can use the anchor PEB later. */
 367                e = may_reserve_for_fm(ubi, e, root);
 368        } else
 369                e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
 370
 371        return e;
 372}
 373
 374/**
 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
 376 * refill_wl_user_pool().
 377 * @ubi: UBI device description object
 378 *
 379 * This function returns a a wear leveling entry in case of success and
 380 * NULL in case of failure.
 381 */
 382static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
 383{
 384        struct ubi_wl_entry *e;
 385
 386        e = find_mean_wl_entry(ubi, &ubi->free);
 387        if (!e) {
 388                ubi_err(ubi, "no free eraseblocks");
 389                return NULL;
 390        }
 391
 392        self_check_in_wl_tree(ubi, e, &ubi->free);
 393
 394        /*
 395         * Move the physical eraseblock to the protection queue where it will
 396         * be protected from being moved for some time.
 397         */
 398        rb_erase(&e->u.rb, &ubi->free);
 399        ubi->free_count--;
 400        dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 401
 402        return e;
 403}
 404
 405/**
 406 * prot_queue_del - remove a physical eraseblock from the protection queue.
 407 * @ubi: UBI device description object
 408 * @pnum: the physical eraseblock to remove
 409 *
 410 * This function deletes PEB @pnum from the protection queue and returns zero
 411 * in case of success and %-ENODEV if the PEB was not found.
 412 */
 413static int prot_queue_del(struct ubi_device *ubi, int pnum)
 414{
 415        struct ubi_wl_entry *e;
 416
 417        e = ubi->lookuptbl[pnum];
 418        if (!e)
 419                return -ENODEV;
 420
 421        if (self_check_in_pq(ubi, e))
 422                return -ENODEV;
 423
 424        list_del(&e->u.list);
 425        dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 426        return 0;
 427}
 428
 429/**
 430 * sync_erase - synchronously erase a physical eraseblock.
 431 * @ubi: UBI device description object
 432 * @e: the the physical eraseblock to erase
 433 * @torture: if the physical eraseblock has to be tortured
 434 *
 435 * This function returns zero in case of success and a negative error code in
 436 * case of failure.
 437 */
 438static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 439                      int torture)
 440{
 441        int err;
 442        struct ubi_ec_hdr *ec_hdr;
 443        unsigned long long ec = e->ec;
 444
 445        dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 446
 447        err = self_check_ec(ubi, e->pnum, e->ec);
 448        if (err)
 449                return -EINVAL;
 450
 451        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 452        if (!ec_hdr)
 453                return -ENOMEM;
 454
 455        err = ubi_io_sync_erase(ubi, e->pnum, torture);
 456        if (err < 0)
 457                goto out_free;
 458
 459        ec += err;
 460        if (ec > UBI_MAX_ERASECOUNTER) {
 461                /*
 462                 * Erase counter overflow. Upgrade UBI and use 64-bit
 463                 * erase counters internally.
 464                 */
 465                ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
 466                        e->pnum, ec);
 467                err = -EINVAL;
 468                goto out_free;
 469        }
 470
 471        dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 472
 473        ec_hdr->ec = cpu_to_be64(ec);
 474
 475        err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 476        if (err)
 477                goto out_free;
 478
 479        e->ec = ec;
 480        spin_lock(&ubi->wl_lock);
 481        if (e->ec > ubi->max_ec)
 482                ubi->max_ec = e->ec;
 483        spin_unlock(&ubi->wl_lock);
 484
 485out_free:
 486        kfree(ec_hdr);
 487        return err;
 488}
 489
 490/**
 491 * serve_prot_queue - check if it is time to stop protecting PEBs.
 492 * @ubi: UBI device description object
 493 *
 494 * This function is called after each erase operation and removes PEBs from the
 495 * tail of the protection queue. These PEBs have been protected for long enough
 496 * and should be moved to the used tree.
 497 */
 498static void serve_prot_queue(struct ubi_device *ubi)
 499{
 500        struct ubi_wl_entry *e, *tmp;
 501        int count;
 502
 503        /*
 504         * There may be several protected physical eraseblock to remove,
 505         * process them all.
 506         */
 507repeat:
 508        count = 0;
 509        spin_lock(&ubi->wl_lock);
 510        list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 511                dbg_wl("PEB %d EC %d protection over, move to used tree",
 512                        e->pnum, e->ec);
 513
 514                list_del(&e->u.list);
 515                wl_tree_add(e, &ubi->used);
 516                if (count++ > 32) {
 517                        /*
 518                         * Let's be nice and avoid holding the spinlock for
 519                         * too long.
 520                         */
 521                        spin_unlock(&ubi->wl_lock);
 522                        cond_resched();
 523                        goto repeat;
 524                }
 525        }
 526
 527        ubi->pq_head += 1;
 528        if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 529                ubi->pq_head = 0;
 530        ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 531        spin_unlock(&ubi->wl_lock);
 532}
 533
 534/**
 535 * __schedule_ubi_work - schedule a work.
 536 * @ubi: UBI device description object
 537 * @wrk: the work to schedule
 538 *
 539 * This function adds a work defined by @wrk to the tail of the pending works
 540 * list. Can only be used if ubi->work_sem is already held in read mode!
 541 */
 542static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 543{
 544        spin_lock(&ubi->wl_lock);
 545        list_add_tail(&wrk->list, &ubi->works);
 546        ubi_assert(ubi->works_count >= 0);
 547        ubi->works_count += 1;
 548        if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 549                wake_up_process(ubi->bgt_thread);
 550        spin_unlock(&ubi->wl_lock);
 551}
 552
 553/**
 554 * schedule_ubi_work - schedule a work.
 555 * @ubi: UBI device description object
 556 * @wrk: the work to schedule
 557 *
 558 * This function adds a work defined by @wrk to the tail of the pending works
 559 * list.
 560 */
 561static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 562{
 563        down_read(&ubi->work_sem);
 564        __schedule_ubi_work(ubi, wrk);
 565        up_read(&ubi->work_sem);
 566}
 567
 568static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 569                        int shutdown);
 570
 571/**
 572 * schedule_erase - schedule an erase work.
 573 * @ubi: UBI device description object
 574 * @e: the WL entry of the physical eraseblock to erase
 575 * @vol_id: the volume ID that last used this PEB
 576 * @lnum: the last used logical eraseblock number for the PEB
 577 * @torture: if the physical eraseblock has to be tortured
 578 *
 579 * This function returns zero in case of success and a %-ENOMEM in case of
 580 * failure.
 581 */
 582static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 583                          int vol_id, int lnum, int torture)
 584{
 585        struct ubi_work *wl_wrk;
 586
 587        ubi_assert(e);
 588
 589        dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 590               e->pnum, e->ec, torture);
 591
 592        wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 593        if (!wl_wrk)
 594                return -ENOMEM;
 595
 596        wl_wrk->func = &erase_worker;
 597        wl_wrk->e = e;
 598        wl_wrk->vol_id = vol_id;
 599        wl_wrk->lnum = lnum;
 600        wl_wrk->torture = torture;
 601
 602        schedule_ubi_work(ubi, wl_wrk);
 603        return 0;
 604}
 605
 606static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
 607/**
 608 * do_sync_erase - run the erase worker synchronously.
 609 * @ubi: UBI device description object
 610 * @e: the WL entry of the physical eraseblock to erase
 611 * @vol_id: the volume ID that last used this PEB
 612 * @lnum: the last used logical eraseblock number for the PEB
 613 * @torture: if the physical eraseblock has to be tortured
 614 *
 615 */
 616static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 617                         int vol_id, int lnum, int torture)
 618{
 619        struct ubi_work wl_wrk;
 620
 621        dbg_wl("sync erase of PEB %i", e->pnum);
 622
 623        wl_wrk.e = e;
 624        wl_wrk.vol_id = vol_id;
 625        wl_wrk.lnum = lnum;
 626        wl_wrk.torture = torture;
 627
 628        return __erase_worker(ubi, &wl_wrk);
 629}
 630
 631static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
 632/**
 633 * wear_leveling_worker - wear-leveling worker function.
 634 * @ubi: UBI device description object
 635 * @wrk: the work object
 636 * @shutdown: non-zero if the worker has to free memory and exit
 637 * because the WL-subsystem is shutting down
 638 *
 639 * This function copies a more worn out physical eraseblock to a less worn out
 640 * one. Returns zero in case of success and a negative error code in case of
 641 * failure.
 642 */
 643static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 644                                int shutdown)
 645{
 646        int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
 647        int vol_id = -1, lnum = -1;
 648#ifdef CONFIG_MTD_UBI_FASTMAP
 649        int anchor = wrk->anchor;
 650#endif
 651        struct ubi_wl_entry *e1, *e2;
 652        struct ubi_vid_hdr *vid_hdr;
 653        int dst_leb_clean = 0;
 654
 655        kfree(wrk);
 656        if (shutdown)
 657                return 0;
 658
 659        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
 660        if (!vid_hdr)
 661                return -ENOMEM;
 662
 663        mutex_lock(&ubi->move_mutex);
 664        spin_lock(&ubi->wl_lock);
 665        ubi_assert(!ubi->move_from && !ubi->move_to);
 666        ubi_assert(!ubi->move_to_put);
 667
 668        if (!ubi->free.rb_node ||
 669            (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
 670                /*
 671                 * No free physical eraseblocks? Well, they must be waiting in
 672                 * the queue to be erased. Cancel movement - it will be
 673                 * triggered again when a free physical eraseblock appears.
 674                 *
 675                 * No used physical eraseblocks? They must be temporarily
 676                 * protected from being moved. They will be moved to the
 677                 * @ubi->used tree later and the wear-leveling will be
 678                 * triggered again.
 679                 */
 680                dbg_wl("cancel WL, a list is empty: free %d, used %d",
 681                       !ubi->free.rb_node, !ubi->used.rb_node);
 682                goto out_cancel;
 683        }
 684
 685#ifdef CONFIG_MTD_UBI_FASTMAP
 686        /* Check whether we need to produce an anchor PEB */
 687        if (!anchor)
 688                anchor = !anchor_pebs_avalible(&ubi->free);
 689
 690        if (anchor) {
 691                e1 = find_anchor_wl_entry(&ubi->used);
 692                if (!e1)
 693                        goto out_cancel;
 694                e2 = get_peb_for_wl(ubi);
 695                if (!e2)
 696                        goto out_cancel;
 697
 698                self_check_in_wl_tree(ubi, e1, &ubi->used);
 699                rb_erase(&e1->u.rb, &ubi->used);
 700                dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
 701        } else if (!ubi->scrub.rb_node) {
 702#else
 703        if (!ubi->scrub.rb_node) {
 704#endif
 705                /*
 706                 * Now pick the least worn-out used physical eraseblock and a
 707                 * highly worn-out free physical eraseblock. If the erase
 708                 * counters differ much enough, start wear-leveling.
 709                 */
 710                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 711                e2 = get_peb_for_wl(ubi);
 712                if (!e2)
 713                        goto out_cancel;
 714
 715                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
 716                        dbg_wl("no WL needed: min used EC %d, max free EC %d",
 717                               e1->ec, e2->ec);
 718
 719                        /* Give the unused PEB back */
 720                        wl_tree_add(e2, &ubi->free);
 721                        ubi->free_count++;
 722                        goto out_cancel;
 723                }
 724                self_check_in_wl_tree(ubi, e1, &ubi->used);
 725                rb_erase(&e1->u.rb, &ubi->used);
 726                dbg_wl("move PEB %d EC %d to PEB %d EC %d",
 727                       e1->pnum, e1->ec, e2->pnum, e2->ec);
 728        } else {
 729                /* Perform scrubbing */
 730                scrubbing = 1;
 731                e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
 732                e2 = get_peb_for_wl(ubi);
 733                if (!e2)
 734                        goto out_cancel;
 735
 736                self_check_in_wl_tree(ubi, e1, &ubi->scrub);
 737                rb_erase(&e1->u.rb, &ubi->scrub);
 738                dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
 739        }
 740
 741        ubi->move_from = e1;
 742        ubi->move_to = e2;
 743        spin_unlock(&ubi->wl_lock);
 744
 745        /*
 746         * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
 747         * We so far do not know which logical eraseblock our physical
 748         * eraseblock (@e1) belongs to. We have to read the volume identifier
 749         * header first.
 750         *
 751         * Note, we are protected from this PEB being unmapped and erased. The
 752         * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
 753         * which is being moved was unmapped.
 754         */
 755
 756        err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
 757        if (err && err != UBI_IO_BITFLIPS) {
 758                dst_leb_clean = 1;
 759                if (err == UBI_IO_FF) {
 760                        /*
 761                         * We are trying to move PEB without a VID header. UBI
 762                         * always write VID headers shortly after the PEB was
 763                         * given, so we have a situation when it has not yet
 764                         * had a chance to write it, because it was preempted.
 765                         * So add this PEB to the protection queue so far,
 766                         * because presumably more data will be written there
 767                         * (including the missing VID header), and then we'll
 768                         * move it.
 769                         */
 770                        dbg_wl("PEB %d has no VID header", e1->pnum);
 771                        protect = 1;
 772                        goto out_not_moved;
 773                } else if (err == UBI_IO_FF_BITFLIPS) {
 774                        /*
 775                         * The same situation as %UBI_IO_FF, but bit-flips were
 776                         * detected. It is better to schedule this PEB for
 777                         * scrubbing.
 778                         */
 779                        dbg_wl("PEB %d has no VID header but has bit-flips",
 780                               e1->pnum);
 781                        scrubbing = 1;
 782                        goto out_not_moved;
 783                }
 784
 785                ubi_err(ubi, "error %d while reading VID header from PEB %d",
 786                        err, e1->pnum);
 787                goto out_error;
 788        }
 789
 790        vol_id = be32_to_cpu(vid_hdr->vol_id);
 791        lnum = be32_to_cpu(vid_hdr->lnum);
 792
 793        err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
 794        if (err) {
 795                if (err == MOVE_CANCEL_RACE) {
 796                        /*
 797                         * The LEB has not been moved because the volume is
 798                         * being deleted or the PEB has been put meanwhile. We
 799                         * should prevent this PEB from being selected for
 800                         * wear-leveling movement again, so put it to the
 801                         * protection queue.
 802                         */
 803                        protect = 1;
 804                        dst_leb_clean = 1;
 805                        goto out_not_moved;
 806                }
 807                if (err == MOVE_RETRY) {
 808                        scrubbing = 1;
 809                        dst_leb_clean = 1;
 810                        goto out_not_moved;
 811                }
 812                if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
 813                    err == MOVE_TARGET_RD_ERR) {
 814                        /*
 815                         * Target PEB had bit-flips or write error - torture it.
 816                         */
 817                        torture = 1;
 818                        goto out_not_moved;
 819                }
 820
 821                if (err == MOVE_SOURCE_RD_ERR) {
 822                        /*
 823                         * An error happened while reading the source PEB. Do
 824                         * not switch to R/O mode in this case, and give the
 825                         * upper layers a possibility to recover from this,
 826                         * e.g. by unmapping corresponding LEB. Instead, just
 827                         * put this PEB to the @ubi->erroneous list to prevent
 828                         * UBI from trying to move it over and over again.
 829                         */
 830                        if (ubi->erroneous_peb_count > ubi->max_erroneous) {
 831                                ubi_err(ubi, "too many erroneous eraseblocks (%d)",
 832                                        ubi->erroneous_peb_count);
 833                                goto out_error;
 834                        }
 835                        dst_leb_clean = 1;
 836                        erroneous = 1;
 837                        goto out_not_moved;
 838                }
 839
 840                if (err < 0)
 841                        goto out_error;
 842
 843                ubi_assert(0);
 844        }
 845
 846        /* The PEB has been successfully moved */
 847        if (scrubbing)
 848                ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
 849                        e1->pnum, vol_id, lnum, e2->pnum);
 850        ubi_free_vid_hdr(ubi, vid_hdr);
 851
 852        spin_lock(&ubi->wl_lock);
 853        if (!ubi->move_to_put) {
 854                wl_tree_add(e2, &ubi->used);
 855                e2 = NULL;
 856        }
 857        ubi->move_from = ubi->move_to = NULL;
 858        ubi->move_to_put = ubi->wl_scheduled = 0;
 859        spin_unlock(&ubi->wl_lock);
 860
 861        err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
 862        if (err) {
 863                if (e2)
 864                        wl_entry_destroy(ubi, e2);
 865                goto out_ro;
 866        }
 867
 868        if (e2) {
 869                /*
 870                 * Well, the target PEB was put meanwhile, schedule it for
 871                 * erasure.
 872                 */
 873                dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
 874                       e2->pnum, vol_id, lnum);
 875                err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
 876                if (err)
 877                        goto out_ro;
 878        }
 879
 880        dbg_wl("done");
 881        mutex_unlock(&ubi->move_mutex);
 882        return 0;
 883
 884        /*
 885         * For some reasons the LEB was not moved, might be an error, might be
 886         * something else. @e1 was not changed, so return it back. @e2 might
 887         * have been changed, schedule it for erasure.
 888         */
 889out_not_moved:
 890        if (vol_id != -1)
 891                dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
 892                       e1->pnum, vol_id, lnum, e2->pnum, err);
 893        else
 894                dbg_wl("cancel moving PEB %d to PEB %d (%d)",
 895                       e1->pnum, e2->pnum, err);
 896        spin_lock(&ubi->wl_lock);
 897        if (protect)
 898                prot_queue_add(ubi, e1);
 899        else if (erroneous) {
 900                wl_tree_add(e1, &ubi->erroneous);
 901                ubi->erroneous_peb_count += 1;
 902        } else if (scrubbing)
 903                wl_tree_add(e1, &ubi->scrub);
 904        else
 905                wl_tree_add(e1, &ubi->used);
 906        if (dst_leb_clean) {
 907                wl_tree_add(e2, &ubi->free);
 908                ubi->free_count++;
 909        }
 910
 911        ubi_assert(!ubi->move_to_put);
 912        ubi->move_from = ubi->move_to = NULL;
 913        ubi->wl_scheduled = 0;
 914        spin_unlock(&ubi->wl_lock);
 915
 916        ubi_free_vid_hdr(ubi, vid_hdr);
 917        if (dst_leb_clean) {
 918                ensure_wear_leveling(ubi, 1);
 919        } else {
 920                err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
 921                if (err)
 922                        goto out_ro;
 923        }
 924
 925        mutex_unlock(&ubi->move_mutex);
 926        return 0;
 927
 928out_error:
 929        if (vol_id != -1)
 930                ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
 931                        err, e1->pnum, e2->pnum);
 932        else
 933                ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
 934                        err, e1->pnum, vol_id, lnum, e2->pnum);
 935        spin_lock(&ubi->wl_lock);
 936        ubi->move_from = ubi->move_to = NULL;
 937        ubi->move_to_put = ubi->wl_scheduled = 0;
 938        spin_unlock(&ubi->wl_lock);
 939
 940        ubi_free_vid_hdr(ubi, vid_hdr);
 941        wl_entry_destroy(ubi, e1);
 942        wl_entry_destroy(ubi, e2);
 943
 944out_ro:
 945        ubi_ro_mode(ubi);
 946        mutex_unlock(&ubi->move_mutex);
 947        ubi_assert(err != 0);
 948        return err < 0 ? err : -EIO;
 949
 950out_cancel:
 951        ubi->wl_scheduled = 0;
 952        spin_unlock(&ubi->wl_lock);
 953        mutex_unlock(&ubi->move_mutex);
 954        ubi_free_vid_hdr(ubi, vid_hdr);
 955        return 0;
 956}
 957
 958/**
 959 * ensure_wear_leveling - schedule wear-leveling if it is needed.
 960 * @ubi: UBI device description object
 961 * @nested: set to non-zero if this function is called from UBI worker
 962 *
 963 * This function checks if it is time to start wear-leveling and schedules it
 964 * if yes. This function returns zero in case of success and a negative error
 965 * code in case of failure.
 966 */
 967static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
 968{
 969        int err = 0;
 970        struct ubi_wl_entry *e1;
 971        struct ubi_wl_entry *e2;
 972        struct ubi_work *wrk;
 973
 974        spin_lock(&ubi->wl_lock);
 975        if (ubi->wl_scheduled)
 976                /* Wear-leveling is already in the work queue */
 977                goto out_unlock;
 978
 979        /*
 980         * If the ubi->scrub tree is not empty, scrubbing is needed, and the
 981         * the WL worker has to be scheduled anyway.
 982         */
 983        if (!ubi->scrub.rb_node) {
 984                if (!ubi->used.rb_node || !ubi->free.rb_node)
 985                        /* No physical eraseblocks - no deal */
 986                        goto out_unlock;
 987
 988                /*
 989                 * We schedule wear-leveling only if the difference between the
 990                 * lowest erase counter of used physical eraseblocks and a high
 991                 * erase counter of free physical eraseblocks is greater than
 992                 * %UBI_WL_THRESHOLD.
 993                 */
 994                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
 995                e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
 996
 997                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
 998                        goto out_unlock;
 999                dbg_wl("schedule wear-leveling");
1000        } else
1001                dbg_wl("schedule scrubbing");
1002
1003        ubi->wl_scheduled = 1;
1004        spin_unlock(&ubi->wl_lock);
1005
1006        wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1007        if (!wrk) {
1008                err = -ENOMEM;
1009                goto out_cancel;
1010        }
1011
1012        wrk->anchor = 0;
1013        wrk->func = &wear_leveling_worker;
1014        if (nested)
1015                __schedule_ubi_work(ubi, wrk);
1016        else
1017                schedule_ubi_work(ubi, wrk);
1018        return err;
1019
1020out_cancel:
1021        spin_lock(&ubi->wl_lock);
1022        ubi->wl_scheduled = 0;
1023out_unlock:
1024        spin_unlock(&ubi->wl_lock);
1025        return err;
1026}
1027
1028/**
1029 * __erase_worker - physical eraseblock erase worker function.
1030 * @ubi: UBI device description object
1031 * @wl_wrk: the work object
1032 * @shutdown: non-zero if the worker has to free memory and exit
1033 * because the WL sub-system is shutting down
1034 *
1035 * This function erases a physical eraseblock and perform torture testing if
1036 * needed. It also takes care about marking the physical eraseblock bad if
1037 * needed. Returns zero in case of success and a negative error code in case of
1038 * failure.
1039 */
1040static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1041{
1042        struct ubi_wl_entry *e = wl_wrk->e;
1043        int pnum = e->pnum;
1044        int vol_id = wl_wrk->vol_id;
1045        int lnum = wl_wrk->lnum;
1046        int err, available_consumed = 0;
1047
1048        dbg_wl("erase PEB %d EC %d LEB %d:%d",
1049               pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1050
1051        err = sync_erase(ubi, e, wl_wrk->torture);
1052        if (!err) {
1053                spin_lock(&ubi->wl_lock);
1054                wl_tree_add(e, &ubi->free);
1055                ubi->free_count++;
1056                spin_unlock(&ubi->wl_lock);
1057
1058                /*
1059                 * One more erase operation has happened, take care about
1060                 * protected physical eraseblocks.
1061                 */
1062                serve_prot_queue(ubi);
1063
1064                /* And take care about wear-leveling */
1065                err = ensure_wear_leveling(ubi, 1);
1066                return err;
1067        }
1068
1069        ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1070
1071        if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1072            err == -EBUSY) {
1073                int err1;
1074
1075                /* Re-schedule the LEB for erasure */
1076                err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1077                if (err1) {
1078                        wl_entry_destroy(ubi, e);
1079                        err = err1;
1080                        goto out_ro;
1081                }
1082                return err;
1083        }
1084
1085        wl_entry_destroy(ubi, e);
1086        if (err != -EIO)
1087                /*
1088                 * If this is not %-EIO, we have no idea what to do. Scheduling
1089                 * this physical eraseblock for erasure again would cause
1090                 * errors again and again. Well, lets switch to R/O mode.
1091                 */
1092                goto out_ro;
1093
1094        /* It is %-EIO, the PEB went bad */
1095
1096        if (!ubi->bad_allowed) {
1097                ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1098                goto out_ro;
1099        }
1100
1101        spin_lock(&ubi->volumes_lock);
1102        if (ubi->beb_rsvd_pebs == 0) {
1103                if (ubi->avail_pebs == 0) {
1104                        spin_unlock(&ubi->volumes_lock);
1105                        ubi_err(ubi, "no reserved/available physical eraseblocks");
1106                        goto out_ro;
1107                }
1108                ubi->avail_pebs -= 1;
1109                available_consumed = 1;
1110        }
1111        spin_unlock(&ubi->volumes_lock);
1112
1113        ubi_msg(ubi, "mark PEB %d as bad", pnum);
1114        err = ubi_io_mark_bad(ubi, pnum);
1115        if (err)
1116                goto out_ro;
1117
1118        spin_lock(&ubi->volumes_lock);
1119        if (ubi->beb_rsvd_pebs > 0) {
1120                if (available_consumed) {
1121                        /*
1122                         * The amount of reserved PEBs increased since we last
1123                         * checked.
1124                         */
1125                        ubi->avail_pebs += 1;
1126                        available_consumed = 0;
1127                }
1128                ubi->beb_rsvd_pebs -= 1;
1129        }
1130        ubi->bad_peb_count += 1;
1131        ubi->good_peb_count -= 1;
1132        ubi_calculate_reserved(ubi);
1133        if (available_consumed)
1134                ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1135        else if (ubi->beb_rsvd_pebs)
1136                ubi_msg(ubi, "%d PEBs left in the reserve",
1137                        ubi->beb_rsvd_pebs);
1138        else
1139                ubi_warn(ubi, "last PEB from the reserve was used");
1140        spin_unlock(&ubi->volumes_lock);
1141
1142        return err;
1143
1144out_ro:
1145        if (available_consumed) {
1146                spin_lock(&ubi->volumes_lock);
1147                ubi->avail_pebs += 1;
1148                spin_unlock(&ubi->volumes_lock);
1149        }
1150        ubi_ro_mode(ubi);
1151        return err;
1152}
1153
1154static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1155                          int shutdown)
1156{
1157        int ret;
1158
1159        if (shutdown) {
1160                struct ubi_wl_entry *e = wl_wrk->e;
1161
1162                dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1163                kfree(wl_wrk);
1164                wl_entry_destroy(ubi, e);
1165                return 0;
1166        }
1167
1168        ret = __erase_worker(ubi, wl_wrk);
1169        kfree(wl_wrk);
1170        return ret;
1171}
1172
1173/**
1174 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1175 * @ubi: UBI device description object
1176 * @vol_id: the volume ID that last used this PEB
1177 * @lnum: the last used logical eraseblock number for the PEB
1178 * @pnum: physical eraseblock to return
1179 * @torture: if this physical eraseblock has to be tortured
1180 *
1181 * This function is called to return physical eraseblock @pnum to the pool of
1182 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1183 * occurred to this @pnum and it has to be tested. This function returns zero
1184 * in case of success, and a negative error code in case of failure.
1185 */
1186int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1187                   int pnum, int torture)
1188{
1189        int err;
1190        struct ubi_wl_entry *e;
1191
1192        dbg_wl("PEB %d", pnum);
1193        ubi_assert(pnum >= 0);
1194        ubi_assert(pnum < ubi->peb_count);
1195
1196        down_read(&ubi->fm_protect);
1197
1198retry:
1199        spin_lock(&ubi->wl_lock);
1200        e = ubi->lookuptbl[pnum];
1201        if (e == ubi->move_from) {
1202                /*
1203                 * User is putting the physical eraseblock which was selected to
1204                 * be moved. It will be scheduled for erasure in the
1205                 * wear-leveling worker.
1206                 */
1207                dbg_wl("PEB %d is being moved, wait", pnum);
1208                spin_unlock(&ubi->wl_lock);
1209
1210                /* Wait for the WL worker by taking the @ubi->move_mutex */
1211                mutex_lock(&ubi->move_mutex);
1212                mutex_unlock(&ubi->move_mutex);
1213                goto retry;
1214        } else if (e == ubi->move_to) {
1215                /*
1216                 * User is putting the physical eraseblock which was selected
1217                 * as the target the data is moved to. It may happen if the EBA
1218                 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1219                 * but the WL sub-system has not put the PEB to the "used" tree
1220                 * yet, but it is about to do this. So we just set a flag which
1221                 * will tell the WL worker that the PEB is not needed anymore
1222                 * and should be scheduled for erasure.
1223                 */
1224                dbg_wl("PEB %d is the target of data moving", pnum);
1225                ubi_assert(!ubi->move_to_put);
1226                ubi->move_to_put = 1;
1227                spin_unlock(&ubi->wl_lock);
1228                up_read(&ubi->fm_protect);
1229                return 0;
1230        } else {
1231                if (in_wl_tree(e, &ubi->used)) {
1232                        self_check_in_wl_tree(ubi, e, &ubi->used);
1233                        rb_erase(&e->u.rb, &ubi->used);
1234                } else if (in_wl_tree(e, &ubi->scrub)) {
1235                        self_check_in_wl_tree(ubi, e, &ubi->scrub);
1236                        rb_erase(&e->u.rb, &ubi->scrub);
1237                } else if (in_wl_tree(e, &ubi->erroneous)) {
1238                        self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1239                        rb_erase(&e->u.rb, &ubi->erroneous);
1240                        ubi->erroneous_peb_count -= 1;
1241                        ubi_assert(ubi->erroneous_peb_count >= 0);
1242                        /* Erroneous PEBs should be tortured */
1243                        torture = 1;
1244                } else {
1245                        err = prot_queue_del(ubi, e->pnum);
1246                        if (err) {
1247                                ubi_err(ubi, "PEB %d not found", pnum);
1248                                ubi_ro_mode(ubi);
1249                                spin_unlock(&ubi->wl_lock);
1250                                up_read(&ubi->fm_protect);
1251                                return err;
1252                        }
1253                }
1254        }
1255        spin_unlock(&ubi->wl_lock);
1256
1257        err = schedule_erase(ubi, e, vol_id, lnum, torture);
1258        if (err) {
1259                spin_lock(&ubi->wl_lock);
1260                wl_tree_add(e, &ubi->used);
1261                spin_unlock(&ubi->wl_lock);
1262        }
1263
1264        up_read(&ubi->fm_protect);
1265        return err;
1266}
1267
1268/**
1269 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1270 * @ubi: UBI device description object
1271 * @pnum: the physical eraseblock to schedule
1272 *
1273 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1274 * needs scrubbing. This function schedules a physical eraseblock for
1275 * scrubbing which is done in background. This function returns zero in case of
1276 * success and a negative error code in case of failure.
1277 */
1278int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1279{
1280        struct ubi_wl_entry *e;
1281
1282        ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1283
1284retry:
1285        spin_lock(&ubi->wl_lock);
1286        e = ubi->lookuptbl[pnum];
1287        if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1288                                   in_wl_tree(e, &ubi->erroneous)) {
1289                spin_unlock(&ubi->wl_lock);
1290                return 0;
1291        }
1292
1293        if (e == ubi->move_to) {
1294                /*
1295                 * This physical eraseblock was used to move data to. The data
1296                 * was moved but the PEB was not yet inserted to the proper
1297                 * tree. We should just wait a little and let the WL worker
1298                 * proceed.
1299                 */
1300                spin_unlock(&ubi->wl_lock);
1301                dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1302                yield();
1303                goto retry;
1304        }
1305
1306        if (in_wl_tree(e, &ubi->used)) {
1307                self_check_in_wl_tree(ubi, e, &ubi->used);
1308                rb_erase(&e->u.rb, &ubi->used);
1309        } else {
1310                int err;
1311
1312                err = prot_queue_del(ubi, e->pnum);
1313                if (err) {
1314                        ubi_err(ubi, "PEB %d not found", pnum);
1315                        ubi_ro_mode(ubi);
1316                        spin_unlock(&ubi->wl_lock);
1317                        return err;
1318                }
1319        }
1320
1321        wl_tree_add(e, &ubi->scrub);
1322        spin_unlock(&ubi->wl_lock);
1323
1324        /*
1325         * Technically scrubbing is the same as wear-leveling, so it is done
1326         * by the WL worker.
1327         */
1328        return ensure_wear_leveling(ubi, 0);
1329}
1330
1331/**
1332 * ubi_wl_flush - flush all pending works.
1333 * @ubi: UBI device description object
1334 * @vol_id: the volume id to flush for
1335 * @lnum: the logical eraseblock number to flush for
1336 *
1337 * This function executes all pending works for a particular volume id /
1338 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1339 * acts as a wildcard for all of the corresponding volume numbers or logical
1340 * eraseblock numbers. It returns zero in case of success and a negative error
1341 * code in case of failure.
1342 */
1343int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1344{
1345        int err = 0;
1346        int found = 1;
1347
1348        /*
1349         * Erase while the pending works queue is not empty, but not more than
1350         * the number of currently pending works.
1351         */
1352        dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1353               vol_id, lnum, ubi->works_count);
1354
1355        while (found) {
1356                struct ubi_work *wrk, *tmp;
1357                found = 0;
1358
1359                down_read(&ubi->work_sem);
1360                spin_lock(&ubi->wl_lock);
1361                list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1362                        if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1363                            (lnum == UBI_ALL || wrk->lnum == lnum)) {
1364                                list_del(&wrk->list);
1365                                ubi->works_count -= 1;
1366                                ubi_assert(ubi->works_count >= 0);
1367                                spin_unlock(&ubi->wl_lock);
1368
1369                                err = wrk->func(ubi, wrk, 0);
1370                                if (err) {
1371                                        up_read(&ubi->work_sem);
1372                                        return err;
1373                                }
1374
1375                                spin_lock(&ubi->wl_lock);
1376                                found = 1;
1377                                break;
1378                        }
1379                }
1380                spin_unlock(&ubi->wl_lock);
1381                up_read(&ubi->work_sem);
1382        }
1383
1384        /*
1385         * Make sure all the works which have been done in parallel are
1386         * finished.
1387         */
1388        down_write(&ubi->work_sem);
1389        up_write(&ubi->work_sem);
1390
1391        return err;
1392}
1393
1394/**
1395 * tree_destroy - destroy an RB-tree.
1396 * @ubi: UBI device description object
1397 * @root: the root of the tree to destroy
1398 */
1399static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1400{
1401        struct rb_node *rb;
1402        struct ubi_wl_entry *e;
1403
1404        rb = root->rb_node;
1405        while (rb) {
1406                if (rb->rb_left)
1407                        rb = rb->rb_left;
1408                else if (rb->rb_right)
1409                        rb = rb->rb_right;
1410                else {
1411                        e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1412
1413                        rb = rb_parent(rb);
1414                        if (rb) {
1415                                if (rb->rb_left == &e->u.rb)
1416                                        rb->rb_left = NULL;
1417                                else
1418                                        rb->rb_right = NULL;
1419                        }
1420
1421                        wl_entry_destroy(ubi, e);
1422                }
1423        }
1424}
1425
1426/**
1427 * ubi_thread - UBI background thread.
1428 * @u: the UBI device description object pointer
1429 */
1430int ubi_thread(void *u)
1431{
1432        int failures = 0;
1433        struct ubi_device *ubi = u;
1434
1435        ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1436                ubi->bgt_name, task_pid_nr(current));
1437
1438        set_freezable();
1439        for (;;) {
1440                int err;
1441
1442                if (kthread_should_stop())
1443                        break;
1444
1445                if (try_to_freeze())
1446                        continue;
1447
1448                spin_lock(&ubi->wl_lock);
1449                if (list_empty(&ubi->works) || ubi->ro_mode ||
1450                    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1451                        set_current_state(TASK_INTERRUPTIBLE);
1452                        spin_unlock(&ubi->wl_lock);
1453                        schedule();
1454                        continue;
1455                }
1456                spin_unlock(&ubi->wl_lock);
1457
1458                err = do_work(ubi);
1459                if (err) {
1460                        ubi_err(ubi, "%s: work failed with error code %d",
1461                                ubi->bgt_name, err);
1462                        if (failures++ > WL_MAX_FAILURES) {
1463                                /*
1464                                 * Too many failures, disable the thread and
1465                                 * switch to read-only mode.
1466                                 */
1467                                ubi_msg(ubi, "%s: %d consecutive failures",
1468                                        ubi->bgt_name, WL_MAX_FAILURES);
1469                                ubi_ro_mode(ubi);
1470                                ubi->thread_enabled = 0;
1471                                continue;
1472                        }
1473                } else
1474                        failures = 0;
1475
1476                cond_resched();
1477        }
1478
1479        dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1480        return 0;
1481}
1482
1483/**
1484 * shutdown_work - shutdown all pending works.
1485 * @ubi: UBI device description object
1486 */
1487static void shutdown_work(struct ubi_device *ubi)
1488{
1489#ifdef CONFIG_MTD_UBI_FASTMAP
1490        flush_work(&ubi->fm_work);
1491#endif
1492        while (!list_empty(&ubi->works)) {
1493                struct ubi_work *wrk;
1494
1495                wrk = list_entry(ubi->works.next, struct ubi_work, list);
1496                list_del(&wrk->list);
1497                wrk->func(ubi, wrk, 1);
1498                ubi->works_count -= 1;
1499                ubi_assert(ubi->works_count >= 0);
1500        }
1501}
1502
1503/**
1504 * ubi_wl_init - initialize the WL sub-system using attaching information.
1505 * @ubi: UBI device description object
1506 * @ai: attaching information
1507 *
1508 * This function returns zero in case of success, and a negative error code in
1509 * case of failure.
1510 */
1511int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1512{
1513        int err, i, reserved_pebs, found_pebs = 0;
1514        struct rb_node *rb1, *rb2;
1515        struct ubi_ainf_volume *av;
1516        struct ubi_ainf_peb *aeb, *tmp;
1517        struct ubi_wl_entry *e;
1518
1519        ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1520        spin_lock_init(&ubi->wl_lock);
1521        mutex_init(&ubi->move_mutex);
1522        init_rwsem(&ubi->work_sem);
1523        ubi->max_ec = ai->max_ec;
1524        INIT_LIST_HEAD(&ubi->works);
1525
1526        sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1527
1528        err = -ENOMEM;
1529        ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1530        if (!ubi->lookuptbl)
1531                return err;
1532
1533        for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1534                INIT_LIST_HEAD(&ubi->pq[i]);
1535        ubi->pq_head = 0;
1536
1537        ubi->free_count = 0;
1538        list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1539                cond_resched();
1540
1541                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1542                if (!e)
1543                        goto out_free;
1544
1545                e->pnum = aeb->pnum;
1546                e->ec = aeb->ec;
1547                ubi->lookuptbl[e->pnum] = e;
1548                if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1549                        wl_entry_destroy(ubi, e);
1550                        goto out_free;
1551                }
1552
1553                found_pebs++;
1554        }
1555
1556        list_for_each_entry(aeb, &ai->free, u.list) {
1557                cond_resched();
1558
1559                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1560                if (!e)
1561                        goto out_free;
1562
1563                e->pnum = aeb->pnum;
1564                e->ec = aeb->ec;
1565                ubi_assert(e->ec >= 0);
1566
1567                wl_tree_add(e, &ubi->free);
1568                ubi->free_count++;
1569
1570                ubi->lookuptbl[e->pnum] = e;
1571
1572                found_pebs++;
1573        }
1574
1575        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1576                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1577                        cond_resched();
1578
1579                        e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1580                        if (!e)
1581                                goto out_free;
1582
1583                        e->pnum = aeb->pnum;
1584                        e->ec = aeb->ec;
1585                        ubi->lookuptbl[e->pnum] = e;
1586
1587                        if (!aeb->scrub) {
1588                                dbg_wl("add PEB %d EC %d to the used tree",
1589                                       e->pnum, e->ec);
1590                                wl_tree_add(e, &ubi->used);
1591                        } else {
1592                                dbg_wl("add PEB %d EC %d to the scrub tree",
1593                                       e->pnum, e->ec);
1594                                wl_tree_add(e, &ubi->scrub);
1595                        }
1596
1597                        found_pebs++;
1598                }
1599        }
1600
1601        dbg_wl("found %i PEBs", found_pebs);
1602
1603        if (ubi->fm) {
1604                ubi_assert(ubi->good_peb_count ==
1605                           found_pebs + ubi->fm->used_blocks);
1606
1607                for (i = 0; i < ubi->fm->used_blocks; i++) {
1608                        e = ubi->fm->e[i];
1609                        ubi->lookuptbl[e->pnum] = e;
1610                }
1611        }
1612        else
1613                ubi_assert(ubi->good_peb_count == found_pebs);
1614
1615        reserved_pebs = WL_RESERVED_PEBS;
1616        ubi_fastmap_init(ubi, &reserved_pebs);
1617
1618        if (ubi->avail_pebs < reserved_pebs) {
1619                ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1620                        ubi->avail_pebs, reserved_pebs);
1621                if (ubi->corr_peb_count)
1622                        ubi_err(ubi, "%d PEBs are corrupted and not used",
1623                                ubi->corr_peb_count);
1624                err = -ENOSPC;
1625                goto out_free;
1626        }
1627        ubi->avail_pebs -= reserved_pebs;
1628        ubi->rsvd_pebs += reserved_pebs;
1629
1630        /* Schedule wear-leveling if needed */
1631        err = ensure_wear_leveling(ubi, 0);
1632        if (err)
1633                goto out_free;
1634
1635        return 0;
1636
1637out_free:
1638        shutdown_work(ubi);
1639        tree_destroy(ubi, &ubi->used);
1640        tree_destroy(ubi, &ubi->free);
1641        tree_destroy(ubi, &ubi->scrub);
1642        kfree(ubi->lookuptbl);
1643        return err;
1644}
1645
1646/**
1647 * protection_queue_destroy - destroy the protection queue.
1648 * @ubi: UBI device description object
1649 */
1650static void protection_queue_destroy(struct ubi_device *ubi)
1651{
1652        int i;
1653        struct ubi_wl_entry *e, *tmp;
1654
1655        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1656                list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1657                        list_del(&e->u.list);
1658                        wl_entry_destroy(ubi, e);
1659                }
1660        }
1661}
1662
1663/**
1664 * ubi_wl_close - close the wear-leveling sub-system.
1665 * @ubi: UBI device description object
1666 */
1667void ubi_wl_close(struct ubi_device *ubi)
1668{
1669        dbg_wl("close the WL sub-system");
1670        ubi_fastmap_close(ubi);
1671        shutdown_work(ubi);
1672        protection_queue_destroy(ubi);
1673        tree_destroy(ubi, &ubi->used);
1674        tree_destroy(ubi, &ubi->erroneous);
1675        tree_destroy(ubi, &ubi->free);
1676        tree_destroy(ubi, &ubi->scrub);
1677        kfree(ubi->lookuptbl);
1678}
1679
1680/**
1681 * self_check_ec - make sure that the erase counter of a PEB is correct.
1682 * @ubi: UBI device description object
1683 * @pnum: the physical eraseblock number to check
1684 * @ec: the erase counter to check
1685 *
1686 * This function returns zero if the erase counter of physical eraseblock @pnum
1687 * is equivalent to @ec, and a negative error code if not or if an error
1688 * occurred.
1689 */
1690static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1691{
1692        int err;
1693        long long read_ec;
1694        struct ubi_ec_hdr *ec_hdr;
1695
1696        if (!ubi_dbg_chk_gen(ubi))
1697                return 0;
1698
1699        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1700        if (!ec_hdr)
1701                return -ENOMEM;
1702
1703        err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1704        if (err && err != UBI_IO_BITFLIPS) {
1705                /* The header does not have to exist */
1706                err = 0;
1707                goto out_free;
1708        }
1709
1710        read_ec = be64_to_cpu(ec_hdr->ec);
1711        if (ec != read_ec && read_ec - ec > 1) {
1712                ubi_err(ubi, "self-check failed for PEB %d", pnum);
1713                ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1714                dump_stack();
1715                err = 1;
1716        } else
1717                err = 0;
1718
1719out_free:
1720        kfree(ec_hdr);
1721        return err;
1722}
1723
1724/**
1725 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1726 * @ubi: UBI device description object
1727 * @e: the wear-leveling entry to check
1728 * @root: the root of the tree
1729 *
1730 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1731 * is not.
1732 */
1733static int self_check_in_wl_tree(const struct ubi_device *ubi,
1734                                 struct ubi_wl_entry *e, struct rb_root *root)
1735{
1736        if (!ubi_dbg_chk_gen(ubi))
1737                return 0;
1738
1739        if (in_wl_tree(e, root))
1740                return 0;
1741
1742        ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1743                e->pnum, e->ec, root);
1744        dump_stack();
1745        return -EINVAL;
1746}
1747
1748/**
1749 * self_check_in_pq - check if wear-leveling entry is in the protection
1750 *                        queue.
1751 * @ubi: UBI device description object
1752 * @e: the wear-leveling entry to check
1753 *
1754 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1755 */
1756static int self_check_in_pq(const struct ubi_device *ubi,
1757                            struct ubi_wl_entry *e)
1758{
1759        struct ubi_wl_entry *p;
1760        int i;
1761
1762        if (!ubi_dbg_chk_gen(ubi))
1763                return 0;
1764
1765        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1766                list_for_each_entry(p, &ubi->pq[i], u.list)
1767                        if (p == e)
1768                                return 0;
1769
1770        ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
1771                e->pnum, e->ec);
1772        dump_stack();
1773        return -EINVAL;
1774}
1775#ifndef CONFIG_MTD_UBI_FASTMAP
1776static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
1777{
1778        struct ubi_wl_entry *e;
1779
1780        e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1781        self_check_in_wl_tree(ubi, e, &ubi->free);
1782        ubi->free_count--;
1783        ubi_assert(ubi->free_count >= 0);
1784        rb_erase(&e->u.rb, &ubi->free);
1785
1786        return e;
1787}
1788
1789/**
1790 * produce_free_peb - produce a free physical eraseblock.
1791 * @ubi: UBI device description object
1792 *
1793 * This function tries to make a free PEB by means of synchronous execution of
1794 * pending works. This may be needed if, for example the background thread is
1795 * disabled. Returns zero in case of success and a negative error code in case
1796 * of failure.
1797 */
1798static int produce_free_peb(struct ubi_device *ubi)
1799{
1800        int err;
1801
1802        while (!ubi->free.rb_node && ubi->works_count) {
1803                spin_unlock(&ubi->wl_lock);
1804
1805                dbg_wl("do one work synchronously");
1806                err = do_work(ubi);
1807
1808                spin_lock(&ubi->wl_lock);
1809                if (err)
1810                        return err;
1811        }
1812
1813        return 0;
1814}
1815
1816/**
1817 * ubi_wl_get_peb - get a physical eraseblock.
1818 * @ubi: UBI device description object
1819 *
1820 * This function returns a physical eraseblock in case of success and a
1821 * negative error code in case of failure.
1822 * Returns with ubi->fm_eba_sem held in read mode!
1823 */
1824int ubi_wl_get_peb(struct ubi_device *ubi)
1825{
1826        int err;
1827        struct ubi_wl_entry *e;
1828
1829retry:
1830        down_read(&ubi->fm_eba_sem);
1831        spin_lock(&ubi->wl_lock);
1832        if (!ubi->free.rb_node) {
1833                if (ubi->works_count == 0) {
1834                        ubi_err(ubi, "no free eraseblocks");
1835                        ubi_assert(list_empty(&ubi->works));
1836                        spin_unlock(&ubi->wl_lock);
1837                        return -ENOSPC;
1838                }
1839
1840                err = produce_free_peb(ubi);
1841                if (err < 0) {
1842                        spin_unlock(&ubi->wl_lock);
1843                        return err;
1844                }
1845                spin_unlock(&ubi->wl_lock);
1846                up_read(&ubi->fm_eba_sem);
1847                goto retry;
1848
1849        }
1850        e = wl_get_wle(ubi);
1851        prot_queue_add(ubi, e);
1852        spin_unlock(&ubi->wl_lock);
1853
1854        err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
1855                                    ubi->peb_size - ubi->vid_hdr_aloffset);
1856        if (err) {
1857                ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
1858                return err;
1859        }
1860
1861        return e->pnum;
1862}
1863#else
1864#include "fastmap-wl.c"
1865#endif
1866