linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/bitmap.h>
  38#include <linux/crc32.h>
  39#include <linux/ctype.h>
  40#include <linux/debugfs.h>
  41#include <linux/err.h>
  42#include <linux/etherdevice.h>
  43#include <linux/firmware.h>
  44#include <linux/if.h>
  45#include <linux/if_vlan.h>
  46#include <linux/init.h>
  47#include <linux/log2.h>
  48#include <linux/mdio.h>
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/mutex.h>
  52#include <linux/netdevice.h>
  53#include <linux/pci.h>
  54#include <linux/aer.h>
  55#include <linux/rtnetlink.h>
  56#include <linux/sched.h>
  57#include <linux/seq_file.h>
  58#include <linux/sockios.h>
  59#include <linux/vmalloc.h>
  60#include <linux/workqueue.h>
  61#include <net/neighbour.h>
  62#include <net/netevent.h>
  63#include <net/addrconf.h>
  64#include <net/bonding.h>
  65#include <net/addrconf.h>
  66#include <asm/uaccess.h>
  67
  68#include "cxgb4.h"
  69#include "t4_regs.h"
  70#include "t4_values.h"
  71#include "t4_msg.h"
  72#include "t4fw_api.h"
  73#include "t4fw_version.h"
  74#include "cxgb4_dcb.h"
  75#include "cxgb4_debugfs.h"
  76#include "clip_tbl.h"
  77#include "l2t.h"
  78
  79char cxgb4_driver_name[] = KBUILD_MODNAME;
  80
  81#ifdef DRV_VERSION
  82#undef DRV_VERSION
  83#endif
  84#define DRV_VERSION "2.0.0-ko"
  85const char cxgb4_driver_version[] = DRV_VERSION;
  86#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
  87
  88/* Host shadow copy of ingress filter entry.  This is in host native format
  89 * and doesn't match the ordering or bit order, etc. of the hardware of the
  90 * firmware command.  The use of bit-field structure elements is purely to
  91 * remind ourselves of the field size limitations and save memory in the case
  92 * where the filter table is large.
  93 */
  94struct filter_entry {
  95        /* Administrative fields for filter.
  96         */
  97        u32 valid:1;            /* filter allocated and valid */
  98        u32 locked:1;           /* filter is administratively locked */
  99
 100        u32 pending:1;          /* filter action is pending firmware reply */
 101        u32 smtidx:8;           /* Source MAC Table index for smac */
 102        struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
 103
 104        /* The filter itself.  Most of this is a straight copy of information
 105         * provided by the extended ioctl().  Some fields are translated to
 106         * internal forms -- for instance the Ingress Queue ID passed in from
 107         * the ioctl() is translated into the Absolute Ingress Queue ID.
 108         */
 109        struct ch_filter_specification fs;
 110};
 111
 112#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
 113                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
 114                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
 115
 116/* Macros needed to support the PCI Device ID Table ...
 117 */
 118#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
 119        static const struct pci_device_id cxgb4_pci_tbl[] = {
 120#define CH_PCI_DEVICE_ID_FUNCTION 0x4
 121
 122/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 123 * called for both.
 124 */
 125#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
 126
 127#define CH_PCI_ID_TABLE_ENTRY(devid) \
 128                {PCI_VDEVICE(CHELSIO, (devid)), 4}
 129
 130#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
 131                { 0, } \
 132        }
 133
 134#include "t4_pci_id_tbl.h"
 135
 136#define FW4_FNAME "cxgb4/t4fw.bin"
 137#define FW5_FNAME "cxgb4/t5fw.bin"
 138#define FW6_FNAME "cxgb4/t6fw.bin"
 139#define FW4_CFNAME "cxgb4/t4-config.txt"
 140#define FW5_CFNAME "cxgb4/t5-config.txt"
 141#define FW6_CFNAME "cxgb4/t6-config.txt"
 142#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
 143#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
 144#define PHY_AQ1202_DEVICEID 0x4409
 145#define PHY_BCM84834_DEVICEID 0x4486
 146
 147MODULE_DESCRIPTION(DRV_DESC);
 148MODULE_AUTHOR("Chelsio Communications");
 149MODULE_LICENSE("Dual BSD/GPL");
 150MODULE_VERSION(DRV_VERSION);
 151MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
 152MODULE_FIRMWARE(FW4_FNAME);
 153MODULE_FIRMWARE(FW5_FNAME);
 154MODULE_FIRMWARE(FW6_FNAME);
 155
 156/*
 157 * Normally we're willing to become the firmware's Master PF but will be happy
 158 * if another PF has already become the Master and initialized the adapter.
 159 * Setting "force_init" will cause this driver to forcibly establish itself as
 160 * the Master PF and initialize the adapter.
 161 */
 162static uint force_init;
 163
 164module_param(force_init, uint, 0644);
 165MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
 166                 "deprecated parameter");
 167
 168static int dflt_msg_enable = DFLT_MSG_ENABLE;
 169
 170module_param(dflt_msg_enable, int, 0644);
 171MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
 172                 "deprecated parameter");
 173
 174/*
 175 * The driver uses the best interrupt scheme available on a platform in the
 176 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 177 * of these schemes the driver may consider as follows:
 178 *
 179 * msi = 2: choose from among all three options
 180 * msi = 1: only consider MSI and INTx interrupts
 181 * msi = 0: force INTx interrupts
 182 */
 183static int msi = 2;
 184
 185module_param(msi, int, 0644);
 186MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
 187
 188/*
 189 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 190 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 191 * boundaries.  This is a requirement for many architectures which will throw
 192 * a machine check fault if an attempt is made to access one of the 4-byte IP
 193 * header fields on a non-4-byte boundary.  And it's a major performance issue
 194 * even on some architectures which allow it like some implementations of the
 195 * x86 ISA.  However, some architectures don't mind this and for some very
 196 * edge-case performance sensitive applications (like forwarding large volumes
 197 * of small packets), setting this DMA offset to 0 will decrease the number of
 198 * PCI-E Bus transfers enough to measurably affect performance.
 199 */
 200static int rx_dma_offset = 2;
 201
 202#ifdef CONFIG_PCI_IOV
 203/* Configure the number of PCI-E Virtual Function which are to be instantiated
 204 * on SR-IOV Capable Physical Functions.
 205 */
 206static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
 207
 208module_param_array(num_vf, uint, NULL, 0644);
 209MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
 210#endif
 211
 212/* TX Queue select used to determine what algorithm to use for selecting TX
 213 * queue. Select between the kernel provided function (select_queue=0) or user
 214 * cxgb_select_queue function (select_queue=1)
 215 *
 216 * Default: select_queue=0
 217 */
 218static int select_queue;
 219module_param(select_queue, int, 0644);
 220MODULE_PARM_DESC(select_queue,
 221                 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
 222
 223static struct dentry *cxgb4_debugfs_root;
 224
 225static LIST_HEAD(adapter_list);
 226static DEFINE_MUTEX(uld_mutex);
 227/* Adapter list to be accessed from atomic context */
 228static LIST_HEAD(adap_rcu_list);
 229static DEFINE_SPINLOCK(adap_rcu_lock);
 230static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
 231static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
 232
 233static void link_report(struct net_device *dev)
 234{
 235        if (!netif_carrier_ok(dev))
 236                netdev_info(dev, "link down\n");
 237        else {
 238                static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
 239
 240                const char *s;
 241                const struct port_info *p = netdev_priv(dev);
 242
 243                switch (p->link_cfg.speed) {
 244                case 10000:
 245                        s = "10Gbps";
 246                        break;
 247                case 1000:
 248                        s = "1000Mbps";
 249                        break;
 250                case 100:
 251                        s = "100Mbps";
 252                        break;
 253                case 40000:
 254                        s = "40Gbps";
 255                        break;
 256                default:
 257                        pr_info("%s: unsupported speed: %d\n",
 258                                dev->name, p->link_cfg.speed);
 259                        return;
 260                }
 261
 262                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
 263                            fc[p->link_cfg.fc]);
 264        }
 265}
 266
 267#ifdef CONFIG_CHELSIO_T4_DCB
 268/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
 269static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
 270{
 271        struct port_info *pi = netdev_priv(dev);
 272        struct adapter *adap = pi->adapter;
 273        struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
 274        int i;
 275
 276        /* We use a simple mapping of Port TX Queue Index to DCB
 277         * Priority when we're enabling DCB.
 278         */
 279        for (i = 0; i < pi->nqsets; i++, txq++) {
 280                u32 name, value;
 281                int err;
 282
 283                name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 284                        FW_PARAMS_PARAM_X_V(
 285                                FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
 286                        FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
 287                value = enable ? i : 0xffffffff;
 288
 289                /* Since we can be called while atomic (from "interrupt
 290                 * level") we need to issue the Set Parameters Commannd
 291                 * without sleeping (timeout < 0).
 292                 */
 293                err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
 294                                            &name, &value,
 295                                            -FW_CMD_MAX_TIMEOUT);
 296
 297                if (err)
 298                        dev_err(adap->pdev_dev,
 299                                "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
 300                                enable ? "set" : "unset", pi->port_id, i, -err);
 301                else
 302                        txq->dcb_prio = value;
 303        }
 304}
 305#endif /* CONFIG_CHELSIO_T4_DCB */
 306
 307int cxgb4_dcb_enabled(const struct net_device *dev)
 308{
 309#ifdef CONFIG_CHELSIO_T4_DCB
 310        struct port_info *pi = netdev_priv(dev);
 311
 312        if (!pi->dcb.enabled)
 313                return 0;
 314
 315        return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
 316                (pi->dcb.state == CXGB4_DCB_STATE_HOST));
 317#else
 318        return 0;
 319#endif
 320}
 321EXPORT_SYMBOL(cxgb4_dcb_enabled);
 322
 323void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
 324{
 325        struct net_device *dev = adapter->port[port_id];
 326
 327        /* Skip changes from disabled ports. */
 328        if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
 329                if (link_stat)
 330                        netif_carrier_on(dev);
 331                else {
 332#ifdef CONFIG_CHELSIO_T4_DCB
 333                        if (cxgb4_dcb_enabled(dev)) {
 334                                cxgb4_dcb_state_init(dev);
 335                                dcb_tx_queue_prio_enable(dev, false);
 336                        }
 337#endif /* CONFIG_CHELSIO_T4_DCB */
 338                        netif_carrier_off(dev);
 339                }
 340
 341                link_report(dev);
 342        }
 343}
 344
 345void t4_os_portmod_changed(const struct adapter *adap, int port_id)
 346{
 347        static const char *mod_str[] = {
 348                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 349        };
 350
 351        const struct net_device *dev = adap->port[port_id];
 352        const struct port_info *pi = netdev_priv(dev);
 353
 354        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 355                netdev_info(dev, "port module unplugged\n");
 356        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 357                netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
 358        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 359                netdev_info(dev, "%s: unsupported port module inserted\n",
 360                            dev->name);
 361        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 362                netdev_info(dev, "%s: unknown port module inserted\n",
 363                            dev->name);
 364        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 365                netdev_info(dev, "%s: transceiver module error\n", dev->name);
 366        else
 367                netdev_info(dev, "%s: unknown module type %d inserted\n",
 368                            dev->name, pi->mod_type);
 369}
 370
 371int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
 372module_param(dbfifo_int_thresh, int, 0644);
 373MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
 374
 375/*
 376 * usecs to sleep while draining the dbfifo
 377 */
 378static int dbfifo_drain_delay = 1000;
 379module_param(dbfifo_drain_delay, int, 0644);
 380MODULE_PARM_DESC(dbfifo_drain_delay,
 381                 "usecs to sleep while draining the dbfifo");
 382
 383static inline int cxgb4_set_addr_hash(struct port_info *pi)
 384{
 385        struct adapter *adap = pi->adapter;
 386        u64 vec = 0;
 387        bool ucast = false;
 388        struct hash_mac_addr *entry;
 389
 390        /* Calculate the hash vector for the updated list and program it */
 391        list_for_each_entry(entry, &adap->mac_hlist, list) {
 392                ucast |= is_unicast_ether_addr(entry->addr);
 393                vec |= (1ULL << hash_mac_addr(entry->addr));
 394        }
 395        return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
 396                                vec, false);
 397}
 398
 399static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 400{
 401        struct port_info *pi = netdev_priv(netdev);
 402        struct adapter *adap = pi->adapter;
 403        int ret;
 404        u64 mhash = 0;
 405        u64 uhash = 0;
 406        bool free = false;
 407        bool ucast = is_unicast_ether_addr(mac_addr);
 408        const u8 *maclist[1] = {mac_addr};
 409        struct hash_mac_addr *new_entry;
 410
 411        ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
 412                                NULL, ucast ? &uhash : &mhash, false);
 413        if (ret < 0)
 414                goto out;
 415        /* if hash != 0, then add the addr to hash addr list
 416         * so on the end we will calculate the hash for the
 417         * list and program it
 418         */
 419        if (uhash || mhash) {
 420                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 421                if (!new_entry)
 422                        return -ENOMEM;
 423                ether_addr_copy(new_entry->addr, mac_addr);
 424                list_add_tail(&new_entry->list, &adap->mac_hlist);
 425                ret = cxgb4_set_addr_hash(pi);
 426        }
 427out:
 428        return ret < 0 ? ret : 0;
 429}
 430
 431static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 432{
 433        struct port_info *pi = netdev_priv(netdev);
 434        struct adapter *adap = pi->adapter;
 435        int ret;
 436        const u8 *maclist[1] = {mac_addr};
 437        struct hash_mac_addr *entry, *tmp;
 438
 439        /* If the MAC address to be removed is in the hash addr
 440         * list, delete it from the list and update hash vector
 441         */
 442        list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
 443                if (ether_addr_equal(entry->addr, mac_addr)) {
 444                        list_del(&entry->list);
 445                        kfree(entry);
 446                        return cxgb4_set_addr_hash(pi);
 447                }
 448        }
 449
 450        ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
 451        return ret < 0 ? -EINVAL : 0;
 452}
 453
 454/*
 455 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 456 * If @mtu is -1 it is left unchanged.
 457 */
 458static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 459{
 460        struct port_info *pi = netdev_priv(dev);
 461        struct adapter *adapter = pi->adapter;
 462
 463        if (!(dev->flags & IFF_PROMISC)) {
 464                __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 465                if (!(dev->flags & IFF_ALLMULTI))
 466                        __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 467        }
 468
 469        return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
 470                             (dev->flags & IFF_PROMISC) ? 1 : 0,
 471                             (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
 472                             sleep_ok);
 473}
 474
 475/**
 476 *      link_start - enable a port
 477 *      @dev: the port to enable
 478 *
 479 *      Performs the MAC and PHY actions needed to enable a port.
 480 */
 481static int link_start(struct net_device *dev)
 482{
 483        int ret;
 484        struct port_info *pi = netdev_priv(dev);
 485        unsigned int mb = pi->adapter->pf;
 486
 487        /*
 488         * We do not set address filters and promiscuity here, the stack does
 489         * that step explicitly.
 490         */
 491        ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
 492                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
 493        if (ret == 0) {
 494                ret = t4_change_mac(pi->adapter, mb, pi->viid,
 495                                    pi->xact_addr_filt, dev->dev_addr, true,
 496                                    true);
 497                if (ret >= 0) {
 498                        pi->xact_addr_filt = ret;
 499                        ret = 0;
 500                }
 501        }
 502        if (ret == 0)
 503                ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
 504                                    &pi->link_cfg);
 505        if (ret == 0) {
 506                local_bh_disable();
 507                ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
 508                                          true, CXGB4_DCB_ENABLED);
 509                local_bh_enable();
 510        }
 511
 512        return ret;
 513}
 514
 515#ifdef CONFIG_CHELSIO_T4_DCB
 516/* Handle a Data Center Bridging update message from the firmware. */
 517static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
 518{
 519        int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
 520        struct net_device *dev = adap->port[adap->chan_map[port]];
 521        int old_dcb_enabled = cxgb4_dcb_enabled(dev);
 522        int new_dcb_enabled;
 523
 524        cxgb4_dcb_handle_fw_update(adap, pcmd);
 525        new_dcb_enabled = cxgb4_dcb_enabled(dev);
 526
 527        /* If the DCB has become enabled or disabled on the port then we're
 528         * going to need to set up/tear down DCB Priority parameters for the
 529         * TX Queues associated with the port.
 530         */
 531        if (new_dcb_enabled != old_dcb_enabled)
 532                dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
 533}
 534#endif /* CONFIG_CHELSIO_T4_DCB */
 535
 536/* Clear a filter and release any of its resources that we own.  This also
 537 * clears the filter's "pending" status.
 538 */
 539static void clear_filter(struct adapter *adap, struct filter_entry *f)
 540{
 541        /* If the new or old filter have loopback rewriteing rules then we'll
 542         * need to free any existing Layer Two Table (L2T) entries of the old
 543         * filter rule.  The firmware will handle freeing up any Source MAC
 544         * Table (SMT) entries used for rewriting Source MAC Addresses in
 545         * loopback rules.
 546         */
 547        if (f->l2t)
 548                cxgb4_l2t_release(f->l2t);
 549
 550        /* The zeroing of the filter rule below clears the filter valid,
 551         * pending, locked flags, l2t pointer, etc. so it's all we need for
 552         * this operation.
 553         */
 554        memset(f, 0, sizeof(*f));
 555}
 556
 557/* Handle a filter write/deletion reply.
 558 */
 559static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
 560{
 561        unsigned int idx = GET_TID(rpl);
 562        unsigned int nidx = idx - adap->tids.ftid_base;
 563        unsigned int ret;
 564        struct filter_entry *f;
 565
 566        if (idx >= adap->tids.ftid_base && nidx <
 567           (adap->tids.nftids + adap->tids.nsftids)) {
 568                idx = nidx;
 569                ret = TCB_COOKIE_G(rpl->cookie);
 570                f = &adap->tids.ftid_tab[idx];
 571
 572                if (ret == FW_FILTER_WR_FLT_DELETED) {
 573                        /* Clear the filter when we get confirmation from the
 574                         * hardware that the filter has been deleted.
 575                         */
 576                        clear_filter(adap, f);
 577                } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
 578                        dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
 579                                idx);
 580                        clear_filter(adap, f);
 581                } else if (ret == FW_FILTER_WR_FLT_ADDED) {
 582                        f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
 583                        f->pending = 0;  /* asynchronous setup completed */
 584                        f->valid = 1;
 585                } else {
 586                        /* Something went wrong.  Issue a warning about the
 587                         * problem and clear everything out.
 588                         */
 589                        dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
 590                                idx, ret);
 591                        clear_filter(adap, f);
 592                }
 593        }
 594}
 595
 596/* Response queue handler for the FW event queue.
 597 */
 598static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
 599                          const struct pkt_gl *gl)
 600{
 601        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 602
 603        rsp++;                                          /* skip RSS header */
 604
 605        /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 606         */
 607        if (unlikely(opcode == CPL_FW4_MSG &&
 608           ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
 609                rsp++;
 610                opcode = ((const struct rss_header *)rsp)->opcode;
 611                rsp++;
 612                if (opcode != CPL_SGE_EGR_UPDATE) {
 613                        dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 614                                , opcode);
 615                        goto out;
 616                }
 617        }
 618
 619        if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
 620                const struct cpl_sge_egr_update *p = (void *)rsp;
 621                unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
 622                struct sge_txq *txq;
 623
 624                txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
 625                txq->restarts++;
 626                if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
 627                        struct sge_eth_txq *eq;
 628
 629                        eq = container_of(txq, struct sge_eth_txq, q);
 630                        netif_tx_wake_queue(eq->txq);
 631                } else {
 632                        struct sge_ofld_txq *oq;
 633
 634                        oq = container_of(txq, struct sge_ofld_txq, q);
 635                        tasklet_schedule(&oq->qresume_tsk);
 636                }
 637        } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
 638                const struct cpl_fw6_msg *p = (void *)rsp;
 639
 640#ifdef CONFIG_CHELSIO_T4_DCB
 641                const struct fw_port_cmd *pcmd = (const void *)p->data;
 642                unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
 643                unsigned int action =
 644                        FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
 645
 646                if (cmd == FW_PORT_CMD &&
 647                    action == FW_PORT_ACTION_GET_PORT_INFO) {
 648                        int port = FW_PORT_CMD_PORTID_G(
 649                                        be32_to_cpu(pcmd->op_to_portid));
 650                        struct net_device *dev =
 651                                q->adap->port[q->adap->chan_map[port]];
 652                        int state_input = ((pcmd->u.info.dcbxdis_pkd &
 653                                            FW_PORT_CMD_DCBXDIS_F)
 654                                           ? CXGB4_DCB_INPUT_FW_DISABLED
 655                                           : CXGB4_DCB_INPUT_FW_ENABLED);
 656
 657                        cxgb4_dcb_state_fsm(dev, state_input);
 658                }
 659
 660                if (cmd == FW_PORT_CMD &&
 661                    action == FW_PORT_ACTION_L2_DCB_CFG)
 662                        dcb_rpl(q->adap, pcmd);
 663                else
 664#endif
 665                        if (p->type == 0)
 666                                t4_handle_fw_rpl(q->adap, p->data);
 667        } else if (opcode == CPL_L2T_WRITE_RPL) {
 668                const struct cpl_l2t_write_rpl *p = (void *)rsp;
 669
 670                do_l2t_write_rpl(q->adap, p);
 671        } else if (opcode == CPL_SET_TCB_RPL) {
 672                const struct cpl_set_tcb_rpl *p = (void *)rsp;
 673
 674                filter_rpl(q->adap, p);
 675        } else
 676                dev_err(q->adap->pdev_dev,
 677                        "unexpected CPL %#x on FW event queue\n", opcode);
 678out:
 679        return 0;
 680}
 681
 682/* Flush the aggregated lro sessions */
 683static void uldrx_flush_handler(struct sge_rspq *q)
 684{
 685        if (ulds[q->uld].lro_flush)
 686                ulds[q->uld].lro_flush(&q->lro_mgr);
 687}
 688
 689/**
 690 *      uldrx_handler - response queue handler for ULD queues
 691 *      @q: the response queue that received the packet
 692 *      @rsp: the response queue descriptor holding the offload message
 693 *      @gl: the gather list of packet fragments
 694 *
 695 *      Deliver an ingress offload packet to a ULD.  All processing is done by
 696 *      the ULD, we just maintain statistics.
 697 */
 698static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
 699                         const struct pkt_gl *gl)
 700{
 701        struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
 702        int ret;
 703
 704        /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
 705         */
 706        if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
 707            ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
 708                rsp += 2;
 709
 710        if (q->flush_handler)
 711                ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
 712                                                  rsp, gl, &q->lro_mgr,
 713                                                  &q->napi);
 714        else
 715                ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
 716                                              rsp, gl);
 717
 718        if (ret) {
 719                rxq->stats.nomem++;
 720                return -1;
 721        }
 722
 723        if (gl == NULL)
 724                rxq->stats.imm++;
 725        else if (gl == CXGB4_MSG_AN)
 726                rxq->stats.an++;
 727        else
 728                rxq->stats.pkts++;
 729        return 0;
 730}
 731
 732static void disable_msi(struct adapter *adapter)
 733{
 734        if (adapter->flags & USING_MSIX) {
 735                pci_disable_msix(adapter->pdev);
 736                adapter->flags &= ~USING_MSIX;
 737        } else if (adapter->flags & USING_MSI) {
 738                pci_disable_msi(adapter->pdev);
 739                adapter->flags &= ~USING_MSI;
 740        }
 741}
 742
 743/*
 744 * Interrupt handler for non-data events used with MSI-X.
 745 */
 746static irqreturn_t t4_nondata_intr(int irq, void *cookie)
 747{
 748        struct adapter *adap = cookie;
 749        u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
 750
 751        if (v & PFSW_F) {
 752                adap->swintr = 1;
 753                t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
 754        }
 755        if (adap->flags & MASTER_PF)
 756                t4_slow_intr_handler(adap);
 757        return IRQ_HANDLED;
 758}
 759
 760/*
 761 * Name the MSI-X interrupts.
 762 */
 763static void name_msix_vecs(struct adapter *adap)
 764{
 765        int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
 766
 767        /* non-data interrupts */
 768        snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
 769
 770        /* FW events */
 771        snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
 772                 adap->port[0]->name);
 773
 774        /* Ethernet queues */
 775        for_each_port(adap, j) {
 776                struct net_device *d = adap->port[j];
 777                const struct port_info *pi = netdev_priv(d);
 778
 779                for (i = 0; i < pi->nqsets; i++, msi_idx++)
 780                        snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
 781                                 d->name, i);
 782        }
 783
 784        /* offload queues */
 785        for_each_iscsirxq(&adap->sge, i)
 786                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
 787                         adap->port[0]->name, i);
 788
 789        for_each_iscsitrxq(&adap->sge, i)
 790                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
 791                         adap->port[0]->name, i);
 792
 793        for_each_rdmarxq(&adap->sge, i)
 794                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
 795                         adap->port[0]->name, i);
 796
 797        for_each_rdmaciq(&adap->sge, i)
 798                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
 799                         adap->port[0]->name, i);
 800}
 801
 802static int request_msix_queue_irqs(struct adapter *adap)
 803{
 804        struct sge *s = &adap->sge;
 805        int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
 806        int iscsitqidx = 0;
 807        int msi_index = 2;
 808
 809        err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
 810                          adap->msix_info[1].desc, &s->fw_evtq);
 811        if (err)
 812                return err;
 813
 814        for_each_ethrxq(s, ethqidx) {
 815                err = request_irq(adap->msix_info[msi_index].vec,
 816                                  t4_sge_intr_msix, 0,
 817                                  adap->msix_info[msi_index].desc,
 818                                  &s->ethrxq[ethqidx].rspq);
 819                if (err)
 820                        goto unwind;
 821                msi_index++;
 822        }
 823        for_each_iscsirxq(s, iscsiqidx) {
 824                err = request_irq(adap->msix_info[msi_index].vec,
 825                                  t4_sge_intr_msix, 0,
 826                                  adap->msix_info[msi_index].desc,
 827                                  &s->iscsirxq[iscsiqidx].rspq);
 828                if (err)
 829                        goto unwind;
 830                msi_index++;
 831        }
 832        for_each_iscsitrxq(s, iscsitqidx) {
 833                err = request_irq(adap->msix_info[msi_index].vec,
 834                                  t4_sge_intr_msix, 0,
 835                                  adap->msix_info[msi_index].desc,
 836                                  &s->iscsitrxq[iscsitqidx].rspq);
 837                if (err)
 838                        goto unwind;
 839                msi_index++;
 840        }
 841        for_each_rdmarxq(s, rdmaqidx) {
 842                err = request_irq(adap->msix_info[msi_index].vec,
 843                                  t4_sge_intr_msix, 0,
 844                                  adap->msix_info[msi_index].desc,
 845                                  &s->rdmarxq[rdmaqidx].rspq);
 846                if (err)
 847                        goto unwind;
 848                msi_index++;
 849        }
 850        for_each_rdmaciq(s, rdmaciqqidx) {
 851                err = request_irq(adap->msix_info[msi_index].vec,
 852                                  t4_sge_intr_msix, 0,
 853                                  adap->msix_info[msi_index].desc,
 854                                  &s->rdmaciq[rdmaciqqidx].rspq);
 855                if (err)
 856                        goto unwind;
 857                msi_index++;
 858        }
 859        return 0;
 860
 861unwind:
 862        while (--rdmaciqqidx >= 0)
 863                free_irq(adap->msix_info[--msi_index].vec,
 864                         &s->rdmaciq[rdmaciqqidx].rspq);
 865        while (--rdmaqidx >= 0)
 866                free_irq(adap->msix_info[--msi_index].vec,
 867                         &s->rdmarxq[rdmaqidx].rspq);
 868        while (--iscsitqidx >= 0)
 869                free_irq(adap->msix_info[--msi_index].vec,
 870                         &s->iscsitrxq[iscsitqidx].rspq);
 871        while (--iscsiqidx >= 0)
 872                free_irq(adap->msix_info[--msi_index].vec,
 873                         &s->iscsirxq[iscsiqidx].rspq);
 874        while (--ethqidx >= 0)
 875                free_irq(adap->msix_info[--msi_index].vec,
 876                         &s->ethrxq[ethqidx].rspq);
 877        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 878        return err;
 879}
 880
 881static void free_msix_queue_irqs(struct adapter *adap)
 882{
 883        int i, msi_index = 2;
 884        struct sge *s = &adap->sge;
 885
 886        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 887        for_each_ethrxq(s, i)
 888                free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
 889        for_each_iscsirxq(s, i)
 890                free_irq(adap->msix_info[msi_index++].vec,
 891                         &s->iscsirxq[i].rspq);
 892        for_each_iscsitrxq(s, i)
 893                free_irq(adap->msix_info[msi_index++].vec,
 894                         &s->iscsitrxq[i].rspq);
 895        for_each_rdmarxq(s, i)
 896                free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
 897        for_each_rdmaciq(s, i)
 898                free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
 899}
 900
 901/**
 902 *      cxgb4_write_rss - write the RSS table for a given port
 903 *      @pi: the port
 904 *      @queues: array of queue indices for RSS
 905 *
 906 *      Sets up the portion of the HW RSS table for the port's VI to distribute
 907 *      packets to the Rx queues in @queues.
 908 *      Should never be called before setting up sge eth rx queues
 909 */
 910int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
 911{
 912        u16 *rss;
 913        int i, err;
 914        struct adapter *adapter = pi->adapter;
 915        const struct sge_eth_rxq *rxq;
 916
 917        rxq = &adapter->sge.ethrxq[pi->first_qset];
 918        rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
 919        if (!rss)
 920                return -ENOMEM;
 921
 922        /* map the queue indices to queue ids */
 923        for (i = 0; i < pi->rss_size; i++, queues++)
 924                rss[i] = rxq[*queues].rspq.abs_id;
 925
 926        err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
 927                                  pi->rss_size, rss, pi->rss_size);
 928        /* If Tunnel All Lookup isn't specified in the global RSS
 929         * Configuration, then we need to specify a default Ingress
 930         * Queue for any ingress packets which aren't hashed.  We'll
 931         * use our first ingress queue ...
 932         */
 933        if (!err)
 934                err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
 935                                       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
 936                                       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
 937                                       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
 938                                       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
 939                                       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
 940                                       rss[0]);
 941        kfree(rss);
 942        return err;
 943}
 944
 945/**
 946 *      setup_rss - configure RSS
 947 *      @adap: the adapter
 948 *
 949 *      Sets up RSS for each port.
 950 */
 951static int setup_rss(struct adapter *adap)
 952{
 953        int i, j, err;
 954
 955        for_each_port(adap, i) {
 956                const struct port_info *pi = adap2pinfo(adap, i);
 957
 958                /* Fill default values with equal distribution */
 959                for (j = 0; j < pi->rss_size; j++)
 960                        pi->rss[j] = j % pi->nqsets;
 961
 962                err = cxgb4_write_rss(pi, pi->rss);
 963                if (err)
 964                        return err;
 965        }
 966        return 0;
 967}
 968
 969/*
 970 * Return the channel of the ingress queue with the given qid.
 971 */
 972static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
 973{
 974        qid -= p->ingr_start;
 975        return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
 976}
 977
 978/*
 979 * Wait until all NAPI handlers are descheduled.
 980 */
 981static void quiesce_rx(struct adapter *adap)
 982{
 983        int i;
 984
 985        for (i = 0; i < adap->sge.ingr_sz; i++) {
 986                struct sge_rspq *q = adap->sge.ingr_map[i];
 987
 988                if (q && q->handler) {
 989                        napi_disable(&q->napi);
 990                        local_bh_disable();
 991                        while (!cxgb_poll_lock_napi(q))
 992                                mdelay(1);
 993                        local_bh_enable();
 994                }
 995
 996        }
 997}
 998
 999/* Disable interrupt and napi handler */
1000static void disable_interrupts(struct adapter *adap)
1001{
1002        if (adap->flags & FULL_INIT_DONE) {
1003                t4_intr_disable(adap);
1004                if (adap->flags & USING_MSIX) {
1005                        free_msix_queue_irqs(adap);
1006                        free_irq(adap->msix_info[0].vec, adap);
1007                } else {
1008                        free_irq(adap->pdev->irq, adap);
1009                }
1010                quiesce_rx(adap);
1011        }
1012}
1013
1014/*
1015 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1016 */
1017static void enable_rx(struct adapter *adap)
1018{
1019        int i;
1020
1021        for (i = 0; i < adap->sge.ingr_sz; i++) {
1022                struct sge_rspq *q = adap->sge.ingr_map[i];
1023
1024                if (!q)
1025                        continue;
1026                if (q->handler) {
1027                        cxgb_busy_poll_init_lock(q);
1028                        napi_enable(&q->napi);
1029                }
1030                /* 0-increment GTS to start the timer and enable interrupts */
1031                t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1032                             SEINTARM_V(q->intr_params) |
1033                             INGRESSQID_V(q->cntxt_id));
1034        }
1035}
1036
1037static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1038                           unsigned int nq, unsigned int per_chan, int msi_idx,
1039                           u16 *ids, bool lro)
1040{
1041        int i, err;
1042
1043        for (i = 0; i < nq; i++, q++) {
1044                if (msi_idx > 0)
1045                        msi_idx++;
1046                err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1047                                       adap->port[i / per_chan],
1048                                       msi_idx, q->fl.size ? &q->fl : NULL,
1049                                       uldrx_handler,
1050                                       lro ? uldrx_flush_handler : NULL,
1051                                       0);
1052                if (err)
1053                        return err;
1054                memset(&q->stats, 0, sizeof(q->stats));
1055                if (ids)
1056                        ids[i] = q->rspq.abs_id;
1057        }
1058        return 0;
1059}
1060
1061/**
1062 *      setup_sge_queues - configure SGE Tx/Rx/response queues
1063 *      @adap: the adapter
1064 *
1065 *      Determines how many sets of SGE queues to use and initializes them.
1066 *      We support multiple queue sets per port if we have MSI-X, otherwise
1067 *      just one queue set per port.
1068 */
1069static int setup_sge_queues(struct adapter *adap)
1070{
1071        int err, msi_idx, i, j;
1072        struct sge *s = &adap->sge;
1073
1074        bitmap_zero(s->starving_fl, s->egr_sz);
1075        bitmap_zero(s->txq_maperr, s->egr_sz);
1076
1077        if (adap->flags & USING_MSIX)
1078                msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1079        else {
1080                err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1081                                       NULL, NULL, NULL, -1);
1082                if (err)
1083                        return err;
1084                msi_idx = -((int)s->intrq.abs_id + 1);
1085        }
1086
1087        /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1088         * don't forget to update the following which need to be
1089         * synchronized to and changes here.
1090         *
1091         * 1. The calculations of MAX_INGQ in cxgb4.h.
1092         *
1093         * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1094         *    to accommodate any new/deleted Ingress Queues
1095         *    which need MSI-X Vectors.
1096         *
1097         * 3. Update sge_qinfo_show() to include information on the
1098         *    new/deleted queues.
1099         */
1100        err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1101                               msi_idx, NULL, fwevtq_handler, NULL, -1);
1102        if (err) {
1103freeout:        t4_free_sge_resources(adap);
1104                return err;
1105        }
1106
1107        for_each_port(adap, i) {
1108                struct net_device *dev = adap->port[i];
1109                struct port_info *pi = netdev_priv(dev);
1110                struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1111                struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1112
1113                for (j = 0; j < pi->nqsets; j++, q++) {
1114                        if (msi_idx > 0)
1115                                msi_idx++;
1116                        err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1117                                               msi_idx, &q->fl,
1118                                               t4_ethrx_handler,
1119                                               NULL,
1120                                               t4_get_mps_bg_map(adap,
1121                                                                 pi->tx_chan));
1122                        if (err)
1123                                goto freeout;
1124                        q->rspq.idx = j;
1125                        memset(&q->stats, 0, sizeof(q->stats));
1126                }
1127                for (j = 0; j < pi->nqsets; j++, t++) {
1128                        err = t4_sge_alloc_eth_txq(adap, t, dev,
1129                                        netdev_get_tx_queue(dev, j),
1130                                        s->fw_evtq.cntxt_id);
1131                        if (err)
1132                                goto freeout;
1133                }
1134        }
1135
1136        j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1137        for_each_iscsirxq(s, i) {
1138                err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1139                                            adap->port[i / j],
1140                                            s->fw_evtq.cntxt_id);
1141                if (err)
1142                        goto freeout;
1143        }
1144
1145#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
1146        err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids, lro); \
1147        if (err) \
1148                goto freeout; \
1149        if (msi_idx > 0) \
1150                msi_idx += nq; \
1151} while (0)
1152
1153        ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1154        ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1155        ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
1156        j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1157        ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
1158
1159#undef ALLOC_OFLD_RXQS
1160
1161        for_each_port(adap, i) {
1162                /*
1163                 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1164                 * have RDMA queues, and that's the right value.
1165                 */
1166                err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1167                                            s->fw_evtq.cntxt_id,
1168                                            s->rdmarxq[i].rspq.cntxt_id);
1169                if (err)
1170                        goto freeout;
1171        }
1172
1173        t4_write_reg(adap, is_t4(adap->params.chip) ?
1174                                MPS_TRC_RSS_CONTROL_A :
1175                                MPS_T5_TRC_RSS_CONTROL_A,
1176                     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1177                     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1178        return 0;
1179}
1180
1181/*
1182 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1183 * The allocated memory is cleared.
1184 */
1185void *t4_alloc_mem(size_t size)
1186{
1187        void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1188
1189        if (!p)
1190                p = vzalloc(size);
1191        return p;
1192}
1193
1194/*
1195 * Free memory allocated through alloc_mem().
1196 */
1197void t4_free_mem(void *addr)
1198{
1199        kvfree(addr);
1200}
1201
1202/* Send a Work Request to write the filter at a specified index.  We construct
1203 * a Firmware Filter Work Request to have the work done and put the indicated
1204 * filter into "pending" mode which will prevent any further actions against
1205 * it till we get a reply from the firmware on the completion status of the
1206 * request.
1207 */
1208static int set_filter_wr(struct adapter *adapter, int fidx)
1209{
1210        struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1211        struct sk_buff *skb;
1212        struct fw_filter_wr *fwr;
1213        unsigned int ftid;
1214
1215        skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1216        if (!skb)
1217                return -ENOMEM;
1218
1219        /* If the new filter requires loopback Destination MAC and/or VLAN
1220         * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1221         * the filter.
1222         */
1223        if (f->fs.newdmac || f->fs.newvlan) {
1224                /* allocate L2T entry for new filter */
1225                f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1226                                                f->fs.eport, f->fs.dmac);
1227                if (f->l2t == NULL) {
1228                        kfree_skb(skb);
1229                        return -ENOMEM;
1230                }
1231        }
1232
1233        ftid = adapter->tids.ftid_base + fidx;
1234
1235        fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1236        memset(fwr, 0, sizeof(*fwr));
1237
1238        /* It would be nice to put most of the following in t4_hw.c but most
1239         * of the work is translating the cxgbtool ch_filter_specification
1240         * into the Work Request and the definition of that structure is
1241         * currently in cxgbtool.h which isn't appropriate to pull into the
1242         * common code.  We may eventually try to come up with a more neutral
1243         * filter specification structure but for now it's easiest to simply
1244         * put this fairly direct code in line ...
1245         */
1246        fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1247        fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1248        fwr->tid_to_iq =
1249                htonl(FW_FILTER_WR_TID_V(ftid) |
1250                      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1251                      FW_FILTER_WR_NOREPLY_V(0) |
1252                      FW_FILTER_WR_IQ_V(f->fs.iq));
1253        fwr->del_filter_to_l2tix =
1254                htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1255                      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1256                      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1257                      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1258                      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1259                      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1260                      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1261                      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1262                      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1263                                             f->fs.newvlan == VLAN_REWRITE) |
1264                      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1265                                            f->fs.newvlan == VLAN_REWRITE) |
1266                      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1267                      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1268                      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1269                      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1270        fwr->ethtype = htons(f->fs.val.ethtype);
1271        fwr->ethtypem = htons(f->fs.mask.ethtype);
1272        fwr->frag_to_ovlan_vldm =
1273                (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1274                 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1275                 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1276                 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1277                 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1278                 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1279        fwr->smac_sel = 0;
1280        fwr->rx_chan_rx_rpl_iq =
1281                htons(FW_FILTER_WR_RX_CHAN_V(0) |
1282                      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1283        fwr->maci_to_matchtypem =
1284                htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1285                      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1286                      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1287                      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1288                      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1289                      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1290                      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1291                      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1292        fwr->ptcl = f->fs.val.proto;
1293        fwr->ptclm = f->fs.mask.proto;
1294        fwr->ttyp = f->fs.val.tos;
1295        fwr->ttypm = f->fs.mask.tos;
1296        fwr->ivlan = htons(f->fs.val.ivlan);
1297        fwr->ivlanm = htons(f->fs.mask.ivlan);
1298        fwr->ovlan = htons(f->fs.val.ovlan);
1299        fwr->ovlanm = htons(f->fs.mask.ovlan);
1300        memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1301        memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1302        memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1303        memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1304        fwr->lp = htons(f->fs.val.lport);
1305        fwr->lpm = htons(f->fs.mask.lport);
1306        fwr->fp = htons(f->fs.val.fport);
1307        fwr->fpm = htons(f->fs.mask.fport);
1308        if (f->fs.newsmac)
1309                memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1310
1311        /* Mark the filter as "pending" and ship off the Filter Work Request.
1312         * When we get the Work Request Reply we'll clear the pending status.
1313         */
1314        f->pending = 1;
1315        set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1316        t4_ofld_send(adapter, skb);
1317        return 0;
1318}
1319
1320/* Delete the filter at a specified index.
1321 */
1322static int del_filter_wr(struct adapter *adapter, int fidx)
1323{
1324        struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1325        struct sk_buff *skb;
1326        struct fw_filter_wr *fwr;
1327        unsigned int len, ftid;
1328
1329        len = sizeof(*fwr);
1330        ftid = adapter->tids.ftid_base + fidx;
1331
1332        skb = alloc_skb(len, GFP_KERNEL);
1333        if (!skb)
1334                return -ENOMEM;
1335
1336        fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1337        t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1338
1339        /* Mark the filter as "pending" and ship off the Filter Work Request.
1340         * When we get the Work Request Reply we'll clear the pending status.
1341         */
1342        f->pending = 1;
1343        t4_mgmt_tx(adapter, skb);
1344        return 0;
1345}
1346
1347static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1348                             void *accel_priv, select_queue_fallback_t fallback)
1349{
1350        int txq;
1351
1352#ifdef CONFIG_CHELSIO_T4_DCB
1353        /* If a Data Center Bridging has been successfully negotiated on this
1354         * link then we'll use the skb's priority to map it to a TX Queue.
1355         * The skb's priority is determined via the VLAN Tag Priority Code
1356         * Point field.
1357         */
1358        if (cxgb4_dcb_enabled(dev)) {
1359                u16 vlan_tci;
1360                int err;
1361
1362                err = vlan_get_tag(skb, &vlan_tci);
1363                if (unlikely(err)) {
1364                        if (net_ratelimit())
1365                                netdev_warn(dev,
1366                                            "TX Packet without VLAN Tag on DCB Link\n");
1367                        txq = 0;
1368                } else {
1369                        txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1370#ifdef CONFIG_CHELSIO_T4_FCOE
1371                        if (skb->protocol == htons(ETH_P_FCOE))
1372                                txq = skb->priority & 0x7;
1373#endif /* CONFIG_CHELSIO_T4_FCOE */
1374                }
1375                return txq;
1376        }
1377#endif /* CONFIG_CHELSIO_T4_DCB */
1378
1379        if (select_queue) {
1380                txq = (skb_rx_queue_recorded(skb)
1381                        ? skb_get_rx_queue(skb)
1382                        : smp_processor_id());
1383
1384                while (unlikely(txq >= dev->real_num_tx_queues))
1385                        txq -= dev->real_num_tx_queues;
1386
1387                return txq;
1388        }
1389
1390        return fallback(dev, skb) % dev->real_num_tx_queues;
1391}
1392
1393static int closest_timer(const struct sge *s, int time)
1394{
1395        int i, delta, match = 0, min_delta = INT_MAX;
1396
1397        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1398                delta = time - s->timer_val[i];
1399                if (delta < 0)
1400                        delta = -delta;
1401                if (delta < min_delta) {
1402                        min_delta = delta;
1403                        match = i;
1404                }
1405        }
1406        return match;
1407}
1408
1409static int closest_thres(const struct sge *s, int thres)
1410{
1411        int i, delta, match = 0, min_delta = INT_MAX;
1412
1413        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1414                delta = thres - s->counter_val[i];
1415                if (delta < 0)
1416                        delta = -delta;
1417                if (delta < min_delta) {
1418                        min_delta = delta;
1419                        match = i;
1420                }
1421        }
1422        return match;
1423}
1424
1425/**
1426 *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1427 *      @q: the Rx queue
1428 *      @us: the hold-off time in us, or 0 to disable timer
1429 *      @cnt: the hold-off packet count, or 0 to disable counter
1430 *
1431 *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1432 *      one of the two needs to be enabled for the queue to generate interrupts.
1433 */
1434int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1435                               unsigned int us, unsigned int cnt)
1436{
1437        struct adapter *adap = q->adap;
1438
1439        if ((us | cnt) == 0)
1440                cnt = 1;
1441
1442        if (cnt) {
1443                int err;
1444                u32 v, new_idx;
1445
1446                new_idx = closest_thres(&adap->sge, cnt);
1447                if (q->desc && q->pktcnt_idx != new_idx) {
1448                        /* the queue has already been created, update it */
1449                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1450                            FW_PARAMS_PARAM_X_V(
1451                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1452                            FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1453                        err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1454                                            &v, &new_idx);
1455                        if (err)
1456                                return err;
1457                }
1458                q->pktcnt_idx = new_idx;
1459        }
1460
1461        us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1462        q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1463        return 0;
1464}
1465
1466static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1467{
1468        const struct port_info *pi = netdev_priv(dev);
1469        netdev_features_t changed = dev->features ^ features;
1470        int err;
1471
1472        if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1473                return 0;
1474
1475        err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1476                            -1, -1, -1,
1477                            !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1478        if (unlikely(err))
1479                dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1480        return err;
1481}
1482
1483static int setup_debugfs(struct adapter *adap)
1484{
1485        if (IS_ERR_OR_NULL(adap->debugfs_root))
1486                return -1;
1487
1488#ifdef CONFIG_DEBUG_FS
1489        t4_setup_debugfs(adap);
1490#endif
1491        return 0;
1492}
1493
1494/*
1495 * upper-layer driver support
1496 */
1497
1498/*
1499 * Allocate an active-open TID and set it to the supplied value.
1500 */
1501int cxgb4_alloc_atid(struct tid_info *t, void *data)
1502{
1503        int atid = -1;
1504
1505        spin_lock_bh(&t->atid_lock);
1506        if (t->afree) {
1507                union aopen_entry *p = t->afree;
1508
1509                atid = (p - t->atid_tab) + t->atid_base;
1510                t->afree = p->next;
1511                p->data = data;
1512                t->atids_in_use++;
1513        }
1514        spin_unlock_bh(&t->atid_lock);
1515        return atid;
1516}
1517EXPORT_SYMBOL(cxgb4_alloc_atid);
1518
1519/*
1520 * Release an active-open TID.
1521 */
1522void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1523{
1524        union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1525
1526        spin_lock_bh(&t->atid_lock);
1527        p->next = t->afree;
1528        t->afree = p;
1529        t->atids_in_use--;
1530        spin_unlock_bh(&t->atid_lock);
1531}
1532EXPORT_SYMBOL(cxgb4_free_atid);
1533
1534/*
1535 * Allocate a server TID and set it to the supplied value.
1536 */
1537int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1538{
1539        int stid;
1540
1541        spin_lock_bh(&t->stid_lock);
1542        if (family == PF_INET) {
1543                stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1544                if (stid < t->nstids)
1545                        __set_bit(stid, t->stid_bmap);
1546                else
1547                        stid = -1;
1548        } else {
1549                stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1550                if (stid < 0)
1551                        stid = -1;
1552        }
1553        if (stid >= 0) {
1554                t->stid_tab[stid].data = data;
1555                stid += t->stid_base;
1556                /* IPv6 requires max of 520 bits or 16 cells in TCAM
1557                 * This is equivalent to 4 TIDs. With CLIP enabled it
1558                 * needs 2 TIDs.
1559                 */
1560                if (family == PF_INET)
1561                        t->stids_in_use++;
1562                else
1563                        t->stids_in_use += 2;
1564        }
1565        spin_unlock_bh(&t->stid_lock);
1566        return stid;
1567}
1568EXPORT_SYMBOL(cxgb4_alloc_stid);
1569
1570/* Allocate a server filter TID and set it to the supplied value.
1571 */
1572int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1573{
1574        int stid;
1575
1576        spin_lock_bh(&t->stid_lock);
1577        if (family == PF_INET) {
1578                stid = find_next_zero_bit(t->stid_bmap,
1579                                t->nstids + t->nsftids, t->nstids);
1580                if (stid < (t->nstids + t->nsftids))
1581                        __set_bit(stid, t->stid_bmap);
1582                else
1583                        stid = -1;
1584        } else {
1585                stid = -1;
1586        }
1587        if (stid >= 0) {
1588                t->stid_tab[stid].data = data;
1589                stid -= t->nstids;
1590                stid += t->sftid_base;
1591                t->sftids_in_use++;
1592        }
1593        spin_unlock_bh(&t->stid_lock);
1594        return stid;
1595}
1596EXPORT_SYMBOL(cxgb4_alloc_sftid);
1597
1598/* Release a server TID.
1599 */
1600void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1601{
1602        /* Is it a server filter TID? */
1603        if (t->nsftids && (stid >= t->sftid_base)) {
1604                stid -= t->sftid_base;
1605                stid += t->nstids;
1606        } else {
1607                stid -= t->stid_base;
1608        }
1609
1610        spin_lock_bh(&t->stid_lock);
1611        if (family == PF_INET)
1612                __clear_bit(stid, t->stid_bmap);
1613        else
1614                bitmap_release_region(t->stid_bmap, stid, 1);
1615        t->stid_tab[stid].data = NULL;
1616        if (stid < t->nstids) {
1617                if (family == PF_INET)
1618                        t->stids_in_use--;
1619                else
1620                        t->stids_in_use -= 2;
1621        } else {
1622                t->sftids_in_use--;
1623        }
1624        spin_unlock_bh(&t->stid_lock);
1625}
1626EXPORT_SYMBOL(cxgb4_free_stid);
1627
1628/*
1629 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1630 */
1631static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1632                           unsigned int tid)
1633{
1634        struct cpl_tid_release *req;
1635
1636        set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1637        req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1638        INIT_TP_WR(req, tid);
1639        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1640}
1641
1642/*
1643 * Queue a TID release request and if necessary schedule a work queue to
1644 * process it.
1645 */
1646static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1647                                    unsigned int tid)
1648{
1649        void **p = &t->tid_tab[tid];
1650        struct adapter *adap = container_of(t, struct adapter, tids);
1651
1652        spin_lock_bh(&adap->tid_release_lock);
1653        *p = adap->tid_release_head;
1654        /* Low 2 bits encode the Tx channel number */
1655        adap->tid_release_head = (void **)((uintptr_t)p | chan);
1656        if (!adap->tid_release_task_busy) {
1657                adap->tid_release_task_busy = true;
1658                queue_work(adap->workq, &adap->tid_release_task);
1659        }
1660        spin_unlock_bh(&adap->tid_release_lock);
1661}
1662
1663/*
1664 * Process the list of pending TID release requests.
1665 */
1666static void process_tid_release_list(struct work_struct *work)
1667{
1668        struct sk_buff *skb;
1669        struct adapter *adap;
1670
1671        adap = container_of(work, struct adapter, tid_release_task);
1672
1673        spin_lock_bh(&adap->tid_release_lock);
1674        while (adap->tid_release_head) {
1675                void **p = adap->tid_release_head;
1676                unsigned int chan = (uintptr_t)p & 3;
1677                p = (void *)p - chan;
1678
1679                adap->tid_release_head = *p;
1680                *p = NULL;
1681                spin_unlock_bh(&adap->tid_release_lock);
1682
1683                while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1684                                         GFP_KERNEL)))
1685                        schedule_timeout_uninterruptible(1);
1686
1687                mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1688                t4_ofld_send(adap, skb);
1689                spin_lock_bh(&adap->tid_release_lock);
1690        }
1691        adap->tid_release_task_busy = false;
1692        spin_unlock_bh(&adap->tid_release_lock);
1693}
1694
1695/*
1696 * Release a TID and inform HW.  If we are unable to allocate the release
1697 * message we defer to a work queue.
1698 */
1699void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1700{
1701        struct sk_buff *skb;
1702        struct adapter *adap = container_of(t, struct adapter, tids);
1703
1704        WARN_ON(tid >= t->ntids);
1705
1706        if (t->tid_tab[tid]) {
1707                t->tid_tab[tid] = NULL;
1708                if (t->hash_base && (tid >= t->hash_base))
1709                        atomic_dec(&t->hash_tids_in_use);
1710                else
1711                        atomic_dec(&t->tids_in_use);
1712        }
1713
1714        skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1715        if (likely(skb)) {
1716                mk_tid_release(skb, chan, tid);
1717                t4_ofld_send(adap, skb);
1718        } else
1719                cxgb4_queue_tid_release(t, chan, tid);
1720}
1721EXPORT_SYMBOL(cxgb4_remove_tid);
1722
1723/*
1724 * Allocate and initialize the TID tables.  Returns 0 on success.
1725 */
1726static int tid_init(struct tid_info *t)
1727{
1728        size_t size;
1729        unsigned int stid_bmap_size;
1730        unsigned int natids = t->natids;
1731        struct adapter *adap = container_of(t, struct adapter, tids);
1732
1733        stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1734        size = t->ntids * sizeof(*t->tid_tab) +
1735               natids * sizeof(*t->atid_tab) +
1736               t->nstids * sizeof(*t->stid_tab) +
1737               t->nsftids * sizeof(*t->stid_tab) +
1738               stid_bmap_size * sizeof(long) +
1739               t->nftids * sizeof(*t->ftid_tab) +
1740               t->nsftids * sizeof(*t->ftid_tab);
1741
1742        t->tid_tab = t4_alloc_mem(size);
1743        if (!t->tid_tab)
1744                return -ENOMEM;
1745
1746        t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1747        t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1748        t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1749        t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1750        spin_lock_init(&t->stid_lock);
1751        spin_lock_init(&t->atid_lock);
1752
1753        t->stids_in_use = 0;
1754        t->sftids_in_use = 0;
1755        t->afree = NULL;
1756        t->atids_in_use = 0;
1757        atomic_set(&t->tids_in_use, 0);
1758        atomic_set(&t->hash_tids_in_use, 0);
1759
1760        /* Setup the free list for atid_tab and clear the stid bitmap. */
1761        if (natids) {
1762                while (--natids)
1763                        t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1764                t->afree = t->atid_tab;
1765        }
1766        bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1767        /* Reserve stid 0 for T4/T5 adapters */
1768        if (!t->stid_base &&
1769            (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1770                __set_bit(0, t->stid_bmap);
1771
1772        return 0;
1773}
1774
1775/**
1776 *      cxgb4_create_server - create an IP server
1777 *      @dev: the device
1778 *      @stid: the server TID
1779 *      @sip: local IP address to bind server to
1780 *      @sport: the server's TCP port
1781 *      @queue: queue to direct messages from this server to
1782 *
1783 *      Create an IP server for the given port and address.
1784 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1785 */
1786int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1787                        __be32 sip, __be16 sport, __be16 vlan,
1788                        unsigned int queue)
1789{
1790        unsigned int chan;
1791        struct sk_buff *skb;
1792        struct adapter *adap;
1793        struct cpl_pass_open_req *req;
1794        int ret;
1795
1796        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1797        if (!skb)
1798                return -ENOMEM;
1799
1800        adap = netdev2adap(dev);
1801        req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1802        INIT_TP_WR(req, 0);
1803        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1804        req->local_port = sport;
1805        req->peer_port = htons(0);
1806        req->local_ip = sip;
1807        req->peer_ip = htonl(0);
1808        chan = rxq_to_chan(&adap->sge, queue);
1809        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1810        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1811                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1812        ret = t4_mgmt_tx(adap, skb);
1813        return net_xmit_eval(ret);
1814}
1815EXPORT_SYMBOL(cxgb4_create_server);
1816
1817/*      cxgb4_create_server6 - create an IPv6 server
1818 *      @dev: the device
1819 *      @stid: the server TID
1820 *      @sip: local IPv6 address to bind server to
1821 *      @sport: the server's TCP port
1822 *      @queue: queue to direct messages from this server to
1823 *
1824 *      Create an IPv6 server for the given port and address.
1825 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1826 */
1827int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1828                         const struct in6_addr *sip, __be16 sport,
1829                         unsigned int queue)
1830{
1831        unsigned int chan;
1832        struct sk_buff *skb;
1833        struct adapter *adap;
1834        struct cpl_pass_open_req6 *req;
1835        int ret;
1836
1837        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1838        if (!skb)
1839                return -ENOMEM;
1840
1841        adap = netdev2adap(dev);
1842        req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1843        INIT_TP_WR(req, 0);
1844        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1845        req->local_port = sport;
1846        req->peer_port = htons(0);
1847        req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1848        req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1849        req->peer_ip_hi = cpu_to_be64(0);
1850        req->peer_ip_lo = cpu_to_be64(0);
1851        chan = rxq_to_chan(&adap->sge, queue);
1852        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1853        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1854                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1855        ret = t4_mgmt_tx(adap, skb);
1856        return net_xmit_eval(ret);
1857}
1858EXPORT_SYMBOL(cxgb4_create_server6);
1859
1860int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1861                        unsigned int queue, bool ipv6)
1862{
1863        struct sk_buff *skb;
1864        struct adapter *adap;
1865        struct cpl_close_listsvr_req *req;
1866        int ret;
1867
1868        adap = netdev2adap(dev);
1869
1870        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1871        if (!skb)
1872                return -ENOMEM;
1873
1874        req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1875        INIT_TP_WR(req, 0);
1876        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1877        req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1878                                LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1879        ret = t4_mgmt_tx(adap, skb);
1880        return net_xmit_eval(ret);
1881}
1882EXPORT_SYMBOL(cxgb4_remove_server);
1883
1884/**
1885 *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1886 *      @mtus: the HW MTU table
1887 *      @mtu: the target MTU
1888 *      @idx: index of selected entry in the MTU table
1889 *
1890 *      Returns the index and the value in the HW MTU table that is closest to
1891 *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1892 *      table, in which case that smallest available value is selected.
1893 */
1894unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1895                            unsigned int *idx)
1896{
1897        unsigned int i = 0;
1898
1899        while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1900                ++i;
1901        if (idx)
1902                *idx = i;
1903        return mtus[i];
1904}
1905EXPORT_SYMBOL(cxgb4_best_mtu);
1906
1907/**
1908 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1909 *     @mtus: the HW MTU table
1910 *     @header_size: Header Size
1911 *     @data_size_max: maximum Data Segment Size
1912 *     @data_size_align: desired Data Segment Size Alignment (2^N)
1913 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1914 *
1915 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1916 *     MTU Table based solely on a Maximum MTU parameter, we break that
1917 *     parameter up into a Header Size and Maximum Data Segment Size, and
1918 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1919 *     the Hardware MTU Table which will result in a Data Segment Size with
1920 *     the requested alignment _and_ that MTU isn't "too far" from the
1921 *     closest MTU, then we'll return that rather than the closest MTU.
1922 */
1923unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1924                                    unsigned short header_size,
1925                                    unsigned short data_size_max,
1926                                    unsigned short data_size_align,
1927                                    unsigned int *mtu_idxp)
1928{
1929        unsigned short max_mtu = header_size + data_size_max;
1930        unsigned short data_size_align_mask = data_size_align - 1;
1931        int mtu_idx, aligned_mtu_idx;
1932
1933        /* Scan the MTU Table till we find an MTU which is larger than our
1934         * Maximum MTU or we reach the end of the table.  Along the way,
1935         * record the last MTU found, if any, which will result in a Data
1936         * Segment Length matching the requested alignment.
1937         */
1938        for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1939                unsigned short data_size = mtus[mtu_idx] - header_size;
1940
1941                /* If this MTU minus the Header Size would result in a
1942                 * Data Segment Size of the desired alignment, remember it.
1943                 */
1944                if ((data_size & data_size_align_mask) == 0)
1945                        aligned_mtu_idx = mtu_idx;
1946
1947                /* If we're not at the end of the Hardware MTU Table and the
1948                 * next element is larger than our Maximum MTU, drop out of
1949                 * the loop.
1950                 */
1951                if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1952                        break;
1953        }
1954
1955        /* If we fell out of the loop because we ran to the end of the table,
1956         * then we just have to use the last [largest] entry.
1957         */
1958        if (mtu_idx == NMTUS)
1959                mtu_idx--;
1960
1961        /* If we found an MTU which resulted in the requested Data Segment
1962         * Length alignment and that's "not far" from the largest MTU which is
1963         * less than or equal to the maximum MTU, then use that.
1964         */
1965        if (aligned_mtu_idx >= 0 &&
1966            mtu_idx - aligned_mtu_idx <= 1)
1967                mtu_idx = aligned_mtu_idx;
1968
1969        /* If the caller has passed in an MTU Index pointer, pass the
1970         * MTU Index back.  Return the MTU value.
1971         */
1972        if (mtu_idxp)
1973                *mtu_idxp = mtu_idx;
1974        return mtus[mtu_idx];
1975}
1976EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1977
1978/**
1979 *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1980 *      @chip: chip type
1981 *      @viid: VI id of the given port
1982 *
1983 *      Return the SMT index for this VI.
1984 */
1985unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1986{
1987        /* In T4/T5, SMT contains 256 SMAC entries organized in
1988         * 128 rows of 2 entries each.
1989         * In T6, SMT contains 256 SMAC entries in 256 rows.
1990         * TODO: The below code needs to be updated when we add support
1991         * for 256 VFs.
1992         */
1993        if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1994                return ((viid & 0x7f) << 1);
1995        else
1996                return (viid & 0x7f);
1997}
1998EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1999
2000/**
2001 *      cxgb4_port_chan - get the HW channel of a port
2002 *      @dev: the net device for the port
2003 *
2004 *      Return the HW Tx channel of the given port.
2005 */
2006unsigned int cxgb4_port_chan(const struct net_device *dev)
2007{
2008        return netdev2pinfo(dev)->tx_chan;
2009}
2010EXPORT_SYMBOL(cxgb4_port_chan);
2011
2012unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2013{
2014        struct adapter *adap = netdev2adap(dev);
2015        u32 v1, v2, lp_count, hp_count;
2016
2017        v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2018        v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2019        if (is_t4(adap->params.chip)) {
2020                lp_count = LP_COUNT_G(v1);
2021                hp_count = HP_COUNT_G(v1);
2022        } else {
2023                lp_count = LP_COUNT_T5_G(v1);
2024                hp_count = HP_COUNT_T5_G(v2);
2025        }
2026        return lpfifo ? lp_count : hp_count;
2027}
2028EXPORT_SYMBOL(cxgb4_dbfifo_count);
2029
2030/**
2031 *      cxgb4_port_viid - get the VI id of a port
2032 *      @dev: the net device for the port
2033 *
2034 *      Return the VI id of the given port.
2035 */
2036unsigned int cxgb4_port_viid(const struct net_device *dev)
2037{
2038        return netdev2pinfo(dev)->viid;
2039}
2040EXPORT_SYMBOL(cxgb4_port_viid);
2041
2042/**
2043 *      cxgb4_port_idx - get the index of a port
2044 *      @dev: the net device for the port
2045 *
2046 *      Return the index of the given port.
2047 */
2048unsigned int cxgb4_port_idx(const struct net_device *dev)
2049{
2050        return netdev2pinfo(dev)->port_id;
2051}
2052EXPORT_SYMBOL(cxgb4_port_idx);
2053
2054void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2055                         struct tp_tcp_stats *v6)
2056{
2057        struct adapter *adap = pci_get_drvdata(pdev);
2058
2059        spin_lock(&adap->stats_lock);
2060        t4_tp_get_tcp_stats(adap, v4, v6);
2061        spin_unlock(&adap->stats_lock);
2062}
2063EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2064
2065void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2066                      const unsigned int *pgsz_order)
2067{
2068        struct adapter *adap = netdev2adap(dev);
2069
2070        t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2071        t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2072                     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2073                     HPZ3_V(pgsz_order[3]));
2074}
2075EXPORT_SYMBOL(cxgb4_iscsi_init);
2076
2077int cxgb4_flush_eq_cache(struct net_device *dev)
2078{
2079        struct adapter *adap = netdev2adap(dev);
2080
2081        return t4_sge_ctxt_flush(adap, adap->mbox);
2082}
2083EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2084
2085static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2086{
2087        u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2088        __be64 indices;
2089        int ret;
2090
2091        spin_lock(&adap->win0_lock);
2092        ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2093                           sizeof(indices), (__be32 *)&indices,
2094                           T4_MEMORY_READ);
2095        spin_unlock(&adap->win0_lock);
2096        if (!ret) {
2097                *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2098                *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2099        }
2100        return ret;
2101}
2102
2103int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2104                        u16 size)
2105{
2106        struct adapter *adap = netdev2adap(dev);
2107        u16 hw_pidx, hw_cidx;
2108        int ret;
2109
2110        ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2111        if (ret)
2112                goto out;
2113
2114        if (pidx != hw_pidx) {
2115                u16 delta;
2116                u32 val;
2117
2118                if (pidx >= hw_pidx)
2119                        delta = pidx - hw_pidx;
2120                else
2121                        delta = size - hw_pidx + pidx;
2122
2123                if (is_t4(adap->params.chip))
2124                        val = PIDX_V(delta);
2125                else
2126                        val = PIDX_T5_V(delta);
2127                wmb();
2128                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2129                             QID_V(qid) | val);
2130        }
2131out:
2132        return ret;
2133}
2134EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2135
2136int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2137{
2138        struct adapter *adap;
2139        u32 offset, memtype, memaddr;
2140        u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2141        u32 edc0_end, edc1_end, mc0_end, mc1_end;
2142        int ret;
2143
2144        adap = netdev2adap(dev);
2145
2146        offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2147
2148        /* Figure out where the offset lands in the Memory Type/Address scheme.
2149         * This code assumes that the memory is laid out starting at offset 0
2150         * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2151         * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2152         * MC0, and some have both MC0 and MC1.
2153         */
2154        size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2155        edc0_size = EDRAM0_SIZE_G(size) << 20;
2156        size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2157        edc1_size = EDRAM1_SIZE_G(size) << 20;
2158        size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2159        mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2160
2161        edc0_end = edc0_size;
2162        edc1_end = edc0_end + edc1_size;
2163        mc0_end = edc1_end + mc0_size;
2164
2165        if (offset < edc0_end) {
2166                memtype = MEM_EDC0;
2167                memaddr = offset;
2168        } else if (offset < edc1_end) {
2169                memtype = MEM_EDC1;
2170                memaddr = offset - edc0_end;
2171        } else {
2172                if (offset < mc0_end) {
2173                        memtype = MEM_MC0;
2174                        memaddr = offset - edc1_end;
2175                } else if (is_t5(adap->params.chip)) {
2176                        size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2177                        mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2178                        mc1_end = mc0_end + mc1_size;
2179                        if (offset < mc1_end) {
2180                                memtype = MEM_MC1;
2181                                memaddr = offset - mc0_end;
2182                        } else {
2183                                /* offset beyond the end of any memory */
2184                                goto err;
2185                        }
2186                } else {
2187                        /* T4/T6 only has a single memory channel */
2188                        goto err;
2189                }
2190        }
2191
2192        spin_lock(&adap->win0_lock);
2193        ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2194        spin_unlock(&adap->win0_lock);
2195        return ret;
2196
2197err:
2198        dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2199                stag, offset);
2200        return -EINVAL;
2201}
2202EXPORT_SYMBOL(cxgb4_read_tpte);
2203
2204u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2205{
2206        u32 hi, lo;
2207        struct adapter *adap;
2208
2209        adap = netdev2adap(dev);
2210        lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2211        hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2212
2213        return ((u64)hi << 32) | (u64)lo;
2214}
2215EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2216
2217int cxgb4_bar2_sge_qregs(struct net_device *dev,
2218                         unsigned int qid,
2219                         enum cxgb4_bar2_qtype qtype,
2220                         int user,
2221                         u64 *pbar2_qoffset,
2222                         unsigned int *pbar2_qid)
2223{
2224        return t4_bar2_sge_qregs(netdev2adap(dev),
2225                                 qid,
2226                                 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2227                                  ? T4_BAR2_QTYPE_EGRESS
2228                                  : T4_BAR2_QTYPE_INGRESS),
2229                                 user,
2230                                 pbar2_qoffset,
2231                                 pbar2_qid);
2232}
2233EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2234
2235static struct pci_driver cxgb4_driver;
2236
2237static void check_neigh_update(struct neighbour *neigh)
2238{
2239        const struct device *parent;
2240        const struct net_device *netdev = neigh->dev;
2241
2242        if (netdev->priv_flags & IFF_802_1Q_VLAN)
2243                netdev = vlan_dev_real_dev(netdev);
2244        parent = netdev->dev.parent;
2245        if (parent && parent->driver == &cxgb4_driver.driver)
2246                t4_l2t_update(dev_get_drvdata(parent), neigh);
2247}
2248
2249static int netevent_cb(struct notifier_block *nb, unsigned long event,
2250                       void *data)
2251{
2252        switch (event) {
2253        case NETEVENT_NEIGH_UPDATE:
2254                check_neigh_update(data);
2255                break;
2256        case NETEVENT_REDIRECT:
2257        default:
2258                break;
2259        }
2260        return 0;
2261}
2262
2263static bool netevent_registered;
2264static struct notifier_block cxgb4_netevent_nb = {
2265        .notifier_call = netevent_cb
2266};
2267
2268static void drain_db_fifo(struct adapter *adap, int usecs)
2269{
2270        u32 v1, v2, lp_count, hp_count;
2271
2272        do {
2273                v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2274                v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2275                if (is_t4(adap->params.chip)) {
2276                        lp_count = LP_COUNT_G(v1);
2277                        hp_count = HP_COUNT_G(v1);
2278                } else {
2279                        lp_count = LP_COUNT_T5_G(v1);
2280                        hp_count = HP_COUNT_T5_G(v2);
2281                }
2282
2283                if (lp_count == 0 && hp_count == 0)
2284                        break;
2285                set_current_state(TASK_UNINTERRUPTIBLE);
2286                schedule_timeout(usecs_to_jiffies(usecs));
2287        } while (1);
2288}
2289
2290static void disable_txq_db(struct sge_txq *q)
2291{
2292        unsigned long flags;
2293
2294        spin_lock_irqsave(&q->db_lock, flags);
2295        q->db_disabled = 1;
2296        spin_unlock_irqrestore(&q->db_lock, flags);
2297}
2298
2299static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2300{
2301        spin_lock_irq(&q->db_lock);
2302        if (q->db_pidx_inc) {
2303                /* Make sure that all writes to the TX descriptors
2304                 * are committed before we tell HW about them.
2305                 */
2306                wmb();
2307                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2308                             QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2309                q->db_pidx_inc = 0;
2310        }
2311        q->db_disabled = 0;
2312        spin_unlock_irq(&q->db_lock);
2313}
2314
2315static void disable_dbs(struct adapter *adap)
2316{
2317        int i;
2318
2319        for_each_ethrxq(&adap->sge, i)
2320                disable_txq_db(&adap->sge.ethtxq[i].q);
2321        for_each_iscsirxq(&adap->sge, i)
2322                disable_txq_db(&adap->sge.ofldtxq[i].q);
2323        for_each_port(adap, i)
2324                disable_txq_db(&adap->sge.ctrlq[i].q);
2325}
2326
2327static void enable_dbs(struct adapter *adap)
2328{
2329        int i;
2330
2331        for_each_ethrxq(&adap->sge, i)
2332                enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2333        for_each_iscsirxq(&adap->sge, i)
2334                enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2335        for_each_port(adap, i)
2336                enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2337}
2338
2339static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2340{
2341        if (adap->uld_handle[CXGB4_ULD_RDMA])
2342                ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2343                                cmd);
2344}
2345
2346static void process_db_full(struct work_struct *work)
2347{
2348        struct adapter *adap;
2349
2350        adap = container_of(work, struct adapter, db_full_task);
2351
2352        drain_db_fifo(adap, dbfifo_drain_delay);
2353        enable_dbs(adap);
2354        notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2355        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2356                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2357                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2358                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2359        else
2360                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2361                                 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2362}
2363
2364static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2365{
2366        u16 hw_pidx, hw_cidx;
2367        int ret;
2368
2369        spin_lock_irq(&q->db_lock);
2370        ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2371        if (ret)
2372                goto out;
2373        if (q->db_pidx != hw_pidx) {
2374                u16 delta;
2375                u32 val;
2376
2377                if (q->db_pidx >= hw_pidx)
2378                        delta = q->db_pidx - hw_pidx;
2379                else
2380                        delta = q->size - hw_pidx + q->db_pidx;
2381
2382                if (is_t4(adap->params.chip))
2383                        val = PIDX_V(delta);
2384                else
2385                        val = PIDX_T5_V(delta);
2386                wmb();
2387                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2388                             QID_V(q->cntxt_id) | val);
2389        }
2390out:
2391        q->db_disabled = 0;
2392        q->db_pidx_inc = 0;
2393        spin_unlock_irq(&q->db_lock);
2394        if (ret)
2395                CH_WARN(adap, "DB drop recovery failed.\n");
2396}
2397static void recover_all_queues(struct adapter *adap)
2398{
2399        int i;
2400
2401        for_each_ethrxq(&adap->sge, i)
2402                sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2403        for_each_iscsirxq(&adap->sge, i)
2404                sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2405        for_each_port(adap, i)
2406                sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2407}
2408
2409static void process_db_drop(struct work_struct *work)
2410{
2411        struct adapter *adap;
2412
2413        adap = container_of(work, struct adapter, db_drop_task);
2414
2415        if (is_t4(adap->params.chip)) {
2416                drain_db_fifo(adap, dbfifo_drain_delay);
2417                notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2418                drain_db_fifo(adap, dbfifo_drain_delay);
2419                recover_all_queues(adap);
2420                drain_db_fifo(adap, dbfifo_drain_delay);
2421                enable_dbs(adap);
2422                notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2423        } else if (is_t5(adap->params.chip)) {
2424                u32 dropped_db = t4_read_reg(adap, 0x010ac);
2425                u16 qid = (dropped_db >> 15) & 0x1ffff;
2426                u16 pidx_inc = dropped_db & 0x1fff;
2427                u64 bar2_qoffset;
2428                unsigned int bar2_qid;
2429                int ret;
2430
2431                ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2432                                        0, &bar2_qoffset, &bar2_qid);
2433                if (ret)
2434                        dev_err(adap->pdev_dev, "doorbell drop recovery: "
2435                                "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2436                else
2437                        writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2438                               adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2439
2440                /* Re-enable BAR2 WC */
2441                t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2442        }
2443
2444        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2445                t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2446}
2447
2448void t4_db_full(struct adapter *adap)
2449{
2450        if (is_t4(adap->params.chip)) {
2451                disable_dbs(adap);
2452                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2453                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2454                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2455                queue_work(adap->workq, &adap->db_full_task);
2456        }
2457}
2458
2459void t4_db_dropped(struct adapter *adap)
2460{
2461        if (is_t4(adap->params.chip)) {
2462                disable_dbs(adap);
2463                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2464        }
2465        queue_work(adap->workq, &adap->db_drop_task);
2466}
2467
2468static void uld_attach(struct adapter *adap, unsigned int uld)
2469{
2470        void *handle;
2471        struct cxgb4_lld_info lli;
2472        unsigned short i;
2473
2474        lli.pdev = adap->pdev;
2475        lli.pf = adap->pf;
2476        lli.l2t = adap->l2t;
2477        lli.tids = &adap->tids;
2478        lli.ports = adap->port;
2479        lli.vr = &adap->vres;
2480        lli.mtus = adap->params.mtus;
2481        if (uld == CXGB4_ULD_RDMA) {
2482                lli.rxq_ids = adap->sge.rdma_rxq;
2483                lli.ciq_ids = adap->sge.rdma_ciq;
2484                lli.nrxq = adap->sge.rdmaqs;
2485                lli.nciq = adap->sge.rdmaciqs;
2486        } else if (uld == CXGB4_ULD_ISCSI) {
2487                lli.rxq_ids = adap->sge.iscsi_rxq;
2488                lli.nrxq = adap->sge.iscsiqsets;
2489        } else if (uld == CXGB4_ULD_ISCSIT) {
2490                lli.rxq_ids = adap->sge.iscsit_rxq;
2491                lli.nrxq = adap->sge.niscsitq;
2492        }
2493        lli.ntxq = adap->sge.iscsiqsets;
2494        lli.nchan = adap->params.nports;
2495        lli.nports = adap->params.nports;
2496        lli.wr_cred = adap->params.ofldq_wr_cred;
2497        lli.adapter_type = adap->params.chip;
2498        lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2499        lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2500        lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2501        lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2502        lli.iscsi_ppm = &adap->iscsi_ppm;
2503        lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2504        lli.udb_density = 1 << adap->params.sge.eq_qpp;
2505        lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2506        lli.filt_mode = adap->params.tp.vlan_pri_map;
2507        /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2508        for (i = 0; i < NCHAN; i++)
2509                lli.tx_modq[i] = i;
2510        lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2511        lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2512        lli.fw_vers = adap->params.fw_vers;
2513        lli.dbfifo_int_thresh = dbfifo_int_thresh;
2514        lli.sge_ingpadboundary = adap->sge.fl_align;
2515        lli.sge_egrstatuspagesize = adap->sge.stat_len;
2516        lli.sge_pktshift = adap->sge.pktshift;
2517        lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2518        lli.max_ordird_qp = adap->params.max_ordird_qp;
2519        lli.max_ird_adapter = adap->params.max_ird_adapter;
2520        lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2521        lli.nodeid = dev_to_node(adap->pdev_dev);
2522
2523        handle = ulds[uld].add(&lli);
2524        if (IS_ERR(handle)) {
2525                dev_warn(adap->pdev_dev,
2526                         "could not attach to the %s driver, error %ld\n",
2527                         uld_str[uld], PTR_ERR(handle));
2528                return;
2529        }
2530
2531        adap->uld_handle[uld] = handle;
2532
2533        if (!netevent_registered) {
2534                register_netevent_notifier(&cxgb4_netevent_nb);
2535                netevent_registered = true;
2536        }
2537
2538        if (adap->flags & FULL_INIT_DONE)
2539                ulds[uld].state_change(handle, CXGB4_STATE_UP);
2540}
2541
2542static void attach_ulds(struct adapter *adap)
2543{
2544        unsigned int i;
2545
2546        spin_lock(&adap_rcu_lock);
2547        list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2548        spin_unlock(&adap_rcu_lock);
2549
2550        mutex_lock(&uld_mutex);
2551        list_add_tail(&adap->list_node, &adapter_list);
2552        for (i = 0; i < CXGB4_ULD_MAX; i++)
2553                if (ulds[i].add)
2554                        uld_attach(adap, i);
2555        mutex_unlock(&uld_mutex);
2556}
2557
2558static void detach_ulds(struct adapter *adap)
2559{
2560        unsigned int i;
2561
2562        mutex_lock(&uld_mutex);
2563        list_del(&adap->list_node);
2564        for (i = 0; i < CXGB4_ULD_MAX; i++)
2565                if (adap->uld_handle[i]) {
2566                        ulds[i].state_change(adap->uld_handle[i],
2567                                             CXGB4_STATE_DETACH);
2568                        adap->uld_handle[i] = NULL;
2569                }
2570        if (netevent_registered && list_empty(&adapter_list)) {
2571                unregister_netevent_notifier(&cxgb4_netevent_nb);
2572                netevent_registered = false;
2573        }
2574        mutex_unlock(&uld_mutex);
2575
2576        spin_lock(&adap_rcu_lock);
2577        list_del_rcu(&adap->rcu_node);
2578        spin_unlock(&adap_rcu_lock);
2579}
2580
2581static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2582{
2583        unsigned int i;
2584
2585        mutex_lock(&uld_mutex);
2586        for (i = 0; i < CXGB4_ULD_MAX; i++)
2587                if (adap->uld_handle[i])
2588                        ulds[i].state_change(adap->uld_handle[i], new_state);
2589        mutex_unlock(&uld_mutex);
2590}
2591
2592/**
2593 *      cxgb4_register_uld - register an upper-layer driver
2594 *      @type: the ULD type
2595 *      @p: the ULD methods
2596 *
2597 *      Registers an upper-layer driver with this driver and notifies the ULD
2598 *      about any presently available devices that support its type.  Returns
2599 *      %-EBUSY if a ULD of the same type is already registered.
2600 */
2601int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2602{
2603        int ret = 0;
2604        struct adapter *adap;
2605
2606        if (type >= CXGB4_ULD_MAX)
2607                return -EINVAL;
2608        mutex_lock(&uld_mutex);
2609        if (ulds[type].add) {
2610                ret = -EBUSY;
2611                goto out;
2612        }
2613        ulds[type] = *p;
2614        list_for_each_entry(adap, &adapter_list, list_node)
2615                uld_attach(adap, type);
2616out:    mutex_unlock(&uld_mutex);
2617        return ret;
2618}
2619EXPORT_SYMBOL(cxgb4_register_uld);
2620
2621/**
2622 *      cxgb4_unregister_uld - unregister an upper-layer driver
2623 *      @type: the ULD type
2624 *
2625 *      Unregisters an existing upper-layer driver.
2626 */
2627int cxgb4_unregister_uld(enum cxgb4_uld type)
2628{
2629        struct adapter *adap;
2630
2631        if (type >= CXGB4_ULD_MAX)
2632                return -EINVAL;
2633        mutex_lock(&uld_mutex);
2634        list_for_each_entry(adap, &adapter_list, list_node)
2635                adap->uld_handle[type] = NULL;
2636        ulds[type].add = NULL;
2637        mutex_unlock(&uld_mutex);
2638        return 0;
2639}
2640EXPORT_SYMBOL(cxgb4_unregister_uld);
2641
2642#if IS_ENABLED(CONFIG_IPV6)
2643static int cxgb4_inet6addr_handler(struct notifier_block *this,
2644                                   unsigned long event, void *data)
2645{
2646        struct inet6_ifaddr *ifa = data;
2647        struct net_device *event_dev = ifa->idev->dev;
2648        const struct device *parent = NULL;
2649#if IS_ENABLED(CONFIG_BONDING)
2650        struct adapter *adap;
2651#endif
2652        if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2653                event_dev = vlan_dev_real_dev(event_dev);
2654#if IS_ENABLED(CONFIG_BONDING)
2655        if (event_dev->flags & IFF_MASTER) {
2656                list_for_each_entry(adap, &adapter_list, list_node) {
2657                        switch (event) {
2658                        case NETDEV_UP:
2659                                cxgb4_clip_get(adap->port[0],
2660                                               (const u32 *)ifa, 1);
2661                                break;
2662                        case NETDEV_DOWN:
2663                                cxgb4_clip_release(adap->port[0],
2664                                                   (const u32 *)ifa, 1);
2665                                break;
2666                        default:
2667                                break;
2668                        }
2669                }
2670                return NOTIFY_OK;
2671        }
2672#endif
2673
2674        if (event_dev)
2675                parent = event_dev->dev.parent;
2676
2677        if (parent && parent->driver == &cxgb4_driver.driver) {
2678                switch (event) {
2679                case NETDEV_UP:
2680                        cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2681                        break;
2682                case NETDEV_DOWN:
2683                        cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2684                        break;
2685                default:
2686                        break;
2687                }
2688        }
2689        return NOTIFY_OK;
2690}
2691
2692static bool inet6addr_registered;
2693static struct notifier_block cxgb4_inet6addr_notifier = {
2694        .notifier_call = cxgb4_inet6addr_handler
2695};
2696
2697static void update_clip(const struct adapter *adap)
2698{
2699        int i;
2700        struct net_device *dev;
2701        int ret;
2702
2703        rcu_read_lock();
2704
2705        for (i = 0; i < MAX_NPORTS; i++) {
2706                dev = adap->port[i];
2707                ret = 0;
2708
2709                if (dev)
2710                        ret = cxgb4_update_root_dev_clip(dev);
2711
2712                if (ret < 0)
2713                        break;
2714        }
2715        rcu_read_unlock();
2716}
2717#endif /* IS_ENABLED(CONFIG_IPV6) */
2718
2719/**
2720 *      cxgb_up - enable the adapter
2721 *      @adap: adapter being enabled
2722 *
2723 *      Called when the first port is enabled, this function performs the
2724 *      actions necessary to make an adapter operational, such as completing
2725 *      the initialization of HW modules, and enabling interrupts.
2726 *
2727 *      Must be called with the rtnl lock held.
2728 */
2729static int cxgb_up(struct adapter *adap)
2730{
2731        int err;
2732
2733        err = setup_sge_queues(adap);
2734        if (err)
2735                goto out;
2736        err = setup_rss(adap);
2737        if (err)
2738                goto freeq;
2739
2740        if (adap->flags & USING_MSIX) {
2741                name_msix_vecs(adap);
2742                err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2743                                  adap->msix_info[0].desc, adap);
2744                if (err)
2745                        goto irq_err;
2746
2747                err = request_msix_queue_irqs(adap);
2748                if (err) {
2749                        free_irq(adap->msix_info[0].vec, adap);
2750                        goto irq_err;
2751                }
2752        } else {
2753                err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2754                                  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2755                                  adap->port[0]->name, adap);
2756                if (err)
2757                        goto irq_err;
2758        }
2759        enable_rx(adap);
2760        t4_sge_start(adap);
2761        t4_intr_enable(adap);
2762        adap->flags |= FULL_INIT_DONE;
2763        notify_ulds(adap, CXGB4_STATE_UP);
2764#if IS_ENABLED(CONFIG_IPV6)
2765        update_clip(adap);
2766#endif
2767        /* Initialize hash mac addr list*/
2768        INIT_LIST_HEAD(&adap->mac_hlist);
2769 out:
2770        return err;
2771 irq_err:
2772        dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2773 freeq:
2774        t4_free_sge_resources(adap);
2775        goto out;
2776}
2777
2778static void cxgb_down(struct adapter *adapter)
2779{
2780        cancel_work_sync(&adapter->tid_release_task);
2781        cancel_work_sync(&adapter->db_full_task);
2782        cancel_work_sync(&adapter->db_drop_task);
2783        adapter->tid_release_task_busy = false;
2784        adapter->tid_release_head = NULL;
2785
2786        t4_sge_stop(adapter);
2787        t4_free_sge_resources(adapter);
2788        adapter->flags &= ~FULL_INIT_DONE;
2789}
2790
2791/*
2792 * net_device operations
2793 */
2794static int cxgb_open(struct net_device *dev)
2795{
2796        int err;
2797        struct port_info *pi = netdev_priv(dev);
2798        struct adapter *adapter = pi->adapter;
2799
2800        netif_carrier_off(dev);
2801
2802        if (!(adapter->flags & FULL_INIT_DONE)) {
2803                err = cxgb_up(adapter);
2804                if (err < 0)
2805                        return err;
2806        }
2807
2808        err = link_start(dev);
2809        if (!err)
2810                netif_tx_start_all_queues(dev);
2811        return err;
2812}
2813
2814static int cxgb_close(struct net_device *dev)
2815{
2816        struct port_info *pi = netdev_priv(dev);
2817        struct adapter *adapter = pi->adapter;
2818
2819        netif_tx_stop_all_queues(dev);
2820        netif_carrier_off(dev);
2821        return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2822}
2823
2824/* Return an error number if the indicated filter isn't writable ...
2825 */
2826static int writable_filter(struct filter_entry *f)
2827{
2828        if (f->locked)
2829                return -EPERM;
2830        if (f->pending)
2831                return -EBUSY;
2832
2833        return 0;
2834}
2835
2836/* Delete the filter at the specified index (if valid).  The checks for all
2837 * the common problems with doing this like the filter being locked, currently
2838 * pending in another operation, etc.
2839 */
2840static int delete_filter(struct adapter *adapter, unsigned int fidx)
2841{
2842        struct filter_entry *f;
2843        int ret;
2844
2845        if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2846                return -EINVAL;
2847
2848        f = &adapter->tids.ftid_tab[fidx];
2849        ret = writable_filter(f);
2850        if (ret)
2851                return ret;
2852        if (f->valid)
2853                return del_filter_wr(adapter, fidx);
2854
2855        return 0;
2856}
2857
2858int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2859                __be32 sip, __be16 sport, __be16 vlan,
2860                unsigned int queue, unsigned char port, unsigned char mask)
2861{
2862        int ret;
2863        struct filter_entry *f;
2864        struct adapter *adap;
2865        int i;
2866        u8 *val;
2867
2868        adap = netdev2adap(dev);
2869
2870        /* Adjust stid to correct filter index */
2871        stid -= adap->tids.sftid_base;
2872        stid += adap->tids.nftids;
2873
2874        /* Check to make sure the filter requested is writable ...
2875         */
2876        f = &adap->tids.ftid_tab[stid];
2877        ret = writable_filter(f);
2878        if (ret)
2879                return ret;
2880
2881        /* Clear out any old resources being used by the filter before
2882         * we start constructing the new filter.
2883         */
2884        if (f->valid)
2885                clear_filter(adap, f);
2886
2887        /* Clear out filter specifications */
2888        memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2889        f->fs.val.lport = cpu_to_be16(sport);
2890        f->fs.mask.lport  = ~0;
2891        val = (u8 *)&sip;
2892        if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2893                for (i = 0; i < 4; i++) {
2894                        f->fs.val.lip[i] = val[i];
2895                        f->fs.mask.lip[i] = ~0;
2896                }
2897                if (adap->params.tp.vlan_pri_map & PORT_F) {
2898                        f->fs.val.iport = port;
2899                        f->fs.mask.iport = mask;
2900                }
2901        }
2902
2903        if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2904                f->fs.val.proto = IPPROTO_TCP;
2905                f->fs.mask.proto = ~0;
2906        }
2907
2908        f->fs.dirsteer = 1;
2909        f->fs.iq = queue;
2910        /* Mark filter as locked */
2911        f->locked = 1;
2912        f->fs.rpttid = 1;
2913
2914        ret = set_filter_wr(adap, stid);
2915        if (ret) {
2916                clear_filter(adap, f);
2917                return ret;
2918        }
2919
2920        return 0;
2921}
2922EXPORT_SYMBOL(cxgb4_create_server_filter);
2923
2924int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2925                unsigned int queue, bool ipv6)
2926{
2927        int ret;
2928        struct filter_entry *f;
2929        struct adapter *adap;
2930
2931        adap = netdev2adap(dev);
2932
2933        /* Adjust stid to correct filter index */
2934        stid -= adap->tids.sftid_base;
2935        stid += adap->tids.nftids;
2936
2937        f = &adap->tids.ftid_tab[stid];
2938        /* Unlock the filter */
2939        f->locked = 0;
2940
2941        ret = delete_filter(adap, stid);
2942        if (ret)
2943                return ret;
2944
2945        return 0;
2946}
2947EXPORT_SYMBOL(cxgb4_remove_server_filter);
2948
2949static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2950                                                struct rtnl_link_stats64 *ns)
2951{
2952        struct port_stats stats;
2953        struct port_info *p = netdev_priv(dev);
2954        struct adapter *adapter = p->adapter;
2955
2956        /* Block retrieving statistics during EEH error
2957         * recovery. Otherwise, the recovery might fail
2958         * and the PCI device will be removed permanently
2959         */
2960        spin_lock(&adapter->stats_lock);
2961        if (!netif_device_present(dev)) {
2962                spin_unlock(&adapter->stats_lock);
2963                return ns;
2964        }
2965        t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2966                                 &p->stats_base);
2967        spin_unlock(&adapter->stats_lock);
2968
2969        ns->tx_bytes   = stats.tx_octets;
2970        ns->tx_packets = stats.tx_frames;
2971        ns->rx_bytes   = stats.rx_octets;
2972        ns->rx_packets = stats.rx_frames;
2973        ns->multicast  = stats.rx_mcast_frames;
2974
2975        /* detailed rx_errors */
2976        ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2977                               stats.rx_runt;
2978        ns->rx_over_errors   = 0;
2979        ns->rx_crc_errors    = stats.rx_fcs_err;
2980        ns->rx_frame_errors  = stats.rx_symbol_err;
2981        ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2982                               stats.rx_ovflow2 + stats.rx_ovflow3 +
2983                               stats.rx_trunc0 + stats.rx_trunc1 +
2984                               stats.rx_trunc2 + stats.rx_trunc3;
2985        ns->rx_missed_errors = 0;
2986
2987        /* detailed tx_errors */
2988        ns->tx_aborted_errors   = 0;
2989        ns->tx_carrier_errors   = 0;
2990        ns->tx_fifo_errors      = 0;
2991        ns->tx_heartbeat_errors = 0;
2992        ns->tx_window_errors    = 0;
2993
2994        ns->tx_errors = stats.tx_error_frames;
2995        ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2996                ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2997        return ns;
2998}
2999
3000static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
3001{
3002        unsigned int mbox;
3003        int ret = 0, prtad, devad;
3004        struct port_info *pi = netdev_priv(dev);
3005        struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3006
3007        switch (cmd) {
3008        case SIOCGMIIPHY:
3009                if (pi->mdio_addr < 0)
3010                        return -EOPNOTSUPP;
3011                data->phy_id = pi->mdio_addr;
3012                break;
3013        case SIOCGMIIREG:
3014        case SIOCSMIIREG:
3015                if (mdio_phy_id_is_c45(data->phy_id)) {
3016                        prtad = mdio_phy_id_prtad(data->phy_id);
3017                        devad = mdio_phy_id_devad(data->phy_id);
3018                } else if (data->phy_id < 32) {
3019                        prtad = data->phy_id;
3020                        devad = 0;
3021                        data->reg_num &= 0x1f;
3022                } else
3023                        return -EINVAL;
3024
3025                mbox = pi->adapter->pf;
3026                if (cmd == SIOCGMIIREG)
3027                        ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3028                                         data->reg_num, &data->val_out);
3029                else
3030                        ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3031                                         data->reg_num, data->val_in);
3032                break;
3033        case SIOCGHWTSTAMP:
3034                return copy_to_user(req->ifr_data, &pi->tstamp_config,
3035                                    sizeof(pi->tstamp_config)) ?
3036                        -EFAULT : 0;
3037        case SIOCSHWTSTAMP:
3038                if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3039                                   sizeof(pi->tstamp_config)))
3040                        return -EFAULT;
3041
3042                switch (pi->tstamp_config.rx_filter) {
3043                case HWTSTAMP_FILTER_NONE:
3044                        pi->rxtstamp = false;
3045                        break;
3046                case HWTSTAMP_FILTER_ALL:
3047                        pi->rxtstamp = true;
3048                        break;
3049                default:
3050                        pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3051                        return -ERANGE;
3052                }
3053
3054                return copy_to_user(req->ifr_data, &pi->tstamp_config,
3055                                    sizeof(pi->tstamp_config)) ?
3056                        -EFAULT : 0;
3057        default:
3058                return -EOPNOTSUPP;
3059        }
3060        return ret;
3061}
3062
3063static void cxgb_set_rxmode(struct net_device *dev)
3064{
3065        /* unfortunately we can't return errors to the stack */
3066        set_rxmode(dev, -1, false);
3067}
3068
3069static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3070{
3071        int ret;
3072        struct port_info *pi = netdev_priv(dev);
3073
3074        if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3075                return -EINVAL;
3076        ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3077                            -1, -1, -1, true);
3078        if (!ret)
3079                dev->mtu = new_mtu;
3080        return ret;
3081}
3082
3083static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3084{
3085        int ret;
3086        struct sockaddr *addr = p;
3087        struct port_info *pi = netdev_priv(dev);
3088
3089        if (!is_valid_ether_addr(addr->sa_data))
3090                return -EADDRNOTAVAIL;
3091
3092        ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3093                            pi->xact_addr_filt, addr->sa_data, true, true);
3094        if (ret < 0)
3095                return ret;
3096
3097        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3098        pi->xact_addr_filt = ret;
3099        return 0;
3100}
3101
3102#ifdef CONFIG_NET_POLL_CONTROLLER
3103static void cxgb_netpoll(struct net_device *dev)
3104{
3105        struct port_info *pi = netdev_priv(dev);
3106        struct adapter *adap = pi->adapter;
3107
3108        if (adap->flags & USING_MSIX) {
3109                int i;
3110                struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3111
3112                for (i = pi->nqsets; i; i--, rx++)
3113                        t4_sge_intr_msix(0, &rx->rspq);
3114        } else
3115                t4_intr_handler(adap)(0, adap);
3116}
3117#endif
3118
3119static const struct net_device_ops cxgb4_netdev_ops = {
3120        .ndo_open             = cxgb_open,
3121        .ndo_stop             = cxgb_close,
3122        .ndo_start_xmit       = t4_eth_xmit,
3123        .ndo_select_queue     = cxgb_select_queue,
3124        .ndo_get_stats64      = cxgb_get_stats,
3125        .ndo_set_rx_mode      = cxgb_set_rxmode,
3126        .ndo_set_mac_address  = cxgb_set_mac_addr,
3127        .ndo_set_features     = cxgb_set_features,
3128        .ndo_validate_addr    = eth_validate_addr,
3129        .ndo_do_ioctl         = cxgb_ioctl,
3130        .ndo_change_mtu       = cxgb_change_mtu,
3131#ifdef CONFIG_NET_POLL_CONTROLLER
3132        .ndo_poll_controller  = cxgb_netpoll,
3133#endif
3134#ifdef CONFIG_CHELSIO_T4_FCOE
3135        .ndo_fcoe_enable      = cxgb_fcoe_enable,
3136        .ndo_fcoe_disable     = cxgb_fcoe_disable,
3137#endif /* CONFIG_CHELSIO_T4_FCOE */
3138#ifdef CONFIG_NET_RX_BUSY_POLL
3139        .ndo_busy_poll        = cxgb_busy_poll,
3140#endif
3141
3142};
3143
3144void t4_fatal_err(struct adapter *adap)
3145{
3146        t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3147        t4_intr_disable(adap);
3148        dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3149}
3150
3151static void setup_memwin(struct adapter *adap)
3152{
3153        u32 nic_win_base = t4_get_util_window(adap);
3154
3155        t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3156}
3157
3158static void setup_memwin_rdma(struct adapter *adap)
3159{
3160        if (adap->vres.ocq.size) {
3161                u32 start;
3162                unsigned int sz_kb;
3163
3164                start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3165                start &= PCI_BASE_ADDRESS_MEM_MASK;
3166                start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3167                sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3168                t4_write_reg(adap,
3169                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3170                             start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3171                t4_write_reg(adap,
3172                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3173                             adap->vres.ocq.start);
3174                t4_read_reg(adap,
3175                            PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3176        }
3177}
3178
3179static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3180{
3181        u32 v;
3182        int ret;
3183
3184        /* get device capabilities */
3185        memset(c, 0, sizeof(*c));
3186        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3187                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
3188        c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3189        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3190        if (ret < 0)
3191                return ret;
3192
3193        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3194                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3195        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3196        if (ret < 0)
3197                return ret;
3198
3199        ret = t4_config_glbl_rss(adap, adap->pf,
3200                                 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3201                                 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3202                                 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3203        if (ret < 0)
3204                return ret;
3205
3206        ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3207                          MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3208                          FW_CMD_CAP_PF);
3209        if (ret < 0)
3210                return ret;
3211
3212        t4_sge_init(adap);
3213
3214        /* tweak some settings */
3215        t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3216        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3217        t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3218        v = t4_read_reg(adap, TP_PIO_DATA_A);
3219        t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3220
3221        /* first 4 Tx modulation queues point to consecutive Tx channels */
3222        adap->params.tp.tx_modq_map = 0xE4;
3223        t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3224                     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3225
3226        /* associate each Tx modulation queue with consecutive Tx channels */
3227        v = 0x84218421;
3228        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3229                          &v, 1, TP_TX_SCHED_HDR_A);
3230        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3231                          &v, 1, TP_TX_SCHED_FIFO_A);
3232        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3233                          &v, 1, TP_TX_SCHED_PCMD_A);
3234
3235#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3236        if (is_offload(adap)) {
3237                t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3238                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3239                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3240                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3241                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3242                t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3243                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3244                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3245                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3246                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3247        }
3248
3249        /* get basic stuff going */
3250        return t4_early_init(adap, adap->pf);
3251}
3252
3253/*
3254 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3255 */
3256#define MAX_ATIDS 8192U
3257
3258/*
3259 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3260 *
3261 * If the firmware we're dealing with has Configuration File support, then
3262 * we use that to perform all configuration
3263 */
3264
3265/*
3266 * Tweak configuration based on module parameters, etc.  Most of these have
3267 * defaults assigned to them by Firmware Configuration Files (if we're using
3268 * them) but need to be explicitly set if we're using hard-coded
3269 * initialization.  But even in the case of using Firmware Configuration
3270 * Files, we'd like to expose the ability to change these via module
3271 * parameters so these are essentially common tweaks/settings for
3272 * Configuration Files and hard-coded initialization ...
3273 */
3274static int adap_init0_tweaks(struct adapter *adapter)
3275{
3276        /*
3277         * Fix up various Host-Dependent Parameters like Page Size, Cache
3278         * Line Size, etc.  The firmware default is for a 4KB Page Size and
3279         * 64B Cache Line Size ...
3280         */
3281        t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3282
3283        /*
3284         * Process module parameters which affect early initialization.
3285         */
3286        if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3287                dev_err(&adapter->pdev->dev,
3288                        "Ignoring illegal rx_dma_offset=%d, using 2\n",
3289                        rx_dma_offset);
3290                rx_dma_offset = 2;
3291        }
3292        t4_set_reg_field(adapter, SGE_CONTROL_A,
3293                         PKTSHIFT_V(PKTSHIFT_M),
3294                         PKTSHIFT_V(rx_dma_offset));
3295
3296        /*
3297         * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3298         * adds the pseudo header itself.
3299         */
3300        t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3301                               CSUM_HAS_PSEUDO_HDR_F, 0);
3302
3303        return 0;
3304}
3305
3306/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3307 * unto themselves and they contain their own firmware to perform their
3308 * tasks ...
3309 */
3310static int phy_aq1202_version(const u8 *phy_fw_data,
3311                              size_t phy_fw_size)
3312{
3313        int offset;
3314
3315        /* At offset 0x8 you're looking for the primary image's
3316         * starting offset which is 3 Bytes wide
3317         *
3318         * At offset 0xa of the primary image, you look for the offset
3319         * of the DRAM segment which is 3 Bytes wide.
3320         *
3321         * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3322         * wide
3323         */
3324        #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3325        #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3326        #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3327
3328        offset = le24(phy_fw_data + 0x8) << 12;
3329        offset = le24(phy_fw_data + offset + 0xa);
3330        return be16(phy_fw_data + offset + 0x27e);
3331
3332        #undef be16
3333        #undef le16
3334        #undef le24
3335}
3336
3337static struct info_10gbt_phy_fw {
3338        unsigned int phy_fw_id;         /* PCI Device ID */
3339        char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3340        int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3341        int phy_flash;                  /* Has FLASH for PHY Firmware */
3342} phy_info_array[] = {
3343        {
3344                PHY_AQ1202_DEVICEID,
3345                PHY_AQ1202_FIRMWARE,
3346                phy_aq1202_version,
3347                1,
3348        },
3349        {
3350                PHY_BCM84834_DEVICEID,
3351                PHY_BCM84834_FIRMWARE,
3352                NULL,
3353                0,
3354        },
3355        { 0, NULL, NULL },
3356};
3357
3358static struct info_10gbt_phy_fw *find_phy_info(int devid)
3359{
3360        int i;
3361
3362        for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3363                if (phy_info_array[i].phy_fw_id == devid)
3364                        return &phy_info_array[i];
3365        }
3366        return NULL;
3367}
3368
3369/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3370 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3371 * we return a negative error number.  If we transfer new firmware we return 1
3372 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3373 */
3374static int adap_init0_phy(struct adapter *adap)
3375{
3376        const struct firmware *phyf;
3377        int ret;
3378        struct info_10gbt_phy_fw *phy_info;
3379
3380        /* Use the device ID to determine which PHY file to flash.
3381         */
3382        phy_info = find_phy_info(adap->pdev->device);
3383        if (!phy_info) {
3384                dev_warn(adap->pdev_dev,
3385                         "No PHY Firmware file found for this PHY\n");
3386                return -EOPNOTSUPP;
3387        }
3388
3389        /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3390         * use that. The adapter firmware provides us with a memory buffer
3391         * where we can load a PHY firmware file from the host if we want to
3392         * override the PHY firmware File in flash.
3393         */
3394        ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3395                                      adap->pdev_dev);
3396        if (ret < 0) {
3397                /* For adapters without FLASH attached to PHY for their
3398                 * firmware, it's obviously a fatal error if we can't get the
3399                 * firmware to the adapter.  For adapters with PHY firmware
3400                 * FLASH storage, it's worth a warning if we can't find the
3401                 * PHY Firmware but we'll neuter the error ...
3402                 */
3403                dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3404                        "/lib/firmware/%s, error %d\n",
3405                        phy_info->phy_fw_file, -ret);
3406                if (phy_info->phy_flash) {
3407                        int cur_phy_fw_ver = 0;
3408
3409                        t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3410                        dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3411                                 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3412                        ret = 0;
3413                }
3414
3415                return ret;
3416        }
3417
3418        /* Load PHY Firmware onto adapter.
3419         */
3420        ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3421                             phy_info->phy_fw_version,
3422                             (u8 *)phyf->data, phyf->size);
3423        if (ret < 0)
3424                dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3425                        -ret);
3426        else if (ret > 0) {
3427                int new_phy_fw_ver = 0;
3428
3429                if (phy_info->phy_fw_version)
3430                        new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3431                                                                  phyf->size);
3432                dev_info(adap->pdev_dev, "Successfully transferred PHY "
3433                         "Firmware /lib/firmware/%s, version %#x\n",
3434                         phy_info->phy_fw_file, new_phy_fw_ver);
3435        }
3436
3437        release_firmware(phyf);
3438
3439        return ret;
3440}
3441
3442/*
3443 * Attempt to initialize the adapter via a Firmware Configuration File.
3444 */
3445static int adap_init0_config(struct adapter *adapter, int reset)
3446{
3447        struct fw_caps_config_cmd caps_cmd;
3448        const struct firmware *cf;
3449        unsigned long mtype = 0, maddr = 0;
3450        u32 finiver, finicsum, cfcsum;
3451        int ret;
3452        int config_issued = 0;
3453        char *fw_config_file, fw_config_file_path[256];
3454        char *config_name = NULL;
3455
3456        /*
3457         * Reset device if necessary.
3458         */
3459        if (reset) {
3460                ret = t4_fw_reset(adapter, adapter->mbox,
3461                                  PIORSTMODE_F | PIORST_F);
3462                if (ret < 0)
3463                        goto bye;
3464        }
3465
3466        /* If this is a 10Gb/s-BT adapter make sure the chip-external
3467         * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3468         * to be performed after any global adapter RESET above since some
3469         * PHYs only have local RAM copies of the PHY firmware.
3470         */
3471        if (is_10gbt_device(adapter->pdev->device)) {
3472                ret = adap_init0_phy(adapter);
3473                if (ret < 0)
3474                        goto bye;
3475        }
3476        /*
3477         * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3478         * then use that.  Otherwise, use the configuration file stored
3479         * in the adapter flash ...
3480         */
3481        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3482        case CHELSIO_T4:
3483                fw_config_file = FW4_CFNAME;
3484                break;
3485        case CHELSIO_T5:
3486                fw_config_file = FW5_CFNAME;
3487                break;
3488        case CHELSIO_T6:
3489                fw_config_file = FW6_CFNAME;
3490                break;
3491        default:
3492                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3493                       adapter->pdev->device);
3494                ret = -EINVAL;
3495                goto bye;
3496        }
3497
3498        ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3499        if (ret < 0) {
3500                config_name = "On FLASH";
3501                mtype = FW_MEMTYPE_CF_FLASH;
3502                maddr = t4_flash_cfg_addr(adapter);
3503        } else {
3504                u32 params[7], val[7];
3505
3506                sprintf(fw_config_file_path,
3507                        "/lib/firmware/%s", fw_config_file);
3508                config_name = fw_config_file_path;
3509
3510                if (cf->size >= FLASH_CFG_MAX_SIZE)
3511                        ret = -ENOMEM;
3512                else {
3513                        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3514                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3515                        ret = t4_query_params(adapter, adapter->mbox,
3516                                              adapter->pf, 0, 1, params, val);
3517                        if (ret == 0) {
3518                                /*
3519                                 * For t4_memory_rw() below addresses and
3520                                 * sizes have to be in terms of multiples of 4
3521                                 * bytes.  So, if the Configuration File isn't
3522                                 * a multiple of 4 bytes in length we'll have
3523                                 * to write that out separately since we can't
3524                                 * guarantee that the bytes following the
3525                                 * residual byte in the buffer returned by
3526                                 * request_firmware() are zeroed out ...
3527                                 */
3528                                size_t resid = cf->size & 0x3;
3529                                size_t size = cf->size & ~0x3;
3530                                __be32 *data = (__be32 *)cf->data;
3531
3532                                mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3533                                maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3534
3535                                spin_lock(&adapter->win0_lock);
3536                                ret = t4_memory_rw(adapter, 0, mtype, maddr,
3537                                                   size, data, T4_MEMORY_WRITE);
3538                                if (ret == 0 && resid != 0) {
3539                                        union {
3540                                                __be32 word;
3541                                                char buf[4];
3542                                        } last;
3543                                        int i;
3544
3545                                        last.word = data[size >> 2];
3546                                        for (i = resid; i < 4; i++)
3547                                                last.buf[i] = 0;
3548                                        ret = t4_memory_rw(adapter, 0, mtype,
3549                                                           maddr + size,
3550                                                           4, &last.word,
3551                                                           T4_MEMORY_WRITE);
3552                                }
3553                                spin_unlock(&adapter->win0_lock);
3554                        }
3555                }
3556
3557                release_firmware(cf);
3558                if (ret)
3559                        goto bye;
3560        }
3561
3562        /*
3563         * Issue a Capability Configuration command to the firmware to get it
3564         * to parse the Configuration File.  We don't use t4_fw_config_file()
3565         * because we want the ability to modify various features after we've
3566         * processed the configuration file ...
3567         */
3568        memset(&caps_cmd, 0, sizeof(caps_cmd));
3569        caps_cmd.op_to_write =
3570                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3571                      FW_CMD_REQUEST_F |
3572                      FW_CMD_READ_F);
3573        caps_cmd.cfvalid_to_len16 =
3574                htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3575                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3576                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3577                      FW_LEN16(caps_cmd));
3578        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3579                         &caps_cmd);
3580
3581        /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3582         * Configuration File in FLASH), our last gasp effort is to use the
3583         * Firmware Configuration File which is embedded in the firmware.  A
3584         * very few early versions of the firmware didn't have one embedded
3585         * but we can ignore those.
3586         */
3587        if (ret == -ENOENT) {
3588                memset(&caps_cmd, 0, sizeof(caps_cmd));
3589                caps_cmd.op_to_write =
3590                        htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3591                                        FW_CMD_REQUEST_F |
3592                                        FW_CMD_READ_F);
3593                caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3594                ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3595                                sizeof(caps_cmd), &caps_cmd);
3596                config_name = "Firmware Default";
3597        }
3598
3599        config_issued = 1;
3600        if (ret < 0)
3601                goto bye;
3602
3603        finiver = ntohl(caps_cmd.finiver);
3604        finicsum = ntohl(caps_cmd.finicsum);
3605        cfcsum = ntohl(caps_cmd.cfcsum);
3606        if (finicsum != cfcsum)
3607                dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3608                         "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3609                         finicsum, cfcsum);
3610
3611        /*
3612         * And now tell the firmware to use the configuration we just loaded.
3613         */
3614        caps_cmd.op_to_write =
3615                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3616                      FW_CMD_REQUEST_F |
3617                      FW_CMD_WRITE_F);
3618        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3619        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3620                         NULL);
3621        if (ret < 0)
3622                goto bye;
3623
3624        /*
3625         * Tweak configuration based on system architecture, module
3626         * parameters, etc.
3627         */
3628        ret = adap_init0_tweaks(adapter);
3629        if (ret < 0)
3630                goto bye;
3631
3632        /*
3633         * And finally tell the firmware to initialize itself using the
3634         * parameters from the Configuration File.
3635         */
3636        ret = t4_fw_initialize(adapter, adapter->mbox);
3637        if (ret < 0)
3638                goto bye;
3639
3640        /* Emit Firmware Configuration File information and return
3641         * successfully.
3642         */
3643        dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3644                 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3645                 config_name, finiver, cfcsum);
3646        return 0;
3647
3648        /*
3649         * Something bad happened.  Return the error ...  (If the "error"
3650         * is that there's no Configuration File on the adapter we don't
3651         * want to issue a warning since this is fairly common.)
3652         */
3653bye:
3654        if (config_issued && ret != -ENOENT)
3655                dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3656                         config_name, -ret);
3657        return ret;
3658}
3659
3660static struct fw_info fw_info_array[] = {
3661        {
3662                .chip = CHELSIO_T4,
3663                .fs_name = FW4_CFNAME,
3664                .fw_mod_name = FW4_FNAME,
3665                .fw_hdr = {
3666                        .chip = FW_HDR_CHIP_T4,
3667                        .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3668                        .intfver_nic = FW_INTFVER(T4, NIC),
3669                        .intfver_vnic = FW_INTFVER(T4, VNIC),
3670                        .intfver_ri = FW_INTFVER(T4, RI),
3671                        .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3672                        .intfver_fcoe = FW_INTFVER(T4, FCOE),
3673                },
3674        }, {
3675                .chip = CHELSIO_T5,
3676                .fs_name = FW5_CFNAME,
3677                .fw_mod_name = FW5_FNAME,
3678                .fw_hdr = {
3679                        .chip = FW_HDR_CHIP_T5,
3680                        .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3681                        .intfver_nic = FW_INTFVER(T5, NIC),
3682                        .intfver_vnic = FW_INTFVER(T5, VNIC),
3683                        .intfver_ri = FW_INTFVER(T5, RI),
3684                        .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3685                        .intfver_fcoe = FW_INTFVER(T5, FCOE),
3686                },
3687        }, {
3688                .chip = CHELSIO_T6,
3689                .fs_name = FW6_CFNAME,
3690                .fw_mod_name = FW6_FNAME,
3691                .fw_hdr = {
3692                        .chip = FW_HDR_CHIP_T6,
3693                        .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3694                        .intfver_nic = FW_INTFVER(T6, NIC),
3695                        .intfver_vnic = FW_INTFVER(T6, VNIC),
3696                        .intfver_ofld = FW_INTFVER(T6, OFLD),
3697                        .intfver_ri = FW_INTFVER(T6, RI),
3698                        .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3699                        .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3700                        .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3701                        .intfver_fcoe = FW_INTFVER(T6, FCOE),
3702                },
3703        }
3704
3705};
3706
3707static struct fw_info *find_fw_info(int chip)
3708{
3709        int i;
3710
3711        for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3712                if (fw_info_array[i].chip == chip)
3713                        return &fw_info_array[i];
3714        }
3715        return NULL;
3716}
3717
3718/*
3719 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3720 */
3721static int adap_init0(struct adapter *adap)
3722{
3723        int ret;
3724        u32 v, port_vec;
3725        enum dev_state state;
3726        u32 params[7], val[7];
3727        struct fw_caps_config_cmd caps_cmd;
3728        int reset = 1;
3729
3730        /* Grab Firmware Device Log parameters as early as possible so we have
3731         * access to it for debugging, etc.
3732         */
3733        ret = t4_init_devlog_params(adap);
3734        if (ret < 0)
3735                return ret;
3736
3737        /* Contact FW, advertising Master capability */
3738        ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3739        if (ret < 0) {
3740                dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3741                        ret);
3742                return ret;
3743        }
3744        if (ret == adap->mbox)
3745                adap->flags |= MASTER_PF;
3746
3747        /*
3748         * If we're the Master PF Driver and the device is uninitialized,
3749         * then let's consider upgrading the firmware ...  (We always want
3750         * to check the firmware version number in order to A. get it for
3751         * later reporting and B. to warn if the currently loaded firmware
3752         * is excessively mismatched relative to the driver.)
3753         */
3754        t4_get_fw_version(adap, &adap->params.fw_vers);
3755        t4_get_bs_version(adap, &adap->params.bs_vers);
3756        t4_get_tp_version(adap, &adap->params.tp_vers);
3757        t4_get_exprom_version(adap, &adap->params.er_vers);
3758
3759        ret = t4_check_fw_version(adap);
3760        /* If firmware is too old (not supported by driver) force an update. */
3761        if (ret)
3762                state = DEV_STATE_UNINIT;
3763        if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3764                struct fw_info *fw_info;
3765                struct fw_hdr *card_fw;
3766                const struct firmware *fw;
3767                const u8 *fw_data = NULL;
3768                unsigned int fw_size = 0;
3769
3770                /* This is the firmware whose headers the driver was compiled
3771                 * against
3772                 */
3773                fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3774                if (fw_info == NULL) {
3775                        dev_err(adap->pdev_dev,
3776                                "unable to get firmware info for chip %d.\n",
3777                                CHELSIO_CHIP_VERSION(adap->params.chip));
3778                        return -EINVAL;
3779                }
3780
3781                /* allocate memory to read the header of the firmware on the
3782                 * card
3783                 */
3784                card_fw = t4_alloc_mem(sizeof(*card_fw));
3785
3786                /* Get FW from from /lib/firmware/ */
3787                ret = request_firmware(&fw, fw_info->fw_mod_name,
3788                                       adap->pdev_dev);
3789                if (ret < 0) {
3790                        dev_err(adap->pdev_dev,
3791                                "unable to load firmware image %s, error %d\n",
3792                                fw_info->fw_mod_name, ret);
3793                } else {
3794                        fw_data = fw->data;
3795                        fw_size = fw->size;
3796                }
3797
3798                /* upgrade FW logic */
3799                ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3800                                 state, &reset);
3801
3802                /* Cleaning up */
3803                release_firmware(fw);
3804                t4_free_mem(card_fw);
3805
3806                if (ret < 0)
3807                        goto bye;
3808        }
3809
3810        /*
3811         * Grab VPD parameters.  This should be done after we establish a
3812         * connection to the firmware since some of the VPD parameters
3813         * (notably the Core Clock frequency) are retrieved via requests to
3814         * the firmware.  On the other hand, we need these fairly early on
3815         * so we do this right after getting ahold of the firmware.
3816         */
3817        ret = t4_get_vpd_params(adap, &adap->params.vpd);
3818        if (ret < 0)
3819                goto bye;
3820
3821        /*
3822         * Find out what ports are available to us.  Note that we need to do
3823         * this before calling adap_init0_no_config() since it needs nports
3824         * and portvec ...
3825         */
3826        v =
3827            FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3828            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3829        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3830        if (ret < 0)
3831                goto bye;
3832
3833        adap->params.nports = hweight32(port_vec);
3834        adap->params.portvec = port_vec;
3835
3836        /* If the firmware is initialized already, emit a simply note to that
3837         * effect. Otherwise, it's time to try initializing the adapter.
3838         */
3839        if (state == DEV_STATE_INIT) {
3840                dev_info(adap->pdev_dev, "Coming up as %s: "\
3841                         "Adapter already initialized\n",
3842                         adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3843        } else {
3844                dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3845                         "Initializing adapter\n");
3846
3847                /* Find out whether we're dealing with a version of the
3848                 * firmware which has configuration file support.
3849                 */
3850                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3851                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3852                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3853                                      params, val);
3854
3855                /* If the firmware doesn't support Configuration Files,
3856                 * return an error.
3857                 */
3858                if (ret < 0) {
3859                        dev_err(adap->pdev_dev, "firmware doesn't support "
3860                                "Firmware Configuration Files\n");
3861                        goto bye;
3862                }
3863
3864                /* The firmware provides us with a memory buffer where we can
3865                 * load a Configuration File from the host if we want to
3866                 * override the Configuration File in flash.
3867                 */
3868                ret = adap_init0_config(adap, reset);
3869                if (ret == -ENOENT) {
3870                        dev_err(adap->pdev_dev, "no Configuration File "
3871                                "present on adapter.\n");
3872                        goto bye;
3873                }
3874                if (ret < 0) {
3875                        dev_err(adap->pdev_dev, "could not initialize "
3876                                "adapter, error %d\n", -ret);
3877                        goto bye;
3878                }
3879        }
3880
3881        /* Give the SGE code a chance to pull in anything that it needs ...
3882         * Note that this must be called after we retrieve our VPD parameters
3883         * in order to know how to convert core ticks to seconds, etc.
3884         */
3885        ret = t4_sge_init(adap);
3886        if (ret < 0)
3887                goto bye;
3888
3889        if (is_bypass_device(adap->pdev->device))
3890                adap->params.bypass = 1;
3891
3892        /*
3893         * Grab some of our basic fundamental operating parameters.
3894         */
3895#define FW_PARAM_DEV(param) \
3896        (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3897        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3898
3899#define FW_PARAM_PFVF(param) \
3900        FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3901        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3902        FW_PARAMS_PARAM_Y_V(0) | \
3903        FW_PARAMS_PARAM_Z_V(0)
3904
3905        params[0] = FW_PARAM_PFVF(EQ_START);
3906        params[1] = FW_PARAM_PFVF(L2T_START);
3907        params[2] = FW_PARAM_PFVF(L2T_END);
3908        params[3] = FW_PARAM_PFVF(FILTER_START);
3909        params[4] = FW_PARAM_PFVF(FILTER_END);
3910        params[5] = FW_PARAM_PFVF(IQFLINT_START);
3911        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3912        if (ret < 0)
3913                goto bye;
3914        adap->sge.egr_start = val[0];
3915        adap->l2t_start = val[1];
3916        adap->l2t_end = val[2];
3917        adap->tids.ftid_base = val[3];
3918        adap->tids.nftids = val[4] - val[3] + 1;
3919        adap->sge.ingr_start = val[5];
3920
3921        /* qids (ingress/egress) returned from firmware can be anywhere
3922         * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3923         * Hence driver needs to allocate memory for this range to
3924         * store the queue info. Get the highest IQFLINT/EQ index returned
3925         * in FW_EQ_*_CMD.alloc command.
3926         */
3927        params[0] = FW_PARAM_PFVF(EQ_END);
3928        params[1] = FW_PARAM_PFVF(IQFLINT_END);
3929        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3930        if (ret < 0)
3931                goto bye;
3932        adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3933        adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3934
3935        adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3936                                    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3937        if (!adap->sge.egr_map) {
3938                ret = -ENOMEM;
3939                goto bye;
3940        }
3941
3942        adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3943                                     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3944        if (!adap->sge.ingr_map) {
3945                ret = -ENOMEM;
3946                goto bye;
3947        }
3948
3949        /* Allocate the memory for the vaious egress queue bitmaps
3950         * ie starving_fl, txq_maperr and blocked_fl.
3951         */
3952        adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3953                                        sizeof(long), GFP_KERNEL);
3954        if (!adap->sge.starving_fl) {
3955                ret = -ENOMEM;
3956                goto bye;
3957        }
3958
3959        adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3960                                       sizeof(long), GFP_KERNEL);
3961        if (!adap->sge.txq_maperr) {
3962                ret = -ENOMEM;
3963                goto bye;
3964        }
3965
3966#ifdef CONFIG_DEBUG_FS
3967        adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3968                                       sizeof(long), GFP_KERNEL);
3969        if (!adap->sge.blocked_fl) {
3970                ret = -ENOMEM;
3971                goto bye;
3972        }
3973#endif
3974
3975        params[0] = FW_PARAM_PFVF(CLIP_START);
3976        params[1] = FW_PARAM_PFVF(CLIP_END);
3977        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3978        if (ret < 0)
3979                goto bye;
3980        adap->clipt_start = val[0];
3981        adap->clipt_end = val[1];
3982
3983        /* query params related to active filter region */
3984        params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3985        params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3986        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3987        /* If Active filter size is set we enable establishing
3988         * offload connection through firmware work request
3989         */
3990        if ((val[0] != val[1]) && (ret >= 0)) {
3991                adap->flags |= FW_OFLD_CONN;
3992                adap->tids.aftid_base = val[0];
3993                adap->tids.aftid_end = val[1];
3994        }
3995
3996        /* If we're running on newer firmware, let it know that we're
3997         * prepared to deal with encapsulated CPL messages.  Older
3998         * firmware won't understand this and we'll just get
3999         * unencapsulated messages ...
4000         */
4001        params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4002        val[0] = 1;
4003        (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4004
4005        /*
4006         * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4007         * capability.  Earlier versions of the firmware didn't have the
4008         * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4009         * permission to use ULPTX MEMWRITE DSGL.
4010         */
4011        if (is_t4(adap->params.chip)) {
4012                adap->params.ulptx_memwrite_dsgl = false;
4013        } else {
4014                params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4015                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4016                                      1, params, val);
4017                adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4018        }
4019
4020        /*
4021         * Get device capabilities so we can determine what resources we need
4022         * to manage.
4023         */
4024        memset(&caps_cmd, 0, sizeof(caps_cmd));
4025        caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4026                                     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4027        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4028        ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4029                         &caps_cmd);
4030        if (ret < 0)
4031                goto bye;
4032
4033        if (caps_cmd.ofldcaps) {
4034                /* query offload-related parameters */
4035                params[0] = FW_PARAM_DEV(NTID);
4036                params[1] = FW_PARAM_PFVF(SERVER_START);
4037                params[2] = FW_PARAM_PFVF(SERVER_END);
4038                params[3] = FW_PARAM_PFVF(TDDP_START);
4039                params[4] = FW_PARAM_PFVF(TDDP_END);
4040                params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4041                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4042                                      params, val);
4043                if (ret < 0)
4044                        goto bye;
4045                adap->tids.ntids = val[0];
4046                adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4047                adap->tids.stid_base = val[1];
4048                adap->tids.nstids = val[2] - val[1] + 1;
4049                /*
4050                 * Setup server filter region. Divide the available filter
4051                 * region into two parts. Regular filters get 1/3rd and server
4052                 * filters get 2/3rd part. This is only enabled if workarond
4053                 * path is enabled.
4054                 * 1. For regular filters.
4055                 * 2. Server filter: This are special filters which are used
4056                 * to redirect SYN packets to offload queue.
4057                 */
4058                if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4059                        adap->tids.sftid_base = adap->tids.ftid_base +
4060                                        DIV_ROUND_UP(adap->tids.nftids, 3);
4061                        adap->tids.nsftids = adap->tids.nftids -
4062                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4063                        adap->tids.nftids = adap->tids.sftid_base -
4064                                                adap->tids.ftid_base;
4065                }
4066                adap->vres.ddp.start = val[3];
4067                adap->vres.ddp.size = val[4] - val[3] + 1;
4068                adap->params.ofldq_wr_cred = val[5];
4069
4070                adap->params.offload = 1;
4071        }
4072        if (caps_cmd.rdmacaps) {
4073                params[0] = FW_PARAM_PFVF(STAG_START);
4074                params[1] = FW_PARAM_PFVF(STAG_END);
4075                params[2] = FW_PARAM_PFVF(RQ_START);
4076                params[3] = FW_PARAM_PFVF(RQ_END);
4077                params[4] = FW_PARAM_PFVF(PBL_START);
4078                params[5] = FW_PARAM_PFVF(PBL_END);
4079                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4080                                      params, val);
4081                if (ret < 0)
4082                        goto bye;
4083                adap->vres.stag.start = val[0];
4084                adap->vres.stag.size = val[1] - val[0] + 1;
4085                adap->vres.rq.start = val[2];
4086                adap->vres.rq.size = val[3] - val[2] + 1;
4087                adap->vres.pbl.start = val[4];
4088                adap->vres.pbl.size = val[5] - val[4] + 1;
4089
4090                params[0] = FW_PARAM_PFVF(SQRQ_START);
4091                params[1] = FW_PARAM_PFVF(SQRQ_END);
4092                params[2] = FW_PARAM_PFVF(CQ_START);
4093                params[3] = FW_PARAM_PFVF(CQ_END);
4094                params[4] = FW_PARAM_PFVF(OCQ_START);
4095                params[5] = FW_PARAM_PFVF(OCQ_END);
4096                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4097                                      val);
4098                if (ret < 0)
4099                        goto bye;
4100                adap->vres.qp.start = val[0];
4101                adap->vres.qp.size = val[1] - val[0] + 1;
4102                adap->vres.cq.start = val[2];
4103                adap->vres.cq.size = val[3] - val[2] + 1;
4104                adap->vres.ocq.start = val[4];
4105                adap->vres.ocq.size = val[5] - val[4] + 1;
4106
4107                params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4108                params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4109                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4110                                      val);
4111                if (ret < 0) {
4112                        adap->params.max_ordird_qp = 8;
4113                        adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4114                        ret = 0;
4115                } else {
4116                        adap->params.max_ordird_qp = val[0];
4117                        adap->params.max_ird_adapter = val[1];
4118                }
4119                dev_info(adap->pdev_dev,
4120                         "max_ordird_qp %d max_ird_adapter %d\n",
4121                         adap->params.max_ordird_qp,
4122                         adap->params.max_ird_adapter);
4123        }
4124        if (caps_cmd.iscsicaps) {
4125                params[0] = FW_PARAM_PFVF(ISCSI_START);
4126                params[1] = FW_PARAM_PFVF(ISCSI_END);
4127                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4128                                      params, val);
4129                if (ret < 0)
4130                        goto bye;
4131                adap->vres.iscsi.start = val[0];
4132                adap->vres.iscsi.size = val[1] - val[0] + 1;
4133        }
4134#undef FW_PARAM_PFVF
4135#undef FW_PARAM_DEV
4136
4137        /* The MTU/MSS Table is initialized by now, so load their values.  If
4138         * we're initializing the adapter, then we'll make any modifications
4139         * we want to the MTU/MSS Table and also initialize the congestion
4140         * parameters.
4141         */
4142        t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4143        if (state != DEV_STATE_INIT) {
4144                int i;
4145
4146                /* The default MTU Table contains values 1492 and 1500.
4147                 * However, for TCP, it's better to have two values which are
4148                 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4149                 * This allows us to have a TCP Data Payload which is a
4150                 * multiple of 8 regardless of what combination of TCP Options
4151                 * are in use (always a multiple of 4 bytes) which is
4152                 * important for performance reasons.  For instance, if no
4153                 * options are in use, then we have a 20-byte IP header and a
4154                 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4155                 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4156                 * which is not a multiple of 8.  So using an MSS of 1488 in
4157                 * this case results in a TCP Data Payload of 1448 bytes which
4158                 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4159                 * Stamps have been negotiated, then an MTU of 1500 bytes
4160                 * results in a TCP Data Payload of 1448 bytes which, as
4161                 * above, is a multiple of 8 bytes ...
4162                 */
4163                for (i = 0; i < NMTUS; i++)
4164                        if (adap->params.mtus[i] == 1492) {
4165                                adap->params.mtus[i] = 1488;
4166                                break;
4167                        }
4168
4169                t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4170                             adap->params.b_wnd);
4171        }
4172        t4_init_sge_params(adap);
4173        adap->flags |= FW_OK;
4174        t4_init_tp_params(adap);
4175        return 0;
4176
4177        /*
4178         * Something bad happened.  If a command timed out or failed with EIO
4179         * FW does not operate within its spec or something catastrophic
4180         * happened to HW/FW, stop issuing commands.
4181         */
4182bye:
4183        kfree(adap->sge.egr_map);
4184        kfree(adap->sge.ingr_map);
4185        kfree(adap->sge.starving_fl);
4186        kfree(adap->sge.txq_maperr);
4187#ifdef CONFIG_DEBUG_FS
4188        kfree(adap->sge.blocked_fl);
4189#endif
4190        if (ret != -ETIMEDOUT && ret != -EIO)
4191                t4_fw_bye(adap, adap->mbox);
4192        return ret;
4193}
4194
4195/* EEH callbacks */
4196
4197static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4198                                         pci_channel_state_t state)
4199{
4200        int i;
4201        struct adapter *adap = pci_get_drvdata(pdev);
4202
4203        if (!adap)
4204                goto out;
4205
4206        rtnl_lock();
4207        adap->flags &= ~FW_OK;
4208        notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4209        spin_lock(&adap->stats_lock);
4210        for_each_port(adap, i) {
4211                struct net_device *dev = adap->port[i];
4212
4213                netif_device_detach(dev);
4214                netif_carrier_off(dev);
4215        }
4216        spin_unlock(&adap->stats_lock);
4217        disable_interrupts(adap);
4218        if (adap->flags & FULL_INIT_DONE)
4219                cxgb_down(adap);
4220        rtnl_unlock();
4221        if ((adap->flags & DEV_ENABLED)) {
4222                pci_disable_device(pdev);
4223                adap->flags &= ~DEV_ENABLED;
4224        }
4225out:    return state == pci_channel_io_perm_failure ?
4226                PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4227}
4228
4229static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4230{
4231        int i, ret;
4232        struct fw_caps_config_cmd c;
4233        struct adapter *adap = pci_get_drvdata(pdev);
4234
4235        if (!adap) {
4236                pci_restore_state(pdev);
4237                pci_save_state(pdev);
4238                return PCI_ERS_RESULT_RECOVERED;
4239        }
4240
4241        if (!(adap->flags & DEV_ENABLED)) {
4242                if (pci_enable_device(pdev)) {
4243                        dev_err(&pdev->dev, "Cannot reenable PCI "
4244                                            "device after reset\n");
4245                        return PCI_ERS_RESULT_DISCONNECT;
4246                }
4247                adap->flags |= DEV_ENABLED;
4248        }
4249
4250        pci_set_master(pdev);
4251        pci_restore_state(pdev);
4252        pci_save_state(pdev);
4253        pci_cleanup_aer_uncorrect_error_status(pdev);
4254
4255        if (t4_wait_dev_ready(adap->regs) < 0)
4256                return PCI_ERS_RESULT_DISCONNECT;
4257        if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4258                return PCI_ERS_RESULT_DISCONNECT;
4259        adap->flags |= FW_OK;
4260        if (adap_init1(adap, &c))
4261                return PCI_ERS_RESULT_DISCONNECT;
4262
4263        for_each_port(adap, i) {
4264                struct port_info *p = adap2pinfo(adap, i);
4265
4266                ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4267                                  NULL, NULL);
4268                if (ret < 0)
4269                        return PCI_ERS_RESULT_DISCONNECT;
4270                p->viid = ret;
4271                p->xact_addr_filt = -1;
4272        }
4273
4274        t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4275                     adap->params.b_wnd);
4276        setup_memwin(adap);
4277        if (cxgb_up(adap))
4278                return PCI_ERS_RESULT_DISCONNECT;
4279        return PCI_ERS_RESULT_RECOVERED;
4280}
4281
4282static void eeh_resume(struct pci_dev *pdev)
4283{
4284        int i;
4285        struct adapter *adap = pci_get_drvdata(pdev);
4286
4287        if (!adap)
4288                return;
4289
4290        rtnl_lock();
4291        for_each_port(adap, i) {
4292                struct net_device *dev = adap->port[i];
4293
4294                if (netif_running(dev)) {
4295                        link_start(dev);
4296                        cxgb_set_rxmode(dev);
4297                }
4298                netif_device_attach(dev);
4299        }
4300        rtnl_unlock();
4301}
4302
4303static const struct pci_error_handlers cxgb4_eeh = {
4304        .error_detected = eeh_err_detected,
4305        .slot_reset     = eeh_slot_reset,
4306        .resume         = eeh_resume,
4307};
4308
4309static inline bool is_x_10g_port(const struct link_config *lc)
4310{
4311        return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4312               (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4313}
4314
4315static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4316                             unsigned int us, unsigned int cnt,
4317                             unsigned int size, unsigned int iqe_size)
4318{
4319        q->adap = adap;
4320        cxgb4_set_rspq_intr_params(q, us, cnt);
4321        q->iqe_len = iqe_size;
4322        q->size = size;
4323}
4324
4325/*
4326 * Perform default configuration of DMA queues depending on the number and type
4327 * of ports we found and the number of available CPUs.  Most settings can be
4328 * modified by the admin prior to actual use.
4329 */
4330static void cfg_queues(struct adapter *adap)
4331{
4332        struct sge *s = &adap->sge;
4333        int i, n10g = 0, qidx = 0;
4334#ifndef CONFIG_CHELSIO_T4_DCB
4335        int q10g = 0;
4336#endif
4337        int ciq_size;
4338
4339        for_each_port(adap, i)
4340                n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4341#ifdef CONFIG_CHELSIO_T4_DCB
4342        /* For Data Center Bridging support we need to be able to support up
4343         * to 8 Traffic Priorities; each of which will be assigned to its
4344         * own TX Queue in order to prevent Head-Of-Line Blocking.
4345         */
4346        if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4347                dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4348                        MAX_ETH_QSETS, adap->params.nports * 8);
4349                BUG_ON(1);
4350        }
4351
4352        for_each_port(adap, i) {
4353                struct port_info *pi = adap2pinfo(adap, i);
4354
4355                pi->first_qset = qidx;
4356                pi->nqsets = 8;
4357                qidx += pi->nqsets;
4358        }
4359#else /* !CONFIG_CHELSIO_T4_DCB */
4360        /*
4361         * We default to 1 queue per non-10G port and up to # of cores queues
4362         * per 10G port.
4363         */
4364        if (n10g)
4365                q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4366        if (q10g > netif_get_num_default_rss_queues())
4367                q10g = netif_get_num_default_rss_queues();
4368
4369        for_each_port(adap, i) {
4370                struct port_info *pi = adap2pinfo(adap, i);
4371
4372                pi->first_qset = qidx;
4373                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4374                qidx += pi->nqsets;
4375        }
4376#endif /* !CONFIG_CHELSIO_T4_DCB */
4377
4378        s->ethqsets = qidx;
4379        s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4380
4381        if (is_offload(adap)) {
4382                /*
4383                 * For offload we use 1 queue/channel if all ports are up to 1G,
4384                 * otherwise we divide all available queues amongst the channels
4385                 * capped by the number of available cores.
4386                 */
4387                if (n10g) {
4388                        i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4389                                  num_online_cpus());
4390                        s->iscsiqsets = roundup(i, adap->params.nports);
4391                } else
4392                        s->iscsiqsets = adap->params.nports;
4393                /* For RDMA one Rx queue per channel suffices */
4394                s->rdmaqs = adap->params.nports;
4395                /* Try and allow at least 1 CIQ per cpu rounding down
4396                 * to the number of ports, with a minimum of 1 per port.
4397                 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4398                 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4399                 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4400                 */
4401                s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4402                s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4403                                adap->params.nports;
4404                s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4405
4406                if (!is_t4(adap->params.chip))
4407                        s->niscsitq = s->iscsiqsets;
4408        }
4409
4410        for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4411                struct sge_eth_rxq *r = &s->ethrxq[i];
4412
4413                init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4414                r->fl.size = 72;
4415        }
4416
4417        for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4418                s->ethtxq[i].q.size = 1024;
4419
4420        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4421                s->ctrlq[i].q.size = 512;
4422
4423        for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4424                s->ofldtxq[i].q.size = 1024;
4425
4426        for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4427                struct sge_ofld_rxq *r = &s->iscsirxq[i];
4428
4429                init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4430                r->rspq.uld = CXGB4_ULD_ISCSI;
4431                r->fl.size = 72;
4432        }
4433
4434        if (!is_t4(adap->params.chip)) {
4435                for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4436                        struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4437
4438                        init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4439                        r->rspq.uld = CXGB4_ULD_ISCSIT;
4440                        r->fl.size = 72;
4441                }
4442        }
4443
4444        for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4445                struct sge_ofld_rxq *r = &s->rdmarxq[i];
4446
4447                init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4448                r->rspq.uld = CXGB4_ULD_RDMA;
4449                r->fl.size = 72;
4450        }
4451
4452        ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4453        if (ciq_size > SGE_MAX_IQ_SIZE) {
4454                CH_WARN(adap, "CIQ size too small for available IQs\n");
4455                ciq_size = SGE_MAX_IQ_SIZE;
4456        }
4457
4458        for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4459                struct sge_ofld_rxq *r = &s->rdmaciq[i];
4460
4461                init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4462                r->rspq.uld = CXGB4_ULD_RDMA;
4463        }
4464
4465        init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4466        init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4467}
4468
4469/*
4470 * Reduce the number of Ethernet queues across all ports to at most n.
4471 * n provides at least one queue per port.
4472 */
4473static void reduce_ethqs(struct adapter *adap, int n)
4474{
4475        int i;
4476        struct port_info *pi;
4477
4478        while (n < adap->sge.ethqsets)
4479                for_each_port(adap, i) {
4480                        pi = adap2pinfo(adap, i);
4481                        if (pi->nqsets > 1) {
4482                                pi->nqsets--;
4483                                adap->sge.ethqsets--;
4484                                if (adap->sge.ethqsets <= n)
4485                                        break;
4486                        }
4487                }
4488
4489        n = 0;
4490        for_each_port(adap, i) {
4491                pi = adap2pinfo(adap, i);
4492                pi->first_qset = n;
4493                n += pi->nqsets;
4494        }
4495}
4496
4497/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4498#define EXTRA_VECS 2
4499
4500static int enable_msix(struct adapter *adap)
4501{
4502        int ofld_need = 0;
4503        int i, want, need, allocated;
4504        struct sge *s = &adap->sge;
4505        unsigned int nchan = adap->params.nports;
4506        struct msix_entry *entries;
4507
4508        entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4509                          GFP_KERNEL);
4510        if (!entries)
4511                return -ENOMEM;
4512
4513        for (i = 0; i < MAX_INGQ + 1; ++i)
4514                entries[i].entry = i;
4515
4516        want = s->max_ethqsets + EXTRA_VECS;
4517        if (is_offload(adap)) {
4518                want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets +
4519                        s->niscsitq;
4520                /* need nchan for each possible ULD */
4521                if (is_t4(adap->params.chip))
4522                        ofld_need = 3 * nchan;
4523                else
4524                        ofld_need = 4 * nchan;
4525        }
4526#ifdef CONFIG_CHELSIO_T4_DCB
4527        /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4528         * each port.
4529         */
4530        need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4531#else
4532        need = adap->params.nports + EXTRA_VECS + ofld_need;
4533#endif
4534        allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4535        if (allocated < 0) {
4536                dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4537                         " not using MSI-X\n");
4538                kfree(entries);
4539                return allocated;
4540        }
4541
4542        /* Distribute available vectors to the various queue groups.
4543         * Every group gets its minimum requirement and NIC gets top
4544         * priority for leftovers.
4545         */
4546        i = allocated - EXTRA_VECS - ofld_need;
4547        if (i < s->max_ethqsets) {
4548                s->max_ethqsets = i;
4549                if (i < s->ethqsets)
4550                        reduce_ethqs(adap, i);
4551        }
4552        if (is_offload(adap)) {
4553                if (allocated < want) {
4554                        s->rdmaqs = nchan;
4555                        s->rdmaciqs = nchan;
4556
4557                        if (!is_t4(adap->params.chip))
4558                                s->niscsitq = nchan;
4559                }
4560
4561                /* leftovers go to OFLD */
4562                i = allocated - EXTRA_VECS - s->max_ethqsets -
4563                    s->rdmaqs - s->rdmaciqs - s->niscsitq;
4564                s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4565
4566        }
4567        for (i = 0; i < allocated; ++i)
4568                adap->msix_info[i].vec = entries[i].vector;
4569        dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4570                 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4571                 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4572                 s->rdmaciqs);
4573
4574        kfree(entries);
4575        return 0;
4576}
4577
4578#undef EXTRA_VECS
4579
4580static int init_rss(struct adapter *adap)
4581{
4582        unsigned int i;
4583        int err;
4584
4585        err = t4_init_rss_mode(adap, adap->mbox);
4586        if (err)
4587                return err;
4588
4589        for_each_port(adap, i) {
4590                struct port_info *pi = adap2pinfo(adap, i);
4591
4592                pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4593                if (!pi->rss)
4594                        return -ENOMEM;
4595        }
4596        return 0;
4597}
4598
4599static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4600                                        enum pci_bus_speed *speed,
4601                                        enum pcie_link_width *width)
4602{
4603        u32 lnkcap1, lnkcap2;
4604        int err1, err2;
4605
4606#define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4607
4608        *speed = PCI_SPEED_UNKNOWN;
4609        *width = PCIE_LNK_WIDTH_UNKNOWN;
4610
4611        err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4612                                          &lnkcap1);
4613        err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4614                                          &lnkcap2);
4615        if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4616                if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4617                        *speed = PCIE_SPEED_8_0GT;
4618                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4619                        *speed = PCIE_SPEED_5_0GT;
4620                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4621                        *speed = PCIE_SPEED_2_5GT;
4622        }
4623        if (!err1) {
4624                *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4625                if (!lnkcap2) { /* pre-r3.0 */
4626                        if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4627                                *speed = PCIE_SPEED_5_0GT;
4628                        else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4629                                *speed = PCIE_SPEED_2_5GT;
4630                }
4631        }
4632
4633        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4634                return err1 ? err1 : err2 ? err2 : -EINVAL;
4635        return 0;
4636}
4637
4638static void cxgb4_check_pcie_caps(struct adapter *adap)
4639{
4640        enum pcie_link_width width, width_cap;
4641        enum pci_bus_speed speed, speed_cap;
4642
4643#define PCIE_SPEED_STR(speed) \
4644        (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4645         speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4646         speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4647         "Unknown")
4648
4649        if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4650                dev_warn(adap->pdev_dev,
4651                         "Unable to determine PCIe device BW capabilities\n");
4652                return;
4653        }
4654
4655        if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4656            speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4657                dev_warn(adap->pdev_dev,
4658                         "Unable to determine PCI Express bandwidth.\n");
4659                return;
4660        }
4661
4662        dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4663                 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4664        dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4665                 width, width_cap);
4666        if (speed < speed_cap || width < width_cap)
4667                dev_info(adap->pdev_dev,
4668                         "A slot with more lanes and/or higher speed is "
4669                         "suggested for optimal performance.\n");
4670}
4671
4672/* Dump basic information about the adapter */
4673static void print_adapter_info(struct adapter *adapter)
4674{
4675        /* Device information */
4676        dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4677                 adapter->params.vpd.id,
4678                 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4679        dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4680                 adapter->params.vpd.sn, adapter->params.vpd.pn);
4681
4682        /* Firmware Version */
4683        if (!adapter->params.fw_vers)
4684                dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4685        else
4686                dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4687                         FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4688                         FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4689                         FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4690                         FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4691
4692        /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4693         * Firmware, so dev_info() is more appropriate here.)
4694         */
4695        if (!adapter->params.bs_vers)
4696                dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4697        else
4698                dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4699                         FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4700                         FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4701                         FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4702                         FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4703
4704        /* TP Microcode Version */
4705        if (!adapter->params.tp_vers)
4706                dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4707        else
4708                dev_info(adapter->pdev_dev,
4709                         "TP Microcode version: %u.%u.%u.%u\n",
4710                         FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4711                         FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4712                         FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4713                         FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4714
4715        /* Expansion ROM version */
4716        if (!adapter->params.er_vers)
4717                dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4718        else
4719                dev_info(adapter->pdev_dev,
4720                         "Expansion ROM version: %u.%u.%u.%u\n",
4721                         FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4722                         FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4723                         FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4724                         FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4725
4726        /* Software/Hardware configuration */
4727        dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4728                 is_offload(adapter) ? "R" : "",
4729                 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4730                  (adapter->flags & USING_MSI) ? "MSI" : ""),
4731                 is_offload(adapter) ? "Offload" : "non-Offload");
4732}
4733
4734static void print_port_info(const struct net_device *dev)
4735{
4736        char buf[80];
4737        char *bufp = buf;
4738        const char *spd = "";
4739        const struct port_info *pi = netdev_priv(dev);
4740        const struct adapter *adap = pi->adapter;
4741
4742        if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4743                spd = " 2.5 GT/s";
4744        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4745                spd = " 5 GT/s";
4746        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4747                spd = " 8 GT/s";
4748
4749        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4750                bufp += sprintf(bufp, "100/");
4751        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4752                bufp += sprintf(bufp, "1000/");
4753        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4754                bufp += sprintf(bufp, "10G/");
4755        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4756                bufp += sprintf(bufp, "40G/");
4757        if (bufp != buf)
4758                --bufp;
4759        sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4760
4761        netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4762                    dev->name, adap->params.vpd.id, adap->name, buf);
4763}
4764
4765static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4766{
4767        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4768}
4769
4770/*
4771 * Free the following resources:
4772 * - memory used for tables
4773 * - MSI/MSI-X
4774 * - net devices
4775 * - resources FW is holding for us
4776 */
4777static void free_some_resources(struct adapter *adapter)
4778{
4779        unsigned int i;
4780
4781        t4_free_mem(adapter->l2t);
4782        t4_free_mem(adapter->tids.tid_tab);
4783        kfree(adapter->sge.egr_map);
4784        kfree(adapter->sge.ingr_map);
4785        kfree(adapter->sge.starving_fl);
4786        kfree(adapter->sge.txq_maperr);
4787#ifdef CONFIG_DEBUG_FS
4788        kfree(adapter->sge.blocked_fl);
4789#endif
4790        disable_msi(adapter);
4791
4792        for_each_port(adapter, i)
4793                if (adapter->port[i]) {
4794                        struct port_info *pi = adap2pinfo(adapter, i);
4795
4796                        if (pi->viid != 0)
4797                                t4_free_vi(adapter, adapter->mbox, adapter->pf,
4798                                           0, pi->viid);
4799                        kfree(adap2pinfo(adapter, i)->rss);
4800                        free_netdev(adapter->port[i]);
4801                }
4802        if (adapter->flags & FW_OK)
4803                t4_fw_bye(adapter, adapter->pf);
4804}
4805
4806#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4807#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4808                   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4809#define SEGMENT_SIZE 128
4810
4811static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4812{
4813        u16 device_id;
4814
4815        /* Retrieve adapter's device ID */
4816        pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4817
4818        switch (device_id >> 12) {
4819        case CHELSIO_T4:
4820                return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4821        case CHELSIO_T5:
4822                return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4823        case CHELSIO_T6:
4824                return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4825        default:
4826                dev_err(&pdev->dev, "Device %d is not supported\n",
4827                        device_id);
4828        }
4829        return -EINVAL;
4830}
4831
4832static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4833{
4834        int func, i, err, s_qpp, qpp, num_seg;
4835        struct port_info *pi;
4836        bool highdma = false;
4837        struct adapter *adapter = NULL;
4838        void __iomem *regs;
4839        u32 whoami, pl_rev;
4840        enum chip_type chip;
4841
4842        printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4843
4844        err = pci_request_regions(pdev, KBUILD_MODNAME);
4845        if (err) {
4846                /* Just info, some other driver may have claimed the device. */
4847                dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4848                return err;
4849        }
4850
4851        err = pci_enable_device(pdev);
4852        if (err) {
4853                dev_err(&pdev->dev, "cannot enable PCI device\n");
4854                goto out_release_regions;
4855        }
4856
4857        regs = pci_ioremap_bar(pdev, 0);
4858        if (!regs) {
4859                dev_err(&pdev->dev, "cannot map device registers\n");
4860                err = -ENOMEM;
4861                goto out_disable_device;
4862        }
4863
4864        err = t4_wait_dev_ready(regs);
4865        if (err < 0)
4866                goto out_unmap_bar0;
4867
4868        /* We control everything through one PF */
4869        whoami = readl(regs + PL_WHOAMI_A);
4870        pl_rev = REV_G(readl(regs + PL_REV_A));
4871        chip = get_chip_type(pdev, pl_rev);
4872        func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4873                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4874        if (func != ent->driver_data) {
4875                iounmap(regs);
4876                pci_disable_device(pdev);
4877                pci_save_state(pdev);        /* to restore SR-IOV later */
4878                goto sriov;
4879        }
4880
4881        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4882                highdma = true;
4883                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4884                if (err) {
4885                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4886                                "coherent allocations\n");
4887                        goto out_unmap_bar0;
4888                }
4889        } else {
4890                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4891                if (err) {
4892                        dev_err(&pdev->dev, "no usable DMA configuration\n");
4893                        goto out_unmap_bar0;
4894                }
4895        }
4896
4897        pci_enable_pcie_error_reporting(pdev);
4898        enable_pcie_relaxed_ordering(pdev);
4899        pci_set_master(pdev);
4900        pci_save_state(pdev);
4901
4902        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4903        if (!adapter) {
4904                err = -ENOMEM;
4905                goto out_unmap_bar0;
4906        }
4907
4908        adapter->workq = create_singlethread_workqueue("cxgb4");
4909        if (!adapter->workq) {
4910                err = -ENOMEM;
4911                goto out_free_adapter;
4912        }
4913
4914        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4915                                    (sizeof(struct mbox_cmd) *
4916                                     T4_OS_LOG_MBOX_CMDS),
4917                                    GFP_KERNEL);
4918        if (!adapter->mbox_log) {
4919                err = -ENOMEM;
4920                goto out_free_adapter;
4921        }
4922        adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4923
4924        /* PCI device has been enabled */
4925        adapter->flags |= DEV_ENABLED;
4926
4927        adapter->regs = regs;
4928        adapter->pdev = pdev;
4929        adapter->pdev_dev = &pdev->dev;
4930        adapter->name = pci_name(pdev);
4931        adapter->mbox = func;
4932        adapter->pf = func;
4933        adapter->msg_enable = dflt_msg_enable;
4934        memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4935
4936        spin_lock_init(&adapter->stats_lock);
4937        spin_lock_init(&adapter->tid_release_lock);
4938        spin_lock_init(&adapter->win0_lock);
4939
4940        INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4941        INIT_WORK(&adapter->db_full_task, process_db_full);
4942        INIT_WORK(&adapter->db_drop_task, process_db_drop);
4943
4944        err = t4_prep_adapter(adapter);
4945        if (err)
4946                goto out_free_adapter;
4947
4948
4949        if (!is_t4(adapter->params.chip)) {
4950                s_qpp = (QUEUESPERPAGEPF0_S +
4951                        (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4952                        adapter->pf);
4953                qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4954                      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4955                num_seg = PAGE_SIZE / SEGMENT_SIZE;
4956
4957                /* Each segment size is 128B. Write coalescing is enabled only
4958                 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4959                 * queue is less no of segments that can be accommodated in
4960                 * a page size.
4961                 */
4962                if (qpp > num_seg) {
4963                        dev_err(&pdev->dev,
4964                                "Incorrect number of egress queues per page\n");
4965                        err = -EINVAL;
4966                        goto out_free_adapter;
4967                }
4968                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4969                pci_resource_len(pdev, 2));
4970                if (!adapter->bar2) {
4971                        dev_err(&pdev->dev, "cannot map device bar2 region\n");
4972                        err = -ENOMEM;
4973                        goto out_free_adapter;
4974                }
4975        }
4976
4977        setup_memwin(adapter);
4978        err = adap_init0(adapter);
4979#ifdef CONFIG_DEBUG_FS
4980        bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4981#endif
4982        setup_memwin_rdma(adapter);
4983        if (err)
4984                goto out_unmap_bar;
4985
4986        /* configure SGE_STAT_CFG_A to read WC stats */
4987        if (!is_t4(adapter->params.chip))
4988                t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4989                             (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4990                              T6_STATMODE_V(0)));
4991
4992        for_each_port(adapter, i) {
4993                struct net_device *netdev;
4994
4995                netdev = alloc_etherdev_mq(sizeof(struct port_info),
4996                                           MAX_ETH_QSETS);
4997                if (!netdev) {
4998                        err = -ENOMEM;
4999                        goto out_free_dev;
5000                }
5001
5002                SET_NETDEV_DEV(netdev, &pdev->dev);
5003
5004                adapter->port[i] = netdev;
5005                pi = netdev_priv(netdev);
5006                pi->adapter = adapter;
5007                pi->xact_addr_filt = -1;
5008                pi->port_id = i;
5009                netdev->irq = pdev->irq;
5010
5011                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5012                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5013                        NETIF_F_RXCSUM | NETIF_F_RXHASH |
5014                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
5015                if (highdma)
5016                        netdev->hw_features |= NETIF_F_HIGHDMA;
5017                netdev->features |= netdev->hw_features;
5018                netdev->vlan_features = netdev->features & VLAN_FEAT;
5019
5020                netdev->priv_flags |= IFF_UNICAST_FLT;
5021
5022                netdev->netdev_ops = &cxgb4_netdev_ops;
5023#ifdef CONFIG_CHELSIO_T4_DCB
5024                netdev->dcbnl_ops = &cxgb4_dcb_ops;
5025                cxgb4_dcb_state_init(netdev);
5026#endif
5027                cxgb4_set_ethtool_ops(netdev);
5028        }
5029
5030        pci_set_drvdata(pdev, adapter);
5031
5032        if (adapter->flags & FW_OK) {
5033                err = t4_port_init(adapter, func, func, 0);
5034                if (err)
5035                        goto out_free_dev;
5036        } else if (adapter->params.nports == 1) {
5037                /* If we don't have a connection to the firmware -- possibly
5038                 * because of an error -- grab the raw VPD parameters so we
5039                 * can set the proper MAC Address on the debug network
5040                 * interface that we've created.
5041                 */
5042                u8 hw_addr[ETH_ALEN];
5043                u8 *na = adapter->params.vpd.na;
5044
5045                err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5046                if (!err) {
5047                        for (i = 0; i < ETH_ALEN; i++)
5048                                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5049                                              hex2val(na[2 * i + 1]));
5050                        t4_set_hw_addr(adapter, 0, hw_addr);
5051                }
5052        }
5053
5054        /* Configure queues and allocate tables now, they can be needed as
5055         * soon as the first register_netdev completes.
5056         */
5057        cfg_queues(adapter);
5058
5059        adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5060        if (!adapter->l2t) {
5061                /* We tolerate a lack of L2T, giving up some functionality */
5062                dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5063                adapter->params.offload = 0;
5064        }
5065
5066#if IS_ENABLED(CONFIG_IPV6)
5067        if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5068            (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5069                /* CLIP functionality is not present in hardware,
5070                 * hence disable all offload features
5071                 */
5072                dev_warn(&pdev->dev,
5073                         "CLIP not enabled in hardware, continuing\n");
5074                adapter->params.offload = 0;
5075        } else {
5076                adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5077                                                  adapter->clipt_end);
5078                if (!adapter->clipt) {
5079                        /* We tolerate a lack of clip_table, giving up
5080                         * some functionality
5081                         */
5082                        dev_warn(&pdev->dev,
5083                                 "could not allocate Clip table, continuing\n");
5084                        adapter->params.offload = 0;
5085                }
5086        }
5087#endif
5088        if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5089                dev_warn(&pdev->dev, "could not allocate TID table, "
5090                         "continuing\n");
5091                adapter->params.offload = 0;
5092        }
5093
5094        if (is_offload(adapter)) {
5095                if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5096                        u32 hash_base, hash_reg;
5097
5098                        if (chip <= CHELSIO_T5) {
5099                                hash_reg = LE_DB_TID_HASHBASE_A;
5100                                hash_base = t4_read_reg(adapter, hash_reg);
5101                                adapter->tids.hash_base = hash_base / 4;
5102                        } else {
5103                                hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5104                                hash_base = t4_read_reg(adapter, hash_reg);
5105                                adapter->tids.hash_base = hash_base;
5106                        }
5107                }
5108        }
5109
5110        /* See what interrupts we'll be using */
5111        if (msi > 1 && enable_msix(adapter) == 0)
5112                adapter->flags |= USING_MSIX;
5113        else if (msi > 0 && pci_enable_msi(pdev) == 0)
5114                adapter->flags |= USING_MSI;
5115
5116        /* check for PCI Express bandwidth capabiltites */
5117        cxgb4_check_pcie_caps(adapter);
5118
5119        err = init_rss(adapter);
5120        if (err)
5121                goto out_free_dev;
5122
5123        /*
5124         * The card is now ready to go.  If any errors occur during device
5125         * registration we do not fail the whole card but rather proceed only
5126         * with the ports we manage to register successfully.  However we must
5127         * register at least one net device.
5128         */
5129        for_each_port(adapter, i) {
5130                pi = adap2pinfo(adapter, i);
5131                netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5132                netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5133
5134                err = register_netdev(adapter->port[i]);
5135                if (err)
5136                        break;
5137                adapter->chan_map[pi->tx_chan] = i;
5138                print_port_info(adapter->port[i]);
5139        }
5140        if (i == 0) {
5141                dev_err(&pdev->dev, "could not register any net devices\n");
5142                goto out_free_dev;
5143        }
5144        if (err) {
5145                dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5146                err = 0;
5147        }
5148
5149        if (cxgb4_debugfs_root) {
5150                adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5151                                                           cxgb4_debugfs_root);
5152                setup_debugfs(adapter);
5153        }
5154
5155        /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5156        pdev->needs_freset = 1;
5157
5158        if (is_offload(adapter))
5159                attach_ulds(adapter);
5160
5161        print_adapter_info(adapter);
5162
5163sriov:
5164#ifdef CONFIG_PCI_IOV
5165        if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
5166                if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5167                        dev_info(&pdev->dev,
5168                                 "instantiated %u virtual functions\n",
5169                                 num_vf[func]);
5170#endif
5171        return 0;
5172
5173 out_free_dev:
5174        free_some_resources(adapter);
5175 out_unmap_bar:
5176        if (!is_t4(adapter->params.chip))
5177                iounmap(adapter->bar2);
5178 out_free_adapter:
5179        if (adapter->workq)
5180                destroy_workqueue(adapter->workq);
5181
5182        kfree(adapter->mbox_log);
5183        kfree(adapter);
5184 out_unmap_bar0:
5185        iounmap(regs);
5186 out_disable_device:
5187        pci_disable_pcie_error_reporting(pdev);
5188        pci_disable_device(pdev);
5189 out_release_regions:
5190        pci_release_regions(pdev);
5191        return err;
5192}
5193
5194static void remove_one(struct pci_dev *pdev)
5195{
5196        struct adapter *adapter = pci_get_drvdata(pdev);
5197
5198#ifdef CONFIG_PCI_IOV
5199        pci_disable_sriov(pdev);
5200
5201#endif
5202
5203        if (adapter) {
5204                int i;
5205
5206                /* Tear down per-adapter Work Queue first since it can contain
5207                 * references to our adapter data structure.
5208                 */
5209                destroy_workqueue(adapter->workq);
5210
5211                if (is_offload(adapter))
5212                        detach_ulds(adapter);
5213
5214                disable_interrupts(adapter);
5215
5216                for_each_port(adapter, i)
5217                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5218                                unregister_netdev(adapter->port[i]);
5219
5220                debugfs_remove_recursive(adapter->debugfs_root);
5221
5222                /* If we allocated filters, free up state associated with any
5223                 * valid filters ...
5224                 */
5225                if (adapter->tids.ftid_tab) {
5226                        struct filter_entry *f = &adapter->tids.ftid_tab[0];
5227                        for (i = 0; i < (adapter->tids.nftids +
5228                                        adapter->tids.nsftids); i++, f++)
5229                                if (f->valid)
5230                                        clear_filter(adapter, f);
5231                }
5232
5233                if (adapter->flags & FULL_INIT_DONE)
5234                        cxgb_down(adapter);
5235
5236                free_some_resources(adapter);
5237#if IS_ENABLED(CONFIG_IPV6)
5238                t4_cleanup_clip_tbl(adapter);
5239#endif
5240                iounmap(adapter->regs);
5241                if (!is_t4(adapter->params.chip))
5242                        iounmap(adapter->bar2);
5243                pci_disable_pcie_error_reporting(pdev);
5244                if ((adapter->flags & DEV_ENABLED)) {
5245                        pci_disable_device(pdev);
5246                        adapter->flags &= ~DEV_ENABLED;
5247                }
5248                pci_release_regions(pdev);
5249                kfree(adapter->mbox_log);
5250                synchronize_rcu();
5251                kfree(adapter);
5252        } else
5253                pci_release_regions(pdev);
5254}
5255
5256static struct pci_driver cxgb4_driver = {
5257        .name     = KBUILD_MODNAME,
5258        .id_table = cxgb4_pci_tbl,
5259        .probe    = init_one,
5260        .remove   = remove_one,
5261        .shutdown = remove_one,
5262        .err_handler = &cxgb4_eeh,
5263};
5264
5265static int __init cxgb4_init_module(void)
5266{
5267        int ret;
5268
5269        /* Debugfs support is optional, just warn if this fails */
5270        cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5271        if (!cxgb4_debugfs_root)
5272                pr_warn("could not create debugfs entry, continuing\n");
5273
5274        ret = pci_register_driver(&cxgb4_driver);
5275        if (ret < 0)
5276                debugfs_remove(cxgb4_debugfs_root);
5277
5278#if IS_ENABLED(CONFIG_IPV6)
5279        if (!inet6addr_registered) {
5280                register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5281                inet6addr_registered = true;
5282        }
5283#endif
5284
5285        return ret;
5286}
5287
5288static void __exit cxgb4_cleanup_module(void)
5289{
5290#if IS_ENABLED(CONFIG_IPV6)
5291        if (inet6addr_registered) {
5292                unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5293                inet6addr_registered = false;
5294        }
5295#endif
5296        pci_unregister_driver(&cxgb4_driver);
5297        debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5298}
5299
5300module_init(cxgb4_init_module);
5301module_exit(cxgb4_cleanup_module);
5302