linux/drivers/net/ethernet/intel/e1000e/ich8lan.c
<<
>>
Prefs
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22/* 82562G 10/100 Network Connection
  23 * 82562G-2 10/100 Network Connection
  24 * 82562GT 10/100 Network Connection
  25 * 82562GT-2 10/100 Network Connection
  26 * 82562V 10/100 Network Connection
  27 * 82562V-2 10/100 Network Connection
  28 * 82566DC-2 Gigabit Network Connection
  29 * 82566DC Gigabit Network Connection
  30 * 82566DM-2 Gigabit Network Connection
  31 * 82566DM Gigabit Network Connection
  32 * 82566MC Gigabit Network Connection
  33 * 82566MM Gigabit Network Connection
  34 * 82567LM Gigabit Network Connection
  35 * 82567LF Gigabit Network Connection
  36 * 82567V Gigabit Network Connection
  37 * 82567LM-2 Gigabit Network Connection
  38 * 82567LF-2 Gigabit Network Connection
  39 * 82567V-2 Gigabit Network Connection
  40 * 82567LF-3 Gigabit Network Connection
  41 * 82567LM-3 Gigabit Network Connection
  42 * 82567LM-4 Gigabit Network Connection
  43 * 82577LM Gigabit Network Connection
  44 * 82577LC Gigabit Network Connection
  45 * 82578DM Gigabit Network Connection
  46 * 82578DC Gigabit Network Connection
  47 * 82579LM Gigabit Network Connection
  48 * 82579V Gigabit Network Connection
  49 * Ethernet Connection I217-LM
  50 * Ethernet Connection I217-V
  51 * Ethernet Connection I218-V
  52 * Ethernet Connection I218-LM
  53 * Ethernet Connection (2) I218-LM
  54 * Ethernet Connection (2) I218-V
  55 * Ethernet Connection (3) I218-LM
  56 * Ethernet Connection (3) I218-V
  57 */
  58
  59#include "e1000.h"
  60
  61/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  62/* Offset 04h HSFSTS */
  63union ich8_hws_flash_status {
  64        struct ich8_hsfsts {
  65                u16 flcdone:1;  /* bit 0 Flash Cycle Done */
  66                u16 flcerr:1;   /* bit 1 Flash Cycle Error */
  67                u16 dael:1;     /* bit 2 Direct Access error Log */
  68                u16 berasesz:2; /* bit 4:3 Sector Erase Size */
  69                u16 flcinprog:1;        /* bit 5 flash cycle in Progress */
  70                u16 reserved1:2;        /* bit 13:6 Reserved */
  71                u16 reserved2:6;        /* bit 13:6 Reserved */
  72                u16 fldesvalid:1;       /* bit 14 Flash Descriptor Valid */
  73                u16 flockdn:1;  /* bit 15 Flash Config Lock-Down */
  74        } hsf_status;
  75        u16 regval;
  76};
  77
  78/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  79/* Offset 06h FLCTL */
  80union ich8_hws_flash_ctrl {
  81        struct ich8_hsflctl {
  82                u16 flcgo:1;    /* 0 Flash Cycle Go */
  83                u16 flcycle:2;  /* 2:1 Flash Cycle */
  84                u16 reserved:5; /* 7:3 Reserved  */
  85                u16 fldbcount:2;        /* 9:8 Flash Data Byte Count */
  86                u16 flockdn:6;  /* 15:10 Reserved */
  87        } hsf_ctrl;
  88        u16 regval;
  89};
  90
  91/* ICH Flash Region Access Permissions */
  92union ich8_hws_flash_regacc {
  93        struct ich8_flracc {
  94                u32 grra:8;     /* 0:7 GbE region Read Access */
  95                u32 grwa:8;     /* 8:15 GbE region Write Access */
  96                u32 gmrag:8;    /* 23:16 GbE Master Read Access Grant */
  97                u32 gmwag:8;    /* 31:24 GbE Master Write Access Grant */
  98        } hsf_flregacc;
  99        u16 regval;
 100};
 101
 102/* ICH Flash Protected Region */
 103union ich8_flash_protected_range {
 104        struct ich8_pr {
 105                u32 base:13;    /* 0:12 Protected Range Base */
 106                u32 reserved1:2;        /* 13:14 Reserved */
 107                u32 rpe:1;      /* 15 Read Protection Enable */
 108                u32 limit:13;   /* 16:28 Protected Range Limit */
 109                u32 reserved2:2;        /* 29:30 Reserved */
 110                u32 wpe:1;      /* 31 Write Protection Enable */
 111        } range;
 112        u32 regval;
 113};
 114
 115static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 116static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 118static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 119                                                u32 offset, u8 byte);
 120static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 121                                         u8 *data);
 122static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 123                                         u16 *data);
 124static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 125                                         u8 size, u16 *data);
 126static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 127                                           u32 *data);
 128static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 129                                          u32 offset, u32 *data);
 130static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 131                                            u32 offset, u32 data);
 132static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 133                                                 u32 offset, u32 dword);
 134static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 135static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 136static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 137static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 138static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 139static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 140static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 141static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 142static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 143static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 144static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 145static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 146static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 147static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 148static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 149static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 150static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 151static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 152static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 153static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 154static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 155static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 156static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 157static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 158
 159static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 160{
 161        return readw(hw->flash_address + reg);
 162}
 163
 164static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 165{
 166        return readl(hw->flash_address + reg);
 167}
 168
 169static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 170{
 171        writew(val, hw->flash_address + reg);
 172}
 173
 174static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 175{
 176        writel(val, hw->flash_address + reg);
 177}
 178
 179#define er16flash(reg)          __er16flash(hw, (reg))
 180#define er32flash(reg)          __er32flash(hw, (reg))
 181#define ew16flash(reg, val)     __ew16flash(hw, (reg), (val))
 182#define ew32flash(reg, val)     __ew32flash(hw, (reg), (val))
 183
 184/**
 185 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 186 *  @hw: pointer to the HW structure
 187 *
 188 *  Test access to the PHY registers by reading the PHY ID registers.  If
 189 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 190 *  otherwise assume the read PHY ID is correct if it is valid.
 191 *
 192 *  Assumes the sw/fw/hw semaphore is already acquired.
 193 **/
 194static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 195{
 196        u16 phy_reg = 0;
 197        u32 phy_id = 0;
 198        s32 ret_val = 0;
 199        u16 retry_count;
 200        u32 mac_reg = 0;
 201
 202        for (retry_count = 0; retry_count < 2; retry_count++) {
 203                ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 204                if (ret_val || (phy_reg == 0xFFFF))
 205                        continue;
 206                phy_id = (u32)(phy_reg << 16);
 207
 208                ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 209                if (ret_val || (phy_reg == 0xFFFF)) {
 210                        phy_id = 0;
 211                        continue;
 212                }
 213                phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 214                break;
 215        }
 216
 217        if (hw->phy.id) {
 218                if (hw->phy.id == phy_id)
 219                        goto out;
 220        } else if (phy_id) {
 221                hw->phy.id = phy_id;
 222                hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 223                goto out;
 224        }
 225
 226        /* In case the PHY needs to be in mdio slow mode,
 227         * set slow mode and try to get the PHY id again.
 228         */
 229        if (hw->mac.type < e1000_pch_lpt) {
 230                hw->phy.ops.release(hw);
 231                ret_val = e1000_set_mdio_slow_mode_hv(hw);
 232                if (!ret_val)
 233                        ret_val = e1000e_get_phy_id(hw);
 234                hw->phy.ops.acquire(hw);
 235        }
 236
 237        if (ret_val)
 238                return false;
 239out:
 240        if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
 241                /* Only unforce SMBus if ME is not active */
 242                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 243                        /* Unforce SMBus mode in PHY */
 244                        e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 245                        phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 246                        e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 247
 248                        /* Unforce SMBus mode in MAC */
 249                        mac_reg = er32(CTRL_EXT);
 250                        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 251                        ew32(CTRL_EXT, mac_reg);
 252                }
 253        }
 254
 255        return true;
 256}
 257
 258/**
 259 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 260 *  @hw: pointer to the HW structure
 261 *
 262 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 263 *  used to reset the PHY to a quiescent state when necessary.
 264 **/
 265static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 266{
 267        u32 mac_reg;
 268
 269        /* Set Phy Config Counter to 50msec */
 270        mac_reg = er32(FEXTNVM3);
 271        mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 272        mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 273        ew32(FEXTNVM3, mac_reg);
 274
 275        /* Toggle LANPHYPC Value bit */
 276        mac_reg = er32(CTRL);
 277        mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 278        mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 279        ew32(CTRL, mac_reg);
 280        e1e_flush();
 281        usleep_range(10, 20);
 282        mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 283        ew32(CTRL, mac_reg);
 284        e1e_flush();
 285
 286        if (hw->mac.type < e1000_pch_lpt) {
 287                msleep(50);
 288        } else {
 289                u16 count = 20;
 290
 291                do {
 292                        usleep_range(5000, 10000);
 293                } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 294
 295                msleep(30);
 296        }
 297}
 298
 299/**
 300 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 301 *  @hw: pointer to the HW structure
 302 *
 303 *  Workarounds/flow necessary for PHY initialization during driver load
 304 *  and resume paths.
 305 **/
 306static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 307{
 308        struct e1000_adapter *adapter = hw->adapter;
 309        u32 mac_reg, fwsm = er32(FWSM);
 310        s32 ret_val;
 311
 312        /* Gate automatic PHY configuration by hardware on managed and
 313         * non-managed 82579 and newer adapters.
 314         */
 315        e1000_gate_hw_phy_config_ich8lan(hw, true);
 316
 317        /* It is not possible to be certain of the current state of ULP
 318         * so forcibly disable it.
 319         */
 320        hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 321        e1000_disable_ulp_lpt_lp(hw, true);
 322
 323        ret_val = hw->phy.ops.acquire(hw);
 324        if (ret_val) {
 325                e_dbg("Failed to initialize PHY flow\n");
 326                goto out;
 327        }
 328
 329        /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 330         * inaccessible and resetting the PHY is not blocked, toggle the
 331         * LANPHYPC Value bit to force the interconnect to PCIe mode.
 332         */
 333        switch (hw->mac.type) {
 334        case e1000_pch_lpt:
 335        case e1000_pch_spt:
 336                if (e1000_phy_is_accessible_pchlan(hw))
 337                        break;
 338
 339                /* Before toggling LANPHYPC, see if PHY is accessible by
 340                 * forcing MAC to SMBus mode first.
 341                 */
 342                mac_reg = er32(CTRL_EXT);
 343                mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 344                ew32(CTRL_EXT, mac_reg);
 345
 346                /* Wait 50 milliseconds for MAC to finish any retries
 347                 * that it might be trying to perform from previous
 348                 * attempts to acknowledge any phy read requests.
 349                 */
 350                msleep(50);
 351
 352                /* fall-through */
 353        case e1000_pch2lan:
 354                if (e1000_phy_is_accessible_pchlan(hw))
 355                        break;
 356
 357                /* fall-through */
 358        case e1000_pchlan:
 359                if ((hw->mac.type == e1000_pchlan) &&
 360                    (fwsm & E1000_ICH_FWSM_FW_VALID))
 361                        break;
 362
 363                if (hw->phy.ops.check_reset_block(hw)) {
 364                        e_dbg("Required LANPHYPC toggle blocked by ME\n");
 365                        ret_val = -E1000_ERR_PHY;
 366                        break;
 367                }
 368
 369                /* Toggle LANPHYPC Value bit */
 370                e1000_toggle_lanphypc_pch_lpt(hw);
 371                if (hw->mac.type >= e1000_pch_lpt) {
 372                        if (e1000_phy_is_accessible_pchlan(hw))
 373                                break;
 374
 375                        /* Toggling LANPHYPC brings the PHY out of SMBus mode
 376                         * so ensure that the MAC is also out of SMBus mode
 377                         */
 378                        mac_reg = er32(CTRL_EXT);
 379                        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 380                        ew32(CTRL_EXT, mac_reg);
 381
 382                        if (e1000_phy_is_accessible_pchlan(hw))
 383                                break;
 384
 385                        ret_val = -E1000_ERR_PHY;
 386                }
 387                break;
 388        default:
 389                break;
 390        }
 391
 392        hw->phy.ops.release(hw);
 393        if (!ret_val) {
 394
 395                /* Check to see if able to reset PHY.  Print error if not */
 396                if (hw->phy.ops.check_reset_block(hw)) {
 397                        e_err("Reset blocked by ME\n");
 398                        goto out;
 399                }
 400
 401                /* Reset the PHY before any access to it.  Doing so, ensures
 402                 * that the PHY is in a known good state before we read/write
 403                 * PHY registers.  The generic reset is sufficient here,
 404                 * because we haven't determined the PHY type yet.
 405                 */
 406                ret_val = e1000e_phy_hw_reset_generic(hw);
 407                if (ret_val)
 408                        goto out;
 409
 410                /* On a successful reset, possibly need to wait for the PHY
 411                 * to quiesce to an accessible state before returning control
 412                 * to the calling function.  If the PHY does not quiesce, then
 413                 * return E1000E_BLK_PHY_RESET, as this is the condition that
 414                 *  the PHY is in.
 415                 */
 416                ret_val = hw->phy.ops.check_reset_block(hw);
 417                if (ret_val)
 418                        e_err("ME blocked access to PHY after reset\n");
 419        }
 420
 421out:
 422        /* Ungate automatic PHY configuration on non-managed 82579 */
 423        if ((hw->mac.type == e1000_pch2lan) &&
 424            !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 425                usleep_range(10000, 20000);
 426                e1000_gate_hw_phy_config_ich8lan(hw, false);
 427        }
 428
 429        return ret_val;
 430}
 431
 432/**
 433 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 434 *  @hw: pointer to the HW structure
 435 *
 436 *  Initialize family-specific PHY parameters and function pointers.
 437 **/
 438static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 439{
 440        struct e1000_phy_info *phy = &hw->phy;
 441        s32 ret_val;
 442
 443        phy->addr = 1;
 444        phy->reset_delay_us = 100;
 445
 446        phy->ops.set_page = e1000_set_page_igp;
 447        phy->ops.read_reg = e1000_read_phy_reg_hv;
 448        phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 449        phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 450        phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 451        phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 452        phy->ops.write_reg = e1000_write_phy_reg_hv;
 453        phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 454        phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 455        phy->ops.power_up = e1000_power_up_phy_copper;
 456        phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 457        phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 458
 459        phy->id = e1000_phy_unknown;
 460
 461        ret_val = e1000_init_phy_workarounds_pchlan(hw);
 462        if (ret_val)
 463                return ret_val;
 464
 465        if (phy->id == e1000_phy_unknown)
 466                switch (hw->mac.type) {
 467                default:
 468                        ret_val = e1000e_get_phy_id(hw);
 469                        if (ret_val)
 470                                return ret_val;
 471                        if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 472                                break;
 473                        /* fall-through */
 474                case e1000_pch2lan:
 475                case e1000_pch_lpt:
 476                case e1000_pch_spt:
 477                        /* In case the PHY needs to be in mdio slow mode,
 478                         * set slow mode and try to get the PHY id again.
 479                         */
 480                        ret_val = e1000_set_mdio_slow_mode_hv(hw);
 481                        if (ret_val)
 482                                return ret_val;
 483                        ret_val = e1000e_get_phy_id(hw);
 484                        if (ret_val)
 485                                return ret_val;
 486                        break;
 487                }
 488        phy->type = e1000e_get_phy_type_from_id(phy->id);
 489
 490        switch (phy->type) {
 491        case e1000_phy_82577:
 492        case e1000_phy_82579:
 493        case e1000_phy_i217:
 494                phy->ops.check_polarity = e1000_check_polarity_82577;
 495                phy->ops.force_speed_duplex =
 496                    e1000_phy_force_speed_duplex_82577;
 497                phy->ops.get_cable_length = e1000_get_cable_length_82577;
 498                phy->ops.get_info = e1000_get_phy_info_82577;
 499                phy->ops.commit = e1000e_phy_sw_reset;
 500                break;
 501        case e1000_phy_82578:
 502                phy->ops.check_polarity = e1000_check_polarity_m88;
 503                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 504                phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 505                phy->ops.get_info = e1000e_get_phy_info_m88;
 506                break;
 507        default:
 508                ret_val = -E1000_ERR_PHY;
 509                break;
 510        }
 511
 512        return ret_val;
 513}
 514
 515/**
 516 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 517 *  @hw: pointer to the HW structure
 518 *
 519 *  Initialize family-specific PHY parameters and function pointers.
 520 **/
 521static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 522{
 523        struct e1000_phy_info *phy = &hw->phy;
 524        s32 ret_val;
 525        u16 i = 0;
 526
 527        phy->addr = 1;
 528        phy->reset_delay_us = 100;
 529
 530        phy->ops.power_up = e1000_power_up_phy_copper;
 531        phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 532
 533        /* We may need to do this twice - once for IGP and if that fails,
 534         * we'll set BM func pointers and try again
 535         */
 536        ret_val = e1000e_determine_phy_address(hw);
 537        if (ret_val) {
 538                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 539                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 540                ret_val = e1000e_determine_phy_address(hw);
 541                if (ret_val) {
 542                        e_dbg("Cannot determine PHY addr. Erroring out\n");
 543                        return ret_val;
 544                }
 545        }
 546
 547        phy->id = 0;
 548        while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 549               (i++ < 100)) {
 550                usleep_range(1000, 2000);
 551                ret_val = e1000e_get_phy_id(hw);
 552                if (ret_val)
 553                        return ret_val;
 554        }
 555
 556        /* Verify phy id */
 557        switch (phy->id) {
 558        case IGP03E1000_E_PHY_ID:
 559                phy->type = e1000_phy_igp_3;
 560                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 561                phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 562                phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 563                phy->ops.get_info = e1000e_get_phy_info_igp;
 564                phy->ops.check_polarity = e1000_check_polarity_igp;
 565                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 566                break;
 567        case IFE_E_PHY_ID:
 568        case IFE_PLUS_E_PHY_ID:
 569        case IFE_C_E_PHY_ID:
 570                phy->type = e1000_phy_ife;
 571                phy->autoneg_mask = E1000_ALL_NOT_GIG;
 572                phy->ops.get_info = e1000_get_phy_info_ife;
 573                phy->ops.check_polarity = e1000_check_polarity_ife;
 574                phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 575                break;
 576        case BME1000_E_PHY_ID:
 577                phy->type = e1000_phy_bm;
 578                phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 579                phy->ops.read_reg = e1000e_read_phy_reg_bm;
 580                phy->ops.write_reg = e1000e_write_phy_reg_bm;
 581                phy->ops.commit = e1000e_phy_sw_reset;
 582                phy->ops.get_info = e1000e_get_phy_info_m88;
 583                phy->ops.check_polarity = e1000_check_polarity_m88;
 584                phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 585                break;
 586        default:
 587                return -E1000_ERR_PHY;
 588        }
 589
 590        return 0;
 591}
 592
 593/**
 594 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 595 *  @hw: pointer to the HW structure
 596 *
 597 *  Initialize family-specific NVM parameters and function
 598 *  pointers.
 599 **/
 600static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 601{
 602        struct e1000_nvm_info *nvm = &hw->nvm;
 603        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 604        u32 gfpreg, sector_base_addr, sector_end_addr;
 605        u16 i;
 606        u32 nvm_size;
 607
 608        nvm->type = e1000_nvm_flash_sw;
 609
 610        if (hw->mac.type == e1000_pch_spt) {
 611                /* in SPT, gfpreg doesn't exist. NVM size is taken from the
 612                 * STRAP register. This is because in SPT the GbE Flash region
 613                 * is no longer accessed through the flash registers. Instead,
 614                 * the mechanism has changed, and the Flash region access
 615                 * registers are now implemented in GbE memory space.
 616                 */
 617                nvm->flash_base_addr = 0;
 618                nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 619                    * NVM_SIZE_MULTIPLIER;
 620                nvm->flash_bank_size = nvm_size / 2;
 621                /* Adjust to word count */
 622                nvm->flash_bank_size /= sizeof(u16);
 623                /* Set the base address for flash register access */
 624                hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 625        } else {
 626                /* Can't read flash registers if register set isn't mapped. */
 627                if (!hw->flash_address) {
 628                        e_dbg("ERROR: Flash registers not mapped\n");
 629                        return -E1000_ERR_CONFIG;
 630                }
 631
 632                gfpreg = er32flash(ICH_FLASH_GFPREG);
 633
 634                /* sector_X_addr is a "sector"-aligned address (4096 bytes)
 635                 * Add 1 to sector_end_addr since this sector is included in
 636                 * the overall size.
 637                 */
 638                sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 639                sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 640
 641                /* flash_base_addr is byte-aligned */
 642                nvm->flash_base_addr = sector_base_addr
 643                    << FLASH_SECTOR_ADDR_SHIFT;
 644
 645                /* find total size of the NVM, then cut in half since the total
 646                 * size represents two separate NVM banks.
 647                 */
 648                nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 649                                        << FLASH_SECTOR_ADDR_SHIFT);
 650                nvm->flash_bank_size /= 2;
 651                /* Adjust to word count */
 652                nvm->flash_bank_size /= sizeof(u16);
 653        }
 654
 655        nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 656
 657        /* Clear shadow ram */
 658        for (i = 0; i < nvm->word_size; i++) {
 659                dev_spec->shadow_ram[i].modified = false;
 660                dev_spec->shadow_ram[i].value = 0xFFFF;
 661        }
 662
 663        return 0;
 664}
 665
 666/**
 667 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 668 *  @hw: pointer to the HW structure
 669 *
 670 *  Initialize family-specific MAC parameters and function
 671 *  pointers.
 672 **/
 673static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 674{
 675        struct e1000_mac_info *mac = &hw->mac;
 676
 677        /* Set media type function pointer */
 678        hw->phy.media_type = e1000_media_type_copper;
 679
 680        /* Set mta register count */
 681        mac->mta_reg_count = 32;
 682        /* Set rar entry count */
 683        mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 684        if (mac->type == e1000_ich8lan)
 685                mac->rar_entry_count--;
 686        /* FWSM register */
 687        mac->has_fwsm = true;
 688        /* ARC subsystem not supported */
 689        mac->arc_subsystem_valid = false;
 690        /* Adaptive IFS supported */
 691        mac->adaptive_ifs = true;
 692
 693        /* LED and other operations */
 694        switch (mac->type) {
 695        case e1000_ich8lan:
 696        case e1000_ich9lan:
 697        case e1000_ich10lan:
 698                /* check management mode */
 699                mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 700                /* ID LED init */
 701                mac->ops.id_led_init = e1000e_id_led_init_generic;
 702                /* blink LED */
 703                mac->ops.blink_led = e1000e_blink_led_generic;
 704                /* setup LED */
 705                mac->ops.setup_led = e1000e_setup_led_generic;
 706                /* cleanup LED */
 707                mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 708                /* turn on/off LED */
 709                mac->ops.led_on = e1000_led_on_ich8lan;
 710                mac->ops.led_off = e1000_led_off_ich8lan;
 711                break;
 712        case e1000_pch2lan:
 713                mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 714                mac->ops.rar_set = e1000_rar_set_pch2lan;
 715                /* fall-through */
 716        case e1000_pch_lpt:
 717        case e1000_pch_spt:
 718        case e1000_pchlan:
 719                /* check management mode */
 720                mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 721                /* ID LED init */
 722                mac->ops.id_led_init = e1000_id_led_init_pchlan;
 723                /* setup LED */
 724                mac->ops.setup_led = e1000_setup_led_pchlan;
 725                /* cleanup LED */
 726                mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 727                /* turn on/off LED */
 728                mac->ops.led_on = e1000_led_on_pchlan;
 729                mac->ops.led_off = e1000_led_off_pchlan;
 730                break;
 731        default:
 732                break;
 733        }
 734
 735        if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
 736                mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 737                mac->ops.rar_set = e1000_rar_set_pch_lpt;
 738                mac->ops.setup_physical_interface =
 739                    e1000_setup_copper_link_pch_lpt;
 740                mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 741        }
 742
 743        /* Enable PCS Lock-loss workaround for ICH8 */
 744        if (mac->type == e1000_ich8lan)
 745                e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 746
 747        return 0;
 748}
 749
 750/**
 751 *  __e1000_access_emi_reg_locked - Read/write EMI register
 752 *  @hw: pointer to the HW structure
 753 *  @addr: EMI address to program
 754 *  @data: pointer to value to read/write from/to the EMI address
 755 *  @read: boolean flag to indicate read or write
 756 *
 757 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 758 **/
 759static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 760                                         u16 *data, bool read)
 761{
 762        s32 ret_val;
 763
 764        ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 765        if (ret_val)
 766                return ret_val;
 767
 768        if (read)
 769                ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 770        else
 771                ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 772
 773        return ret_val;
 774}
 775
 776/**
 777 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 778 *  @hw: pointer to the HW structure
 779 *  @addr: EMI address to program
 780 *  @data: value to be read from the EMI address
 781 *
 782 *  Assumes the SW/FW/HW Semaphore is already acquired.
 783 **/
 784s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 785{
 786        return __e1000_access_emi_reg_locked(hw, addr, data, true);
 787}
 788
 789/**
 790 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 791 *  @hw: pointer to the HW structure
 792 *  @addr: EMI address to program
 793 *  @data: value to be written to the EMI address
 794 *
 795 *  Assumes the SW/FW/HW Semaphore is already acquired.
 796 **/
 797s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 798{
 799        return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 800}
 801
 802/**
 803 *  e1000_set_eee_pchlan - Enable/disable EEE support
 804 *  @hw: pointer to the HW structure
 805 *
 806 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 807 *  the link and the EEE capabilities of the link partner.  The LPI Control
 808 *  register bits will remain set only if/when link is up.
 809 *
 810 *  EEE LPI must not be asserted earlier than one second after link is up.
 811 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 812 *  can be link issues with some switches.  Other devices can have EEE LPI
 813 *  enabled immediately upon link up since they have a timer in hardware which
 814 *  prevents LPI from being asserted too early.
 815 **/
 816s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 817{
 818        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 819        s32 ret_val;
 820        u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 821
 822        switch (hw->phy.type) {
 823        case e1000_phy_82579:
 824                lpa = I82579_EEE_LP_ABILITY;
 825                pcs_status = I82579_EEE_PCS_STATUS;
 826                adv_addr = I82579_EEE_ADVERTISEMENT;
 827                break;
 828        case e1000_phy_i217:
 829                lpa = I217_EEE_LP_ABILITY;
 830                pcs_status = I217_EEE_PCS_STATUS;
 831                adv_addr = I217_EEE_ADVERTISEMENT;
 832                break;
 833        default:
 834                return 0;
 835        }
 836
 837        ret_val = hw->phy.ops.acquire(hw);
 838        if (ret_val)
 839                return ret_val;
 840
 841        ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 842        if (ret_val)
 843                goto release;
 844
 845        /* Clear bits that enable EEE in various speeds */
 846        lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 847
 848        /* Enable EEE if not disabled by user */
 849        if (!dev_spec->eee_disable) {
 850                /* Save off link partner's EEE ability */
 851                ret_val = e1000_read_emi_reg_locked(hw, lpa,
 852                                                    &dev_spec->eee_lp_ability);
 853                if (ret_val)
 854                        goto release;
 855
 856                /* Read EEE advertisement */
 857                ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 858                if (ret_val)
 859                        goto release;
 860
 861                /* Enable EEE only for speeds in which the link partner is
 862                 * EEE capable and for which we advertise EEE.
 863                 */
 864                if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 865                        lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 866
 867                if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 868                        e1e_rphy_locked(hw, MII_LPA, &data);
 869                        if (data & LPA_100FULL)
 870                                lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 871                        else
 872                                /* EEE is not supported in 100Half, so ignore
 873                                 * partner's EEE in 100 ability if full-duplex
 874                                 * is not advertised.
 875                                 */
 876                                dev_spec->eee_lp_ability &=
 877                                    ~I82579_EEE_100_SUPPORTED;
 878                }
 879        }
 880
 881        if (hw->phy.type == e1000_phy_82579) {
 882                ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 883                                                    &data);
 884                if (ret_val)
 885                        goto release;
 886
 887                data &= ~I82579_LPI_100_PLL_SHUT;
 888                ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 889                                                     data);
 890        }
 891
 892        /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 893        ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 894        if (ret_val)
 895                goto release;
 896
 897        ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 898release:
 899        hw->phy.ops.release(hw);
 900
 901        return ret_val;
 902}
 903
 904/**
 905 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 906 *  @hw:   pointer to the HW structure
 907 *  @link: link up bool flag
 908 *
 909 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 910 *  preventing further DMA write requests.  Workaround the issue by disabling
 911 *  the de-assertion of the clock request when in 1Gpbs mode.
 912 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 913 *  speeds in order to avoid Tx hangs.
 914 **/
 915static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 916{
 917        u32 fextnvm6 = er32(FEXTNVM6);
 918        u32 status = er32(STATUS);
 919        s32 ret_val = 0;
 920        u16 reg;
 921
 922        if (link && (status & E1000_STATUS_SPEED_1000)) {
 923                ret_val = hw->phy.ops.acquire(hw);
 924                if (ret_val)
 925                        return ret_val;
 926
 927                ret_val =
 928                    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 929                                                &reg);
 930                if (ret_val)
 931                        goto release;
 932
 933                ret_val =
 934                    e1000e_write_kmrn_reg_locked(hw,
 935                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
 936                                                 reg &
 937                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 938                if (ret_val)
 939                        goto release;
 940
 941                usleep_range(10, 20);
 942
 943                ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 944
 945                ret_val =
 946                    e1000e_write_kmrn_reg_locked(hw,
 947                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
 948                                                 reg);
 949release:
 950                hw->phy.ops.release(hw);
 951        } else {
 952                /* clear FEXTNVM6 bit 8 on link down or 10/100 */
 953                fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 954
 955                if ((hw->phy.revision > 5) || !link ||
 956                    ((status & E1000_STATUS_SPEED_100) &&
 957                     (status & E1000_STATUS_FD)))
 958                        goto update_fextnvm6;
 959
 960                ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 961                if (ret_val)
 962                        return ret_val;
 963
 964                /* Clear link status transmit timeout */
 965                reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 966
 967                if (status & E1000_STATUS_SPEED_100) {
 968                        /* Set inband Tx timeout to 5x10us for 100Half */
 969                        reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 970
 971                        /* Do not extend the K1 entry latency for 100Half */
 972                        fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 973                } else {
 974                        /* Set inband Tx timeout to 50x10us for 10Full/Half */
 975                        reg |= 50 <<
 976                            I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 977
 978                        /* Extend the K1 entry latency for 10 Mbps */
 979                        fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 980                }
 981
 982                ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 983                if (ret_val)
 984                        return ret_val;
 985
 986update_fextnvm6:
 987                ew32(FEXTNVM6, fextnvm6);
 988        }
 989
 990        return ret_val;
 991}
 992
 993/**
 994 *  e1000_platform_pm_pch_lpt - Set platform power management values
 995 *  @hw: pointer to the HW structure
 996 *  @link: bool indicating link status
 997 *
 998 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 999 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 *  when link is up (which must not exceed the maximum latency supported
1001 *  by the platform), otherwise specify there is no LTR requirement.
1002 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 *  Capability register set, on this device LTR is set by writing the
1005 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 *  message to the PMC.
1008 **/
1009static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010{
1011        u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012            link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013        u16 lat_enc = 0;        /* latency encoded */
1014
1015        if (link) {
1016                u16 speed, duplex, scale = 0;
1017                u16 max_snoop, max_nosnoop;
1018                u16 max_ltr_enc;        /* max LTR latency encoded */
1019                u64 value;
1020                u32 rxa;
1021
1022                if (!hw->adapter->max_frame_size) {
1023                        e_dbg("max_frame_size not set.\n");
1024                        return -E1000_ERR_CONFIG;
1025                }
1026
1027                hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1028                if (!speed) {
1029                        e_dbg("Speed not set.\n");
1030                        return -E1000_ERR_CONFIG;
1031                }
1032
1033                /* Rx Packet Buffer Allocation size (KB) */
1034                rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1035
1036                /* Determine the maximum latency tolerated by the device.
1037                 *
1038                 * Per the PCIe spec, the tolerated latencies are encoded as
1039                 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040                 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041                 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1042                 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1043                 */
1044                rxa *= 512;
1045                value = (rxa > hw->adapter->max_frame_size) ?
1046                        (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1047                        0;
1048
1049                while (value > PCI_LTR_VALUE_MASK) {
1050                        scale++;
1051                        value = DIV_ROUND_UP(value, BIT(5));
1052                }
1053                if (scale > E1000_LTRV_SCALE_MAX) {
1054                        e_dbg("Invalid LTR latency scale %d\n", scale);
1055                        return -E1000_ERR_CONFIG;
1056                }
1057                lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1058
1059                /* Determine the maximum latency tolerated by the platform */
1060                pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1061                                     &max_snoop);
1062                pci_read_config_word(hw->adapter->pdev,
1063                                     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1064                max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1065
1066                if (lat_enc > max_ltr_enc)
1067                        lat_enc = max_ltr_enc;
1068        }
1069
1070        /* Set Snoop and No-Snoop latencies the same */
1071        reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1072        ew32(LTRV, reg);
1073
1074        return 0;
1075}
1076
1077/**
1078 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079 *  @hw: pointer to the HW structure
1080 *  @to_sx: boolean indicating a system power state transition to Sx
1081 *
1082 *  When link is down, configure ULP mode to significantly reduce the power
1083 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1084 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1085 *  system, configure the ULP mode by software.
1086 */
1087s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1088{
1089        u32 mac_reg;
1090        s32 ret_val = 0;
1091        u16 phy_reg;
1092        u16 oem_reg = 0;
1093
1094        if ((hw->mac.type < e1000_pch_lpt) ||
1095            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1096            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1097            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1098            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1099            (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1100                return 0;
1101
1102        if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103                /* Request ME configure ULP mode in the PHY */
1104                mac_reg = er32(H2ME);
1105                mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106                ew32(H2ME, mac_reg);
1107
1108                goto out;
1109        }
1110
1111        if (!to_sx) {
1112                int i = 0;
1113
1114                /* Poll up to 5 seconds for Cable Disconnected indication */
1115                while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1116                        /* Bail if link is re-acquired */
1117                        if (er32(STATUS) & E1000_STATUS_LU)
1118                                return -E1000_ERR_PHY;
1119
1120                        if (i++ == 100)
1121                                break;
1122
1123                        msleep(50);
1124                }
1125                e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1126                      (er32(FEXT) &
1127                       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1128        }
1129
1130        ret_val = hw->phy.ops.acquire(hw);
1131        if (ret_val)
1132                goto out;
1133
1134        /* Force SMBus mode in PHY */
1135        ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1136        if (ret_val)
1137                goto release;
1138        phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1139        e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1140
1141        /* Force SMBus mode in MAC */
1142        mac_reg = er32(CTRL_EXT);
1143        mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1144        ew32(CTRL_EXT, mac_reg);
1145
1146        /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1147         * LPLU and disable Gig speed when entering ULP
1148         */
1149        if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1150                ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1151                                                       &oem_reg);
1152                if (ret_val)
1153                        goto release;
1154
1155                phy_reg = oem_reg;
1156                phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1157
1158                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159                                                        phy_reg);
1160
1161                if (ret_val)
1162                        goto release;
1163        }
1164
1165        /* Set Inband ULP Exit, Reset to SMBus mode and
1166         * Disable SMBus Release on PERST# in PHY
1167         */
1168        ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1169        if (ret_val)
1170                goto release;
1171        phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1172                    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1173        if (to_sx) {
1174                if (er32(WUFC) & E1000_WUFC_LNKC)
1175                        phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1176                else
1177                        phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178
1179                phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1180                phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1181        } else {
1182                phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1183                phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1184                phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1185        }
1186        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1187
1188        /* Set Disable SMBus Release on PERST# in MAC */
1189        mac_reg = er32(FEXTNVM7);
1190        mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1191        ew32(FEXTNVM7, mac_reg);
1192
1193        /* Commit ULP changes in PHY by starting auto ULP configuration */
1194        phy_reg |= I218_ULP_CONFIG1_START;
1195        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1196
1197        if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1198            to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1199                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1200                                                        oem_reg);
1201                if (ret_val)
1202                        goto release;
1203        }
1204
1205release:
1206        hw->phy.ops.release(hw);
1207out:
1208        if (ret_val)
1209                e_dbg("Error in ULP enable flow: %d\n", ret_val);
1210        else
1211                hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1212
1213        return ret_val;
1214}
1215
1216/**
1217 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218 *  @hw: pointer to the HW structure
1219 *  @force: boolean indicating whether or not to force disabling ULP
1220 *
1221 *  Un-configure ULP mode when link is up, the system is transitioned from
1222 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1223 *  system, poll for an indication from ME that ULP has been un-configured.
1224 *  If not on an ME enabled system, un-configure the ULP mode by software.
1225 *
1226 *  During nominal operation, this function is called when link is acquired
1227 *  to disable ULP mode (force=false); otherwise, for example when unloading
1228 *  the driver or during Sx->S0 transitions, this is called with force=true
1229 *  to forcibly disable ULP.
1230 */
1231static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1232{
1233        s32 ret_val = 0;
1234        u32 mac_reg;
1235        u16 phy_reg;
1236        int i = 0;
1237
1238        if ((hw->mac.type < e1000_pch_lpt) ||
1239            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1240            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1241            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1242            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1243            (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1244                return 0;
1245
1246        if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1247                if (force) {
1248                        /* Request ME un-configure ULP mode in the PHY */
1249                        mac_reg = er32(H2ME);
1250                        mac_reg &= ~E1000_H2ME_ULP;
1251                        mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1252                        ew32(H2ME, mac_reg);
1253                }
1254
1255                /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1256                while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1257                        if (i++ == 30) {
1258                                ret_val = -E1000_ERR_PHY;
1259                                goto out;
1260                        }
1261
1262                        usleep_range(10000, 20000);
1263                }
1264                e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1265
1266                if (force) {
1267                        mac_reg = er32(H2ME);
1268                        mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1269                        ew32(H2ME, mac_reg);
1270                } else {
1271                        /* Clear H2ME.ULP after ME ULP configuration */
1272                        mac_reg = er32(H2ME);
1273                        mac_reg &= ~E1000_H2ME_ULP;
1274                        ew32(H2ME, mac_reg);
1275                }
1276
1277                goto out;
1278        }
1279
1280        ret_val = hw->phy.ops.acquire(hw);
1281        if (ret_val)
1282                goto out;
1283
1284        if (force)
1285                /* Toggle LANPHYPC Value bit */
1286                e1000_toggle_lanphypc_pch_lpt(hw);
1287
1288        /* Unforce SMBus mode in PHY */
1289        ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1290        if (ret_val) {
1291                /* The MAC might be in PCIe mode, so temporarily force to
1292                 * SMBus mode in order to access the PHY.
1293                 */
1294                mac_reg = er32(CTRL_EXT);
1295                mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1296                ew32(CTRL_EXT, mac_reg);
1297
1298                msleep(50);
1299
1300                ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1301                                                       &phy_reg);
1302                if (ret_val)
1303                        goto release;
1304        }
1305        phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1306        e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1307
1308        /* Unforce SMBus mode in MAC */
1309        mac_reg = er32(CTRL_EXT);
1310        mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1311        ew32(CTRL_EXT, mac_reg);
1312
1313        /* When ULP mode was previously entered, K1 was disabled by the
1314         * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1315         */
1316        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1317        if (ret_val)
1318                goto release;
1319        phy_reg |= HV_PM_CTRL_K1_ENABLE;
1320        e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1321
1322        /* Clear ULP enabled configuration */
1323        ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1324        if (ret_val)
1325                goto release;
1326        phy_reg &= ~(I218_ULP_CONFIG1_IND |
1327                     I218_ULP_CONFIG1_STICKY_ULP |
1328                     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1329                     I218_ULP_CONFIG1_WOL_HOST |
1330                     I218_ULP_CONFIG1_INBAND_EXIT |
1331                     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1332                     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1333                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1334        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1335
1336        /* Commit ULP changes by starting auto ULP configuration */
1337        phy_reg |= I218_ULP_CONFIG1_START;
1338        e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339
1340        /* Clear Disable SMBus Release on PERST# in MAC */
1341        mac_reg = er32(FEXTNVM7);
1342        mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1343        ew32(FEXTNVM7, mac_reg);
1344
1345release:
1346        hw->phy.ops.release(hw);
1347        if (force) {
1348                e1000_phy_hw_reset(hw);
1349                msleep(50);
1350        }
1351out:
1352        if (ret_val)
1353                e_dbg("Error in ULP disable flow: %d\n", ret_val);
1354        else
1355                hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1356
1357        return ret_val;
1358}
1359
1360/**
1361 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1362 *  @hw: pointer to the HW structure
1363 *
1364 *  Checks to see of the link status of the hardware has changed.  If a
1365 *  change in link status has been detected, then we read the PHY registers
1366 *  to get the current speed/duplex if link exists.
1367 **/
1368static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1369{
1370        struct e1000_mac_info *mac = &hw->mac;
1371        s32 ret_val, tipg_reg = 0;
1372        u16 emi_addr, emi_val = 0;
1373        bool link;
1374        u16 phy_reg;
1375
1376        /* We only want to go out to the PHY registers to see if Auto-Neg
1377         * has completed and/or if our link status has changed.  The
1378         * get_link_status flag is set upon receiving a Link Status
1379         * Change or Rx Sequence Error interrupt.
1380         */
1381        if (!mac->get_link_status)
1382                return 0;
1383
1384        /* First we want to see if the MII Status Register reports
1385         * link.  If so, then we want to get the current speed/duplex
1386         * of the PHY.
1387         */
1388        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1389        if (ret_val)
1390                return ret_val;
1391
1392        if (hw->mac.type == e1000_pchlan) {
1393                ret_val = e1000_k1_gig_workaround_hv(hw, link);
1394                if (ret_val)
1395                        return ret_val;
1396        }
1397
1398        /* When connected at 10Mbps half-duplex, some parts are excessively
1399         * aggressive resulting in many collisions. To avoid this, increase
1400         * the IPG and reduce Rx latency in the PHY.
1401         */
1402        if (((hw->mac.type == e1000_pch2lan) ||
1403             (hw->mac.type == e1000_pch_lpt) ||
1404             (hw->mac.type == e1000_pch_spt)) && link) {
1405                u16 speed, duplex;
1406
1407                e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1408                tipg_reg = er32(TIPG);
1409                tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1410
1411                if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1412                        tipg_reg |= 0xFF;
1413                        /* Reduce Rx latency in analog PHY */
1414                        emi_val = 0;
1415                } else if (hw->mac.type == e1000_pch_spt &&
1416                           duplex == FULL_DUPLEX && speed != SPEED_1000) {
1417                        tipg_reg |= 0xC;
1418                        emi_val = 1;
1419                } else {
1420
1421                        /* Roll back the default values */
1422                        tipg_reg |= 0x08;
1423                        emi_val = 1;
1424                }
1425
1426                ew32(TIPG, tipg_reg);
1427
1428                ret_val = hw->phy.ops.acquire(hw);
1429                if (ret_val)
1430                        return ret_val;
1431
1432                if (hw->mac.type == e1000_pch2lan)
1433                        emi_addr = I82579_RX_CONFIG;
1434                else
1435                        emi_addr = I217_RX_CONFIG;
1436                ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1437
1438                if (hw->mac.type == e1000_pch_lpt ||
1439                    hw->mac.type == e1000_pch_spt) {
1440                        u16 phy_reg;
1441
1442                        e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443                        phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444                        if (speed == SPEED_100 || speed == SPEED_10)
1445                                phy_reg |= 0x3E8;
1446                        else
1447                                phy_reg |= 0xFA;
1448                        e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1449                }
1450                hw->phy.ops.release(hw);
1451
1452                if (ret_val)
1453                        return ret_val;
1454
1455                if (hw->mac.type == e1000_pch_spt) {
1456                        u16 data;
1457                        u16 ptr_gap;
1458
1459                        if (speed == SPEED_1000) {
1460                                ret_val = hw->phy.ops.acquire(hw);
1461                                if (ret_val)
1462                                        return ret_val;
1463
1464                                ret_val = e1e_rphy_locked(hw,
1465                                                          PHY_REG(776, 20),
1466                                                          &data);
1467                                if (ret_val) {
1468                                        hw->phy.ops.release(hw);
1469                                        return ret_val;
1470                                }
1471
1472                                ptr_gap = (data & (0x3FF << 2)) >> 2;
1473                                if (ptr_gap < 0x18) {
1474                                        data &= ~(0x3FF << 2);
1475                                        data |= (0x18 << 2);
1476                                        ret_val =
1477                                            e1e_wphy_locked(hw,
1478                                                            PHY_REG(776, 20),
1479                                                            data);
1480                                }
1481                                hw->phy.ops.release(hw);
1482                                if (ret_val)
1483                                        return ret_val;
1484                        } else {
1485                                ret_val = hw->phy.ops.acquire(hw);
1486                                if (ret_val)
1487                                        return ret_val;
1488
1489                                ret_val = e1e_wphy_locked(hw,
1490                                                          PHY_REG(776, 20),
1491                                                          0xC023);
1492                                hw->phy.ops.release(hw);
1493                                if (ret_val)
1494                                        return ret_val;
1495
1496                        }
1497                }
1498        }
1499
1500        /* I217 Packet Loss issue:
1501         * ensure that FEXTNVM4 Beacon Duration is set correctly
1502         * on power up.
1503         * Set the Beacon Duration for I217 to 8 usec
1504         */
1505        if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1506                u32 mac_reg;
1507
1508                mac_reg = er32(FEXTNVM4);
1509                mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510                mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511                ew32(FEXTNVM4, mac_reg);
1512        }
1513
1514        /* Work-around I218 hang issue */
1515        if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518            (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519                ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520                if (ret_val)
1521                        return ret_val;
1522        }
1523        if ((hw->mac.type == e1000_pch_lpt) ||
1524            (hw->mac.type == e1000_pch_spt)) {
1525                /* Set platform power management values for
1526                 * Latency Tolerance Reporting (LTR)
1527                 */
1528                ret_val = e1000_platform_pm_pch_lpt(hw, link);
1529                if (ret_val)
1530                        return ret_val;
1531        }
1532
1533        /* Clear link partner's EEE ability */
1534        hw->dev_spec.ich8lan.eee_lp_ability = 0;
1535
1536        /* FEXTNVM6 K1-off workaround */
1537        if (hw->mac.type == e1000_pch_spt) {
1538                u32 pcieanacfg = er32(PCIEANACFG);
1539                u32 fextnvm6 = er32(FEXTNVM6);
1540
1541                if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1542                        fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1543                else
1544                        fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1545
1546                ew32(FEXTNVM6, fextnvm6);
1547        }
1548
1549        if (!link)
1550                return 0;       /* No link detected */
1551
1552        mac->get_link_status = false;
1553
1554        switch (hw->mac.type) {
1555        case e1000_pch2lan:
1556                ret_val = e1000_k1_workaround_lv(hw);
1557                if (ret_val)
1558                        return ret_val;
1559                /* fall-thru */
1560        case e1000_pchlan:
1561                if (hw->phy.type == e1000_phy_82578) {
1562                        ret_val = e1000_link_stall_workaround_hv(hw);
1563                        if (ret_val)
1564                                return ret_val;
1565                }
1566
1567                /* Workaround for PCHx parts in half-duplex:
1568                 * Set the number of preambles removed from the packet
1569                 * when it is passed from the PHY to the MAC to prevent
1570                 * the MAC from misinterpreting the packet type.
1571                 */
1572                e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1573                phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1574
1575                if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1576                        phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1577
1578                e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1579                break;
1580        default:
1581                break;
1582        }
1583
1584        /* Check if there was DownShift, must be checked
1585         * immediately after link-up
1586         */
1587        e1000e_check_downshift(hw);
1588
1589        /* Enable/Disable EEE after link up */
1590        if (hw->phy.type > e1000_phy_82579) {
1591                ret_val = e1000_set_eee_pchlan(hw);
1592                if (ret_val)
1593                        return ret_val;
1594        }
1595
1596        /* If we are forcing speed/duplex, then we simply return since
1597         * we have already determined whether we have link or not.
1598         */
1599        if (!mac->autoneg)
1600                return -E1000_ERR_CONFIG;
1601
1602        /* Auto-Neg is enabled.  Auto Speed Detection takes care
1603         * of MAC speed/duplex configuration.  So we only need to
1604         * configure Collision Distance in the MAC.
1605         */
1606        mac->ops.config_collision_dist(hw);
1607
1608        /* Configure Flow Control now that Auto-Neg has completed.
1609         * First, we need to restore the desired flow control
1610         * settings because we may have had to re-autoneg with a
1611         * different link partner.
1612         */
1613        ret_val = e1000e_config_fc_after_link_up(hw);
1614        if (ret_val)
1615                e_dbg("Error configuring flow control\n");
1616
1617        return ret_val;
1618}
1619
1620static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1621{
1622        struct e1000_hw *hw = &adapter->hw;
1623        s32 rc;
1624
1625        rc = e1000_init_mac_params_ich8lan(hw);
1626        if (rc)
1627                return rc;
1628
1629        rc = e1000_init_nvm_params_ich8lan(hw);
1630        if (rc)
1631                return rc;
1632
1633        switch (hw->mac.type) {
1634        case e1000_ich8lan:
1635        case e1000_ich9lan:
1636        case e1000_ich10lan:
1637                rc = e1000_init_phy_params_ich8lan(hw);
1638                break;
1639        case e1000_pchlan:
1640        case e1000_pch2lan:
1641        case e1000_pch_lpt:
1642        case e1000_pch_spt:
1643                rc = e1000_init_phy_params_pchlan(hw);
1644                break;
1645        default:
1646                break;
1647        }
1648        if (rc)
1649                return rc;
1650
1651        /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1652         * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1653         */
1654        if ((adapter->hw.phy.type == e1000_phy_ife) ||
1655            ((adapter->hw.mac.type >= e1000_pch2lan) &&
1656             (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1657                adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1658                adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1659
1660                hw->mac.ops.blink_led = NULL;
1661        }
1662
1663        if ((adapter->hw.mac.type == e1000_ich8lan) &&
1664            (adapter->hw.phy.type != e1000_phy_ife))
1665                adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1666
1667        /* Enable workaround for 82579 w/ ME enabled */
1668        if ((adapter->hw.mac.type == e1000_pch2lan) &&
1669            (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1670                adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1671
1672        return 0;
1673}
1674
1675static DEFINE_MUTEX(nvm_mutex);
1676
1677/**
1678 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1679 *  @hw: pointer to the HW structure
1680 *
1681 *  Acquires the mutex for performing NVM operations.
1682 **/
1683static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1684{
1685        mutex_lock(&nvm_mutex);
1686
1687        return 0;
1688}
1689
1690/**
1691 *  e1000_release_nvm_ich8lan - Release NVM mutex
1692 *  @hw: pointer to the HW structure
1693 *
1694 *  Releases the mutex used while performing NVM operations.
1695 **/
1696static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1697{
1698        mutex_unlock(&nvm_mutex);
1699}
1700
1701/**
1702 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1703 *  @hw: pointer to the HW structure
1704 *
1705 *  Acquires the software control flag for performing PHY and select
1706 *  MAC CSR accesses.
1707 **/
1708static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1709{
1710        u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1711        s32 ret_val = 0;
1712
1713        if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1714                             &hw->adapter->state)) {
1715                e_dbg("contention for Phy access\n");
1716                return -E1000_ERR_PHY;
1717        }
1718
1719        while (timeout) {
1720                extcnf_ctrl = er32(EXTCNF_CTRL);
1721                if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1722                        break;
1723
1724                mdelay(1);
1725                timeout--;
1726        }
1727
1728        if (!timeout) {
1729                e_dbg("SW has already locked the resource.\n");
1730                ret_val = -E1000_ERR_CONFIG;
1731                goto out;
1732        }
1733
1734        timeout = SW_FLAG_TIMEOUT;
1735
1736        extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1737        ew32(EXTCNF_CTRL, extcnf_ctrl);
1738
1739        while (timeout) {
1740                extcnf_ctrl = er32(EXTCNF_CTRL);
1741                if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1742                        break;
1743
1744                mdelay(1);
1745                timeout--;
1746        }
1747
1748        if (!timeout) {
1749                e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1750                      er32(FWSM), extcnf_ctrl);
1751                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1752                ew32(EXTCNF_CTRL, extcnf_ctrl);
1753                ret_val = -E1000_ERR_CONFIG;
1754                goto out;
1755        }
1756
1757out:
1758        if (ret_val)
1759                clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1760
1761        return ret_val;
1762}
1763
1764/**
1765 *  e1000_release_swflag_ich8lan - Release software control flag
1766 *  @hw: pointer to the HW structure
1767 *
1768 *  Releases the software control flag for performing PHY and select
1769 *  MAC CSR accesses.
1770 **/
1771static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1772{
1773        u32 extcnf_ctrl;
1774
1775        extcnf_ctrl = er32(EXTCNF_CTRL);
1776
1777        if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1778                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1779                ew32(EXTCNF_CTRL, extcnf_ctrl);
1780        } else {
1781                e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1782        }
1783
1784        clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1785}
1786
1787/**
1788 *  e1000_check_mng_mode_ich8lan - Checks management mode
1789 *  @hw: pointer to the HW structure
1790 *
1791 *  This checks if the adapter has any manageability enabled.
1792 *  This is a function pointer entry point only called by read/write
1793 *  routines for the PHY and NVM parts.
1794 **/
1795static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1796{
1797        u32 fwsm;
1798
1799        fwsm = er32(FWSM);
1800        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1801                ((fwsm & E1000_FWSM_MODE_MASK) ==
1802                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1803}
1804
1805/**
1806 *  e1000_check_mng_mode_pchlan - Checks management mode
1807 *  @hw: pointer to the HW structure
1808 *
1809 *  This checks if the adapter has iAMT enabled.
1810 *  This is a function pointer entry point only called by read/write
1811 *  routines for the PHY and NVM parts.
1812 **/
1813static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1814{
1815        u32 fwsm;
1816
1817        fwsm = er32(FWSM);
1818        return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1819            (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1820}
1821
1822/**
1823 *  e1000_rar_set_pch2lan - Set receive address register
1824 *  @hw: pointer to the HW structure
1825 *  @addr: pointer to the receive address
1826 *  @index: receive address array register
1827 *
1828 *  Sets the receive address array register at index to the address passed
1829 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1830 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1831 *  Use SHRA[0-3] in place of those reserved for ME.
1832 **/
1833static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1834{
1835        u32 rar_low, rar_high;
1836
1837        /* HW expects these in little endian so we reverse the byte order
1838         * from network order (big endian) to little endian
1839         */
1840        rar_low = ((u32)addr[0] |
1841                   ((u32)addr[1] << 8) |
1842                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1843
1844        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1845
1846        /* If MAC address zero, no need to set the AV bit */
1847        if (rar_low || rar_high)
1848                rar_high |= E1000_RAH_AV;
1849
1850        if (index == 0) {
1851                ew32(RAL(index), rar_low);
1852                e1e_flush();
1853                ew32(RAH(index), rar_high);
1854                e1e_flush();
1855                return 0;
1856        }
1857
1858        /* RAR[1-6] are owned by manageability.  Skip those and program the
1859         * next address into the SHRA register array.
1860         */
1861        if (index < (u32)(hw->mac.rar_entry_count)) {
1862                s32 ret_val;
1863
1864                ret_val = e1000_acquire_swflag_ich8lan(hw);
1865                if (ret_val)
1866                        goto out;
1867
1868                ew32(SHRAL(index - 1), rar_low);
1869                e1e_flush();
1870                ew32(SHRAH(index - 1), rar_high);
1871                e1e_flush();
1872
1873                e1000_release_swflag_ich8lan(hw);
1874
1875                /* verify the register updates */
1876                if ((er32(SHRAL(index - 1)) == rar_low) &&
1877                    (er32(SHRAH(index - 1)) == rar_high))
1878                        return 0;
1879
1880                e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1881                      (index - 1), er32(FWSM));
1882        }
1883
1884out:
1885        e_dbg("Failed to write receive address at index %d\n", index);
1886        return -E1000_ERR_CONFIG;
1887}
1888
1889/**
1890 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1891 *  @hw: pointer to the HW structure
1892 *
1893 *  Get the number of available receive registers that the Host can
1894 *  program. SHRA[0-10] are the shared receive address registers
1895 *  that are shared between the Host and manageability engine (ME).
1896 *  ME can reserve any number of addresses and the host needs to be
1897 *  able to tell how many available registers it has access to.
1898 **/
1899static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1900{
1901        u32 wlock_mac;
1902        u32 num_entries;
1903
1904        wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1905        wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1906
1907        switch (wlock_mac) {
1908        case 0:
1909                /* All SHRA[0..10] and RAR[0] available */
1910                num_entries = hw->mac.rar_entry_count;
1911                break;
1912        case 1:
1913                /* Only RAR[0] available */
1914                num_entries = 1;
1915                break;
1916        default:
1917                /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1918                num_entries = wlock_mac + 1;
1919                break;
1920        }
1921
1922        return num_entries;
1923}
1924
1925/**
1926 *  e1000_rar_set_pch_lpt - Set receive address registers
1927 *  @hw: pointer to the HW structure
1928 *  @addr: pointer to the receive address
1929 *  @index: receive address array register
1930 *
1931 *  Sets the receive address register array at index to the address passed
1932 *  in by addr. For LPT, RAR[0] is the base address register that is to
1933 *  contain the MAC address. SHRA[0-10] are the shared receive address
1934 *  registers that are shared between the Host and manageability engine (ME).
1935 **/
1936static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1937{
1938        u32 rar_low, rar_high;
1939        u32 wlock_mac;
1940
1941        /* HW expects these in little endian so we reverse the byte order
1942         * from network order (big endian) to little endian
1943         */
1944        rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1945                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1946
1947        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1948
1949        /* If MAC address zero, no need to set the AV bit */
1950        if (rar_low || rar_high)
1951                rar_high |= E1000_RAH_AV;
1952
1953        if (index == 0) {
1954                ew32(RAL(index), rar_low);
1955                e1e_flush();
1956                ew32(RAH(index), rar_high);
1957                e1e_flush();
1958                return 0;
1959        }
1960
1961        /* The manageability engine (ME) can lock certain SHRAR registers that
1962         * it is using - those registers are unavailable for use.
1963         */
1964        if (index < hw->mac.rar_entry_count) {
1965                wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966                wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1967
1968                /* Check if all SHRAR registers are locked */
1969                if (wlock_mac == 1)
1970                        goto out;
1971
1972                if ((wlock_mac == 0) || (index <= wlock_mac)) {
1973                        s32 ret_val;
1974
1975                        ret_val = e1000_acquire_swflag_ich8lan(hw);
1976
1977                        if (ret_val)
1978                                goto out;
1979
1980                        ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1981                        e1e_flush();
1982                        ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1983                        e1e_flush();
1984
1985                        e1000_release_swflag_ich8lan(hw);
1986
1987                        /* verify the register updates */
1988                        if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1989                            (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1990                                return 0;
1991                }
1992        }
1993
1994out:
1995        e_dbg("Failed to write receive address at index %d\n", index);
1996        return -E1000_ERR_CONFIG;
1997}
1998
1999/**
2000 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2001 *  @hw: pointer to the HW structure
2002 *
2003 *  Checks if firmware is blocking the reset of the PHY.
2004 *  This is a function pointer entry point only called by
2005 *  reset routines.
2006 **/
2007static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2008{
2009        bool blocked = false;
2010        int i = 0;
2011
2012        while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2013               (i++ < 30))
2014                usleep_range(10000, 20000);
2015        return blocked ? E1000_BLK_PHY_RESET : 0;
2016}
2017
2018/**
2019 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2020 *  @hw: pointer to the HW structure
2021 *
2022 *  Assumes semaphore already acquired.
2023 *
2024 **/
2025static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2026{
2027        u16 phy_data;
2028        u32 strap = er32(STRAP);
2029        u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2030            E1000_STRAP_SMT_FREQ_SHIFT;
2031        s32 ret_val;
2032
2033        strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2034
2035        ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2036        if (ret_val)
2037                return ret_val;
2038
2039        phy_data &= ~HV_SMB_ADDR_MASK;
2040        phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2041        phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2042
2043        if (hw->phy.type == e1000_phy_i217) {
2044                /* Restore SMBus frequency */
2045                if (freq--) {
2046                        phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2047                        phy_data |= (freq & BIT(0)) <<
2048                            HV_SMB_ADDR_FREQ_LOW_SHIFT;
2049                        phy_data |= (freq & BIT(1)) <<
2050                            (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2051                } else {
2052                        e_dbg("Unsupported SMB frequency in PHY\n");
2053                }
2054        }
2055
2056        return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2057}
2058
2059/**
2060 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2061 *  @hw:   pointer to the HW structure
2062 *
2063 *  SW should configure the LCD from the NVM extended configuration region
2064 *  as a workaround for certain parts.
2065 **/
2066static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2067{
2068        struct e1000_phy_info *phy = &hw->phy;
2069        u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2070        s32 ret_val = 0;
2071        u16 word_addr, reg_data, reg_addr, phy_page = 0;
2072
2073        /* Initialize the PHY from the NVM on ICH platforms.  This
2074         * is needed due to an issue where the NVM configuration is
2075         * not properly autoloaded after power transitions.
2076         * Therefore, after each PHY reset, we will load the
2077         * configuration data out of the NVM manually.
2078         */
2079        switch (hw->mac.type) {
2080        case e1000_ich8lan:
2081                if (phy->type != e1000_phy_igp_3)
2082                        return ret_val;
2083
2084                if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2085                    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2086                        sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2087                        break;
2088                }
2089                /* Fall-thru */
2090        case e1000_pchlan:
2091        case e1000_pch2lan:
2092        case e1000_pch_lpt:
2093        case e1000_pch_spt:
2094                sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2095                break;
2096        default:
2097                return ret_val;
2098        }
2099
2100        ret_val = hw->phy.ops.acquire(hw);
2101        if (ret_val)
2102                return ret_val;
2103
2104        data = er32(FEXTNVM);
2105        if (!(data & sw_cfg_mask))
2106                goto release;
2107
2108        /* Make sure HW does not configure LCD from PHY
2109         * extended configuration before SW configuration
2110         */
2111        data = er32(EXTCNF_CTRL);
2112        if ((hw->mac.type < e1000_pch2lan) &&
2113            (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2114                goto release;
2115
2116        cnf_size = er32(EXTCNF_SIZE);
2117        cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2118        cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2119        if (!cnf_size)
2120                goto release;
2121
2122        cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2123        cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2124
2125        if (((hw->mac.type == e1000_pchlan) &&
2126             !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2127            (hw->mac.type > e1000_pchlan)) {
2128                /* HW configures the SMBus address and LEDs when the
2129                 * OEM and LCD Write Enable bits are set in the NVM.
2130                 * When both NVM bits are cleared, SW will configure
2131                 * them instead.
2132                 */
2133                ret_val = e1000_write_smbus_addr(hw);
2134                if (ret_val)
2135                        goto release;
2136
2137                data = er32(LEDCTL);
2138                ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2139                                                        (u16)data);
2140                if (ret_val)
2141                        goto release;
2142        }
2143
2144        /* Configure LCD from extended configuration region. */
2145
2146        /* cnf_base_addr is in DWORD */
2147        word_addr = (u16)(cnf_base_addr << 1);
2148
2149        for (i = 0; i < cnf_size; i++) {
2150                ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2151                if (ret_val)
2152                        goto release;
2153
2154                ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2155                                         1, &reg_addr);
2156                if (ret_val)
2157                        goto release;
2158
2159                /* Save off the PHY page for future writes. */
2160                if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2161                        phy_page = reg_data;
2162                        continue;
2163                }
2164
2165                reg_addr &= PHY_REG_MASK;
2166                reg_addr |= phy_page;
2167
2168                ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2169                if (ret_val)
2170                        goto release;
2171        }
2172
2173release:
2174        hw->phy.ops.release(hw);
2175        return ret_val;
2176}
2177
2178/**
2179 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2180 *  @hw:   pointer to the HW structure
2181 *  @link: link up bool flag
2182 *
2183 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2184 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2185 *  If link is down, the function will restore the default K1 setting located
2186 *  in the NVM.
2187 **/
2188static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2189{
2190        s32 ret_val = 0;
2191        u16 status_reg = 0;
2192        bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2193
2194        if (hw->mac.type != e1000_pchlan)
2195                return 0;
2196
2197        /* Wrap the whole flow with the sw flag */
2198        ret_val = hw->phy.ops.acquire(hw);
2199        if (ret_val)
2200                return ret_val;
2201
2202        /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2203        if (link) {
2204                if (hw->phy.type == e1000_phy_82578) {
2205                        ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2206                                                  &status_reg);
2207                        if (ret_val)
2208                                goto release;
2209
2210                        status_reg &= (BM_CS_STATUS_LINK_UP |
2211                                       BM_CS_STATUS_RESOLVED |
2212                                       BM_CS_STATUS_SPEED_MASK);
2213
2214                        if (status_reg == (BM_CS_STATUS_LINK_UP |
2215                                           BM_CS_STATUS_RESOLVED |
2216                                           BM_CS_STATUS_SPEED_1000))
2217                                k1_enable = false;
2218                }
2219
2220                if (hw->phy.type == e1000_phy_82577) {
2221                        ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2222                        if (ret_val)
2223                                goto release;
2224
2225                        status_reg &= (HV_M_STATUS_LINK_UP |
2226                                       HV_M_STATUS_AUTONEG_COMPLETE |
2227                                       HV_M_STATUS_SPEED_MASK);
2228
2229                        if (status_reg == (HV_M_STATUS_LINK_UP |
2230                                           HV_M_STATUS_AUTONEG_COMPLETE |
2231                                           HV_M_STATUS_SPEED_1000))
2232                                k1_enable = false;
2233                }
2234
2235                /* Link stall fix for link up */
2236                ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2237                if (ret_val)
2238                        goto release;
2239
2240        } else {
2241                /* Link stall fix for link down */
2242                ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2243                if (ret_val)
2244                        goto release;
2245        }
2246
2247        ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2248
2249release:
2250        hw->phy.ops.release(hw);
2251
2252        return ret_val;
2253}
2254
2255/**
2256 *  e1000_configure_k1_ich8lan - Configure K1 power state
2257 *  @hw: pointer to the HW structure
2258 *  @enable: K1 state to configure
2259 *
2260 *  Configure the K1 power state based on the provided parameter.
2261 *  Assumes semaphore already acquired.
2262 *
2263 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2264 **/
2265s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2266{
2267        s32 ret_val;
2268        u32 ctrl_reg = 0;
2269        u32 ctrl_ext = 0;
2270        u32 reg = 0;
2271        u16 kmrn_reg = 0;
2272
2273        ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2274                                              &kmrn_reg);
2275        if (ret_val)
2276                return ret_val;
2277
2278        if (k1_enable)
2279                kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2280        else
2281                kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2282
2283        ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2284                                               kmrn_reg);
2285        if (ret_val)
2286                return ret_val;
2287
2288        usleep_range(20, 40);
2289        ctrl_ext = er32(CTRL_EXT);
2290        ctrl_reg = er32(CTRL);
2291
2292        reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2293        reg |= E1000_CTRL_FRCSPD;
2294        ew32(CTRL, reg);
2295
2296        ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2297        e1e_flush();
2298        usleep_range(20, 40);
2299        ew32(CTRL, ctrl_reg);
2300        ew32(CTRL_EXT, ctrl_ext);
2301        e1e_flush();
2302        usleep_range(20, 40);
2303
2304        return 0;
2305}
2306
2307/**
2308 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2309 *  @hw:       pointer to the HW structure
2310 *  @d0_state: boolean if entering d0 or d3 device state
2311 *
2312 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2313 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2314 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2315 **/
2316static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2317{
2318        s32 ret_val = 0;
2319        u32 mac_reg;
2320        u16 oem_reg;
2321
2322        if (hw->mac.type < e1000_pchlan)
2323                return ret_val;
2324
2325        ret_val = hw->phy.ops.acquire(hw);
2326        if (ret_val)
2327                return ret_val;
2328
2329        if (hw->mac.type == e1000_pchlan) {
2330                mac_reg = er32(EXTCNF_CTRL);
2331                if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2332                        goto release;
2333        }
2334
2335        mac_reg = er32(FEXTNVM);
2336        if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2337                goto release;
2338
2339        mac_reg = er32(PHY_CTRL);
2340
2341        ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2342        if (ret_val)
2343                goto release;
2344
2345        oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2346
2347        if (d0_state) {
2348                if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2349                        oem_reg |= HV_OEM_BITS_GBE_DIS;
2350
2351                if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2352                        oem_reg |= HV_OEM_BITS_LPLU;
2353        } else {
2354                if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2355                               E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2356                        oem_reg |= HV_OEM_BITS_GBE_DIS;
2357
2358                if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2359                               E1000_PHY_CTRL_NOND0A_LPLU))
2360                        oem_reg |= HV_OEM_BITS_LPLU;
2361        }
2362
2363        /* Set Restart auto-neg to activate the bits */
2364        if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2365            !hw->phy.ops.check_reset_block(hw))
2366                oem_reg |= HV_OEM_BITS_RESTART_AN;
2367
2368        ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2369
2370release:
2371        hw->phy.ops.release(hw);
2372
2373        return ret_val;
2374}
2375
2376/**
2377 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2378 *  @hw:   pointer to the HW structure
2379 **/
2380static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2381{
2382        s32 ret_val;
2383        u16 data;
2384
2385        ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2386        if (ret_val)
2387                return ret_val;
2388
2389        data |= HV_KMRN_MDIO_SLOW;
2390
2391        ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2392
2393        return ret_val;
2394}
2395
2396/**
2397 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2398 *  done after every PHY reset.
2399 **/
2400static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2401{
2402        s32 ret_val = 0;
2403        u16 phy_data;
2404
2405        if (hw->mac.type != e1000_pchlan)
2406                return 0;
2407
2408        /* Set MDIO slow mode before any other MDIO access */
2409        if (hw->phy.type == e1000_phy_82577) {
2410                ret_val = e1000_set_mdio_slow_mode_hv(hw);
2411                if (ret_val)
2412                        return ret_val;
2413        }
2414
2415        if (((hw->phy.type == e1000_phy_82577) &&
2416             ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2417            ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2418                /* Disable generation of early preamble */
2419                ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2420                if (ret_val)
2421                        return ret_val;
2422
2423                /* Preamble tuning for SSC */
2424                ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2425                if (ret_val)
2426                        return ret_val;
2427        }
2428
2429        if (hw->phy.type == e1000_phy_82578) {
2430                /* Return registers to default by doing a soft reset then
2431                 * writing 0x3140 to the control register.
2432                 */
2433                if (hw->phy.revision < 2) {
2434                        e1000e_phy_sw_reset(hw);
2435                        ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2436                }
2437        }
2438
2439        /* Select page 0 */
2440        ret_val = hw->phy.ops.acquire(hw);
2441        if (ret_val)
2442                return ret_val;
2443
2444        hw->phy.addr = 1;
2445        ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2446        hw->phy.ops.release(hw);
2447        if (ret_val)
2448                return ret_val;
2449
2450        /* Configure the K1 Si workaround during phy reset assuming there is
2451         * link so that it disables K1 if link is in 1Gbps.
2452         */
2453        ret_val = e1000_k1_gig_workaround_hv(hw, true);
2454        if (ret_val)
2455                return ret_val;
2456
2457        /* Workaround for link disconnects on a busy hub in half duplex */
2458        ret_val = hw->phy.ops.acquire(hw);
2459        if (ret_val)
2460                return ret_val;
2461        ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2462        if (ret_val)
2463                goto release;
2464        ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2465        if (ret_val)
2466                goto release;
2467
2468        /* set MSE higher to enable link to stay up when noise is high */
2469        ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2470release:
2471        hw->phy.ops.release(hw);
2472
2473        return ret_val;
2474}
2475
2476/**
2477 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2478 *  @hw:   pointer to the HW structure
2479 **/
2480void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2481{
2482        u32 mac_reg;
2483        u16 i, phy_reg = 0;
2484        s32 ret_val;
2485
2486        ret_val = hw->phy.ops.acquire(hw);
2487        if (ret_val)
2488                return;
2489        ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2490        if (ret_val)
2491                goto release;
2492
2493        /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2494        for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2495                mac_reg = er32(RAL(i));
2496                hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2497                                           (u16)(mac_reg & 0xFFFF));
2498                hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2499                                           (u16)((mac_reg >> 16) & 0xFFFF));
2500
2501                mac_reg = er32(RAH(i));
2502                hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2503                                           (u16)(mac_reg & 0xFFFF));
2504                hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2505                                           (u16)((mac_reg & E1000_RAH_AV)
2506                                                 >> 16));
2507        }
2508
2509        e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2510
2511release:
2512        hw->phy.ops.release(hw);
2513}
2514
2515/**
2516 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2517 *  with 82579 PHY
2518 *  @hw: pointer to the HW structure
2519 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2520 **/
2521s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2522{
2523        s32 ret_val = 0;
2524        u16 phy_reg, data;
2525        u32 mac_reg;
2526        u16 i;
2527
2528        if (hw->mac.type < e1000_pch2lan)
2529                return 0;
2530
2531        /* disable Rx path while enabling/disabling workaround */
2532        e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2533        ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2534        if (ret_val)
2535                return ret_val;
2536
2537        if (enable) {
2538                /* Write Rx addresses (rar_entry_count for RAL/H, and
2539                 * SHRAL/H) and initial CRC values to the MAC
2540                 */
2541                for (i = 0; i < hw->mac.rar_entry_count; i++) {
2542                        u8 mac_addr[ETH_ALEN] = { 0 };
2543                        u32 addr_high, addr_low;
2544
2545                        addr_high = er32(RAH(i));
2546                        if (!(addr_high & E1000_RAH_AV))
2547                                continue;
2548                        addr_low = er32(RAL(i));
2549                        mac_addr[0] = (addr_low & 0xFF);
2550                        mac_addr[1] = ((addr_low >> 8) & 0xFF);
2551                        mac_addr[2] = ((addr_low >> 16) & 0xFF);
2552                        mac_addr[3] = ((addr_low >> 24) & 0xFF);
2553                        mac_addr[4] = (addr_high & 0xFF);
2554                        mac_addr[5] = ((addr_high >> 8) & 0xFF);
2555
2556                        ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2557                }
2558
2559                /* Write Rx addresses to the PHY */
2560                e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2561
2562                /* Enable jumbo frame workaround in the MAC */
2563                mac_reg = er32(FFLT_DBG);
2564                mac_reg &= ~BIT(14);
2565                mac_reg |= (7 << 15);
2566                ew32(FFLT_DBG, mac_reg);
2567
2568                mac_reg = er32(RCTL);
2569                mac_reg |= E1000_RCTL_SECRC;
2570                ew32(RCTL, mac_reg);
2571
2572                ret_val = e1000e_read_kmrn_reg(hw,
2573                                               E1000_KMRNCTRLSTA_CTRL_OFFSET,
2574                                               &data);
2575                if (ret_val)
2576                        return ret_val;
2577                ret_val = e1000e_write_kmrn_reg(hw,
2578                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2579                                                data | BIT(0));
2580                if (ret_val)
2581                        return ret_val;
2582                ret_val = e1000e_read_kmrn_reg(hw,
2583                                               E1000_KMRNCTRLSTA_HD_CTRL,
2584                                               &data);
2585                if (ret_val)
2586                        return ret_val;
2587                data &= ~(0xF << 8);
2588                data |= (0xB << 8);
2589                ret_val = e1000e_write_kmrn_reg(hw,
2590                                                E1000_KMRNCTRLSTA_HD_CTRL,
2591                                                data);
2592                if (ret_val)
2593                        return ret_val;
2594
2595                /* Enable jumbo frame workaround in the PHY */
2596                e1e_rphy(hw, PHY_REG(769, 23), &data);
2597                data &= ~(0x7F << 5);
2598                data |= (0x37 << 5);
2599                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2600                if (ret_val)
2601                        return ret_val;
2602                e1e_rphy(hw, PHY_REG(769, 16), &data);
2603                data &= ~BIT(13);
2604                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2605                if (ret_val)
2606                        return ret_val;
2607                e1e_rphy(hw, PHY_REG(776, 20), &data);
2608                data &= ~(0x3FF << 2);
2609                data |= (E1000_TX_PTR_GAP << 2);
2610                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2611                if (ret_val)
2612                        return ret_val;
2613                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2614                if (ret_val)
2615                        return ret_val;
2616                e1e_rphy(hw, HV_PM_CTRL, &data);
2617                ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2618                if (ret_val)
2619                        return ret_val;
2620        } else {
2621                /* Write MAC register values back to h/w defaults */
2622                mac_reg = er32(FFLT_DBG);
2623                mac_reg &= ~(0xF << 14);
2624                ew32(FFLT_DBG, mac_reg);
2625
2626                mac_reg = er32(RCTL);
2627                mac_reg &= ~E1000_RCTL_SECRC;
2628                ew32(RCTL, mac_reg);
2629
2630                ret_val = e1000e_read_kmrn_reg(hw,
2631                                               E1000_KMRNCTRLSTA_CTRL_OFFSET,
2632                                               &data);
2633                if (ret_val)
2634                        return ret_val;
2635                ret_val = e1000e_write_kmrn_reg(hw,
2636                                                E1000_KMRNCTRLSTA_CTRL_OFFSET,
2637                                                data & ~BIT(0));
2638                if (ret_val)
2639                        return ret_val;
2640                ret_val = e1000e_read_kmrn_reg(hw,
2641                                               E1000_KMRNCTRLSTA_HD_CTRL,
2642                                               &data);
2643                if (ret_val)
2644                        return ret_val;
2645                data &= ~(0xF << 8);
2646                data |= (0xB << 8);
2647                ret_val = e1000e_write_kmrn_reg(hw,
2648                                                E1000_KMRNCTRLSTA_HD_CTRL,
2649                                                data);
2650                if (ret_val)
2651                        return ret_val;
2652
2653                /* Write PHY register values back to h/w defaults */
2654                e1e_rphy(hw, PHY_REG(769, 23), &data);
2655                data &= ~(0x7F << 5);
2656                ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2657                if (ret_val)
2658                        return ret_val;
2659                e1e_rphy(hw, PHY_REG(769, 16), &data);
2660                data |= BIT(13);
2661                ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2662                if (ret_val)
2663                        return ret_val;
2664                e1e_rphy(hw, PHY_REG(776, 20), &data);
2665                data &= ~(0x3FF << 2);
2666                data |= (0x8 << 2);
2667                ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2668                if (ret_val)
2669                        return ret_val;
2670                ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2671                if (ret_val)
2672                        return ret_val;
2673                e1e_rphy(hw, HV_PM_CTRL, &data);
2674                ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2675                if (ret_val)
2676                        return ret_val;
2677        }
2678
2679        /* re-enable Rx path after enabling/disabling workaround */
2680        return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2681}
2682
2683/**
2684 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2685 *  done after every PHY reset.
2686 **/
2687static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2688{
2689        s32 ret_val = 0;
2690
2691        if (hw->mac.type != e1000_pch2lan)
2692                return 0;
2693
2694        /* Set MDIO slow mode before any other MDIO access */
2695        ret_val = e1000_set_mdio_slow_mode_hv(hw);
2696        if (ret_val)
2697                return ret_val;
2698
2699        ret_val = hw->phy.ops.acquire(hw);
2700        if (ret_val)
2701                return ret_val;
2702        /* set MSE higher to enable link to stay up when noise is high */
2703        ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2704        if (ret_val)
2705                goto release;
2706        /* drop link after 5 times MSE threshold was reached */
2707        ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2708release:
2709        hw->phy.ops.release(hw);
2710
2711        return ret_val;
2712}
2713
2714/**
2715 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2716 *  @hw:   pointer to the HW structure
2717 *
2718 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2719 *  Disable K1 in 1000Mbps and 100Mbps
2720 **/
2721static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2722{
2723        s32 ret_val = 0;
2724        u16 status_reg = 0;
2725
2726        if (hw->mac.type != e1000_pch2lan)
2727                return 0;
2728
2729        /* Set K1 beacon duration based on 10Mbs speed */
2730        ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2731        if (ret_val)
2732                return ret_val;
2733
2734        if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2735            == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2736                if (status_reg &
2737                    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2738                        u16 pm_phy_reg;
2739
2740                        /* LV 1G/100 Packet drop issue wa  */
2741                        ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2742                        if (ret_val)
2743                                return ret_val;
2744                        pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2745                        ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2746                        if (ret_val)
2747                                return ret_val;
2748                } else {
2749                        u32 mac_reg;
2750
2751                        mac_reg = er32(FEXTNVM4);
2752                        mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2753                        mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2754                        ew32(FEXTNVM4, mac_reg);
2755                }
2756        }
2757
2758        return ret_val;
2759}
2760
2761/**
2762 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2763 *  @hw:   pointer to the HW structure
2764 *  @gate: boolean set to true to gate, false to ungate
2765 *
2766 *  Gate/ungate the automatic PHY configuration via hardware; perform
2767 *  the configuration via software instead.
2768 **/
2769static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2770{
2771        u32 extcnf_ctrl;
2772
2773        if (hw->mac.type < e1000_pch2lan)
2774                return;
2775
2776        extcnf_ctrl = er32(EXTCNF_CTRL);
2777
2778        if (gate)
2779                extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2780        else
2781                extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2782
2783        ew32(EXTCNF_CTRL, extcnf_ctrl);
2784}
2785
2786/**
2787 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2788 *  @hw: pointer to the HW structure
2789 *
2790 *  Check the appropriate indication the MAC has finished configuring the
2791 *  PHY after a software reset.
2792 **/
2793static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2794{
2795        u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2796
2797        /* Wait for basic configuration completes before proceeding */
2798        do {
2799                data = er32(STATUS);
2800                data &= E1000_STATUS_LAN_INIT_DONE;
2801                usleep_range(100, 200);
2802        } while ((!data) && --loop);
2803
2804        /* If basic configuration is incomplete before the above loop
2805         * count reaches 0, loading the configuration from NVM will
2806         * leave the PHY in a bad state possibly resulting in no link.
2807         */
2808        if (loop == 0)
2809                e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2810
2811        /* Clear the Init Done bit for the next init event */
2812        data = er32(STATUS);
2813        data &= ~E1000_STATUS_LAN_INIT_DONE;
2814        ew32(STATUS, data);
2815}
2816
2817/**
2818 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2819 *  @hw: pointer to the HW structure
2820 **/
2821static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2822{
2823        s32 ret_val = 0;
2824        u16 reg;
2825
2826        if (hw->phy.ops.check_reset_block(hw))
2827                return 0;
2828
2829        /* Allow time for h/w to get to quiescent state after reset */
2830        usleep_range(10000, 20000);
2831
2832        /* Perform any necessary post-reset workarounds */
2833        switch (hw->mac.type) {
2834        case e1000_pchlan:
2835                ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2836                if (ret_val)
2837                        return ret_val;
2838                break;
2839        case e1000_pch2lan:
2840                ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2841                if (ret_val)
2842                        return ret_val;
2843                break;
2844        default:
2845                break;
2846        }
2847
2848        /* Clear the host wakeup bit after lcd reset */
2849        if (hw->mac.type >= e1000_pchlan) {
2850                e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2851                reg &= ~BM_WUC_HOST_WU_BIT;
2852                e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2853        }
2854
2855        /* Configure the LCD with the extended configuration region in NVM */
2856        ret_val = e1000_sw_lcd_config_ich8lan(hw);
2857        if (ret_val)
2858                return ret_val;
2859
2860        /* Configure the LCD with the OEM bits in NVM */
2861        ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2862
2863        if (hw->mac.type == e1000_pch2lan) {
2864                /* Ungate automatic PHY configuration on non-managed 82579 */
2865                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2866                        usleep_range(10000, 20000);
2867                        e1000_gate_hw_phy_config_ich8lan(hw, false);
2868                }
2869
2870                /* Set EEE LPI Update Timer to 200usec */
2871                ret_val = hw->phy.ops.acquire(hw);
2872                if (ret_val)
2873                        return ret_val;
2874                ret_val = e1000_write_emi_reg_locked(hw,
2875                                                     I82579_LPI_UPDATE_TIMER,
2876                                                     0x1387);
2877                hw->phy.ops.release(hw);
2878        }
2879
2880        return ret_val;
2881}
2882
2883/**
2884 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2885 *  @hw: pointer to the HW structure
2886 *
2887 *  Resets the PHY
2888 *  This is a function pointer entry point called by drivers
2889 *  or other shared routines.
2890 **/
2891static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2892{
2893        s32 ret_val = 0;
2894
2895        /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2896        if ((hw->mac.type == e1000_pch2lan) &&
2897            !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2898                e1000_gate_hw_phy_config_ich8lan(hw, true);
2899
2900        ret_val = e1000e_phy_hw_reset_generic(hw);
2901        if (ret_val)
2902                return ret_val;
2903
2904        return e1000_post_phy_reset_ich8lan(hw);
2905}
2906
2907/**
2908 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2909 *  @hw: pointer to the HW structure
2910 *  @active: true to enable LPLU, false to disable
2911 *
2912 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2913 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2914 *  the phy speed. This function will manually set the LPLU bit and restart
2915 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2916 *  since it configures the same bit.
2917 **/
2918static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2919{
2920        s32 ret_val;
2921        u16 oem_reg;
2922
2923        ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2924        if (ret_val)
2925                return ret_val;
2926
2927        if (active)
2928                oem_reg |= HV_OEM_BITS_LPLU;
2929        else
2930                oem_reg &= ~HV_OEM_BITS_LPLU;
2931
2932        if (!hw->phy.ops.check_reset_block(hw))
2933                oem_reg |= HV_OEM_BITS_RESTART_AN;
2934
2935        return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2936}
2937
2938/**
2939 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2940 *  @hw: pointer to the HW structure
2941 *  @active: true to enable LPLU, false to disable
2942 *
2943 *  Sets the LPLU D0 state according to the active flag.  When
2944 *  activating LPLU this function also disables smart speed
2945 *  and vice versa.  LPLU will not be activated unless the
2946 *  device autonegotiation advertisement meets standards of
2947 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2948 *  This is a function pointer entry point only called by
2949 *  PHY setup routines.
2950 **/
2951static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2952{
2953        struct e1000_phy_info *phy = &hw->phy;
2954        u32 phy_ctrl;
2955        s32 ret_val = 0;
2956        u16 data;
2957
2958        if (phy->type == e1000_phy_ife)
2959                return 0;
2960
2961        phy_ctrl = er32(PHY_CTRL);
2962
2963        if (active) {
2964                phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2965                ew32(PHY_CTRL, phy_ctrl);
2966
2967                if (phy->type != e1000_phy_igp_3)
2968                        return 0;
2969
2970                /* Call gig speed drop workaround on LPLU before accessing
2971                 * any PHY registers
2972                 */
2973                if (hw->mac.type == e1000_ich8lan)
2974                        e1000e_gig_downshift_workaround_ich8lan(hw);
2975
2976                /* When LPLU is enabled, we should disable SmartSpeed */
2977                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2978                if (ret_val)
2979                        return ret_val;
2980                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2981                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2982                if (ret_val)
2983                        return ret_val;
2984        } else {
2985                phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2986                ew32(PHY_CTRL, phy_ctrl);
2987
2988                if (phy->type != e1000_phy_igp_3)
2989                        return 0;
2990
2991                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2992                 * during Dx states where the power conservation is most
2993                 * important.  During driver activity we should enable
2994                 * SmartSpeed, so performance is maintained.
2995                 */
2996                if (phy->smart_speed == e1000_smart_speed_on) {
2997                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2998                                           &data);
2999                        if (ret_val)
3000                                return ret_val;
3001
3002                        data |= IGP01E1000_PSCFR_SMART_SPEED;
3003                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004                                           data);
3005                        if (ret_val)
3006                                return ret_val;
3007                } else if (phy->smart_speed == e1000_smart_speed_off) {
3008                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3009                                           &data);
3010                        if (ret_val)
3011                                return ret_val;
3012
3013                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3014                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015                                           data);
3016                        if (ret_val)
3017                                return ret_val;
3018                }
3019        }
3020
3021        return 0;
3022}
3023
3024/**
3025 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3026 *  @hw: pointer to the HW structure
3027 *  @active: true to enable LPLU, false to disable
3028 *
3029 *  Sets the LPLU D3 state according to the active flag.  When
3030 *  activating LPLU this function also disables smart speed
3031 *  and vice versa.  LPLU will not be activated unless the
3032 *  device autonegotiation advertisement meets standards of
3033 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3034 *  This is a function pointer entry point only called by
3035 *  PHY setup routines.
3036 **/
3037static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3038{
3039        struct e1000_phy_info *phy = &hw->phy;
3040        u32 phy_ctrl;
3041        s32 ret_val = 0;
3042        u16 data;
3043
3044        phy_ctrl = er32(PHY_CTRL);
3045
3046        if (!active) {
3047                phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3048                ew32(PHY_CTRL, phy_ctrl);
3049
3050                if (phy->type != e1000_phy_igp_3)
3051                        return 0;
3052
3053                /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3054                 * during Dx states where the power conservation is most
3055                 * important.  During driver activity we should enable
3056                 * SmartSpeed, so performance is maintained.
3057                 */
3058                if (phy->smart_speed == e1000_smart_speed_on) {
3059                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060                                           &data);
3061                        if (ret_val)
3062                                return ret_val;
3063
3064                        data |= IGP01E1000_PSCFR_SMART_SPEED;
3065                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066                                           data);
3067                        if (ret_val)
3068                                return ret_val;
3069                } else if (phy->smart_speed == e1000_smart_speed_off) {
3070                        ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071                                           &data);
3072                        if (ret_val)
3073                                return ret_val;
3074
3075                        data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076                        ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077                                           data);
3078                        if (ret_val)
3079                                return ret_val;
3080                }
3081        } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3082                   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3083                   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3084                phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3085                ew32(PHY_CTRL, phy_ctrl);
3086
3087                if (phy->type != e1000_phy_igp_3)
3088                        return 0;
3089
3090                /* Call gig speed drop workaround on LPLU before accessing
3091                 * any PHY registers
3092                 */
3093                if (hw->mac.type == e1000_ich8lan)
3094                        e1000e_gig_downshift_workaround_ich8lan(hw);
3095
3096                /* When LPLU is enabled, we should disable SmartSpeed */
3097                ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3098                if (ret_val)
3099                        return ret_val;
3100
3101                data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3102                ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3103        }
3104
3105        return ret_val;
3106}
3107
3108/**
3109 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3110 *  @hw: pointer to the HW structure
3111 *  @bank:  pointer to the variable that returns the active bank
3112 *
3113 *  Reads signature byte from the NVM using the flash access registers.
3114 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3115 **/
3116static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3117{
3118        u32 eecd;
3119        struct e1000_nvm_info *nvm = &hw->nvm;
3120        u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3121        u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3122        u32 nvm_dword = 0;
3123        u8 sig_byte = 0;
3124        s32 ret_val;
3125
3126        switch (hw->mac.type) {
3127        case e1000_pch_spt:
3128                bank1_offset = nvm->flash_bank_size;
3129                act_offset = E1000_ICH_NVM_SIG_WORD;
3130
3131                /* set bank to 0 in case flash read fails */
3132                *bank = 0;
3133
3134                /* Check bank 0 */
3135                ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3136                                                         &nvm_dword);
3137                if (ret_val)
3138                        return ret_val;
3139                sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3140                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3141                    E1000_ICH_NVM_SIG_VALUE) {
3142                        *bank = 0;
3143                        return 0;
3144                }
3145
3146                /* Check bank 1 */
3147                ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3148                                                         bank1_offset,
3149                                                         &nvm_dword);
3150                if (ret_val)
3151                        return ret_val;
3152                sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3153                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3154                    E1000_ICH_NVM_SIG_VALUE) {
3155                        *bank = 1;
3156                        return 0;
3157                }
3158
3159                e_dbg("ERROR: No valid NVM bank present\n");
3160                return -E1000_ERR_NVM;
3161        case e1000_ich8lan:
3162        case e1000_ich9lan:
3163                eecd = er32(EECD);
3164                if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3165                    E1000_EECD_SEC1VAL_VALID_MASK) {
3166                        if (eecd & E1000_EECD_SEC1VAL)
3167                                *bank = 1;
3168                        else
3169                                *bank = 0;
3170
3171                        return 0;
3172                }
3173                e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3174                /* fall-thru */
3175        default:
3176                /* set bank to 0 in case flash read fails */
3177                *bank = 0;
3178
3179                /* Check bank 0 */
3180                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3181                                                        &sig_byte);
3182                if (ret_val)
3183                        return ret_val;
3184                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3185                    E1000_ICH_NVM_SIG_VALUE) {
3186                        *bank = 0;
3187                        return 0;
3188                }
3189
3190                /* Check bank 1 */
3191                ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3192                                                        bank1_offset,
3193                                                        &sig_byte);
3194                if (ret_val)
3195                        return ret_val;
3196                if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3197                    E1000_ICH_NVM_SIG_VALUE) {
3198                        *bank = 1;
3199                        return 0;
3200                }
3201
3202                e_dbg("ERROR: No valid NVM bank present\n");
3203                return -E1000_ERR_NVM;
3204        }
3205}
3206
3207/**
3208 *  e1000_read_nvm_spt - NVM access for SPT
3209 *  @hw: pointer to the HW structure
3210 *  @offset: The offset (in bytes) of the word(s) to read.
3211 *  @words: Size of data to read in words.
3212 *  @data: pointer to the word(s) to read at offset.
3213 *
3214 *  Reads a word(s) from the NVM
3215 **/
3216static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3217                              u16 *data)
3218{
3219        struct e1000_nvm_info *nvm = &hw->nvm;
3220        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3221        u32 act_offset;
3222        s32 ret_val = 0;
3223        u32 bank = 0;
3224        u32 dword = 0;
3225        u16 offset_to_read;
3226        u16 i;
3227
3228        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3229            (words == 0)) {
3230                e_dbg("nvm parameter(s) out of bounds\n");
3231                ret_val = -E1000_ERR_NVM;
3232                goto out;
3233        }
3234
3235        nvm->ops.acquire(hw);
3236
3237        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3238        if (ret_val) {
3239                e_dbg("Could not detect valid bank, assuming bank 0\n");
3240                bank = 0;
3241        }
3242
3243        act_offset = (bank) ? nvm->flash_bank_size : 0;
3244        act_offset += offset;
3245
3246        ret_val = 0;
3247
3248        for (i = 0; i < words; i += 2) {
3249                if (words - i == 1) {
3250                        if (dev_spec->shadow_ram[offset + i].modified) {
3251                                data[i] =
3252                                    dev_spec->shadow_ram[offset + i].value;
3253                        } else {
3254                                offset_to_read = act_offset + i -
3255                                    ((act_offset + i) % 2);
3256                                ret_val =
3257                                  e1000_read_flash_dword_ich8lan(hw,
3258                                                                 offset_to_read,
3259                                                                 &dword);
3260                                if (ret_val)
3261                                        break;
3262                                if ((act_offset + i) % 2 == 0)
3263                                        data[i] = (u16)(dword & 0xFFFF);
3264                                else
3265                                        data[i] = (u16)((dword >> 16) & 0xFFFF);
3266                        }
3267                } else {
3268                        offset_to_read = act_offset + i;
3269                        if (!(dev_spec->shadow_ram[offset + i].modified) ||
3270                            !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3271                                ret_val =
3272                                  e1000_read_flash_dword_ich8lan(hw,
3273                                                                 offset_to_read,
3274                                                                 &dword);
3275                                if (ret_val)
3276                                        break;
3277                        }
3278                        if (dev_spec->shadow_ram[offset + i].modified)
3279                                data[i] =
3280                                    dev_spec->shadow_ram[offset + i].value;
3281                        else
3282                                data[i] = (u16)(dword & 0xFFFF);
3283                        if (dev_spec->shadow_ram[offset + i].modified)
3284                                data[i + 1] =
3285                                    dev_spec->shadow_ram[offset + i + 1].value;
3286                        else
3287                                data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3288                }
3289        }
3290
3291        nvm->ops.release(hw);
3292
3293out:
3294        if (ret_val)
3295                e_dbg("NVM read error: %d\n", ret_val);
3296
3297        return ret_val;
3298}
3299
3300/**
3301 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3302 *  @hw: pointer to the HW structure
3303 *  @offset: The offset (in bytes) of the word(s) to read.
3304 *  @words: Size of data to read in words
3305 *  @data: Pointer to the word(s) to read at offset.
3306 *
3307 *  Reads a word(s) from the NVM using the flash access registers.
3308 **/
3309static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3310                                  u16 *data)
3311{
3312        struct e1000_nvm_info *nvm = &hw->nvm;
3313        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3314        u32 act_offset;
3315        s32 ret_val = 0;
3316        u32 bank = 0;
3317        u16 i, word;
3318
3319        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3320            (words == 0)) {
3321                e_dbg("nvm parameter(s) out of bounds\n");
3322                ret_val = -E1000_ERR_NVM;
3323                goto out;
3324        }
3325
3326        nvm->ops.acquire(hw);
3327
3328        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3329        if (ret_val) {
3330                e_dbg("Could not detect valid bank, assuming bank 0\n");
3331                bank = 0;
3332        }
3333
3334        act_offset = (bank) ? nvm->flash_bank_size : 0;
3335        act_offset += offset;
3336
3337        ret_val = 0;
3338        for (i = 0; i < words; i++) {
3339                if (dev_spec->shadow_ram[offset + i].modified) {
3340                        data[i] = dev_spec->shadow_ram[offset + i].value;
3341                } else {
3342                        ret_val = e1000_read_flash_word_ich8lan(hw,
3343                                                                act_offset + i,
3344                                                                &word);
3345                        if (ret_val)
3346                                break;
3347                        data[i] = word;
3348                }
3349        }
3350
3351        nvm->ops.release(hw);
3352
3353out:
3354        if (ret_val)
3355                e_dbg("NVM read error: %d\n", ret_val);
3356
3357        return ret_val;
3358}
3359
3360/**
3361 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3362 *  @hw: pointer to the HW structure
3363 *
3364 *  This function does initial flash setup so that a new read/write/erase cycle
3365 *  can be started.
3366 **/
3367static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3368{
3369        union ich8_hws_flash_status hsfsts;
3370        s32 ret_val = -E1000_ERR_NVM;
3371
3372        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3373
3374        /* Check if the flash descriptor is valid */
3375        if (!hsfsts.hsf_status.fldesvalid) {
3376                e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3377                return -E1000_ERR_NVM;
3378        }
3379
3380        /* Clear FCERR and DAEL in hw status by writing 1 */
3381        hsfsts.hsf_status.flcerr = 1;
3382        hsfsts.hsf_status.dael = 1;
3383        if (hw->mac.type == e1000_pch_spt)
3384                ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3385        else
3386                ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3387
3388        /* Either we should have a hardware SPI cycle in progress
3389         * bit to check against, in order to start a new cycle or
3390         * FDONE bit should be changed in the hardware so that it
3391         * is 1 after hardware reset, which can then be used as an
3392         * indication whether a cycle is in progress or has been
3393         * completed.
3394         */
3395
3396        if (!hsfsts.hsf_status.flcinprog) {
3397                /* There is no cycle running at present,
3398                 * so we can start a cycle.
3399                 * Begin by setting Flash Cycle Done.
3400                 */
3401                hsfsts.hsf_status.flcdone = 1;
3402                if (hw->mac.type == e1000_pch_spt)
3403                        ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3404                else
3405                        ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3406                ret_val = 0;
3407        } else {
3408                s32 i;
3409
3410                /* Otherwise poll for sometime so the current
3411                 * cycle has a chance to end before giving up.
3412                 */
3413                for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3414                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3415                        if (!hsfsts.hsf_status.flcinprog) {
3416                                ret_val = 0;
3417                                break;
3418                        }
3419                        udelay(1);
3420                }
3421                if (!ret_val) {
3422                        /* Successful in waiting for previous cycle to timeout,
3423                         * now set the Flash Cycle Done.
3424                         */
3425                        hsfsts.hsf_status.flcdone = 1;
3426                        if (hw->mac.type == e1000_pch_spt)
3427                                ew32flash(ICH_FLASH_HSFSTS,
3428                                          hsfsts.regval & 0xFFFF);
3429                        else
3430                                ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3431                } else {
3432                        e_dbg("Flash controller busy, cannot get access\n");
3433                }
3434        }
3435
3436        return ret_val;
3437}
3438
3439/**
3440 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3441 *  @hw: pointer to the HW structure
3442 *  @timeout: maximum time to wait for completion
3443 *
3444 *  This function starts a flash cycle and waits for its completion.
3445 **/
3446static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3447{
3448        union ich8_hws_flash_ctrl hsflctl;
3449        union ich8_hws_flash_status hsfsts;
3450        u32 i = 0;
3451
3452        /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3453        if (hw->mac.type == e1000_pch_spt)
3454                hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3455        else
3456                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3457        hsflctl.hsf_ctrl.flcgo = 1;
3458
3459        if (hw->mac.type == e1000_pch_spt)
3460                ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3461        else
3462                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3463
3464        /* wait till FDONE bit is set to 1 */
3465        do {
3466                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3467                if (hsfsts.hsf_status.flcdone)
3468                        break;
3469                udelay(1);
3470        } while (i++ < timeout);
3471
3472        if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3473                return 0;
3474
3475        return -E1000_ERR_NVM;
3476}
3477
3478/**
3479 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3480 *  @hw: pointer to the HW structure
3481 *  @offset: offset to data location
3482 *  @data: pointer to the location for storing the data
3483 *
3484 *  Reads the flash dword at offset into data.  Offset is converted
3485 *  to bytes before read.
3486 **/
3487static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3488                                          u32 *data)
3489{
3490        /* Must convert word offset into bytes. */
3491        offset <<= 1;
3492        return e1000_read_flash_data32_ich8lan(hw, offset, data);
3493}
3494
3495/**
3496 *  e1000_read_flash_word_ich8lan - Read word from flash
3497 *  @hw: pointer to the HW structure
3498 *  @offset: offset to data location
3499 *  @data: pointer to the location for storing the data
3500 *
3501 *  Reads the flash word at offset into data.  Offset is converted
3502 *  to bytes before read.
3503 **/
3504static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3505                                         u16 *data)
3506{
3507        /* Must convert offset into bytes. */
3508        offset <<= 1;
3509
3510        return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3511}
3512
3513/**
3514 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3515 *  @hw: pointer to the HW structure
3516 *  @offset: The offset of the byte to read.
3517 *  @data: Pointer to a byte to store the value read.
3518 *
3519 *  Reads a single byte from the NVM using the flash access registers.
3520 **/
3521static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3522                                         u8 *data)
3523{
3524        s32 ret_val;
3525        u16 word = 0;
3526
3527        /* In SPT, only 32 bits access is supported,
3528         * so this function should not be called.
3529         */
3530        if (hw->mac.type == e1000_pch_spt)
3531                return -E1000_ERR_NVM;
3532        else
3533                ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3534
3535        if (ret_val)
3536                return ret_val;
3537
3538        *data = (u8)word;
3539
3540        return 0;
3541}
3542
3543/**
3544 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3545 *  @hw: pointer to the HW structure
3546 *  @offset: The offset (in bytes) of the byte or word to read.
3547 *  @size: Size of data to read, 1=byte 2=word
3548 *  @data: Pointer to the word to store the value read.
3549 *
3550 *  Reads a byte or word from the NVM using the flash access registers.
3551 **/
3552static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3553                                         u8 size, u16 *data)
3554{
3555        union ich8_hws_flash_status hsfsts;
3556        union ich8_hws_flash_ctrl hsflctl;
3557        u32 flash_linear_addr;
3558        u32 flash_data = 0;
3559        s32 ret_val = -E1000_ERR_NVM;
3560        u8 count = 0;
3561
3562        if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3563                return -E1000_ERR_NVM;
3564
3565        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3566                             hw->nvm.flash_base_addr);
3567
3568        do {
3569                udelay(1);
3570                /* Steps */
3571                ret_val = e1000_flash_cycle_init_ich8lan(hw);
3572                if (ret_val)
3573                        break;
3574
3575                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3576                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3577                hsflctl.hsf_ctrl.fldbcount = size - 1;
3578                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3579                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3580
3581                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3582
3583                ret_val =
3584                    e1000_flash_cycle_ich8lan(hw,
3585                                              ICH_FLASH_READ_COMMAND_TIMEOUT);
3586
3587                /* Check if FCERR is set to 1, if set to 1, clear it
3588                 * and try the whole sequence a few more times, else
3589                 * read in (shift in) the Flash Data0, the order is
3590                 * least significant byte first msb to lsb
3591                 */
3592                if (!ret_val) {
3593                        flash_data = er32flash(ICH_FLASH_FDATA0);
3594                        if (size == 1)
3595                                *data = (u8)(flash_data & 0x000000FF);
3596                        else if (size == 2)
3597                                *data = (u16)(flash_data & 0x0000FFFF);
3598                        break;
3599                } else {
3600                        /* If we've gotten here, then things are probably
3601                         * completely hosed, but if the error condition is
3602                         * detected, it won't hurt to give it another try...
3603                         * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3604                         */
3605                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3606                        if (hsfsts.hsf_status.flcerr) {
3607                                /* Repeat for some time before giving up. */
3608                                continue;
3609                        } else if (!hsfsts.hsf_status.flcdone) {
3610                                e_dbg("Timeout error - flash cycle did not complete.\n");
3611                                break;
3612                        }
3613                }
3614        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3615
3616        return ret_val;
3617}
3618
3619/**
3620 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3621 *  @hw: pointer to the HW structure
3622 *  @offset: The offset (in bytes) of the dword to read.
3623 *  @data: Pointer to the dword to store the value read.
3624 *
3625 *  Reads a byte or word from the NVM using the flash access registers.
3626 **/
3627
3628static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3629                                           u32 *data)
3630{
3631        union ich8_hws_flash_status hsfsts;
3632        union ich8_hws_flash_ctrl hsflctl;
3633        u32 flash_linear_addr;
3634        s32 ret_val = -E1000_ERR_NVM;
3635        u8 count = 0;
3636
3637        if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3638            hw->mac.type != e1000_pch_spt)
3639                return -E1000_ERR_NVM;
3640        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3641                             hw->nvm.flash_base_addr);
3642
3643        do {
3644                udelay(1);
3645                /* Steps */
3646                ret_val = e1000_flash_cycle_init_ich8lan(hw);
3647                if (ret_val)
3648                        break;
3649                /* In SPT, This register is in Lan memory space, not flash.
3650                 * Therefore, only 32 bit access is supported
3651                 */
3652                hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3653
3654                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3655                hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3656                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3657                /* In SPT, This register is in Lan memory space, not flash.
3658                 * Therefore, only 32 bit access is supported
3659                 */
3660                ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3661                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3662
3663                ret_val =
3664                   e1000_flash_cycle_ich8lan(hw,
3665                                             ICH_FLASH_READ_COMMAND_TIMEOUT);
3666
3667                /* Check if FCERR is set to 1, if set to 1, clear it
3668                 * and try the whole sequence a few more times, else
3669                 * read in (shift in) the Flash Data0, the order is
3670                 * least significant byte first msb to lsb
3671                 */
3672                if (!ret_val) {
3673                        *data = er32flash(ICH_FLASH_FDATA0);
3674                        break;
3675                } else {
3676                        /* If we've gotten here, then things are probably
3677                         * completely hosed, but if the error condition is
3678                         * detected, it won't hurt to give it another try...
3679                         * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3680                         */
3681                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3682                        if (hsfsts.hsf_status.flcerr) {
3683                                /* Repeat for some time before giving up. */
3684                                continue;
3685                        } else if (!hsfsts.hsf_status.flcdone) {
3686                                e_dbg("Timeout error - flash cycle did not complete.\n");
3687                                break;
3688                        }
3689                }
3690        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3691
3692        return ret_val;
3693}
3694
3695/**
3696 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3697 *  @hw: pointer to the HW structure
3698 *  @offset: The offset (in bytes) of the word(s) to write.
3699 *  @words: Size of data to write in words
3700 *  @data: Pointer to the word(s) to write at offset.
3701 *
3702 *  Writes a byte or word to the NVM using the flash access registers.
3703 **/
3704static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3705                                   u16 *data)
3706{
3707        struct e1000_nvm_info *nvm = &hw->nvm;
3708        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3709        u16 i;
3710
3711        if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3712            (words == 0)) {
3713                e_dbg("nvm parameter(s) out of bounds\n");
3714                return -E1000_ERR_NVM;
3715        }
3716
3717        nvm->ops.acquire(hw);
3718
3719        for (i = 0; i < words; i++) {
3720                dev_spec->shadow_ram[offset + i].modified = true;
3721                dev_spec->shadow_ram[offset + i].value = data[i];
3722        }
3723
3724        nvm->ops.release(hw);
3725
3726        return 0;
3727}
3728
3729/**
3730 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3731 *  @hw: pointer to the HW structure
3732 *
3733 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3734 *  which writes the checksum to the shadow ram.  The changes in the shadow
3735 *  ram are then committed to the EEPROM by processing each bank at a time
3736 *  checking for the modified bit and writing only the pending changes.
3737 *  After a successful commit, the shadow ram is cleared and is ready for
3738 *  future writes.
3739 **/
3740static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3741{
3742        struct e1000_nvm_info *nvm = &hw->nvm;
3743        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3744        u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3745        s32 ret_val;
3746        u32 dword = 0;
3747
3748        ret_val = e1000e_update_nvm_checksum_generic(hw);
3749        if (ret_val)
3750                goto out;
3751
3752        if (nvm->type != e1000_nvm_flash_sw)
3753                goto out;
3754
3755        nvm->ops.acquire(hw);
3756
3757        /* We're writing to the opposite bank so if we're on bank 1,
3758         * write to bank 0 etc.  We also need to erase the segment that
3759         * is going to be written
3760         */
3761        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3762        if (ret_val) {
3763                e_dbg("Could not detect valid bank, assuming bank 0\n");
3764                bank = 0;
3765        }
3766
3767        if (bank == 0) {
3768                new_bank_offset = nvm->flash_bank_size;
3769                old_bank_offset = 0;
3770                ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3771                if (ret_val)
3772                        goto release;
3773        } else {
3774                old_bank_offset = nvm->flash_bank_size;
3775                new_bank_offset = 0;
3776                ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3777                if (ret_val)
3778                        goto release;
3779        }
3780        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3781                /* Determine whether to write the value stored
3782                 * in the other NVM bank or a modified value stored
3783                 * in the shadow RAM
3784                 */
3785                ret_val = e1000_read_flash_dword_ich8lan(hw,
3786                                                         i + old_bank_offset,
3787                                                         &dword);
3788
3789                if (dev_spec->shadow_ram[i].modified) {
3790                        dword &= 0xffff0000;
3791                        dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3792                }
3793                if (dev_spec->shadow_ram[i + 1].modified) {
3794                        dword &= 0x0000ffff;
3795                        dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3796                                  << 16);
3797                }
3798                if (ret_val)
3799                        break;
3800
3801                /* If the word is 0x13, then make sure the signature bits
3802                 * (15:14) are 11b until the commit has completed.
3803                 * This will allow us to write 10b which indicates the
3804                 * signature is valid.  We want to do this after the write
3805                 * has completed so that we don't mark the segment valid
3806                 * while the write is still in progress
3807                 */
3808                if (i == E1000_ICH_NVM_SIG_WORD - 1)
3809                        dword |= E1000_ICH_NVM_SIG_MASK << 16;
3810
3811                /* Convert offset to bytes. */
3812                act_offset = (i + new_bank_offset) << 1;
3813
3814                usleep_range(100, 200);
3815
3816                /* Write the data to the new bank. Offset in words */
3817                act_offset = i + new_bank_offset;
3818                ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3819                                                                dword);
3820                if (ret_val)
3821                        break;
3822        }
3823
3824        /* Don't bother writing the segment valid bits if sector
3825         * programming failed.
3826         */
3827        if (ret_val) {
3828                /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3829                e_dbg("Flash commit failed.\n");
3830                goto release;
3831        }
3832
3833        /* Finally validate the new segment by setting bit 15:14
3834         * to 10b in word 0x13 , this can be done without an
3835         * erase as well since these bits are 11 to start with
3836         * and we need to change bit 14 to 0b
3837         */
3838        act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3839
3840        /*offset in words but we read dword */
3841        --act_offset;
3842        ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3843
3844        if (ret_val)
3845                goto release;
3846
3847        dword &= 0xBFFFFFFF;
3848        ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3849
3850        if (ret_val)
3851                goto release;
3852
3853        /* And invalidate the previously valid segment by setting
3854         * its signature word (0x13) high_byte to 0b. This can be
3855         * done without an erase because flash erase sets all bits
3856         * to 1's. We can write 1's to 0's without an erase
3857         */
3858        act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3859
3860        /* offset in words but we read dword */
3861        act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3862        ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3863
3864        if (ret_val)
3865                goto release;
3866
3867        dword &= 0x00FFFFFF;
3868        ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3869
3870        if (ret_val)
3871                goto release;
3872
3873        /* Great!  Everything worked, we can now clear the cached entries. */
3874        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3875                dev_spec->shadow_ram[i].modified = false;
3876                dev_spec->shadow_ram[i].value = 0xFFFF;
3877        }
3878
3879release:
3880        nvm->ops.release(hw);
3881
3882        /* Reload the EEPROM, or else modifications will not appear
3883         * until after the next adapter reset.
3884         */
3885        if (!ret_val) {
3886                nvm->ops.reload(hw);
3887                usleep_range(10000, 20000);
3888        }
3889
3890out:
3891        if (ret_val)
3892                e_dbg("NVM update error: %d\n", ret_val);
3893
3894        return ret_val;
3895}
3896
3897/**
3898 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3899 *  @hw: pointer to the HW structure
3900 *
3901 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3902 *  which writes the checksum to the shadow ram.  The changes in the shadow
3903 *  ram are then committed to the EEPROM by processing each bank at a time
3904 *  checking for the modified bit and writing only the pending changes.
3905 *  After a successful commit, the shadow ram is cleared and is ready for
3906 *  future writes.
3907 **/
3908static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3909{
3910        struct e1000_nvm_info *nvm = &hw->nvm;
3911        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3912        u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3913        s32 ret_val;
3914        u16 data = 0;
3915
3916        ret_val = e1000e_update_nvm_checksum_generic(hw);
3917        if (ret_val)
3918                goto out;
3919
3920        if (nvm->type != e1000_nvm_flash_sw)
3921                goto out;
3922
3923        nvm->ops.acquire(hw);
3924
3925        /* We're writing to the opposite bank so if we're on bank 1,
3926         * write to bank 0 etc.  We also need to erase the segment that
3927         * is going to be written
3928         */
3929        ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3930        if (ret_val) {
3931                e_dbg("Could not detect valid bank, assuming bank 0\n");
3932                bank = 0;
3933        }
3934
3935        if (bank == 0) {
3936                new_bank_offset = nvm->flash_bank_size;
3937                old_bank_offset = 0;
3938                ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3939                if (ret_val)
3940                        goto release;
3941        } else {
3942                old_bank_offset = nvm->flash_bank_size;
3943                new_bank_offset = 0;
3944                ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3945                if (ret_val)
3946                        goto release;
3947        }
3948        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3949                if (dev_spec->shadow_ram[i].modified) {
3950                        data = dev_spec->shadow_ram[i].value;
3951                } else {
3952                        ret_val = e1000_read_flash_word_ich8lan(hw, i +
3953                                                                old_bank_offset,
3954                                                                &data);
3955                        if (ret_val)
3956                                break;
3957                }
3958
3959                /* If the word is 0x13, then make sure the signature bits
3960                 * (15:14) are 11b until the commit has completed.
3961                 * This will allow us to write 10b which indicates the
3962                 * signature is valid.  We want to do this after the write
3963                 * has completed so that we don't mark the segment valid
3964                 * while the write is still in progress
3965                 */
3966                if (i == E1000_ICH_NVM_SIG_WORD)
3967                        data |= E1000_ICH_NVM_SIG_MASK;
3968
3969                /* Convert offset to bytes. */
3970                act_offset = (i + new_bank_offset) << 1;
3971
3972                usleep_range(100, 200);
3973                /* Write the bytes to the new bank. */
3974                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3975                                                               act_offset,
3976                                                               (u8)data);
3977                if (ret_val)
3978                        break;
3979
3980                usleep_range(100, 200);
3981                ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3982                                                               act_offset + 1,
3983                                                               (u8)(data >> 8));
3984                if (ret_val)
3985                        break;
3986        }
3987
3988        /* Don't bother writing the segment valid bits if sector
3989         * programming failed.
3990         */
3991        if (ret_val) {
3992                /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3993                e_dbg("Flash commit failed.\n");
3994                goto release;
3995        }
3996
3997        /* Finally validate the new segment by setting bit 15:14
3998         * to 10b in word 0x13 , this can be done without an
3999         * erase as well since these bits are 11 to start with
4000         * and we need to change bit 14 to 0b
4001         */
4002        act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4003        ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4004        if (ret_val)
4005                goto release;
4006
4007        data &= 0xBFFF;
4008        ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4009                                                       act_offset * 2 + 1,
4010                                                       (u8)(data >> 8));
4011        if (ret_val)
4012                goto release;
4013
4014        /* And invalidate the previously valid segment by setting
4015         * its signature word (0x13) high_byte to 0b. This can be
4016         * done without an erase because flash erase sets all bits
4017         * to 1's. We can write 1's to 0's without an erase
4018         */
4019        act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4020        ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4021        if (ret_val)
4022                goto release;
4023
4024        /* Great!  Everything worked, we can now clear the cached entries. */
4025        for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4026                dev_spec->shadow_ram[i].modified = false;
4027                dev_spec->shadow_ram[i].value = 0xFFFF;
4028        }
4029
4030release:
4031        nvm->ops.release(hw);
4032
4033        /* Reload the EEPROM, or else modifications will not appear
4034         * until after the next adapter reset.
4035         */
4036        if (!ret_val) {
4037                nvm->ops.reload(hw);
4038                usleep_range(10000, 20000);
4039        }
4040
4041out:
4042        if (ret_val)
4043                e_dbg("NVM update error: %d\n", ret_val);
4044
4045        return ret_val;
4046}
4047
4048/**
4049 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4050 *  @hw: pointer to the HW structure
4051 *
4052 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4053 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4054 *  calculated, in which case we need to calculate the checksum and set bit 6.
4055 **/
4056static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4057{
4058        s32 ret_val;
4059        u16 data;
4060        u16 word;
4061        u16 valid_csum_mask;
4062
4063        /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4064         * the checksum needs to be fixed.  This bit is an indication that
4065         * the NVM was prepared by OEM software and did not calculate
4066         * the checksum...a likely scenario.
4067         */
4068        switch (hw->mac.type) {
4069        case e1000_pch_lpt:
4070        case e1000_pch_spt:
4071                word = NVM_COMPAT;
4072                valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4073                break;
4074        default:
4075                word = NVM_FUTURE_INIT_WORD1;
4076                valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4077                break;
4078        }
4079
4080        ret_val = e1000_read_nvm(hw, word, 1, &data);
4081        if (ret_val)
4082                return ret_val;
4083
4084        if (!(data & valid_csum_mask)) {
4085                data |= valid_csum_mask;
4086                ret_val = e1000_write_nvm(hw, word, 1, &data);
4087                if (ret_val)
4088                        return ret_val;
4089                ret_val = e1000e_update_nvm_checksum(hw);
4090                if (ret_val)
4091                        return ret_val;
4092        }
4093
4094        return e1000e_validate_nvm_checksum_generic(hw);
4095}
4096
4097/**
4098 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4099 *  @hw: pointer to the HW structure
4100 *
4101 *  To prevent malicious write/erase of the NVM, set it to be read-only
4102 *  so that the hardware ignores all write/erase cycles of the NVM via
4103 *  the flash control registers.  The shadow-ram copy of the NVM will
4104 *  still be updated, however any updates to this copy will not stick
4105 *  across driver reloads.
4106 **/
4107void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4108{
4109        struct e1000_nvm_info *nvm = &hw->nvm;
4110        union ich8_flash_protected_range pr0;
4111        union ich8_hws_flash_status hsfsts;
4112        u32 gfpreg;
4113
4114        nvm->ops.acquire(hw);
4115
4116        gfpreg = er32flash(ICH_FLASH_GFPREG);
4117
4118        /* Write-protect GbE Sector of NVM */
4119        pr0.regval = er32flash(ICH_FLASH_PR0);
4120        pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4121        pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4122        pr0.range.wpe = true;
4123        ew32flash(ICH_FLASH_PR0, pr0.regval);
4124
4125        /* Lock down a subset of GbE Flash Control Registers, e.g.
4126         * PR0 to prevent the write-protection from being lifted.
4127         * Once FLOCKDN is set, the registers protected by it cannot
4128         * be written until FLOCKDN is cleared by a hardware reset.
4129         */
4130        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4131        hsfsts.hsf_status.flockdn = true;
4132        ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4133
4134        nvm->ops.release(hw);
4135}
4136
4137/**
4138 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4139 *  @hw: pointer to the HW structure
4140 *  @offset: The offset (in bytes) of the byte/word to read.
4141 *  @size: Size of data to read, 1=byte 2=word
4142 *  @data: The byte(s) to write to the NVM.
4143 *
4144 *  Writes one/two bytes to the NVM using the flash access registers.
4145 **/
4146static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4147                                          u8 size, u16 data)
4148{
4149        union ich8_hws_flash_status hsfsts;
4150        union ich8_hws_flash_ctrl hsflctl;
4151        u32 flash_linear_addr;
4152        u32 flash_data = 0;
4153        s32 ret_val;
4154        u8 count = 0;
4155
4156        if (hw->mac.type == e1000_pch_spt) {
4157                if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4158                        return -E1000_ERR_NVM;
4159        } else {
4160                if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4161                        return -E1000_ERR_NVM;
4162        }
4163
4164        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4165                             hw->nvm.flash_base_addr);
4166
4167        do {
4168                udelay(1);
4169                /* Steps */
4170                ret_val = e1000_flash_cycle_init_ich8lan(hw);
4171                if (ret_val)
4172                        break;
4173                /* In SPT, This register is in Lan memory space, not
4174                 * flash.  Therefore, only 32 bit access is supported
4175                 */
4176                if (hw->mac.type == e1000_pch_spt)
4177                        hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4178                else
4179                        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4180
4181                /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4182                hsflctl.hsf_ctrl.fldbcount = size - 1;
4183                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4184                /* In SPT, This register is in Lan memory space,
4185                 * not flash.  Therefore, only 32 bit access is
4186                 * supported
4187                 */
4188                if (hw->mac.type == e1000_pch_spt)
4189                        ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4190                else
4191                        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4192
4193                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4194
4195                if (size == 1)
4196                        flash_data = (u32)data & 0x00FF;
4197                else
4198                        flash_data = (u32)data;
4199
4200                ew32flash(ICH_FLASH_FDATA0, flash_data);
4201
4202                /* check if FCERR is set to 1 , if set to 1, clear it
4203                 * and try the whole sequence a few more times else done
4204                 */
4205                ret_val =
4206                    e1000_flash_cycle_ich8lan(hw,
4207                                              ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4208                if (!ret_val)
4209                        break;
4210
4211                /* If we're here, then things are most likely
4212                 * completely hosed, but if the error condition
4213                 * is detected, it won't hurt to give it another
4214                 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4215                 */
4216                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4217                if (hsfsts.hsf_status.flcerr)
4218                        /* Repeat for some time before giving up. */
4219                        continue;
4220                if (!hsfsts.hsf_status.flcdone) {
4221                        e_dbg("Timeout error - flash cycle did not complete.\n");
4222                        break;
4223                }
4224        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4225
4226        return ret_val;
4227}
4228
4229/**
4230*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4231*  @hw: pointer to the HW structure
4232*  @offset: The offset (in bytes) of the dwords to read.
4233*  @data: The 4 bytes to write to the NVM.
4234*
4235*  Writes one/two/four bytes to the NVM using the flash access registers.
4236**/
4237static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4238                                            u32 data)
4239{
4240        union ich8_hws_flash_status hsfsts;
4241        union ich8_hws_flash_ctrl hsflctl;
4242        u32 flash_linear_addr;
4243        s32 ret_val;
4244        u8 count = 0;
4245
4246        if (hw->mac.type == e1000_pch_spt) {
4247                if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4248                        return -E1000_ERR_NVM;
4249        }
4250        flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4251                             hw->nvm.flash_base_addr);
4252        do {
4253                udelay(1);
4254                /* Steps */
4255                ret_val = e1000_flash_cycle_init_ich8lan(hw);
4256                if (ret_val)
4257                        break;
4258
4259                /* In SPT, This register is in Lan memory space, not
4260                 * flash.  Therefore, only 32 bit access is supported
4261                 */
4262                if (hw->mac.type == e1000_pch_spt)
4263                        hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4264                            >> 16;
4265                else
4266                        hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4267
4268                hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4269                hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4270
4271                /* In SPT, This register is in Lan memory space,
4272                 * not flash.  Therefore, only 32 bit access is
4273                 * supported
4274                 */
4275                if (hw->mac.type == e1000_pch_spt)
4276                        ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4277                else
4278                        ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4279
4280                ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4281
4282                ew32flash(ICH_FLASH_FDATA0, data);
4283
4284                /* check if FCERR is set to 1 , if set to 1, clear it
4285                 * and try the whole sequence a few more times else done
4286                 */
4287                ret_val =
4288                   e1000_flash_cycle_ich8lan(hw,
4289                                             ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4290
4291                if (!ret_val)
4292                        break;
4293
4294                /* If we're here, then things are most likely
4295                 * completely hosed, but if the error condition
4296                 * is detected, it won't hurt to give it another
4297                 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4298                 */
4299                hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4300
4301                if (hsfsts.hsf_status.flcerr)
4302                        /* Repeat for some time before giving up. */
4303                        continue;
4304                if (!hsfsts.hsf_status.flcdone) {
4305                        e_dbg("Timeout error - flash cycle did not complete.\n");
4306                        break;
4307                }
4308        } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4309
4310        return ret_val;
4311}
4312
4313/**
4314 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4315 *  @hw: pointer to the HW structure
4316 *  @offset: The index of the byte to read.
4317 *  @data: The byte to write to the NVM.
4318 *
4319 *  Writes a single byte to the NVM using the flash access registers.
4320 **/
4321static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4322                                          u8 data)
4323{
4324        u16 word = (u16)data;
4325
4326        return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4327}
4328
4329/**
4330*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4331*  @hw: pointer to the HW structure
4332*  @offset: The offset of the word to write.
4333*  @dword: The dword to write to the NVM.
4334*
4335*  Writes a single dword to the NVM using the flash access registers.
4336*  Goes through a retry algorithm before giving up.
4337**/
4338static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4339                                                 u32 offset, u32 dword)
4340{
4341        s32 ret_val;
4342        u16 program_retries;
4343
4344        /* Must convert word offset into bytes. */
4345        offset <<= 1;
4346        ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4347
4348        if (!ret_val)
4349                return ret_val;
4350        for (program_retries = 0; program_retries < 100; program_retries++) {
4351                e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4352                usleep_range(100, 200);
4353                ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4354                if (!ret_val)
4355                        break;
4356        }
4357        if (program_retries == 100)
4358                return -E1000_ERR_NVM;
4359
4360        return 0;
4361}
4362
4363/**
4364 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4365 *  @hw: pointer to the HW structure
4366 *  @offset: The offset of the byte to write.
4367 *  @byte: The byte to write to the NVM.
4368 *
4369 *  Writes a single byte to the NVM using the flash access registers.
4370 *  Goes through a retry algorithm before giving up.
4371 **/
4372static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4373                                                u32 offset, u8 byte)
4374{
4375        s32 ret_val;
4376        u16 program_retries;
4377
4378        ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4379        if (!ret_val)
4380                return ret_val;
4381
4382        for (program_retries = 0; program_retries < 100; program_retries++) {
4383                e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4384                usleep_range(100, 200);
4385                ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4386                if (!ret_val)
4387                        break;
4388        }
4389        if (program_retries == 100)
4390                return -E1000_ERR_NVM;
4391
4392        return 0;
4393}
4394
4395/**
4396 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4397 *  @hw: pointer to the HW structure
4398 *  @bank: 0 for first bank, 1 for second bank, etc.
4399 *
4400 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4401 *  bank N is 4096 * N + flash_reg_addr.
4402 **/
4403static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4404{
4405        struct e1000_nvm_info *nvm = &hw->nvm;
4406        union ich8_hws_flash_status hsfsts;
4407        union ich8_hws_flash_ctrl hsflctl;
4408        u32 flash_linear_addr;
4409        /* bank size is in 16bit words - adjust to bytes */
4410        u32 flash_bank_size = nvm->flash_bank_size * 2;
4411        s32 ret_val;
4412        s32 count = 0;
4413        s32 j, iteration, sector_size;
4414
4415        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4416
4417        /* Determine HW Sector size: Read BERASE bits of hw flash status
4418         * register
4419         * 00: The Hw sector is 256 bytes, hence we need to erase 16
4420         *     consecutive sectors.  The start index for the nth Hw sector
4421         *     can be calculated as = bank * 4096 + n * 256
4422         * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4423         *     The start index for the nth Hw sector can be calculated
4424         *     as = bank * 4096
4425         * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4426         *     (ich9 only, otherwise error condition)
4427         * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4428         */
4429        switch (hsfsts.hsf_status.berasesz) {
4430        case 0:
4431                /* Hw sector size 256 */
4432                sector_size = ICH_FLASH_SEG_SIZE_256;
4433                iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4434                break;
4435        case 1:
4436                sector_size = ICH_FLASH_SEG_SIZE_4K;
4437                iteration = 1;
4438                break;
4439        case 2:
4440                sector_size = ICH_FLASH_SEG_SIZE_8K;
4441                iteration = 1;
4442                break;
4443        case 3:
4444                sector_size = ICH_FLASH_SEG_SIZE_64K;
4445                iteration = 1;
4446                break;
4447        default:
4448                return -E1000_ERR_NVM;
4449        }
4450
4451        /* Start with the base address, then add the sector offset. */
4452        flash_linear_addr = hw->nvm.flash_base_addr;
4453        flash_linear_addr += (bank) ? flash_bank_size : 0;
4454
4455        for (j = 0; j < iteration; j++) {
4456                do {
4457                        u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4458
4459                        /* Steps */
4460                        ret_val = e1000_flash_cycle_init_ich8lan(hw);
4461                        if (ret_val)
4462                                return ret_val;
4463
4464                        /* Write a value 11 (block Erase) in Flash
4465                         * Cycle field in hw flash control
4466                         */
4467                        if (hw->mac.type == e1000_pch_spt)
4468                                hsflctl.regval =
4469                                    er32flash(ICH_FLASH_HSFSTS) >> 16;
4470                        else
4471                                hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4472
4473                        hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4474                        if (hw->mac.type == e1000_pch_spt)
4475                                ew32flash(ICH_FLASH_HSFSTS,
4476                                          hsflctl.regval << 16);
4477                        else
4478                                ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4479
4480                        /* Write the last 24 bits of an index within the
4481                         * block into Flash Linear address field in Flash
4482                         * Address.
4483                         */
4484                        flash_linear_addr += (j * sector_size);
4485                        ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4486
4487                        ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4488                        if (!ret_val)
4489                                break;
4490
4491                        /* Check if FCERR is set to 1.  If 1,
4492                         * clear it and try the whole sequence
4493                         * a few more times else Done
4494                         */
4495                        hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4496                        if (hsfsts.hsf_status.flcerr)
4497                                /* repeat for some time before giving up */
4498                                continue;
4499                        else if (!hsfsts.hsf_status.flcdone)
4500                                return ret_val;
4501                } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4502        }
4503
4504        return 0;
4505}
4506
4507/**
4508 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4509 *  @hw: pointer to the HW structure
4510 *  @data: Pointer to the LED settings
4511 *
4512 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4513 *  settings is all 0's or F's, set the LED default to a valid LED default
4514 *  setting.
4515 **/
4516static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4517{
4518        s32 ret_val;
4519
4520        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4521        if (ret_val) {
4522                e_dbg("NVM Read Error\n");
4523                return ret_val;
4524        }
4525
4526        if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4527                *data = ID_LED_DEFAULT_ICH8LAN;
4528
4529        return 0;
4530}
4531
4532/**
4533 *  e1000_id_led_init_pchlan - store LED configurations
4534 *  @hw: pointer to the HW structure
4535 *
4536 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4537 *  the PHY LED configuration register.
4538 *
4539 *  PCH also does not have an "always on" or "always off" mode which
4540 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4541 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4542 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4543 *  link based on logic in e1000_led_[on|off]_pchlan().
4544 **/
4545static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4546{
4547        struct e1000_mac_info *mac = &hw->mac;
4548        s32 ret_val;
4549        const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4550        const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4551        u16 data, i, temp, shift;
4552
4553        /* Get default ID LED modes */
4554        ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4555        if (ret_val)
4556                return ret_val;
4557
4558        mac->ledctl_default = er32(LEDCTL);
4559        mac->ledctl_mode1 = mac->ledctl_default;
4560        mac->ledctl_mode2 = mac->ledctl_default;
4561
4562        for (i = 0; i < 4; i++) {
4563                temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4564                shift = (i * 5);
4565                switch (temp) {
4566                case ID_LED_ON1_DEF2:
4567                case ID_LED_ON1_ON2:
4568                case ID_LED_ON1_OFF2:
4569                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4570                        mac->ledctl_mode1 |= (ledctl_on << shift);
4571                        break;
4572                case ID_LED_OFF1_DEF2:
4573                case ID_LED_OFF1_ON2:
4574                case ID_LED_OFF1_OFF2:
4575                        mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4576                        mac->ledctl_mode1 |= (ledctl_off << shift);
4577                        break;
4578                default:
4579                        /* Do nothing */
4580                        break;
4581                }
4582                switch (temp) {
4583                case ID_LED_DEF1_ON2:
4584                case ID_LED_ON1_ON2:
4585                case ID_LED_OFF1_ON2:
4586                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4587                        mac->ledctl_mode2 |= (ledctl_on << shift);
4588                        break;
4589                case ID_LED_DEF1_OFF2:
4590                case ID_LED_ON1_OFF2:
4591                case ID_LED_OFF1_OFF2:
4592                        mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4593                        mac->ledctl_mode2 |= (ledctl_off << shift);
4594                        break;
4595                default:
4596                        /* Do nothing */
4597                        break;
4598                }
4599        }
4600
4601        return 0;
4602}
4603
4604/**
4605 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4606 *  @hw: pointer to the HW structure
4607 *
4608 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4609 *  register, so the the bus width is hard coded.
4610 **/
4611static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4612{
4613        struct e1000_bus_info *bus = &hw->bus;
4614        s32 ret_val;
4615
4616        ret_val = e1000e_get_bus_info_pcie(hw);
4617
4618        /* ICH devices are "PCI Express"-ish.  They have
4619         * a configuration space, but do not contain
4620         * PCI Express Capability registers, so bus width
4621         * must be hardcoded.
4622         */
4623        if (bus->width == e1000_bus_width_unknown)
4624                bus->width = e1000_bus_width_pcie_x1;
4625
4626        return ret_val;
4627}
4628
4629/**
4630 *  e1000_reset_hw_ich8lan - Reset the hardware
4631 *  @hw: pointer to the HW structure
4632 *
4633 *  Does a full reset of the hardware which includes a reset of the PHY and
4634 *  MAC.
4635 **/
4636static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4637{
4638        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4639        u16 kum_cfg;
4640        u32 ctrl, reg;
4641        s32 ret_val;
4642
4643        /* Prevent the PCI-E bus from sticking if there is no TLP connection
4644         * on the last TLP read/write transaction when MAC is reset.
4645         */
4646        ret_val = e1000e_disable_pcie_master(hw);
4647        if (ret_val)
4648                e_dbg("PCI-E Master disable polling has failed.\n");
4649
4650        e_dbg("Masking off all interrupts\n");
4651        ew32(IMC, 0xffffffff);
4652
4653        /* Disable the Transmit and Receive units.  Then delay to allow
4654         * any pending transactions to complete before we hit the MAC
4655         * with the global reset.
4656         */
4657        ew32(RCTL, 0);
4658        ew32(TCTL, E1000_TCTL_PSP);
4659        e1e_flush();
4660
4661        usleep_range(10000, 20000);
4662
4663        /* Workaround for ICH8 bit corruption issue in FIFO memory */
4664        if (hw->mac.type == e1000_ich8lan) {
4665                /* Set Tx and Rx buffer allocation to 8k apiece. */
4666                ew32(PBA, E1000_PBA_8K);
4667                /* Set Packet Buffer Size to 16k. */
4668                ew32(PBS, E1000_PBS_16K);
4669        }
4670
4671        if (hw->mac.type == e1000_pchlan) {
4672                /* Save the NVM K1 bit setting */
4673                ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4674                if (ret_val)
4675                        return ret_val;
4676
4677                if (kum_cfg & E1000_NVM_K1_ENABLE)
4678                        dev_spec->nvm_k1_enabled = true;
4679                else
4680                        dev_spec->nvm_k1_enabled = false;
4681        }
4682
4683        ctrl = er32(CTRL);
4684
4685        if (!hw->phy.ops.check_reset_block(hw)) {
4686                /* Full-chip reset requires MAC and PHY reset at the same
4687                 * time to make sure the interface between MAC and the
4688                 * external PHY is reset.
4689                 */
4690                ctrl |= E1000_CTRL_PHY_RST;
4691
4692                /* Gate automatic PHY configuration by hardware on
4693                 * non-managed 82579
4694                 */
4695                if ((hw->mac.type == e1000_pch2lan) &&
4696                    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4697                        e1000_gate_hw_phy_config_ich8lan(hw, true);
4698        }
4699        ret_val = e1000_acquire_swflag_ich8lan(hw);
4700        e_dbg("Issuing a global reset to ich8lan\n");
4701        ew32(CTRL, (ctrl | E1000_CTRL_RST));
4702        /* cannot issue a flush here because it hangs the hardware */
4703        msleep(20);
4704
4705        /* Set Phy Config Counter to 50msec */
4706        if (hw->mac.type == e1000_pch2lan) {
4707                reg = er32(FEXTNVM3);
4708                reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4709                reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4710                ew32(FEXTNVM3, reg);
4711        }
4712
4713        if (!ret_val)
4714                clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4715
4716        if (ctrl & E1000_CTRL_PHY_RST) {
4717                ret_val = hw->phy.ops.get_cfg_done(hw);
4718                if (ret_val)
4719                        return ret_val;
4720
4721                ret_val = e1000_post_phy_reset_ich8lan(hw);
4722                if (ret_val)
4723                        return ret_val;
4724        }
4725
4726        /* For PCH, this write will make sure that any noise
4727         * will be detected as a CRC error and be dropped rather than show up
4728         * as a bad packet to the DMA engine.
4729         */
4730        if (hw->mac.type == e1000_pchlan)
4731                ew32(CRC_OFFSET, 0x65656565);
4732
4733        ew32(IMC, 0xffffffff);
4734        er32(ICR);
4735
4736        reg = er32(KABGTXD);
4737        reg |= E1000_KABGTXD_BGSQLBIAS;
4738        ew32(KABGTXD, reg);
4739
4740        return 0;
4741}
4742
4743/**
4744 *  e1000_init_hw_ich8lan - Initialize the hardware
4745 *  @hw: pointer to the HW structure
4746 *
4747 *  Prepares the hardware for transmit and receive by doing the following:
4748 *   - initialize hardware bits
4749 *   - initialize LED identification
4750 *   - setup receive address registers
4751 *   - setup flow control
4752 *   - setup transmit descriptors
4753 *   - clear statistics
4754 **/
4755static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4756{
4757        struct e1000_mac_info *mac = &hw->mac;
4758        u32 ctrl_ext, txdctl, snoop;
4759        s32 ret_val;
4760        u16 i;
4761
4762        e1000_initialize_hw_bits_ich8lan(hw);
4763
4764        /* Initialize identification LED */
4765        ret_val = mac->ops.id_led_init(hw);
4766        /* An error is not fatal and we should not stop init due to this */
4767        if (ret_val)
4768                e_dbg("Error initializing identification LED\n");
4769
4770        /* Setup the receive address. */
4771        e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4772
4773        /* Zero out the Multicast HASH table */
4774        e_dbg("Zeroing the MTA\n");
4775        for (i = 0; i < mac->mta_reg_count; i++)
4776                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4777
4778        /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4779         * the ME.  Disable wakeup by clearing the host wakeup bit.
4780         * Reset the phy after disabling host wakeup to reset the Rx buffer.
4781         */
4782        if (hw->phy.type == e1000_phy_82578) {
4783                e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4784                i &= ~BM_WUC_HOST_WU_BIT;
4785                e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4786                ret_val = e1000_phy_hw_reset_ich8lan(hw);
4787                if (ret_val)
4788                        return ret_val;
4789        }
4790
4791        /* Setup link and flow control */
4792        ret_val = mac->ops.setup_link(hw);
4793
4794        /* Set the transmit descriptor write-back policy for both queues */
4795        txdctl = er32(TXDCTL(0));
4796        txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4797                  E1000_TXDCTL_FULL_TX_DESC_WB);
4798        txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4799                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4800        ew32(TXDCTL(0), txdctl);
4801        txdctl = er32(TXDCTL(1));
4802        txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4803                  E1000_TXDCTL_FULL_TX_DESC_WB);
4804        txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4805                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4806        ew32(TXDCTL(1), txdctl);
4807
4808        /* ICH8 has opposite polarity of no_snoop bits.
4809         * By default, we should use snoop behavior.
4810         */
4811        if (mac->type == e1000_ich8lan)
4812                snoop = PCIE_ICH8_SNOOP_ALL;
4813        else
4814                snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4815        e1000e_set_pcie_no_snoop(hw, snoop);
4816
4817        ctrl_ext = er32(CTRL_EXT);
4818        ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4819        ew32(CTRL_EXT, ctrl_ext);
4820
4821        /* Clear all of the statistics registers (clear on read).  It is
4822         * important that we do this after we have tried to establish link
4823         * because the symbol error count will increment wildly if there
4824         * is no link.
4825         */
4826        e1000_clear_hw_cntrs_ich8lan(hw);
4827
4828        return ret_val;
4829}
4830
4831/**
4832 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4833 *  @hw: pointer to the HW structure
4834 *
4835 *  Sets/Clears required hardware bits necessary for correctly setting up the
4836 *  hardware for transmit and receive.
4837 **/
4838static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4839{
4840        u32 reg;
4841
4842        /* Extended Device Control */
4843        reg = er32(CTRL_EXT);
4844        reg |= BIT(22);
4845        /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4846        if (hw->mac.type >= e1000_pchlan)
4847                reg |= E1000_CTRL_EXT_PHYPDEN;
4848        ew32(CTRL_EXT, reg);
4849
4850        /* Transmit Descriptor Control 0 */
4851        reg = er32(TXDCTL(0));
4852        reg |= BIT(22);
4853        ew32(TXDCTL(0), reg);
4854
4855        /* Transmit Descriptor Control 1 */
4856        reg = er32(TXDCTL(1));
4857        reg |= BIT(22);
4858        ew32(TXDCTL(1), reg);
4859
4860        /* Transmit Arbitration Control 0 */
4861        reg = er32(TARC(0));
4862        if (hw->mac.type == e1000_ich8lan)
4863                reg |= BIT(28) | BIT(29);
4864        reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4865        ew32(TARC(0), reg);
4866
4867        /* Transmit Arbitration Control 1 */
4868        reg = er32(TARC(1));
4869        if (er32(TCTL) & E1000_TCTL_MULR)
4870                reg &= ~BIT(28);
4871        else
4872                reg |= BIT(28);
4873        reg |= BIT(24) | BIT(26) | BIT(30);
4874        ew32(TARC(1), reg);
4875
4876        /* Device Status */
4877        if (hw->mac.type == e1000_ich8lan) {
4878                reg = er32(STATUS);
4879                reg &= ~BIT(31);
4880                ew32(STATUS, reg);
4881        }
4882
4883        /* work-around descriptor data corruption issue during nfs v2 udp
4884         * traffic, just disable the nfs filtering capability
4885         */
4886        reg = er32(RFCTL);
4887        reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4888
4889        /* Disable IPv6 extension header parsing because some malformed
4890         * IPv6 headers can hang the Rx.
4891         */
4892        if (hw->mac.type == e1000_ich8lan)
4893                reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4894        ew32(RFCTL, reg);
4895
4896        /* Enable ECC on Lynxpoint */
4897        if ((hw->mac.type == e1000_pch_lpt) ||
4898            (hw->mac.type == e1000_pch_spt)) {
4899                reg = er32(PBECCSTS);
4900                reg |= E1000_PBECCSTS_ECC_ENABLE;
4901                ew32(PBECCSTS, reg);
4902
4903                reg = er32(CTRL);
4904                reg |= E1000_CTRL_MEHE;
4905                ew32(CTRL, reg);
4906        }
4907}
4908
4909/**
4910 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4911 *  @hw: pointer to the HW structure
4912 *
4913 *  Determines which flow control settings to use, then configures flow
4914 *  control.  Calls the appropriate media-specific link configuration
4915 *  function.  Assuming the adapter has a valid link partner, a valid link
4916 *  should be established.  Assumes the hardware has previously been reset
4917 *  and the transmitter and receiver are not enabled.
4918 **/
4919static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4920{
4921        s32 ret_val;
4922
4923        if (hw->phy.ops.check_reset_block(hw))
4924                return 0;
4925
4926        /* ICH parts do not have a word in the NVM to determine
4927         * the default flow control setting, so we explicitly
4928         * set it to full.
4929         */
4930        if (hw->fc.requested_mode == e1000_fc_default) {
4931                /* Workaround h/w hang when Tx flow control enabled */
4932                if (hw->mac.type == e1000_pchlan)
4933                        hw->fc.requested_mode = e1000_fc_rx_pause;
4934                else
4935                        hw->fc.requested_mode = e1000_fc_full;
4936        }
4937
4938        /* Save off the requested flow control mode for use later.  Depending
4939         * on the link partner's capabilities, we may or may not use this mode.
4940         */
4941        hw->fc.current_mode = hw->fc.requested_mode;
4942
4943        e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4944
4945        /* Continue to configure the copper link. */
4946        ret_val = hw->mac.ops.setup_physical_interface(hw);
4947        if (ret_val)
4948                return ret_val;
4949
4950        ew32(FCTTV, hw->fc.pause_time);
4951        if ((hw->phy.type == e1000_phy_82578) ||
4952            (hw->phy.type == e1000_phy_82579) ||
4953            (hw->phy.type == e1000_phy_i217) ||
4954            (hw->phy.type == e1000_phy_82577)) {
4955                ew32(FCRTV_PCH, hw->fc.refresh_time);
4956
4957                ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4958                                   hw->fc.pause_time);
4959                if (ret_val)
4960                        return ret_val;
4961        }
4962
4963        return e1000e_set_fc_watermarks(hw);
4964}
4965
4966/**
4967 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4968 *  @hw: pointer to the HW structure
4969 *
4970 *  Configures the kumeran interface to the PHY to wait the appropriate time
4971 *  when polling the PHY, then call the generic setup_copper_link to finish
4972 *  configuring the copper link.
4973 **/
4974static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4975{
4976        u32 ctrl;
4977        s32 ret_val;
4978        u16 reg_data;
4979
4980        ctrl = er32(CTRL);
4981        ctrl |= E1000_CTRL_SLU;
4982        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4983        ew32(CTRL, ctrl);
4984
4985        /* Set the mac to wait the maximum time between each iteration
4986         * and increase the max iterations when polling the phy;
4987         * this fixes erroneous timeouts at 10Mbps.
4988         */
4989        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4990        if (ret_val)
4991                return ret_val;
4992        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4993                                       &reg_data);
4994        if (ret_val)
4995                return ret_val;
4996        reg_data |= 0x3F;
4997        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4998                                        reg_data);
4999        if (ret_val)
5000                return ret_val;
5001
5002        switch (hw->phy.type) {
5003        case e1000_phy_igp_3:
5004                ret_val = e1000e_copper_link_setup_igp(hw);
5005                if (ret_val)
5006                        return ret_val;
5007                break;
5008        case e1000_phy_bm:
5009        case e1000_phy_82578:
5010                ret_val = e1000e_copper_link_setup_m88(hw);
5011                if (ret_val)
5012                        return ret_val;
5013                break;
5014        case e1000_phy_82577:
5015        case e1000_phy_82579:
5016                ret_val = e1000_copper_link_setup_82577(hw);
5017                if (ret_val)
5018                        return ret_val;
5019                break;
5020        case e1000_phy_ife:
5021                ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5022                if (ret_val)
5023                        return ret_val;
5024
5025                reg_data &= ~IFE_PMC_AUTO_MDIX;
5026
5027                switch (hw->phy.mdix) {
5028                case 1:
5029                        reg_data &= ~IFE_PMC_FORCE_MDIX;
5030                        break;
5031                case 2:
5032                        reg_data |= IFE_PMC_FORCE_MDIX;
5033                        break;
5034                case 0:
5035                default:
5036                        reg_data |= IFE_PMC_AUTO_MDIX;
5037                        break;
5038                }
5039                ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5040                if (ret_val)
5041                        return ret_val;
5042                break;
5043        default:
5044                break;
5045        }
5046
5047        return e1000e_setup_copper_link(hw);
5048}
5049
5050/**
5051 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5052 *  @hw: pointer to the HW structure
5053 *
5054 *  Calls the PHY specific link setup function and then calls the
5055 *  generic setup_copper_link to finish configuring the link for
5056 *  Lynxpoint PCH devices
5057 **/
5058static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5059{
5060        u32 ctrl;
5061        s32 ret_val;
5062
5063        ctrl = er32(CTRL);
5064        ctrl |= E1000_CTRL_SLU;
5065        ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5066        ew32(CTRL, ctrl);
5067
5068        ret_val = e1000_copper_link_setup_82577(hw);
5069        if (ret_val)
5070                return ret_val;
5071
5072        return e1000e_setup_copper_link(hw);
5073}
5074
5075/**
5076 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5077 *  @hw: pointer to the HW structure
5078 *  @speed: pointer to store current link speed
5079 *  @duplex: pointer to store the current link duplex
5080 *
5081 *  Calls the generic get_speed_and_duplex to retrieve the current link
5082 *  information and then calls the Kumeran lock loss workaround for links at
5083 *  gigabit speeds.
5084 **/
5085static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5086                                          u16 *duplex)
5087{
5088        s32 ret_val;
5089
5090        ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5091        if (ret_val)
5092                return ret_val;
5093
5094        if ((hw->mac.type == e1000_ich8lan) &&
5095            (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5096                ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5097        }
5098
5099        return ret_val;
5100}
5101
5102/**
5103 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5104 *  @hw: pointer to the HW structure
5105 *
5106 *  Work-around for 82566 Kumeran PCS lock loss:
5107 *  On link status change (i.e. PCI reset, speed change) and link is up and
5108 *  speed is gigabit-
5109 *    0) if workaround is optionally disabled do nothing
5110 *    1) wait 1ms for Kumeran link to come up
5111 *    2) check Kumeran Diagnostic register PCS lock loss bit
5112 *    3) if not set the link is locked (all is good), otherwise...
5113 *    4) reset the PHY
5114 *    5) repeat up to 10 times
5115 *  Note: this is only called for IGP3 copper when speed is 1gb.
5116 **/
5117static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5118{
5119        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5120        u32 phy_ctrl;
5121        s32 ret_val;
5122        u16 i, data;
5123        bool link;
5124
5125        if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5126                return 0;
5127
5128        /* Make sure link is up before proceeding.  If not just return.
5129         * Attempting this while link is negotiating fouled up link
5130         * stability
5131         */
5132        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5133        if (!link)
5134                return 0;
5135
5136        for (i = 0; i < 10; i++) {
5137                /* read once to clear */
5138                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5139                if (ret_val)
5140                        return ret_val;
5141                /* and again to get new status */
5142                ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5143                if (ret_val)
5144                        return ret_val;
5145
5146                /* check for PCS lock */
5147                if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5148                        return 0;
5149
5150                /* Issue PHY reset */
5151                e1000_phy_hw_reset(hw);
5152                mdelay(5);
5153        }
5154        /* Disable GigE link negotiation */
5155        phy_ctrl = er32(PHY_CTRL);
5156        phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5157                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5158        ew32(PHY_CTRL, phy_ctrl);
5159
5160        /* Call gig speed drop workaround on Gig disable before accessing
5161         * any PHY registers
5162         */
5163        e1000e_gig_downshift_workaround_ich8lan(hw);
5164
5165        /* unable to acquire PCS lock */
5166        return -E1000_ERR_PHY;
5167}
5168
5169/**
5170 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5171 *  @hw: pointer to the HW structure
5172 *  @state: boolean value used to set the current Kumeran workaround state
5173 *
5174 *  If ICH8, set the current Kumeran workaround state (enabled - true
5175 *  /disabled - false).
5176 **/
5177void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5178                                                  bool state)
5179{
5180        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5181
5182        if (hw->mac.type != e1000_ich8lan) {
5183                e_dbg("Workaround applies to ICH8 only.\n");
5184                return;
5185        }
5186
5187        dev_spec->kmrn_lock_loss_workaround_enabled = state;
5188}
5189
5190/**
5191 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5192 *  @hw: pointer to the HW structure
5193 *
5194 *  Workaround for 82566 power-down on D3 entry:
5195 *    1) disable gigabit link
5196 *    2) write VR power-down enable
5197 *    3) read it back
5198 *  Continue if successful, else issue LCD reset and repeat
5199 **/
5200void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5201{
5202        u32 reg;
5203        u16 data;
5204        u8 retry = 0;
5205
5206        if (hw->phy.type != e1000_phy_igp_3)
5207                return;
5208
5209        /* Try the workaround twice (if needed) */
5210        do {
5211                /* Disable link */
5212                reg = er32(PHY_CTRL);
5213                reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5214                        E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5215                ew32(PHY_CTRL, reg);
5216
5217                /* Call gig speed drop workaround on Gig disable before
5218                 * accessing any PHY registers
5219                 */
5220                if (hw->mac.type == e1000_ich8lan)
5221                        e1000e_gig_downshift_workaround_ich8lan(hw);
5222
5223                /* Write VR power-down enable */
5224                e1e_rphy(hw, IGP3_VR_CTRL, &data);
5225                data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5226                e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5227
5228                /* Read it back and test */
5229                e1e_rphy(hw, IGP3_VR_CTRL, &data);
5230                data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5231                if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5232                        break;
5233
5234                /* Issue PHY reset and repeat at most one more time */
5235                reg = er32(CTRL);
5236                ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5237                retry++;
5238        } while (retry);
5239}
5240
5241/**
5242 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5243 *  @hw: pointer to the HW structure
5244 *
5245 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5246 *  LPLU, Gig disable, MDIC PHY reset):
5247 *    1) Set Kumeran Near-end loopback
5248 *    2) Clear Kumeran Near-end loopback
5249 *  Should only be called for ICH8[m] devices with any 1G Phy.
5250 **/
5251void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5252{
5253        s32 ret_val;
5254        u16 reg_data;
5255
5256        if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5257                return;
5258
5259        ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5260                                       &reg_data);
5261        if (ret_val)
5262                return;
5263        reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5264        ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5265                                        reg_data);
5266        if (ret_val)
5267                return;
5268        reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5269        e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5270}
5271
5272/**
5273 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5274 *  @hw: pointer to the HW structure
5275 *
5276 *  During S0 to Sx transition, it is possible the link remains at gig
5277 *  instead of negotiating to a lower speed.  Before going to Sx, set
5278 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5279 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5280 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5281 *  needs to be written.
5282 *  Parts that support (and are linked to a partner which support) EEE in
5283 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5284 *  than 10Mbps w/o EEE.
5285 **/
5286void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5287{
5288        struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5289        u32 phy_ctrl;
5290        s32 ret_val;
5291
5292        phy_ctrl = er32(PHY_CTRL);
5293        phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5294
5295        if (hw->phy.type == e1000_phy_i217) {
5296                u16 phy_reg, device_id = hw->adapter->pdev->device;
5297
5298                if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5299                    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5300                    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5301                    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5302                    (hw->mac.type == e1000_pch_spt)) {
5303                        u32 fextnvm6 = er32(FEXTNVM6);
5304
5305                        ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5306                }
5307
5308                ret_val = hw->phy.ops.acquire(hw);
5309                if (ret_val)
5310                        goto out;
5311
5312                if (!dev_spec->eee_disable) {
5313                        u16 eee_advert;
5314
5315                        ret_val =
5316                            e1000_read_emi_reg_locked(hw,
5317                                                      I217_EEE_ADVERTISEMENT,
5318                                                      &eee_advert);
5319                        if (ret_val)
5320                                goto release;
5321
5322                        /* Disable LPLU if both link partners support 100BaseT
5323                         * EEE and 100Full is advertised on both ends of the
5324                         * link, and enable Auto Enable LPI since there will
5325                         * be no driver to enable LPI while in Sx.
5326                         */
5327                        if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5328                            (dev_spec->eee_lp_ability &
5329                             I82579_EEE_100_SUPPORTED) &&
5330                            (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5331                                phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5332                                              E1000_PHY_CTRL_NOND0A_LPLU);
5333
5334                                /* Set Auto Enable LPI after link up */
5335                                e1e_rphy_locked(hw,
5336                                                I217_LPI_GPIO_CTRL, &phy_reg);
5337                                phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5338                                e1e_wphy_locked(hw,
5339                                                I217_LPI_GPIO_CTRL, phy_reg);
5340                        }
5341                }
5342
5343                /* For i217 Intel Rapid Start Technology support,
5344                 * when the system is going into Sx and no manageability engine
5345                 * is present, the driver must configure proxy to reset only on
5346                 * power good.  LPI (Low Power Idle) state must also reset only
5347                 * on power good, as well as the MTA (Multicast table array).
5348                 * The SMBus release must also be disabled on LCD reset.
5349                 */
5350                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5351                        /* Enable proxy to reset only on power good. */
5352                        e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5353                        phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5354                        e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5355
5356                        /* Set bit enable LPI (EEE) to reset only on
5357                         * power good.
5358                         */
5359                        e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5360                        phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5361                        e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5362
5363                        /* Disable the SMB release on LCD reset. */
5364                        e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5365                        phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5366                        e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5367                }
5368
5369                /* Enable MTA to reset for Intel Rapid Start Technology
5370                 * Support
5371                 */
5372                e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5373                phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5374                e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5375
5376release:
5377                hw->phy.ops.release(hw);
5378        }
5379out:
5380        ew32(PHY_CTRL, phy_ctrl);
5381
5382        if (hw->mac.type == e1000_ich8lan)
5383                e1000e_gig_downshift_workaround_ich8lan(hw);
5384
5385        if (hw->mac.type >= e1000_pchlan) {
5386                e1000_oem_bits_config_ich8lan(hw, false);
5387
5388                /* Reset PHY to activate OEM bits on 82577/8 */
5389                if (hw->mac.type == e1000_pchlan)
5390                        e1000e_phy_hw_reset_generic(hw);
5391
5392                ret_val = hw->phy.ops.acquire(hw);
5393                if (ret_val)
5394                        return;
5395                e1000_write_smbus_addr(hw);
5396                hw->phy.ops.release(hw);
5397        }
5398}
5399
5400/**
5401 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5402 *  @hw: pointer to the HW structure
5403 *
5404 *  During Sx to S0 transitions on non-managed devices or managed devices
5405 *  on which PHY resets are not blocked, if the PHY registers cannot be
5406 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5407 *  the PHY.
5408 *  On i217, setup Intel Rapid Start Technology.
5409 **/
5410void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5411{
5412        s32 ret_val;
5413
5414        if (hw->mac.type < e1000_pch2lan)
5415                return;
5416
5417        ret_val = e1000_init_phy_workarounds_pchlan(hw);
5418        if (ret_val) {
5419                e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5420                return;
5421        }
5422
5423        /* For i217 Intel Rapid Start Technology support when the system
5424         * is transitioning from Sx and no manageability engine is present
5425         * configure SMBus to restore on reset, disable proxy, and enable
5426         * the reset on MTA (Multicast table array).
5427         */
5428        if (hw->phy.type == e1000_phy_i217) {
5429                u16 phy_reg;
5430
5431                ret_val = hw->phy.ops.acquire(hw);
5432                if (ret_val) {
5433                        e_dbg("Failed to setup iRST\n");
5434                        return;
5435                }
5436
5437                /* Clear Auto Enable LPI after link up */
5438                e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5439                phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5440                e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5441
5442                if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5443                        /* Restore clear on SMB if no manageability engine
5444                         * is present
5445                         */
5446                        ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5447                        if (ret_val)
5448                                goto release;
5449                        phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5450                        e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5451
5452                        /* Disable Proxy */
5453                        e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5454                }
5455                /* Enable reset on MTA */
5456                ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5457                if (ret_val)
5458                        goto release;
5459                phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5460                e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5461release:
5462                if (ret_val)
5463                        e_dbg("Error %d in resume workarounds\n", ret_val);
5464                hw->phy.ops.release(hw);
5465        }
5466}
5467
5468/**
5469 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5470 *  @hw: pointer to the HW structure
5471 *
5472 *  Return the LED back to the default configuration.
5473 **/
5474static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5475{
5476        if (hw->phy.type == e1000_phy_ife)
5477                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5478
5479        ew32(LEDCTL, hw->mac.ledctl_default);
5480        return 0;
5481}
5482
5483/**
5484 *  e1000_led_on_ich8lan - Turn LEDs on
5485 *  @hw: pointer to the HW structure
5486 *
5487 *  Turn on the LEDs.
5488 **/
5489static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5490{
5491        if (hw->phy.type == e1000_phy_ife)
5492                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5493                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5494
5495        ew32(LEDCTL, hw->mac.ledctl_mode2);
5496        return 0;
5497}
5498
5499/**
5500 *  e1000_led_off_ich8lan - Turn LEDs off
5501 *  @hw: pointer to the HW structure
5502 *
5503 *  Turn off the LEDs.
5504 **/
5505static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5506{
5507        if (hw->phy.type == e1000_phy_ife)
5508                return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5509                                (IFE_PSCL_PROBE_MODE |
5510                                 IFE_PSCL_PROBE_LEDS_OFF));
5511
5512        ew32(LEDCTL, hw->mac.ledctl_mode1);
5513        return 0;
5514}
5515
5516/**
5517 *  e1000_setup_led_pchlan - Configures SW controllable LED
5518 *  @hw: pointer to the HW structure
5519 *
5520 *  This prepares the SW controllable LED for use.
5521 **/
5522static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5523{
5524        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5525}
5526
5527/**
5528 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5529 *  @hw: pointer to the HW structure
5530 *
5531 *  Return the LED back to the default configuration.
5532 **/
5533static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5534{
5535        return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5536}
5537
5538/**
5539 *  e1000_led_on_pchlan - Turn LEDs on
5540 *  @hw: pointer to the HW structure
5541 *
5542 *  Turn on the LEDs.
5543 **/
5544static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5545{
5546        u16 data = (u16)hw->mac.ledctl_mode2;
5547        u32 i, led;
5548
5549        /* If no link, then turn LED on by setting the invert bit
5550         * for each LED that's mode is "link_up" in ledctl_mode2.
5551         */
5552        if (!(er32(STATUS) & E1000_STATUS_LU)) {
5553                for (i = 0; i < 3; i++) {
5554                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5555                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
5556                            E1000_LEDCTL_MODE_LINK_UP)
5557                                continue;
5558                        if (led & E1000_PHY_LED0_IVRT)
5559                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5560                        else
5561                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
5562                }
5563        }
5564
5565        return e1e_wphy(hw, HV_LED_CONFIG, data);
5566}
5567
5568/**
5569 *  e1000_led_off_pchlan - Turn LEDs off
5570 *  @hw: pointer to the HW structure
5571 *
5572 *  Turn off the LEDs.
5573 **/
5574static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5575{
5576        u16 data = (u16)hw->mac.ledctl_mode1;
5577        u32 i, led;
5578
5579        /* If no link, then turn LED off by clearing the invert bit
5580         * for each LED that's mode is "link_up" in ledctl_mode1.
5581         */
5582        if (!(er32(STATUS) & E1000_STATUS_LU)) {
5583                for (i = 0; i < 3; i++) {
5584                        led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5585                        if ((led & E1000_PHY_LED0_MODE_MASK) !=
5586                            E1000_LEDCTL_MODE_LINK_UP)
5587                                continue;
5588                        if (led & E1000_PHY_LED0_IVRT)
5589                                data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5590                        else
5591                                data |= (E1000_PHY_LED0_IVRT << (i * 5));
5592                }
5593        }
5594
5595        return e1e_wphy(hw, HV_LED_CONFIG, data);
5596}
5597
5598/**
5599 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5600 *  @hw: pointer to the HW structure
5601 *
5602 *  Read appropriate register for the config done bit for completion status
5603 *  and configure the PHY through s/w for EEPROM-less parts.
5604 *
5605 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5606 *  config done bit, so only an error is logged and continues.  If we were
5607 *  to return with error, EEPROM-less silicon would not be able to be reset
5608 *  or change link.
5609 **/
5610static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5611{
5612        s32 ret_val = 0;
5613        u32 bank = 0;
5614        u32 status;
5615
5616        e1000e_get_cfg_done_generic(hw);
5617
5618        /* Wait for indication from h/w that it has completed basic config */
5619        if (hw->mac.type >= e1000_ich10lan) {
5620                e1000_lan_init_done_ich8lan(hw);
5621        } else {
5622                ret_val = e1000e_get_auto_rd_done(hw);
5623                if (ret_val) {
5624                        /* When auto config read does not complete, do not
5625                         * return with an error. This can happen in situations
5626                         * where there is no eeprom and prevents getting link.
5627                         */
5628                        e_dbg("Auto Read Done did not complete\n");
5629                        ret_val = 0;
5630                }
5631        }
5632
5633        /* Clear PHY Reset Asserted bit */
5634        status = er32(STATUS);
5635        if (status & E1000_STATUS_PHYRA)
5636                ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5637        else
5638                e_dbg("PHY Reset Asserted not set - needs delay\n");
5639
5640        /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5641        if (hw->mac.type <= e1000_ich9lan) {
5642                if (!(er32(EECD) & E1000_EECD_PRES) &&
5643                    (hw->phy.type == e1000_phy_igp_3)) {
5644                        e1000e_phy_init_script_igp3(hw);
5645                }
5646        } else {
5647                if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5648                        /* Maybe we should do a basic PHY config */
5649                        e_dbg("EEPROM not present\n");
5650                        ret_val = -E1000_ERR_CONFIG;
5651                }
5652        }
5653
5654        return ret_val;
5655}
5656
5657/**
5658 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5659 * @hw: pointer to the HW structure
5660 *
5661 * In the case of a PHY power down to save power, or to turn off link during a
5662 * driver unload, or wake on lan is not enabled, remove the link.
5663 **/
5664static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5665{
5666        /* If the management interface is not enabled, then power down */
5667        if (!(hw->mac.ops.check_mng_mode(hw) ||
5668              hw->phy.ops.check_reset_block(hw)))
5669                e1000_power_down_phy_copper(hw);
5670}
5671
5672/**
5673 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5674 *  @hw: pointer to the HW structure
5675 *
5676 *  Clears hardware counters specific to the silicon family and calls
5677 *  clear_hw_cntrs_generic to clear all general purpose counters.
5678 **/
5679static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5680{
5681        u16 phy_data;
5682        s32 ret_val;
5683
5684        e1000e_clear_hw_cntrs_base(hw);
5685
5686        er32(ALGNERRC);
5687        er32(RXERRC);
5688        er32(TNCRS);
5689        er32(CEXTERR);
5690        er32(TSCTC);
5691        er32(TSCTFC);
5692
5693        er32(MGTPRC);
5694        er32(MGTPDC);
5695        er32(MGTPTC);
5696
5697        er32(IAC);
5698        er32(ICRXOC);
5699
5700        /* Clear PHY statistics registers */
5701        if ((hw->phy.type == e1000_phy_82578) ||
5702            (hw->phy.type == e1000_phy_82579) ||
5703            (hw->phy.type == e1000_phy_i217) ||
5704            (hw->phy.type == e1000_phy_82577)) {
5705                ret_val = hw->phy.ops.acquire(hw);
5706                if (ret_val)
5707                        return;
5708                ret_val = hw->phy.ops.set_page(hw,
5709                                               HV_STATS_PAGE << IGP_PAGE_SHIFT);
5710                if (ret_val)
5711                        goto release;
5712                hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5713                hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5714                hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5715                hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5716                hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5717                hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5718                hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5719                hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5720                hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5721                hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5722                hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5723                hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5724                hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5725                hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5726release:
5727                hw->phy.ops.release(hw);
5728        }
5729}
5730
5731static const struct e1000_mac_operations ich8_mac_ops = {
5732        /* check_mng_mode dependent on mac type */
5733        .check_for_link         = e1000_check_for_copper_link_ich8lan,
5734        /* cleanup_led dependent on mac type */
5735        .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
5736        .get_bus_info           = e1000_get_bus_info_ich8lan,
5737        .set_lan_id             = e1000_set_lan_id_single_port,
5738        .get_link_up_info       = e1000_get_link_up_info_ich8lan,
5739        /* led_on dependent on mac type */
5740        /* led_off dependent on mac type */
5741        .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
5742        .reset_hw               = e1000_reset_hw_ich8lan,
5743        .init_hw                = e1000_init_hw_ich8lan,
5744        .setup_link             = e1000_setup_link_ich8lan,
5745        .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5746        /* id_led_init dependent on mac type */
5747        .config_collision_dist  = e1000e_config_collision_dist_generic,
5748        .rar_set                = e1000e_rar_set_generic,
5749        .rar_get_count          = e1000e_rar_get_count_generic,
5750};
5751
5752static const struct e1000_phy_operations ich8_phy_ops = {
5753        .acquire                = e1000_acquire_swflag_ich8lan,
5754        .check_reset_block      = e1000_check_reset_block_ich8lan,
5755        .commit                 = NULL,
5756        .get_cfg_done           = e1000_get_cfg_done_ich8lan,
5757        .get_cable_length       = e1000e_get_cable_length_igp_2,
5758        .read_reg               = e1000e_read_phy_reg_igp,
5759        .release                = e1000_release_swflag_ich8lan,
5760        .reset                  = e1000_phy_hw_reset_ich8lan,
5761        .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
5762        .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
5763        .write_reg              = e1000e_write_phy_reg_igp,
5764};
5765
5766static const struct e1000_nvm_operations ich8_nvm_ops = {
5767        .acquire                = e1000_acquire_nvm_ich8lan,
5768        .read                   = e1000_read_nvm_ich8lan,
5769        .release                = e1000_release_nvm_ich8lan,
5770        .reload                 = e1000e_reload_nvm_generic,
5771        .update                 = e1000_update_nvm_checksum_ich8lan,
5772        .valid_led_default      = e1000_valid_led_default_ich8lan,
5773        .validate               = e1000_validate_nvm_checksum_ich8lan,
5774        .write                  = e1000_write_nvm_ich8lan,
5775};
5776
5777static const struct e1000_nvm_operations spt_nvm_ops = {
5778        .acquire                = e1000_acquire_nvm_ich8lan,
5779        .release                = e1000_release_nvm_ich8lan,
5780        .read                   = e1000_read_nvm_spt,
5781        .update                 = e1000_update_nvm_checksum_spt,
5782        .reload                 = e1000e_reload_nvm_generic,
5783        .valid_led_default      = e1000_valid_led_default_ich8lan,
5784        .validate               = e1000_validate_nvm_checksum_ich8lan,
5785        .write                  = e1000_write_nvm_ich8lan,
5786};
5787
5788const struct e1000_info e1000_ich8_info = {
5789        .mac                    = e1000_ich8lan,
5790        .flags                  = FLAG_HAS_WOL
5791                                  | FLAG_IS_ICH
5792                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5793                                  | FLAG_HAS_AMT
5794                                  | FLAG_HAS_FLASH
5795                                  | FLAG_APME_IN_WUC,
5796        .pba                    = 8,
5797        .max_hw_frame_size      = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5798        .get_variants           = e1000_get_variants_ich8lan,
5799        .mac_ops                = &ich8_mac_ops,
5800        .phy_ops                = &ich8_phy_ops,
5801        .nvm_ops                = &ich8_nvm_ops,
5802};
5803
5804const struct e1000_info e1000_ich9_info = {
5805        .mac                    = e1000_ich9lan,
5806        .flags                  = FLAG_HAS_JUMBO_FRAMES
5807                                  | FLAG_IS_ICH
5808                                  | FLAG_HAS_WOL
5809                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5810                                  | FLAG_HAS_AMT
5811                                  | FLAG_HAS_FLASH
5812                                  | FLAG_APME_IN_WUC,
5813        .pba                    = 18,
5814        .max_hw_frame_size      = DEFAULT_JUMBO,
5815        .get_variants           = e1000_get_variants_ich8lan,
5816        .mac_ops                = &ich8_mac_ops,
5817        .phy_ops                = &ich8_phy_ops,
5818        .nvm_ops                = &ich8_nvm_ops,
5819};
5820
5821const struct e1000_info e1000_ich10_info = {
5822        .mac                    = e1000_ich10lan,
5823        .flags                  = FLAG_HAS_JUMBO_FRAMES
5824                                  | FLAG_IS_ICH
5825                                  | FLAG_HAS_WOL
5826                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5827                                  | FLAG_HAS_AMT
5828                                  | FLAG_HAS_FLASH
5829                                  | FLAG_APME_IN_WUC,
5830        .pba                    = 18,
5831        .max_hw_frame_size      = DEFAULT_JUMBO,
5832        .get_variants           = e1000_get_variants_ich8lan,
5833        .mac_ops                = &ich8_mac_ops,
5834        .phy_ops                = &ich8_phy_ops,
5835        .nvm_ops                = &ich8_nvm_ops,
5836};
5837
5838const struct e1000_info e1000_pch_info = {
5839        .mac                    = e1000_pchlan,
5840        .flags                  = FLAG_IS_ICH
5841                                  | FLAG_HAS_WOL
5842                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5843                                  | FLAG_HAS_AMT
5844                                  | FLAG_HAS_FLASH
5845                                  | FLAG_HAS_JUMBO_FRAMES
5846                                  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5847                                  | FLAG_APME_IN_WUC,
5848        .flags2                 = FLAG2_HAS_PHY_STATS,
5849        .pba                    = 26,
5850        .max_hw_frame_size      = 4096,
5851        .get_variants           = e1000_get_variants_ich8lan,
5852        .mac_ops                = &ich8_mac_ops,
5853        .phy_ops                = &ich8_phy_ops,
5854        .nvm_ops                = &ich8_nvm_ops,
5855};
5856
5857const struct e1000_info e1000_pch2_info = {
5858        .mac                    = e1000_pch2lan,
5859        .flags                  = FLAG_IS_ICH
5860                                  | FLAG_HAS_WOL
5861                                  | FLAG_HAS_HW_TIMESTAMP
5862                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5863                                  | FLAG_HAS_AMT
5864                                  | FLAG_HAS_FLASH
5865                                  | FLAG_HAS_JUMBO_FRAMES
5866                                  | FLAG_APME_IN_WUC,
5867        .flags2                 = FLAG2_HAS_PHY_STATS
5868                                  | FLAG2_HAS_EEE,
5869        .pba                    = 26,
5870        .max_hw_frame_size      = 9022,
5871        .get_variants           = e1000_get_variants_ich8lan,
5872        .mac_ops                = &ich8_mac_ops,
5873        .phy_ops                = &ich8_phy_ops,
5874        .nvm_ops                = &ich8_nvm_ops,
5875};
5876
5877const struct e1000_info e1000_pch_lpt_info = {
5878        .mac                    = e1000_pch_lpt,
5879        .flags                  = FLAG_IS_ICH
5880                                  | FLAG_HAS_WOL
5881                                  | FLAG_HAS_HW_TIMESTAMP
5882                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5883                                  | FLAG_HAS_AMT
5884                                  | FLAG_HAS_FLASH
5885                                  | FLAG_HAS_JUMBO_FRAMES
5886                                  | FLAG_APME_IN_WUC,
5887        .flags2                 = FLAG2_HAS_PHY_STATS
5888                                  | FLAG2_HAS_EEE,
5889        .pba                    = 26,
5890        .max_hw_frame_size      = 9022,
5891        .get_variants           = e1000_get_variants_ich8lan,
5892        .mac_ops                = &ich8_mac_ops,
5893        .phy_ops                = &ich8_phy_ops,
5894        .nvm_ops                = &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_pch_spt_info = {
5898        .mac                    = e1000_pch_spt,
5899        .flags                  = FLAG_IS_ICH
5900                                  | FLAG_HAS_WOL
5901                                  | FLAG_HAS_HW_TIMESTAMP
5902                                  | FLAG_HAS_CTRLEXT_ON_LOAD
5903                                  | FLAG_HAS_AMT
5904                                  | FLAG_HAS_FLASH
5905                                  | FLAG_HAS_JUMBO_FRAMES
5906                                  | FLAG_APME_IN_WUC,
5907        .flags2                 = FLAG2_HAS_PHY_STATS
5908                                  | FLAG2_HAS_EEE,
5909        .pba                    = 26,
5910        .max_hw_frame_size      = 9022,
5911        .get_variants           = e1000_get_variants_ich8lan,
5912        .mac_ops                = &ich8_mac_ops,
5913        .phy_ops                = &ich8_phy_ops,
5914        .nvm_ops                = &spt_nvm_ops,
5915};
5916