linux/drivers/net/ethernet/tile/tilegx.c
<<
>>
Prefs
   1/*
   2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/moduleparam.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>      /* printk() */
  20#include <linux/slab.h>        /* kmalloc() */
  21#include <linux/errno.h>       /* error codes */
  22#include <linux/types.h>       /* size_t */
  23#include <linux/interrupt.h>
  24#include <linux/in.h>
  25#include <linux/irq.h>
  26#include <linux/netdevice.h>   /* struct device, and other headers */
  27#include <linux/etherdevice.h> /* eth_type_trans */
  28#include <linux/skbuff.h>
  29#include <linux/ioctl.h>
  30#include <linux/cdev.h>
  31#include <linux/hugetlb.h>
  32#include <linux/in6.h>
  33#include <linux/timer.h>
  34#include <linux/hrtimer.h>
  35#include <linux/ktime.h>
  36#include <linux/io.h>
  37#include <linux/ctype.h>
  38#include <linux/ip.h>
  39#include <linux/ipv6.h>
  40#include <linux/tcp.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/ptp_clock_kernel.h>
  43#include <linux/tick.h>
  44
  45#include <asm/checksum.h>
  46#include <asm/homecache.h>
  47#include <gxio/mpipe.h>
  48#include <arch/sim.h>
  49
  50/* Default transmit lockup timeout period, in jiffies. */
  51#define TILE_NET_TIMEOUT (5 * HZ)
  52
  53/* The maximum number of distinct channels (idesc.channel is 5 bits). */
  54#define TILE_NET_CHANNELS 32
  55
  56/* Maximum number of idescs to handle per "poll". */
  57#define TILE_NET_BATCH 128
  58
  59/* Maximum number of packets to handle per "poll". */
  60#define TILE_NET_WEIGHT 64
  61
  62/* Number of entries in each iqueue. */
  63#define IQUEUE_ENTRIES 512
  64
  65/* Number of entries in each equeue. */
  66#define EQUEUE_ENTRIES 2048
  67
  68/* Total header bytes per equeue slot.  Must be big enough for 2 bytes
  69 * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
  70 * 60 bytes of actual TCP header.  We round up to align to cache lines.
  71 */
  72#define HEADER_BYTES 128
  73
  74/* Maximum completions per cpu per device (must be a power of two).
  75 * ISSUE: What is the right number here?  If this is too small, then
  76 * egress might block waiting for free space in a completions array.
  77 * ISSUE: At the least, allocate these only for initialized echannels.
  78 */
  79#define TILE_NET_MAX_COMPS 64
  80
  81#define MAX_FRAGS (MAX_SKB_FRAGS + 1)
  82
  83/* The "kinds" of buffer stacks (small/large/jumbo). */
  84#define MAX_KINDS 3
  85
  86/* Size of completions data to allocate.
  87 * ISSUE: Probably more than needed since we don't use all the channels.
  88 */
  89#define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
  90
  91/* Size of NotifRing data to allocate. */
  92#define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
  93
  94/* Timeout to wake the per-device TX timer after we stop the queue.
  95 * We don't want the timeout too short (adds overhead, and might end
  96 * up causing stop/wake/stop/wake cycles) or too long (affects performance).
  97 * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
  98 */
  99#define TX_TIMER_DELAY_USEC 30
 100
 101/* Timeout to wake the per-cpu egress timer to free completions. */
 102#define EGRESS_TIMER_DELAY_USEC 1000
 103
 104MODULE_AUTHOR("Tilera Corporation");
 105MODULE_LICENSE("GPL");
 106
 107/* A "packet fragment" (a chunk of memory). */
 108struct frag {
 109        void *buf;
 110        size_t length;
 111};
 112
 113/* A single completion. */
 114struct tile_net_comp {
 115        /* The "complete_count" when the completion will be complete. */
 116        s64 when;
 117        /* The buffer to be freed when the completion is complete. */
 118        struct sk_buff *skb;
 119};
 120
 121/* The completions for a given cpu and echannel. */
 122struct tile_net_comps {
 123        /* The completions. */
 124        struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
 125        /* The number of completions used. */
 126        unsigned long comp_next;
 127        /* The number of completions freed. */
 128        unsigned long comp_last;
 129};
 130
 131/* The transmit wake timer for a given cpu and echannel. */
 132struct tile_net_tx_wake {
 133        int tx_queue_idx;
 134        struct hrtimer timer;
 135        struct net_device *dev;
 136};
 137
 138/* Info for a specific cpu. */
 139struct tile_net_info {
 140        /* Our cpu. */
 141        int my_cpu;
 142        /* A timer for handling egress completions. */
 143        struct hrtimer egress_timer;
 144        /* True if "egress_timer" is scheduled. */
 145        bool egress_timer_scheduled;
 146        struct info_mpipe {
 147                /* Packet queue. */
 148                gxio_mpipe_iqueue_t iqueue;
 149                /* The NAPI struct. */
 150                struct napi_struct napi;
 151                /* Number of buffers (by kind) which must still be provided. */
 152                unsigned int num_needed_buffers[MAX_KINDS];
 153                /* instance id. */
 154                int instance;
 155                /* True if iqueue is valid. */
 156                bool has_iqueue;
 157                /* NAPI flags. */
 158                bool napi_added;
 159                bool napi_enabled;
 160                /* Comps for each egress channel. */
 161                struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
 162                /* Transmit wake timer for each egress channel. */
 163                struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
 164        } mpipe[NR_MPIPE_MAX];
 165};
 166
 167/* Info for egress on a particular egress channel. */
 168struct tile_net_egress {
 169        /* The "equeue". */
 170        gxio_mpipe_equeue_t *equeue;
 171        /* The headers for TSO. */
 172        unsigned char *headers;
 173};
 174
 175/* Info for a specific device. */
 176struct tile_net_priv {
 177        /* Our network device. */
 178        struct net_device *dev;
 179        /* The primary link. */
 180        gxio_mpipe_link_t link;
 181        /* The primary channel, if open, else -1. */
 182        int channel;
 183        /* The "loopify" egress link, if needed. */
 184        gxio_mpipe_link_t loopify_link;
 185        /* The "loopify" egress channel, if open, else -1. */
 186        int loopify_channel;
 187        /* The egress channel (channel or loopify_channel). */
 188        int echannel;
 189        /* mPIPE instance, 0 or 1. */
 190        int instance;
 191        /* The timestamp config. */
 192        struct hwtstamp_config stamp_cfg;
 193};
 194
 195static struct mpipe_data {
 196        /* The ingress irq. */
 197        int ingress_irq;
 198
 199        /* The "context" for all devices. */
 200        gxio_mpipe_context_t context;
 201
 202        /* Egress info, indexed by "priv->echannel"
 203         * (lazily created as needed).
 204         */
 205        struct tile_net_egress
 206        egress_for_echannel[TILE_NET_CHANNELS];
 207
 208        /* Devices currently associated with each channel.
 209         * NOTE: The array entry can become NULL after ifconfig down, but
 210         * we do not free the underlying net_device structures, so it is
 211         * safe to use a pointer after reading it from this array.
 212         */
 213        struct net_device
 214        *tile_net_devs_for_channel[TILE_NET_CHANNELS];
 215
 216        /* The actual memory allocated for the buffer stacks. */
 217        void *buffer_stack_vas[MAX_KINDS];
 218
 219        /* The amount of memory allocated for each buffer stack. */
 220        size_t buffer_stack_bytes[MAX_KINDS];
 221
 222        /* The first buffer stack index
 223         * (small = +0, large = +1, jumbo = +2).
 224         */
 225        int first_buffer_stack;
 226
 227        /* The buckets. */
 228        int first_bucket;
 229        int num_buckets;
 230
 231        /* PTP-specific data. */
 232        struct ptp_clock *ptp_clock;
 233        struct ptp_clock_info caps;
 234
 235        /* Lock for ptp accessors. */
 236        struct mutex ptp_lock;
 237
 238} mpipe_data[NR_MPIPE_MAX] = {
 239        [0 ... (NR_MPIPE_MAX - 1)] {
 240                .ingress_irq = -1,
 241                .first_buffer_stack = -1,
 242                .first_bucket = -1,
 243                .num_buckets = 1
 244        }
 245};
 246
 247/* A mutex for "tile_net_devs_for_channel". */
 248static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);
 249
 250/* The per-cpu info. */
 251static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);
 252
 253
 254/* The buffer size enums for each buffer stack.
 255 * See arch/tile/include/gxio/mpipe.h for the set of possible values.
 256 * We avoid the "10384" size because it can induce "false chaining"
 257 * on "cut-through" jumbo packets.
 258 */
 259static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
 260        GXIO_MPIPE_BUFFER_SIZE_128,
 261        GXIO_MPIPE_BUFFER_SIZE_1664,
 262        GXIO_MPIPE_BUFFER_SIZE_16384
 263};
 264
 265/* Text value of tile_net.cpus if passed as a module parameter. */
 266static char *network_cpus_string;
 267
 268/* The actual cpus in "network_cpus". */
 269static struct cpumask network_cpus_map;
 270
 271/* If "tile_net.loopify=LINK" was specified, this is "LINK". */
 272static char *loopify_link_name;
 273
 274/* If "tile_net.custom" was specified, this is true. */
 275static bool custom_flag;
 276
 277/* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
 278static uint jumbo_num;
 279
 280/* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
 281static inline int mpipe_instance(struct net_device *dev)
 282{
 283        struct tile_net_priv *priv = netdev_priv(dev);
 284        return priv->instance;
 285}
 286
 287/* The "tile_net.cpus" argument specifies the cpus that are dedicated
 288 * to handle ingress packets.
 289 *
 290 * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
 291 * m, n, x, y are integer numbers that represent the cpus that can be
 292 * neither a dedicated cpu nor a dataplane cpu.
 293 */
 294static bool network_cpus_init(void)
 295{
 296        int rc;
 297
 298        if (network_cpus_string == NULL)
 299                return false;
 300
 301        rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
 302        if (rc != 0) {
 303                pr_warn("tile_net.cpus=%s: malformed cpu list\n",
 304                        network_cpus_string);
 305                return false;
 306        }
 307
 308        /* Remove dedicated cpus. */
 309        cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);
 310
 311        if (cpumask_empty(&network_cpus_map)) {
 312                pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
 313                        network_cpus_string);
 314                return false;
 315        }
 316
 317        pr_info("Linux network CPUs: %*pbl\n",
 318                cpumask_pr_args(&network_cpus_map));
 319        return true;
 320}
 321
 322module_param_named(cpus, network_cpus_string, charp, 0444);
 323MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");
 324
 325/* The "tile_net.loopify=LINK" argument causes the named device to
 326 * actually use "loop0" for ingress, and "loop1" for egress.  This
 327 * allows an app to sit between the actual link and linux, passing
 328 * (some) packets along to linux, and forwarding (some) packets sent
 329 * out by linux.
 330 */
 331module_param_named(loopify, loopify_link_name, charp, 0444);
 332MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");
 333
 334/* The "tile_net.custom" argument causes us to ignore the "conventional"
 335 * classifier metadata, in particular, the "l2_offset".
 336 */
 337module_param_named(custom, custom_flag, bool, 0444);
 338MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");
 339
 340/* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
 341 * and to allocate the given number of "jumbo" buffers.
 342 */
 343module_param_named(jumbo, jumbo_num, uint, 0444);
 344MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");
 345
 346/* Atomically update a statistics field.
 347 * Note that on TILE-Gx, this operation is fire-and-forget on the
 348 * issuing core (single-cycle dispatch) and takes only a few cycles
 349 * longer than a regular store when the request reaches the home cache.
 350 * No expensive bus management overhead is required.
 351 */
 352static void tile_net_stats_add(unsigned long value, unsigned long *field)
 353{
 354        BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
 355        atomic_long_add(value, (atomic_long_t *)field);
 356}
 357
 358/* Allocate and push a buffer. */
 359static bool tile_net_provide_buffer(int instance, int kind)
 360{
 361        struct mpipe_data *md = &mpipe_data[instance];
 362        gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
 363        size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
 364        const unsigned long buffer_alignment = 128;
 365        struct sk_buff *skb;
 366        int len;
 367
 368        len = sizeof(struct sk_buff **) + buffer_alignment + bs;
 369        skb = dev_alloc_skb(len);
 370        if (skb == NULL)
 371                return false;
 372
 373        /* Make room for a back-pointer to 'skb' and guarantee alignment. */
 374        skb_reserve(skb, sizeof(struct sk_buff **));
 375        skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));
 376
 377        /* Save a back-pointer to 'skb'. */
 378        *(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;
 379
 380        /* Make sure "skb" and the back-pointer have been flushed. */
 381        wmb();
 382
 383        gxio_mpipe_push_buffer(&md->context, md->first_buffer_stack + kind,
 384                               (void *)va_to_tile_io_addr(skb->data));
 385
 386        return true;
 387}
 388
 389/* Convert a raw mpipe buffer to its matching skb pointer. */
 390static struct sk_buff *mpipe_buf_to_skb(void *va)
 391{
 392        /* Acquire the associated "skb". */
 393        struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
 394        struct sk_buff *skb = *skb_ptr;
 395
 396        /* Paranoia. */
 397        if (skb->data != va) {
 398                /* Panic here since there's a reasonable chance
 399                 * that corrupt buffers means generic memory
 400                 * corruption, with unpredictable system effects.
 401                 */
 402                panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
 403                      va, skb, skb->data);
 404        }
 405
 406        return skb;
 407}
 408
 409static void tile_net_pop_all_buffers(int instance, int stack)
 410{
 411        struct mpipe_data *md = &mpipe_data[instance];
 412
 413        for (;;) {
 414                tile_io_addr_t addr =
 415                        (tile_io_addr_t)gxio_mpipe_pop_buffer(&md->context,
 416                                                              stack);
 417                if (addr == 0)
 418                        break;
 419                dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
 420        }
 421}
 422
 423/* Provide linux buffers to mPIPE. */
 424static void tile_net_provide_needed_buffers(void)
 425{
 426        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 427        int instance, kind;
 428        for (instance = 0; instance < NR_MPIPE_MAX &&
 429                     info->mpipe[instance].has_iqueue; instance++)      {
 430                for (kind = 0; kind < MAX_KINDS; kind++) {
 431                        while (info->mpipe[instance].num_needed_buffers[kind]
 432                               != 0) {
 433                                if (!tile_net_provide_buffer(instance, kind)) {
 434                                        pr_notice("Tile %d still needs"
 435                                                  " some buffers\n",
 436                                                  info->my_cpu);
 437                                        return;
 438                                }
 439                                info->mpipe[instance].
 440                                        num_needed_buffers[kind]--;
 441                        }
 442                }
 443        }
 444}
 445
 446/* Get RX timestamp, and store it in the skb. */
 447static void tile_rx_timestamp(struct tile_net_priv *priv, struct sk_buff *skb,
 448                              gxio_mpipe_idesc_t *idesc)
 449{
 450        if (unlikely(priv->stamp_cfg.rx_filter != HWTSTAMP_FILTER_NONE)) {
 451                struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
 452                memset(shhwtstamps, 0, sizeof(*shhwtstamps));
 453                shhwtstamps->hwtstamp = ktime_set(idesc->time_stamp_sec,
 454                                                  idesc->time_stamp_ns);
 455        }
 456}
 457
 458/* Get TX timestamp, and store it in the skb. */
 459static void tile_tx_timestamp(struct sk_buff *skb, int instance)
 460{
 461        struct skb_shared_info *shtx = skb_shinfo(skb);
 462        if (unlikely((shtx->tx_flags & SKBTX_HW_TSTAMP) != 0)) {
 463                struct mpipe_data *md = &mpipe_data[instance];
 464                struct skb_shared_hwtstamps shhwtstamps;
 465                struct timespec64 ts;
 466
 467                shtx->tx_flags |= SKBTX_IN_PROGRESS;
 468                gxio_mpipe_get_timestamp(&md->context, &ts);
 469                memset(&shhwtstamps, 0, sizeof(shhwtstamps));
 470                shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
 471                skb_tstamp_tx(skb, &shhwtstamps);
 472        }
 473}
 474
 475/* Use ioctl() to enable or disable TX or RX timestamping. */
 476static int tile_hwtstamp_set(struct net_device *dev, struct ifreq *rq)
 477{
 478        struct hwtstamp_config config;
 479        struct tile_net_priv *priv = netdev_priv(dev);
 480
 481        if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
 482                return -EFAULT;
 483
 484        if (config.flags)  /* reserved for future extensions */
 485                return -EINVAL;
 486
 487        switch (config.tx_type) {
 488        case HWTSTAMP_TX_OFF:
 489        case HWTSTAMP_TX_ON:
 490                break;
 491        default:
 492                return -ERANGE;
 493        }
 494
 495        switch (config.rx_filter) {
 496        case HWTSTAMP_FILTER_NONE:
 497                break;
 498        case HWTSTAMP_FILTER_ALL:
 499        case HWTSTAMP_FILTER_SOME:
 500        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 501        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 502        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 503        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 504        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 505        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 506        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 507        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 508        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 509        case HWTSTAMP_FILTER_PTP_V2_EVENT:
 510        case HWTSTAMP_FILTER_PTP_V2_SYNC:
 511        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 512                config.rx_filter = HWTSTAMP_FILTER_ALL;
 513                break;
 514        default:
 515                return -ERANGE;
 516        }
 517
 518        if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
 519                return -EFAULT;
 520
 521        priv->stamp_cfg = config;
 522        return 0;
 523}
 524
 525static int tile_hwtstamp_get(struct net_device *dev, struct ifreq *rq)
 526{
 527        struct tile_net_priv *priv = netdev_priv(dev);
 528
 529        if (copy_to_user(rq->ifr_data, &priv->stamp_cfg,
 530                         sizeof(priv->stamp_cfg)))
 531                return -EFAULT;
 532
 533        return 0;
 534}
 535
 536static inline bool filter_packet(struct net_device *dev, void *buf)
 537{
 538        /* Filter packets received before we're up. */
 539        if (dev == NULL || !(dev->flags & IFF_UP))
 540                return true;
 541
 542        /* Filter out packets that aren't for us. */
 543        if (!(dev->flags & IFF_PROMISC) &&
 544            !is_multicast_ether_addr(buf) &&
 545            !ether_addr_equal(dev->dev_addr, buf))
 546                return true;
 547
 548        return false;
 549}
 550
 551static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
 552                                 gxio_mpipe_idesc_t *idesc, unsigned long len)
 553{
 554        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 555        struct tile_net_priv *priv = netdev_priv(dev);
 556        int instance = priv->instance;
 557
 558        /* Encode the actual packet length. */
 559        skb_put(skb, len);
 560
 561        skb->protocol = eth_type_trans(skb, dev);
 562
 563        /* Acknowledge "good" hardware checksums. */
 564        if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
 565                skb->ip_summed = CHECKSUM_UNNECESSARY;
 566
 567        /* Get RX timestamp from idesc. */
 568        tile_rx_timestamp(priv, skb, idesc);
 569
 570        napi_gro_receive(&info->mpipe[instance].napi, skb);
 571
 572        /* Update stats. */
 573        tile_net_stats_add(1, &dev->stats.rx_packets);
 574        tile_net_stats_add(len, &dev->stats.rx_bytes);
 575
 576        /* Need a new buffer. */
 577        if (idesc->size == buffer_size_enums[0])
 578                info->mpipe[instance].num_needed_buffers[0]++;
 579        else if (idesc->size == buffer_size_enums[1])
 580                info->mpipe[instance].num_needed_buffers[1]++;
 581        else
 582                info->mpipe[instance].num_needed_buffers[2]++;
 583}
 584
 585/* Handle a packet.  Return true if "processed", false if "filtered". */
 586static bool tile_net_handle_packet(int instance, gxio_mpipe_idesc_t *idesc)
 587{
 588        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 589        struct mpipe_data *md = &mpipe_data[instance];
 590        struct net_device *dev = md->tile_net_devs_for_channel[idesc->channel];
 591        uint8_t l2_offset;
 592        void *va;
 593        void *buf;
 594        unsigned long len;
 595        bool filter;
 596
 597        /* Drop packets for which no buffer was available (which can
 598         * happen under heavy load), or for which the me/tr/ce flags
 599         * are set (which can happen for jumbo cut-through packets,
 600         * or with a customized classifier).
 601         */
 602        if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
 603                if (dev)
 604                        tile_net_stats_add(1, &dev->stats.rx_errors);
 605                goto drop;
 606        }
 607
 608        /* Get the "l2_offset", if allowed. */
 609        l2_offset = custom_flag ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);
 610
 611        /* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
 612        va = tile_io_addr_to_va((unsigned long)idesc->va);
 613
 614        /* Get the actual packet start/length. */
 615        buf = va + l2_offset;
 616        len = idesc->l2_size - l2_offset;
 617
 618        /* Point "va" at the raw buffer. */
 619        va -= NET_IP_ALIGN;
 620
 621        filter = filter_packet(dev, buf);
 622        if (filter) {
 623                if (dev)
 624                        tile_net_stats_add(1, &dev->stats.rx_dropped);
 625drop:
 626                gxio_mpipe_iqueue_drop(&info->mpipe[instance].iqueue, idesc);
 627        } else {
 628                struct sk_buff *skb = mpipe_buf_to_skb(va);
 629
 630                /* Skip headroom, and any custom header. */
 631                skb_reserve(skb, NET_IP_ALIGN + l2_offset);
 632
 633                tile_net_receive_skb(dev, skb, idesc, len);
 634        }
 635
 636        gxio_mpipe_iqueue_consume(&info->mpipe[instance].iqueue, idesc);
 637        return !filter;
 638}
 639
 640/* Handle some packets for the current CPU.
 641 *
 642 * This function handles up to TILE_NET_BATCH idescs per call.
 643 *
 644 * ISSUE: Since we do not provide new buffers until this function is
 645 * complete, we must initially provide enough buffers for each network
 646 * cpu to fill its iqueue and also its batched idescs.
 647 *
 648 * ISSUE: The "rotting packet" race condition occurs if a packet
 649 * arrives after the queue appears to be empty, and before the
 650 * hypervisor interrupt is re-enabled.
 651 */
 652static int tile_net_poll(struct napi_struct *napi, int budget)
 653{
 654        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 655        unsigned int work = 0;
 656        gxio_mpipe_idesc_t *idesc;
 657        int instance, i, n;
 658        struct mpipe_data *md;
 659        struct info_mpipe *info_mpipe =
 660                container_of(napi, struct info_mpipe, napi);
 661
 662        if (budget <= 0)
 663                goto done;
 664
 665        instance = info_mpipe->instance;
 666        while ((n = gxio_mpipe_iqueue_try_peek(
 667                        &info_mpipe->iqueue,
 668                        &idesc)) > 0) {
 669                for (i = 0; i < n; i++) {
 670                        if (i == TILE_NET_BATCH)
 671                                goto done;
 672                        if (tile_net_handle_packet(instance,
 673                                                   idesc + i)) {
 674                                if (++work >= budget)
 675                                        goto done;
 676                        }
 677                }
 678        }
 679
 680        /* There are no packets left. */
 681        napi_complete(&info_mpipe->napi);
 682
 683        md = &mpipe_data[instance];
 684        /* Re-enable hypervisor interrupts. */
 685        gxio_mpipe_enable_notif_ring_interrupt(
 686                &md->context, info->mpipe[instance].iqueue.ring);
 687
 688        /* HACK: Avoid the "rotting packet" problem. */
 689        if (gxio_mpipe_iqueue_try_peek(&info_mpipe->iqueue, &idesc) > 0)
 690                napi_schedule(&info_mpipe->napi);
 691
 692        /* ISSUE: Handle completions? */
 693
 694done:
 695        tile_net_provide_needed_buffers();
 696
 697        return work;
 698}
 699
 700/* Handle an ingress interrupt from an instance on the current cpu. */
 701static irqreturn_t tile_net_handle_ingress_irq(int irq, void *id)
 702{
 703        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 704        napi_schedule(&info->mpipe[(uint64_t)id].napi);
 705        return IRQ_HANDLED;
 706}
 707
 708/* Free some completions.  This must be called with interrupts blocked. */
 709static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
 710                                struct tile_net_comps *comps,
 711                                int limit, bool force_update)
 712{
 713        int n = 0;
 714        while (comps->comp_last < comps->comp_next) {
 715                unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
 716                struct tile_net_comp *comp = &comps->comp_queue[cid];
 717                if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
 718                                                   force_update || n == 0))
 719                        break;
 720                dev_kfree_skb_irq(comp->skb);
 721                comps->comp_last++;
 722                if (++n == limit)
 723                        break;
 724        }
 725        return n;
 726}
 727
 728/* Add a completion.  This must be called with interrupts blocked.
 729 * tile_net_equeue_try_reserve() will have ensured a free completion entry.
 730 */
 731static void add_comp(gxio_mpipe_equeue_t *equeue,
 732                     struct tile_net_comps *comps,
 733                     uint64_t when, struct sk_buff *skb)
 734{
 735        int cid = comps->comp_next % TILE_NET_MAX_COMPS;
 736        comps->comp_queue[cid].when = when;
 737        comps->comp_queue[cid].skb = skb;
 738        comps->comp_next++;
 739}
 740
 741static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
 742                                            int tx_queue_idx)
 743{
 744        struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
 745        struct tile_net_priv *priv = netdev_priv(dev);
 746        int instance = priv->instance;
 747        struct tile_net_tx_wake *tx_wake =
 748                &info->mpipe[instance].tx_wake[priv->echannel];
 749
 750        hrtimer_start(&tx_wake->timer,
 751                      ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL),
 752                      HRTIMER_MODE_REL_PINNED);
 753}
 754
 755static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
 756{
 757        struct tile_net_tx_wake *tx_wake =
 758                container_of(t, struct tile_net_tx_wake, timer);
 759        netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
 760        return HRTIMER_NORESTART;
 761}
 762
 763/* Make sure the egress timer is scheduled. */
 764static void tile_net_schedule_egress_timer(void)
 765{
 766        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 767
 768        if (!info->egress_timer_scheduled) {
 769                hrtimer_start(&info->egress_timer,
 770                              ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL),
 771                              HRTIMER_MODE_REL_PINNED);
 772                info->egress_timer_scheduled = true;
 773        }
 774}
 775
 776/* The "function" for "info->egress_timer".
 777 *
 778 * This timer will reschedule itself as long as there are any pending
 779 * completions expected for this tile.
 780 */
 781static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
 782{
 783        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
 784        unsigned long irqflags;
 785        bool pending = false;
 786        int i, instance;
 787
 788        local_irq_save(irqflags);
 789
 790        /* The timer is no longer scheduled. */
 791        info->egress_timer_scheduled = false;
 792
 793        /* Free all possible comps for this tile. */
 794        for (instance = 0; instance < NR_MPIPE_MAX &&
 795                     info->mpipe[instance].has_iqueue; instance++) {
 796                for (i = 0; i < TILE_NET_CHANNELS; i++) {
 797                        struct tile_net_egress *egress =
 798                                &mpipe_data[instance].egress_for_echannel[i];
 799                        struct tile_net_comps *comps =
 800                                info->mpipe[instance].comps_for_echannel[i];
 801                        if (!egress || comps->comp_last >= comps->comp_next)
 802                                continue;
 803                        tile_net_free_comps(egress->equeue, comps, -1, true);
 804                        pending = pending ||
 805                                (comps->comp_last < comps->comp_next);
 806                }
 807        }
 808
 809        /* Reschedule timer if needed. */
 810        if (pending)
 811                tile_net_schedule_egress_timer();
 812
 813        local_irq_restore(irqflags);
 814
 815        return HRTIMER_NORESTART;
 816}
 817
 818/* PTP clock operations. */
 819
 820static int ptp_mpipe_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
 821{
 822        int ret = 0;
 823        struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 824        mutex_lock(&md->ptp_lock);
 825        if (gxio_mpipe_adjust_timestamp_freq(&md->context, ppb))
 826                ret = -EINVAL;
 827        mutex_unlock(&md->ptp_lock);
 828        return ret;
 829}
 830
 831static int ptp_mpipe_adjtime(struct ptp_clock_info *ptp, s64 delta)
 832{
 833        int ret = 0;
 834        struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 835        mutex_lock(&md->ptp_lock);
 836        if (gxio_mpipe_adjust_timestamp(&md->context, delta))
 837                ret = -EBUSY;
 838        mutex_unlock(&md->ptp_lock);
 839        return ret;
 840}
 841
 842static int ptp_mpipe_gettime(struct ptp_clock_info *ptp,
 843                             struct timespec64 *ts)
 844{
 845        int ret = 0;
 846        struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 847        mutex_lock(&md->ptp_lock);
 848        if (gxio_mpipe_get_timestamp(&md->context, ts))
 849                ret = -EBUSY;
 850        mutex_unlock(&md->ptp_lock);
 851        return ret;
 852}
 853
 854static int ptp_mpipe_settime(struct ptp_clock_info *ptp,
 855                             const struct timespec64 *ts)
 856{
 857        int ret = 0;
 858        struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
 859        mutex_lock(&md->ptp_lock);
 860        if (gxio_mpipe_set_timestamp(&md->context, ts))
 861                ret = -EBUSY;
 862        mutex_unlock(&md->ptp_lock);
 863        return ret;
 864}
 865
 866static int ptp_mpipe_enable(struct ptp_clock_info *ptp,
 867                            struct ptp_clock_request *request, int on)
 868{
 869        return -EOPNOTSUPP;
 870}
 871
 872static struct ptp_clock_info ptp_mpipe_caps = {
 873        .owner          = THIS_MODULE,
 874        .name           = "mPIPE clock",
 875        .max_adj        = 999999999,
 876        .n_ext_ts       = 0,
 877        .n_pins         = 0,
 878        .pps            = 0,
 879        .adjfreq        = ptp_mpipe_adjfreq,
 880        .adjtime        = ptp_mpipe_adjtime,
 881        .gettime64      = ptp_mpipe_gettime,
 882        .settime64      = ptp_mpipe_settime,
 883        .enable         = ptp_mpipe_enable,
 884};
 885
 886/* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
 887static void register_ptp_clock(struct net_device *dev, struct mpipe_data *md)
 888{
 889        struct timespec64 ts;
 890
 891        ktime_get_ts64(&ts);
 892        gxio_mpipe_set_timestamp(&md->context, &ts);
 893
 894        mutex_init(&md->ptp_lock);
 895        md->caps = ptp_mpipe_caps;
 896        md->ptp_clock = ptp_clock_register(&md->caps, NULL);
 897        if (IS_ERR(md->ptp_clock))
 898                netdev_err(dev, "ptp_clock_register failed %ld\n",
 899                           PTR_ERR(md->ptp_clock));
 900}
 901
 902/* Initialize PTP fields in a new device. */
 903static void init_ptp_dev(struct tile_net_priv *priv)
 904{
 905        priv->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
 906        priv->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
 907}
 908
 909/* Helper functions for "tile_net_update()". */
 910static void enable_ingress_irq(void *irq)
 911{
 912        enable_percpu_irq((long)irq, 0);
 913}
 914
 915static void disable_ingress_irq(void *irq)
 916{
 917        disable_percpu_irq((long)irq);
 918}
 919
 920/* Helper function for tile_net_open() and tile_net_stop().
 921 * Always called under tile_net_devs_for_channel_mutex.
 922 */
 923static int tile_net_update(struct net_device *dev)
 924{
 925        static gxio_mpipe_rules_t rules;  /* too big to fit on the stack */
 926        bool saw_channel = false;
 927        int instance = mpipe_instance(dev);
 928        struct mpipe_data *md = &mpipe_data[instance];
 929        int channel;
 930        int rc;
 931        int cpu;
 932
 933        saw_channel = false;
 934        gxio_mpipe_rules_init(&rules, &md->context);
 935
 936        for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
 937                if (md->tile_net_devs_for_channel[channel] == NULL)
 938                        continue;
 939                if (!saw_channel) {
 940                        saw_channel = true;
 941                        gxio_mpipe_rules_begin(&rules, md->first_bucket,
 942                                               md->num_buckets, NULL);
 943                        gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
 944                }
 945                gxio_mpipe_rules_add_channel(&rules, channel);
 946        }
 947
 948        /* NOTE: This can fail if there is no classifier.
 949         * ISSUE: Can anything else cause it to fail?
 950         */
 951        rc = gxio_mpipe_rules_commit(&rules);
 952        if (rc != 0) {
 953                netdev_warn(dev, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
 954                            instance, rc);
 955                return -EIO;
 956        }
 957
 958        /* Update all cpus, sequentially (to protect "netif_napi_add()").
 959         * We use on_each_cpu to handle the IPI mask or unmask.
 960         */
 961        if (!saw_channel)
 962                on_each_cpu(disable_ingress_irq,
 963                            (void *)(long)(md->ingress_irq), 1);
 964        for_each_online_cpu(cpu) {
 965                struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
 966
 967                if (!info->mpipe[instance].has_iqueue)
 968                        continue;
 969                if (saw_channel) {
 970                        if (!info->mpipe[instance].napi_added) {
 971                                netif_napi_add(dev, &info->mpipe[instance].napi,
 972                                               tile_net_poll, TILE_NET_WEIGHT);
 973                                info->mpipe[instance].napi_added = true;
 974                        }
 975                        if (!info->mpipe[instance].napi_enabled) {
 976                                napi_enable(&info->mpipe[instance].napi);
 977                                info->mpipe[instance].napi_enabled = true;
 978                        }
 979                } else {
 980                        if (info->mpipe[instance].napi_enabled) {
 981                                napi_disable(&info->mpipe[instance].napi);
 982                                info->mpipe[instance].napi_enabled = false;
 983                        }
 984                        /* FIXME: Drain the iqueue. */
 985                }
 986        }
 987        if (saw_channel)
 988                on_each_cpu(enable_ingress_irq,
 989                            (void *)(long)(md->ingress_irq), 1);
 990
 991        /* HACK: Allow packets to flow in the simulator. */
 992        if (saw_channel)
 993                sim_enable_mpipe_links(instance, -1);
 994
 995        return 0;
 996}
 997
 998/* Initialize a buffer stack. */
 999static int create_buffer_stack(struct net_device *dev,
1000                               int kind, size_t num_buffers)
1001{
1002        pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
1003        int instance = mpipe_instance(dev);
1004        struct mpipe_data *md = &mpipe_data[instance];
1005        size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
1006        int stack_idx = md->first_buffer_stack + kind;
1007        void *va;
1008        int i, rc;
1009
1010        /* Round up to 64KB and then use alloc_pages() so we get the
1011         * required 64KB alignment.
1012         */
1013        md->buffer_stack_bytes[kind] =
1014                ALIGN(needed, 64 * 1024);
1015
1016        va = alloc_pages_exact(md->buffer_stack_bytes[kind], GFP_KERNEL);
1017        if (va == NULL) {
1018                netdev_err(dev,
1019                           "Could not alloc %zd bytes for buffer stack %d\n",
1020                           md->buffer_stack_bytes[kind], kind);
1021                return -ENOMEM;
1022        }
1023
1024        /* Initialize the buffer stack. */
1025        rc = gxio_mpipe_init_buffer_stack(&md->context, stack_idx,
1026                                          buffer_size_enums[kind],  va,
1027                                          md->buffer_stack_bytes[kind], 0);
1028        if (rc != 0) {
1029                netdev_err(dev, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
1030                           instance, rc);
1031                free_pages_exact(va, md->buffer_stack_bytes[kind]);
1032                return rc;
1033        }
1034
1035        md->buffer_stack_vas[kind] = va;
1036
1037        rc = gxio_mpipe_register_client_memory(&md->context, stack_idx,
1038                                               hash_pte, 0);
1039        if (rc != 0) {
1040                netdev_err(dev,
1041                           "gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
1042                           instance, rc);
1043                return rc;
1044        }
1045
1046        /* Provide initial buffers. */
1047        for (i = 0; i < num_buffers; i++) {
1048                if (!tile_net_provide_buffer(instance, kind)) {
1049                        netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
1050                        return -ENOMEM;
1051                }
1052        }
1053
1054        return 0;
1055}
1056
1057/* Allocate and initialize mpipe buffer stacks, and register them in
1058 * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
1059 * This routine supports tile_net_init_mpipe(), below.
1060 */
1061static int init_buffer_stacks(struct net_device *dev,
1062                              int network_cpus_count)
1063{
1064        int num_kinds = MAX_KINDS - (jumbo_num == 0);
1065        size_t num_buffers;
1066        int rc;
1067        int instance = mpipe_instance(dev);
1068        struct mpipe_data *md = &mpipe_data[instance];
1069
1070        /* Allocate the buffer stacks. */
1071        rc = gxio_mpipe_alloc_buffer_stacks(&md->context, num_kinds, 0, 0);
1072        if (rc < 0) {
1073                netdev_err(dev,
1074                           "gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
1075                           instance, rc);
1076                return rc;
1077        }
1078        md->first_buffer_stack = rc;
1079
1080        /* Enough small/large buffers to (normally) avoid buffer errors. */
1081        num_buffers =
1082                network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);
1083
1084        /* Allocate the small memory stack. */
1085        if (rc >= 0)
1086                rc = create_buffer_stack(dev, 0, num_buffers);
1087
1088        /* Allocate the large buffer stack. */
1089        if (rc >= 0)
1090                rc = create_buffer_stack(dev, 1, num_buffers);
1091
1092        /* Allocate the jumbo buffer stack if needed. */
1093        if (rc >= 0 && jumbo_num != 0)
1094                rc = create_buffer_stack(dev, 2, jumbo_num);
1095
1096        return rc;
1097}
1098
1099/* Allocate per-cpu resources (memory for completions and idescs).
1100 * This routine supports tile_net_init_mpipe(), below.
1101 */
1102static int alloc_percpu_mpipe_resources(struct net_device *dev,
1103                                        int cpu, int ring)
1104{
1105        struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1106        int order, i, rc;
1107        int instance = mpipe_instance(dev);
1108        struct mpipe_data *md = &mpipe_data[instance];
1109        struct page *page;
1110        void *addr;
1111
1112        /* Allocate the "comps". */
1113        order = get_order(COMPS_SIZE);
1114        page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1115        if (page == NULL) {
1116                netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
1117                           COMPS_SIZE);
1118                return -ENOMEM;
1119        }
1120        addr = pfn_to_kaddr(page_to_pfn(page));
1121        memset(addr, 0, COMPS_SIZE);
1122        for (i = 0; i < TILE_NET_CHANNELS; i++)
1123                info->mpipe[instance].comps_for_echannel[i] =
1124                        addr + i * sizeof(struct tile_net_comps);
1125
1126        /* If this is a network cpu, create an iqueue. */
1127        if (cpumask_test_cpu(cpu, &network_cpus_map)) {
1128                order = get_order(NOTIF_RING_SIZE);
1129                page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1130                if (page == NULL) {
1131                        netdev_err(dev,
1132                                   "Failed to alloc %zd bytes iqueue memory\n",
1133                                   NOTIF_RING_SIZE);
1134                        return -ENOMEM;
1135                }
1136                addr = pfn_to_kaddr(page_to_pfn(page));
1137                rc = gxio_mpipe_iqueue_init(&info->mpipe[instance].iqueue,
1138                                            &md->context, ring++, addr,
1139                                            NOTIF_RING_SIZE, 0);
1140                if (rc < 0) {
1141                        netdev_err(dev,
1142                                   "gxio_mpipe_iqueue_init failed: %d\n", rc);
1143                        return rc;
1144                }
1145                info->mpipe[instance].has_iqueue = true;
1146        }
1147
1148        return ring;
1149}
1150
1151/* Initialize NotifGroup and buckets.
1152 * This routine supports tile_net_init_mpipe(), below.
1153 */
1154static int init_notif_group_and_buckets(struct net_device *dev,
1155                                        int ring, int network_cpus_count)
1156{
1157        int group, rc;
1158        int instance = mpipe_instance(dev);
1159        struct mpipe_data *md = &mpipe_data[instance];
1160
1161        /* Allocate one NotifGroup. */
1162        rc = gxio_mpipe_alloc_notif_groups(&md->context, 1, 0, 0);
1163        if (rc < 0) {
1164                netdev_err(dev, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
1165                           instance, rc);
1166                return rc;
1167        }
1168        group = rc;
1169
1170        /* Initialize global num_buckets value. */
1171        if (network_cpus_count > 4)
1172                md->num_buckets = 256;
1173        else if (network_cpus_count > 1)
1174                md->num_buckets = 16;
1175
1176        /* Allocate some buckets, and set global first_bucket value. */
1177        rc = gxio_mpipe_alloc_buckets(&md->context, md->num_buckets, 0, 0);
1178        if (rc < 0) {
1179                netdev_err(dev, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
1180                           instance, rc);
1181                return rc;
1182        }
1183        md->first_bucket = rc;
1184
1185        /* Init group and buckets. */
1186        rc = gxio_mpipe_init_notif_group_and_buckets(
1187                &md->context, group, ring, network_cpus_count,
1188                md->first_bucket, md->num_buckets,
1189                GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
1190        if (rc != 0) {
1191                netdev_err(dev, "gxio_mpipe_init_notif_group_and_buckets: "
1192                           "mpipe[%d] %d\n", instance, rc);
1193                return rc;
1194        }
1195
1196        return 0;
1197}
1198
1199/* Create an irq and register it, then activate the irq and request
1200 * interrupts on all cores.  Note that "ingress_irq" being initialized
1201 * is how we know not to call tile_net_init_mpipe() again.
1202 * This routine supports tile_net_init_mpipe(), below.
1203 */
1204static int tile_net_setup_interrupts(struct net_device *dev)
1205{
1206        int cpu, rc, irq;
1207        int instance = mpipe_instance(dev);
1208        struct mpipe_data *md = &mpipe_data[instance];
1209
1210        irq = md->ingress_irq;
1211        if (irq < 0) {
1212                irq = irq_alloc_hwirq(-1);
1213                if (!irq) {
1214                        netdev_err(dev,
1215                                   "create_irq failed: mpipe[%d] %d\n",
1216                                   instance, irq);
1217                        return irq;
1218                }
1219                tile_irq_activate(irq, TILE_IRQ_PERCPU);
1220
1221                rc = request_irq(irq, tile_net_handle_ingress_irq,
1222                                 0, "tile_net", (void *)((uint64_t)instance));
1223
1224                if (rc != 0) {
1225                        netdev_err(dev, "request_irq failed: mpipe[%d] %d\n",
1226                                   instance, rc);
1227                        irq_free_hwirq(irq);
1228                        return rc;
1229                }
1230                md->ingress_irq = irq;
1231        }
1232
1233        for_each_online_cpu(cpu) {
1234                struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1235                if (info->mpipe[instance].has_iqueue) {
1236                        gxio_mpipe_request_notif_ring_interrupt(&md->context,
1237                                cpu_x(cpu), cpu_y(cpu), KERNEL_PL, irq,
1238                                info->mpipe[instance].iqueue.ring);
1239                }
1240        }
1241
1242        return 0;
1243}
1244
1245/* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
1246static void tile_net_init_mpipe_fail(int instance)
1247{
1248        int kind, cpu;
1249        struct mpipe_data *md = &mpipe_data[instance];
1250
1251        /* Do cleanups that require the mpipe context first. */
1252        for (kind = 0; kind < MAX_KINDS; kind++) {
1253                if (md->buffer_stack_vas[kind] != NULL) {
1254                        tile_net_pop_all_buffers(instance,
1255                                                 md->first_buffer_stack +
1256                                                 kind);
1257                }
1258        }
1259
1260        /* Destroy mpipe context so the hardware no longer owns any memory. */
1261        gxio_mpipe_destroy(&md->context);
1262
1263        for_each_online_cpu(cpu) {
1264                struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1265                free_pages(
1266                        (unsigned long)(
1267                                info->mpipe[instance].comps_for_echannel[0]),
1268                        get_order(COMPS_SIZE));
1269                info->mpipe[instance].comps_for_echannel[0] = NULL;
1270                free_pages((unsigned long)(info->mpipe[instance].iqueue.idescs),
1271                           get_order(NOTIF_RING_SIZE));
1272                info->mpipe[instance].iqueue.idescs = NULL;
1273        }
1274
1275        for (kind = 0; kind < MAX_KINDS; kind++) {
1276                if (md->buffer_stack_vas[kind] != NULL) {
1277                        free_pages_exact(md->buffer_stack_vas[kind],
1278                                         md->buffer_stack_bytes[kind]);
1279                        md->buffer_stack_vas[kind] = NULL;
1280                }
1281        }
1282
1283        md->first_buffer_stack = -1;
1284        md->first_bucket = -1;
1285}
1286
1287/* The first time any tilegx network device is opened, we initialize
1288 * the global mpipe state.  If this step fails, we fail to open the
1289 * device, but if it succeeds, we never need to do it again, and since
1290 * tile_net can't be unloaded, we never undo it.
1291 *
1292 * Note that some resources in this path (buffer stack indices,
1293 * bindings from init_buffer_stack, etc.) are hypervisor resources
1294 * that are freed implicitly by gxio_mpipe_destroy().
1295 */
1296static int tile_net_init_mpipe(struct net_device *dev)
1297{
1298        int rc;
1299        int cpu;
1300        int first_ring, ring;
1301        int instance = mpipe_instance(dev);
1302        struct mpipe_data *md = &mpipe_data[instance];
1303        int network_cpus_count = cpumask_weight(&network_cpus_map);
1304
1305        if (!hash_default) {
1306                netdev_err(dev, "Networking requires hash_default!\n");
1307                return -EIO;
1308        }
1309
1310        rc = gxio_mpipe_init(&md->context, instance);
1311        if (rc != 0) {
1312                netdev_err(dev, "gxio_mpipe_init: mpipe[%d] %d\n",
1313                           instance, rc);
1314                return -EIO;
1315        }
1316
1317        /* Set up the buffer stacks. */
1318        rc = init_buffer_stacks(dev, network_cpus_count);
1319        if (rc != 0)
1320                goto fail;
1321
1322        /* Allocate one NotifRing for each network cpu. */
1323        rc = gxio_mpipe_alloc_notif_rings(&md->context,
1324                                          network_cpus_count, 0, 0);
1325        if (rc < 0) {
1326                netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
1327                           rc);
1328                goto fail;
1329        }
1330
1331        /* Init NotifRings per-cpu. */
1332        first_ring = rc;
1333        ring = first_ring;
1334        for_each_online_cpu(cpu) {
1335                rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
1336                if (rc < 0)
1337                        goto fail;
1338                ring = rc;
1339        }
1340
1341        /* Initialize NotifGroup and buckets. */
1342        rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
1343        if (rc != 0)
1344                goto fail;
1345
1346        /* Create and enable interrupts. */
1347        rc = tile_net_setup_interrupts(dev);
1348        if (rc != 0)
1349                goto fail;
1350
1351        /* Register PTP clock and set mPIPE timestamp, if configured. */
1352        register_ptp_clock(dev, md);
1353
1354        return 0;
1355
1356fail:
1357        tile_net_init_mpipe_fail(instance);
1358        return rc;
1359}
1360
1361/* Create persistent egress info for a given egress channel.
1362 * Note that this may be shared between, say, "gbe0" and "xgbe0".
1363 * ISSUE: Defer header allocation until TSO is actually needed?
1364 */
1365static int tile_net_init_egress(struct net_device *dev, int echannel)
1366{
1367        static int ering = -1;
1368        struct page *headers_page, *edescs_page, *equeue_page;
1369        gxio_mpipe_edesc_t *edescs;
1370        gxio_mpipe_equeue_t *equeue;
1371        unsigned char *headers;
1372        int headers_order, edescs_order, equeue_order;
1373        size_t edescs_size;
1374        int rc = -ENOMEM;
1375        int instance = mpipe_instance(dev);
1376        struct mpipe_data *md = &mpipe_data[instance];
1377
1378        /* Only initialize once. */
1379        if (md->egress_for_echannel[echannel].equeue != NULL)
1380                return 0;
1381
1382        /* Allocate memory for the "headers". */
1383        headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
1384        headers_page = alloc_pages(GFP_KERNEL, headers_order);
1385        if (headers_page == NULL) {
1386                netdev_warn(dev,
1387                            "Could not alloc %zd bytes for TSO headers.\n",
1388                            PAGE_SIZE << headers_order);
1389                goto fail;
1390        }
1391        headers = pfn_to_kaddr(page_to_pfn(headers_page));
1392
1393        /* Allocate memory for the "edescs". */
1394        edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
1395        edescs_order = get_order(edescs_size);
1396        edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
1397        if (edescs_page == NULL) {
1398                netdev_warn(dev,
1399                            "Could not alloc %zd bytes for eDMA ring.\n",
1400                            edescs_size);
1401                goto fail_headers;
1402        }
1403        edescs = pfn_to_kaddr(page_to_pfn(edescs_page));
1404
1405        /* Allocate memory for the "equeue". */
1406        equeue_order = get_order(sizeof(*equeue));
1407        equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
1408        if (equeue_page == NULL) {
1409                netdev_warn(dev,
1410                            "Could not alloc %zd bytes for equeue info.\n",
1411                            PAGE_SIZE << equeue_order);
1412                goto fail_edescs;
1413        }
1414        equeue = pfn_to_kaddr(page_to_pfn(equeue_page));
1415
1416        /* Allocate an edma ring (using a one entry "free list"). */
1417        if (ering < 0) {
1418                rc = gxio_mpipe_alloc_edma_rings(&md->context, 1, 0, 0);
1419                if (rc < 0) {
1420                        netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: "
1421                                    "mpipe[%d] %d\n", instance, rc);
1422                        goto fail_equeue;
1423                }
1424                ering = rc;
1425        }
1426
1427        /* Initialize the equeue. */
1428        rc = gxio_mpipe_equeue_init(equeue, &md->context, ering, echannel,
1429                                    edescs, edescs_size, 0);
1430        if (rc != 0) {
1431                netdev_err(dev, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
1432                           instance, rc);
1433                goto fail_equeue;
1434        }
1435
1436        /* Don't reuse the ering later. */
1437        ering = -1;
1438
1439        if (jumbo_num != 0) {
1440                /* Make sure "jumbo" packets can be egressed safely. */
1441                if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
1442                        /* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
1443                        netdev_warn(dev, "Jumbo packets may not be egressed"
1444                                    " properly on channel %d\n", echannel);
1445                }
1446        }
1447
1448        /* Done. */
1449        md->egress_for_echannel[echannel].equeue = equeue;
1450        md->egress_for_echannel[echannel].headers = headers;
1451        return 0;
1452
1453fail_equeue:
1454        __free_pages(equeue_page, equeue_order);
1455
1456fail_edescs:
1457        __free_pages(edescs_page, edescs_order);
1458
1459fail_headers:
1460        __free_pages(headers_page, headers_order);
1461
1462fail:
1463        return rc;
1464}
1465
1466/* Return channel number for a newly-opened link. */
1467static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
1468                              const char *link_name)
1469{
1470        int instance = mpipe_instance(dev);
1471        struct mpipe_data *md = &mpipe_data[instance];
1472        int rc = gxio_mpipe_link_open(link, &md->context, link_name, 0);
1473        if (rc < 0) {
1474                netdev_err(dev, "Failed to open '%s', mpipe[%d], %d\n",
1475                           link_name, instance, rc);
1476                return rc;
1477        }
1478        if (jumbo_num != 0) {
1479                u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
1480                rc = gxio_mpipe_link_set_attr(link, attr, 1);
1481                if (rc != 0) {
1482                        netdev_err(dev,
1483                                   "Cannot receive jumbo packets on '%s'\n",
1484                                   link_name);
1485                        gxio_mpipe_link_close(link);
1486                        return rc;
1487                }
1488        }
1489        rc = gxio_mpipe_link_channel(link);
1490        if (rc < 0 || rc >= TILE_NET_CHANNELS) {
1491                netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
1492                gxio_mpipe_link_close(link);
1493                return -EINVAL;
1494        }
1495        return rc;
1496}
1497
1498/* Help the kernel activate the given network interface. */
1499static int tile_net_open(struct net_device *dev)
1500{
1501        struct tile_net_priv *priv = netdev_priv(dev);
1502        int cpu, rc, instance;
1503
1504        mutex_lock(&tile_net_devs_for_channel_mutex);
1505
1506        /* Get the instance info. */
1507        rc = gxio_mpipe_link_instance(dev->name);
1508        if (rc < 0 || rc >= NR_MPIPE_MAX) {
1509                mutex_unlock(&tile_net_devs_for_channel_mutex);
1510                return -EIO;
1511        }
1512
1513        priv->instance = rc;
1514        instance = rc;
1515        if (!mpipe_data[rc].context.mmio_fast_base) {
1516                /* Do one-time initialization per instance the first time
1517                 * any device is opened.
1518                 */
1519                rc = tile_net_init_mpipe(dev);
1520                if (rc != 0)
1521                        goto fail;
1522        }
1523
1524        /* Determine if this is the "loopify" device. */
1525        if (unlikely((loopify_link_name != NULL) &&
1526                     !strcmp(dev->name, loopify_link_name))) {
1527                rc = tile_net_link_open(dev, &priv->link, "loop0");
1528                if (rc < 0)
1529                        goto fail;
1530                priv->channel = rc;
1531                rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
1532                if (rc < 0)
1533                        goto fail;
1534                priv->loopify_channel = rc;
1535                priv->echannel = rc;
1536        } else {
1537                rc = tile_net_link_open(dev, &priv->link, dev->name);
1538                if (rc < 0)
1539                        goto fail;
1540                priv->channel = rc;
1541                priv->echannel = rc;
1542        }
1543
1544        /* Initialize egress info (if needed).  Once ever, per echannel. */
1545        rc = tile_net_init_egress(dev, priv->echannel);
1546        if (rc != 0)
1547                goto fail;
1548
1549        mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = dev;
1550
1551        rc = tile_net_update(dev);
1552        if (rc != 0)
1553                goto fail;
1554
1555        mutex_unlock(&tile_net_devs_for_channel_mutex);
1556
1557        /* Initialize the transmit wake timer for this device for each cpu. */
1558        for_each_online_cpu(cpu) {
1559                struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1560                struct tile_net_tx_wake *tx_wake =
1561                        &info->mpipe[instance].tx_wake[priv->echannel];
1562
1563                hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
1564                             HRTIMER_MODE_REL);
1565                tx_wake->tx_queue_idx = cpu;
1566                tx_wake->timer.function = tile_net_handle_tx_wake_timer;
1567                tx_wake->dev = dev;
1568        }
1569
1570        for_each_online_cpu(cpu)
1571                netif_start_subqueue(dev, cpu);
1572        netif_carrier_on(dev);
1573        return 0;
1574
1575fail:
1576        if (priv->loopify_channel >= 0) {
1577                if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1578                        netdev_warn(dev, "Failed to close loopify link!\n");
1579                priv->loopify_channel = -1;
1580        }
1581        if (priv->channel >= 0) {
1582                if (gxio_mpipe_link_close(&priv->link) != 0)
1583                        netdev_warn(dev, "Failed to close link!\n");
1584                priv->channel = -1;
1585        }
1586        priv->echannel = -1;
1587        mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = NULL;
1588        mutex_unlock(&tile_net_devs_for_channel_mutex);
1589
1590        /* Don't return raw gxio error codes to generic Linux. */
1591        return (rc > -512) ? rc : -EIO;
1592}
1593
1594/* Help the kernel deactivate the given network interface. */
1595static int tile_net_stop(struct net_device *dev)
1596{
1597        struct tile_net_priv *priv = netdev_priv(dev);
1598        int cpu;
1599        int instance = priv->instance;
1600        struct mpipe_data *md = &mpipe_data[instance];
1601
1602        for_each_online_cpu(cpu) {
1603                struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1604                struct tile_net_tx_wake *tx_wake =
1605                        &info->mpipe[instance].tx_wake[priv->echannel];
1606
1607                hrtimer_cancel(&tx_wake->timer);
1608                netif_stop_subqueue(dev, cpu);
1609        }
1610
1611        mutex_lock(&tile_net_devs_for_channel_mutex);
1612        md->tile_net_devs_for_channel[priv->channel] = NULL;
1613        (void)tile_net_update(dev);
1614        if (priv->loopify_channel >= 0) {
1615                if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1616                        netdev_warn(dev, "Failed to close loopify link!\n");
1617                priv->loopify_channel = -1;
1618        }
1619        if (priv->channel >= 0) {
1620                if (gxio_mpipe_link_close(&priv->link) != 0)
1621                        netdev_warn(dev, "Failed to close link!\n");
1622                priv->channel = -1;
1623        }
1624        priv->echannel = -1;
1625        mutex_unlock(&tile_net_devs_for_channel_mutex);
1626
1627        return 0;
1628}
1629
1630/* Determine the VA for a fragment. */
1631static inline void *tile_net_frag_buf(skb_frag_t *f)
1632{
1633        unsigned long pfn = page_to_pfn(skb_frag_page(f));
1634        return pfn_to_kaddr(pfn) + f->page_offset;
1635}
1636
1637/* Acquire a completion entry and an egress slot, or if we can't,
1638 * stop the queue and schedule the tx_wake timer.
1639 */
1640static s64 tile_net_equeue_try_reserve(struct net_device *dev,
1641                                       int tx_queue_idx,
1642                                       struct tile_net_comps *comps,
1643                                       gxio_mpipe_equeue_t *equeue,
1644                                       int num_edescs)
1645{
1646        /* Try to acquire a completion entry. */
1647        if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
1648            tile_net_free_comps(equeue, comps, 32, false) != 0) {
1649
1650                /* Try to acquire an egress slot. */
1651                s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1652                if (slot >= 0)
1653                        return slot;
1654
1655                /* Freeing some completions gives the equeue time to drain. */
1656                tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);
1657
1658                slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1659                if (slot >= 0)
1660                        return slot;
1661        }
1662
1663        /* Still nothing; give up and stop the queue for a short while. */
1664        netif_stop_subqueue(dev, tx_queue_idx);
1665        tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
1666        return -1;
1667}
1668
1669/* Determine how many edesc's are needed for TSO.
1670 *
1671 * Sometimes, if "sendfile()" requires copying, we will be called with
1672 * "data" containing the header and payload, with "frags" being empty.
1673 * Sometimes, for example when using NFS over TCP, a single segment can
1674 * span 3 fragments.  This requires special care.
1675 */
1676static int tso_count_edescs(struct sk_buff *skb)
1677{
1678        struct skb_shared_info *sh = skb_shinfo(skb);
1679        unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1680        unsigned int data_len = skb->len - sh_len;
1681        unsigned int p_len = sh->gso_size;
1682        long f_id = -1;    /* id of the current fragment */
1683        long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1684        long f_used = 0;  /* bytes used from the current fragment */
1685        long n;            /* size of the current piece of payload */
1686        int num_edescs = 0;
1687        int segment;
1688
1689        for (segment = 0; segment < sh->gso_segs; segment++) {
1690
1691                unsigned int p_used = 0;
1692
1693                /* One edesc for header and for each piece of the payload. */
1694                for (num_edescs++; p_used < p_len; num_edescs++) {
1695
1696                        /* Advance as needed. */
1697                        while (f_used >= f_size) {
1698                                f_id++;
1699                                f_size = skb_frag_size(&sh->frags[f_id]);
1700                                f_used = 0;
1701                        }
1702
1703                        /* Use bytes from the current fragment. */
1704                        n = p_len - p_used;
1705                        if (n > f_size - f_used)
1706                                n = f_size - f_used;
1707                        f_used += n;
1708                        p_used += n;
1709                }
1710
1711                /* The last segment may be less than gso_size. */
1712                data_len -= p_len;
1713                if (data_len < p_len)
1714                        p_len = data_len;
1715        }
1716
1717        return num_edescs;
1718}
1719
1720/* Prepare modified copies of the skbuff headers. */
1721static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
1722                                s64 slot)
1723{
1724        struct skb_shared_info *sh = skb_shinfo(skb);
1725        struct iphdr *ih;
1726        struct ipv6hdr *ih6;
1727        struct tcphdr *th;
1728        unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1729        unsigned int data_len = skb->len - sh_len;
1730        unsigned char *data = skb->data;
1731        unsigned int ih_off, th_off, p_len;
1732        unsigned int isum_seed, tsum_seed, seq;
1733        unsigned int uninitialized_var(id);
1734        int is_ipv6;
1735        long f_id = -1;    /* id of the current fragment */
1736        long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1737        long f_used = 0;  /* bytes used from the current fragment */
1738        long n;            /* size of the current piece of payload */
1739        int segment;
1740
1741        /* Locate original headers and compute various lengths. */
1742        is_ipv6 = skb_is_gso_v6(skb);
1743        if (is_ipv6) {
1744                ih6 = ipv6_hdr(skb);
1745                ih_off = skb_network_offset(skb);
1746        } else {
1747                ih = ip_hdr(skb);
1748                ih_off = skb_network_offset(skb);
1749                isum_seed = ((0xFFFF - ih->check) +
1750                             (0xFFFF - ih->tot_len) +
1751                             (0xFFFF - ih->id));
1752                id = ntohs(ih->id);
1753        }
1754
1755        th = tcp_hdr(skb);
1756        th_off = skb_transport_offset(skb);
1757        p_len = sh->gso_size;
1758
1759        tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
1760        seq = ntohl(th->seq);
1761
1762        /* Prepare all the headers. */
1763        for (segment = 0; segment < sh->gso_segs; segment++) {
1764                unsigned char *buf;
1765                unsigned int p_used = 0;
1766
1767                /* Copy to the header memory for this segment. */
1768                buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1769                        NET_IP_ALIGN;
1770                memcpy(buf, data, sh_len);
1771
1772                /* Update copied ip header. */
1773                if (is_ipv6) {
1774                        ih6 = (struct ipv6hdr *)(buf + ih_off);
1775                        ih6->payload_len = htons(sh_len + p_len - ih_off -
1776                                                 sizeof(*ih6));
1777                } else {
1778                        ih = (struct iphdr *)(buf + ih_off);
1779                        ih->tot_len = htons(sh_len + p_len - ih_off);
1780                        ih->id = htons(id++);
1781                        ih->check = csum_long(isum_seed + ih->tot_len +
1782                                              ih->id) ^ 0xffff;
1783                }
1784
1785                /* Update copied tcp header. */
1786                th = (struct tcphdr *)(buf + th_off);
1787                th->seq = htonl(seq);
1788                th->check = csum_long(tsum_seed + htons(sh_len + p_len));
1789                if (segment != sh->gso_segs - 1) {
1790                        th->fin = 0;
1791                        th->psh = 0;
1792                }
1793
1794                /* Skip past the header. */
1795                slot++;
1796
1797                /* Skip past the payload. */
1798                while (p_used < p_len) {
1799
1800                        /* Advance as needed. */
1801                        while (f_used >= f_size) {
1802                                f_id++;
1803                                f_size = skb_frag_size(&sh->frags[f_id]);
1804                                f_used = 0;
1805                        }
1806
1807                        /* Use bytes from the current fragment. */
1808                        n = p_len - p_used;
1809                        if (n > f_size - f_used)
1810                                n = f_size - f_used;
1811                        f_used += n;
1812                        p_used += n;
1813
1814                        slot++;
1815                }
1816
1817                seq += p_len;
1818
1819                /* The last segment may be less than gso_size. */
1820                data_len -= p_len;
1821                if (data_len < p_len)
1822                        p_len = data_len;
1823        }
1824
1825        /* Flush the headers so they are ready for hardware DMA. */
1826        wmb();
1827}
1828
1829/* Pass all the data to mpipe for egress. */
1830static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
1831                       struct sk_buff *skb, unsigned char *headers, s64 slot)
1832{
1833        struct skb_shared_info *sh = skb_shinfo(skb);
1834        int instance = mpipe_instance(dev);
1835        struct mpipe_data *md = &mpipe_data[instance];
1836        unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1837        unsigned int data_len = skb->len - sh_len;
1838        unsigned int p_len = sh->gso_size;
1839        gxio_mpipe_edesc_t edesc_head = { { 0 } };
1840        gxio_mpipe_edesc_t edesc_body = { { 0 } };
1841        long f_id = -1;    /* id of the current fragment */
1842        long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1843        long f_used = 0;  /* bytes used from the current fragment */
1844        void *f_data = skb->data + sh_len;
1845        long n;            /* size of the current piece of payload */
1846        unsigned long tx_packets = 0, tx_bytes = 0;
1847        unsigned int csum_start;
1848        int segment;
1849
1850        /* Prepare to egress the headers: set up header edesc. */
1851        csum_start = skb_checksum_start_offset(skb);
1852        edesc_head.csum = 1;
1853        edesc_head.csum_start = csum_start;
1854        edesc_head.csum_dest = csum_start + skb->csum_offset;
1855        edesc_head.xfer_size = sh_len;
1856
1857        /* This is only used to specify the TLB. */
1858        edesc_head.stack_idx = md->first_buffer_stack;
1859        edesc_body.stack_idx = md->first_buffer_stack;
1860
1861        /* Egress all the edescs. */
1862        for (segment = 0; segment < sh->gso_segs; segment++) {
1863                unsigned char *buf;
1864                unsigned int p_used = 0;
1865
1866                /* Egress the header. */
1867                buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1868                        NET_IP_ALIGN;
1869                edesc_head.va = va_to_tile_io_addr(buf);
1870                gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
1871                slot++;
1872
1873                /* Egress the payload. */
1874                while (p_used < p_len) {
1875                        void *va;
1876
1877                        /* Advance as needed. */
1878                        while (f_used >= f_size) {
1879                                f_id++;
1880                                f_size = skb_frag_size(&sh->frags[f_id]);
1881                                f_data = tile_net_frag_buf(&sh->frags[f_id]);
1882                                f_used = 0;
1883                        }
1884
1885                        va = f_data + f_used;
1886
1887                        /* Use bytes from the current fragment. */
1888                        n = p_len - p_used;
1889                        if (n > f_size - f_used)
1890                                n = f_size - f_used;
1891                        f_used += n;
1892                        p_used += n;
1893
1894                        /* Egress a piece of the payload. */
1895                        edesc_body.va = va_to_tile_io_addr(va);
1896                        edesc_body.xfer_size = n;
1897                        edesc_body.bound = !(p_used < p_len);
1898                        gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
1899                        slot++;
1900                }
1901
1902                tx_packets++;
1903                tx_bytes += sh_len + p_len;
1904
1905                /* The last segment may be less than gso_size. */
1906                data_len -= p_len;
1907                if (data_len < p_len)
1908                        p_len = data_len;
1909        }
1910
1911        /* Update stats. */
1912        tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
1913        tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
1914}
1915
1916/* Do "TSO" handling for egress.
1917 *
1918 * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1919 * otherwise the stack uses scatter-gather to implement GSO in software.
1920 * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1921 * performance down to around 7.5 Gbps on the 10G interfaces, although
1922 * also dropping cpu utilization way down, to under 8%.  But
1923 * implementing "TSO" in the driver brings performance back up to line
1924 * rate, while dropping cpu usage even further, to less than 4%.  In
1925 * practice, profiling of GSO shows that skb_segment() is what causes
1926 * the performance overheads; we benefit in the driver from using
1927 * preallocated memory to duplicate the TCP/IP headers.
1928 */
1929static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1930{
1931        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
1932        struct tile_net_priv *priv = netdev_priv(dev);
1933        int channel = priv->echannel;
1934        int instance = priv->instance;
1935        struct mpipe_data *md = &mpipe_data[instance];
1936        struct tile_net_egress *egress = &md->egress_for_echannel[channel];
1937        struct tile_net_comps *comps =
1938                info->mpipe[instance].comps_for_echannel[channel];
1939        gxio_mpipe_equeue_t *equeue = egress->equeue;
1940        unsigned long irqflags;
1941        int num_edescs;
1942        s64 slot;
1943
1944        /* Determine how many mpipe edesc's are needed. */
1945        num_edescs = tso_count_edescs(skb);
1946
1947        local_irq_save(irqflags);
1948
1949        /* Try to acquire a completion entry and an egress slot. */
1950        slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
1951                                           equeue, num_edescs);
1952        if (slot < 0) {
1953                local_irq_restore(irqflags);
1954                return NETDEV_TX_BUSY;
1955        }
1956
1957        /* Set up copies of header data properly. */
1958        tso_headers_prepare(skb, egress->headers, slot);
1959
1960        /* Actually pass the data to the network hardware. */
1961        tso_egress(dev, equeue, skb, egress->headers, slot);
1962
1963        /* Add a completion record. */
1964        add_comp(equeue, comps, slot + num_edescs - 1, skb);
1965
1966        local_irq_restore(irqflags);
1967
1968        /* Make sure the egress timer is scheduled. */
1969        tile_net_schedule_egress_timer();
1970
1971        return NETDEV_TX_OK;
1972}
1973
1974/* Analyze the body and frags for a transmit request. */
1975static unsigned int tile_net_tx_frags(struct frag *frags,
1976                                       struct sk_buff *skb,
1977                                       void *b_data, unsigned int b_len)
1978{
1979        unsigned int i, n = 0;
1980
1981        struct skb_shared_info *sh = skb_shinfo(skb);
1982
1983        if (b_len != 0) {
1984                frags[n].buf = b_data;
1985                frags[n++].length = b_len;
1986        }
1987
1988        for (i = 0; i < sh->nr_frags; i++) {
1989                skb_frag_t *f = &sh->frags[i];
1990                frags[n].buf = tile_net_frag_buf(f);
1991                frags[n++].length = skb_frag_size(f);
1992        }
1993
1994        return n;
1995}
1996
1997/* Help the kernel transmit a packet. */
1998static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1999{
2000        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2001        struct tile_net_priv *priv = netdev_priv(dev);
2002        int instance = priv->instance;
2003        struct mpipe_data *md = &mpipe_data[instance];
2004        struct tile_net_egress *egress =
2005                &md->egress_for_echannel[priv->echannel];
2006        gxio_mpipe_equeue_t *equeue = egress->equeue;
2007        struct tile_net_comps *comps =
2008                info->mpipe[instance].comps_for_echannel[priv->echannel];
2009        unsigned int len = skb->len;
2010        unsigned char *data = skb->data;
2011        unsigned int num_edescs;
2012        struct frag frags[MAX_FRAGS];
2013        gxio_mpipe_edesc_t edescs[MAX_FRAGS];
2014        unsigned long irqflags;
2015        gxio_mpipe_edesc_t edesc = { { 0 } };
2016        unsigned int i;
2017        s64 slot;
2018
2019        if (skb_is_gso(skb))
2020                return tile_net_tx_tso(skb, dev);
2021
2022        num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
2023
2024        /* This is only used to specify the TLB. */
2025        edesc.stack_idx = md->first_buffer_stack;
2026
2027        /* Prepare the edescs. */
2028        for (i = 0; i < num_edescs; i++) {
2029                edesc.xfer_size = frags[i].length;
2030                edesc.va = va_to_tile_io_addr(frags[i].buf);
2031                edescs[i] = edesc;
2032        }
2033
2034        /* Mark the final edesc. */
2035        edescs[num_edescs - 1].bound = 1;
2036
2037        /* Add checksum info to the initial edesc, if needed. */
2038        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2039                unsigned int csum_start = skb_checksum_start_offset(skb);
2040                edescs[0].csum = 1;
2041                edescs[0].csum_start = csum_start;
2042                edescs[0].csum_dest = csum_start + skb->csum_offset;
2043        }
2044
2045        local_irq_save(irqflags);
2046
2047        /* Try to acquire a completion entry and an egress slot. */
2048        slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
2049                                           equeue, num_edescs);
2050        if (slot < 0) {
2051                local_irq_restore(irqflags);
2052                return NETDEV_TX_BUSY;
2053        }
2054
2055        for (i = 0; i < num_edescs; i++)
2056                gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);
2057
2058        /* Store TX timestamp if needed. */
2059        tile_tx_timestamp(skb, instance);
2060
2061        /* Add a completion record. */
2062        add_comp(equeue, comps, slot - 1, skb);
2063
2064        /* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
2065        tile_net_stats_add(1, &dev->stats.tx_packets);
2066        tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
2067                           &dev->stats.tx_bytes);
2068
2069        local_irq_restore(irqflags);
2070
2071        /* Make sure the egress timer is scheduled. */
2072        tile_net_schedule_egress_timer();
2073
2074        return NETDEV_TX_OK;
2075}
2076
2077/* Return subqueue id on this core (one per core). */
2078static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb,
2079                                 void *accel_priv, select_queue_fallback_t fallback)
2080{
2081        return smp_processor_id();
2082}
2083
2084/* Deal with a transmit timeout. */
2085static void tile_net_tx_timeout(struct net_device *dev)
2086{
2087        int cpu;
2088
2089        for_each_online_cpu(cpu)
2090                netif_wake_subqueue(dev, cpu);
2091}
2092
2093/* Ioctl commands. */
2094static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2095{
2096        if (cmd == SIOCSHWTSTAMP)
2097                return tile_hwtstamp_set(dev, rq);
2098        if (cmd == SIOCGHWTSTAMP)
2099                return tile_hwtstamp_get(dev, rq);
2100
2101        return -EOPNOTSUPP;
2102}
2103
2104/* Change the MTU. */
2105static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2106{
2107        if (new_mtu < 68)
2108                return -EINVAL;
2109        if (new_mtu > ((jumbo_num != 0) ? 9000 : 1500))
2110                return -EINVAL;
2111        dev->mtu = new_mtu;
2112        return 0;
2113}
2114
2115/* Change the Ethernet address of the NIC.
2116 *
2117 * The hypervisor driver does not support changing MAC address.  However,
2118 * the hardware does not do anything with the MAC address, so the address
2119 * which gets used on outgoing packets, and which is accepted on incoming
2120 * packets, is completely up to us.
2121 *
2122 * Returns 0 on success, negative on failure.
2123 */
2124static int tile_net_set_mac_address(struct net_device *dev, void *p)
2125{
2126        struct sockaddr *addr = p;
2127
2128        if (!is_valid_ether_addr(addr->sa_data))
2129                return -EINVAL;
2130        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2131        return 0;
2132}
2133
2134#ifdef CONFIG_NET_POLL_CONTROLLER
2135/* Polling 'interrupt' - used by things like netconsole to send skbs
2136 * without having to re-enable interrupts. It's not called while
2137 * the interrupt routine is executing.
2138 */
2139static void tile_net_netpoll(struct net_device *dev)
2140{
2141        int instance = mpipe_instance(dev);
2142        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2143        struct mpipe_data *md = &mpipe_data[instance];
2144
2145        disable_percpu_irq(md->ingress_irq);
2146        napi_schedule(&info->mpipe[instance].napi);
2147        enable_percpu_irq(md->ingress_irq, 0);
2148}
2149#endif
2150
2151static const struct net_device_ops tile_net_ops = {
2152        .ndo_open = tile_net_open,
2153        .ndo_stop = tile_net_stop,
2154        .ndo_start_xmit = tile_net_tx,
2155        .ndo_select_queue = tile_net_select_queue,
2156        .ndo_do_ioctl = tile_net_ioctl,
2157        .ndo_change_mtu = tile_net_change_mtu,
2158        .ndo_tx_timeout = tile_net_tx_timeout,
2159        .ndo_set_mac_address = tile_net_set_mac_address,
2160#ifdef CONFIG_NET_POLL_CONTROLLER
2161        .ndo_poll_controller = tile_net_netpoll,
2162#endif
2163};
2164
2165/* The setup function.
2166 *
2167 * This uses ether_setup() to assign various fields in dev, including
2168 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2169 */
2170static void tile_net_setup(struct net_device *dev)
2171{
2172        netdev_features_t features = 0;
2173
2174        ether_setup(dev);
2175        dev->netdev_ops = &tile_net_ops;
2176        dev->watchdog_timeo = TILE_NET_TIMEOUT;
2177        dev->mtu = 1500;
2178
2179        features |= NETIF_F_HW_CSUM;
2180        features |= NETIF_F_SG;
2181        features |= NETIF_F_TSO;
2182        features |= NETIF_F_TSO6;
2183
2184        dev->hw_features   |= features;
2185        dev->vlan_features |= features;
2186        dev->features      |= features;
2187}
2188
2189/* Allocate the device structure, register the device, and obtain the
2190 * MAC address from the hypervisor.
2191 */
2192static void tile_net_dev_init(const char *name, const uint8_t *mac)
2193{
2194        int ret;
2195        struct net_device *dev;
2196        struct tile_net_priv *priv;
2197
2198        /* HACK: Ignore "loop" links. */
2199        if (strncmp(name, "loop", 4) == 0)
2200                return;
2201
2202        /* Allocate the device structure.  Normally, "name" is a
2203         * template, instantiated by register_netdev(), but not for us.
2204         */
2205        dev = alloc_netdev_mqs(sizeof(*priv), name, NET_NAME_UNKNOWN,
2206                               tile_net_setup, NR_CPUS, 1);
2207        if (!dev) {
2208                pr_err("alloc_netdev_mqs(%s) failed\n", name);
2209                return;
2210        }
2211
2212        /* Initialize "priv". */
2213        priv = netdev_priv(dev);
2214        priv->dev = dev;
2215        priv->channel = -1;
2216        priv->loopify_channel = -1;
2217        priv->echannel = -1;
2218        init_ptp_dev(priv);
2219
2220        /* Get the MAC address and set it in the device struct; this must
2221         * be done before the device is opened.  If the MAC is all zeroes,
2222         * we use a random address, since we're probably on the simulator.
2223         */
2224        if (!is_zero_ether_addr(mac))
2225                ether_addr_copy(dev->dev_addr, mac);
2226        else
2227                eth_hw_addr_random(dev);
2228
2229        /* Register the network device. */
2230        ret = register_netdev(dev);
2231        if (ret) {
2232                netdev_err(dev, "register_netdev failed %d\n", ret);
2233                free_netdev(dev);
2234                return;
2235        }
2236}
2237
2238/* Per-cpu module initialization. */
2239static void tile_net_init_module_percpu(void *unused)
2240{
2241        struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2242        int my_cpu = smp_processor_id();
2243        int instance;
2244
2245        for (instance = 0; instance < NR_MPIPE_MAX; instance++) {
2246                info->mpipe[instance].has_iqueue = false;
2247                info->mpipe[instance].instance = instance;
2248        }
2249        info->my_cpu = my_cpu;
2250
2251        /* Initialize the egress timer. */
2252        hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2253        info->egress_timer.function = tile_net_handle_egress_timer;
2254}
2255
2256/* Module initialization. */
2257static int __init tile_net_init_module(void)
2258{
2259        int i;
2260        char name[GXIO_MPIPE_LINK_NAME_LEN];
2261        uint8_t mac[6];
2262
2263        pr_info("Tilera Network Driver\n");
2264
2265        BUILD_BUG_ON(NR_MPIPE_MAX != 2);
2266
2267        mutex_init(&tile_net_devs_for_channel_mutex);
2268
2269        /* Initialize each CPU. */
2270        on_each_cpu(tile_net_init_module_percpu, NULL, 1);
2271
2272        /* Find out what devices we have, and initialize them. */
2273        for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
2274                tile_net_dev_init(name, mac);
2275
2276        if (!network_cpus_init())
2277                cpumask_and(&network_cpus_map, housekeeping_cpumask(),
2278                            cpu_online_mask);
2279
2280        return 0;
2281}
2282
2283module_init(tile_net_init_module);
2284