linux/drivers/net/irda/sa1100_ir.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/net/irda/sa1100_ir.c
   3 *
   4 *  Copyright (C) 2000-2001 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  Infra-red driver for the StrongARM SA1100 embedded microprocessor
  11 *
  12 *  Note that we don't have to worry about the SA1111's DMA bugs in here,
  13 *  so we use the straight forward dma_map_* functions with a null pointer.
  14 *
  15 *  This driver takes one kernel command line parameter, sa1100ir=, with
  16 *  the following options:
  17 *      max_rate:baudrate       - set the maximum baud rate
  18 *      power_level:level       - set the transmitter power level
  19 *      tx_lpm:0|1              - set transmit low power mode
  20 */
  21#include <linux/module.h>
  22#include <linux/moduleparam.h>
  23#include <linux/types.h>
  24#include <linux/init.h>
  25#include <linux/errno.h>
  26#include <linux/netdevice.h>
  27#include <linux/slab.h>
  28#include <linux/rtnetlink.h>
  29#include <linux/interrupt.h>
  30#include <linux/delay.h>
  31#include <linux/platform_device.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/dmaengine.h>
  34#include <linux/sa11x0-dma.h>
  35
  36#include <net/irda/irda.h>
  37#include <net/irda/wrapper.h>
  38#include <net/irda/irda_device.h>
  39
  40#include <mach/hardware.h>
  41#include <linux/platform_data/irda-sa11x0.h>
  42
  43static int power_level = 3;
  44static int tx_lpm;
  45static int max_rate = 4000000;
  46
  47struct sa1100_buf {
  48        struct device           *dev;
  49        struct sk_buff          *skb;
  50        struct scatterlist      sg;
  51        struct dma_chan         *chan;
  52        dma_cookie_t            cookie;
  53};
  54
  55struct sa1100_irda {
  56        unsigned char           utcr4;
  57        unsigned char           power;
  58        unsigned char           open;
  59
  60        int                     speed;
  61        int                     newspeed;
  62
  63        struct sa1100_buf       dma_rx;
  64        struct sa1100_buf       dma_tx;
  65
  66        struct device           *dev;
  67        struct irda_platform_data *pdata;
  68        struct irlap_cb         *irlap;
  69        struct qos_info         qos;
  70
  71        iobuff_t                tx_buff;
  72        iobuff_t                rx_buff;
  73
  74        int (*tx_start)(struct sk_buff *, struct net_device *, struct sa1100_irda *);
  75        irqreturn_t (*irq)(struct net_device *, struct sa1100_irda *);
  76};
  77
  78static int sa1100_irda_set_speed(struct sa1100_irda *, int);
  79
  80#define IS_FIR(si)              ((si)->speed >= 4000000)
  81
  82#define HPSIR_MAX_RXLEN         2047
  83
  84static struct dma_slave_config sa1100_irda_sir_tx = {
  85        .direction      = DMA_TO_DEVICE,
  86        .dst_addr       = __PREG(Ser2UTDR),
  87        .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  88        .dst_maxburst   = 4,
  89};
  90
  91static struct dma_slave_config sa1100_irda_fir_rx = {
  92        .direction      = DMA_FROM_DEVICE,
  93        .src_addr       = __PREG(Ser2HSDR),
  94        .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
  95        .src_maxburst   = 8,
  96};
  97
  98static struct dma_slave_config sa1100_irda_fir_tx = {
  99        .direction      = DMA_TO_DEVICE,
 100        .dst_addr       = __PREG(Ser2HSDR),
 101        .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
 102        .dst_maxburst   = 8,
 103};
 104
 105static unsigned sa1100_irda_dma_xferred(struct sa1100_buf *buf)
 106{
 107        struct dma_chan *chan = buf->chan;
 108        struct dma_tx_state state;
 109        enum dma_status status;
 110
 111        status = chan->device->device_tx_status(chan, buf->cookie, &state);
 112        if (status != DMA_PAUSED)
 113                return 0;
 114
 115        return sg_dma_len(&buf->sg) - state.residue;
 116}
 117
 118static int sa1100_irda_dma_request(struct device *dev, struct sa1100_buf *buf,
 119        const char *name, struct dma_slave_config *cfg)
 120{
 121        dma_cap_mask_t m;
 122        int ret;
 123
 124        dma_cap_zero(m);
 125        dma_cap_set(DMA_SLAVE, m);
 126
 127        buf->chan = dma_request_channel(m, sa11x0_dma_filter_fn, (void *)name);
 128        if (!buf->chan) {
 129                dev_err(dev, "unable to request DMA channel for %s\n",
 130                        name);
 131                return -ENOENT;
 132        }
 133
 134        ret = dmaengine_slave_config(buf->chan, cfg);
 135        if (ret)
 136                dev_warn(dev, "DMA slave_config for %s returned %d\n",
 137                        name, ret);
 138
 139        buf->dev = buf->chan->device->dev;
 140
 141        return 0;
 142}
 143
 144static void sa1100_irda_dma_start(struct sa1100_buf *buf,
 145        enum dma_transfer_direction dir, dma_async_tx_callback cb, void *cb_p)
 146{
 147        struct dma_async_tx_descriptor *desc;
 148        struct dma_chan *chan = buf->chan;
 149
 150        desc = dmaengine_prep_slave_sg(chan, &buf->sg, 1, dir,
 151                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 152        if (desc) {
 153                desc->callback = cb;
 154                desc->callback_param = cb_p;
 155                buf->cookie = dmaengine_submit(desc);
 156                dma_async_issue_pending(chan);
 157        }
 158}
 159
 160/*
 161 * Allocate and map the receive buffer, unless it is already allocated.
 162 */
 163static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
 164{
 165        if (si->dma_rx.skb)
 166                return 0;
 167
 168        si->dma_rx.skb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
 169        if (!si->dma_rx.skb) {
 170                printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
 171                return -ENOMEM;
 172        }
 173
 174        /*
 175         * Align any IP headers that may be contained
 176         * within the frame.
 177         */
 178        skb_reserve(si->dma_rx.skb, 1);
 179
 180        sg_set_buf(&si->dma_rx.sg, si->dma_rx.skb->data, HPSIR_MAX_RXLEN);
 181        if (dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE) == 0) {
 182                dev_kfree_skb_any(si->dma_rx.skb);
 183                return -ENOMEM;
 184        }
 185
 186        return 0;
 187}
 188
 189/*
 190 * We want to get here as soon as possible, and get the receiver setup.
 191 * We use the existing buffer.
 192 */
 193static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
 194{
 195        if (!si->dma_rx.skb) {
 196                printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
 197                return;
 198        }
 199
 200        /*
 201         * First empty receive FIFO
 202         */
 203        Ser2HSCR0 = HSCR0_HSSP;
 204
 205        /*
 206         * Enable the DMA, receiver and receive interrupt.
 207         */
 208        dmaengine_terminate_all(si->dma_rx.chan);
 209        sa1100_irda_dma_start(&si->dma_rx, DMA_DEV_TO_MEM, NULL, NULL);
 210
 211        Ser2HSCR0 = HSCR0_HSSP | HSCR0_RXE;
 212}
 213
 214static void sa1100_irda_check_speed(struct sa1100_irda *si)
 215{
 216        if (si->newspeed) {
 217                sa1100_irda_set_speed(si, si->newspeed);
 218                si->newspeed = 0;
 219        }
 220}
 221
 222/*
 223 * HP-SIR format support.
 224 */
 225static void sa1100_irda_sirtxdma_irq(void *id)
 226{
 227        struct net_device *dev = id;
 228        struct sa1100_irda *si = netdev_priv(dev);
 229
 230        dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE);
 231        dev_kfree_skb(si->dma_tx.skb);
 232        si->dma_tx.skb = NULL;
 233
 234        dev->stats.tx_packets++;
 235        dev->stats.tx_bytes += sg_dma_len(&si->dma_tx.sg);
 236
 237        /* We need to ensure that the transmitter has finished. */
 238        do
 239                rmb();
 240        while (Ser2UTSR1 & UTSR1_TBY);
 241
 242        /*
 243         * Ok, we've finished transmitting.  Now enable the receiver.
 244         * Sometimes we get a receive IRQ immediately after a transmit...
 245         */
 246        Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
 247        Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
 248
 249        sa1100_irda_check_speed(si);
 250
 251        /* I'm hungry! */
 252        netif_wake_queue(dev);
 253}
 254
 255static int sa1100_irda_sir_tx_start(struct sk_buff *skb, struct net_device *dev,
 256        struct sa1100_irda *si)
 257{
 258        si->tx_buff.data = si->tx_buff.head;
 259        si->tx_buff.len  = async_wrap_skb(skb, si->tx_buff.data,
 260                                          si->tx_buff.truesize);
 261
 262        si->dma_tx.skb = skb;
 263        sg_set_buf(&si->dma_tx.sg, si->tx_buff.data, si->tx_buff.len);
 264        if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
 265                si->dma_tx.skb = NULL;
 266                netif_wake_queue(dev);
 267                dev->stats.tx_dropped++;
 268                return NETDEV_TX_OK;
 269        }
 270
 271        sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_sirtxdma_irq, dev);
 272
 273        /*
 274         * The mean turn-around time is enforced by XBOF padding,
 275         * so we don't have to do anything special here.
 276         */
 277        Ser2UTCR3 = UTCR3_TXE;
 278
 279        return NETDEV_TX_OK;
 280}
 281
 282static irqreturn_t sa1100_irda_sir_irq(struct net_device *dev, struct sa1100_irda *si)
 283{
 284        int status;
 285
 286        status = Ser2UTSR0;
 287
 288        /*
 289         * Deal with any receive errors first.  The bytes in error may be
 290         * the only bytes in the receive FIFO, so we do this first.
 291         */
 292        while (status & UTSR0_EIF) {
 293                int stat, data;
 294
 295                stat = Ser2UTSR1;
 296                data = Ser2UTDR;
 297
 298                if (stat & (UTSR1_FRE | UTSR1_ROR)) {
 299                        dev->stats.rx_errors++;
 300                        if (stat & UTSR1_FRE)
 301                                dev->stats.rx_frame_errors++;
 302                        if (stat & UTSR1_ROR)
 303                                dev->stats.rx_fifo_errors++;
 304                } else
 305                        async_unwrap_char(dev, &dev->stats, &si->rx_buff, data);
 306
 307                status = Ser2UTSR0;
 308        }
 309
 310        /*
 311         * We must clear certain bits.
 312         */
 313        Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
 314
 315        if (status & UTSR0_RFS) {
 316                /*
 317                 * There are at least 4 bytes in the FIFO.  Read 3 bytes
 318                 * and leave the rest to the block below.
 319                 */
 320                async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
 321                async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
 322                async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
 323        }
 324
 325        if (status & (UTSR0_RFS | UTSR0_RID)) {
 326                /*
 327                 * Fifo contains more than 1 character.
 328                 */
 329                do {
 330                        async_unwrap_char(dev, &dev->stats, &si->rx_buff,
 331                                          Ser2UTDR);
 332                } while (Ser2UTSR1 & UTSR1_RNE);
 333
 334        }
 335
 336        return IRQ_HANDLED;
 337}
 338
 339/*
 340 * FIR format support.
 341 */
 342static void sa1100_irda_firtxdma_irq(void *id)
 343{
 344        struct net_device *dev = id;
 345        struct sa1100_irda *si = netdev_priv(dev);
 346        struct sk_buff *skb;
 347
 348        /*
 349         * Wait for the transmission to complete.  Unfortunately,
 350         * the hardware doesn't give us an interrupt to indicate
 351         * "end of frame".
 352         */
 353        do
 354                rmb();
 355        while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
 356
 357        /*
 358         * Clear the transmit underrun bit.
 359         */
 360        Ser2HSSR0 = HSSR0_TUR;
 361
 362        /*
 363         * Do we need to change speed?  Note that we're lazy
 364         * here - we don't free the old dma_rx.skb.  We don't need
 365         * to allocate a buffer either.
 366         */
 367        sa1100_irda_check_speed(si);
 368
 369        /*
 370         * Start reception.  This disables the transmitter for
 371         * us.  This will be using the existing RX buffer.
 372         */
 373        sa1100_irda_rx_dma_start(si);
 374
 375        /* Account and free the packet. */
 376        skb = si->dma_tx.skb;
 377        if (skb) {
 378                dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
 379                             DMA_TO_DEVICE);
 380                dev->stats.tx_packets ++;
 381                dev->stats.tx_bytes += skb->len;
 382                dev_kfree_skb_irq(skb);
 383                si->dma_tx.skb = NULL;
 384        }
 385
 386        /*
 387         * Make sure that the TX queue is available for sending
 388         * (for retries).  TX has priority over RX at all times.
 389         */
 390        netif_wake_queue(dev);
 391}
 392
 393static int sa1100_irda_fir_tx_start(struct sk_buff *skb, struct net_device *dev,
 394        struct sa1100_irda *si)
 395{
 396        int mtt = irda_get_mtt(skb);
 397
 398        si->dma_tx.skb = skb;
 399        sg_set_buf(&si->dma_tx.sg, skb->data, skb->len);
 400        if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
 401                si->dma_tx.skb = NULL;
 402                netif_wake_queue(dev);
 403                dev->stats.tx_dropped++;
 404                dev_kfree_skb(skb);
 405                return NETDEV_TX_OK;
 406        }
 407
 408        sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_firtxdma_irq, dev);
 409
 410        /*
 411         * If we have a mean turn-around time, impose the specified
 412         * specified delay.  We could shorten this by timing from
 413         * the point we received the packet.
 414         */
 415        if (mtt)
 416                udelay(mtt);
 417
 418        Ser2HSCR0 = HSCR0_HSSP | HSCR0_TXE;
 419
 420        return NETDEV_TX_OK;
 421}
 422
 423static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
 424{
 425        struct sk_buff *skb = si->dma_rx.skb;
 426        unsigned int len, stat, data;
 427
 428        if (!skb) {
 429                printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
 430                return;
 431        }
 432
 433        /*
 434         * Get the current data position.
 435         */
 436        len = sa1100_irda_dma_xferred(&si->dma_rx);
 437        if (len > HPSIR_MAX_RXLEN)
 438                len = HPSIR_MAX_RXLEN;
 439        dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
 440
 441        do {
 442                /*
 443                 * Read Status, and then Data.
 444                 */
 445                stat = Ser2HSSR1;
 446                rmb();
 447                data = Ser2HSDR;
 448
 449                if (stat & (HSSR1_CRE | HSSR1_ROR)) {
 450                        dev->stats.rx_errors++;
 451                        if (stat & HSSR1_CRE)
 452                                dev->stats.rx_crc_errors++;
 453                        if (stat & HSSR1_ROR)
 454                                dev->stats.rx_frame_errors++;
 455                } else
 456                        skb->data[len++] = data;
 457
 458                /*
 459                 * If we hit the end of frame, there's
 460                 * no point in continuing.
 461                 */
 462                if (stat & HSSR1_EOF)
 463                        break;
 464        } while (Ser2HSSR0 & HSSR0_EIF);
 465
 466        if (stat & HSSR1_EOF) {
 467                si->dma_rx.skb = NULL;
 468
 469                skb_put(skb, len);
 470                skb->dev = dev;
 471                skb_reset_mac_header(skb);
 472                skb->protocol = htons(ETH_P_IRDA);
 473                dev->stats.rx_packets++;
 474                dev->stats.rx_bytes += len;
 475
 476                /*
 477                 * Before we pass the buffer up, allocate a new one.
 478                 */
 479                sa1100_irda_rx_alloc(si);
 480
 481                netif_rx(skb);
 482        } else {
 483                /*
 484                 * Remap the buffer - it was previously mapped, and we
 485                 * hope that this succeeds.
 486                 */
 487                dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
 488        }
 489}
 490
 491/*
 492 * We only have to handle RX events here; transmit events go via the TX
 493 * DMA handler. We disable RX, process, and the restart RX.
 494 */
 495static irqreturn_t sa1100_irda_fir_irq(struct net_device *dev, struct sa1100_irda *si)
 496{
 497        /*
 498         * Stop RX DMA
 499         */
 500        dmaengine_pause(si->dma_rx.chan);
 501
 502        /*
 503         * Framing error - we throw away the packet completely.
 504         * Clearing RXE flushes the error conditions and data
 505         * from the fifo.
 506         */
 507        if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
 508                dev->stats.rx_errors++;
 509
 510                if (Ser2HSSR0 & HSSR0_FRE)
 511                        dev->stats.rx_frame_errors++;
 512
 513                /*
 514                 * Clear out the DMA...
 515                 */
 516                Ser2HSCR0 = HSCR0_HSSP;
 517
 518                /*
 519                 * Clear selected status bits now, so we
 520                 * don't miss them next time around.
 521                 */
 522                Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
 523        }
 524
 525        /*
 526         * Deal with any receive errors.  The any of the lowest
 527         * 8 bytes in the FIFO may contain an error.  We must read
 528         * them one by one.  The "error" could even be the end of
 529         * packet!
 530         */
 531        if (Ser2HSSR0 & HSSR0_EIF)
 532                sa1100_irda_fir_error(si, dev);
 533
 534        /*
 535         * No matter what happens, we must restart reception.
 536         */
 537        sa1100_irda_rx_dma_start(si);
 538
 539        return IRQ_HANDLED;
 540}
 541
 542/*
 543 * Set the IrDA communications speed.
 544 */
 545static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
 546{
 547        unsigned long flags;
 548        int brd, ret = -EINVAL;
 549
 550        switch (speed) {
 551        case 9600:      case 19200:     case 38400:
 552        case 57600:     case 115200:
 553                brd = 3686400 / (16 * speed) - 1;
 554
 555                /* Stop the receive DMA, and configure transmit. */
 556                if (IS_FIR(si)) {
 557                        dmaengine_terminate_all(si->dma_rx.chan);
 558                        dmaengine_slave_config(si->dma_tx.chan,
 559                                                &sa1100_irda_sir_tx);
 560                }
 561
 562                local_irq_save(flags);
 563
 564                Ser2UTCR3 = 0;
 565                Ser2HSCR0 = HSCR0_UART;
 566
 567                Ser2UTCR1 = brd >> 8;
 568                Ser2UTCR2 = brd;
 569
 570                /*
 571                 * Clear status register
 572                 */
 573                Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
 574                Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
 575
 576                if (si->pdata->set_speed)
 577                        si->pdata->set_speed(si->dev, speed);
 578
 579                si->speed = speed;
 580                si->tx_start = sa1100_irda_sir_tx_start;
 581                si->irq = sa1100_irda_sir_irq;
 582
 583                local_irq_restore(flags);
 584                ret = 0;
 585                break;
 586
 587        case 4000000:
 588                if (!IS_FIR(si))
 589                        dmaengine_slave_config(si->dma_tx.chan,
 590                                                &sa1100_irda_fir_tx);
 591
 592                local_irq_save(flags);
 593
 594                Ser2HSSR0 = 0xff;
 595                Ser2HSCR0 = HSCR0_HSSP;
 596                Ser2UTCR3 = 0;
 597
 598                si->speed = speed;
 599                si->tx_start = sa1100_irda_fir_tx_start;
 600                si->irq = sa1100_irda_fir_irq;
 601
 602                if (si->pdata->set_speed)
 603                        si->pdata->set_speed(si->dev, speed);
 604
 605                sa1100_irda_rx_alloc(si);
 606                sa1100_irda_rx_dma_start(si);
 607
 608                local_irq_restore(flags);
 609
 610                break;
 611
 612        default:
 613                break;
 614        }
 615
 616        return ret;
 617}
 618
 619/*
 620 * Control the power state of the IrDA transmitter.
 621 * State:
 622 *  0 - off
 623 *  1 - short range, lowest power
 624 *  2 - medium range, medium power
 625 *  3 - maximum range, high power
 626 *
 627 * Currently, only assabet is known to support this.
 628 */
 629static int
 630__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
 631{
 632        int ret = 0;
 633        if (si->pdata->set_power)
 634                ret = si->pdata->set_power(si->dev, state);
 635        return ret;
 636}
 637
 638static inline int
 639sa1100_set_power(struct sa1100_irda *si, unsigned int state)
 640{
 641        int ret;
 642
 643        ret = __sa1100_irda_set_power(si, state);
 644        if (ret == 0)
 645                si->power = state;
 646
 647        return ret;
 648}
 649
 650static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
 651{
 652        struct net_device *dev = dev_id;
 653        struct sa1100_irda *si = netdev_priv(dev);
 654
 655        return si->irq(dev, si);
 656}
 657
 658static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
 659{
 660        struct sa1100_irda *si = netdev_priv(dev);
 661        int speed = irda_get_next_speed(skb);
 662
 663        /*
 664         * Does this packet contain a request to change the interface
 665         * speed?  If so, remember it until we complete the transmission
 666         * of this frame.
 667         */
 668        if (speed != si->speed && speed != -1)
 669                si->newspeed = speed;
 670
 671        /* If this is an empty frame, we can bypass a lot. */
 672        if (skb->len == 0) {
 673                sa1100_irda_check_speed(si);
 674                dev_kfree_skb(skb);
 675                return NETDEV_TX_OK;
 676        }
 677
 678        netif_stop_queue(dev);
 679
 680        /* We must not already have a skb to transmit... */
 681        BUG_ON(si->dma_tx.skb);
 682
 683        return si->tx_start(skb, dev, si);
 684}
 685
 686static int
 687sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
 688{
 689        struct if_irda_req *rq = (struct if_irda_req *)ifreq;
 690        struct sa1100_irda *si = netdev_priv(dev);
 691        int ret = -EOPNOTSUPP;
 692
 693        switch (cmd) {
 694        case SIOCSBANDWIDTH:
 695                if (capable(CAP_NET_ADMIN)) {
 696                        /*
 697                         * We are unable to set the speed if the
 698                         * device is not running.
 699                         */
 700                        if (si->open) {
 701                                ret = sa1100_irda_set_speed(si,
 702                                                rq->ifr_baudrate);
 703                        } else {
 704                                printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
 705                                ret = 0;
 706                        }
 707                }
 708                break;
 709
 710        case SIOCSMEDIABUSY:
 711                ret = -EPERM;
 712                if (capable(CAP_NET_ADMIN)) {
 713                        irda_device_set_media_busy(dev, TRUE);
 714                        ret = 0;
 715                }
 716                break;
 717
 718        case SIOCGRECEIVING:
 719                rq->ifr_receiving = IS_FIR(si) ? 0
 720                                        : si->rx_buff.state != OUTSIDE_FRAME;
 721                break;
 722
 723        default:
 724                break;
 725        }
 726                
 727        return ret;
 728}
 729
 730static int sa1100_irda_startup(struct sa1100_irda *si)
 731{
 732        int ret;
 733
 734        /*
 735         * Ensure that the ports for this device are setup correctly.
 736         */
 737        if (si->pdata->startup) {
 738                ret = si->pdata->startup(si->dev);
 739                if (ret)
 740                        return ret;
 741        }
 742
 743        /*
 744         * Configure PPC for IRDA - we want to drive TXD2 low.
 745         * We also want to drive this pin low during sleep.
 746         */
 747        PPSR &= ~PPC_TXD2;
 748        PSDR &= ~PPC_TXD2;
 749        PPDR |= PPC_TXD2;
 750
 751        /*
 752         * Enable HP-SIR modulation, and ensure that the port is disabled.
 753         */
 754        Ser2UTCR3 = 0;
 755        Ser2HSCR0 = HSCR0_UART;
 756        Ser2UTCR4 = si->utcr4;
 757        Ser2UTCR0 = UTCR0_8BitData;
 758        Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
 759
 760        /*
 761         * Clear status register
 762         */
 763        Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
 764
 765        ret = sa1100_irda_set_speed(si, si->speed = 9600);
 766        if (ret) {
 767                Ser2UTCR3 = 0;
 768                Ser2HSCR0 = 0;
 769
 770                if (si->pdata->shutdown)
 771                        si->pdata->shutdown(si->dev);
 772        }
 773
 774        return ret;
 775}
 776
 777static void sa1100_irda_shutdown(struct sa1100_irda *si)
 778{
 779        /*
 780         * Stop all DMA activity.
 781         */
 782        dmaengine_terminate_all(si->dma_rx.chan);
 783        dmaengine_terminate_all(si->dma_tx.chan);
 784
 785        /* Disable the port. */
 786        Ser2UTCR3 = 0;
 787        Ser2HSCR0 = 0;
 788
 789        if (si->pdata->shutdown)
 790                si->pdata->shutdown(si->dev);
 791}
 792
 793static int sa1100_irda_start(struct net_device *dev)
 794{
 795        struct sa1100_irda *si = netdev_priv(dev);
 796        int err;
 797
 798        si->speed = 9600;
 799
 800        err = sa1100_irda_dma_request(si->dev, &si->dma_rx, "Ser2ICPRc",
 801                                &sa1100_irda_fir_rx);
 802        if (err)
 803                goto err_rx_dma;
 804
 805        err = sa1100_irda_dma_request(si->dev, &si->dma_tx, "Ser2ICPTr",
 806                                &sa1100_irda_sir_tx);
 807        if (err)
 808                goto err_tx_dma;
 809
 810        /*
 811         * Setup the serial port for the specified speed.
 812         */
 813        err = sa1100_irda_startup(si);
 814        if (err)
 815                goto err_startup;
 816
 817        /*
 818         * Open a new IrLAP layer instance.
 819         */
 820        si->irlap = irlap_open(dev, &si->qos, "sa1100");
 821        err = -ENOMEM;
 822        if (!si->irlap)
 823                goto err_irlap;
 824
 825        err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
 826        if (err)
 827                goto err_irq;
 828
 829        /*
 830         * Now enable the interrupt and start the queue
 831         */
 832        si->open = 1;
 833        sa1100_set_power(si, power_level); /* low power mode */
 834
 835        netif_start_queue(dev);
 836        return 0;
 837
 838err_irq:
 839        irlap_close(si->irlap);
 840err_irlap:
 841        si->open = 0;
 842        sa1100_irda_shutdown(si);
 843err_startup:
 844        dma_release_channel(si->dma_tx.chan);
 845err_tx_dma:
 846        dma_release_channel(si->dma_rx.chan);
 847err_rx_dma:
 848        return err;
 849}
 850
 851static int sa1100_irda_stop(struct net_device *dev)
 852{
 853        struct sa1100_irda *si = netdev_priv(dev);
 854        struct sk_buff *skb;
 855
 856        netif_stop_queue(dev);
 857
 858        si->open = 0;
 859        sa1100_irda_shutdown(si);
 860
 861        /*
 862         * If we have been doing any DMA activity, make sure we
 863         * tidy that up cleanly.
 864         */
 865        skb = si->dma_rx.skb;
 866        if (skb) {
 867                dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1,
 868                             DMA_FROM_DEVICE);
 869                dev_kfree_skb(skb);
 870                si->dma_rx.skb = NULL;
 871        }
 872
 873        skb = si->dma_tx.skb;
 874        if (skb) {
 875                dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
 876                             DMA_TO_DEVICE);
 877                dev_kfree_skb(skb);
 878                si->dma_tx.skb = NULL;
 879        }
 880
 881        /* Stop IrLAP */
 882        if (si->irlap) {
 883                irlap_close(si->irlap);
 884                si->irlap = NULL;
 885        }
 886
 887        /*
 888         * Free resources
 889         */
 890        dma_release_channel(si->dma_tx.chan);
 891        dma_release_channel(si->dma_rx.chan);
 892        free_irq(dev->irq, dev);
 893
 894        sa1100_set_power(si, 0);
 895
 896        return 0;
 897}
 898
 899static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
 900{
 901        io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
 902        if (io->head != NULL) {
 903                io->truesize = size;
 904                io->in_frame = FALSE;
 905                io->state    = OUTSIDE_FRAME;
 906                io->data     = io->head;
 907        }
 908        return io->head ? 0 : -ENOMEM;
 909}
 910
 911static const struct net_device_ops sa1100_irda_netdev_ops = {
 912        .ndo_open               = sa1100_irda_start,
 913        .ndo_stop               = sa1100_irda_stop,
 914        .ndo_start_xmit         = sa1100_irda_hard_xmit,
 915        .ndo_do_ioctl           = sa1100_irda_ioctl,
 916};
 917
 918static int sa1100_irda_probe(struct platform_device *pdev)
 919{
 920        struct net_device *dev;
 921        struct sa1100_irda *si;
 922        unsigned int baudrate_mask;
 923        int err, irq;
 924
 925        if (!pdev->dev.platform_data)
 926                return -EINVAL;
 927
 928        irq = platform_get_irq(pdev, 0);
 929        if (irq <= 0)
 930                return irq < 0 ? irq : -ENXIO;
 931
 932        err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
 933        if (err)
 934                goto err_mem_1;
 935        err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
 936        if (err)
 937                goto err_mem_2;
 938        err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
 939        if (err)
 940                goto err_mem_3;
 941
 942        dev = alloc_irdadev(sizeof(struct sa1100_irda));
 943        if (!dev) {
 944                err = -ENOMEM;
 945                goto err_mem_4;
 946        }
 947
 948        SET_NETDEV_DEV(dev, &pdev->dev);
 949
 950        si = netdev_priv(dev);
 951        si->dev = &pdev->dev;
 952        si->pdata = pdev->dev.platform_data;
 953
 954        sg_init_table(&si->dma_rx.sg, 1);
 955        sg_init_table(&si->dma_tx.sg, 1);
 956
 957        /*
 958         * Initialise the HP-SIR buffers
 959         */
 960        err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
 961        if (err)
 962                goto err_mem_5;
 963        err = sa1100_irda_init_iobuf(&si->tx_buff, IRDA_SIR_MAX_FRAME);
 964        if (err)
 965                goto err_mem_5;
 966
 967        dev->netdev_ops = &sa1100_irda_netdev_ops;
 968        dev->irq        = irq;
 969
 970        irda_init_max_qos_capabilies(&si->qos);
 971
 972        /*
 973         * We support original IRDA up to 115k2. (we don't currently
 974         * support 4Mbps).  Min Turn Time set to 1ms or greater.
 975         */
 976        baudrate_mask = IR_9600;
 977
 978        switch (max_rate) {
 979        case 4000000:           baudrate_mask |= IR_4000000 << 8;
 980        case 115200:            baudrate_mask |= IR_115200;
 981        case 57600:             baudrate_mask |= IR_57600;
 982        case 38400:             baudrate_mask |= IR_38400;
 983        case 19200:             baudrate_mask |= IR_19200;
 984        }
 985                
 986        si->qos.baud_rate.bits &= baudrate_mask;
 987        si->qos.min_turn_time.bits = 7;
 988
 989        irda_qos_bits_to_value(&si->qos);
 990
 991        si->utcr4 = UTCR4_HPSIR;
 992        if (tx_lpm)
 993                si->utcr4 |= UTCR4_Z1_6us;
 994
 995        /*
 996         * Initially enable HP-SIR modulation, and ensure that the port
 997         * is disabled.
 998         */
 999        Ser2UTCR3 = 0;
1000        Ser2UTCR4 = si->utcr4;
1001        Ser2HSCR0 = HSCR0_UART;
1002
1003        err = register_netdev(dev);
1004        if (err == 0)
1005                platform_set_drvdata(pdev, dev);
1006
1007        if (err) {
1008 err_mem_5:
1009                kfree(si->tx_buff.head);
1010                kfree(si->rx_buff.head);
1011                free_netdev(dev);
1012 err_mem_4:
1013                release_mem_region(__PREG(Ser2HSCR2), 0x04);
1014 err_mem_3:
1015                release_mem_region(__PREG(Ser2HSCR0), 0x1c);
1016 err_mem_2:
1017                release_mem_region(__PREG(Ser2UTCR0), 0x24);
1018        }
1019 err_mem_1:
1020        return err;
1021}
1022
1023static int sa1100_irda_remove(struct platform_device *pdev)
1024{
1025        struct net_device *dev = platform_get_drvdata(pdev);
1026
1027        if (dev) {
1028                struct sa1100_irda *si = netdev_priv(dev);
1029                unregister_netdev(dev);
1030                kfree(si->tx_buff.head);
1031                kfree(si->rx_buff.head);
1032                free_netdev(dev);
1033        }
1034
1035        release_mem_region(__PREG(Ser2HSCR2), 0x04);
1036        release_mem_region(__PREG(Ser2HSCR0), 0x1c);
1037        release_mem_region(__PREG(Ser2UTCR0), 0x24);
1038
1039        return 0;
1040}
1041
1042#ifdef CONFIG_PM
1043/*
1044 * Suspend the IrDA interface.
1045 */
1046static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
1047{
1048        struct net_device *dev = platform_get_drvdata(pdev);
1049        struct sa1100_irda *si;
1050
1051        if (!dev)
1052                return 0;
1053
1054        si = netdev_priv(dev);
1055        if (si->open) {
1056                /*
1057                 * Stop the transmit queue
1058                 */
1059                netif_device_detach(dev);
1060                disable_irq(dev->irq);
1061                sa1100_irda_shutdown(si);
1062                __sa1100_irda_set_power(si, 0);
1063        }
1064
1065        return 0;
1066}
1067
1068/*
1069 * Resume the IrDA interface.
1070 */
1071static int sa1100_irda_resume(struct platform_device *pdev)
1072{
1073        struct net_device *dev = platform_get_drvdata(pdev);
1074        struct sa1100_irda *si;
1075
1076        if (!dev)
1077                return 0;
1078
1079        si = netdev_priv(dev);
1080        if (si->open) {
1081                /*
1082                 * If we missed a speed change, initialise at the new speed
1083                 * directly.  It is debatable whether this is actually
1084                 * required, but in the interests of continuing from where
1085                 * we left off it is desirable.  The converse argument is
1086                 * that we should re-negotiate at 9600 baud again.
1087                 */
1088                if (si->newspeed) {
1089                        si->speed = si->newspeed;
1090                        si->newspeed = 0;
1091                }
1092
1093                sa1100_irda_startup(si);
1094                __sa1100_irda_set_power(si, si->power);
1095                enable_irq(dev->irq);
1096
1097                /*
1098                 * This automatically wakes up the queue
1099                 */
1100                netif_device_attach(dev);
1101        }
1102
1103        return 0;
1104}
1105#else
1106#define sa1100_irda_suspend     NULL
1107#define sa1100_irda_resume      NULL
1108#endif
1109
1110static struct platform_driver sa1100ir_driver = {
1111        .probe          = sa1100_irda_probe,
1112        .remove         = sa1100_irda_remove,
1113        .suspend        = sa1100_irda_suspend,
1114        .resume         = sa1100_irda_resume,
1115        .driver         = {
1116                .name   = "sa11x0-ir",
1117        },
1118};
1119
1120static int __init sa1100_irda_init(void)
1121{
1122        /*
1123         * Limit power level a sensible range.
1124         */
1125        if (power_level < 1)
1126                power_level = 1;
1127        if (power_level > 3)
1128                power_level = 3;
1129
1130        return platform_driver_register(&sa1100ir_driver);
1131}
1132
1133static void __exit sa1100_irda_exit(void)
1134{
1135        platform_driver_unregister(&sa1100ir_driver);
1136}
1137
1138module_init(sa1100_irda_init);
1139module_exit(sa1100_irda_exit);
1140module_param(power_level, int, 0);
1141module_param(tx_lpm, int, 0);
1142module_param(max_rate, int, 0);
1143
1144MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1145MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1146MODULE_LICENSE("GPL");
1147MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1148MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1149MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
1150MODULE_ALIAS("platform:sa11x0-ir");
1151