linux/drivers/net/wireless/ralink/rt2x00/rt2x00dev.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
   3        Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
   4        <http://rt2x00.serialmonkey.com>
   5
   6        This program is free software; you can redistribute it and/or modify
   7        it under the terms of the GNU General Public License as published by
   8        the Free Software Foundation; either version 2 of the License, or
   9        (at your option) any later version.
  10
  11        This program is distributed in the hope that it will be useful,
  12        but WITHOUT ANY WARRANTY; without even the implied warranty of
  13        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14        GNU General Public License for more details.
  15
  16        You should have received a copy of the GNU General Public License
  17        along with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20/*
  21        Module: rt2x00lib
  22        Abstract: rt2x00 generic device routines.
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/log2.h>
  29
  30#include "rt2x00.h"
  31#include "rt2x00lib.h"
  32
  33/*
  34 * Utility functions.
  35 */
  36u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
  37                         struct ieee80211_vif *vif)
  38{
  39        /*
  40         * When in STA mode, bssidx is always 0 otherwise local_address[5]
  41         * contains the bss number, see BSS_ID_MASK comments for details.
  42         */
  43        if (rt2x00dev->intf_sta_count)
  44                return 0;
  45        return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
  46}
  47EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
  48
  49/*
  50 * Radio control handlers.
  51 */
  52int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
  53{
  54        int status;
  55
  56        /*
  57         * Don't enable the radio twice.
  58         * And check if the hardware button has been disabled.
  59         */
  60        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  61                return 0;
  62
  63        /*
  64         * Initialize all data queues.
  65         */
  66        rt2x00queue_init_queues(rt2x00dev);
  67
  68        /*
  69         * Enable radio.
  70         */
  71        status =
  72            rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
  73        if (status)
  74                return status;
  75
  76        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
  77
  78        rt2x00leds_led_radio(rt2x00dev, true);
  79        rt2x00led_led_activity(rt2x00dev, true);
  80
  81        set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
  82
  83        /*
  84         * Enable queues.
  85         */
  86        rt2x00queue_start_queues(rt2x00dev);
  87        rt2x00link_start_tuner(rt2x00dev);
  88        rt2x00link_start_agc(rt2x00dev);
  89        if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
  90                rt2x00link_start_vcocal(rt2x00dev);
  91
  92        /*
  93         * Start watchdog monitoring.
  94         */
  95        rt2x00link_start_watchdog(rt2x00dev);
  96
  97        return 0;
  98}
  99
 100void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
 101{
 102        if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 103                return;
 104
 105        /*
 106         * Stop watchdog monitoring.
 107         */
 108        rt2x00link_stop_watchdog(rt2x00dev);
 109
 110        /*
 111         * Stop all queues
 112         */
 113        rt2x00link_stop_agc(rt2x00dev);
 114        if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
 115                rt2x00link_stop_vcocal(rt2x00dev);
 116        rt2x00link_stop_tuner(rt2x00dev);
 117        rt2x00queue_stop_queues(rt2x00dev);
 118        rt2x00queue_flush_queues(rt2x00dev, true);
 119
 120        /*
 121         * Disable radio.
 122         */
 123        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
 124        rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
 125        rt2x00led_led_activity(rt2x00dev, false);
 126        rt2x00leds_led_radio(rt2x00dev, false);
 127}
 128
 129static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
 130                                          struct ieee80211_vif *vif)
 131{
 132        struct rt2x00_dev *rt2x00dev = data;
 133        struct rt2x00_intf *intf = vif_to_intf(vif);
 134
 135        /*
 136         * It is possible the radio was disabled while the work had been
 137         * scheduled. If that happens we should return here immediately,
 138         * note that in the spinlock protected area above the delayed_flags
 139         * have been cleared correctly.
 140         */
 141        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 142                return;
 143
 144        if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
 145                mutex_lock(&intf->beacon_skb_mutex);
 146                rt2x00queue_update_beacon(rt2x00dev, vif);
 147                mutex_unlock(&intf->beacon_skb_mutex);
 148        }
 149}
 150
 151static void rt2x00lib_intf_scheduled(struct work_struct *work)
 152{
 153        struct rt2x00_dev *rt2x00dev =
 154            container_of(work, struct rt2x00_dev, intf_work);
 155
 156        /*
 157         * Iterate over each interface and perform the
 158         * requested configurations.
 159         */
 160        ieee80211_iterate_active_interfaces(rt2x00dev->hw,
 161                                            IEEE80211_IFACE_ITER_RESUME_ALL,
 162                                            rt2x00lib_intf_scheduled_iter,
 163                                            rt2x00dev);
 164}
 165
 166static void rt2x00lib_autowakeup(struct work_struct *work)
 167{
 168        struct rt2x00_dev *rt2x00dev =
 169            container_of(work, struct rt2x00_dev, autowakeup_work.work);
 170
 171        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 172                return;
 173
 174        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 175                rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
 176        clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
 177}
 178
 179/*
 180 * Interrupt context handlers.
 181 */
 182static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
 183                                     struct ieee80211_vif *vif)
 184{
 185        struct ieee80211_tx_control control = {};
 186        struct rt2x00_dev *rt2x00dev = data;
 187        struct sk_buff *skb;
 188
 189        /*
 190         * Only AP mode interfaces do broad- and multicast buffering
 191         */
 192        if (vif->type != NL80211_IFTYPE_AP)
 193                return;
 194
 195        /*
 196         * Send out buffered broad- and multicast frames
 197         */
 198        skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 199        while (skb) {
 200                rt2x00mac_tx(rt2x00dev->hw, &control, skb);
 201                skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
 202        }
 203}
 204
 205static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
 206                                        struct ieee80211_vif *vif)
 207{
 208        struct rt2x00_dev *rt2x00dev = data;
 209
 210        if (vif->type != NL80211_IFTYPE_AP &&
 211            vif->type != NL80211_IFTYPE_ADHOC &&
 212            vif->type != NL80211_IFTYPE_MESH_POINT &&
 213            vif->type != NL80211_IFTYPE_WDS)
 214                return;
 215
 216        /*
 217         * Update the beacon without locking. This is safe on PCI devices
 218         * as they only update the beacon periodically here. This should
 219         * never be called for USB devices.
 220         */
 221        WARN_ON(rt2x00_is_usb(rt2x00dev));
 222        rt2x00queue_update_beacon(rt2x00dev, vif);
 223}
 224
 225void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
 226{
 227        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 228                return;
 229
 230        /* send buffered bc/mc frames out for every bssid */
 231        ieee80211_iterate_active_interfaces_atomic(
 232                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 233                rt2x00lib_bc_buffer_iter, rt2x00dev);
 234        /*
 235         * Devices with pre tbtt interrupt don't need to update the beacon
 236         * here as they will fetch the next beacon directly prior to
 237         * transmission.
 238         */
 239        if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
 240                return;
 241
 242        /* fetch next beacon */
 243        ieee80211_iterate_active_interfaces_atomic(
 244                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 245                rt2x00lib_beaconupdate_iter, rt2x00dev);
 246}
 247EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
 248
 249void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
 250{
 251        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 252                return;
 253
 254        /* fetch next beacon */
 255        ieee80211_iterate_active_interfaces_atomic(
 256                rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
 257                rt2x00lib_beaconupdate_iter, rt2x00dev);
 258}
 259EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
 260
 261void rt2x00lib_dmastart(struct queue_entry *entry)
 262{
 263        set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 264        rt2x00queue_index_inc(entry, Q_INDEX);
 265}
 266EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
 267
 268void rt2x00lib_dmadone(struct queue_entry *entry)
 269{
 270        set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
 271        clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
 272        rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
 273}
 274EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
 275
 276static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
 277{
 278        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 279        struct ieee80211_bar *bar = (void *) entry->skb->data;
 280        struct rt2x00_bar_list_entry *bar_entry;
 281        int ret;
 282
 283        if (likely(!ieee80211_is_back_req(bar->frame_control)))
 284                return 0;
 285
 286        /*
 287         * Unlike all other frames, the status report for BARs does
 288         * not directly come from the hardware as it is incapable of
 289         * matching a BA to a previously send BAR. The hardware will
 290         * report all BARs as if they weren't acked at all.
 291         *
 292         * Instead the RX-path will scan for incoming BAs and set the
 293         * block_acked flag if it sees one that was likely caused by
 294         * a BAR from us.
 295         *
 296         * Remove remaining BARs here and return their status for
 297         * TX done processing.
 298         */
 299        ret = 0;
 300        rcu_read_lock();
 301        list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
 302                if (bar_entry->entry != entry)
 303                        continue;
 304
 305                spin_lock_bh(&rt2x00dev->bar_list_lock);
 306                /* Return whether this BAR was blockacked or not */
 307                ret = bar_entry->block_acked;
 308                /* Remove the BAR from our checklist */
 309                list_del_rcu(&bar_entry->list);
 310                spin_unlock_bh(&rt2x00dev->bar_list_lock);
 311                kfree_rcu(bar_entry, head);
 312
 313                break;
 314        }
 315        rcu_read_unlock();
 316
 317        return ret;
 318}
 319
 320void rt2x00lib_txdone(struct queue_entry *entry,
 321                      struct txdone_entry_desc *txdesc)
 322{
 323        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 324        struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
 325        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 326        unsigned int header_length, i;
 327        u8 rate_idx, rate_flags, retry_rates;
 328        u8 skbdesc_flags = skbdesc->flags;
 329        bool success;
 330
 331        /*
 332         * Unmap the skb.
 333         */
 334        rt2x00queue_unmap_skb(entry);
 335
 336        /*
 337         * Remove the extra tx headroom from the skb.
 338         */
 339        skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
 340
 341        /*
 342         * Signal that the TX descriptor is no longer in the skb.
 343         */
 344        skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
 345
 346        /*
 347         * Determine the length of 802.11 header.
 348         */
 349        header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 350
 351        /*
 352         * Remove L2 padding which was added during
 353         */
 354        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
 355                rt2x00queue_remove_l2pad(entry->skb, header_length);
 356
 357        /*
 358         * If the IV/EIV data was stripped from the frame before it was
 359         * passed to the hardware, we should now reinsert it again because
 360         * mac80211 will expect the same data to be present it the
 361         * frame as it was passed to us.
 362         */
 363        if (rt2x00_has_cap_hw_crypto(rt2x00dev))
 364                rt2x00crypto_tx_insert_iv(entry->skb, header_length);
 365
 366        /*
 367         * Send frame to debugfs immediately, after this call is completed
 368         * we are going to overwrite the skb->cb array.
 369         */
 370        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
 371
 372        /*
 373         * Determine if the frame has been successfully transmitted and
 374         * remove BARs from our check list while checking for their
 375         * TX status.
 376         */
 377        success =
 378            rt2x00lib_txdone_bar_status(entry) ||
 379            test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
 380            test_bit(TXDONE_UNKNOWN, &txdesc->flags);
 381
 382        /*
 383         * Update TX statistics.
 384         */
 385        rt2x00dev->link.qual.tx_success += success;
 386        rt2x00dev->link.qual.tx_failed += !success;
 387
 388        rate_idx = skbdesc->tx_rate_idx;
 389        rate_flags = skbdesc->tx_rate_flags;
 390        retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
 391            (txdesc->retry + 1) : 1;
 392
 393        /*
 394         * Initialize TX status
 395         */
 396        memset(&tx_info->status, 0, sizeof(tx_info->status));
 397        tx_info->status.ack_signal = 0;
 398
 399        /*
 400         * Frame was send with retries, hardware tried
 401         * different rates to send out the frame, at each
 402         * retry it lowered the rate 1 step except when the
 403         * lowest rate was used.
 404         */
 405        for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
 406                tx_info->status.rates[i].idx = rate_idx - i;
 407                tx_info->status.rates[i].flags = rate_flags;
 408
 409                if (rate_idx - i == 0) {
 410                        /*
 411                         * The lowest rate (index 0) was used until the
 412                         * number of max retries was reached.
 413                         */
 414                        tx_info->status.rates[i].count = retry_rates - i;
 415                        i++;
 416                        break;
 417                }
 418                tx_info->status.rates[i].count = 1;
 419        }
 420        if (i < (IEEE80211_TX_MAX_RATES - 1))
 421                tx_info->status.rates[i].idx = -1; /* terminate */
 422
 423        if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
 424                if (success)
 425                        tx_info->flags |= IEEE80211_TX_STAT_ACK;
 426                else
 427                        rt2x00dev->low_level_stats.dot11ACKFailureCount++;
 428        }
 429
 430        /*
 431         * Every single frame has it's own tx status, hence report
 432         * every frame as ampdu of size 1.
 433         *
 434         * TODO: if we can find out how many frames were aggregated
 435         * by the hw we could provide the real ampdu_len to mac80211
 436         * which would allow the rc algorithm to better decide on
 437         * which rates are suitable.
 438         */
 439        if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
 440            tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
 441                tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
 442                tx_info->status.ampdu_len = 1;
 443                tx_info->status.ampdu_ack_len = success ? 1 : 0;
 444
 445                if (!success)
 446                        tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
 447        }
 448
 449        if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
 450                if (success)
 451                        rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
 452                else
 453                        rt2x00dev->low_level_stats.dot11RTSFailureCount++;
 454        }
 455
 456        /*
 457         * Only send the status report to mac80211 when it's a frame
 458         * that originated in mac80211. If this was a extra frame coming
 459         * through a mac80211 library call (RTS/CTS) then we should not
 460         * send the status report back.
 461         */
 462        if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
 463                if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
 464                        ieee80211_tx_status(rt2x00dev->hw, entry->skb);
 465                else
 466                        ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
 467        } else
 468                dev_kfree_skb_any(entry->skb);
 469
 470        /*
 471         * Make this entry available for reuse.
 472         */
 473        entry->skb = NULL;
 474        entry->flags = 0;
 475
 476        rt2x00dev->ops->lib->clear_entry(entry);
 477
 478        rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 479
 480        /*
 481         * If the data queue was below the threshold before the txdone
 482         * handler we must make sure the packet queue in the mac80211 stack
 483         * is reenabled when the txdone handler has finished. This has to be
 484         * serialized with rt2x00mac_tx(), otherwise we can wake up queue
 485         * before it was stopped.
 486         */
 487        spin_lock_bh(&entry->queue->tx_lock);
 488        if (!rt2x00queue_threshold(entry->queue))
 489                rt2x00queue_unpause_queue(entry->queue);
 490        spin_unlock_bh(&entry->queue->tx_lock);
 491}
 492EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
 493
 494void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
 495{
 496        struct txdone_entry_desc txdesc;
 497
 498        txdesc.flags = 0;
 499        __set_bit(status, &txdesc.flags);
 500        txdesc.retry = 0;
 501
 502        rt2x00lib_txdone(entry, &txdesc);
 503}
 504EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
 505
 506static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
 507{
 508        struct ieee80211_mgmt *mgmt = (void *)data;
 509        u8 *pos, *end;
 510
 511        pos = (u8 *)mgmt->u.beacon.variable;
 512        end = data + len;
 513        while (pos < end) {
 514                if (pos + 2 + pos[1] > end)
 515                        return NULL;
 516
 517                if (pos[0] == ie)
 518                        return pos;
 519
 520                pos += 2 + pos[1];
 521        }
 522
 523        return NULL;
 524}
 525
 526static void rt2x00lib_sleep(struct work_struct *work)
 527{
 528        struct rt2x00_dev *rt2x00dev =
 529            container_of(work, struct rt2x00_dev, sleep_work);
 530
 531        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
 532                return;
 533
 534        /*
 535         * Check again is powersaving is enabled, to prevent races from delayed
 536         * work execution.
 537         */
 538        if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 539                rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
 540                                 IEEE80211_CONF_CHANGE_PS);
 541}
 542
 543static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
 544                                      struct sk_buff *skb,
 545                                      struct rxdone_entry_desc *rxdesc)
 546{
 547        struct rt2x00_bar_list_entry *entry;
 548        struct ieee80211_bar *ba = (void *)skb->data;
 549
 550        if (likely(!ieee80211_is_back(ba->frame_control)))
 551                return;
 552
 553        if (rxdesc->size < sizeof(*ba) + FCS_LEN)
 554                return;
 555
 556        rcu_read_lock();
 557        list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
 558
 559                if (ba->start_seq_num != entry->start_seq_num)
 560                        continue;
 561
 562#define TID_CHECK(a, b) (                                               \
 563        ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==        \
 564        ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))          \
 565
 566                if (!TID_CHECK(ba->control, entry->control))
 567                        continue;
 568
 569#undef TID_CHECK
 570
 571                if (!ether_addr_equal_64bits(ba->ra, entry->ta))
 572                        continue;
 573
 574                if (!ether_addr_equal_64bits(ba->ta, entry->ra))
 575                        continue;
 576
 577                /* Mark BAR since we received the according BA */
 578                spin_lock_bh(&rt2x00dev->bar_list_lock);
 579                entry->block_acked = 1;
 580                spin_unlock_bh(&rt2x00dev->bar_list_lock);
 581                break;
 582        }
 583        rcu_read_unlock();
 584
 585}
 586
 587static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
 588                                      struct sk_buff *skb,
 589                                      struct rxdone_entry_desc *rxdesc)
 590{
 591        struct ieee80211_hdr *hdr = (void *) skb->data;
 592        struct ieee80211_tim_ie *tim_ie;
 593        u8 *tim;
 594        u8 tim_len;
 595        bool cam;
 596
 597        /* If this is not a beacon, or if mac80211 has no powersaving
 598         * configured, or if the device is already in powersaving mode
 599         * we can exit now. */
 600        if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
 601                   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
 602                return;
 603
 604        /* min. beacon length + FCS_LEN */
 605        if (skb->len <= 40 + FCS_LEN)
 606                return;
 607
 608        /* and only beacons from the associated BSSID, please */
 609        if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
 610            !rt2x00dev->aid)
 611                return;
 612
 613        rt2x00dev->last_beacon = jiffies;
 614
 615        tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
 616        if (!tim)
 617                return;
 618
 619        if (tim[1] < sizeof(*tim_ie))
 620                return;
 621
 622        tim_len = tim[1];
 623        tim_ie = (struct ieee80211_tim_ie *) &tim[2];
 624
 625        /* Check whenever the PHY can be turned off again. */
 626
 627        /* 1. What about buffered unicast traffic for our AID? */
 628        cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
 629
 630        /* 2. Maybe the AP wants to send multicast/broadcast data? */
 631        cam |= (tim_ie->bitmap_ctrl & 0x01);
 632
 633        if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
 634                queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
 635}
 636
 637static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
 638                                        struct rxdone_entry_desc *rxdesc)
 639{
 640        struct ieee80211_supported_band *sband;
 641        const struct rt2x00_rate *rate;
 642        unsigned int i;
 643        int signal = rxdesc->signal;
 644        int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
 645
 646        switch (rxdesc->rate_mode) {
 647        case RATE_MODE_CCK:
 648        case RATE_MODE_OFDM:
 649                /*
 650                 * For non-HT rates the MCS value needs to contain the
 651                 * actually used rate modulation (CCK or OFDM).
 652                 */
 653                if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
 654                        signal = RATE_MCS(rxdesc->rate_mode, signal);
 655
 656                sband = &rt2x00dev->bands[rt2x00dev->curr_band];
 657                for (i = 0; i < sband->n_bitrates; i++) {
 658                        rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
 659                        if (((type == RXDONE_SIGNAL_PLCP) &&
 660                             (rate->plcp == signal)) ||
 661                            ((type == RXDONE_SIGNAL_BITRATE) &&
 662                              (rate->bitrate == signal)) ||
 663                            ((type == RXDONE_SIGNAL_MCS) &&
 664                              (rate->mcs == signal))) {
 665                                return i;
 666                        }
 667                }
 668                break;
 669        case RATE_MODE_HT_MIX:
 670        case RATE_MODE_HT_GREENFIELD:
 671                if (signal >= 0 && signal <= 76)
 672                        return signal;
 673                break;
 674        default:
 675                break;
 676        }
 677
 678        rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
 679                    rxdesc->rate_mode, signal, type);
 680        return 0;
 681}
 682
 683void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
 684{
 685        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
 686        struct rxdone_entry_desc rxdesc;
 687        struct sk_buff *skb;
 688        struct ieee80211_rx_status *rx_status;
 689        unsigned int header_length;
 690        int rate_idx;
 691
 692        if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
 693            !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 694                goto submit_entry;
 695
 696        if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
 697                goto submit_entry;
 698
 699        /*
 700         * Allocate a new sk_buffer. If no new buffer available, drop the
 701         * received frame and reuse the existing buffer.
 702         */
 703        skb = rt2x00queue_alloc_rxskb(entry, gfp);
 704        if (!skb)
 705                goto submit_entry;
 706
 707        /*
 708         * Unmap the skb.
 709         */
 710        rt2x00queue_unmap_skb(entry);
 711
 712        /*
 713         * Extract the RXD details.
 714         */
 715        memset(&rxdesc, 0, sizeof(rxdesc));
 716        rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
 717
 718        /*
 719         * Check for valid size in case we get corrupted descriptor from
 720         * hardware.
 721         */
 722        if (unlikely(rxdesc.size == 0 ||
 723                     rxdesc.size > entry->queue->data_size)) {
 724                rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
 725                           rxdesc.size, entry->queue->data_size);
 726                dev_kfree_skb(entry->skb);
 727                goto renew_skb;
 728        }
 729
 730        /*
 731         * The data behind the ieee80211 header must be
 732         * aligned on a 4 byte boundary.
 733         */
 734        header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
 735
 736        /*
 737         * Hardware might have stripped the IV/EIV/ICV data,
 738         * in that case it is possible that the data was
 739         * provided separately (through hardware descriptor)
 740         * in which case we should reinsert the data into the frame.
 741         */
 742        if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
 743            (rxdesc.flags & RX_FLAG_IV_STRIPPED))
 744                rt2x00crypto_rx_insert_iv(entry->skb, header_length,
 745                                          &rxdesc);
 746        else if (header_length &&
 747                 (rxdesc.size > header_length) &&
 748                 (rxdesc.dev_flags & RXDONE_L2PAD))
 749                rt2x00queue_remove_l2pad(entry->skb, header_length);
 750
 751        /* Trim buffer to correct size */
 752        skb_trim(entry->skb, rxdesc.size);
 753
 754        /*
 755         * Translate the signal to the correct bitrate index.
 756         */
 757        rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
 758        if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
 759            rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
 760                rxdesc.flags |= RX_FLAG_HT;
 761
 762        /*
 763         * Check if this is a beacon, and more frames have been
 764         * buffered while we were in powersaving mode.
 765         */
 766        rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
 767
 768        /*
 769         * Check for incoming BlockAcks to match to the BlockAckReqs
 770         * we've send out.
 771         */
 772        rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
 773
 774        /*
 775         * Update extra components
 776         */
 777        rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
 778        rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
 779        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
 780
 781        /*
 782         * Initialize RX status information, and send frame
 783         * to mac80211.
 784         */
 785        rx_status = IEEE80211_SKB_RXCB(entry->skb);
 786
 787        /* Ensure that all fields of rx_status are initialized
 788         * properly. The skb->cb array was used for driver
 789         * specific informations, so rx_status might contain
 790         * garbage.
 791         */
 792        memset(rx_status, 0, sizeof(*rx_status));
 793
 794        rx_status->mactime = rxdesc.timestamp;
 795        rx_status->band = rt2x00dev->curr_band;
 796        rx_status->freq = rt2x00dev->curr_freq;
 797        rx_status->rate_idx = rate_idx;
 798        rx_status->signal = rxdesc.rssi;
 799        rx_status->flag = rxdesc.flags;
 800        rx_status->antenna = rt2x00dev->link.ant.active.rx;
 801
 802        ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
 803
 804renew_skb:
 805        /*
 806         * Replace the skb with the freshly allocated one.
 807         */
 808        entry->skb = skb;
 809
 810submit_entry:
 811        entry->flags = 0;
 812        rt2x00queue_index_inc(entry, Q_INDEX_DONE);
 813        if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
 814            test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
 815                rt2x00dev->ops->lib->clear_entry(entry);
 816}
 817EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
 818
 819/*
 820 * Driver initialization handlers.
 821 */
 822const struct rt2x00_rate rt2x00_supported_rates[12] = {
 823        {
 824                .flags = DEV_RATE_CCK,
 825                .bitrate = 10,
 826                .ratemask = BIT(0),
 827                .plcp = 0x00,
 828                .mcs = RATE_MCS(RATE_MODE_CCK, 0),
 829        },
 830        {
 831                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 832                .bitrate = 20,
 833                .ratemask = BIT(1),
 834                .plcp = 0x01,
 835                .mcs = RATE_MCS(RATE_MODE_CCK, 1),
 836        },
 837        {
 838                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 839                .bitrate = 55,
 840                .ratemask = BIT(2),
 841                .plcp = 0x02,
 842                .mcs = RATE_MCS(RATE_MODE_CCK, 2),
 843        },
 844        {
 845                .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
 846                .bitrate = 110,
 847                .ratemask = BIT(3),
 848                .plcp = 0x03,
 849                .mcs = RATE_MCS(RATE_MODE_CCK, 3),
 850        },
 851        {
 852                .flags = DEV_RATE_OFDM,
 853                .bitrate = 60,
 854                .ratemask = BIT(4),
 855                .plcp = 0x0b,
 856                .mcs = RATE_MCS(RATE_MODE_OFDM, 0),
 857        },
 858        {
 859                .flags = DEV_RATE_OFDM,
 860                .bitrate = 90,
 861                .ratemask = BIT(5),
 862                .plcp = 0x0f,
 863                .mcs = RATE_MCS(RATE_MODE_OFDM, 1),
 864        },
 865        {
 866                .flags = DEV_RATE_OFDM,
 867                .bitrate = 120,
 868                .ratemask = BIT(6),
 869                .plcp = 0x0a,
 870                .mcs = RATE_MCS(RATE_MODE_OFDM, 2),
 871        },
 872        {
 873                .flags = DEV_RATE_OFDM,
 874                .bitrate = 180,
 875                .ratemask = BIT(7),
 876                .plcp = 0x0e,
 877                .mcs = RATE_MCS(RATE_MODE_OFDM, 3),
 878        },
 879        {
 880                .flags = DEV_RATE_OFDM,
 881                .bitrate = 240,
 882                .ratemask = BIT(8),
 883                .plcp = 0x09,
 884                .mcs = RATE_MCS(RATE_MODE_OFDM, 4),
 885        },
 886        {
 887                .flags = DEV_RATE_OFDM,
 888                .bitrate = 360,
 889                .ratemask = BIT(9),
 890                .plcp = 0x0d,
 891                .mcs = RATE_MCS(RATE_MODE_OFDM, 5),
 892        },
 893        {
 894                .flags = DEV_RATE_OFDM,
 895                .bitrate = 480,
 896                .ratemask = BIT(10),
 897                .plcp = 0x08,
 898                .mcs = RATE_MCS(RATE_MODE_OFDM, 6),
 899        },
 900        {
 901                .flags = DEV_RATE_OFDM,
 902                .bitrate = 540,
 903                .ratemask = BIT(11),
 904                .plcp = 0x0c,
 905                .mcs = RATE_MCS(RATE_MODE_OFDM, 7),
 906        },
 907};
 908
 909static void rt2x00lib_channel(struct ieee80211_channel *entry,
 910                              const int channel, const int tx_power,
 911                              const int value)
 912{
 913        /* XXX: this assumption about the band is wrong for 802.11j */
 914        entry->band = channel <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
 915        entry->center_freq = ieee80211_channel_to_frequency(channel,
 916                                                            entry->band);
 917        entry->hw_value = value;
 918        entry->max_power = tx_power;
 919        entry->max_antenna_gain = 0xff;
 920}
 921
 922static void rt2x00lib_rate(struct ieee80211_rate *entry,
 923                           const u16 index, const struct rt2x00_rate *rate)
 924{
 925        entry->flags = 0;
 926        entry->bitrate = rate->bitrate;
 927        entry->hw_value = index;
 928        entry->hw_value_short = index;
 929
 930        if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
 931                entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
 932}
 933
 934static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
 935                                    struct hw_mode_spec *spec)
 936{
 937        struct ieee80211_hw *hw = rt2x00dev->hw;
 938        struct ieee80211_channel *channels;
 939        struct ieee80211_rate *rates;
 940        unsigned int num_rates;
 941        unsigned int i;
 942
 943        num_rates = 0;
 944        if (spec->supported_rates & SUPPORT_RATE_CCK)
 945                num_rates += 4;
 946        if (spec->supported_rates & SUPPORT_RATE_OFDM)
 947                num_rates += 8;
 948
 949        channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
 950        if (!channels)
 951                return -ENOMEM;
 952
 953        rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
 954        if (!rates)
 955                goto exit_free_channels;
 956
 957        /*
 958         * Initialize Rate list.
 959         */
 960        for (i = 0; i < num_rates; i++)
 961                rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
 962
 963        /*
 964         * Initialize Channel list.
 965         */
 966        for (i = 0; i < spec->num_channels; i++) {
 967                rt2x00lib_channel(&channels[i],
 968                                  spec->channels[i].channel,
 969                                  spec->channels_info[i].max_power, i);
 970        }
 971
 972        /*
 973         * Intitialize 802.11b, 802.11g
 974         * Rates: CCK, OFDM.
 975         * Channels: 2.4 GHz
 976         */
 977        if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
 978                rt2x00dev->bands[NL80211_BAND_2GHZ].n_channels = 14;
 979                rt2x00dev->bands[NL80211_BAND_2GHZ].n_bitrates = num_rates;
 980                rt2x00dev->bands[NL80211_BAND_2GHZ].channels = channels;
 981                rt2x00dev->bands[NL80211_BAND_2GHZ].bitrates = rates;
 982                hw->wiphy->bands[NL80211_BAND_2GHZ] =
 983                    &rt2x00dev->bands[NL80211_BAND_2GHZ];
 984                memcpy(&rt2x00dev->bands[NL80211_BAND_2GHZ].ht_cap,
 985                       &spec->ht, sizeof(spec->ht));
 986        }
 987
 988        /*
 989         * Intitialize 802.11a
 990         * Rates: OFDM.
 991         * Channels: OFDM, UNII, HiperLAN2.
 992         */
 993        if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
 994                rt2x00dev->bands[NL80211_BAND_5GHZ].n_channels =
 995                    spec->num_channels - 14;
 996                rt2x00dev->bands[NL80211_BAND_5GHZ].n_bitrates =
 997                    num_rates - 4;
 998                rt2x00dev->bands[NL80211_BAND_5GHZ].channels = &channels[14];
 999                rt2x00dev->bands[NL80211_BAND_5GHZ].bitrates = &rates[4];
1000                hw->wiphy->bands[NL80211_BAND_5GHZ] =
1001                    &rt2x00dev->bands[NL80211_BAND_5GHZ];
1002                memcpy(&rt2x00dev->bands[NL80211_BAND_5GHZ].ht_cap,
1003                       &spec->ht, sizeof(spec->ht));
1004        }
1005
1006        return 0;
1007
1008 exit_free_channels:
1009        kfree(channels);
1010        rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1011        return -ENOMEM;
1012}
1013
1014static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1015{
1016        if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1017                ieee80211_unregister_hw(rt2x00dev->hw);
1018
1019        if (likely(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ])) {
1020                kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->channels);
1021                kfree(rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ]->bitrates);
1022                rt2x00dev->hw->wiphy->bands[NL80211_BAND_2GHZ] = NULL;
1023                rt2x00dev->hw->wiphy->bands[NL80211_BAND_5GHZ] = NULL;
1024        }
1025
1026        kfree(rt2x00dev->spec.channels_info);
1027}
1028
1029static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1030{
1031        struct hw_mode_spec *spec = &rt2x00dev->spec;
1032        int status;
1033
1034        if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1035                return 0;
1036
1037        /*
1038         * Initialize HW modes.
1039         */
1040        status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1041        if (status)
1042                return status;
1043
1044        /*
1045         * Initialize HW fields.
1046         */
1047        rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1048
1049        /*
1050         * Initialize extra TX headroom required.
1051         */
1052        rt2x00dev->hw->extra_tx_headroom =
1053                max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1054                      rt2x00dev->extra_tx_headroom);
1055
1056        /*
1057         * Take TX headroom required for alignment into account.
1058         */
1059        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1060                rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1061        else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1062                rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1063
1064        /*
1065         * Tell mac80211 about the size of our private STA structure.
1066         */
1067        rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1068
1069        /*
1070         * Allocate tx status FIFO for driver use.
1071         */
1072        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1073                /*
1074                 * Allocate the txstatus fifo. In the worst case the tx
1075                 * status fifo has to hold the tx status of all entries
1076                 * in all tx queues. Hence, calculate the kfifo size as
1077                 * tx_queues * entry_num and round up to the nearest
1078                 * power of 2.
1079                 */
1080                int kfifo_size =
1081                        roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1082                                           rt2x00dev->tx->limit *
1083                                           sizeof(u32));
1084
1085                status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1086                                     GFP_KERNEL);
1087                if (status)
1088                        return status;
1089        }
1090
1091        /*
1092         * Initialize tasklets if used by the driver. Tasklets are
1093         * disabled until the interrupts are turned on. The driver
1094         * has to handle that.
1095         */
1096#define RT2X00_TASKLET_INIT(taskletname) \
1097        if (rt2x00dev->ops->lib->taskletname) { \
1098                tasklet_init(&rt2x00dev->taskletname, \
1099                             rt2x00dev->ops->lib->taskletname, \
1100                             (unsigned long)rt2x00dev); \
1101        }
1102
1103        RT2X00_TASKLET_INIT(txstatus_tasklet);
1104        RT2X00_TASKLET_INIT(pretbtt_tasklet);
1105        RT2X00_TASKLET_INIT(tbtt_tasklet);
1106        RT2X00_TASKLET_INIT(rxdone_tasklet);
1107        RT2X00_TASKLET_INIT(autowake_tasklet);
1108
1109#undef RT2X00_TASKLET_INIT
1110
1111        /*
1112         * Register HW.
1113         */
1114        status = ieee80211_register_hw(rt2x00dev->hw);
1115        if (status)
1116                return status;
1117
1118        set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1119
1120        return 0;
1121}
1122
1123/*
1124 * Initialization/uninitialization handlers.
1125 */
1126static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1127{
1128        if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1129                return;
1130
1131        /*
1132         * Stop rfkill polling.
1133         */
1134        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1135                rt2x00rfkill_unregister(rt2x00dev);
1136
1137        /*
1138         * Allow the HW to uninitialize.
1139         */
1140        rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1141
1142        /*
1143         * Free allocated queue entries.
1144         */
1145        rt2x00queue_uninitialize(rt2x00dev);
1146}
1147
1148static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1149{
1150        int status;
1151
1152        if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1153                return 0;
1154
1155        /*
1156         * Allocate all queue entries.
1157         */
1158        status = rt2x00queue_initialize(rt2x00dev);
1159        if (status)
1160                return status;
1161
1162        /*
1163         * Initialize the device.
1164         */
1165        status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1166        if (status) {
1167                rt2x00queue_uninitialize(rt2x00dev);
1168                return status;
1169        }
1170
1171        set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1172
1173        /*
1174         * Start rfkill polling.
1175         */
1176        if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1177                rt2x00rfkill_register(rt2x00dev);
1178
1179        return 0;
1180}
1181
1182int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1183{
1184        int retval;
1185
1186        if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1187                return 0;
1188
1189        /*
1190         * If this is the first interface which is added,
1191         * we should load the firmware now.
1192         */
1193        retval = rt2x00lib_load_firmware(rt2x00dev);
1194        if (retval)
1195                return retval;
1196
1197        /*
1198         * Initialize the device.
1199         */
1200        retval = rt2x00lib_initialize(rt2x00dev);
1201        if (retval)
1202                return retval;
1203
1204        rt2x00dev->intf_ap_count = 0;
1205        rt2x00dev->intf_sta_count = 0;
1206        rt2x00dev->intf_associated = 0;
1207
1208        /* Enable the radio */
1209        retval = rt2x00lib_enable_radio(rt2x00dev);
1210        if (retval)
1211                return retval;
1212
1213        set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1214
1215        return 0;
1216}
1217
1218void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1219{
1220        if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1221                return;
1222
1223        /*
1224         * Perhaps we can add something smarter here,
1225         * but for now just disabling the radio should do.
1226         */
1227        rt2x00lib_disable_radio(rt2x00dev);
1228
1229        rt2x00dev->intf_ap_count = 0;
1230        rt2x00dev->intf_sta_count = 0;
1231        rt2x00dev->intf_associated = 0;
1232}
1233
1234static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1235{
1236        struct ieee80211_iface_limit *if_limit;
1237        struct ieee80211_iface_combination *if_combination;
1238
1239        if (rt2x00dev->ops->max_ap_intf < 2)
1240                return;
1241
1242        /*
1243         * Build up AP interface limits structure.
1244         */
1245        if_limit = &rt2x00dev->if_limits_ap;
1246        if_limit->max = rt2x00dev->ops->max_ap_intf;
1247        if_limit->types = BIT(NL80211_IFTYPE_AP);
1248#ifdef CONFIG_MAC80211_MESH
1249        if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1250#endif
1251
1252        /*
1253         * Build up AP interface combinations structure.
1254         */
1255        if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1256        if_combination->limits = if_limit;
1257        if_combination->n_limits = 1;
1258        if_combination->max_interfaces = if_limit->max;
1259        if_combination->num_different_channels = 1;
1260
1261        /*
1262         * Finally, specify the possible combinations to mac80211.
1263         */
1264        rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1265        rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1266}
1267
1268static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1269{
1270        if (WARN_ON(!rt2x00dev->tx))
1271                return 0;
1272
1273        if (rt2x00_is_usb(rt2x00dev))
1274                return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1275
1276        return rt2x00dev->tx[0].winfo_size;
1277}
1278
1279/*
1280 * driver allocation handlers.
1281 */
1282int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1283{
1284        int retval = -ENOMEM;
1285
1286        /*
1287         * Set possible interface combinations.
1288         */
1289        rt2x00lib_set_if_combinations(rt2x00dev);
1290
1291        /*
1292         * Allocate the driver data memory, if necessary.
1293         */
1294        if (rt2x00dev->ops->drv_data_size > 0) {
1295                rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1296                                              GFP_KERNEL);
1297                if (!rt2x00dev->drv_data) {
1298                        retval = -ENOMEM;
1299                        goto exit;
1300                }
1301        }
1302
1303        spin_lock_init(&rt2x00dev->irqmask_lock);
1304        mutex_init(&rt2x00dev->csr_mutex);
1305        INIT_LIST_HEAD(&rt2x00dev->bar_list);
1306        spin_lock_init(&rt2x00dev->bar_list_lock);
1307
1308        set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1309
1310        /*
1311         * Make room for rt2x00_intf inside the per-interface
1312         * structure ieee80211_vif.
1313         */
1314        rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1315
1316        /*
1317         * rt2x00 devices can only use the last n bits of the MAC address
1318         * for virtual interfaces.
1319         */
1320        rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1321                (rt2x00dev->ops->max_ap_intf - 1);
1322
1323        /*
1324         * Initialize work.
1325         */
1326        rt2x00dev->workqueue =
1327            alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1328        if (!rt2x00dev->workqueue) {
1329                retval = -ENOMEM;
1330                goto exit;
1331        }
1332
1333        INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1334        INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1335        INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1336
1337        /*
1338         * Let the driver probe the device to detect the capabilities.
1339         */
1340        retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1341        if (retval) {
1342                rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1343                goto exit;
1344        }
1345
1346        /*
1347         * Allocate queue array.
1348         */
1349        retval = rt2x00queue_allocate(rt2x00dev);
1350        if (retval)
1351                goto exit;
1352
1353        /* Cache TX headroom value */
1354        rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1355
1356        /*
1357         * Determine which operating modes are supported, all modes
1358         * which require beaconing, depend on the availability of
1359         * beacon entries.
1360         */
1361        rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1362        if (rt2x00dev->bcn->limit > 0)
1363                rt2x00dev->hw->wiphy->interface_modes |=
1364                    BIT(NL80211_IFTYPE_ADHOC) |
1365                    BIT(NL80211_IFTYPE_AP) |
1366#ifdef CONFIG_MAC80211_MESH
1367                    BIT(NL80211_IFTYPE_MESH_POINT) |
1368#endif
1369                    BIT(NL80211_IFTYPE_WDS);
1370
1371        rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1372
1373        /*
1374         * Initialize ieee80211 structure.
1375         */
1376        retval = rt2x00lib_probe_hw(rt2x00dev);
1377        if (retval) {
1378                rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1379                goto exit;
1380        }
1381
1382        /*
1383         * Register extra components.
1384         */
1385        rt2x00link_register(rt2x00dev);
1386        rt2x00leds_register(rt2x00dev);
1387        rt2x00debug_register(rt2x00dev);
1388
1389        /*
1390         * Start rfkill polling.
1391         */
1392        if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1393                rt2x00rfkill_register(rt2x00dev);
1394
1395        return 0;
1396
1397exit:
1398        rt2x00lib_remove_dev(rt2x00dev);
1399
1400        return retval;
1401}
1402EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1403
1404void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1405{
1406        clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1407
1408        /*
1409         * Stop rfkill polling.
1410         */
1411        if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1412                rt2x00rfkill_unregister(rt2x00dev);
1413
1414        /*
1415         * Disable radio.
1416         */
1417        rt2x00lib_disable_radio(rt2x00dev);
1418
1419        /*
1420         * Stop all work.
1421         */
1422        cancel_work_sync(&rt2x00dev->intf_work);
1423        cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1424        cancel_work_sync(&rt2x00dev->sleep_work);
1425#ifdef CONFIG_RT2X00_LIB_USB
1426        if (rt2x00_is_usb(rt2x00dev)) {
1427                usb_kill_anchored_urbs(rt2x00dev->anchor);
1428                hrtimer_cancel(&rt2x00dev->txstatus_timer);
1429                cancel_work_sync(&rt2x00dev->rxdone_work);
1430                cancel_work_sync(&rt2x00dev->txdone_work);
1431        }
1432#endif
1433        if (rt2x00dev->workqueue)
1434                destroy_workqueue(rt2x00dev->workqueue);
1435
1436        /*
1437         * Free the tx status fifo.
1438         */
1439        kfifo_free(&rt2x00dev->txstatus_fifo);
1440
1441        /*
1442         * Kill the tx status tasklet.
1443         */
1444        tasklet_kill(&rt2x00dev->txstatus_tasklet);
1445        tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1446        tasklet_kill(&rt2x00dev->tbtt_tasklet);
1447        tasklet_kill(&rt2x00dev->rxdone_tasklet);
1448        tasklet_kill(&rt2x00dev->autowake_tasklet);
1449
1450        /*
1451         * Uninitialize device.
1452         */
1453        rt2x00lib_uninitialize(rt2x00dev);
1454
1455        /*
1456         * Free extra components
1457         */
1458        rt2x00debug_deregister(rt2x00dev);
1459        rt2x00leds_unregister(rt2x00dev);
1460
1461        /*
1462         * Free ieee80211_hw memory.
1463         */
1464        rt2x00lib_remove_hw(rt2x00dev);
1465
1466        /*
1467         * Free firmware image.
1468         */
1469        rt2x00lib_free_firmware(rt2x00dev);
1470
1471        /*
1472         * Free queue structures.
1473         */
1474        rt2x00queue_free(rt2x00dev);
1475
1476        /*
1477         * Free the driver data.
1478         */
1479        kfree(rt2x00dev->drv_data);
1480}
1481EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1482
1483/*
1484 * Device state handlers
1485 */
1486#ifdef CONFIG_PM
1487int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1488{
1489        rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1490
1491        /*
1492         * Prevent mac80211 from accessing driver while suspended.
1493         */
1494        if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1495                return 0;
1496
1497        /*
1498         * Cleanup as much as possible.
1499         */
1500        rt2x00lib_uninitialize(rt2x00dev);
1501
1502        /*
1503         * Suspend/disable extra components.
1504         */
1505        rt2x00leds_suspend(rt2x00dev);
1506        rt2x00debug_deregister(rt2x00dev);
1507
1508        /*
1509         * Set device mode to sleep for power management,
1510         * on some hardware this call seems to consistently fail.
1511         * From the specifications it is hard to tell why it fails,
1512         * and if this is a "bad thing".
1513         * Overall it is safe to just ignore the failure and
1514         * continue suspending. The only downside is that the
1515         * device will not be in optimal power save mode, but with
1516         * the radio and the other components already disabled the
1517         * device is as good as disabled.
1518         */
1519        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1520                rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1521
1522        return 0;
1523}
1524EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1525
1526int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1527{
1528        rt2x00_dbg(rt2x00dev, "Waking up\n");
1529
1530        /*
1531         * Restore/enable extra components.
1532         */
1533        rt2x00debug_register(rt2x00dev);
1534        rt2x00leds_resume(rt2x00dev);
1535
1536        /*
1537         * We are ready again to receive requests from mac80211.
1538         */
1539        set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1540
1541        return 0;
1542}
1543EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1544#endif /* CONFIG_PM */
1545
1546/*
1547 * rt2x00lib module information.
1548 */
1549MODULE_AUTHOR(DRV_PROJECT);
1550MODULE_VERSION(DRV_VERSION);
1551MODULE_DESCRIPTION("rt2x00 library");
1552MODULE_LICENSE("GPL");
1553