1
2
3
4
5
6
7
8
9
10
11
12
13
14
15#include <linux/aer.h>
16#include <linux/bitops.h>
17#include <linux/blkdev.h>
18#include <linux/blk-mq.h>
19#include <linux/cpu.h>
20#include <linux/delay.h>
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
24#include <linux/hdreg.h>
25#include <linux/idr.h>
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
34#include <linux/mutex.h>
35#include <linux/pci.h>
36#include <linux/poison.h>
37#include <linux/ptrace.h>
38#include <linux/sched.h>
39#include <linux/slab.h>
40#include <linux/t10-pi.h>
41#include <linux/timer.h>
42#include <linux/types.h>
43#include <linux/io-64-nonatomic-lo-hi.h>
44#include <asm/unaligned.h>
45
46#include "nvme.h"
47
48#define NVME_Q_DEPTH 1024
49#define NVME_AQ_DEPTH 256
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53
54
55
56
57#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS)
58
59static int use_threaded_interrupts;
60module_param(use_threaded_interrupts, int, 0);
61
62static bool use_cmb_sqes = true;
63module_param(use_cmb_sqes, bool, 0644);
64MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
65
66static struct workqueue_struct *nvme_workq;
67
68struct nvme_dev;
69struct nvme_queue;
70
71static int nvme_reset(struct nvme_dev *dev);
72static void nvme_process_cq(struct nvme_queue *nvmeq);
73static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
74
75
76
77
78struct nvme_dev {
79 struct nvme_queue **queues;
80 struct blk_mq_tag_set tagset;
81 struct blk_mq_tag_set admin_tagset;
82 u32 __iomem *dbs;
83 struct device *dev;
84 struct dma_pool *prp_page_pool;
85 struct dma_pool *prp_small_pool;
86 unsigned queue_count;
87 unsigned online_queues;
88 unsigned max_qid;
89 int q_depth;
90 u32 db_stride;
91 struct msix_entry *entry;
92 void __iomem *bar;
93 struct work_struct reset_work;
94 struct work_struct remove_work;
95 struct timer_list watchdog_timer;
96 struct mutex shutdown_lock;
97 bool subsystem;
98 void __iomem *cmb;
99 dma_addr_t cmb_dma_addr;
100 u64 cmb_size;
101 u32 cmbsz;
102 struct nvme_ctrl ctrl;
103 struct completion ioq_wait;
104};
105
106static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
107{
108 return container_of(ctrl, struct nvme_dev, ctrl);
109}
110
111
112
113
114
115struct nvme_queue {
116 struct device *q_dmadev;
117 struct nvme_dev *dev;
118 char irqname[24];
119 spinlock_t q_lock;
120 struct nvme_command *sq_cmds;
121 struct nvme_command __iomem *sq_cmds_io;
122 volatile struct nvme_completion *cqes;
123 struct blk_mq_tags **tags;
124 dma_addr_t sq_dma_addr;
125 dma_addr_t cq_dma_addr;
126 u32 __iomem *q_db;
127 u16 q_depth;
128 s16 cq_vector;
129 u16 sq_tail;
130 u16 cq_head;
131 u16 qid;
132 u8 cq_phase;
133 u8 cqe_seen;
134};
135
136
137
138
139
140
141
142struct nvme_iod {
143 struct nvme_queue *nvmeq;
144 int aborted;
145 int npages;
146 int nents;
147 int length;
148 dma_addr_t first_dma;
149 struct scatterlist meta_sg;
150 struct scatterlist *sg;
151 struct scatterlist inline_sg[0];
152};
153
154
155
156
157static inline void _nvme_check_size(void)
158{
159 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
160 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
161 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
162 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
163 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
164 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
165 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
166 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
167 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
168 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
169 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
171}
172
173
174
175
176#define NVME_INT_PAGES 2
177#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
178
179
180
181
182
183
184static int nvme_npages(unsigned size, struct nvme_dev *dev)
185{
186 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
187 dev->ctrl.page_size);
188 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
189}
190
191static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
192 unsigned int size, unsigned int nseg)
193{
194 return sizeof(__le64 *) * nvme_npages(size, dev) +
195 sizeof(struct scatterlist) * nseg;
196}
197
198static unsigned int nvme_cmd_size(struct nvme_dev *dev)
199{
200 return sizeof(struct nvme_iod) +
201 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
202}
203
204static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
205 unsigned int hctx_idx)
206{
207 struct nvme_dev *dev = data;
208 struct nvme_queue *nvmeq = dev->queues[0];
209
210 WARN_ON(hctx_idx != 0);
211 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
212 WARN_ON(nvmeq->tags);
213
214 hctx->driver_data = nvmeq;
215 nvmeq->tags = &dev->admin_tagset.tags[0];
216 return 0;
217}
218
219static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
220{
221 struct nvme_queue *nvmeq = hctx->driver_data;
222
223 nvmeq->tags = NULL;
224}
225
226static int nvme_admin_init_request(void *data, struct request *req,
227 unsigned int hctx_idx, unsigned int rq_idx,
228 unsigned int numa_node)
229{
230 struct nvme_dev *dev = data;
231 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
232 struct nvme_queue *nvmeq = dev->queues[0];
233
234 BUG_ON(!nvmeq);
235 iod->nvmeq = nvmeq;
236 return 0;
237}
238
239static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
240 unsigned int hctx_idx)
241{
242 struct nvme_dev *dev = data;
243 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
244
245 if (!nvmeq->tags)
246 nvmeq->tags = &dev->tagset.tags[hctx_idx];
247
248 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
249 hctx->driver_data = nvmeq;
250 return 0;
251}
252
253static int nvme_init_request(void *data, struct request *req,
254 unsigned int hctx_idx, unsigned int rq_idx,
255 unsigned int numa_node)
256{
257 struct nvme_dev *dev = data;
258 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
259 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
260
261 BUG_ON(!nvmeq);
262 iod->nvmeq = nvmeq;
263 return 0;
264}
265
266
267
268
269
270
271
272
273static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
274 struct nvme_command *cmd)
275{
276 u16 tail = nvmeq->sq_tail;
277
278 if (nvmeq->sq_cmds_io)
279 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
280 else
281 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
282
283 if (++tail == nvmeq->q_depth)
284 tail = 0;
285 writel(tail, nvmeq->q_db);
286 nvmeq->sq_tail = tail;
287}
288
289static __le64 **iod_list(struct request *req)
290{
291 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
292 return (__le64 **)(iod->sg + req->nr_phys_segments);
293}
294
295static int nvme_init_iod(struct request *rq, unsigned size,
296 struct nvme_dev *dev)
297{
298 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
299 int nseg = rq->nr_phys_segments;
300
301 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
302 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
303 if (!iod->sg)
304 return BLK_MQ_RQ_QUEUE_BUSY;
305 } else {
306 iod->sg = iod->inline_sg;
307 }
308
309 iod->aborted = 0;
310 iod->npages = -1;
311 iod->nents = 0;
312 iod->length = size;
313 return 0;
314}
315
316static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
317{
318 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
319 const int last_prp = dev->ctrl.page_size / 8 - 1;
320 int i;
321 __le64 **list = iod_list(req);
322 dma_addr_t prp_dma = iod->first_dma;
323
324 nvme_cleanup_cmd(req);
325
326 if (iod->npages == 0)
327 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
328 for (i = 0; i < iod->npages; i++) {
329 __le64 *prp_list = list[i];
330 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
331 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
332 prp_dma = next_prp_dma;
333 }
334
335 if (iod->sg != iod->inline_sg)
336 kfree(iod->sg);
337}
338
339#ifdef CONFIG_BLK_DEV_INTEGRITY
340static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
341{
342 if (be32_to_cpu(pi->ref_tag) == v)
343 pi->ref_tag = cpu_to_be32(p);
344}
345
346static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
347{
348 if (be32_to_cpu(pi->ref_tag) == p)
349 pi->ref_tag = cpu_to_be32(v);
350}
351
352
353
354
355
356
357
358
359
360
361
362static void nvme_dif_remap(struct request *req,
363 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
364{
365 struct nvme_ns *ns = req->rq_disk->private_data;
366 struct bio_integrity_payload *bip;
367 struct t10_pi_tuple *pi;
368 void *p, *pmap;
369 u32 i, nlb, ts, phys, virt;
370
371 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
372 return;
373
374 bip = bio_integrity(req->bio);
375 if (!bip)
376 return;
377
378 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
379
380 p = pmap;
381 virt = bip_get_seed(bip);
382 phys = nvme_block_nr(ns, blk_rq_pos(req));
383 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
384 ts = ns->disk->queue->integrity.tuple_size;
385
386 for (i = 0; i < nlb; i++, virt++, phys++) {
387 pi = (struct t10_pi_tuple *)p;
388 dif_swap(phys, virt, pi);
389 p += ts;
390 }
391 kunmap_atomic(pmap);
392}
393#else
394static void nvme_dif_remap(struct request *req,
395 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
396{
397}
398static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
399{
400}
401static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
402{
403}
404#endif
405
406static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
407 int total_len)
408{
409 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
410 struct dma_pool *pool;
411 int length = total_len;
412 struct scatterlist *sg = iod->sg;
413 int dma_len = sg_dma_len(sg);
414 u64 dma_addr = sg_dma_address(sg);
415 u32 page_size = dev->ctrl.page_size;
416 int offset = dma_addr & (page_size - 1);
417 __le64 *prp_list;
418 __le64 **list = iod_list(req);
419 dma_addr_t prp_dma;
420 int nprps, i;
421
422 length -= (page_size - offset);
423 if (length <= 0)
424 return true;
425
426 dma_len -= (page_size - offset);
427 if (dma_len) {
428 dma_addr += (page_size - offset);
429 } else {
430 sg = sg_next(sg);
431 dma_addr = sg_dma_address(sg);
432 dma_len = sg_dma_len(sg);
433 }
434
435 if (length <= page_size) {
436 iod->first_dma = dma_addr;
437 return true;
438 }
439
440 nprps = DIV_ROUND_UP(length, page_size);
441 if (nprps <= (256 / 8)) {
442 pool = dev->prp_small_pool;
443 iod->npages = 0;
444 } else {
445 pool = dev->prp_page_pool;
446 iod->npages = 1;
447 }
448
449 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
450 if (!prp_list) {
451 iod->first_dma = dma_addr;
452 iod->npages = -1;
453 return false;
454 }
455 list[0] = prp_list;
456 iod->first_dma = prp_dma;
457 i = 0;
458 for (;;) {
459 if (i == page_size >> 3) {
460 __le64 *old_prp_list = prp_list;
461 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
462 if (!prp_list)
463 return false;
464 list[iod->npages++] = prp_list;
465 prp_list[0] = old_prp_list[i - 1];
466 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
467 i = 1;
468 }
469 prp_list[i++] = cpu_to_le64(dma_addr);
470 dma_len -= page_size;
471 dma_addr += page_size;
472 length -= page_size;
473 if (length <= 0)
474 break;
475 if (dma_len > 0)
476 continue;
477 BUG_ON(dma_len < 0);
478 sg = sg_next(sg);
479 dma_addr = sg_dma_address(sg);
480 dma_len = sg_dma_len(sg);
481 }
482
483 return true;
484}
485
486static int nvme_map_data(struct nvme_dev *dev, struct request *req,
487 unsigned size, struct nvme_command *cmnd)
488{
489 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
490 struct request_queue *q = req->q;
491 enum dma_data_direction dma_dir = rq_data_dir(req) ?
492 DMA_TO_DEVICE : DMA_FROM_DEVICE;
493 int ret = BLK_MQ_RQ_QUEUE_ERROR;
494
495 sg_init_table(iod->sg, req->nr_phys_segments);
496 iod->nents = blk_rq_map_sg(q, req, iod->sg);
497 if (!iod->nents)
498 goto out;
499
500 ret = BLK_MQ_RQ_QUEUE_BUSY;
501 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
502 goto out;
503
504 if (!nvme_setup_prps(dev, req, size))
505 goto out_unmap;
506
507 ret = BLK_MQ_RQ_QUEUE_ERROR;
508 if (blk_integrity_rq(req)) {
509 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
510 goto out_unmap;
511
512 sg_init_table(&iod->meta_sg, 1);
513 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
514 goto out_unmap;
515
516 if (rq_data_dir(req))
517 nvme_dif_remap(req, nvme_dif_prep);
518
519 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
520 goto out_unmap;
521 }
522
523 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
524 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
525 if (blk_integrity_rq(req))
526 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
527 return BLK_MQ_RQ_QUEUE_OK;
528
529out_unmap:
530 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
531out:
532 return ret;
533}
534
535static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
536{
537 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
538 enum dma_data_direction dma_dir = rq_data_dir(req) ?
539 DMA_TO_DEVICE : DMA_FROM_DEVICE;
540
541 if (iod->nents) {
542 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
543 if (blk_integrity_rq(req)) {
544 if (!rq_data_dir(req))
545 nvme_dif_remap(req, nvme_dif_complete);
546 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
547 }
548 }
549
550 nvme_free_iod(dev, req);
551}
552
553
554
555
556static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
557 const struct blk_mq_queue_data *bd)
558{
559 struct nvme_ns *ns = hctx->queue->queuedata;
560 struct nvme_queue *nvmeq = hctx->driver_data;
561 struct nvme_dev *dev = nvmeq->dev;
562 struct request *req = bd->rq;
563 struct nvme_command cmnd;
564 unsigned map_len;
565 int ret = BLK_MQ_RQ_QUEUE_OK;
566
567
568
569
570
571
572 if (ns && ns->ms && !blk_integrity_rq(req)) {
573 if (!(ns->pi_type && ns->ms == 8) &&
574 req->cmd_type != REQ_TYPE_DRV_PRIV) {
575 blk_mq_end_request(req, -EFAULT);
576 return BLK_MQ_RQ_QUEUE_OK;
577 }
578 }
579
580 map_len = nvme_map_len(req);
581 ret = nvme_init_iod(req, map_len, dev);
582 if (ret)
583 return ret;
584
585 ret = nvme_setup_cmd(ns, req, &cmnd);
586 if (ret)
587 goto out;
588
589 if (req->nr_phys_segments)
590 ret = nvme_map_data(dev, req, map_len, &cmnd);
591
592 if (ret)
593 goto out;
594
595 cmnd.common.command_id = req->tag;
596 blk_mq_start_request(req);
597
598 spin_lock_irq(&nvmeq->q_lock);
599 if (unlikely(nvmeq->cq_vector < 0)) {
600 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
601 ret = BLK_MQ_RQ_QUEUE_BUSY;
602 else
603 ret = BLK_MQ_RQ_QUEUE_ERROR;
604 spin_unlock_irq(&nvmeq->q_lock);
605 goto out;
606 }
607 __nvme_submit_cmd(nvmeq, &cmnd);
608 nvme_process_cq(nvmeq);
609 spin_unlock_irq(&nvmeq->q_lock);
610 return BLK_MQ_RQ_QUEUE_OK;
611out:
612 nvme_free_iod(dev, req);
613 return ret;
614}
615
616static void nvme_complete_rq(struct request *req)
617{
618 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619 struct nvme_dev *dev = iod->nvmeq->dev;
620 int error = 0;
621
622 nvme_unmap_data(dev, req);
623
624 if (unlikely(req->errors)) {
625 if (nvme_req_needs_retry(req, req->errors)) {
626 nvme_requeue_req(req);
627 return;
628 }
629
630 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
631 error = req->errors;
632 else
633 error = nvme_error_status(req->errors);
634 }
635
636 if (unlikely(iod->aborted)) {
637 dev_warn(dev->ctrl.device,
638 "completing aborted command with status: %04x\n",
639 req->errors);
640 }
641
642 blk_mq_end_request(req, error);
643}
644
645
646static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
647 u16 phase)
648{
649 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
650}
651
652static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
653{
654 u16 head, phase;
655
656 head = nvmeq->cq_head;
657 phase = nvmeq->cq_phase;
658
659 while (nvme_cqe_valid(nvmeq, head, phase)) {
660 struct nvme_completion cqe = nvmeq->cqes[head];
661 struct request *req;
662
663 if (++head == nvmeq->q_depth) {
664 head = 0;
665 phase = !phase;
666 }
667
668 if (tag && *tag == cqe.command_id)
669 *tag = -1;
670
671 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
672 dev_warn(nvmeq->dev->ctrl.device,
673 "invalid id %d completed on queue %d\n",
674 cqe.command_id, le16_to_cpu(cqe.sq_id));
675 continue;
676 }
677
678
679
680
681
682
683
684 if (unlikely(nvmeq->qid == 0 &&
685 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
686 nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
687 continue;
688 }
689
690 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
691 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
692 memcpy(req->special, &cqe, sizeof(cqe));
693 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
694
695 }
696
697
698
699
700
701
702
703 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
704 return;
705
706 if (likely(nvmeq->cq_vector >= 0))
707 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
708 nvmeq->cq_head = head;
709 nvmeq->cq_phase = phase;
710
711 nvmeq->cqe_seen = 1;
712}
713
714static void nvme_process_cq(struct nvme_queue *nvmeq)
715{
716 __nvme_process_cq(nvmeq, NULL);
717}
718
719static irqreturn_t nvme_irq(int irq, void *data)
720{
721 irqreturn_t result;
722 struct nvme_queue *nvmeq = data;
723 spin_lock(&nvmeq->q_lock);
724 nvme_process_cq(nvmeq);
725 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
726 nvmeq->cqe_seen = 0;
727 spin_unlock(&nvmeq->q_lock);
728 return result;
729}
730
731static irqreturn_t nvme_irq_check(int irq, void *data)
732{
733 struct nvme_queue *nvmeq = data;
734 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
735 return IRQ_WAKE_THREAD;
736 return IRQ_NONE;
737}
738
739static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
740{
741 struct nvme_queue *nvmeq = hctx->driver_data;
742
743 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
744 spin_lock_irq(&nvmeq->q_lock);
745 __nvme_process_cq(nvmeq, &tag);
746 spin_unlock_irq(&nvmeq->q_lock);
747
748 if (tag == -1)
749 return 1;
750 }
751
752 return 0;
753}
754
755static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
756{
757 struct nvme_dev *dev = to_nvme_dev(ctrl);
758 struct nvme_queue *nvmeq = dev->queues[0];
759 struct nvme_command c;
760
761 memset(&c, 0, sizeof(c));
762 c.common.opcode = nvme_admin_async_event;
763 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
764
765 spin_lock_irq(&nvmeq->q_lock);
766 __nvme_submit_cmd(nvmeq, &c);
767 spin_unlock_irq(&nvmeq->q_lock);
768}
769
770static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
771{
772 struct nvme_command c;
773
774 memset(&c, 0, sizeof(c));
775 c.delete_queue.opcode = opcode;
776 c.delete_queue.qid = cpu_to_le16(id);
777
778 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
779}
780
781static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
782 struct nvme_queue *nvmeq)
783{
784 struct nvme_command c;
785 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
786
787
788
789
790
791 memset(&c, 0, sizeof(c));
792 c.create_cq.opcode = nvme_admin_create_cq;
793 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
794 c.create_cq.cqid = cpu_to_le16(qid);
795 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
796 c.create_cq.cq_flags = cpu_to_le16(flags);
797 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
798
799 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
800}
801
802static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
803 struct nvme_queue *nvmeq)
804{
805 struct nvme_command c;
806 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
807
808
809
810
811
812 memset(&c, 0, sizeof(c));
813 c.create_sq.opcode = nvme_admin_create_sq;
814 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
815 c.create_sq.sqid = cpu_to_le16(qid);
816 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
817 c.create_sq.sq_flags = cpu_to_le16(flags);
818 c.create_sq.cqid = cpu_to_le16(qid);
819
820 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
821}
822
823static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
824{
825 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
826}
827
828static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
829{
830 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
831}
832
833static void abort_endio(struct request *req, int error)
834{
835 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
836 struct nvme_queue *nvmeq = iod->nvmeq;
837 u16 status = req->errors;
838
839 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
840 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
841 blk_mq_free_request(req);
842}
843
844static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
845{
846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 struct nvme_queue *nvmeq = iod->nvmeq;
848 struct nvme_dev *dev = nvmeq->dev;
849 struct request *abort_req;
850 struct nvme_command cmd;
851
852
853
854
855
856
857
858 if (dev->ctrl.state == NVME_CTRL_RESETTING) {
859 dev_warn(dev->ctrl.device,
860 "I/O %d QID %d timeout, disable controller\n",
861 req->tag, nvmeq->qid);
862 nvme_dev_disable(dev, false);
863 req->errors = NVME_SC_CANCELLED;
864 return BLK_EH_HANDLED;
865 }
866
867
868
869
870
871
872 if (!nvmeq->qid || iod->aborted) {
873 dev_warn(dev->ctrl.device,
874 "I/O %d QID %d timeout, reset controller\n",
875 req->tag, nvmeq->qid);
876 nvme_dev_disable(dev, false);
877 queue_work(nvme_workq, &dev->reset_work);
878
879
880
881
882
883 req->errors = NVME_SC_CANCELLED;
884 return BLK_EH_HANDLED;
885 }
886
887 iod->aborted = 1;
888
889 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
890 atomic_inc(&dev->ctrl.abort_limit);
891 return BLK_EH_RESET_TIMER;
892 }
893
894 memset(&cmd, 0, sizeof(cmd));
895 cmd.abort.opcode = nvme_admin_abort_cmd;
896 cmd.abort.cid = req->tag;
897 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
898
899 dev_warn(nvmeq->dev->ctrl.device,
900 "I/O %d QID %d timeout, aborting\n",
901 req->tag, nvmeq->qid);
902
903 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
904 BLK_MQ_REQ_NOWAIT);
905 if (IS_ERR(abort_req)) {
906 atomic_inc(&dev->ctrl.abort_limit);
907 return BLK_EH_RESET_TIMER;
908 }
909
910 abort_req->timeout = ADMIN_TIMEOUT;
911 abort_req->end_io_data = NULL;
912 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
913
914
915
916
917
918
919 return BLK_EH_RESET_TIMER;
920}
921
922static void nvme_cancel_io(struct request *req, void *data, bool reserved)
923{
924 int status;
925
926 if (!blk_mq_request_started(req))
927 return;
928
929 dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device,
930 "Cancelling I/O %d", req->tag);
931
932 status = NVME_SC_ABORT_REQ;
933 if (blk_queue_dying(req->q))
934 status |= NVME_SC_DNR;
935 blk_mq_complete_request(req, status);
936}
937
938static void nvme_free_queue(struct nvme_queue *nvmeq)
939{
940 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
941 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
942 if (nvmeq->sq_cmds)
943 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
944 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
945 kfree(nvmeq);
946}
947
948static void nvme_free_queues(struct nvme_dev *dev, int lowest)
949{
950 int i;
951
952 for (i = dev->queue_count - 1; i >= lowest; i--) {
953 struct nvme_queue *nvmeq = dev->queues[i];
954 dev->queue_count--;
955 dev->queues[i] = NULL;
956 nvme_free_queue(nvmeq);
957 }
958}
959
960
961
962
963
964static int nvme_suspend_queue(struct nvme_queue *nvmeq)
965{
966 int vector;
967
968 spin_lock_irq(&nvmeq->q_lock);
969 if (nvmeq->cq_vector == -1) {
970 spin_unlock_irq(&nvmeq->q_lock);
971 return 1;
972 }
973 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
974 nvmeq->dev->online_queues--;
975 nvmeq->cq_vector = -1;
976 spin_unlock_irq(&nvmeq->q_lock);
977
978 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
979 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
980
981 irq_set_affinity_hint(vector, NULL);
982 free_irq(vector, nvmeq);
983
984 return 0;
985}
986
987static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
988{
989 struct nvme_queue *nvmeq = dev->queues[0];
990
991 if (!nvmeq)
992 return;
993 if (nvme_suspend_queue(nvmeq))
994 return;
995
996 if (shutdown)
997 nvme_shutdown_ctrl(&dev->ctrl);
998 else
999 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1000 dev->bar + NVME_REG_CAP));
1001
1002 spin_lock_irq(&nvmeq->q_lock);
1003 nvme_process_cq(nvmeq);
1004 spin_unlock_irq(&nvmeq->q_lock);
1005}
1006
1007static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1008 int entry_size)
1009{
1010 int q_depth = dev->q_depth;
1011 unsigned q_size_aligned = roundup(q_depth * entry_size,
1012 dev->ctrl.page_size);
1013
1014 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1015 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1016 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1017 q_depth = div_u64(mem_per_q, entry_size);
1018
1019
1020
1021
1022
1023
1024 if (q_depth < 64)
1025 return -ENOMEM;
1026 }
1027
1028 return q_depth;
1029}
1030
1031static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1032 int qid, int depth)
1033{
1034 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1035 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1036 dev->ctrl.page_size);
1037 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1038 nvmeq->sq_cmds_io = dev->cmb + offset;
1039 } else {
1040 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1041 &nvmeq->sq_dma_addr, GFP_KERNEL);
1042 if (!nvmeq->sq_cmds)
1043 return -ENOMEM;
1044 }
1045
1046 return 0;
1047}
1048
1049static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1050 int depth)
1051{
1052 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1053 if (!nvmeq)
1054 return NULL;
1055
1056 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1057 &nvmeq->cq_dma_addr, GFP_KERNEL);
1058 if (!nvmeq->cqes)
1059 goto free_nvmeq;
1060
1061 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1062 goto free_cqdma;
1063
1064 nvmeq->q_dmadev = dev->dev;
1065 nvmeq->dev = dev;
1066 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1067 dev->ctrl.instance, qid);
1068 spin_lock_init(&nvmeq->q_lock);
1069 nvmeq->cq_head = 0;
1070 nvmeq->cq_phase = 1;
1071 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1072 nvmeq->q_depth = depth;
1073 nvmeq->qid = qid;
1074 nvmeq->cq_vector = -1;
1075 dev->queues[qid] = nvmeq;
1076 dev->queue_count++;
1077
1078 return nvmeq;
1079
1080 free_cqdma:
1081 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1082 nvmeq->cq_dma_addr);
1083 free_nvmeq:
1084 kfree(nvmeq);
1085 return NULL;
1086}
1087
1088static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1089 const char *name)
1090{
1091 if (use_threaded_interrupts)
1092 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1093 nvme_irq_check, nvme_irq, IRQF_SHARED,
1094 name, nvmeq);
1095 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1096 IRQF_SHARED, name, nvmeq);
1097}
1098
1099static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1100{
1101 struct nvme_dev *dev = nvmeq->dev;
1102
1103 spin_lock_irq(&nvmeq->q_lock);
1104 nvmeq->sq_tail = 0;
1105 nvmeq->cq_head = 0;
1106 nvmeq->cq_phase = 1;
1107 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1108 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1109 dev->online_queues++;
1110 spin_unlock_irq(&nvmeq->q_lock);
1111}
1112
1113static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1114{
1115 struct nvme_dev *dev = nvmeq->dev;
1116 int result;
1117
1118 nvmeq->cq_vector = qid - 1;
1119 result = adapter_alloc_cq(dev, qid, nvmeq);
1120 if (result < 0)
1121 return result;
1122
1123 result = adapter_alloc_sq(dev, qid, nvmeq);
1124 if (result < 0)
1125 goto release_cq;
1126
1127 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1128 if (result < 0)
1129 goto release_sq;
1130
1131 nvme_init_queue(nvmeq, qid);
1132 return result;
1133
1134 release_sq:
1135 adapter_delete_sq(dev, qid);
1136 release_cq:
1137 adapter_delete_cq(dev, qid);
1138 return result;
1139}
1140
1141static struct blk_mq_ops nvme_mq_admin_ops = {
1142 .queue_rq = nvme_queue_rq,
1143 .complete = nvme_complete_rq,
1144 .map_queue = blk_mq_map_queue,
1145 .init_hctx = nvme_admin_init_hctx,
1146 .exit_hctx = nvme_admin_exit_hctx,
1147 .init_request = nvme_admin_init_request,
1148 .timeout = nvme_timeout,
1149};
1150
1151static struct blk_mq_ops nvme_mq_ops = {
1152 .queue_rq = nvme_queue_rq,
1153 .complete = nvme_complete_rq,
1154 .map_queue = blk_mq_map_queue,
1155 .init_hctx = nvme_init_hctx,
1156 .init_request = nvme_init_request,
1157 .timeout = nvme_timeout,
1158 .poll = nvme_poll,
1159};
1160
1161static void nvme_dev_remove_admin(struct nvme_dev *dev)
1162{
1163 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1164
1165
1166
1167
1168
1169 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1170 blk_cleanup_queue(dev->ctrl.admin_q);
1171 blk_mq_free_tag_set(&dev->admin_tagset);
1172 }
1173}
1174
1175static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1176{
1177 if (!dev->ctrl.admin_q) {
1178 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1179 dev->admin_tagset.nr_hw_queues = 1;
1180
1181
1182
1183
1184
1185 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1186 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1187 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1188 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1189 dev->admin_tagset.driver_data = dev;
1190
1191 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1192 return -ENOMEM;
1193
1194 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1195 if (IS_ERR(dev->ctrl.admin_q)) {
1196 blk_mq_free_tag_set(&dev->admin_tagset);
1197 return -ENOMEM;
1198 }
1199 if (!blk_get_queue(dev->ctrl.admin_q)) {
1200 nvme_dev_remove_admin(dev);
1201 dev->ctrl.admin_q = NULL;
1202 return -ENODEV;
1203 }
1204 } else
1205 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1206
1207 return 0;
1208}
1209
1210static int nvme_configure_admin_queue(struct nvme_dev *dev)
1211{
1212 int result;
1213 u32 aqa;
1214 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1215 struct nvme_queue *nvmeq;
1216
1217 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1218 NVME_CAP_NSSRC(cap) : 0;
1219
1220 if (dev->subsystem &&
1221 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1222 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1223
1224 result = nvme_disable_ctrl(&dev->ctrl, cap);
1225 if (result < 0)
1226 return result;
1227
1228 nvmeq = dev->queues[0];
1229 if (!nvmeq) {
1230 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1231 if (!nvmeq)
1232 return -ENOMEM;
1233 }
1234
1235 aqa = nvmeq->q_depth - 1;
1236 aqa |= aqa << 16;
1237
1238 writel(aqa, dev->bar + NVME_REG_AQA);
1239 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1240 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1241
1242 result = nvme_enable_ctrl(&dev->ctrl, cap);
1243 if (result)
1244 goto free_nvmeq;
1245
1246 nvmeq->cq_vector = 0;
1247 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1248 if (result) {
1249 nvmeq->cq_vector = -1;
1250 goto free_nvmeq;
1251 }
1252
1253 return result;
1254
1255 free_nvmeq:
1256 nvme_free_queues(dev, 0);
1257 return result;
1258}
1259
1260static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1261{
1262
1263
1264
1265
1266 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1267
1268
1269 if (work_busy(&dev->reset_work))
1270 return false;
1271
1272
1273
1274
1275 if (!(csts & NVME_CSTS_CFS) && !nssro)
1276 return false;
1277
1278
1279
1280
1281 if (pci_channel_offline(to_pci_dev(dev->dev)))
1282 return false;
1283
1284 return true;
1285}
1286
1287static void nvme_watchdog_timer(unsigned long data)
1288{
1289 struct nvme_dev *dev = (struct nvme_dev *)data;
1290 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1291
1292
1293 if (nvme_should_reset(dev, csts)) {
1294 if (queue_work(nvme_workq, &dev->reset_work))
1295 dev_warn(dev->dev,
1296 "Failed status: 0x%x, reset controller.\n",
1297 csts);
1298 return;
1299 }
1300
1301 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1302}
1303
1304static int nvme_create_io_queues(struct nvme_dev *dev)
1305{
1306 unsigned i, max;
1307 int ret = 0;
1308
1309 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1310 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1311 ret = -ENOMEM;
1312 break;
1313 }
1314 }
1315
1316 max = min(dev->max_qid, dev->queue_count - 1);
1317 for (i = dev->online_queues; i <= max; i++) {
1318 ret = nvme_create_queue(dev->queues[i], i);
1319 if (ret) {
1320 nvme_free_queues(dev, i);
1321 break;
1322 }
1323 }
1324
1325
1326
1327
1328
1329
1330
1331 return ret >= 0 ? 0 : ret;
1332}
1333
1334static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1335{
1336 u64 szu, size, offset;
1337 u32 cmbloc;
1338 resource_size_t bar_size;
1339 struct pci_dev *pdev = to_pci_dev(dev->dev);
1340 void __iomem *cmb;
1341 dma_addr_t dma_addr;
1342
1343 if (!use_cmb_sqes)
1344 return NULL;
1345
1346 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1347 if (!(NVME_CMB_SZ(dev->cmbsz)))
1348 return NULL;
1349
1350 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1351
1352 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1353 size = szu * NVME_CMB_SZ(dev->cmbsz);
1354 offset = szu * NVME_CMB_OFST(cmbloc);
1355 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1356
1357 if (offset > bar_size)
1358 return NULL;
1359
1360
1361
1362
1363
1364
1365 if (size > bar_size - offset)
1366 size = bar_size - offset;
1367
1368 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1369 cmb = ioremap_wc(dma_addr, size);
1370 if (!cmb)
1371 return NULL;
1372
1373 dev->cmb_dma_addr = dma_addr;
1374 dev->cmb_size = size;
1375 return cmb;
1376}
1377
1378static inline void nvme_release_cmb(struct nvme_dev *dev)
1379{
1380 if (dev->cmb) {
1381 iounmap(dev->cmb);
1382 dev->cmb = NULL;
1383 }
1384}
1385
1386static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1387{
1388 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1389}
1390
1391static int nvme_setup_io_queues(struct nvme_dev *dev)
1392{
1393 struct nvme_queue *adminq = dev->queues[0];
1394 struct pci_dev *pdev = to_pci_dev(dev->dev);
1395 int result, i, vecs, nr_io_queues, size;
1396
1397 nr_io_queues = num_online_cpus();
1398 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1399 if (result < 0)
1400 return result;
1401
1402
1403
1404
1405
1406
1407 if (result > 0) {
1408 dev_err(dev->ctrl.device,
1409 "Could not set queue count (%d)\n", result);
1410 return 0;
1411 }
1412
1413 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1414 result = nvme_cmb_qdepth(dev, nr_io_queues,
1415 sizeof(struct nvme_command));
1416 if (result > 0)
1417 dev->q_depth = result;
1418 else
1419 nvme_release_cmb(dev);
1420 }
1421
1422 size = db_bar_size(dev, nr_io_queues);
1423 if (size > 8192) {
1424 iounmap(dev->bar);
1425 do {
1426 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1427 if (dev->bar)
1428 break;
1429 if (!--nr_io_queues)
1430 return -ENOMEM;
1431 size = db_bar_size(dev, nr_io_queues);
1432 } while (1);
1433 dev->dbs = dev->bar + 4096;
1434 adminq->q_db = dev->dbs;
1435 }
1436
1437
1438 free_irq(dev->entry[0].vector, adminq);
1439
1440
1441
1442
1443
1444 if (pdev->msi_enabled)
1445 pci_disable_msi(pdev);
1446 else if (pdev->msix_enabled)
1447 pci_disable_msix(pdev);
1448
1449 for (i = 0; i < nr_io_queues; i++)
1450 dev->entry[i].entry = i;
1451 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1452 if (vecs < 0) {
1453 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1454 if (vecs < 0) {
1455 vecs = 1;
1456 } else {
1457 for (i = 0; i < vecs; i++)
1458 dev->entry[i].vector = i + pdev->irq;
1459 }
1460 }
1461
1462
1463
1464
1465
1466
1467
1468 nr_io_queues = vecs;
1469 dev->max_qid = nr_io_queues;
1470
1471 result = queue_request_irq(dev, adminq, adminq->irqname);
1472 if (result) {
1473 adminq->cq_vector = -1;
1474 goto free_queues;
1475 }
1476 return nvme_create_io_queues(dev);
1477
1478 free_queues:
1479 nvme_free_queues(dev, 1);
1480 return result;
1481}
1482
1483static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
1484{
1485 struct nvme_dev *dev = to_nvme_dev(ctrl);
1486 struct nvme_queue *nvmeq;
1487 int i;
1488
1489 for (i = 0; i < dev->online_queues; i++) {
1490 nvmeq = dev->queues[i];
1491
1492 if (!nvmeq->tags || !(*nvmeq->tags))
1493 continue;
1494
1495 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1496 blk_mq_tags_cpumask(*nvmeq->tags));
1497 }
1498}
1499
1500static void nvme_del_queue_end(struct request *req, int error)
1501{
1502 struct nvme_queue *nvmeq = req->end_io_data;
1503
1504 blk_mq_free_request(req);
1505 complete(&nvmeq->dev->ioq_wait);
1506}
1507
1508static void nvme_del_cq_end(struct request *req, int error)
1509{
1510 struct nvme_queue *nvmeq = req->end_io_data;
1511
1512 if (!error) {
1513 unsigned long flags;
1514
1515
1516
1517
1518
1519
1520 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1521 SINGLE_DEPTH_NESTING);
1522 nvme_process_cq(nvmeq);
1523 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1524 }
1525
1526 nvme_del_queue_end(req, error);
1527}
1528
1529static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1530{
1531 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1532 struct request *req;
1533 struct nvme_command cmd;
1534
1535 memset(&cmd, 0, sizeof(cmd));
1536 cmd.delete_queue.opcode = opcode;
1537 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1538
1539 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1540 if (IS_ERR(req))
1541 return PTR_ERR(req);
1542
1543 req->timeout = ADMIN_TIMEOUT;
1544 req->end_io_data = nvmeq;
1545
1546 blk_execute_rq_nowait(q, NULL, req, false,
1547 opcode == nvme_admin_delete_cq ?
1548 nvme_del_cq_end : nvme_del_queue_end);
1549 return 0;
1550}
1551
1552static void nvme_disable_io_queues(struct nvme_dev *dev)
1553{
1554 int pass, queues = dev->online_queues - 1;
1555 unsigned long timeout;
1556 u8 opcode = nvme_admin_delete_sq;
1557
1558 for (pass = 0; pass < 2; pass++) {
1559 int sent = 0, i = queues;
1560
1561 reinit_completion(&dev->ioq_wait);
1562 retry:
1563 timeout = ADMIN_TIMEOUT;
1564 for (; i > 0; i--) {
1565 struct nvme_queue *nvmeq = dev->queues[i];
1566
1567 if (!pass)
1568 nvme_suspend_queue(nvmeq);
1569 if (nvme_delete_queue(nvmeq, opcode))
1570 break;
1571 ++sent;
1572 }
1573 while (sent--) {
1574 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1575 if (timeout == 0)
1576 return;
1577 if (i)
1578 goto retry;
1579 }
1580 opcode = nvme_admin_delete_cq;
1581 }
1582}
1583
1584
1585
1586
1587
1588
1589
1590static int nvme_dev_add(struct nvme_dev *dev)
1591{
1592 if (!dev->ctrl.tagset) {
1593 dev->tagset.ops = &nvme_mq_ops;
1594 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1595 dev->tagset.timeout = NVME_IO_TIMEOUT;
1596 dev->tagset.numa_node = dev_to_node(dev->dev);
1597 dev->tagset.queue_depth =
1598 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1599 dev->tagset.cmd_size = nvme_cmd_size(dev);
1600 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1601 dev->tagset.driver_data = dev;
1602
1603 if (blk_mq_alloc_tag_set(&dev->tagset))
1604 return 0;
1605 dev->ctrl.tagset = &dev->tagset;
1606 } else {
1607 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1608
1609
1610 nvme_free_queues(dev, dev->online_queues);
1611 }
1612
1613 return 0;
1614}
1615
1616static int nvme_pci_enable(struct nvme_dev *dev)
1617{
1618 u64 cap;
1619 int result = -ENOMEM;
1620 struct pci_dev *pdev = to_pci_dev(dev->dev);
1621
1622 if (pci_enable_device_mem(pdev))
1623 return result;
1624
1625 pci_set_master(pdev);
1626
1627 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1628 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1629 goto disable;
1630
1631 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1632 result = -ENODEV;
1633 goto disable;
1634 }
1635
1636
1637
1638
1639
1640
1641 if (pci_enable_msix(pdev, dev->entry, 1)) {
1642 pci_enable_msi(pdev);
1643 dev->entry[0].vector = pdev->irq;
1644 }
1645
1646 if (!dev->entry[0].vector) {
1647 result = -ENODEV;
1648 goto disable;
1649 }
1650
1651 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1652
1653 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1654 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1655 dev->dbs = dev->bar + 4096;
1656
1657
1658
1659
1660
1661 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1662 dev->q_depth = 2;
1663 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1664 "queue depth=%u to work around controller resets\n",
1665 dev->q_depth);
1666 }
1667
1668 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1669 dev->cmb = nvme_map_cmb(dev);
1670
1671 pci_enable_pcie_error_reporting(pdev);
1672 pci_save_state(pdev);
1673 return 0;
1674
1675 disable:
1676 pci_disable_device(pdev);
1677 return result;
1678}
1679
1680static void nvme_dev_unmap(struct nvme_dev *dev)
1681{
1682 struct pci_dev *pdev = to_pci_dev(dev->dev);
1683 int bars;
1684
1685 if (dev->bar)
1686 iounmap(dev->bar);
1687
1688 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1689 pci_release_selected_regions(pdev, bars);
1690}
1691
1692static void nvme_pci_disable(struct nvme_dev *dev)
1693{
1694 struct pci_dev *pdev = to_pci_dev(dev->dev);
1695
1696 if (pdev->msi_enabled)
1697 pci_disable_msi(pdev);
1698 else if (pdev->msix_enabled)
1699 pci_disable_msix(pdev);
1700
1701 if (pci_is_enabled(pdev)) {
1702 pci_disable_pcie_error_reporting(pdev);
1703 pci_disable_device(pdev);
1704 }
1705}
1706
1707static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1708{
1709 int i;
1710 u32 csts = -1;
1711
1712 del_timer_sync(&dev->watchdog_timer);
1713
1714 mutex_lock(&dev->shutdown_lock);
1715 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1716 nvme_stop_queues(&dev->ctrl);
1717 csts = readl(dev->bar + NVME_REG_CSTS);
1718 }
1719 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1720 for (i = dev->queue_count - 1; i >= 0; i--) {
1721 struct nvme_queue *nvmeq = dev->queues[i];
1722 nvme_suspend_queue(nvmeq);
1723 }
1724 } else {
1725 nvme_disable_io_queues(dev);
1726 nvme_disable_admin_queue(dev, shutdown);
1727 }
1728 nvme_pci_disable(dev);
1729
1730 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev);
1731 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev);
1732 mutex_unlock(&dev->shutdown_lock);
1733}
1734
1735static int nvme_setup_prp_pools(struct nvme_dev *dev)
1736{
1737 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1738 PAGE_SIZE, PAGE_SIZE, 0);
1739 if (!dev->prp_page_pool)
1740 return -ENOMEM;
1741
1742
1743 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1744 256, 256, 0);
1745 if (!dev->prp_small_pool) {
1746 dma_pool_destroy(dev->prp_page_pool);
1747 return -ENOMEM;
1748 }
1749 return 0;
1750}
1751
1752static void nvme_release_prp_pools(struct nvme_dev *dev)
1753{
1754 dma_pool_destroy(dev->prp_page_pool);
1755 dma_pool_destroy(dev->prp_small_pool);
1756}
1757
1758static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1759{
1760 struct nvme_dev *dev = to_nvme_dev(ctrl);
1761
1762 put_device(dev->dev);
1763 if (dev->tagset.tags)
1764 blk_mq_free_tag_set(&dev->tagset);
1765 if (dev->ctrl.admin_q)
1766 blk_put_queue(dev->ctrl.admin_q);
1767 kfree(dev->queues);
1768 kfree(dev->entry);
1769 kfree(dev);
1770}
1771
1772static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1773{
1774 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1775
1776 kref_get(&dev->ctrl.kref);
1777 nvme_dev_disable(dev, false);
1778 if (!schedule_work(&dev->remove_work))
1779 nvme_put_ctrl(&dev->ctrl);
1780}
1781
1782static void nvme_reset_work(struct work_struct *work)
1783{
1784 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1785 int result = -ENODEV;
1786
1787 if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1788 goto out;
1789
1790
1791
1792
1793
1794 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1795 nvme_dev_disable(dev, false);
1796
1797 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1798 goto out;
1799
1800 result = nvme_pci_enable(dev);
1801 if (result)
1802 goto out;
1803
1804 result = nvme_configure_admin_queue(dev);
1805 if (result)
1806 goto out;
1807
1808 nvme_init_queue(dev->queues[0], 0);
1809 result = nvme_alloc_admin_tags(dev);
1810 if (result)
1811 goto out;
1812
1813 result = nvme_init_identify(&dev->ctrl);
1814 if (result)
1815 goto out;
1816
1817 result = nvme_setup_io_queues(dev);
1818 if (result)
1819 goto out;
1820
1821
1822
1823
1824
1825
1826
1827 if (dev->online_queues > 1)
1828 nvme_queue_async_events(&dev->ctrl);
1829
1830 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1831
1832
1833
1834
1835
1836 if (dev->online_queues < 2) {
1837 dev_warn(dev->ctrl.device, "IO queues not created\n");
1838 nvme_kill_queues(&dev->ctrl);
1839 nvme_remove_namespaces(&dev->ctrl);
1840 } else {
1841 nvme_start_queues(&dev->ctrl);
1842 nvme_dev_add(dev);
1843 }
1844
1845 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1846 dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1847 goto out;
1848 }
1849
1850 if (dev->online_queues > 1)
1851 nvme_queue_scan(&dev->ctrl);
1852 return;
1853
1854 out:
1855 nvme_remove_dead_ctrl(dev, result);
1856}
1857
1858static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1859{
1860 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1861 struct pci_dev *pdev = to_pci_dev(dev->dev);
1862
1863 nvme_kill_queues(&dev->ctrl);
1864 if (pci_get_drvdata(pdev))
1865 device_release_driver(&pdev->dev);
1866 nvme_put_ctrl(&dev->ctrl);
1867}
1868
1869static int nvme_reset(struct nvme_dev *dev)
1870{
1871 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1872 return -ENODEV;
1873
1874 if (!queue_work(nvme_workq, &dev->reset_work))
1875 return -EBUSY;
1876
1877 flush_work(&dev->reset_work);
1878 return 0;
1879}
1880
1881static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1882{
1883 *val = readl(to_nvme_dev(ctrl)->bar + off);
1884 return 0;
1885}
1886
1887static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1888{
1889 writel(val, to_nvme_dev(ctrl)->bar + off);
1890 return 0;
1891}
1892
1893static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1894{
1895 *val = readq(to_nvme_dev(ctrl)->bar + off);
1896 return 0;
1897}
1898
1899static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1900{
1901 return nvme_reset(to_nvme_dev(ctrl));
1902}
1903
1904static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1905 .module = THIS_MODULE,
1906 .reg_read32 = nvme_pci_reg_read32,
1907 .reg_write32 = nvme_pci_reg_write32,
1908 .reg_read64 = nvme_pci_reg_read64,
1909 .reset_ctrl = nvme_pci_reset_ctrl,
1910 .free_ctrl = nvme_pci_free_ctrl,
1911 .post_scan = nvme_pci_post_scan,
1912 .submit_async_event = nvme_pci_submit_async_event,
1913};
1914
1915static int nvme_dev_map(struct nvme_dev *dev)
1916{
1917 int bars;
1918 struct pci_dev *pdev = to_pci_dev(dev->dev);
1919
1920 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1921 if (!bars)
1922 return -ENODEV;
1923 if (pci_request_selected_regions(pdev, bars, "nvme"))
1924 return -ENODEV;
1925
1926 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1927 if (!dev->bar)
1928 goto release;
1929
1930 return 0;
1931 release:
1932 pci_release_selected_regions(pdev, bars);
1933 return -ENODEV;
1934}
1935
1936static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1937{
1938 int node, result = -ENOMEM;
1939 struct nvme_dev *dev;
1940
1941 node = dev_to_node(&pdev->dev);
1942 if (node == NUMA_NO_NODE)
1943 set_dev_node(&pdev->dev, 0);
1944
1945 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1946 if (!dev)
1947 return -ENOMEM;
1948 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1949 GFP_KERNEL, node);
1950 if (!dev->entry)
1951 goto free;
1952 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1953 GFP_KERNEL, node);
1954 if (!dev->queues)
1955 goto free;
1956
1957 dev->dev = get_device(&pdev->dev);
1958 pci_set_drvdata(pdev, dev);
1959
1960 result = nvme_dev_map(dev);
1961 if (result)
1962 goto free;
1963
1964 INIT_WORK(&dev->reset_work, nvme_reset_work);
1965 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1966 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1967 (unsigned long)dev);
1968 mutex_init(&dev->shutdown_lock);
1969 init_completion(&dev->ioq_wait);
1970
1971 result = nvme_setup_prp_pools(dev);
1972 if (result)
1973 goto put_pci;
1974
1975 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1976 id->driver_data);
1977 if (result)
1978 goto release_pools;
1979
1980 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1981
1982 queue_work(nvme_workq, &dev->reset_work);
1983 return 0;
1984
1985 release_pools:
1986 nvme_release_prp_pools(dev);
1987 put_pci:
1988 put_device(dev->dev);
1989 nvme_dev_unmap(dev);
1990 free:
1991 kfree(dev->queues);
1992 kfree(dev->entry);
1993 kfree(dev);
1994 return result;
1995}
1996
1997static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1998{
1999 struct nvme_dev *dev = pci_get_drvdata(pdev);
2000
2001 if (prepare)
2002 nvme_dev_disable(dev, false);
2003 else
2004 queue_work(nvme_workq, &dev->reset_work);
2005}
2006
2007static void nvme_shutdown(struct pci_dev *pdev)
2008{
2009 struct nvme_dev *dev = pci_get_drvdata(pdev);
2010 nvme_dev_disable(dev, true);
2011}
2012
2013
2014
2015
2016
2017
2018static void nvme_remove(struct pci_dev *pdev)
2019{
2020 struct nvme_dev *dev = pci_get_drvdata(pdev);
2021
2022 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2023
2024 pci_set_drvdata(pdev, NULL);
2025
2026 if (!pci_device_is_present(pdev))
2027 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2028
2029 flush_work(&dev->reset_work);
2030 nvme_uninit_ctrl(&dev->ctrl);
2031 nvme_dev_disable(dev, true);
2032 nvme_dev_remove_admin(dev);
2033 nvme_free_queues(dev, 0);
2034 nvme_release_cmb(dev);
2035 nvme_release_prp_pools(dev);
2036 nvme_dev_unmap(dev);
2037 nvme_put_ctrl(&dev->ctrl);
2038}
2039
2040#ifdef CONFIG_PM_SLEEP
2041static int nvme_suspend(struct device *dev)
2042{
2043 struct pci_dev *pdev = to_pci_dev(dev);
2044 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2045
2046 nvme_dev_disable(ndev, true);
2047 return 0;
2048}
2049
2050static int nvme_resume(struct device *dev)
2051{
2052 struct pci_dev *pdev = to_pci_dev(dev);
2053 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2054
2055 queue_work(nvme_workq, &ndev->reset_work);
2056 return 0;
2057}
2058#endif
2059
2060static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2061
2062static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2063 pci_channel_state_t state)
2064{
2065 struct nvme_dev *dev = pci_get_drvdata(pdev);
2066
2067
2068
2069
2070
2071
2072 switch (state) {
2073 case pci_channel_io_normal:
2074 return PCI_ERS_RESULT_CAN_RECOVER;
2075 case pci_channel_io_frozen:
2076 dev_warn(dev->ctrl.device,
2077 "frozen state error detected, reset controller\n");
2078 nvme_dev_disable(dev, false);
2079 return PCI_ERS_RESULT_NEED_RESET;
2080 case pci_channel_io_perm_failure:
2081 dev_warn(dev->ctrl.device,
2082 "failure state error detected, request disconnect\n");
2083 return PCI_ERS_RESULT_DISCONNECT;
2084 }
2085 return PCI_ERS_RESULT_NEED_RESET;
2086}
2087
2088static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2089{
2090 struct nvme_dev *dev = pci_get_drvdata(pdev);
2091
2092 dev_info(dev->ctrl.device, "restart after slot reset\n");
2093 pci_restore_state(pdev);
2094 queue_work(nvme_workq, &dev->reset_work);
2095 return PCI_ERS_RESULT_RECOVERED;
2096}
2097
2098static void nvme_error_resume(struct pci_dev *pdev)
2099{
2100 pci_cleanup_aer_uncorrect_error_status(pdev);
2101}
2102
2103static const struct pci_error_handlers nvme_err_handler = {
2104 .error_detected = nvme_error_detected,
2105 .slot_reset = nvme_slot_reset,
2106 .resume = nvme_error_resume,
2107 .reset_notify = nvme_reset_notify,
2108};
2109
2110
2111#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2112
2113static const struct pci_device_id nvme_id_table[] = {
2114 { PCI_VDEVICE(INTEL, 0x0953),
2115 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2116 NVME_QUIRK_DISCARD_ZEROES, },
2117 { PCI_VDEVICE(INTEL, 0x0a53),
2118 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2119 NVME_QUIRK_DISCARD_ZEROES, },
2120 { PCI_VDEVICE(INTEL, 0x0a54),
2121 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2122 NVME_QUIRK_DISCARD_ZEROES, },
2123 { PCI_VDEVICE(INTEL, 0x5845),
2124 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2125 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2126 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2127 { 0, }
2128};
2129MODULE_DEVICE_TABLE(pci, nvme_id_table);
2130
2131static struct pci_driver nvme_driver = {
2132 .name = "nvme",
2133 .id_table = nvme_id_table,
2134 .probe = nvme_probe,
2135 .remove = nvme_remove,
2136 .shutdown = nvme_shutdown,
2137 .driver = {
2138 .pm = &nvme_dev_pm_ops,
2139 },
2140 .err_handler = &nvme_err_handler,
2141};
2142
2143static int __init nvme_init(void)
2144{
2145 int result;
2146
2147 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2148 if (!nvme_workq)
2149 return -ENOMEM;
2150
2151 result = pci_register_driver(&nvme_driver);
2152 if (result)
2153 destroy_workqueue(nvme_workq);
2154 return result;
2155}
2156
2157static void __exit nvme_exit(void)
2158{
2159 pci_unregister_driver(&nvme_driver);
2160 destroy_workqueue(nvme_workq);
2161 _nvme_check_size();
2162}
2163
2164MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2165MODULE_LICENSE("GPL");
2166MODULE_VERSION("1.0");
2167module_init(nvme_init);
2168module_exit(nvme_exit);
2169