linux/drivers/nvme/host/pci.c
<<
>>
Prefs
   1/*
   2 * NVM Express device driver
   3 * Copyright (c) 2011-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 */
  14
  15#include <linux/aer.h>
  16#include <linux/bitops.h>
  17#include <linux/blkdev.h>
  18#include <linux/blk-mq.h>
  19#include <linux/cpu.h>
  20#include <linux/delay.h>
  21#include <linux/errno.h>
  22#include <linux/fs.h>
  23#include <linux/genhd.h>
  24#include <linux/hdreg.h>
  25#include <linux/idr.h>
  26#include <linux/init.h>
  27#include <linux/interrupt.h>
  28#include <linux/io.h>
  29#include <linux/kdev_t.h>
  30#include <linux/kernel.h>
  31#include <linux/mm.h>
  32#include <linux/module.h>
  33#include <linux/moduleparam.h>
  34#include <linux/mutex.h>
  35#include <linux/pci.h>
  36#include <linux/poison.h>
  37#include <linux/ptrace.h>
  38#include <linux/sched.h>
  39#include <linux/slab.h>
  40#include <linux/t10-pi.h>
  41#include <linux/timer.h>
  42#include <linux/types.h>
  43#include <linux/io-64-nonatomic-lo-hi.h>
  44#include <asm/unaligned.h>
  45
  46#include "nvme.h"
  47
  48#define NVME_Q_DEPTH            1024
  49#define NVME_AQ_DEPTH           256
  50#define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
  51#define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
  52                
  53/*
  54 * We handle AEN commands ourselves and don't even let the
  55 * block layer know about them.
  56 */
  57#define NVME_AQ_BLKMQ_DEPTH     (NVME_AQ_DEPTH - NVME_NR_AERS)
  58
  59static int use_threaded_interrupts;
  60module_param(use_threaded_interrupts, int, 0);
  61
  62static bool use_cmb_sqes = true;
  63module_param(use_cmb_sqes, bool, 0644);
  64MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
  65
  66static struct workqueue_struct *nvme_workq;
  67
  68struct nvme_dev;
  69struct nvme_queue;
  70
  71static int nvme_reset(struct nvme_dev *dev);
  72static void nvme_process_cq(struct nvme_queue *nvmeq);
  73static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
  74
  75/*
  76 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
  77 */
  78struct nvme_dev {
  79        struct nvme_queue **queues;
  80        struct blk_mq_tag_set tagset;
  81        struct blk_mq_tag_set admin_tagset;
  82        u32 __iomem *dbs;
  83        struct device *dev;
  84        struct dma_pool *prp_page_pool;
  85        struct dma_pool *prp_small_pool;
  86        unsigned queue_count;
  87        unsigned online_queues;
  88        unsigned max_qid;
  89        int q_depth;
  90        u32 db_stride;
  91        struct msix_entry *entry;
  92        void __iomem *bar;
  93        struct work_struct reset_work;
  94        struct work_struct remove_work;
  95        struct timer_list watchdog_timer;
  96        struct mutex shutdown_lock;
  97        bool subsystem;
  98        void __iomem *cmb;
  99        dma_addr_t cmb_dma_addr;
 100        u64 cmb_size;
 101        u32 cmbsz;
 102        struct nvme_ctrl ctrl;
 103        struct completion ioq_wait;
 104};
 105
 106static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
 107{
 108        return container_of(ctrl, struct nvme_dev, ctrl);
 109}
 110
 111/*
 112 * An NVM Express queue.  Each device has at least two (one for admin
 113 * commands and one for I/O commands).
 114 */
 115struct nvme_queue {
 116        struct device *q_dmadev;
 117        struct nvme_dev *dev;
 118        char irqname[24];       /* nvme4294967295-65535\0 */
 119        spinlock_t q_lock;
 120        struct nvme_command *sq_cmds;
 121        struct nvme_command __iomem *sq_cmds_io;
 122        volatile struct nvme_completion *cqes;
 123        struct blk_mq_tags **tags;
 124        dma_addr_t sq_dma_addr;
 125        dma_addr_t cq_dma_addr;
 126        u32 __iomem *q_db;
 127        u16 q_depth;
 128        s16 cq_vector;
 129        u16 sq_tail;
 130        u16 cq_head;
 131        u16 qid;
 132        u8 cq_phase;
 133        u8 cqe_seen;
 134};
 135
 136/*
 137 * The nvme_iod describes the data in an I/O, including the list of PRP
 138 * entries.  You can't see it in this data structure because C doesn't let
 139 * me express that.  Use nvme_init_iod to ensure there's enough space
 140 * allocated to store the PRP list.
 141 */
 142struct nvme_iod {
 143        struct nvme_queue *nvmeq;
 144        int aborted;
 145        int npages;             /* In the PRP list. 0 means small pool in use */
 146        int nents;              /* Used in scatterlist */
 147        int length;             /* Of data, in bytes */
 148        dma_addr_t first_dma;
 149        struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
 150        struct scatterlist *sg;
 151        struct scatterlist inline_sg[0];
 152};
 153
 154/*
 155 * Check we didin't inadvertently grow the command struct
 156 */
 157static inline void _nvme_check_size(void)
 158{
 159        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
 160        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
 161        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
 162        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
 163        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
 164        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
 165        BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
 166        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
 167        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
 168        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
 169        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
 170        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
 171}
 172
 173/*
 174 * Max size of iod being embedded in the request payload
 175 */
 176#define NVME_INT_PAGES          2
 177#define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
 178
 179/*
 180 * Will slightly overestimate the number of pages needed.  This is OK
 181 * as it only leads to a small amount of wasted memory for the lifetime of
 182 * the I/O.
 183 */
 184static int nvme_npages(unsigned size, struct nvme_dev *dev)
 185{
 186        unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
 187                                      dev->ctrl.page_size);
 188        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 189}
 190
 191static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
 192                unsigned int size, unsigned int nseg)
 193{
 194        return sizeof(__le64 *) * nvme_npages(size, dev) +
 195                        sizeof(struct scatterlist) * nseg;
 196}
 197
 198static unsigned int nvme_cmd_size(struct nvme_dev *dev)
 199{
 200        return sizeof(struct nvme_iod) +
 201                nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
 202}
 203
 204static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 205                                unsigned int hctx_idx)
 206{
 207        struct nvme_dev *dev = data;
 208        struct nvme_queue *nvmeq = dev->queues[0];
 209
 210        WARN_ON(hctx_idx != 0);
 211        WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
 212        WARN_ON(nvmeq->tags);
 213
 214        hctx->driver_data = nvmeq;
 215        nvmeq->tags = &dev->admin_tagset.tags[0];
 216        return 0;
 217}
 218
 219static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 220{
 221        struct nvme_queue *nvmeq = hctx->driver_data;
 222
 223        nvmeq->tags = NULL;
 224}
 225
 226static int nvme_admin_init_request(void *data, struct request *req,
 227                                unsigned int hctx_idx, unsigned int rq_idx,
 228                                unsigned int numa_node)
 229{
 230        struct nvme_dev *dev = data;
 231        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 232        struct nvme_queue *nvmeq = dev->queues[0];
 233
 234        BUG_ON(!nvmeq);
 235        iod->nvmeq = nvmeq;
 236        return 0;
 237}
 238
 239static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
 240                          unsigned int hctx_idx)
 241{
 242        struct nvme_dev *dev = data;
 243        struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
 244
 245        if (!nvmeq->tags)
 246                nvmeq->tags = &dev->tagset.tags[hctx_idx];
 247
 248        WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
 249        hctx->driver_data = nvmeq;
 250        return 0;
 251}
 252
 253static int nvme_init_request(void *data, struct request *req,
 254                                unsigned int hctx_idx, unsigned int rq_idx,
 255                                unsigned int numa_node)
 256{
 257        struct nvme_dev *dev = data;
 258        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 259        struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
 260
 261        BUG_ON(!nvmeq);
 262        iod->nvmeq = nvmeq;
 263        return 0;
 264}
 265
 266/**
 267 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 268 * @nvmeq: The queue to use
 269 * @cmd: The command to send
 270 *
 271 * Safe to use from interrupt context
 272 */
 273static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
 274                                                struct nvme_command *cmd)
 275{
 276        u16 tail = nvmeq->sq_tail;
 277
 278        if (nvmeq->sq_cmds_io)
 279                memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
 280        else
 281                memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
 282
 283        if (++tail == nvmeq->q_depth)
 284                tail = 0;
 285        writel(tail, nvmeq->q_db);
 286        nvmeq->sq_tail = tail;
 287}
 288
 289static __le64 **iod_list(struct request *req)
 290{
 291        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 292        return (__le64 **)(iod->sg + req->nr_phys_segments);
 293}
 294
 295static int nvme_init_iod(struct request *rq, unsigned size,
 296                struct nvme_dev *dev)
 297{
 298        struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
 299        int nseg = rq->nr_phys_segments;
 300
 301        if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
 302                iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
 303                if (!iod->sg)
 304                        return BLK_MQ_RQ_QUEUE_BUSY;
 305        } else {
 306                iod->sg = iod->inline_sg;
 307        }
 308
 309        iod->aborted = 0;
 310        iod->npages = -1;
 311        iod->nents = 0;
 312        iod->length = size;
 313        return 0;
 314}
 315
 316static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
 317{
 318        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 319        const int last_prp = dev->ctrl.page_size / 8 - 1;
 320        int i;
 321        __le64 **list = iod_list(req);
 322        dma_addr_t prp_dma = iod->first_dma;
 323
 324        nvme_cleanup_cmd(req);
 325
 326        if (iod->npages == 0)
 327                dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
 328        for (i = 0; i < iod->npages; i++) {
 329                __le64 *prp_list = list[i];
 330                dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
 331                dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
 332                prp_dma = next_prp_dma;
 333        }
 334
 335        if (iod->sg != iod->inline_sg)
 336                kfree(iod->sg);
 337}
 338
 339#ifdef CONFIG_BLK_DEV_INTEGRITY
 340static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 341{
 342        if (be32_to_cpu(pi->ref_tag) == v)
 343                pi->ref_tag = cpu_to_be32(p);
 344}
 345
 346static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 347{
 348        if (be32_to_cpu(pi->ref_tag) == p)
 349                pi->ref_tag = cpu_to_be32(v);
 350}
 351
 352/**
 353 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
 354 *
 355 * The virtual start sector is the one that was originally submitted by the
 356 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
 357 * start sector may be different. Remap protection information to match the
 358 * physical LBA on writes, and back to the original seed on reads.
 359 *
 360 * Type 0 and 3 do not have a ref tag, so no remapping required.
 361 */
 362static void nvme_dif_remap(struct request *req,
 363                        void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 364{
 365        struct nvme_ns *ns = req->rq_disk->private_data;
 366        struct bio_integrity_payload *bip;
 367        struct t10_pi_tuple *pi;
 368        void *p, *pmap;
 369        u32 i, nlb, ts, phys, virt;
 370
 371        if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
 372                return;
 373
 374        bip = bio_integrity(req->bio);
 375        if (!bip)
 376                return;
 377
 378        pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
 379
 380        p = pmap;
 381        virt = bip_get_seed(bip);
 382        phys = nvme_block_nr(ns, blk_rq_pos(req));
 383        nlb = (blk_rq_bytes(req) >> ns->lba_shift);
 384        ts = ns->disk->queue->integrity.tuple_size;
 385
 386        for (i = 0; i < nlb; i++, virt++, phys++) {
 387                pi = (struct t10_pi_tuple *)p;
 388                dif_swap(phys, virt, pi);
 389                p += ts;
 390        }
 391        kunmap_atomic(pmap);
 392}
 393#else /* CONFIG_BLK_DEV_INTEGRITY */
 394static void nvme_dif_remap(struct request *req,
 395                        void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
 396{
 397}
 398static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
 399{
 400}
 401static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
 402{
 403}
 404#endif
 405
 406static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
 407                int total_len)
 408{
 409        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 410        struct dma_pool *pool;
 411        int length = total_len;
 412        struct scatterlist *sg = iod->sg;
 413        int dma_len = sg_dma_len(sg);
 414        u64 dma_addr = sg_dma_address(sg);
 415        u32 page_size = dev->ctrl.page_size;
 416        int offset = dma_addr & (page_size - 1);
 417        __le64 *prp_list;
 418        __le64 **list = iod_list(req);
 419        dma_addr_t prp_dma;
 420        int nprps, i;
 421
 422        length -= (page_size - offset);
 423        if (length <= 0)
 424                return true;
 425
 426        dma_len -= (page_size - offset);
 427        if (dma_len) {
 428                dma_addr += (page_size - offset);
 429        } else {
 430                sg = sg_next(sg);
 431                dma_addr = sg_dma_address(sg);
 432                dma_len = sg_dma_len(sg);
 433        }
 434
 435        if (length <= page_size) {
 436                iod->first_dma = dma_addr;
 437                return true;
 438        }
 439
 440        nprps = DIV_ROUND_UP(length, page_size);
 441        if (nprps <= (256 / 8)) {
 442                pool = dev->prp_small_pool;
 443                iod->npages = 0;
 444        } else {
 445                pool = dev->prp_page_pool;
 446                iod->npages = 1;
 447        }
 448
 449        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 450        if (!prp_list) {
 451                iod->first_dma = dma_addr;
 452                iod->npages = -1;
 453                return false;
 454        }
 455        list[0] = prp_list;
 456        iod->first_dma = prp_dma;
 457        i = 0;
 458        for (;;) {
 459                if (i == page_size >> 3) {
 460                        __le64 *old_prp_list = prp_list;
 461                        prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
 462                        if (!prp_list)
 463                                return false;
 464                        list[iod->npages++] = prp_list;
 465                        prp_list[0] = old_prp_list[i - 1];
 466                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 467                        i = 1;
 468                }
 469                prp_list[i++] = cpu_to_le64(dma_addr);
 470                dma_len -= page_size;
 471                dma_addr += page_size;
 472                length -= page_size;
 473                if (length <= 0)
 474                        break;
 475                if (dma_len > 0)
 476                        continue;
 477                BUG_ON(dma_len < 0);
 478                sg = sg_next(sg);
 479                dma_addr = sg_dma_address(sg);
 480                dma_len = sg_dma_len(sg);
 481        }
 482
 483        return true;
 484}
 485
 486static int nvme_map_data(struct nvme_dev *dev, struct request *req,
 487                unsigned size, struct nvme_command *cmnd)
 488{
 489        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 490        struct request_queue *q = req->q;
 491        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 492                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 493        int ret = BLK_MQ_RQ_QUEUE_ERROR;
 494
 495        sg_init_table(iod->sg, req->nr_phys_segments);
 496        iod->nents = blk_rq_map_sg(q, req, iod->sg);
 497        if (!iod->nents)
 498                goto out;
 499
 500        ret = BLK_MQ_RQ_QUEUE_BUSY;
 501        if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
 502                goto out;
 503
 504        if (!nvme_setup_prps(dev, req, size))
 505                goto out_unmap;
 506
 507        ret = BLK_MQ_RQ_QUEUE_ERROR;
 508        if (blk_integrity_rq(req)) {
 509                if (blk_rq_count_integrity_sg(q, req->bio) != 1)
 510                        goto out_unmap;
 511
 512                sg_init_table(&iod->meta_sg, 1);
 513                if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
 514                        goto out_unmap;
 515
 516                if (rq_data_dir(req))
 517                        nvme_dif_remap(req, nvme_dif_prep);
 518
 519                if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
 520                        goto out_unmap;
 521        }
 522
 523        cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
 524        cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
 525        if (blk_integrity_rq(req))
 526                cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
 527        return BLK_MQ_RQ_QUEUE_OK;
 528
 529out_unmap:
 530        dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 531out:
 532        return ret;
 533}
 534
 535static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
 536{
 537        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 538        enum dma_data_direction dma_dir = rq_data_dir(req) ?
 539                        DMA_TO_DEVICE : DMA_FROM_DEVICE;
 540
 541        if (iod->nents) {
 542                dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
 543                if (blk_integrity_rq(req)) {
 544                        if (!rq_data_dir(req))
 545                                nvme_dif_remap(req, nvme_dif_complete);
 546                        dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
 547                }
 548        }
 549
 550        nvme_free_iod(dev, req);
 551}
 552
 553/*
 554 * NOTE: ns is NULL when called on the admin queue.
 555 */
 556static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
 557                         const struct blk_mq_queue_data *bd)
 558{
 559        struct nvme_ns *ns = hctx->queue->queuedata;
 560        struct nvme_queue *nvmeq = hctx->driver_data;
 561        struct nvme_dev *dev = nvmeq->dev;
 562        struct request *req = bd->rq;
 563        struct nvme_command cmnd;
 564        unsigned map_len;
 565        int ret = BLK_MQ_RQ_QUEUE_OK;
 566
 567        /*
 568         * If formated with metadata, require the block layer provide a buffer
 569         * unless this namespace is formated such that the metadata can be
 570         * stripped/generated by the controller with PRACT=1.
 571         */
 572        if (ns && ns->ms && !blk_integrity_rq(req)) {
 573                if (!(ns->pi_type && ns->ms == 8) &&
 574                                        req->cmd_type != REQ_TYPE_DRV_PRIV) {
 575                        blk_mq_end_request(req, -EFAULT);
 576                        return BLK_MQ_RQ_QUEUE_OK;
 577                }
 578        }
 579
 580        map_len = nvme_map_len(req);
 581        ret = nvme_init_iod(req, map_len, dev);
 582        if (ret)
 583                return ret;
 584
 585        ret = nvme_setup_cmd(ns, req, &cmnd);
 586        if (ret)
 587                goto out;
 588
 589        if (req->nr_phys_segments)
 590                ret = nvme_map_data(dev, req, map_len, &cmnd);
 591
 592        if (ret)
 593                goto out;
 594
 595        cmnd.common.command_id = req->tag;
 596        blk_mq_start_request(req);
 597
 598        spin_lock_irq(&nvmeq->q_lock);
 599        if (unlikely(nvmeq->cq_vector < 0)) {
 600                if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
 601                        ret = BLK_MQ_RQ_QUEUE_BUSY;
 602                else
 603                        ret = BLK_MQ_RQ_QUEUE_ERROR;
 604                spin_unlock_irq(&nvmeq->q_lock);
 605                goto out;
 606        }
 607        __nvme_submit_cmd(nvmeq, &cmnd);
 608        nvme_process_cq(nvmeq);
 609        spin_unlock_irq(&nvmeq->q_lock);
 610        return BLK_MQ_RQ_QUEUE_OK;
 611out:
 612        nvme_free_iod(dev, req);
 613        return ret;
 614}
 615
 616static void nvme_complete_rq(struct request *req)
 617{
 618        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 619        struct nvme_dev *dev = iod->nvmeq->dev;
 620        int error = 0;
 621
 622        nvme_unmap_data(dev, req);
 623
 624        if (unlikely(req->errors)) {
 625                if (nvme_req_needs_retry(req, req->errors)) {
 626                        nvme_requeue_req(req);
 627                        return;
 628                }
 629
 630                if (req->cmd_type == REQ_TYPE_DRV_PRIV)
 631                        error = req->errors;
 632                else
 633                        error = nvme_error_status(req->errors);
 634        }
 635
 636        if (unlikely(iod->aborted)) {
 637                dev_warn(dev->ctrl.device,
 638                        "completing aborted command with status: %04x\n",
 639                        req->errors);
 640        }
 641
 642        blk_mq_end_request(req, error);
 643}
 644
 645/* We read the CQE phase first to check if the rest of the entry is valid */
 646static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
 647                u16 phase)
 648{
 649        return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
 650}
 651
 652static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
 653{
 654        u16 head, phase;
 655
 656        head = nvmeq->cq_head;
 657        phase = nvmeq->cq_phase;
 658
 659        while (nvme_cqe_valid(nvmeq, head, phase)) {
 660                struct nvme_completion cqe = nvmeq->cqes[head];
 661                struct request *req;
 662
 663                if (++head == nvmeq->q_depth) {
 664                        head = 0;
 665                        phase = !phase;
 666                }
 667
 668                if (tag && *tag == cqe.command_id)
 669                        *tag = -1;
 670
 671                if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
 672                        dev_warn(nvmeq->dev->ctrl.device,
 673                                "invalid id %d completed on queue %d\n",
 674                                cqe.command_id, le16_to_cpu(cqe.sq_id));
 675                        continue;
 676                }
 677
 678                /*
 679                 * AEN requests are special as they don't time out and can
 680                 * survive any kind of queue freeze and often don't respond to
 681                 * aborts.  We don't even bother to allocate a struct request
 682                 * for them but rather special case them here.
 683                 */
 684                if (unlikely(nvmeq->qid == 0 &&
 685                                cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
 686                        nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe);
 687                        continue;
 688                }
 689
 690                req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
 691                if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
 692                        memcpy(req->special, &cqe, sizeof(cqe));
 693                blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
 694
 695        }
 696
 697        /* If the controller ignores the cq head doorbell and continuously
 698         * writes to the queue, it is theoretically possible to wrap around
 699         * the queue twice and mistakenly return IRQ_NONE.  Linux only
 700         * requires that 0.1% of your interrupts are handled, so this isn't
 701         * a big problem.
 702         */
 703        if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
 704                return;
 705
 706        if (likely(nvmeq->cq_vector >= 0))
 707                writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
 708        nvmeq->cq_head = head;
 709        nvmeq->cq_phase = phase;
 710
 711        nvmeq->cqe_seen = 1;
 712}
 713
 714static void nvme_process_cq(struct nvme_queue *nvmeq)
 715{
 716        __nvme_process_cq(nvmeq, NULL);
 717}
 718
 719static irqreturn_t nvme_irq(int irq, void *data)
 720{
 721        irqreturn_t result;
 722        struct nvme_queue *nvmeq = data;
 723        spin_lock(&nvmeq->q_lock);
 724        nvme_process_cq(nvmeq);
 725        result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
 726        nvmeq->cqe_seen = 0;
 727        spin_unlock(&nvmeq->q_lock);
 728        return result;
 729}
 730
 731static irqreturn_t nvme_irq_check(int irq, void *data)
 732{
 733        struct nvme_queue *nvmeq = data;
 734        if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
 735                return IRQ_WAKE_THREAD;
 736        return IRQ_NONE;
 737}
 738
 739static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
 740{
 741        struct nvme_queue *nvmeq = hctx->driver_data;
 742
 743        if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
 744                spin_lock_irq(&nvmeq->q_lock);
 745                __nvme_process_cq(nvmeq, &tag);
 746                spin_unlock_irq(&nvmeq->q_lock);
 747
 748                if (tag == -1)
 749                        return 1;
 750        }
 751
 752        return 0;
 753}
 754
 755static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx)
 756{
 757        struct nvme_dev *dev = to_nvme_dev(ctrl);
 758        struct nvme_queue *nvmeq = dev->queues[0];
 759        struct nvme_command c;
 760
 761        memset(&c, 0, sizeof(c));
 762        c.common.opcode = nvme_admin_async_event;
 763        c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx;
 764
 765        spin_lock_irq(&nvmeq->q_lock);
 766        __nvme_submit_cmd(nvmeq, &c);
 767        spin_unlock_irq(&nvmeq->q_lock);
 768}
 769
 770static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
 771{
 772        struct nvme_command c;
 773
 774        memset(&c, 0, sizeof(c));
 775        c.delete_queue.opcode = opcode;
 776        c.delete_queue.qid = cpu_to_le16(id);
 777
 778        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 779}
 780
 781static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
 782                                                struct nvme_queue *nvmeq)
 783{
 784        struct nvme_command c;
 785        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
 786
 787        /*
 788         * Note: we (ab)use the fact the the prp fields survive if no data
 789         * is attached to the request.
 790         */
 791        memset(&c, 0, sizeof(c));
 792        c.create_cq.opcode = nvme_admin_create_cq;
 793        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
 794        c.create_cq.cqid = cpu_to_le16(qid);
 795        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 796        c.create_cq.cq_flags = cpu_to_le16(flags);
 797        c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
 798
 799        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 800}
 801
 802static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
 803                                                struct nvme_queue *nvmeq)
 804{
 805        struct nvme_command c;
 806        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
 807
 808        /*
 809         * Note: we (ab)use the fact the the prp fields survive if no data
 810         * is attached to the request.
 811         */
 812        memset(&c, 0, sizeof(c));
 813        c.create_sq.opcode = nvme_admin_create_sq;
 814        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
 815        c.create_sq.sqid = cpu_to_le16(qid);
 816        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 817        c.create_sq.sq_flags = cpu_to_le16(flags);
 818        c.create_sq.cqid = cpu_to_le16(qid);
 819
 820        return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
 821}
 822
 823static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
 824{
 825        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
 826}
 827
 828static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
 829{
 830        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
 831}
 832
 833static void abort_endio(struct request *req, int error)
 834{
 835        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 836        struct nvme_queue *nvmeq = iod->nvmeq;
 837        u16 status = req->errors;
 838
 839        dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
 840        atomic_inc(&nvmeq->dev->ctrl.abort_limit);
 841        blk_mq_free_request(req);
 842}
 843
 844static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
 845{
 846        struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
 847        struct nvme_queue *nvmeq = iod->nvmeq;
 848        struct nvme_dev *dev = nvmeq->dev;
 849        struct request *abort_req;
 850        struct nvme_command cmd;
 851
 852        /*
 853         * Shutdown immediately if controller times out while starting. The
 854         * reset work will see the pci device disabled when it gets the forced
 855         * cancellation error. All outstanding requests are completed on
 856         * shutdown, so we return BLK_EH_HANDLED.
 857         */
 858        if (dev->ctrl.state == NVME_CTRL_RESETTING) {
 859                dev_warn(dev->ctrl.device,
 860                         "I/O %d QID %d timeout, disable controller\n",
 861                         req->tag, nvmeq->qid);
 862                nvme_dev_disable(dev, false);
 863                req->errors = NVME_SC_CANCELLED;
 864                return BLK_EH_HANDLED;
 865        }
 866
 867        /*
 868         * Shutdown the controller immediately and schedule a reset if the
 869         * command was already aborted once before and still hasn't been
 870         * returned to the driver, or if this is the admin queue.
 871         */
 872        if (!nvmeq->qid || iod->aborted) {
 873                dev_warn(dev->ctrl.device,
 874                         "I/O %d QID %d timeout, reset controller\n",
 875                         req->tag, nvmeq->qid);
 876                nvme_dev_disable(dev, false);
 877                queue_work(nvme_workq, &dev->reset_work);
 878
 879                /*
 880                 * Mark the request as handled, since the inline shutdown
 881                 * forces all outstanding requests to complete.
 882                 */
 883                req->errors = NVME_SC_CANCELLED;
 884                return BLK_EH_HANDLED;
 885        }
 886
 887        iod->aborted = 1;
 888
 889        if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
 890                atomic_inc(&dev->ctrl.abort_limit);
 891                return BLK_EH_RESET_TIMER;
 892        }
 893
 894        memset(&cmd, 0, sizeof(cmd));
 895        cmd.abort.opcode = nvme_admin_abort_cmd;
 896        cmd.abort.cid = req->tag;
 897        cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
 898
 899        dev_warn(nvmeq->dev->ctrl.device,
 900                "I/O %d QID %d timeout, aborting\n",
 901                 req->tag, nvmeq->qid);
 902
 903        abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
 904                        BLK_MQ_REQ_NOWAIT);
 905        if (IS_ERR(abort_req)) {
 906                atomic_inc(&dev->ctrl.abort_limit);
 907                return BLK_EH_RESET_TIMER;
 908        }
 909
 910        abort_req->timeout = ADMIN_TIMEOUT;
 911        abort_req->end_io_data = NULL;
 912        blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
 913
 914        /*
 915         * The aborted req will be completed on receiving the abort req.
 916         * We enable the timer again. If hit twice, it'll cause a device reset,
 917         * as the device then is in a faulty state.
 918         */
 919        return BLK_EH_RESET_TIMER;
 920}
 921
 922static void nvme_cancel_io(struct request *req, void *data, bool reserved)
 923{
 924        int status;
 925
 926        if (!blk_mq_request_started(req))
 927                return;
 928
 929        dev_dbg_ratelimited(((struct nvme_dev *) data)->ctrl.device,
 930                                "Cancelling I/O %d", req->tag);
 931
 932        status = NVME_SC_ABORT_REQ;
 933        if (blk_queue_dying(req->q))
 934                status |= NVME_SC_DNR;
 935        blk_mq_complete_request(req, status);
 936}
 937
 938static void nvme_free_queue(struct nvme_queue *nvmeq)
 939{
 940        dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
 941                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
 942        if (nvmeq->sq_cmds)
 943                dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
 944                                        nvmeq->sq_cmds, nvmeq->sq_dma_addr);
 945        kfree(nvmeq);
 946}
 947
 948static void nvme_free_queues(struct nvme_dev *dev, int lowest)
 949{
 950        int i;
 951
 952        for (i = dev->queue_count - 1; i >= lowest; i--) {
 953                struct nvme_queue *nvmeq = dev->queues[i];
 954                dev->queue_count--;
 955                dev->queues[i] = NULL;
 956                nvme_free_queue(nvmeq);
 957        }
 958}
 959
 960/**
 961 * nvme_suspend_queue - put queue into suspended state
 962 * @nvmeq - queue to suspend
 963 */
 964static int nvme_suspend_queue(struct nvme_queue *nvmeq)
 965{
 966        int vector;
 967
 968        spin_lock_irq(&nvmeq->q_lock);
 969        if (nvmeq->cq_vector == -1) {
 970                spin_unlock_irq(&nvmeq->q_lock);
 971                return 1;
 972        }
 973        vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
 974        nvmeq->dev->online_queues--;
 975        nvmeq->cq_vector = -1;
 976        spin_unlock_irq(&nvmeq->q_lock);
 977
 978        if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
 979                blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
 980
 981        irq_set_affinity_hint(vector, NULL);
 982        free_irq(vector, nvmeq);
 983
 984        return 0;
 985}
 986
 987static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
 988{
 989        struct nvme_queue *nvmeq = dev->queues[0];
 990
 991        if (!nvmeq)
 992                return;
 993        if (nvme_suspend_queue(nvmeq))
 994                return;
 995
 996        if (shutdown)
 997                nvme_shutdown_ctrl(&dev->ctrl);
 998        else
 999                nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1000                                                dev->bar + NVME_REG_CAP));
1001
1002        spin_lock_irq(&nvmeq->q_lock);
1003        nvme_process_cq(nvmeq);
1004        spin_unlock_irq(&nvmeq->q_lock);
1005}
1006
1007static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1008                                int entry_size)
1009{
1010        int q_depth = dev->q_depth;
1011        unsigned q_size_aligned = roundup(q_depth * entry_size,
1012                                          dev->ctrl.page_size);
1013
1014        if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1015                u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1016                mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1017                q_depth = div_u64(mem_per_q, entry_size);
1018
1019                /*
1020                 * Ensure the reduced q_depth is above some threshold where it
1021                 * would be better to map queues in system memory with the
1022                 * original depth
1023                 */
1024                if (q_depth < 64)
1025                        return -ENOMEM;
1026        }
1027
1028        return q_depth;
1029}
1030
1031static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1032                                int qid, int depth)
1033{
1034        if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1035                unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1036                                                      dev->ctrl.page_size);
1037                nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1038                nvmeq->sq_cmds_io = dev->cmb + offset;
1039        } else {
1040                nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1041                                        &nvmeq->sq_dma_addr, GFP_KERNEL);
1042                if (!nvmeq->sq_cmds)
1043                        return -ENOMEM;
1044        }
1045
1046        return 0;
1047}
1048
1049static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1050                                                        int depth)
1051{
1052        struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1053        if (!nvmeq)
1054                return NULL;
1055
1056        nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1057                                          &nvmeq->cq_dma_addr, GFP_KERNEL);
1058        if (!nvmeq->cqes)
1059                goto free_nvmeq;
1060
1061        if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1062                goto free_cqdma;
1063
1064        nvmeq->q_dmadev = dev->dev;
1065        nvmeq->dev = dev;
1066        snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1067                        dev->ctrl.instance, qid);
1068        spin_lock_init(&nvmeq->q_lock);
1069        nvmeq->cq_head = 0;
1070        nvmeq->cq_phase = 1;
1071        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1072        nvmeq->q_depth = depth;
1073        nvmeq->qid = qid;
1074        nvmeq->cq_vector = -1;
1075        dev->queues[qid] = nvmeq;
1076        dev->queue_count++;
1077
1078        return nvmeq;
1079
1080 free_cqdma:
1081        dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1082                                                        nvmeq->cq_dma_addr);
1083 free_nvmeq:
1084        kfree(nvmeq);
1085        return NULL;
1086}
1087
1088static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1089                                                        const char *name)
1090{
1091        if (use_threaded_interrupts)
1092                return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1093                                        nvme_irq_check, nvme_irq, IRQF_SHARED,
1094                                        name, nvmeq);
1095        return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1096                                IRQF_SHARED, name, nvmeq);
1097}
1098
1099static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1100{
1101        struct nvme_dev *dev = nvmeq->dev;
1102
1103        spin_lock_irq(&nvmeq->q_lock);
1104        nvmeq->sq_tail = 0;
1105        nvmeq->cq_head = 0;
1106        nvmeq->cq_phase = 1;
1107        nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1108        memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1109        dev->online_queues++;
1110        spin_unlock_irq(&nvmeq->q_lock);
1111}
1112
1113static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1114{
1115        struct nvme_dev *dev = nvmeq->dev;
1116        int result;
1117
1118        nvmeq->cq_vector = qid - 1;
1119        result = adapter_alloc_cq(dev, qid, nvmeq);
1120        if (result < 0)
1121                return result;
1122
1123        result = adapter_alloc_sq(dev, qid, nvmeq);
1124        if (result < 0)
1125                goto release_cq;
1126
1127        result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1128        if (result < 0)
1129                goto release_sq;
1130
1131        nvme_init_queue(nvmeq, qid);
1132        return result;
1133
1134 release_sq:
1135        adapter_delete_sq(dev, qid);
1136 release_cq:
1137        adapter_delete_cq(dev, qid);
1138        return result;
1139}
1140
1141static struct blk_mq_ops nvme_mq_admin_ops = {
1142        .queue_rq       = nvme_queue_rq,
1143        .complete       = nvme_complete_rq,
1144        .map_queue      = blk_mq_map_queue,
1145        .init_hctx      = nvme_admin_init_hctx,
1146        .exit_hctx      = nvme_admin_exit_hctx,
1147        .init_request   = nvme_admin_init_request,
1148        .timeout        = nvme_timeout,
1149};
1150
1151static struct blk_mq_ops nvme_mq_ops = {
1152        .queue_rq       = nvme_queue_rq,
1153        .complete       = nvme_complete_rq,
1154        .map_queue      = blk_mq_map_queue,
1155        .init_hctx      = nvme_init_hctx,
1156        .init_request   = nvme_init_request,
1157        .timeout        = nvme_timeout,
1158        .poll           = nvme_poll,
1159};
1160
1161static void nvme_dev_remove_admin(struct nvme_dev *dev)
1162{
1163        if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1164                /*
1165                 * If the controller was reset during removal, it's possible
1166                 * user requests may be waiting on a stopped queue. Start the
1167                 * queue to flush these to completion.
1168                 */
1169                blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1170                blk_cleanup_queue(dev->ctrl.admin_q);
1171                blk_mq_free_tag_set(&dev->admin_tagset);
1172        }
1173}
1174
1175static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1176{
1177        if (!dev->ctrl.admin_q) {
1178                dev->admin_tagset.ops = &nvme_mq_admin_ops;
1179                dev->admin_tagset.nr_hw_queues = 1;
1180
1181                /*
1182                 * Subtract one to leave an empty queue entry for 'Full Queue'
1183                 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1184                 */
1185                dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1186                dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1187                dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1188                dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1189                dev->admin_tagset.driver_data = dev;
1190
1191                if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1192                        return -ENOMEM;
1193
1194                dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1195                if (IS_ERR(dev->ctrl.admin_q)) {
1196                        blk_mq_free_tag_set(&dev->admin_tagset);
1197                        return -ENOMEM;
1198                }
1199                if (!blk_get_queue(dev->ctrl.admin_q)) {
1200                        nvme_dev_remove_admin(dev);
1201                        dev->ctrl.admin_q = NULL;
1202                        return -ENODEV;
1203                }
1204        } else
1205                blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1206
1207        return 0;
1208}
1209
1210static int nvme_configure_admin_queue(struct nvme_dev *dev)
1211{
1212        int result;
1213        u32 aqa;
1214        u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1215        struct nvme_queue *nvmeq;
1216
1217        dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1218                                                NVME_CAP_NSSRC(cap) : 0;
1219
1220        if (dev->subsystem &&
1221            (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1222                writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1223
1224        result = nvme_disable_ctrl(&dev->ctrl, cap);
1225        if (result < 0)
1226                return result;
1227
1228        nvmeq = dev->queues[0];
1229        if (!nvmeq) {
1230                nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1231                if (!nvmeq)
1232                        return -ENOMEM;
1233        }
1234
1235        aqa = nvmeq->q_depth - 1;
1236        aqa |= aqa << 16;
1237
1238        writel(aqa, dev->bar + NVME_REG_AQA);
1239        lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1240        lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1241
1242        result = nvme_enable_ctrl(&dev->ctrl, cap);
1243        if (result)
1244                goto free_nvmeq;
1245
1246        nvmeq->cq_vector = 0;
1247        result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1248        if (result) {
1249                nvmeq->cq_vector = -1;
1250                goto free_nvmeq;
1251        }
1252
1253        return result;
1254
1255 free_nvmeq:
1256        nvme_free_queues(dev, 0);
1257        return result;
1258}
1259
1260static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1261{
1262
1263        /* If true, indicates loss of adapter communication, possibly by a
1264         * NVMe Subsystem reset.
1265         */
1266        bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1267
1268        /* If there is a reset ongoing, we shouldn't reset again. */
1269        if (work_busy(&dev->reset_work))
1270                return false;
1271
1272        /* We shouldn't reset unless the controller is on fatal error state
1273         * _or_ if we lost the communication with it.
1274         */
1275        if (!(csts & NVME_CSTS_CFS) && !nssro)
1276                return false;
1277
1278        /* If PCI error recovery process is happening, we cannot reset or
1279         * the recovery mechanism will surely fail.
1280         */
1281        if (pci_channel_offline(to_pci_dev(dev->dev)))
1282                return false;
1283
1284        return true;
1285}
1286
1287static void nvme_watchdog_timer(unsigned long data)
1288{
1289        struct nvme_dev *dev = (struct nvme_dev *)data;
1290        u32 csts = readl(dev->bar + NVME_REG_CSTS);
1291
1292        /* Skip controllers under certain specific conditions. */
1293        if (nvme_should_reset(dev, csts)) {
1294                if (queue_work(nvme_workq, &dev->reset_work))
1295                        dev_warn(dev->dev,
1296                                "Failed status: 0x%x, reset controller.\n",
1297                                csts);
1298                return;
1299        }
1300
1301        mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1302}
1303
1304static int nvme_create_io_queues(struct nvme_dev *dev)
1305{
1306        unsigned i, max;
1307        int ret = 0;
1308
1309        for (i = dev->queue_count; i <= dev->max_qid; i++) {
1310                if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1311                        ret = -ENOMEM;
1312                        break;
1313                }
1314        }
1315
1316        max = min(dev->max_qid, dev->queue_count - 1);
1317        for (i = dev->online_queues; i <= max; i++) {
1318                ret = nvme_create_queue(dev->queues[i], i);
1319                if (ret) {
1320                        nvme_free_queues(dev, i);
1321                        break;
1322                }
1323        }
1324
1325        /*
1326         * Ignore failing Create SQ/CQ commands, we can continue with less
1327         * than the desired aount of queues, and even a controller without
1328         * I/O queues an still be used to issue admin commands.  This might
1329         * be useful to upgrade a buggy firmware for example.
1330         */
1331        return ret >= 0 ? 0 : ret;
1332}
1333
1334static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1335{
1336        u64 szu, size, offset;
1337        u32 cmbloc;
1338        resource_size_t bar_size;
1339        struct pci_dev *pdev = to_pci_dev(dev->dev);
1340        void __iomem *cmb;
1341        dma_addr_t dma_addr;
1342
1343        if (!use_cmb_sqes)
1344                return NULL;
1345
1346        dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1347        if (!(NVME_CMB_SZ(dev->cmbsz)))
1348                return NULL;
1349
1350        cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1351
1352        szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1353        size = szu * NVME_CMB_SZ(dev->cmbsz);
1354        offset = szu * NVME_CMB_OFST(cmbloc);
1355        bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1356
1357        if (offset > bar_size)
1358                return NULL;
1359
1360        /*
1361         * Controllers may support a CMB size larger than their BAR,
1362         * for example, due to being behind a bridge. Reduce the CMB to
1363         * the reported size of the BAR
1364         */
1365        if (size > bar_size - offset)
1366                size = bar_size - offset;
1367
1368        dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1369        cmb = ioremap_wc(dma_addr, size);
1370        if (!cmb)
1371                return NULL;
1372
1373        dev->cmb_dma_addr = dma_addr;
1374        dev->cmb_size = size;
1375        return cmb;
1376}
1377
1378static inline void nvme_release_cmb(struct nvme_dev *dev)
1379{
1380        if (dev->cmb) {
1381                iounmap(dev->cmb);
1382                dev->cmb = NULL;
1383        }
1384}
1385
1386static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1387{
1388        return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1389}
1390
1391static int nvme_setup_io_queues(struct nvme_dev *dev)
1392{
1393        struct nvme_queue *adminq = dev->queues[0];
1394        struct pci_dev *pdev = to_pci_dev(dev->dev);
1395        int result, i, vecs, nr_io_queues, size;
1396
1397        nr_io_queues = num_online_cpus();
1398        result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1399        if (result < 0)
1400                return result;
1401
1402        /*
1403         * Degraded controllers might return an error when setting the queue
1404         * count.  We still want to be able to bring them online and offer
1405         * access to the admin queue, as that might be only way to fix them up.
1406         */
1407        if (result > 0) {
1408                dev_err(dev->ctrl.device,
1409                        "Could not set queue count (%d)\n", result);
1410                return 0;
1411        }
1412
1413        if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1414                result = nvme_cmb_qdepth(dev, nr_io_queues,
1415                                sizeof(struct nvme_command));
1416                if (result > 0)
1417                        dev->q_depth = result;
1418                else
1419                        nvme_release_cmb(dev);
1420        }
1421
1422        size = db_bar_size(dev, nr_io_queues);
1423        if (size > 8192) {
1424                iounmap(dev->bar);
1425                do {
1426                        dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1427                        if (dev->bar)
1428                                break;
1429                        if (!--nr_io_queues)
1430                                return -ENOMEM;
1431                        size = db_bar_size(dev, nr_io_queues);
1432                } while (1);
1433                dev->dbs = dev->bar + 4096;
1434                adminq->q_db = dev->dbs;
1435        }
1436
1437        /* Deregister the admin queue's interrupt */
1438        free_irq(dev->entry[0].vector, adminq);
1439
1440        /*
1441         * If we enable msix early due to not intx, disable it again before
1442         * setting up the full range we need.
1443         */
1444        if (pdev->msi_enabled)
1445                pci_disable_msi(pdev);
1446        else if (pdev->msix_enabled)
1447                pci_disable_msix(pdev);
1448
1449        for (i = 0; i < nr_io_queues; i++)
1450                dev->entry[i].entry = i;
1451        vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1452        if (vecs < 0) {
1453                vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1454                if (vecs < 0) {
1455                        vecs = 1;
1456                } else {
1457                        for (i = 0; i < vecs; i++)
1458                                dev->entry[i].vector = i + pdev->irq;
1459                }
1460        }
1461
1462        /*
1463         * Should investigate if there's a performance win from allocating
1464         * more queues than interrupt vectors; it might allow the submission
1465         * path to scale better, even if the receive path is limited by the
1466         * number of interrupts.
1467         */
1468        nr_io_queues = vecs;
1469        dev->max_qid = nr_io_queues;
1470
1471        result = queue_request_irq(dev, adminq, adminq->irqname);
1472        if (result) {
1473                adminq->cq_vector = -1;
1474                goto free_queues;
1475        }
1476        return nvme_create_io_queues(dev);
1477
1478 free_queues:
1479        nvme_free_queues(dev, 1);
1480        return result;
1481}
1482
1483static void nvme_pci_post_scan(struct nvme_ctrl *ctrl)
1484{
1485        struct nvme_dev *dev = to_nvme_dev(ctrl);
1486        struct nvme_queue *nvmeq;
1487        int i;
1488
1489        for (i = 0; i < dev->online_queues; i++) {
1490                nvmeq = dev->queues[i];
1491
1492                if (!nvmeq->tags || !(*nvmeq->tags))
1493                        continue;
1494
1495                irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1496                                        blk_mq_tags_cpumask(*nvmeq->tags));
1497        }
1498}
1499
1500static void nvme_del_queue_end(struct request *req, int error)
1501{
1502        struct nvme_queue *nvmeq = req->end_io_data;
1503
1504        blk_mq_free_request(req);
1505        complete(&nvmeq->dev->ioq_wait);
1506}
1507
1508static void nvme_del_cq_end(struct request *req, int error)
1509{
1510        struct nvme_queue *nvmeq = req->end_io_data;
1511
1512        if (!error) {
1513                unsigned long flags;
1514
1515                /*
1516                 * We might be called with the AQ q_lock held
1517                 * and the I/O queue q_lock should always
1518                 * nest inside the AQ one.
1519                 */
1520                spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
1521                                        SINGLE_DEPTH_NESTING);
1522                nvme_process_cq(nvmeq);
1523                spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1524        }
1525
1526        nvme_del_queue_end(req, error);
1527}
1528
1529static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1530{
1531        struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1532        struct request *req;
1533        struct nvme_command cmd;
1534
1535        memset(&cmd, 0, sizeof(cmd));
1536        cmd.delete_queue.opcode = opcode;
1537        cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1538
1539        req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1540        if (IS_ERR(req))
1541                return PTR_ERR(req);
1542
1543        req->timeout = ADMIN_TIMEOUT;
1544        req->end_io_data = nvmeq;
1545
1546        blk_execute_rq_nowait(q, NULL, req, false,
1547                        opcode == nvme_admin_delete_cq ?
1548                                nvme_del_cq_end : nvme_del_queue_end);
1549        return 0;
1550}
1551
1552static void nvme_disable_io_queues(struct nvme_dev *dev)
1553{
1554        int pass, queues = dev->online_queues - 1;
1555        unsigned long timeout;
1556        u8 opcode = nvme_admin_delete_sq;
1557
1558        for (pass = 0; pass < 2; pass++) {
1559                int sent = 0, i = queues;
1560
1561                reinit_completion(&dev->ioq_wait);
1562 retry:
1563                timeout = ADMIN_TIMEOUT;
1564                for (; i > 0; i--) {
1565                        struct nvme_queue *nvmeq = dev->queues[i];
1566
1567                        if (!pass)
1568                                nvme_suspend_queue(nvmeq);
1569                        if (nvme_delete_queue(nvmeq, opcode))
1570                                break;
1571                        ++sent;
1572                }
1573                while (sent--) {
1574                        timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1575                        if (timeout == 0)
1576                                return;
1577                        if (i)
1578                                goto retry;
1579                }
1580                opcode = nvme_admin_delete_cq;
1581        }
1582}
1583
1584/*
1585 * Return: error value if an error occurred setting up the queues or calling
1586 * Identify Device.  0 if these succeeded, even if adding some of the
1587 * namespaces failed.  At the moment, these failures are silent.  TBD which
1588 * failures should be reported.
1589 */
1590static int nvme_dev_add(struct nvme_dev *dev)
1591{
1592        if (!dev->ctrl.tagset) {
1593                dev->tagset.ops = &nvme_mq_ops;
1594                dev->tagset.nr_hw_queues = dev->online_queues - 1;
1595                dev->tagset.timeout = NVME_IO_TIMEOUT;
1596                dev->tagset.numa_node = dev_to_node(dev->dev);
1597                dev->tagset.queue_depth =
1598                                min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1599                dev->tagset.cmd_size = nvme_cmd_size(dev);
1600                dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1601                dev->tagset.driver_data = dev;
1602
1603                if (blk_mq_alloc_tag_set(&dev->tagset))
1604                        return 0;
1605                dev->ctrl.tagset = &dev->tagset;
1606        } else {
1607                blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1608
1609                /* Free previously allocated queues that are no longer usable */
1610                nvme_free_queues(dev, dev->online_queues);
1611        }
1612
1613        return 0;
1614}
1615
1616static int nvme_pci_enable(struct nvme_dev *dev)
1617{
1618        u64 cap;
1619        int result = -ENOMEM;
1620        struct pci_dev *pdev = to_pci_dev(dev->dev);
1621
1622        if (pci_enable_device_mem(pdev))
1623                return result;
1624
1625        pci_set_master(pdev);
1626
1627        if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1628            dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1629                goto disable;
1630
1631        if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1632                result = -ENODEV;
1633                goto disable;
1634        }
1635
1636        /*
1637         * Some devices and/or platforms don't advertise or work with INTx
1638         * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
1639         * adjust this later.
1640         */
1641        if (pci_enable_msix(pdev, dev->entry, 1)) {
1642                pci_enable_msi(pdev);
1643                dev->entry[0].vector = pdev->irq;
1644        }
1645
1646        if (!dev->entry[0].vector) {
1647                result = -ENODEV;
1648                goto disable;
1649        }
1650
1651        cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1652
1653        dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1654        dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1655        dev->dbs = dev->bar + 4096;
1656
1657        /*
1658         * Temporary fix for the Apple controller found in the MacBook8,1 and
1659         * some MacBook7,1 to avoid controller resets and data loss.
1660         */
1661        if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1662                dev->q_depth = 2;
1663                dev_warn(dev->dev, "detected Apple NVMe controller, set "
1664                        "queue depth=%u to work around controller resets\n",
1665                        dev->q_depth);
1666        }
1667
1668        if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1669                dev->cmb = nvme_map_cmb(dev);
1670
1671        pci_enable_pcie_error_reporting(pdev);
1672        pci_save_state(pdev);
1673        return 0;
1674
1675 disable:
1676        pci_disable_device(pdev);
1677        return result;
1678}
1679
1680static void nvme_dev_unmap(struct nvme_dev *dev)
1681{
1682        struct pci_dev *pdev = to_pci_dev(dev->dev);
1683        int bars;
1684
1685        if (dev->bar)
1686                iounmap(dev->bar);
1687
1688        bars = pci_select_bars(pdev, IORESOURCE_MEM);
1689        pci_release_selected_regions(pdev, bars);
1690}
1691
1692static void nvme_pci_disable(struct nvme_dev *dev)
1693{
1694        struct pci_dev *pdev = to_pci_dev(dev->dev);
1695
1696        if (pdev->msi_enabled)
1697                pci_disable_msi(pdev);
1698        else if (pdev->msix_enabled)
1699                pci_disable_msix(pdev);
1700
1701        if (pci_is_enabled(pdev)) {
1702                pci_disable_pcie_error_reporting(pdev);
1703                pci_disable_device(pdev);
1704        }
1705}
1706
1707static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1708{
1709        int i;
1710        u32 csts = -1;
1711
1712        del_timer_sync(&dev->watchdog_timer);
1713
1714        mutex_lock(&dev->shutdown_lock);
1715        if (pci_is_enabled(to_pci_dev(dev->dev))) {
1716                nvme_stop_queues(&dev->ctrl);
1717                csts = readl(dev->bar + NVME_REG_CSTS);
1718        }
1719        if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1720                for (i = dev->queue_count - 1; i >= 0; i--) {
1721                        struct nvme_queue *nvmeq = dev->queues[i];
1722                        nvme_suspend_queue(nvmeq);
1723                }
1724        } else {
1725                nvme_disable_io_queues(dev);
1726                nvme_disable_admin_queue(dev, shutdown);
1727        }
1728        nvme_pci_disable(dev);
1729
1730        blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_io, dev);
1731        blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_io, dev);
1732        mutex_unlock(&dev->shutdown_lock);
1733}
1734
1735static int nvme_setup_prp_pools(struct nvme_dev *dev)
1736{
1737        dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1738                                                PAGE_SIZE, PAGE_SIZE, 0);
1739        if (!dev->prp_page_pool)
1740                return -ENOMEM;
1741
1742        /* Optimisation for I/Os between 4k and 128k */
1743        dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1744                                                256, 256, 0);
1745        if (!dev->prp_small_pool) {
1746                dma_pool_destroy(dev->prp_page_pool);
1747                return -ENOMEM;
1748        }
1749        return 0;
1750}
1751
1752static void nvme_release_prp_pools(struct nvme_dev *dev)
1753{
1754        dma_pool_destroy(dev->prp_page_pool);
1755        dma_pool_destroy(dev->prp_small_pool);
1756}
1757
1758static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1759{
1760        struct nvme_dev *dev = to_nvme_dev(ctrl);
1761
1762        put_device(dev->dev);
1763        if (dev->tagset.tags)
1764                blk_mq_free_tag_set(&dev->tagset);
1765        if (dev->ctrl.admin_q)
1766                blk_put_queue(dev->ctrl.admin_q);
1767        kfree(dev->queues);
1768        kfree(dev->entry);
1769        kfree(dev);
1770}
1771
1772static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1773{
1774        dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1775
1776        kref_get(&dev->ctrl.kref);
1777        nvme_dev_disable(dev, false);
1778        if (!schedule_work(&dev->remove_work))
1779                nvme_put_ctrl(&dev->ctrl);
1780}
1781
1782static void nvme_reset_work(struct work_struct *work)
1783{
1784        struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1785        int result = -ENODEV;
1786
1787        if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING))
1788                goto out;
1789
1790        /*
1791         * If we're called to reset a live controller first shut it down before
1792         * moving on.
1793         */
1794        if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1795                nvme_dev_disable(dev, false);
1796
1797        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING))
1798                goto out;
1799
1800        result = nvme_pci_enable(dev);
1801        if (result)
1802                goto out;
1803
1804        result = nvme_configure_admin_queue(dev);
1805        if (result)
1806                goto out;
1807
1808        nvme_init_queue(dev->queues[0], 0);
1809        result = nvme_alloc_admin_tags(dev);
1810        if (result)
1811                goto out;
1812
1813        result = nvme_init_identify(&dev->ctrl);
1814        if (result)
1815                goto out;
1816
1817        result = nvme_setup_io_queues(dev);
1818        if (result)
1819                goto out;
1820
1821        /*
1822         * A controller that can not execute IO typically requires user
1823         * intervention to correct. For such degraded controllers, the driver
1824         * should not submit commands the user did not request, so skip
1825         * registering for asynchronous event notification on this condition.
1826         */
1827        if (dev->online_queues > 1)
1828                nvme_queue_async_events(&dev->ctrl);
1829
1830        mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1831
1832        /*
1833         * Keep the controller around but remove all namespaces if we don't have
1834         * any working I/O queue.
1835         */
1836        if (dev->online_queues < 2) {
1837                dev_warn(dev->ctrl.device, "IO queues not created\n");
1838                nvme_kill_queues(&dev->ctrl);
1839                nvme_remove_namespaces(&dev->ctrl);
1840        } else {
1841                nvme_start_queues(&dev->ctrl);
1842                nvme_dev_add(dev);
1843        }
1844
1845        if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
1846                dev_warn(dev->ctrl.device, "failed to mark controller live\n");
1847                goto out;
1848        }
1849
1850        if (dev->online_queues > 1)
1851                nvme_queue_scan(&dev->ctrl);
1852        return;
1853
1854 out:
1855        nvme_remove_dead_ctrl(dev, result);
1856}
1857
1858static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1859{
1860        struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1861        struct pci_dev *pdev = to_pci_dev(dev->dev);
1862
1863        nvme_kill_queues(&dev->ctrl);
1864        if (pci_get_drvdata(pdev))
1865                device_release_driver(&pdev->dev);
1866        nvme_put_ctrl(&dev->ctrl);
1867}
1868
1869static int nvme_reset(struct nvme_dev *dev)
1870{
1871        if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1872                return -ENODEV;
1873
1874        if (!queue_work(nvme_workq, &dev->reset_work))
1875                return -EBUSY;
1876
1877        flush_work(&dev->reset_work);
1878        return 0;
1879}
1880
1881static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1882{
1883        *val = readl(to_nvme_dev(ctrl)->bar + off);
1884        return 0;
1885}
1886
1887static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1888{
1889        writel(val, to_nvme_dev(ctrl)->bar + off);
1890        return 0;
1891}
1892
1893static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1894{
1895        *val = readq(to_nvme_dev(ctrl)->bar + off);
1896        return 0;
1897}
1898
1899static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1900{
1901        return nvme_reset(to_nvme_dev(ctrl));
1902}
1903
1904static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1905        .module                 = THIS_MODULE,
1906        .reg_read32             = nvme_pci_reg_read32,
1907        .reg_write32            = nvme_pci_reg_write32,
1908        .reg_read64             = nvme_pci_reg_read64,
1909        .reset_ctrl             = nvme_pci_reset_ctrl,
1910        .free_ctrl              = nvme_pci_free_ctrl,
1911        .post_scan              = nvme_pci_post_scan,
1912        .submit_async_event     = nvme_pci_submit_async_event,
1913};
1914
1915static int nvme_dev_map(struct nvme_dev *dev)
1916{
1917        int bars;
1918        struct pci_dev *pdev = to_pci_dev(dev->dev);
1919
1920        bars = pci_select_bars(pdev, IORESOURCE_MEM);
1921        if (!bars)
1922                return -ENODEV;
1923        if (pci_request_selected_regions(pdev, bars, "nvme"))
1924                return -ENODEV;
1925
1926        dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1927        if (!dev->bar)
1928                goto release;
1929
1930       return 0;
1931  release:
1932       pci_release_selected_regions(pdev, bars);
1933       return -ENODEV;
1934}
1935
1936static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1937{
1938        int node, result = -ENOMEM;
1939        struct nvme_dev *dev;
1940
1941        node = dev_to_node(&pdev->dev);
1942        if (node == NUMA_NO_NODE)
1943                set_dev_node(&pdev->dev, 0);
1944
1945        dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1946        if (!dev)
1947                return -ENOMEM;
1948        dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1949                                                        GFP_KERNEL, node);
1950        if (!dev->entry)
1951                goto free;
1952        dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1953                                                        GFP_KERNEL, node);
1954        if (!dev->queues)
1955                goto free;
1956
1957        dev->dev = get_device(&pdev->dev);
1958        pci_set_drvdata(pdev, dev);
1959
1960        result = nvme_dev_map(dev);
1961        if (result)
1962                goto free;
1963
1964        INIT_WORK(&dev->reset_work, nvme_reset_work);
1965        INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1966        setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
1967                (unsigned long)dev);
1968        mutex_init(&dev->shutdown_lock);
1969        init_completion(&dev->ioq_wait);
1970
1971        result = nvme_setup_prp_pools(dev);
1972        if (result)
1973                goto put_pci;
1974
1975        result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
1976                        id->driver_data);
1977        if (result)
1978                goto release_pools;
1979
1980        dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
1981
1982        queue_work(nvme_workq, &dev->reset_work);
1983        return 0;
1984
1985 release_pools:
1986        nvme_release_prp_pools(dev);
1987 put_pci:
1988        put_device(dev->dev);
1989        nvme_dev_unmap(dev);
1990 free:
1991        kfree(dev->queues);
1992        kfree(dev->entry);
1993        kfree(dev);
1994        return result;
1995}
1996
1997static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
1998{
1999        struct nvme_dev *dev = pci_get_drvdata(pdev);
2000
2001        if (prepare)
2002                nvme_dev_disable(dev, false);
2003        else
2004                queue_work(nvme_workq, &dev->reset_work);
2005}
2006
2007static void nvme_shutdown(struct pci_dev *pdev)
2008{
2009        struct nvme_dev *dev = pci_get_drvdata(pdev);
2010        nvme_dev_disable(dev, true);
2011}
2012
2013/*
2014 * The driver's remove may be called on a device in a partially initialized
2015 * state. This function must not have any dependencies on the device state in
2016 * order to proceed.
2017 */
2018static void nvme_remove(struct pci_dev *pdev)
2019{
2020        struct nvme_dev *dev = pci_get_drvdata(pdev);
2021
2022        nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2023
2024        pci_set_drvdata(pdev, NULL);
2025
2026        if (!pci_device_is_present(pdev))
2027                nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2028
2029        flush_work(&dev->reset_work);
2030        nvme_uninit_ctrl(&dev->ctrl);
2031        nvme_dev_disable(dev, true);
2032        nvme_dev_remove_admin(dev);
2033        nvme_free_queues(dev, 0);
2034        nvme_release_cmb(dev);
2035        nvme_release_prp_pools(dev);
2036        nvme_dev_unmap(dev);
2037        nvme_put_ctrl(&dev->ctrl);
2038}
2039
2040#ifdef CONFIG_PM_SLEEP
2041static int nvme_suspend(struct device *dev)
2042{
2043        struct pci_dev *pdev = to_pci_dev(dev);
2044        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2045
2046        nvme_dev_disable(ndev, true);
2047        return 0;
2048}
2049
2050static int nvme_resume(struct device *dev)
2051{
2052        struct pci_dev *pdev = to_pci_dev(dev);
2053        struct nvme_dev *ndev = pci_get_drvdata(pdev);
2054
2055        queue_work(nvme_workq, &ndev->reset_work);
2056        return 0;
2057}
2058#endif
2059
2060static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2061
2062static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2063                                                pci_channel_state_t state)
2064{
2065        struct nvme_dev *dev = pci_get_drvdata(pdev);
2066
2067        /*
2068         * A frozen channel requires a reset. When detected, this method will
2069         * shutdown the controller to quiesce. The controller will be restarted
2070         * after the slot reset through driver's slot_reset callback.
2071         */
2072        switch (state) {
2073        case pci_channel_io_normal:
2074                return PCI_ERS_RESULT_CAN_RECOVER;
2075        case pci_channel_io_frozen:
2076                dev_warn(dev->ctrl.device,
2077                        "frozen state error detected, reset controller\n");
2078                nvme_dev_disable(dev, false);
2079                return PCI_ERS_RESULT_NEED_RESET;
2080        case pci_channel_io_perm_failure:
2081                dev_warn(dev->ctrl.device,
2082                        "failure state error detected, request disconnect\n");
2083                return PCI_ERS_RESULT_DISCONNECT;
2084        }
2085        return PCI_ERS_RESULT_NEED_RESET;
2086}
2087
2088static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2089{
2090        struct nvme_dev *dev = pci_get_drvdata(pdev);
2091
2092        dev_info(dev->ctrl.device, "restart after slot reset\n");
2093        pci_restore_state(pdev);
2094        queue_work(nvme_workq, &dev->reset_work);
2095        return PCI_ERS_RESULT_RECOVERED;
2096}
2097
2098static void nvme_error_resume(struct pci_dev *pdev)
2099{
2100        pci_cleanup_aer_uncorrect_error_status(pdev);
2101}
2102
2103static const struct pci_error_handlers nvme_err_handler = {
2104        .error_detected = nvme_error_detected,
2105        .slot_reset     = nvme_slot_reset,
2106        .resume         = nvme_error_resume,
2107        .reset_notify   = nvme_reset_notify,
2108};
2109
2110/* Move to pci_ids.h later */
2111#define PCI_CLASS_STORAGE_EXPRESS       0x010802
2112
2113static const struct pci_device_id nvme_id_table[] = {
2114        { PCI_VDEVICE(INTEL, 0x0953),
2115                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2116                                NVME_QUIRK_DISCARD_ZEROES, },
2117        { PCI_VDEVICE(INTEL, 0x0a53),
2118                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2119                                NVME_QUIRK_DISCARD_ZEROES, },
2120        { PCI_VDEVICE(INTEL, 0x0a54),
2121                .driver_data = NVME_QUIRK_STRIPE_SIZE |
2122                                NVME_QUIRK_DISCARD_ZEROES, },
2123        { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2124                .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2125        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2126        { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2127        { 0, }
2128};
2129MODULE_DEVICE_TABLE(pci, nvme_id_table);
2130
2131static struct pci_driver nvme_driver = {
2132        .name           = "nvme",
2133        .id_table       = nvme_id_table,
2134        .probe          = nvme_probe,
2135        .remove         = nvme_remove,
2136        .shutdown       = nvme_shutdown,
2137        .driver         = {
2138                .pm     = &nvme_dev_pm_ops,
2139        },
2140        .err_handler    = &nvme_err_handler,
2141};
2142
2143static int __init nvme_init(void)
2144{
2145        int result;
2146
2147        nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2148        if (!nvme_workq)
2149                return -ENOMEM;
2150
2151        result = pci_register_driver(&nvme_driver);
2152        if (result)
2153                destroy_workqueue(nvme_workq);
2154        return result;
2155}
2156
2157static void __exit nvme_exit(void)
2158{
2159        pci_unregister_driver(&nvme_driver);
2160        destroy_workqueue(nvme_workq);
2161        _nvme_check_size();
2162}
2163
2164MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2165MODULE_LICENSE("GPL");
2166MODULE_VERSION("1.0");
2167module_init(nvme_init);
2168module_exit(nvme_exit);
2169