linux/drivers/perf/arm_pmu.c
<<
>>
Prefs
   1#undef DEBUG
   2
   3/*
   4 * ARM performance counter support.
   5 *
   6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
   7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
   8 *
   9 * This code is based on the sparc64 perf event code, which is in turn based
  10 * on the x86 code.
  11 */
  12#define pr_fmt(fmt) "hw perfevents: " fmt
  13
  14#include <linux/bitmap.h>
  15#include <linux/cpumask.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/export.h>
  18#include <linux/kernel.h>
  19#include <linux/of_device.h>
  20#include <linux/perf/arm_pmu.h>
  21#include <linux/platform_device.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24#include <linux/irq.h>
  25#include <linux/irqdesc.h>
  26
  27#include <asm/cputype.h>
  28#include <asm/irq_regs.h>
  29
  30static int
  31armpmu_map_cache_event(const unsigned (*cache_map)
  32                                      [PERF_COUNT_HW_CACHE_MAX]
  33                                      [PERF_COUNT_HW_CACHE_OP_MAX]
  34                                      [PERF_COUNT_HW_CACHE_RESULT_MAX],
  35                       u64 config)
  36{
  37        unsigned int cache_type, cache_op, cache_result, ret;
  38
  39        cache_type = (config >>  0) & 0xff;
  40        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  41                return -EINVAL;
  42
  43        cache_op = (config >>  8) & 0xff;
  44        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  45                return -EINVAL;
  46
  47        cache_result = (config >> 16) & 0xff;
  48        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  49                return -EINVAL;
  50
  51        ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
  52
  53        if (ret == CACHE_OP_UNSUPPORTED)
  54                return -ENOENT;
  55
  56        return ret;
  57}
  58
  59static int
  60armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
  61{
  62        int mapping;
  63
  64        if (config >= PERF_COUNT_HW_MAX)
  65                return -EINVAL;
  66
  67        mapping = (*event_map)[config];
  68        return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
  69}
  70
  71static int
  72armpmu_map_raw_event(u32 raw_event_mask, u64 config)
  73{
  74        return (int)(config & raw_event_mask);
  75}
  76
  77int
  78armpmu_map_event(struct perf_event *event,
  79                 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
  80                 const unsigned (*cache_map)
  81                                [PERF_COUNT_HW_CACHE_MAX]
  82                                [PERF_COUNT_HW_CACHE_OP_MAX]
  83                                [PERF_COUNT_HW_CACHE_RESULT_MAX],
  84                 u32 raw_event_mask)
  85{
  86        u64 config = event->attr.config;
  87        int type = event->attr.type;
  88
  89        if (type == event->pmu->type)
  90                return armpmu_map_raw_event(raw_event_mask, config);
  91
  92        switch (type) {
  93        case PERF_TYPE_HARDWARE:
  94                return armpmu_map_hw_event(event_map, config);
  95        case PERF_TYPE_HW_CACHE:
  96                return armpmu_map_cache_event(cache_map, config);
  97        case PERF_TYPE_RAW:
  98                return armpmu_map_raw_event(raw_event_mask, config);
  99        }
 100
 101        return -ENOENT;
 102}
 103
 104int armpmu_event_set_period(struct perf_event *event)
 105{
 106        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 107        struct hw_perf_event *hwc = &event->hw;
 108        s64 left = local64_read(&hwc->period_left);
 109        s64 period = hwc->sample_period;
 110        int ret = 0;
 111
 112        if (unlikely(left <= -period)) {
 113                left = period;
 114                local64_set(&hwc->period_left, left);
 115                hwc->last_period = period;
 116                ret = 1;
 117        }
 118
 119        if (unlikely(left <= 0)) {
 120                left += period;
 121                local64_set(&hwc->period_left, left);
 122                hwc->last_period = period;
 123                ret = 1;
 124        }
 125
 126        /*
 127         * Limit the maximum period to prevent the counter value
 128         * from overtaking the one we are about to program. In
 129         * effect we are reducing max_period to account for
 130         * interrupt latency (and we are being very conservative).
 131         */
 132        if (left > (armpmu->max_period >> 1))
 133                left = armpmu->max_period >> 1;
 134
 135        local64_set(&hwc->prev_count, (u64)-left);
 136
 137        armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
 138
 139        perf_event_update_userpage(event);
 140
 141        return ret;
 142}
 143
 144u64 armpmu_event_update(struct perf_event *event)
 145{
 146        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 147        struct hw_perf_event *hwc = &event->hw;
 148        u64 delta, prev_raw_count, new_raw_count;
 149
 150again:
 151        prev_raw_count = local64_read(&hwc->prev_count);
 152        new_raw_count = armpmu->read_counter(event);
 153
 154        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 155                             new_raw_count) != prev_raw_count)
 156                goto again;
 157
 158        delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
 159
 160        local64_add(delta, &event->count);
 161        local64_sub(delta, &hwc->period_left);
 162
 163        return new_raw_count;
 164}
 165
 166static void
 167armpmu_read(struct perf_event *event)
 168{
 169        armpmu_event_update(event);
 170}
 171
 172static void
 173armpmu_stop(struct perf_event *event, int flags)
 174{
 175        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 176        struct hw_perf_event *hwc = &event->hw;
 177
 178        /*
 179         * ARM pmu always has to update the counter, so ignore
 180         * PERF_EF_UPDATE, see comments in armpmu_start().
 181         */
 182        if (!(hwc->state & PERF_HES_STOPPED)) {
 183                armpmu->disable(event);
 184                armpmu_event_update(event);
 185                hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 186        }
 187}
 188
 189static void armpmu_start(struct perf_event *event, int flags)
 190{
 191        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 192        struct hw_perf_event *hwc = &event->hw;
 193
 194        /*
 195         * ARM pmu always has to reprogram the period, so ignore
 196         * PERF_EF_RELOAD, see the comment below.
 197         */
 198        if (flags & PERF_EF_RELOAD)
 199                WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 200
 201        hwc->state = 0;
 202        /*
 203         * Set the period again. Some counters can't be stopped, so when we
 204         * were stopped we simply disabled the IRQ source and the counter
 205         * may have been left counting. If we don't do this step then we may
 206         * get an interrupt too soon or *way* too late if the overflow has
 207         * happened since disabling.
 208         */
 209        armpmu_event_set_period(event);
 210        armpmu->enable(event);
 211}
 212
 213static void
 214armpmu_del(struct perf_event *event, int flags)
 215{
 216        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 217        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 218        struct hw_perf_event *hwc = &event->hw;
 219        int idx = hwc->idx;
 220
 221        armpmu_stop(event, PERF_EF_UPDATE);
 222        hw_events->events[idx] = NULL;
 223        clear_bit(idx, hw_events->used_mask);
 224        if (armpmu->clear_event_idx)
 225                armpmu->clear_event_idx(hw_events, event);
 226
 227        perf_event_update_userpage(event);
 228}
 229
 230static int
 231armpmu_add(struct perf_event *event, int flags)
 232{
 233        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 234        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 235        struct hw_perf_event *hwc = &event->hw;
 236        int idx;
 237        int err = 0;
 238
 239        /* An event following a process won't be stopped earlier */
 240        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 241                return -ENOENT;
 242
 243        perf_pmu_disable(event->pmu);
 244
 245        /* If we don't have a space for the counter then finish early. */
 246        idx = armpmu->get_event_idx(hw_events, event);
 247        if (idx < 0) {
 248                err = idx;
 249                goto out;
 250        }
 251
 252        /*
 253         * If there is an event in the counter we are going to use then make
 254         * sure it is disabled.
 255         */
 256        event->hw.idx = idx;
 257        armpmu->disable(event);
 258        hw_events->events[idx] = event;
 259
 260        hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 261        if (flags & PERF_EF_START)
 262                armpmu_start(event, PERF_EF_RELOAD);
 263
 264        /* Propagate our changes to the userspace mapping. */
 265        perf_event_update_userpage(event);
 266
 267out:
 268        perf_pmu_enable(event->pmu);
 269        return err;
 270}
 271
 272static int
 273validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
 274                               struct perf_event *event)
 275{
 276        struct arm_pmu *armpmu;
 277
 278        if (is_software_event(event))
 279                return 1;
 280
 281        /*
 282         * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
 283         * core perf code won't check that the pmu->ctx == leader->ctx
 284         * until after pmu->event_init(event).
 285         */
 286        if (event->pmu != pmu)
 287                return 0;
 288
 289        if (event->state < PERF_EVENT_STATE_OFF)
 290                return 1;
 291
 292        if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
 293                return 1;
 294
 295        armpmu = to_arm_pmu(event->pmu);
 296        return armpmu->get_event_idx(hw_events, event) >= 0;
 297}
 298
 299static int
 300validate_group(struct perf_event *event)
 301{
 302        struct perf_event *sibling, *leader = event->group_leader;
 303        struct pmu_hw_events fake_pmu;
 304
 305        /*
 306         * Initialise the fake PMU. We only need to populate the
 307         * used_mask for the purposes of validation.
 308         */
 309        memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
 310
 311        if (!validate_event(event->pmu, &fake_pmu, leader))
 312                return -EINVAL;
 313
 314        list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
 315                if (!validate_event(event->pmu, &fake_pmu, sibling))
 316                        return -EINVAL;
 317        }
 318
 319        if (!validate_event(event->pmu, &fake_pmu, event))
 320                return -EINVAL;
 321
 322        return 0;
 323}
 324
 325static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
 326{
 327        struct arm_pmu *armpmu;
 328        struct platform_device *plat_device;
 329        struct arm_pmu_platdata *plat;
 330        int ret;
 331        u64 start_clock, finish_clock;
 332
 333        /*
 334         * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
 335         * the handlers expect a struct arm_pmu*. The percpu_irq framework will
 336         * do any necessary shifting, we just need to perform the first
 337         * dereference.
 338         */
 339        armpmu = *(void **)dev;
 340        plat_device = armpmu->plat_device;
 341        plat = dev_get_platdata(&plat_device->dev);
 342
 343        start_clock = sched_clock();
 344        if (plat && plat->handle_irq)
 345                ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
 346        else
 347                ret = armpmu->handle_irq(irq, armpmu);
 348        finish_clock = sched_clock();
 349
 350        perf_sample_event_took(finish_clock - start_clock);
 351        return ret;
 352}
 353
 354static void
 355armpmu_release_hardware(struct arm_pmu *armpmu)
 356{
 357        armpmu->free_irq(armpmu);
 358}
 359
 360static int
 361armpmu_reserve_hardware(struct arm_pmu *armpmu)
 362{
 363        int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
 364        if (err) {
 365                armpmu_release_hardware(armpmu);
 366                return err;
 367        }
 368
 369        return 0;
 370}
 371
 372static void
 373hw_perf_event_destroy(struct perf_event *event)
 374{
 375        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 376        atomic_t *active_events  = &armpmu->active_events;
 377        struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
 378
 379        if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
 380                armpmu_release_hardware(armpmu);
 381                mutex_unlock(pmu_reserve_mutex);
 382        }
 383}
 384
 385static int
 386event_requires_mode_exclusion(struct perf_event_attr *attr)
 387{
 388        return attr->exclude_idle || attr->exclude_user ||
 389               attr->exclude_kernel || attr->exclude_hv;
 390}
 391
 392static int
 393__hw_perf_event_init(struct perf_event *event)
 394{
 395        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 396        struct hw_perf_event *hwc = &event->hw;
 397        int mapping;
 398
 399        mapping = armpmu->map_event(event);
 400
 401        if (mapping < 0) {
 402                pr_debug("event %x:%llx not supported\n", event->attr.type,
 403                         event->attr.config);
 404                return mapping;
 405        }
 406
 407        /*
 408         * We don't assign an index until we actually place the event onto
 409         * hardware. Use -1 to signify that we haven't decided where to put it
 410         * yet. For SMP systems, each core has it's own PMU so we can't do any
 411         * clever allocation or constraints checking at this point.
 412         */
 413        hwc->idx                = -1;
 414        hwc->config_base        = 0;
 415        hwc->config             = 0;
 416        hwc->event_base         = 0;
 417
 418        /*
 419         * Check whether we need to exclude the counter from certain modes.
 420         */
 421        if ((!armpmu->set_event_filter ||
 422             armpmu->set_event_filter(hwc, &event->attr)) &&
 423             event_requires_mode_exclusion(&event->attr)) {
 424                pr_debug("ARM performance counters do not support "
 425                         "mode exclusion\n");
 426                return -EOPNOTSUPP;
 427        }
 428
 429        /*
 430         * Store the event encoding into the config_base field.
 431         */
 432        hwc->config_base            |= (unsigned long)mapping;
 433
 434        if (!is_sampling_event(event)) {
 435                /*
 436                 * For non-sampling runs, limit the sample_period to half
 437                 * of the counter width. That way, the new counter value
 438                 * is far less likely to overtake the previous one unless
 439                 * you have some serious IRQ latency issues.
 440                 */
 441                hwc->sample_period  = armpmu->max_period >> 1;
 442                hwc->last_period    = hwc->sample_period;
 443                local64_set(&hwc->period_left, hwc->sample_period);
 444        }
 445
 446        if (event->group_leader != event) {
 447                if (validate_group(event) != 0)
 448                        return -EINVAL;
 449        }
 450
 451        return 0;
 452}
 453
 454static int armpmu_event_init(struct perf_event *event)
 455{
 456        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 457        int err = 0;
 458        atomic_t *active_events = &armpmu->active_events;
 459
 460        /*
 461         * Reject CPU-affine events for CPUs that are of a different class to
 462         * that which this PMU handles. Process-following events (where
 463         * event->cpu == -1) can be migrated between CPUs, and thus we have to
 464         * reject them later (in armpmu_add) if they're scheduled on a
 465         * different class of CPU.
 466         */
 467        if (event->cpu != -1 &&
 468                !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
 469                return -ENOENT;
 470
 471        /* does not support taken branch sampling */
 472        if (has_branch_stack(event))
 473                return -EOPNOTSUPP;
 474
 475        if (armpmu->map_event(event) == -ENOENT)
 476                return -ENOENT;
 477
 478        event->destroy = hw_perf_event_destroy;
 479
 480        if (!atomic_inc_not_zero(active_events)) {
 481                mutex_lock(&armpmu->reserve_mutex);
 482                if (atomic_read(active_events) == 0)
 483                        err = armpmu_reserve_hardware(armpmu);
 484
 485                if (!err)
 486                        atomic_inc(active_events);
 487                mutex_unlock(&armpmu->reserve_mutex);
 488        }
 489
 490        if (err)
 491                return err;
 492
 493        err = __hw_perf_event_init(event);
 494        if (err)
 495                hw_perf_event_destroy(event);
 496
 497        return err;
 498}
 499
 500static void armpmu_enable(struct pmu *pmu)
 501{
 502        struct arm_pmu *armpmu = to_arm_pmu(pmu);
 503        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 504        int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 505
 506        /* For task-bound events we may be called on other CPUs */
 507        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 508                return;
 509
 510        if (enabled)
 511                armpmu->start(armpmu);
 512}
 513
 514static void armpmu_disable(struct pmu *pmu)
 515{
 516        struct arm_pmu *armpmu = to_arm_pmu(pmu);
 517
 518        /* For task-bound events we may be called on other CPUs */
 519        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 520                return;
 521
 522        armpmu->stop(armpmu);
 523}
 524
 525/*
 526 * In heterogeneous systems, events are specific to a particular
 527 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
 528 * the same microarchitecture.
 529 */
 530static int armpmu_filter_match(struct perf_event *event)
 531{
 532        struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 533        unsigned int cpu = smp_processor_id();
 534        return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
 535}
 536
 537static void armpmu_init(struct arm_pmu *armpmu)
 538{
 539        atomic_set(&armpmu->active_events, 0);
 540        mutex_init(&armpmu->reserve_mutex);
 541
 542        armpmu->pmu = (struct pmu) {
 543                .pmu_enable     = armpmu_enable,
 544                .pmu_disable    = armpmu_disable,
 545                .event_init     = armpmu_event_init,
 546                .add            = armpmu_add,
 547                .del            = armpmu_del,
 548                .start          = armpmu_start,
 549                .stop           = armpmu_stop,
 550                .read           = armpmu_read,
 551                .filter_match   = armpmu_filter_match,
 552        };
 553}
 554
 555/* Set at runtime when we know what CPU type we are. */
 556static struct arm_pmu *__oprofile_cpu_pmu;
 557
 558/*
 559 * Despite the names, these two functions are CPU-specific and are used
 560 * by the OProfile/perf code.
 561 */
 562const char *perf_pmu_name(void)
 563{
 564        if (!__oprofile_cpu_pmu)
 565                return NULL;
 566
 567        return __oprofile_cpu_pmu->name;
 568}
 569EXPORT_SYMBOL_GPL(perf_pmu_name);
 570
 571int perf_num_counters(void)
 572{
 573        int max_events = 0;
 574
 575        if (__oprofile_cpu_pmu != NULL)
 576                max_events = __oprofile_cpu_pmu->num_events;
 577
 578        return max_events;
 579}
 580EXPORT_SYMBOL_GPL(perf_num_counters);
 581
 582static void cpu_pmu_enable_percpu_irq(void *data)
 583{
 584        int irq = *(int *)data;
 585
 586        enable_percpu_irq(irq, IRQ_TYPE_NONE);
 587}
 588
 589static void cpu_pmu_disable_percpu_irq(void *data)
 590{
 591        int irq = *(int *)data;
 592
 593        disable_percpu_irq(irq);
 594}
 595
 596static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
 597{
 598        int i, irq, irqs;
 599        struct platform_device *pmu_device = cpu_pmu->plat_device;
 600        struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
 601
 602        irqs = min(pmu_device->num_resources, num_possible_cpus());
 603
 604        irq = platform_get_irq(pmu_device, 0);
 605        if (irq >= 0 && irq_is_percpu(irq)) {
 606                on_each_cpu(cpu_pmu_disable_percpu_irq, &irq, 1);
 607                free_percpu_irq(irq, &hw_events->percpu_pmu);
 608        } else {
 609                for (i = 0; i < irqs; ++i) {
 610                        int cpu = i;
 611
 612                        if (cpu_pmu->irq_affinity)
 613                                cpu = cpu_pmu->irq_affinity[i];
 614
 615                        if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
 616                                continue;
 617                        irq = platform_get_irq(pmu_device, i);
 618                        if (irq >= 0)
 619                                free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
 620                }
 621        }
 622}
 623
 624static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
 625{
 626        int i, err, irq, irqs;
 627        struct platform_device *pmu_device = cpu_pmu->plat_device;
 628        struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
 629
 630        if (!pmu_device)
 631                return -ENODEV;
 632
 633        irqs = min(pmu_device->num_resources, num_possible_cpus());
 634        if (irqs < 1) {
 635                pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
 636                return 0;
 637        }
 638
 639        irq = platform_get_irq(pmu_device, 0);
 640        if (irq >= 0 && irq_is_percpu(irq)) {
 641                err = request_percpu_irq(irq, handler, "arm-pmu",
 642                                         &hw_events->percpu_pmu);
 643                if (err) {
 644                        pr_err("unable to request IRQ%d for ARM PMU counters\n",
 645                                irq);
 646                        return err;
 647                }
 648                on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1);
 649        } else {
 650                for (i = 0; i < irqs; ++i) {
 651                        int cpu = i;
 652
 653                        err = 0;
 654                        irq = platform_get_irq(pmu_device, i);
 655                        if (irq < 0)
 656                                continue;
 657
 658                        if (cpu_pmu->irq_affinity)
 659                                cpu = cpu_pmu->irq_affinity[i];
 660
 661                        /*
 662                         * If we have a single PMU interrupt that we can't shift,
 663                         * assume that we're running on a uniprocessor machine and
 664                         * continue. Otherwise, continue without this interrupt.
 665                         */
 666                        if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
 667                                pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
 668                                        irq, cpu);
 669                                continue;
 670                        }
 671
 672                        err = request_irq(irq, handler,
 673                                          IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
 674                                          per_cpu_ptr(&hw_events->percpu_pmu, cpu));
 675                        if (err) {
 676                                pr_err("unable to request IRQ%d for ARM PMU counters\n",
 677                                        irq);
 678                                return err;
 679                        }
 680
 681                        cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
 682                }
 683        }
 684
 685        return 0;
 686}
 687
 688/*
 689 * PMU hardware loses all context when a CPU goes offline.
 690 * When a CPU is hotplugged back in, since some hardware registers are
 691 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
 692 * junk values out of them.
 693 */
 694static int cpu_pmu_notify(struct notifier_block *b, unsigned long action,
 695                          void *hcpu)
 696{
 697        int cpu = (unsigned long)hcpu;
 698        struct arm_pmu *pmu = container_of(b, struct arm_pmu, hotplug_nb);
 699
 700        if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
 701                return NOTIFY_DONE;
 702
 703        if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
 704                return NOTIFY_DONE;
 705
 706        if (pmu->reset)
 707                pmu->reset(pmu);
 708        else
 709                return NOTIFY_DONE;
 710
 711        return NOTIFY_OK;
 712}
 713
 714#ifdef CONFIG_CPU_PM
 715static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
 716{
 717        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 718        struct perf_event *event;
 719        int idx;
 720
 721        for (idx = 0; idx < armpmu->num_events; idx++) {
 722                /*
 723                 * If the counter is not used skip it, there is no
 724                 * need of stopping/restarting it.
 725                 */
 726                if (!test_bit(idx, hw_events->used_mask))
 727                        continue;
 728
 729                event = hw_events->events[idx];
 730
 731                switch (cmd) {
 732                case CPU_PM_ENTER:
 733                        /*
 734                         * Stop and update the counter
 735                         */
 736                        armpmu_stop(event, PERF_EF_UPDATE);
 737                        break;
 738                case CPU_PM_EXIT:
 739                case CPU_PM_ENTER_FAILED:
 740                         /*
 741                          * Restore and enable the counter.
 742                          * armpmu_start() indirectly calls
 743                          *
 744                          * perf_event_update_userpage()
 745                          *
 746                          * that requires RCU read locking to be functional,
 747                          * wrap the call within RCU_NONIDLE to make the
 748                          * RCU subsystem aware this cpu is not idle from
 749                          * an RCU perspective for the armpmu_start() call
 750                          * duration.
 751                          */
 752                        RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
 753                        break;
 754                default:
 755                        break;
 756                }
 757        }
 758}
 759
 760static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
 761                             void *v)
 762{
 763        struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
 764        struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 765        int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
 766
 767        if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 768                return NOTIFY_DONE;
 769
 770        /*
 771         * Always reset the PMU registers on power-up even if
 772         * there are no events running.
 773         */
 774        if (cmd == CPU_PM_EXIT && armpmu->reset)
 775                armpmu->reset(armpmu);
 776
 777        if (!enabled)
 778                return NOTIFY_OK;
 779
 780        switch (cmd) {
 781        case CPU_PM_ENTER:
 782                armpmu->stop(armpmu);
 783                cpu_pm_pmu_setup(armpmu, cmd);
 784                break;
 785        case CPU_PM_EXIT:
 786                cpu_pm_pmu_setup(armpmu, cmd);
 787        case CPU_PM_ENTER_FAILED:
 788                armpmu->start(armpmu);
 789                break;
 790        default:
 791                return NOTIFY_DONE;
 792        }
 793
 794        return NOTIFY_OK;
 795}
 796
 797static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
 798{
 799        cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
 800        return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
 801}
 802
 803static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
 804{
 805        cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
 806}
 807#else
 808static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
 809static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
 810#endif
 811
 812static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
 813{
 814        int err;
 815        int cpu;
 816        struct pmu_hw_events __percpu *cpu_hw_events;
 817
 818        cpu_hw_events = alloc_percpu(struct pmu_hw_events);
 819        if (!cpu_hw_events)
 820                return -ENOMEM;
 821
 822        cpu_pmu->hotplug_nb.notifier_call = cpu_pmu_notify;
 823        err = register_cpu_notifier(&cpu_pmu->hotplug_nb);
 824        if (err)
 825                goto out_hw_events;
 826
 827        err = cpu_pm_pmu_register(cpu_pmu);
 828        if (err)
 829                goto out_unregister;
 830
 831        for_each_possible_cpu(cpu) {
 832                struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
 833                raw_spin_lock_init(&events->pmu_lock);
 834                events->percpu_pmu = cpu_pmu;
 835        }
 836
 837        cpu_pmu->hw_events      = cpu_hw_events;
 838        cpu_pmu->request_irq    = cpu_pmu_request_irq;
 839        cpu_pmu->free_irq       = cpu_pmu_free_irq;
 840
 841        /* Ensure the PMU has sane values out of reset. */
 842        if (cpu_pmu->reset)
 843                on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
 844                         cpu_pmu, 1);
 845
 846        /* If no interrupts available, set the corresponding capability flag */
 847        if (!platform_get_irq(cpu_pmu->plat_device, 0))
 848                cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
 849
 850        /*
 851         * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
 852         * big.LITTLE). This is not an uncore PMU, and we have taken ctx
 853         * sharing into account (e.g. with our pmu::filter_match callback and
 854         * pmu::event_init group validation).
 855         */
 856        cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
 857
 858        return 0;
 859
 860out_unregister:
 861        unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
 862out_hw_events:
 863        free_percpu(cpu_hw_events);
 864        return err;
 865}
 866
 867static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
 868{
 869        cpu_pm_pmu_unregister(cpu_pmu);
 870        unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
 871        free_percpu(cpu_pmu->hw_events);
 872}
 873
 874/*
 875 * CPU PMU identification and probing.
 876 */
 877static int probe_current_pmu(struct arm_pmu *pmu,
 878                             const struct pmu_probe_info *info)
 879{
 880        int cpu = get_cpu();
 881        unsigned int cpuid = read_cpuid_id();
 882        int ret = -ENODEV;
 883
 884        pr_info("probing PMU on CPU %d\n", cpu);
 885
 886        for (; info->init != NULL; info++) {
 887                if ((cpuid & info->mask) != info->cpuid)
 888                        continue;
 889                ret = info->init(pmu);
 890                break;
 891        }
 892
 893        put_cpu();
 894        return ret;
 895}
 896
 897static int of_pmu_irq_cfg(struct arm_pmu *pmu)
 898{
 899        int *irqs, i = 0;
 900        bool using_spi = false;
 901        struct platform_device *pdev = pmu->plat_device;
 902
 903        irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
 904        if (!irqs)
 905                return -ENOMEM;
 906
 907        do {
 908                struct device_node *dn;
 909                int cpu, irq;
 910
 911                /* See if we have an affinity entry */
 912                dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
 913                if (!dn)
 914                        break;
 915
 916                /* Check the IRQ type and prohibit a mix of PPIs and SPIs */
 917                irq = platform_get_irq(pdev, i);
 918                if (irq >= 0) {
 919                        bool spi = !irq_is_percpu(irq);
 920
 921                        if (i > 0 && spi != using_spi) {
 922                                pr_err("PPI/SPI IRQ type mismatch for %s!\n",
 923                                        dn->name);
 924                                kfree(irqs);
 925                                return -EINVAL;
 926                        }
 927
 928                        using_spi = spi;
 929                }
 930
 931                /* Now look up the logical CPU number */
 932                for_each_possible_cpu(cpu) {
 933                        struct device_node *cpu_dn;
 934
 935                        cpu_dn = of_cpu_device_node_get(cpu);
 936                        of_node_put(cpu_dn);
 937
 938                        if (dn == cpu_dn)
 939                                break;
 940                }
 941
 942                if (cpu >= nr_cpu_ids) {
 943                        pr_warn("Failed to find logical CPU for %s\n",
 944                                dn->name);
 945                        of_node_put(dn);
 946                        cpumask_setall(&pmu->supported_cpus);
 947                        break;
 948                }
 949                of_node_put(dn);
 950
 951                /* For SPIs, we need to track the affinity per IRQ */
 952                if (using_spi) {
 953                        if (i >= pdev->num_resources)
 954                                break;
 955
 956                        irqs[i] = cpu;
 957                }
 958
 959                /* Keep track of the CPUs containing this PMU type */
 960                cpumask_set_cpu(cpu, &pmu->supported_cpus);
 961                i++;
 962        } while (1);
 963
 964        /* If we didn't manage to parse anything, claim to support all CPUs */
 965        if (cpumask_weight(&pmu->supported_cpus) == 0)
 966                cpumask_setall(&pmu->supported_cpus);
 967
 968        /* If we matched up the IRQ affinities, use them to route the SPIs */
 969        if (using_spi && i == pdev->num_resources)
 970                pmu->irq_affinity = irqs;
 971        else
 972                kfree(irqs);
 973
 974        return 0;
 975}
 976
 977int arm_pmu_device_probe(struct platform_device *pdev,
 978                         const struct of_device_id *of_table,
 979                         const struct pmu_probe_info *probe_table)
 980{
 981        const struct of_device_id *of_id;
 982        const int (*init_fn)(struct arm_pmu *);
 983        struct device_node *node = pdev->dev.of_node;
 984        struct arm_pmu *pmu;
 985        int ret = -ENODEV;
 986
 987        pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
 988        if (!pmu) {
 989                pr_info("failed to allocate PMU device!\n");
 990                return -ENOMEM;
 991        }
 992
 993        armpmu_init(pmu);
 994
 995        pmu->plat_device = pdev;
 996
 997        if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
 998                init_fn = of_id->data;
 999
1000                pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1001                                                           "secure-reg-access");
1002
1003                /* arm64 systems boot only as non-secure */
1004                if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1005                        pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1006                        pmu->secure_access = false;
1007                }
1008
1009                ret = of_pmu_irq_cfg(pmu);
1010                if (!ret)
1011                        ret = init_fn(pmu);
1012        } else {
1013                cpumask_setall(&pmu->supported_cpus);
1014                ret = probe_current_pmu(pmu, probe_table);
1015        }
1016
1017        if (ret) {
1018                pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1019                goto out_free;
1020        }
1021
1022        ret = cpu_pmu_init(pmu);
1023        if (ret)
1024                goto out_free;
1025
1026        ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1027        if (ret)
1028                goto out_destroy;
1029
1030        if (!__oprofile_cpu_pmu)
1031                __oprofile_cpu_pmu = pmu;
1032
1033        pr_info("enabled with %s PMU driver, %d counters available\n",
1034                        pmu->name, pmu->num_events);
1035
1036        return 0;
1037
1038out_destroy:
1039        cpu_pmu_destroy(pmu);
1040out_free:
1041        pr_info("%s: failed to register PMU devices!\n",
1042                of_node_full_name(node));
1043        kfree(pmu->irq_affinity);
1044        kfree(pmu);
1045        return ret;
1046}
1047