linux/drivers/scsi/hpsa.c
<<
>>
Prefs
   1/*
   2 *    Disk Array driver for HP Smart Array SAS controllers
   3 *    Copyright 2016 Microsemi Corporation
   4 *    Copyright 2014-2015 PMC-Sierra, Inc.
   5 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
   6 *
   7 *    This program is free software; you can redistribute it and/or modify
   8 *    it under the terms of the GNU General Public License as published by
   9 *    the Free Software Foundation; version 2 of the License.
  10 *
  11 *    This program is distributed in the hope that it will be useful,
  12 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  15 *
  16 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
  17 *
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/types.h>
  23#include <linux/pci.h>
  24#include <linux/pci-aspm.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/fs.h>
  29#include <linux/timer.h>
  30#include <linux/init.h>
  31#include <linux/spinlock.h>
  32#include <linux/compat.h>
  33#include <linux/blktrace_api.h>
  34#include <linux/uaccess.h>
  35#include <linux/io.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/completion.h>
  38#include <linux/moduleparam.h>
  39#include <scsi/scsi.h>
  40#include <scsi/scsi_cmnd.h>
  41#include <scsi/scsi_device.h>
  42#include <scsi/scsi_host.h>
  43#include <scsi/scsi_tcq.h>
  44#include <scsi/scsi_eh.h>
  45#include <scsi/scsi_transport_sas.h>
  46#include <scsi/scsi_dbg.h>
  47#include <linux/cciss_ioctl.h>
  48#include <linux/string.h>
  49#include <linux/bitmap.h>
  50#include <linux/atomic.h>
  51#include <linux/jiffies.h>
  52#include <linux/percpu-defs.h>
  53#include <linux/percpu.h>
  54#include <asm/unaligned.h>
  55#include <asm/div64.h>
  56#include "hpsa_cmd.h"
  57#include "hpsa.h"
  58
  59/*
  60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
  61 * with an optional trailing '-' followed by a byte value (0-255).
  62 */
  63#define HPSA_DRIVER_VERSION "3.4.16-0"
  64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  65#define HPSA "hpsa"
  66
  67/* How long to wait for CISS doorbell communication */
  68#define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
  69#define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
  70#define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
  71#define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
  72#define MAX_IOCTL_CONFIG_WAIT 1000
  73
  74/*define how many times we will try a command because of bus resets */
  75#define MAX_CMD_RETRIES 3
  76
  77/* Embedded module documentation macros - see modules.h */
  78MODULE_AUTHOR("Hewlett-Packard Company");
  79MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  80        HPSA_DRIVER_VERSION);
  81MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  82MODULE_VERSION(HPSA_DRIVER_VERSION);
  83MODULE_LICENSE("GPL");
  84
  85static int hpsa_allow_any;
  86module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
  87MODULE_PARM_DESC(hpsa_allow_any,
  88                "Allow hpsa driver to access unknown HP Smart Array hardware");
  89static int hpsa_simple_mode;
  90module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  91MODULE_PARM_DESC(hpsa_simple_mode,
  92        "Use 'simple mode' rather than 'performant mode'");
  93
  94/* define the PCI info for the cards we can control */
  95static const struct pci_device_id hpsa_pci_device_id[] = {
  96        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  97        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  98        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  99        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
 100        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
 101        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
 102        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 103        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 104        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 105        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 106        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 107        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 108        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 109        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 110        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 111        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 112        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 113        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 114        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 115        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 116        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 117        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 118        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 119        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 120        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 121        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 122        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 123        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 124        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 125        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 126        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 127        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
 128        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 129        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 130        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 131        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
 132        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
 133        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
 134        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
 135        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
 136        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
 137        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
 138        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
 139        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
 140        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
 141        {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
 142        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 143        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 144        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 145        {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 146        {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 147        {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
 148                PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 149        {0,}
 150};
 151
 152MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 153
 154/*  board_id = Subsystem Device ID & Vendor ID
 155 *  product = Marketing Name for the board
 156 *  access = Address of the struct of function pointers
 157 */
 158static struct board_type products[] = {
 159        {0x3241103C, "Smart Array P212", &SA5_access},
 160        {0x3243103C, "Smart Array P410", &SA5_access},
 161        {0x3245103C, "Smart Array P410i", &SA5_access},
 162        {0x3247103C, "Smart Array P411", &SA5_access},
 163        {0x3249103C, "Smart Array P812", &SA5_access},
 164        {0x324A103C, "Smart Array P712m", &SA5_access},
 165        {0x324B103C, "Smart Array P711m", &SA5_access},
 166        {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
 167        {0x3350103C, "Smart Array P222", &SA5_access},
 168        {0x3351103C, "Smart Array P420", &SA5_access},
 169        {0x3352103C, "Smart Array P421", &SA5_access},
 170        {0x3353103C, "Smart Array P822", &SA5_access},
 171        {0x3354103C, "Smart Array P420i", &SA5_access},
 172        {0x3355103C, "Smart Array P220i", &SA5_access},
 173        {0x3356103C, "Smart Array P721m", &SA5_access},
 174        {0x1921103C, "Smart Array P830i", &SA5_access},
 175        {0x1922103C, "Smart Array P430", &SA5_access},
 176        {0x1923103C, "Smart Array P431", &SA5_access},
 177        {0x1924103C, "Smart Array P830", &SA5_access},
 178        {0x1926103C, "Smart Array P731m", &SA5_access},
 179        {0x1928103C, "Smart Array P230i", &SA5_access},
 180        {0x1929103C, "Smart Array P530", &SA5_access},
 181        {0x21BD103C, "Smart Array P244br", &SA5_access},
 182        {0x21BE103C, "Smart Array P741m", &SA5_access},
 183        {0x21BF103C, "Smart HBA H240ar", &SA5_access},
 184        {0x21C0103C, "Smart Array P440ar", &SA5_access},
 185        {0x21C1103C, "Smart Array P840ar", &SA5_access},
 186        {0x21C2103C, "Smart Array P440", &SA5_access},
 187        {0x21C3103C, "Smart Array P441", &SA5_access},
 188        {0x21C4103C, "Smart Array", &SA5_access},
 189        {0x21C5103C, "Smart Array P841", &SA5_access},
 190        {0x21C6103C, "Smart HBA H244br", &SA5_access},
 191        {0x21C7103C, "Smart HBA H240", &SA5_access},
 192        {0x21C8103C, "Smart HBA H241", &SA5_access},
 193        {0x21C9103C, "Smart Array", &SA5_access},
 194        {0x21CA103C, "Smart Array P246br", &SA5_access},
 195        {0x21CB103C, "Smart Array P840", &SA5_access},
 196        {0x21CC103C, "Smart Array", &SA5_access},
 197        {0x21CD103C, "Smart Array", &SA5_access},
 198        {0x21CE103C, "Smart HBA", &SA5_access},
 199        {0x05809005, "SmartHBA-SA", &SA5_access},
 200        {0x05819005, "SmartHBA-SA 8i", &SA5_access},
 201        {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
 202        {0x05839005, "SmartHBA-SA 8e", &SA5_access},
 203        {0x05849005, "SmartHBA-SA 16i", &SA5_access},
 204        {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
 205        {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 206        {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 207        {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 208        {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 209        {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 210        {0xFFFF103C, "Unknown Smart Array", &SA5_access},
 211};
 212
 213static struct scsi_transport_template *hpsa_sas_transport_template;
 214static int hpsa_add_sas_host(struct ctlr_info *h);
 215static void hpsa_delete_sas_host(struct ctlr_info *h);
 216static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 217                        struct hpsa_scsi_dev_t *device);
 218static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
 219static struct hpsa_scsi_dev_t
 220        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 221                struct sas_rphy *rphy);
 222
 223#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
 224static const struct scsi_cmnd hpsa_cmd_busy;
 225#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
 226static const struct scsi_cmnd hpsa_cmd_idle;
 227static int number_of_controllers;
 228
 229static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 230static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 231static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
 232
 233#ifdef CONFIG_COMPAT
 234static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
 235        void __user *arg);
 236#endif
 237
 238static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 239static struct CommandList *cmd_alloc(struct ctlr_info *h);
 240static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
 241static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 242                                            struct scsi_cmnd *scmd);
 243static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 244        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 245        int cmd_type);
 246static void hpsa_free_cmd_pool(struct ctlr_info *h);
 247#define VPD_PAGE (1 << 8)
 248#define HPSA_SIMPLE_ERROR_BITS 0x03
 249
 250static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 251static void hpsa_scan_start(struct Scsi_Host *);
 252static int hpsa_scan_finished(struct Scsi_Host *sh,
 253        unsigned long elapsed_time);
 254static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 255
 256static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 257static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
 258static int hpsa_slave_alloc(struct scsi_device *sdev);
 259static int hpsa_slave_configure(struct scsi_device *sdev);
 260static void hpsa_slave_destroy(struct scsi_device *sdev);
 261
 262static void hpsa_update_scsi_devices(struct ctlr_info *h);
 263static int check_for_unit_attention(struct ctlr_info *h,
 264        struct CommandList *c);
 265static void check_ioctl_unit_attention(struct ctlr_info *h,
 266        struct CommandList *c);
 267/* performant mode helper functions */
 268static void calc_bucket_map(int *bucket, int num_buckets,
 269        int nsgs, int min_blocks, u32 *bucket_map);
 270static void hpsa_free_performant_mode(struct ctlr_info *h);
 271static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 272static inline u32 next_command(struct ctlr_info *h, u8 q);
 273static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 274                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 275                               u64 *cfg_offset);
 276static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 277                                    unsigned long *memory_bar);
 278static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
 279static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 280                                     int wait_for_ready);
 281static inline void finish_cmd(struct CommandList *c);
 282static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 283#define BOARD_NOT_READY 0
 284#define BOARD_READY 1
 285static void hpsa_drain_accel_commands(struct ctlr_info *h);
 286static void hpsa_flush_cache(struct ctlr_info *h);
 287static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 288        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 289        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
 290static void hpsa_command_resubmit_worker(struct work_struct *work);
 291static u32 lockup_detected(struct ctlr_info *h);
 292static int detect_controller_lockup(struct ctlr_info *h);
 293static void hpsa_disable_rld_caching(struct ctlr_info *h);
 294static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 295        struct ReportExtendedLUNdata *buf, int bufsize);
 296static int hpsa_luns_changed(struct ctlr_info *h);
 297static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 298                               struct hpsa_scsi_dev_t *dev,
 299                               unsigned char *scsi3addr);
 300
 301static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 302{
 303        unsigned long *priv = shost_priv(sdev->host);
 304        return (struct ctlr_info *) *priv;
 305}
 306
 307static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 308{
 309        unsigned long *priv = shost_priv(sh);
 310        return (struct ctlr_info *) *priv;
 311}
 312
 313static inline bool hpsa_is_cmd_idle(struct CommandList *c)
 314{
 315        return c->scsi_cmd == SCSI_CMD_IDLE;
 316}
 317
 318static inline bool hpsa_is_pending_event(struct CommandList *c)
 319{
 320        return c->abort_pending || c->reset_pending;
 321}
 322
 323/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
 324static void decode_sense_data(const u8 *sense_data, int sense_data_len,
 325                        u8 *sense_key, u8 *asc, u8 *ascq)
 326{
 327        struct scsi_sense_hdr sshdr;
 328        bool rc;
 329
 330        *sense_key = -1;
 331        *asc = -1;
 332        *ascq = -1;
 333
 334        if (sense_data_len < 1)
 335                return;
 336
 337        rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
 338        if (rc) {
 339                *sense_key = sshdr.sense_key;
 340                *asc = sshdr.asc;
 341                *ascq = sshdr.ascq;
 342        }
 343}
 344
 345static int check_for_unit_attention(struct ctlr_info *h,
 346        struct CommandList *c)
 347{
 348        u8 sense_key, asc, ascq;
 349        int sense_len;
 350
 351        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 352                sense_len = sizeof(c->err_info->SenseInfo);
 353        else
 354                sense_len = c->err_info->SenseLen;
 355
 356        decode_sense_data(c->err_info->SenseInfo, sense_len,
 357                                &sense_key, &asc, &ascq);
 358        if (sense_key != UNIT_ATTENTION || asc == 0xff)
 359                return 0;
 360
 361        switch (asc) {
 362        case STATE_CHANGED:
 363                dev_warn(&h->pdev->dev,
 364                        "%s: a state change detected, command retried\n",
 365                        h->devname);
 366                break;
 367        case LUN_FAILED:
 368                dev_warn(&h->pdev->dev,
 369                        "%s: LUN failure detected\n", h->devname);
 370                break;
 371        case REPORT_LUNS_CHANGED:
 372                dev_warn(&h->pdev->dev,
 373                        "%s: report LUN data changed\n", h->devname);
 374        /*
 375         * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 376         * target (array) devices.
 377         */
 378                break;
 379        case POWER_OR_RESET:
 380                dev_warn(&h->pdev->dev,
 381                        "%s: a power on or device reset detected\n",
 382                        h->devname);
 383                break;
 384        case UNIT_ATTENTION_CLEARED:
 385                dev_warn(&h->pdev->dev,
 386                        "%s: unit attention cleared by another initiator\n",
 387                        h->devname);
 388                break;
 389        default:
 390                dev_warn(&h->pdev->dev,
 391                        "%s: unknown unit attention detected\n",
 392                        h->devname);
 393                break;
 394        }
 395        return 1;
 396}
 397
 398static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 399{
 400        if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 401                (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 402                 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 403                return 0;
 404        dev_warn(&h->pdev->dev, HPSA "device busy");
 405        return 1;
 406}
 407
 408static u32 lockup_detected(struct ctlr_info *h);
 409static ssize_t host_show_lockup_detected(struct device *dev,
 410                struct device_attribute *attr, char *buf)
 411{
 412        int ld;
 413        struct ctlr_info *h;
 414        struct Scsi_Host *shost = class_to_shost(dev);
 415
 416        h = shost_to_hba(shost);
 417        ld = lockup_detected(h);
 418
 419        return sprintf(buf, "ld=%d\n", ld);
 420}
 421
 422static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 423                                         struct device_attribute *attr,
 424                                         const char *buf, size_t count)
 425{
 426        int status, len;
 427        struct ctlr_info *h;
 428        struct Scsi_Host *shost = class_to_shost(dev);
 429        char tmpbuf[10];
 430
 431        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 432                return -EACCES;
 433        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 434        strncpy(tmpbuf, buf, len);
 435        tmpbuf[len] = '\0';
 436        if (sscanf(tmpbuf, "%d", &status) != 1)
 437                return -EINVAL;
 438        h = shost_to_hba(shost);
 439        h->acciopath_status = !!status;
 440        dev_warn(&h->pdev->dev,
 441                "hpsa: HP SSD Smart Path %s via sysfs update.\n",
 442                h->acciopath_status ? "enabled" : "disabled");
 443        return count;
 444}
 445
 446static ssize_t host_store_raid_offload_debug(struct device *dev,
 447                                         struct device_attribute *attr,
 448                                         const char *buf, size_t count)
 449{
 450        int debug_level, len;
 451        struct ctlr_info *h;
 452        struct Scsi_Host *shost = class_to_shost(dev);
 453        char tmpbuf[10];
 454
 455        if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 456                return -EACCES;
 457        len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 458        strncpy(tmpbuf, buf, len);
 459        tmpbuf[len] = '\0';
 460        if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 461                return -EINVAL;
 462        if (debug_level < 0)
 463                debug_level = 0;
 464        h = shost_to_hba(shost);
 465        h->raid_offload_debug = debug_level;
 466        dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 467                h->raid_offload_debug);
 468        return count;
 469}
 470
 471static ssize_t host_store_rescan(struct device *dev,
 472                                 struct device_attribute *attr,
 473                                 const char *buf, size_t count)
 474{
 475        struct ctlr_info *h;
 476        struct Scsi_Host *shost = class_to_shost(dev);
 477        h = shost_to_hba(shost);
 478        hpsa_scan_start(h->scsi_host);
 479        return count;
 480}
 481
 482static ssize_t host_show_firmware_revision(struct device *dev,
 483             struct device_attribute *attr, char *buf)
 484{
 485        struct ctlr_info *h;
 486        struct Scsi_Host *shost = class_to_shost(dev);
 487        unsigned char *fwrev;
 488
 489        h = shost_to_hba(shost);
 490        if (!h->hba_inquiry_data)
 491                return 0;
 492        fwrev = &h->hba_inquiry_data[32];
 493        return snprintf(buf, 20, "%c%c%c%c\n",
 494                fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 495}
 496
 497static ssize_t host_show_commands_outstanding(struct device *dev,
 498             struct device_attribute *attr, char *buf)
 499{
 500        struct Scsi_Host *shost = class_to_shost(dev);
 501        struct ctlr_info *h = shost_to_hba(shost);
 502
 503        return snprintf(buf, 20, "%d\n",
 504                        atomic_read(&h->commands_outstanding));
 505}
 506
 507static ssize_t host_show_transport_mode(struct device *dev,
 508        struct device_attribute *attr, char *buf)
 509{
 510        struct ctlr_info *h;
 511        struct Scsi_Host *shost = class_to_shost(dev);
 512
 513        h = shost_to_hba(shost);
 514        return snprintf(buf, 20, "%s\n",
 515                h->transMethod & CFGTBL_Trans_Performant ?
 516                        "performant" : "simple");
 517}
 518
 519static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 520        struct device_attribute *attr, char *buf)
 521{
 522        struct ctlr_info *h;
 523        struct Scsi_Host *shost = class_to_shost(dev);
 524
 525        h = shost_to_hba(shost);
 526        return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 527                (h->acciopath_status == 1) ?  "enabled" : "disabled");
 528}
 529
 530/* List of controllers which cannot be hard reset on kexec with reset_devices */
 531static u32 unresettable_controller[] = {
 532        0x324a103C, /* Smart Array P712m */
 533        0x324b103C, /* Smart Array P711m */
 534        0x3223103C, /* Smart Array P800 */
 535        0x3234103C, /* Smart Array P400 */
 536        0x3235103C, /* Smart Array P400i */
 537        0x3211103C, /* Smart Array E200i */
 538        0x3212103C, /* Smart Array E200 */
 539        0x3213103C, /* Smart Array E200i */
 540        0x3214103C, /* Smart Array E200i */
 541        0x3215103C, /* Smart Array E200i */
 542        0x3237103C, /* Smart Array E500 */
 543        0x323D103C, /* Smart Array P700m */
 544        0x40800E11, /* Smart Array 5i */
 545        0x409C0E11, /* Smart Array 6400 */
 546        0x409D0E11, /* Smart Array 6400 EM */
 547        0x40700E11, /* Smart Array 5300 */
 548        0x40820E11, /* Smart Array 532 */
 549        0x40830E11, /* Smart Array 5312 */
 550        0x409A0E11, /* Smart Array 641 */
 551        0x409B0E11, /* Smart Array 642 */
 552        0x40910E11, /* Smart Array 6i */
 553};
 554
 555/* List of controllers which cannot even be soft reset */
 556static u32 soft_unresettable_controller[] = {
 557        0x40800E11, /* Smart Array 5i */
 558        0x40700E11, /* Smart Array 5300 */
 559        0x40820E11, /* Smart Array 532 */
 560        0x40830E11, /* Smart Array 5312 */
 561        0x409A0E11, /* Smart Array 641 */
 562        0x409B0E11, /* Smart Array 642 */
 563        0x40910E11, /* Smart Array 6i */
 564        /* Exclude 640x boards.  These are two pci devices in one slot
 565         * which share a battery backed cache module.  One controls the
 566         * cache, the other accesses the cache through the one that controls
 567         * it.  If we reset the one controlling the cache, the other will
 568         * likely not be happy.  Just forbid resetting this conjoined mess.
 569         * The 640x isn't really supported by hpsa anyway.
 570         */
 571        0x409C0E11, /* Smart Array 6400 */
 572        0x409D0E11, /* Smart Array 6400 EM */
 573};
 574
 575static u32 needs_abort_tags_swizzled[] = {
 576        0x323D103C, /* Smart Array P700m */
 577        0x324a103C, /* Smart Array P712m */
 578        0x324b103C, /* SmartArray P711m */
 579};
 580
 581static int board_id_in_array(u32 a[], int nelems, u32 board_id)
 582{
 583        int i;
 584
 585        for (i = 0; i < nelems; i++)
 586                if (a[i] == board_id)
 587                        return 1;
 588        return 0;
 589}
 590
 591static int ctlr_is_hard_resettable(u32 board_id)
 592{
 593        return !board_id_in_array(unresettable_controller,
 594                        ARRAY_SIZE(unresettable_controller), board_id);
 595}
 596
 597static int ctlr_is_soft_resettable(u32 board_id)
 598{
 599        return !board_id_in_array(soft_unresettable_controller,
 600                        ARRAY_SIZE(soft_unresettable_controller), board_id);
 601}
 602
 603static int ctlr_is_resettable(u32 board_id)
 604{
 605        return ctlr_is_hard_resettable(board_id) ||
 606                ctlr_is_soft_resettable(board_id);
 607}
 608
 609static int ctlr_needs_abort_tags_swizzled(u32 board_id)
 610{
 611        return board_id_in_array(needs_abort_tags_swizzled,
 612                        ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
 613}
 614
 615static ssize_t host_show_resettable(struct device *dev,
 616        struct device_attribute *attr, char *buf)
 617{
 618        struct ctlr_info *h;
 619        struct Scsi_Host *shost = class_to_shost(dev);
 620
 621        h = shost_to_hba(shost);
 622        return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 623}
 624
 625static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 626{
 627        return (scsi3addr[3] & 0xC0) == 0x40;
 628}
 629
 630static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
 631        "1(+0)ADM", "UNKNOWN", "PHYS DRV"
 632};
 633#define HPSA_RAID_0     0
 634#define HPSA_RAID_4     1
 635#define HPSA_RAID_1     2       /* also used for RAID 10 */
 636#define HPSA_RAID_5     3       /* also used for RAID 50 */
 637#define HPSA_RAID_51    4
 638#define HPSA_RAID_6     5       /* also used for RAID 60 */
 639#define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
 640#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
 641#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
 642
 643static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
 644{
 645        return !device->physical_device;
 646}
 647
 648static ssize_t raid_level_show(struct device *dev,
 649             struct device_attribute *attr, char *buf)
 650{
 651        ssize_t l = 0;
 652        unsigned char rlevel;
 653        struct ctlr_info *h;
 654        struct scsi_device *sdev;
 655        struct hpsa_scsi_dev_t *hdev;
 656        unsigned long flags;
 657
 658        sdev = to_scsi_device(dev);
 659        h = sdev_to_hba(sdev);
 660        spin_lock_irqsave(&h->lock, flags);
 661        hdev = sdev->hostdata;
 662        if (!hdev) {
 663                spin_unlock_irqrestore(&h->lock, flags);
 664                return -ENODEV;
 665        }
 666
 667        /* Is this even a logical drive? */
 668        if (!is_logical_device(hdev)) {
 669                spin_unlock_irqrestore(&h->lock, flags);
 670                l = snprintf(buf, PAGE_SIZE, "N/A\n");
 671                return l;
 672        }
 673
 674        rlevel = hdev->raid_level;
 675        spin_unlock_irqrestore(&h->lock, flags);
 676        if (rlevel > RAID_UNKNOWN)
 677                rlevel = RAID_UNKNOWN;
 678        l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 679        return l;
 680}
 681
 682static ssize_t lunid_show(struct device *dev,
 683             struct device_attribute *attr, char *buf)
 684{
 685        struct ctlr_info *h;
 686        struct scsi_device *sdev;
 687        struct hpsa_scsi_dev_t *hdev;
 688        unsigned long flags;
 689        unsigned char lunid[8];
 690
 691        sdev = to_scsi_device(dev);
 692        h = sdev_to_hba(sdev);
 693        spin_lock_irqsave(&h->lock, flags);
 694        hdev = sdev->hostdata;
 695        if (!hdev) {
 696                spin_unlock_irqrestore(&h->lock, flags);
 697                return -ENODEV;
 698        }
 699        memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 700        spin_unlock_irqrestore(&h->lock, flags);
 701        return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
 702                lunid[0], lunid[1], lunid[2], lunid[3],
 703                lunid[4], lunid[5], lunid[6], lunid[7]);
 704}
 705
 706static ssize_t unique_id_show(struct device *dev,
 707             struct device_attribute *attr, char *buf)
 708{
 709        struct ctlr_info *h;
 710        struct scsi_device *sdev;
 711        struct hpsa_scsi_dev_t *hdev;
 712        unsigned long flags;
 713        unsigned char sn[16];
 714
 715        sdev = to_scsi_device(dev);
 716        h = sdev_to_hba(sdev);
 717        spin_lock_irqsave(&h->lock, flags);
 718        hdev = sdev->hostdata;
 719        if (!hdev) {
 720                spin_unlock_irqrestore(&h->lock, flags);
 721                return -ENODEV;
 722        }
 723        memcpy(sn, hdev->device_id, sizeof(sn));
 724        spin_unlock_irqrestore(&h->lock, flags);
 725        return snprintf(buf, 16 * 2 + 2,
 726                        "%02X%02X%02X%02X%02X%02X%02X%02X"
 727                        "%02X%02X%02X%02X%02X%02X%02X%02X\n",
 728                        sn[0], sn[1], sn[2], sn[3],
 729                        sn[4], sn[5], sn[6], sn[7],
 730                        sn[8], sn[9], sn[10], sn[11],
 731                        sn[12], sn[13], sn[14], sn[15]);
 732}
 733
 734static ssize_t sas_address_show(struct device *dev,
 735              struct device_attribute *attr, char *buf)
 736{
 737        struct ctlr_info *h;
 738        struct scsi_device *sdev;
 739        struct hpsa_scsi_dev_t *hdev;
 740        unsigned long flags;
 741        u64 sas_address;
 742
 743        sdev = to_scsi_device(dev);
 744        h = sdev_to_hba(sdev);
 745        spin_lock_irqsave(&h->lock, flags);
 746        hdev = sdev->hostdata;
 747        if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
 748                spin_unlock_irqrestore(&h->lock, flags);
 749                return -ENODEV;
 750        }
 751        sas_address = hdev->sas_address;
 752        spin_unlock_irqrestore(&h->lock, flags);
 753
 754        return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
 755}
 756
 757static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 758             struct device_attribute *attr, char *buf)
 759{
 760        struct ctlr_info *h;
 761        struct scsi_device *sdev;
 762        struct hpsa_scsi_dev_t *hdev;
 763        unsigned long flags;
 764        int offload_enabled;
 765
 766        sdev = to_scsi_device(dev);
 767        h = sdev_to_hba(sdev);
 768        spin_lock_irqsave(&h->lock, flags);
 769        hdev = sdev->hostdata;
 770        if (!hdev) {
 771                spin_unlock_irqrestore(&h->lock, flags);
 772                return -ENODEV;
 773        }
 774        offload_enabled = hdev->offload_enabled;
 775        spin_unlock_irqrestore(&h->lock, flags);
 776        return snprintf(buf, 20, "%d\n", offload_enabled);
 777}
 778
 779#define MAX_PATHS 8
 780static ssize_t path_info_show(struct device *dev,
 781             struct device_attribute *attr, char *buf)
 782{
 783        struct ctlr_info *h;
 784        struct scsi_device *sdev;
 785        struct hpsa_scsi_dev_t *hdev;
 786        unsigned long flags;
 787        int i;
 788        int output_len = 0;
 789        u8 box;
 790        u8 bay;
 791        u8 path_map_index = 0;
 792        char *active;
 793        unsigned char phys_connector[2];
 794
 795        sdev = to_scsi_device(dev);
 796        h = sdev_to_hba(sdev);
 797        spin_lock_irqsave(&h->devlock, flags);
 798        hdev = sdev->hostdata;
 799        if (!hdev) {
 800                spin_unlock_irqrestore(&h->devlock, flags);
 801                return -ENODEV;
 802        }
 803
 804        bay = hdev->bay;
 805        for (i = 0; i < MAX_PATHS; i++) {
 806                path_map_index = 1<<i;
 807                if (i == hdev->active_path_index)
 808                        active = "Active";
 809                else if (hdev->path_map & path_map_index)
 810                        active = "Inactive";
 811                else
 812                        continue;
 813
 814                output_len += scnprintf(buf + output_len,
 815                                PAGE_SIZE - output_len,
 816                                "[%d:%d:%d:%d] %20.20s ",
 817                                h->scsi_host->host_no,
 818                                hdev->bus, hdev->target, hdev->lun,
 819                                scsi_device_type(hdev->devtype));
 820
 821                if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
 822                        output_len += scnprintf(buf + output_len,
 823                                                PAGE_SIZE - output_len,
 824                                                "%s\n", active);
 825                        continue;
 826                }
 827
 828                box = hdev->box[i];
 829                memcpy(&phys_connector, &hdev->phys_connector[i],
 830                        sizeof(phys_connector));
 831                if (phys_connector[0] < '0')
 832                        phys_connector[0] = '0';
 833                if (phys_connector[1] < '0')
 834                        phys_connector[1] = '0';
 835                output_len += scnprintf(buf + output_len,
 836                                PAGE_SIZE - output_len,
 837                                "PORT: %.2s ",
 838                                phys_connector);
 839                if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
 840                        hdev->expose_device) {
 841                        if (box == 0 || box == 0xFF) {
 842                                output_len += scnprintf(buf + output_len,
 843                                        PAGE_SIZE - output_len,
 844                                        "BAY: %hhu %s\n",
 845                                        bay, active);
 846                        } else {
 847                                output_len += scnprintf(buf + output_len,
 848                                        PAGE_SIZE - output_len,
 849                                        "BOX: %hhu BAY: %hhu %s\n",
 850                                        box, bay, active);
 851                        }
 852                } else if (box != 0 && box != 0xFF) {
 853                        output_len += scnprintf(buf + output_len,
 854                                PAGE_SIZE - output_len, "BOX: %hhu %s\n",
 855                                box, active);
 856                } else
 857                        output_len += scnprintf(buf + output_len,
 858                                PAGE_SIZE - output_len, "%s\n", active);
 859        }
 860
 861        spin_unlock_irqrestore(&h->devlock, flags);
 862        return output_len;
 863}
 864
 865static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
 866static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
 867static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
 868static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 869static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
 870static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 871                        host_show_hp_ssd_smart_path_enabled, NULL);
 872static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
 873static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 874                host_show_hp_ssd_smart_path_status,
 875                host_store_hp_ssd_smart_path_status);
 876static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 877                        host_store_raid_offload_debug);
 878static DEVICE_ATTR(firmware_revision, S_IRUGO,
 879        host_show_firmware_revision, NULL);
 880static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 881        host_show_commands_outstanding, NULL);
 882static DEVICE_ATTR(transport_mode, S_IRUGO,
 883        host_show_transport_mode, NULL);
 884static DEVICE_ATTR(resettable, S_IRUGO,
 885        host_show_resettable, NULL);
 886static DEVICE_ATTR(lockup_detected, S_IRUGO,
 887        host_show_lockup_detected, NULL);
 888
 889static struct device_attribute *hpsa_sdev_attrs[] = {
 890        &dev_attr_raid_level,
 891        &dev_attr_lunid,
 892        &dev_attr_unique_id,
 893        &dev_attr_hp_ssd_smart_path_enabled,
 894        &dev_attr_path_info,
 895        &dev_attr_sas_address,
 896        NULL,
 897};
 898
 899static struct device_attribute *hpsa_shost_attrs[] = {
 900        &dev_attr_rescan,
 901        &dev_attr_firmware_revision,
 902        &dev_attr_commands_outstanding,
 903        &dev_attr_transport_mode,
 904        &dev_attr_resettable,
 905        &dev_attr_hp_ssd_smart_path_status,
 906        &dev_attr_raid_offload_debug,
 907        &dev_attr_lockup_detected,
 908        NULL,
 909};
 910
 911#define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
 912                HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
 913
 914static struct scsi_host_template hpsa_driver_template = {
 915        .module                 = THIS_MODULE,
 916        .name                   = HPSA,
 917        .proc_name              = HPSA,
 918        .queuecommand           = hpsa_scsi_queue_command,
 919        .scan_start             = hpsa_scan_start,
 920        .scan_finished          = hpsa_scan_finished,
 921        .change_queue_depth     = hpsa_change_queue_depth,
 922        .this_id                = -1,
 923        .use_clustering         = ENABLE_CLUSTERING,
 924        .eh_abort_handler       = hpsa_eh_abort_handler,
 925        .eh_device_reset_handler = hpsa_eh_device_reset_handler,
 926        .ioctl                  = hpsa_ioctl,
 927        .slave_alloc            = hpsa_slave_alloc,
 928        .slave_configure        = hpsa_slave_configure,
 929        .slave_destroy          = hpsa_slave_destroy,
 930#ifdef CONFIG_COMPAT
 931        .compat_ioctl           = hpsa_compat_ioctl,
 932#endif
 933        .sdev_attrs = hpsa_sdev_attrs,
 934        .shost_attrs = hpsa_shost_attrs,
 935        .max_sectors = 8192,
 936        .no_write_same = 1,
 937};
 938
 939static inline u32 next_command(struct ctlr_info *h, u8 q)
 940{
 941        u32 a;
 942        struct reply_queue_buffer *rq = &h->reply_queue[q];
 943
 944        if (h->transMethod & CFGTBL_Trans_io_accel1)
 945                return h->access.command_completed(h, q);
 946
 947        if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 948                return h->access.command_completed(h, q);
 949
 950        if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
 951                a = rq->head[rq->current_entry];
 952                rq->current_entry++;
 953                atomic_dec(&h->commands_outstanding);
 954        } else {
 955                a = FIFO_EMPTY;
 956        }
 957        /* Check for wraparound */
 958        if (rq->current_entry == h->max_commands) {
 959                rq->current_entry = 0;
 960                rq->wraparound ^= 1;
 961        }
 962        return a;
 963}
 964
 965/*
 966 * There are some special bits in the bus address of the
 967 * command that we have to set for the controller to know
 968 * how to process the command:
 969 *
 970 * Normal performant mode:
 971 * bit 0: 1 means performant mode, 0 means simple mode.
 972 * bits 1-3 = block fetch table entry
 973 * bits 4-6 = command type (== 0)
 974 *
 975 * ioaccel1 mode:
 976 * bit 0 = "performant mode" bit.
 977 * bits 1-3 = block fetch table entry
 978 * bits 4-6 = command type (== 110)
 979 * (command type is needed because ioaccel1 mode
 980 * commands are submitted through the same register as normal
 981 * mode commands, so this is how the controller knows whether
 982 * the command is normal mode or ioaccel1 mode.)
 983 *
 984 * ioaccel2 mode:
 985 * bit 0 = "performant mode" bit.
 986 * bits 1-4 = block fetch table entry (note extra bit)
 987 * bits 4-6 = not needed, because ioaccel2 mode has
 988 * a separate special register for submitting commands.
 989 */
 990
 991/*
 992 * set_performant_mode: Modify the tag for cciss performant
 993 * set bit 0 for pull model, bits 3-1 for block fetch
 994 * register number
 995 */
 996#define DEFAULT_REPLY_QUEUE (-1)
 997static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
 998                                        int reply_queue)
 999{
1000        if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1001                c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1002                if (unlikely(!h->msix_vector))
1003                        return;
1004                if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1005                        c->Header.ReplyQueue =
1006                                raw_smp_processor_id() % h->nreply_queues;
1007                else
1008                        c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1009        }
1010}
1011
1012static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1013                                                struct CommandList *c,
1014                                                int reply_queue)
1015{
1016        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1017
1018        /*
1019         * Tell the controller to post the reply to the queue for this
1020         * processor.  This seems to give the best I/O throughput.
1021         */
1022        if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1023                cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1024        else
1025                cp->ReplyQueue = reply_queue % h->nreply_queues;
1026        /*
1027         * Set the bits in the address sent down to include:
1028         *  - performant mode bit (bit 0)
1029         *  - pull count (bits 1-3)
1030         *  - command type (bits 4-6)
1031         */
1032        c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1033                                        IOACCEL1_BUSADDR_CMDTYPE;
1034}
1035
1036static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1037                                                struct CommandList *c,
1038                                                int reply_queue)
1039{
1040        struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1041                &h->ioaccel2_cmd_pool[c->cmdindex];
1042
1043        /* Tell the controller to post the reply to the queue for this
1044         * processor.  This seems to give the best I/O throughput.
1045         */
1046        if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1047                cp->reply_queue = smp_processor_id() % h->nreply_queues;
1048        else
1049                cp->reply_queue = reply_queue % h->nreply_queues;
1050        /* Set the bits in the address sent down to include:
1051         *  - performant mode bit not used in ioaccel mode 2
1052         *  - pull count (bits 0-3)
1053         *  - command type isn't needed for ioaccel2
1054         */
1055        c->busaddr |= h->ioaccel2_blockFetchTable[0];
1056}
1057
1058static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1059                                                struct CommandList *c,
1060                                                int reply_queue)
1061{
1062        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1063
1064        /*
1065         * Tell the controller to post the reply to the queue for this
1066         * processor.  This seems to give the best I/O throughput.
1067         */
1068        if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1069                cp->reply_queue = smp_processor_id() % h->nreply_queues;
1070        else
1071                cp->reply_queue = reply_queue % h->nreply_queues;
1072        /*
1073         * Set the bits in the address sent down to include:
1074         *  - performant mode bit not used in ioaccel mode 2
1075         *  - pull count (bits 0-3)
1076         *  - command type isn't needed for ioaccel2
1077         */
1078        c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1079}
1080
1081static int is_firmware_flash_cmd(u8 *cdb)
1082{
1083        return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1084}
1085
1086/*
1087 * During firmware flash, the heartbeat register may not update as frequently
1088 * as it should.  So we dial down lockup detection during firmware flash. and
1089 * dial it back up when firmware flash completes.
1090 */
1091#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1092#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1093static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1094                struct CommandList *c)
1095{
1096        if (!is_firmware_flash_cmd(c->Request.CDB))
1097                return;
1098        atomic_inc(&h->firmware_flash_in_progress);
1099        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1100}
1101
1102static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1103                struct CommandList *c)
1104{
1105        if (is_firmware_flash_cmd(c->Request.CDB) &&
1106                atomic_dec_and_test(&h->firmware_flash_in_progress))
1107                h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1108}
1109
1110static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1111        struct CommandList *c, int reply_queue)
1112{
1113        dial_down_lockup_detection_during_fw_flash(h, c);
1114        atomic_inc(&h->commands_outstanding);
1115        switch (c->cmd_type) {
1116        case CMD_IOACCEL1:
1117                set_ioaccel1_performant_mode(h, c, reply_queue);
1118                writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1119                break;
1120        case CMD_IOACCEL2:
1121                set_ioaccel2_performant_mode(h, c, reply_queue);
1122                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1123                break;
1124        case IOACCEL2_TMF:
1125                set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1126                writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1127                break;
1128        default:
1129                set_performant_mode(h, c, reply_queue);
1130                h->access.submit_command(h, c);
1131        }
1132}
1133
1134static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1135{
1136        if (unlikely(hpsa_is_pending_event(c)))
1137                return finish_cmd(c);
1138
1139        __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1140}
1141
1142static inline int is_hba_lunid(unsigned char scsi3addr[])
1143{
1144        return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1145}
1146
1147static inline int is_scsi_rev_5(struct ctlr_info *h)
1148{
1149        if (!h->hba_inquiry_data)
1150                return 0;
1151        if ((h->hba_inquiry_data[2] & 0x07) == 5)
1152                return 1;
1153        return 0;
1154}
1155
1156static int hpsa_find_target_lun(struct ctlr_info *h,
1157        unsigned char scsi3addr[], int bus, int *target, int *lun)
1158{
1159        /* finds an unused bus, target, lun for a new physical device
1160         * assumes h->devlock is held
1161         */
1162        int i, found = 0;
1163        DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1164
1165        bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1166
1167        for (i = 0; i < h->ndevices; i++) {
1168                if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1169                        __set_bit(h->dev[i]->target, lun_taken);
1170        }
1171
1172        i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1173        if (i < HPSA_MAX_DEVICES) {
1174                /* *bus = 1; */
1175                *target = i;
1176                *lun = 0;
1177                found = 1;
1178        }
1179        return !found;
1180}
1181
1182static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1183        struct hpsa_scsi_dev_t *dev, char *description)
1184{
1185#define LABEL_SIZE 25
1186        char label[LABEL_SIZE];
1187
1188        if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1189                return;
1190
1191        switch (dev->devtype) {
1192        case TYPE_RAID:
1193                snprintf(label, LABEL_SIZE, "controller");
1194                break;
1195        case TYPE_ENCLOSURE:
1196                snprintf(label, LABEL_SIZE, "enclosure");
1197                break;
1198        case TYPE_DISK:
1199        case TYPE_ZBC:
1200                if (dev->external)
1201                        snprintf(label, LABEL_SIZE, "external");
1202                else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1203                        snprintf(label, LABEL_SIZE, "%s",
1204                                raid_label[PHYSICAL_DRIVE]);
1205                else
1206                        snprintf(label, LABEL_SIZE, "RAID-%s",
1207                                dev->raid_level > RAID_UNKNOWN ? "?" :
1208                                raid_label[dev->raid_level]);
1209                break;
1210        case TYPE_ROM:
1211                snprintf(label, LABEL_SIZE, "rom");
1212                break;
1213        case TYPE_TAPE:
1214                snprintf(label, LABEL_SIZE, "tape");
1215                break;
1216        case TYPE_MEDIUM_CHANGER:
1217                snprintf(label, LABEL_SIZE, "changer");
1218                break;
1219        default:
1220                snprintf(label, LABEL_SIZE, "UNKNOWN");
1221                break;
1222        }
1223
1224        dev_printk(level, &h->pdev->dev,
1225                        "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1226                        h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1227                        description,
1228                        scsi_device_type(dev->devtype),
1229                        dev->vendor,
1230                        dev->model,
1231                        label,
1232                        dev->offload_config ? '+' : '-',
1233                        dev->offload_enabled ? '+' : '-',
1234                        dev->expose_device);
1235}
1236
1237/* Add an entry into h->dev[] array. */
1238static int hpsa_scsi_add_entry(struct ctlr_info *h,
1239                struct hpsa_scsi_dev_t *device,
1240                struct hpsa_scsi_dev_t *added[], int *nadded)
1241{
1242        /* assumes h->devlock is held */
1243        int n = h->ndevices;
1244        int i;
1245        unsigned char addr1[8], addr2[8];
1246        struct hpsa_scsi_dev_t *sd;
1247
1248        if (n >= HPSA_MAX_DEVICES) {
1249                dev_err(&h->pdev->dev, "too many devices, some will be "
1250                        "inaccessible.\n");
1251                return -1;
1252        }
1253
1254        /* physical devices do not have lun or target assigned until now. */
1255        if (device->lun != -1)
1256                /* Logical device, lun is already assigned. */
1257                goto lun_assigned;
1258
1259        /* If this device a non-zero lun of a multi-lun device
1260         * byte 4 of the 8-byte LUN addr will contain the logical
1261         * unit no, zero otherwise.
1262         */
1263        if (device->scsi3addr[4] == 0) {
1264                /* This is not a non-zero lun of a multi-lun device */
1265                if (hpsa_find_target_lun(h, device->scsi3addr,
1266                        device->bus, &device->target, &device->lun) != 0)
1267                        return -1;
1268                goto lun_assigned;
1269        }
1270
1271        /* This is a non-zero lun of a multi-lun device.
1272         * Search through our list and find the device which
1273         * has the same 8 byte LUN address, excepting byte 4 and 5.
1274         * Assign the same bus and target for this new LUN.
1275         * Use the logical unit number from the firmware.
1276         */
1277        memcpy(addr1, device->scsi3addr, 8);
1278        addr1[4] = 0;
1279        addr1[5] = 0;
1280        for (i = 0; i < n; i++) {
1281                sd = h->dev[i];
1282                memcpy(addr2, sd->scsi3addr, 8);
1283                addr2[4] = 0;
1284                addr2[5] = 0;
1285                /* differ only in byte 4 and 5? */
1286                if (memcmp(addr1, addr2, 8) == 0) {
1287                        device->bus = sd->bus;
1288                        device->target = sd->target;
1289                        device->lun = device->scsi3addr[4];
1290                        break;
1291                }
1292        }
1293        if (device->lun == -1) {
1294                dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1295                        " suspect firmware bug or unsupported hardware "
1296                        "configuration.\n");
1297                        return -1;
1298        }
1299
1300lun_assigned:
1301
1302        h->dev[n] = device;
1303        h->ndevices++;
1304        added[*nadded] = device;
1305        (*nadded)++;
1306        hpsa_show_dev_msg(KERN_INFO, h, device,
1307                device->expose_device ? "added" : "masked");
1308        device->offload_to_be_enabled = device->offload_enabled;
1309        device->offload_enabled = 0;
1310        return 0;
1311}
1312
1313/* Update an entry in h->dev[] array. */
1314static void hpsa_scsi_update_entry(struct ctlr_info *h,
1315        int entry, struct hpsa_scsi_dev_t *new_entry)
1316{
1317        int offload_enabled;
1318        /* assumes h->devlock is held */
1319        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1320
1321        /* Raid level changed. */
1322        h->dev[entry]->raid_level = new_entry->raid_level;
1323
1324        /* Raid offload parameters changed.  Careful about the ordering. */
1325        if (new_entry->offload_config && new_entry->offload_enabled) {
1326                /*
1327                 * if drive is newly offload_enabled, we want to copy the
1328                 * raid map data first.  If previously offload_enabled and
1329                 * offload_config were set, raid map data had better be
1330                 * the same as it was before.  if raid map data is changed
1331                 * then it had better be the case that
1332                 * h->dev[entry]->offload_enabled is currently 0.
1333                 */
1334                h->dev[entry]->raid_map = new_entry->raid_map;
1335                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1336        }
1337        if (new_entry->hba_ioaccel_enabled) {
1338                h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1339                wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1340        }
1341        h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1342        h->dev[entry]->offload_config = new_entry->offload_config;
1343        h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1344        h->dev[entry]->queue_depth = new_entry->queue_depth;
1345
1346        /*
1347         * We can turn off ioaccel offload now, but need to delay turning
1348         * it on until we can update h->dev[entry]->phys_disk[], but we
1349         * can't do that until all the devices are updated.
1350         */
1351        h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1352        if (!new_entry->offload_enabled)
1353                h->dev[entry]->offload_enabled = 0;
1354
1355        offload_enabled = h->dev[entry]->offload_enabled;
1356        h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1357        hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1358        h->dev[entry]->offload_enabled = offload_enabled;
1359}
1360
1361/* Replace an entry from h->dev[] array. */
1362static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1363        int entry, struct hpsa_scsi_dev_t *new_entry,
1364        struct hpsa_scsi_dev_t *added[], int *nadded,
1365        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1366{
1367        /* assumes h->devlock is held */
1368        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1369        removed[*nremoved] = h->dev[entry];
1370        (*nremoved)++;
1371
1372        /*
1373         * New physical devices won't have target/lun assigned yet
1374         * so we need to preserve the values in the slot we are replacing.
1375         */
1376        if (new_entry->target == -1) {
1377                new_entry->target = h->dev[entry]->target;
1378                new_entry->lun = h->dev[entry]->lun;
1379        }
1380
1381        h->dev[entry] = new_entry;
1382        added[*nadded] = new_entry;
1383        (*nadded)++;
1384        hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1385        new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1386        new_entry->offload_enabled = 0;
1387}
1388
1389/* Remove an entry from h->dev[] array. */
1390static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1391        struct hpsa_scsi_dev_t *removed[], int *nremoved)
1392{
1393        /* assumes h->devlock is held */
1394        int i;
1395        struct hpsa_scsi_dev_t *sd;
1396
1397        BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1398
1399        sd = h->dev[entry];
1400        removed[*nremoved] = h->dev[entry];
1401        (*nremoved)++;
1402
1403        for (i = entry; i < h->ndevices-1; i++)
1404                h->dev[i] = h->dev[i+1];
1405        h->ndevices--;
1406        hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1407}
1408
1409#define SCSI3ADDR_EQ(a, b) ( \
1410        (a)[7] == (b)[7] && \
1411        (a)[6] == (b)[6] && \
1412        (a)[5] == (b)[5] && \
1413        (a)[4] == (b)[4] && \
1414        (a)[3] == (b)[3] && \
1415        (a)[2] == (b)[2] && \
1416        (a)[1] == (b)[1] && \
1417        (a)[0] == (b)[0])
1418
1419static void fixup_botched_add(struct ctlr_info *h,
1420        struct hpsa_scsi_dev_t *added)
1421{
1422        /* called when scsi_add_device fails in order to re-adjust
1423         * h->dev[] to match the mid layer's view.
1424         */
1425        unsigned long flags;
1426        int i, j;
1427
1428        spin_lock_irqsave(&h->lock, flags);
1429        for (i = 0; i < h->ndevices; i++) {
1430                if (h->dev[i] == added) {
1431                        for (j = i; j < h->ndevices-1; j++)
1432                                h->dev[j] = h->dev[j+1];
1433                        h->ndevices--;
1434                        break;
1435                }
1436        }
1437        spin_unlock_irqrestore(&h->lock, flags);
1438        kfree(added);
1439}
1440
1441static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1442        struct hpsa_scsi_dev_t *dev2)
1443{
1444        /* we compare everything except lun and target as these
1445         * are not yet assigned.  Compare parts likely
1446         * to differ first
1447         */
1448        if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1449                sizeof(dev1->scsi3addr)) != 0)
1450                return 0;
1451        if (memcmp(dev1->device_id, dev2->device_id,
1452                sizeof(dev1->device_id)) != 0)
1453                return 0;
1454        if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1455                return 0;
1456        if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1457                return 0;
1458        if (dev1->devtype != dev2->devtype)
1459                return 0;
1460        if (dev1->bus != dev2->bus)
1461                return 0;
1462        return 1;
1463}
1464
1465static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1466        struct hpsa_scsi_dev_t *dev2)
1467{
1468        /* Device attributes that can change, but don't mean
1469         * that the device is a different device, nor that the OS
1470         * needs to be told anything about the change.
1471         */
1472        if (dev1->raid_level != dev2->raid_level)
1473                return 1;
1474        if (dev1->offload_config != dev2->offload_config)
1475                return 1;
1476        if (dev1->offload_enabled != dev2->offload_enabled)
1477                return 1;
1478        if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1479                if (dev1->queue_depth != dev2->queue_depth)
1480                        return 1;
1481        return 0;
1482}
1483
1484/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1485 * and return needle location in *index.  If scsi3addr matches, but not
1486 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1487 * location in *index.
1488 * In the case of a minor device attribute change, such as RAID level, just
1489 * return DEVICE_UPDATED, along with the updated device's location in index.
1490 * If needle not found, return DEVICE_NOT_FOUND.
1491 */
1492static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1493        struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1494        int *index)
1495{
1496        int i;
1497#define DEVICE_NOT_FOUND 0
1498#define DEVICE_CHANGED 1
1499#define DEVICE_SAME 2
1500#define DEVICE_UPDATED 3
1501        if (needle == NULL)
1502                return DEVICE_NOT_FOUND;
1503
1504        for (i = 0; i < haystack_size; i++) {
1505                if (haystack[i] == NULL) /* previously removed. */
1506                        continue;
1507                if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1508                        *index = i;
1509                        if (device_is_the_same(needle, haystack[i])) {
1510                                if (device_updated(needle, haystack[i]))
1511                                        return DEVICE_UPDATED;
1512                                return DEVICE_SAME;
1513                        } else {
1514                                /* Keep offline devices offline */
1515                                if (needle->volume_offline)
1516                                        return DEVICE_NOT_FOUND;
1517                                return DEVICE_CHANGED;
1518                        }
1519                }
1520        }
1521        *index = -1;
1522        return DEVICE_NOT_FOUND;
1523}
1524
1525static void hpsa_monitor_offline_device(struct ctlr_info *h,
1526                                        unsigned char scsi3addr[])
1527{
1528        struct offline_device_entry *device;
1529        unsigned long flags;
1530
1531        /* Check to see if device is already on the list */
1532        spin_lock_irqsave(&h->offline_device_lock, flags);
1533        list_for_each_entry(device, &h->offline_device_list, offline_list) {
1534                if (memcmp(device->scsi3addr, scsi3addr,
1535                        sizeof(device->scsi3addr)) == 0) {
1536                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1537                        return;
1538                }
1539        }
1540        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1541
1542        /* Device is not on the list, add it. */
1543        device = kmalloc(sizeof(*device), GFP_KERNEL);
1544        if (!device) {
1545                dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1546                return;
1547        }
1548        memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1549        spin_lock_irqsave(&h->offline_device_lock, flags);
1550        list_add_tail(&device->offline_list, &h->offline_device_list);
1551        spin_unlock_irqrestore(&h->offline_device_lock, flags);
1552}
1553
1554/* Print a message explaining various offline volume states */
1555static void hpsa_show_volume_status(struct ctlr_info *h,
1556        struct hpsa_scsi_dev_t *sd)
1557{
1558        if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1559                dev_info(&h->pdev->dev,
1560                        "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1561                        h->scsi_host->host_no,
1562                        sd->bus, sd->target, sd->lun);
1563        switch (sd->volume_offline) {
1564        case HPSA_LV_OK:
1565                break;
1566        case HPSA_LV_UNDERGOING_ERASE:
1567                dev_info(&h->pdev->dev,
1568                        "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1569                        h->scsi_host->host_no,
1570                        sd->bus, sd->target, sd->lun);
1571                break;
1572        case HPSA_LV_NOT_AVAILABLE:
1573                dev_info(&h->pdev->dev,
1574                        "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1575                        h->scsi_host->host_no,
1576                        sd->bus, sd->target, sd->lun);
1577                break;
1578        case HPSA_LV_UNDERGOING_RPI:
1579                dev_info(&h->pdev->dev,
1580                        "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1581                        h->scsi_host->host_no,
1582                        sd->bus, sd->target, sd->lun);
1583                break;
1584        case HPSA_LV_PENDING_RPI:
1585                dev_info(&h->pdev->dev,
1586                        "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1587                        h->scsi_host->host_no,
1588                        sd->bus, sd->target, sd->lun);
1589                break;
1590        case HPSA_LV_ENCRYPTED_NO_KEY:
1591                dev_info(&h->pdev->dev,
1592                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1593                        h->scsi_host->host_no,
1594                        sd->bus, sd->target, sd->lun);
1595                break;
1596        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1597                dev_info(&h->pdev->dev,
1598                        "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1599                        h->scsi_host->host_no,
1600                        sd->bus, sd->target, sd->lun);
1601                break;
1602        case HPSA_LV_UNDERGOING_ENCRYPTION:
1603                dev_info(&h->pdev->dev,
1604                        "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1605                        h->scsi_host->host_no,
1606                        sd->bus, sd->target, sd->lun);
1607                break;
1608        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1609                dev_info(&h->pdev->dev,
1610                        "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1611                        h->scsi_host->host_no,
1612                        sd->bus, sd->target, sd->lun);
1613                break;
1614        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1615                dev_info(&h->pdev->dev,
1616                        "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1617                        h->scsi_host->host_no,
1618                        sd->bus, sd->target, sd->lun);
1619                break;
1620        case HPSA_LV_PENDING_ENCRYPTION:
1621                dev_info(&h->pdev->dev,
1622                        "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1623                        h->scsi_host->host_no,
1624                        sd->bus, sd->target, sd->lun);
1625                break;
1626        case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1627                dev_info(&h->pdev->dev,
1628                        "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1629                        h->scsi_host->host_no,
1630                        sd->bus, sd->target, sd->lun);
1631                break;
1632        }
1633}
1634
1635/*
1636 * Figure the list of physical drive pointers for a logical drive with
1637 * raid offload configured.
1638 */
1639static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1640                                struct hpsa_scsi_dev_t *dev[], int ndevices,
1641                                struct hpsa_scsi_dev_t *logical_drive)
1642{
1643        struct raid_map_data *map = &logical_drive->raid_map;
1644        struct raid_map_disk_data *dd = &map->data[0];
1645        int i, j;
1646        int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1647                                le16_to_cpu(map->metadata_disks_per_row);
1648        int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1649                                le16_to_cpu(map->layout_map_count) *
1650                                total_disks_per_row;
1651        int nphys_disk = le16_to_cpu(map->layout_map_count) *
1652                                total_disks_per_row;
1653        int qdepth;
1654
1655        if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1656                nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1657
1658        logical_drive->nphysical_disks = nraid_map_entries;
1659
1660        qdepth = 0;
1661        for (i = 0; i < nraid_map_entries; i++) {
1662                logical_drive->phys_disk[i] = NULL;
1663                if (!logical_drive->offload_config)
1664                        continue;
1665                for (j = 0; j < ndevices; j++) {
1666                        if (dev[j] == NULL)
1667                                continue;
1668                        if (dev[j]->devtype != TYPE_DISK &&
1669                            dev[j]->devtype != TYPE_ZBC)
1670                                continue;
1671                        if (is_logical_device(dev[j]))
1672                                continue;
1673                        if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1674                                continue;
1675
1676                        logical_drive->phys_disk[i] = dev[j];
1677                        if (i < nphys_disk)
1678                                qdepth = min(h->nr_cmds, qdepth +
1679                                    logical_drive->phys_disk[i]->queue_depth);
1680                        break;
1681                }
1682
1683                /*
1684                 * This can happen if a physical drive is removed and
1685                 * the logical drive is degraded.  In that case, the RAID
1686                 * map data will refer to a physical disk which isn't actually
1687                 * present.  And in that case offload_enabled should already
1688                 * be 0, but we'll turn it off here just in case
1689                 */
1690                if (!logical_drive->phys_disk[i]) {
1691                        logical_drive->offload_enabled = 0;
1692                        logical_drive->offload_to_be_enabled = 0;
1693                        logical_drive->queue_depth = 8;
1694                }
1695        }
1696        if (nraid_map_entries)
1697                /*
1698                 * This is correct for reads, too high for full stripe writes,
1699                 * way too high for partial stripe writes
1700                 */
1701                logical_drive->queue_depth = qdepth;
1702        else
1703                logical_drive->queue_depth = h->nr_cmds;
1704}
1705
1706static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1707                                struct hpsa_scsi_dev_t *dev[], int ndevices)
1708{
1709        int i;
1710
1711        for (i = 0; i < ndevices; i++) {
1712                if (dev[i] == NULL)
1713                        continue;
1714                if (dev[i]->devtype != TYPE_DISK &&
1715                    dev[i]->devtype != TYPE_ZBC)
1716                        continue;
1717                if (!is_logical_device(dev[i]))
1718                        continue;
1719
1720                /*
1721                 * If offload is currently enabled, the RAID map and
1722                 * phys_disk[] assignment *better* not be changing
1723                 * and since it isn't changing, we do not need to
1724                 * update it.
1725                 */
1726                if (dev[i]->offload_enabled)
1727                        continue;
1728
1729                hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1730        }
1731}
1732
1733static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1734{
1735        int rc = 0;
1736
1737        if (!h->scsi_host)
1738                return 1;
1739
1740        if (is_logical_device(device)) /* RAID */
1741                rc = scsi_add_device(h->scsi_host, device->bus,
1742                                        device->target, device->lun);
1743        else /* HBA */
1744                rc = hpsa_add_sas_device(h->sas_host, device);
1745
1746        return rc;
1747}
1748
1749static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1750                                                struct hpsa_scsi_dev_t *dev)
1751{
1752        int i;
1753        int count = 0;
1754
1755        for (i = 0; i < h->nr_cmds; i++) {
1756                struct CommandList *c = h->cmd_pool + i;
1757                int refcount = atomic_inc_return(&c->refcount);
1758
1759                if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1760                                dev->scsi3addr)) {
1761                        unsigned long flags;
1762
1763                        spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1764                        if (!hpsa_is_cmd_idle(c))
1765                                ++count;
1766                        spin_unlock_irqrestore(&h->lock, flags);
1767                }
1768
1769                cmd_free(h, c);
1770        }
1771
1772        return count;
1773}
1774
1775static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1776                                                struct hpsa_scsi_dev_t *device)
1777{
1778        int cmds = 0;
1779        int waits = 0;
1780
1781        while (1) {
1782                cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1783                if (cmds == 0)
1784                        break;
1785                if (++waits > 20)
1786                        break;
1787                dev_warn(&h->pdev->dev,
1788                        "%s: removing device with %d outstanding commands!\n",
1789                        __func__, cmds);
1790                msleep(1000);
1791        }
1792}
1793
1794static void hpsa_remove_device(struct ctlr_info *h,
1795                        struct hpsa_scsi_dev_t *device)
1796{
1797        struct scsi_device *sdev = NULL;
1798
1799        if (!h->scsi_host)
1800                return;
1801
1802        if (is_logical_device(device)) { /* RAID */
1803                sdev = scsi_device_lookup(h->scsi_host, device->bus,
1804                                                device->target, device->lun);
1805                if (sdev) {
1806                        scsi_remove_device(sdev);
1807                        scsi_device_put(sdev);
1808                } else {
1809                        /*
1810                         * We don't expect to get here.  Future commands
1811                         * to this device will get a selection timeout as
1812                         * if the device were gone.
1813                         */
1814                        hpsa_show_dev_msg(KERN_WARNING, h, device,
1815                                        "didn't find device for removal.");
1816                }
1817        } else { /* HBA */
1818
1819                device->removed = 1;
1820                hpsa_wait_for_outstanding_commands_for_dev(h, device);
1821
1822                hpsa_remove_sas_device(device);
1823        }
1824}
1825
1826static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1827        struct hpsa_scsi_dev_t *sd[], int nsds)
1828{
1829        /* sd contains scsi3 addresses and devtypes, and inquiry
1830         * data.  This function takes what's in sd to be the current
1831         * reality and updates h->dev[] to reflect that reality.
1832         */
1833        int i, entry, device_change, changes = 0;
1834        struct hpsa_scsi_dev_t *csd;
1835        unsigned long flags;
1836        struct hpsa_scsi_dev_t **added, **removed;
1837        int nadded, nremoved;
1838
1839        /*
1840         * A reset can cause a device status to change
1841         * re-schedule the scan to see what happened.
1842         */
1843        if (h->reset_in_progress) {
1844                h->drv_req_rescan = 1;
1845                return;
1846        }
1847
1848        added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1849        removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1850
1851        if (!added || !removed) {
1852                dev_warn(&h->pdev->dev, "out of memory in "
1853                        "adjust_hpsa_scsi_table\n");
1854                goto free_and_out;
1855        }
1856
1857        spin_lock_irqsave(&h->devlock, flags);
1858
1859        /* find any devices in h->dev[] that are not in
1860         * sd[] and remove them from h->dev[], and for any
1861         * devices which have changed, remove the old device
1862         * info and add the new device info.
1863         * If minor device attributes change, just update
1864         * the existing device structure.
1865         */
1866        i = 0;
1867        nremoved = 0;
1868        nadded = 0;
1869        while (i < h->ndevices) {
1870                csd = h->dev[i];
1871                device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1872                if (device_change == DEVICE_NOT_FOUND) {
1873                        changes++;
1874                        hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1875                        continue; /* remove ^^^, hence i not incremented */
1876                } else if (device_change == DEVICE_CHANGED) {
1877                        changes++;
1878                        hpsa_scsi_replace_entry(h, i, sd[entry],
1879                                added, &nadded, removed, &nremoved);
1880                        /* Set it to NULL to prevent it from being freed
1881                         * at the bottom of hpsa_update_scsi_devices()
1882                         */
1883                        sd[entry] = NULL;
1884                } else if (device_change == DEVICE_UPDATED) {
1885                        hpsa_scsi_update_entry(h, i, sd[entry]);
1886                }
1887                i++;
1888        }
1889
1890        /* Now, make sure every device listed in sd[] is also
1891         * listed in h->dev[], adding them if they aren't found
1892         */
1893
1894        for (i = 0; i < nsds; i++) {
1895                if (!sd[i]) /* if already added above. */
1896                        continue;
1897
1898                /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1899                 * as the SCSI mid-layer does not handle such devices well.
1900                 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1901                 * at 160Hz, and prevents the system from coming up.
1902                 */
1903                if (sd[i]->volume_offline) {
1904                        hpsa_show_volume_status(h, sd[i]);
1905                        hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1906                        continue;
1907                }
1908
1909                device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1910                                        h->ndevices, &entry);
1911                if (device_change == DEVICE_NOT_FOUND) {
1912                        changes++;
1913                        if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1914                                break;
1915                        sd[i] = NULL; /* prevent from being freed later. */
1916                } else if (device_change == DEVICE_CHANGED) {
1917                        /* should never happen... */
1918                        changes++;
1919                        dev_warn(&h->pdev->dev,
1920                                "device unexpectedly changed.\n");
1921                        /* but if it does happen, we just ignore that device */
1922                }
1923        }
1924        hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1925
1926        /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1927         * any logical drives that need it enabled.
1928         */
1929        for (i = 0; i < h->ndevices; i++) {
1930                if (h->dev[i] == NULL)
1931                        continue;
1932                h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1933        }
1934
1935        spin_unlock_irqrestore(&h->devlock, flags);
1936
1937        /* Monitor devices which are in one of several NOT READY states to be
1938         * brought online later. This must be done without holding h->devlock,
1939         * so don't touch h->dev[]
1940         */
1941        for (i = 0; i < nsds; i++) {
1942                if (!sd[i]) /* if already added above. */
1943                        continue;
1944                if (sd[i]->volume_offline)
1945                        hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1946        }
1947
1948        /* Don't notify scsi mid layer of any changes the first time through
1949         * (or if there are no changes) scsi_scan_host will do it later the
1950         * first time through.
1951         */
1952        if (!changes)
1953                goto free_and_out;
1954
1955        /* Notify scsi mid layer of any removed devices */
1956        for (i = 0; i < nremoved; i++) {
1957                if (removed[i] == NULL)
1958                        continue;
1959                if (removed[i]->expose_device)
1960                        hpsa_remove_device(h, removed[i]);
1961                kfree(removed[i]);
1962                removed[i] = NULL;
1963        }
1964
1965        /* Notify scsi mid layer of any added devices */
1966        for (i = 0; i < nadded; i++) {
1967                int rc = 0;
1968
1969                if (added[i] == NULL)
1970                        continue;
1971                if (!(added[i]->expose_device))
1972                        continue;
1973                rc = hpsa_add_device(h, added[i]);
1974                if (!rc)
1975                        continue;
1976                dev_warn(&h->pdev->dev,
1977                        "addition failed %d, device not added.", rc);
1978                /* now we have to remove it from h->dev,
1979                 * since it didn't get added to scsi mid layer
1980                 */
1981                fixup_botched_add(h, added[i]);
1982                h->drv_req_rescan = 1;
1983        }
1984
1985free_and_out:
1986        kfree(added);
1987        kfree(removed);
1988}
1989
1990/*
1991 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1992 * Assume's h->devlock is held.
1993 */
1994static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1995        int bus, int target, int lun)
1996{
1997        int i;
1998        struct hpsa_scsi_dev_t *sd;
1999
2000        for (i = 0; i < h->ndevices; i++) {
2001                sd = h->dev[i];
2002                if (sd->bus == bus && sd->target == target && sd->lun == lun)
2003                        return sd;
2004        }
2005        return NULL;
2006}
2007
2008static int hpsa_slave_alloc(struct scsi_device *sdev)
2009{
2010        struct hpsa_scsi_dev_t *sd;
2011        unsigned long flags;
2012        struct ctlr_info *h;
2013
2014        h = sdev_to_hba(sdev);
2015        spin_lock_irqsave(&h->devlock, flags);
2016        if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2017                struct scsi_target *starget;
2018                struct sas_rphy *rphy;
2019
2020                starget = scsi_target(sdev);
2021                rphy = target_to_rphy(starget);
2022                sd = hpsa_find_device_by_sas_rphy(h, rphy);
2023                if (sd) {
2024                        sd->target = sdev_id(sdev);
2025                        sd->lun = sdev->lun;
2026                }
2027        } else
2028                sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2029                                        sdev_id(sdev), sdev->lun);
2030
2031        if (sd && sd->expose_device) {
2032                atomic_set(&sd->ioaccel_cmds_out, 0);
2033                sdev->hostdata = sd;
2034        } else
2035                sdev->hostdata = NULL;
2036        spin_unlock_irqrestore(&h->devlock, flags);
2037        return 0;
2038}
2039
2040/* configure scsi device based on internal per-device structure */
2041static int hpsa_slave_configure(struct scsi_device *sdev)
2042{
2043        struct hpsa_scsi_dev_t *sd;
2044        int queue_depth;
2045
2046        sd = sdev->hostdata;
2047        sdev->no_uld_attach = !sd || !sd->expose_device;
2048
2049        if (sd)
2050                queue_depth = sd->queue_depth != 0 ?
2051                        sd->queue_depth : sdev->host->can_queue;
2052        else
2053                queue_depth = sdev->host->can_queue;
2054
2055        scsi_change_queue_depth(sdev, queue_depth);
2056
2057        return 0;
2058}
2059
2060static void hpsa_slave_destroy(struct scsi_device *sdev)
2061{
2062        /* nothing to do. */
2063}
2064
2065static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2066{
2067        int i;
2068
2069        if (!h->ioaccel2_cmd_sg_list)
2070                return;
2071        for (i = 0; i < h->nr_cmds; i++) {
2072                kfree(h->ioaccel2_cmd_sg_list[i]);
2073                h->ioaccel2_cmd_sg_list[i] = NULL;
2074        }
2075        kfree(h->ioaccel2_cmd_sg_list);
2076        h->ioaccel2_cmd_sg_list = NULL;
2077}
2078
2079static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2080{
2081        int i;
2082
2083        if (h->chainsize <= 0)
2084                return 0;
2085
2086        h->ioaccel2_cmd_sg_list =
2087                kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2088                                        GFP_KERNEL);
2089        if (!h->ioaccel2_cmd_sg_list)
2090                return -ENOMEM;
2091        for (i = 0; i < h->nr_cmds; i++) {
2092                h->ioaccel2_cmd_sg_list[i] =
2093                        kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2094                                        h->maxsgentries, GFP_KERNEL);
2095                if (!h->ioaccel2_cmd_sg_list[i])
2096                        goto clean;
2097        }
2098        return 0;
2099
2100clean:
2101        hpsa_free_ioaccel2_sg_chain_blocks(h);
2102        return -ENOMEM;
2103}
2104
2105static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2106{
2107        int i;
2108
2109        if (!h->cmd_sg_list)
2110                return;
2111        for (i = 0; i < h->nr_cmds; i++) {
2112                kfree(h->cmd_sg_list[i]);
2113                h->cmd_sg_list[i] = NULL;
2114        }
2115        kfree(h->cmd_sg_list);
2116        h->cmd_sg_list = NULL;
2117}
2118
2119static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2120{
2121        int i;
2122
2123        if (h->chainsize <= 0)
2124                return 0;
2125
2126        h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2127                                GFP_KERNEL);
2128        if (!h->cmd_sg_list) {
2129                dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2130                return -ENOMEM;
2131        }
2132        for (i = 0; i < h->nr_cmds; i++) {
2133                h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2134                                                h->chainsize, GFP_KERNEL);
2135                if (!h->cmd_sg_list[i]) {
2136                        dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2137                        goto clean;
2138                }
2139        }
2140        return 0;
2141
2142clean:
2143        hpsa_free_sg_chain_blocks(h);
2144        return -ENOMEM;
2145}
2146
2147static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2148        struct io_accel2_cmd *cp, struct CommandList *c)
2149{
2150        struct ioaccel2_sg_element *chain_block;
2151        u64 temp64;
2152        u32 chain_size;
2153
2154        chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2155        chain_size = le32_to_cpu(cp->sg[0].length);
2156        temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2157                                PCI_DMA_TODEVICE);
2158        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2159                /* prevent subsequent unmapping */
2160                cp->sg->address = 0;
2161                return -1;
2162        }
2163        cp->sg->address = cpu_to_le64(temp64);
2164        return 0;
2165}
2166
2167static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2168        struct io_accel2_cmd *cp)
2169{
2170        struct ioaccel2_sg_element *chain_sg;
2171        u64 temp64;
2172        u32 chain_size;
2173
2174        chain_sg = cp->sg;
2175        temp64 = le64_to_cpu(chain_sg->address);
2176        chain_size = le32_to_cpu(cp->sg[0].length);
2177        pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2178}
2179
2180static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2181        struct CommandList *c)
2182{
2183        struct SGDescriptor *chain_sg, *chain_block;
2184        u64 temp64;
2185        u32 chain_len;
2186
2187        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2188        chain_block = h->cmd_sg_list[c->cmdindex];
2189        chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2190        chain_len = sizeof(*chain_sg) *
2191                (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2192        chain_sg->Len = cpu_to_le32(chain_len);
2193        temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2194                                PCI_DMA_TODEVICE);
2195        if (dma_mapping_error(&h->pdev->dev, temp64)) {
2196                /* prevent subsequent unmapping */
2197                chain_sg->Addr = cpu_to_le64(0);
2198                return -1;
2199        }
2200        chain_sg->Addr = cpu_to_le64(temp64);
2201        return 0;
2202}
2203
2204static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2205        struct CommandList *c)
2206{
2207        struct SGDescriptor *chain_sg;
2208
2209        if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2210                return;
2211
2212        chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2213        pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2214                        le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2215}
2216
2217
2218/* Decode the various types of errors on ioaccel2 path.
2219 * Return 1 for any error that should generate a RAID path retry.
2220 * Return 0 for errors that don't require a RAID path retry.
2221 */
2222static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2223                                        struct CommandList *c,
2224                                        struct scsi_cmnd *cmd,
2225                                        struct io_accel2_cmd *c2,
2226                                        struct hpsa_scsi_dev_t *dev)
2227{
2228        int data_len;
2229        int retry = 0;
2230        u32 ioaccel2_resid = 0;
2231
2232        switch (c2->error_data.serv_response) {
2233        case IOACCEL2_SERV_RESPONSE_COMPLETE:
2234                switch (c2->error_data.status) {
2235                case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2236                        break;
2237                case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2238                        cmd->result |= SAM_STAT_CHECK_CONDITION;
2239                        if (c2->error_data.data_present !=
2240                                        IOACCEL2_SENSE_DATA_PRESENT) {
2241                                memset(cmd->sense_buffer, 0,
2242                                        SCSI_SENSE_BUFFERSIZE);
2243                                break;
2244                        }
2245                        /* copy the sense data */
2246                        data_len = c2->error_data.sense_data_len;
2247                        if (data_len > SCSI_SENSE_BUFFERSIZE)
2248                                data_len = SCSI_SENSE_BUFFERSIZE;
2249                        if (data_len > sizeof(c2->error_data.sense_data_buff))
2250                                data_len =
2251                                        sizeof(c2->error_data.sense_data_buff);
2252                        memcpy(cmd->sense_buffer,
2253                                c2->error_data.sense_data_buff, data_len);
2254                        retry = 1;
2255                        break;
2256                case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2257                        retry = 1;
2258                        break;
2259                case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2260                        retry = 1;
2261                        break;
2262                case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2263                        retry = 1;
2264                        break;
2265                case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2266                        retry = 1;
2267                        break;
2268                default:
2269                        retry = 1;
2270                        break;
2271                }
2272                break;
2273        case IOACCEL2_SERV_RESPONSE_FAILURE:
2274                switch (c2->error_data.status) {
2275                case IOACCEL2_STATUS_SR_IO_ERROR:
2276                case IOACCEL2_STATUS_SR_IO_ABORTED:
2277                case IOACCEL2_STATUS_SR_OVERRUN:
2278                        retry = 1;
2279                        break;
2280                case IOACCEL2_STATUS_SR_UNDERRUN:
2281                        cmd->result = (DID_OK << 16);           /* host byte */
2282                        cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2283                        ioaccel2_resid = get_unaligned_le32(
2284                                                &c2->error_data.resid_cnt[0]);
2285                        scsi_set_resid(cmd, ioaccel2_resid);
2286                        break;
2287                case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2288                case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2289                case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2290                        /*
2291                         * Did an HBA disk disappear? We will eventually
2292                         * get a state change event from the controller but
2293                         * in the meantime, we need to tell the OS that the
2294                         * HBA disk is no longer there and stop I/O
2295                         * from going down. This allows the potential re-insert
2296                         * of the disk to get the same device node.
2297                         */
2298                        if (dev->physical_device && dev->expose_device) {
2299                                cmd->result = DID_NO_CONNECT << 16;
2300                                dev->removed = 1;
2301                                h->drv_req_rescan = 1;
2302                                dev_warn(&h->pdev->dev,
2303                                        "%s: device is gone!\n", __func__);
2304                        } else
2305                                /*
2306                                 * Retry by sending down the RAID path.
2307                                 * We will get an event from ctlr to
2308                                 * trigger rescan regardless.
2309                                 */
2310                                retry = 1;
2311                        break;
2312                default:
2313                        retry = 1;
2314                }
2315                break;
2316        case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2317                break;
2318        case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2319                break;
2320        case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2321                retry = 1;
2322                break;
2323        case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2324                break;
2325        default:
2326                retry = 1;
2327                break;
2328        }
2329
2330        return retry;   /* retry on raid path? */
2331}
2332
2333static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2334                struct CommandList *c)
2335{
2336        bool do_wake = false;
2337
2338        /*
2339         * Prevent the following race in the abort handler:
2340         *
2341         * 1. LLD is requested to abort a SCSI command
2342         * 2. The SCSI command completes
2343         * 3. The struct CommandList associated with step 2 is made available
2344         * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2345         * 5. Abort handler follows scsi_cmnd->host_scribble and
2346         *    finds struct CommandList and tries to aborts it
2347         * Now we have aborted the wrong command.
2348         *
2349         * Reset c->scsi_cmd here so that the abort or reset handler will know
2350         * this command has completed.  Then, check to see if the handler is
2351         * waiting for this command, and, if so, wake it.
2352         */
2353        c->scsi_cmd = SCSI_CMD_IDLE;
2354        mb();   /* Declare command idle before checking for pending events. */
2355        if (c->abort_pending) {
2356                do_wake = true;
2357                c->abort_pending = false;
2358        }
2359        if (c->reset_pending) {
2360                unsigned long flags;
2361                struct hpsa_scsi_dev_t *dev;
2362
2363                /*
2364                 * There appears to be a reset pending; lock the lock and
2365                 * reconfirm.  If so, then decrement the count of outstanding
2366                 * commands and wake the reset command if this is the last one.
2367                 */
2368                spin_lock_irqsave(&h->lock, flags);
2369                dev = c->reset_pending;         /* Re-fetch under the lock. */
2370                if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2371                        do_wake = true;
2372                c->reset_pending = NULL;
2373                spin_unlock_irqrestore(&h->lock, flags);
2374        }
2375
2376        if (do_wake)
2377                wake_up_all(&h->event_sync_wait_queue);
2378}
2379
2380static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2381                                      struct CommandList *c)
2382{
2383        hpsa_cmd_resolve_events(h, c);
2384        cmd_tagged_free(h, c);
2385}
2386
2387static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2388                struct CommandList *c, struct scsi_cmnd *cmd)
2389{
2390        hpsa_cmd_resolve_and_free(h, c);
2391        cmd->scsi_done(cmd);
2392}
2393
2394static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2395{
2396        INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2397        queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2398}
2399
2400static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2401{
2402        cmd->result = DID_ABORT << 16;
2403}
2404
2405static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2406                                    struct scsi_cmnd *cmd)
2407{
2408        hpsa_set_scsi_cmd_aborted(cmd);
2409        dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2410                         c->Request.CDB, c->err_info->ScsiStatus);
2411        hpsa_cmd_resolve_and_free(h, c);
2412}
2413
2414static void process_ioaccel2_completion(struct ctlr_info *h,
2415                struct CommandList *c, struct scsi_cmnd *cmd,
2416                struct hpsa_scsi_dev_t *dev)
2417{
2418        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2419
2420        /* check for good status */
2421        if (likely(c2->error_data.serv_response == 0 &&
2422                        c2->error_data.status == 0))
2423                return hpsa_cmd_free_and_done(h, c, cmd);
2424
2425        /*
2426         * Any RAID offload error results in retry which will use
2427         * the normal I/O path so the controller can handle whatever's
2428         * wrong.
2429         */
2430        if (is_logical_device(dev) &&
2431                c2->error_data.serv_response ==
2432                        IOACCEL2_SERV_RESPONSE_FAILURE) {
2433                if (c2->error_data.status ==
2434                        IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2435                        dev->offload_enabled = 0;
2436                        dev->offload_to_be_enabled = 0;
2437                }
2438
2439                return hpsa_retry_cmd(h, c);
2440        }
2441
2442        if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2443                return hpsa_retry_cmd(h, c);
2444
2445        return hpsa_cmd_free_and_done(h, c, cmd);
2446}
2447
2448/* Returns 0 on success, < 0 otherwise. */
2449static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2450                                        struct CommandList *cp)
2451{
2452        u8 tmf_status = cp->err_info->ScsiStatus;
2453
2454        switch (tmf_status) {
2455        case CISS_TMF_COMPLETE:
2456                /*
2457                 * CISS_TMF_COMPLETE never happens, instead,
2458                 * ei->CommandStatus == 0 for this case.
2459                 */
2460        case CISS_TMF_SUCCESS:
2461                return 0;
2462        case CISS_TMF_INVALID_FRAME:
2463        case CISS_TMF_NOT_SUPPORTED:
2464        case CISS_TMF_FAILED:
2465        case CISS_TMF_WRONG_LUN:
2466        case CISS_TMF_OVERLAPPED_TAG:
2467                break;
2468        default:
2469                dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2470                                tmf_status);
2471                break;
2472        }
2473        return -tmf_status;
2474}
2475
2476static void complete_scsi_command(struct CommandList *cp)
2477{
2478        struct scsi_cmnd *cmd;
2479        struct ctlr_info *h;
2480        struct ErrorInfo *ei;
2481        struct hpsa_scsi_dev_t *dev;
2482        struct io_accel2_cmd *c2;
2483
2484        u8 sense_key;
2485        u8 asc;      /* additional sense code */
2486        u8 ascq;     /* additional sense code qualifier */
2487        unsigned long sense_data_size;
2488
2489        ei = cp->err_info;
2490        cmd = cp->scsi_cmd;
2491        h = cp->h;
2492        dev = cmd->device->hostdata;
2493        c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2494
2495        scsi_dma_unmap(cmd); /* undo the DMA mappings */
2496        if ((cp->cmd_type == CMD_SCSI) &&
2497                (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2498                hpsa_unmap_sg_chain_block(h, cp);
2499
2500        if ((cp->cmd_type == CMD_IOACCEL2) &&
2501                (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2502                hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2503
2504        cmd->result = (DID_OK << 16);           /* host byte */
2505        cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2506
2507        if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2508                atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2509
2510        /*
2511         * We check for lockup status here as it may be set for
2512         * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2513         * fail_all_oustanding_cmds()
2514         */
2515        if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2516                /* DID_NO_CONNECT will prevent a retry */
2517                cmd->result = DID_NO_CONNECT << 16;
2518                return hpsa_cmd_free_and_done(h, cp, cmd);
2519        }
2520
2521        if ((unlikely(hpsa_is_pending_event(cp)))) {
2522                if (cp->reset_pending)
2523                        return hpsa_cmd_resolve_and_free(h, cp);
2524                if (cp->abort_pending)
2525                        return hpsa_cmd_abort_and_free(h, cp, cmd);
2526        }
2527
2528        if (cp->cmd_type == CMD_IOACCEL2)
2529                return process_ioaccel2_completion(h, cp, cmd, dev);
2530
2531        scsi_set_resid(cmd, ei->ResidualCnt);
2532        if (ei->CommandStatus == 0)
2533                return hpsa_cmd_free_and_done(h, cp, cmd);
2534
2535        /* For I/O accelerator commands, copy over some fields to the normal
2536         * CISS header used below for error handling.
2537         */
2538        if (cp->cmd_type == CMD_IOACCEL1) {
2539                struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2540                cp->Header.SGList = scsi_sg_count(cmd);
2541                cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2542                cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2543                        IOACCEL1_IOFLAGS_CDBLEN_MASK;
2544                cp->Header.tag = c->tag;
2545                memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2546                memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2547
2548                /* Any RAID offload error results in retry which will use
2549                 * the normal I/O path so the controller can handle whatever's
2550                 * wrong.
2551                 */
2552                if (is_logical_device(dev)) {
2553                        if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2554                                dev->offload_enabled = 0;
2555                        return hpsa_retry_cmd(h, cp);
2556                }
2557        }
2558
2559        /* an error has occurred */
2560        switch (ei->CommandStatus) {
2561
2562        case CMD_TARGET_STATUS:
2563                cmd->result |= ei->ScsiStatus;
2564                /* copy the sense data */
2565                if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2566                        sense_data_size = SCSI_SENSE_BUFFERSIZE;
2567                else
2568                        sense_data_size = sizeof(ei->SenseInfo);
2569                if (ei->SenseLen < sense_data_size)
2570                        sense_data_size = ei->SenseLen;
2571                memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2572                if (ei->ScsiStatus)
2573                        decode_sense_data(ei->SenseInfo, sense_data_size,
2574                                &sense_key, &asc, &ascq);
2575                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2576                        if (sense_key == ABORTED_COMMAND) {
2577                                cmd->result |= DID_SOFT_ERROR << 16;
2578                                break;
2579                        }
2580                        break;
2581                }
2582                /* Problem was not a check condition
2583                 * Pass it up to the upper layers...
2584                 */
2585                if (ei->ScsiStatus) {
2586                        dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2587                                "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2588                                "Returning result: 0x%x\n",
2589                                cp, ei->ScsiStatus,
2590                                sense_key, asc, ascq,
2591                                cmd->result);
2592                } else {  /* scsi status is zero??? How??? */
2593                        dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2594                                "Returning no connection.\n", cp),
2595
2596                        /* Ordinarily, this case should never happen,
2597                         * but there is a bug in some released firmware
2598                         * revisions that allows it to happen if, for
2599                         * example, a 4100 backplane loses power and
2600                         * the tape drive is in it.  We assume that
2601                         * it's a fatal error of some kind because we
2602                         * can't show that it wasn't. We will make it
2603                         * look like selection timeout since that is
2604                         * the most common reason for this to occur,
2605                         * and it's severe enough.
2606                         */
2607
2608                        cmd->result = DID_NO_CONNECT << 16;
2609                }
2610                break;
2611
2612        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2613                break;
2614        case CMD_DATA_OVERRUN:
2615                dev_warn(&h->pdev->dev,
2616                        "CDB %16phN data overrun\n", cp->Request.CDB);
2617                break;
2618        case CMD_INVALID: {
2619                /* print_bytes(cp, sizeof(*cp), 1, 0);
2620                print_cmd(cp); */
2621                /* We get CMD_INVALID if you address a non-existent device
2622                 * instead of a selection timeout (no response).  You will
2623                 * see this if you yank out a drive, then try to access it.
2624                 * This is kind of a shame because it means that any other
2625                 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2626                 * missing target. */
2627                cmd->result = DID_NO_CONNECT << 16;
2628        }
2629                break;
2630        case CMD_PROTOCOL_ERR:
2631                cmd->result = DID_ERROR << 16;
2632                dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2633                                cp->Request.CDB);
2634                break;
2635        case CMD_HARDWARE_ERR:
2636                cmd->result = DID_ERROR << 16;
2637                dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2638                        cp->Request.CDB);
2639                break;
2640        case CMD_CONNECTION_LOST:
2641                cmd->result = DID_ERROR << 16;
2642                dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2643                        cp->Request.CDB);
2644                break;
2645        case CMD_ABORTED:
2646                /* Return now to avoid calling scsi_done(). */
2647                return hpsa_cmd_abort_and_free(h, cp, cmd);
2648        case CMD_ABORT_FAILED:
2649                cmd->result = DID_ERROR << 16;
2650                dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2651                        cp->Request.CDB);
2652                break;
2653        case CMD_UNSOLICITED_ABORT:
2654                cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2655                dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2656                        cp->Request.CDB);
2657                break;
2658        case CMD_TIMEOUT:
2659                cmd->result = DID_TIME_OUT << 16;
2660                dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2661                        cp->Request.CDB);
2662                break;
2663        case CMD_UNABORTABLE:
2664                cmd->result = DID_ERROR << 16;
2665                dev_warn(&h->pdev->dev, "Command unabortable\n");
2666                break;
2667        case CMD_TMF_STATUS:
2668                if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2669                        cmd->result = DID_ERROR << 16;
2670                break;
2671        case CMD_IOACCEL_DISABLED:
2672                /* This only handles the direct pass-through case since RAID
2673                 * offload is handled above.  Just attempt a retry.
2674                 */
2675                cmd->result = DID_SOFT_ERROR << 16;
2676                dev_warn(&h->pdev->dev,
2677                                "cp %p had HP SSD Smart Path error\n", cp);
2678                break;
2679        default:
2680                cmd->result = DID_ERROR << 16;
2681                dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2682                                cp, ei->CommandStatus);
2683        }
2684
2685        return hpsa_cmd_free_and_done(h, cp, cmd);
2686}
2687
2688static void hpsa_pci_unmap(struct pci_dev *pdev,
2689        struct CommandList *c, int sg_used, int data_direction)
2690{
2691        int i;
2692
2693        for (i = 0; i < sg_used; i++)
2694                pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2695                                le32_to_cpu(c->SG[i].Len),
2696                                data_direction);
2697}
2698
2699static int hpsa_map_one(struct pci_dev *pdev,
2700                struct CommandList *cp,
2701                unsigned char *buf,
2702                size_t buflen,
2703                int data_direction)
2704{
2705        u64 addr64;
2706
2707        if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2708                cp->Header.SGList = 0;
2709                cp->Header.SGTotal = cpu_to_le16(0);
2710                return 0;
2711        }
2712
2713        addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2714        if (dma_mapping_error(&pdev->dev, addr64)) {
2715                /* Prevent subsequent unmap of something never mapped */
2716                cp->Header.SGList = 0;
2717                cp->Header.SGTotal = cpu_to_le16(0);
2718                return -1;
2719        }
2720        cp->SG[0].Addr = cpu_to_le64(addr64);
2721        cp->SG[0].Len = cpu_to_le32(buflen);
2722        cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2723        cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2724        cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2725        return 0;
2726}
2727
2728#define NO_TIMEOUT ((unsigned long) -1)
2729#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2730static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2731        struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2732{
2733        DECLARE_COMPLETION_ONSTACK(wait);
2734
2735        c->waiting = &wait;
2736        __enqueue_cmd_and_start_io(h, c, reply_queue);
2737        if (timeout_msecs == NO_TIMEOUT) {
2738                /* TODO: get rid of this no-timeout thing */
2739                wait_for_completion_io(&wait);
2740                return IO_OK;
2741        }
2742        if (!wait_for_completion_io_timeout(&wait,
2743                                        msecs_to_jiffies(timeout_msecs))) {
2744                dev_warn(&h->pdev->dev, "Command timed out.\n");
2745                return -ETIMEDOUT;
2746        }
2747        return IO_OK;
2748}
2749
2750static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2751                                   int reply_queue, unsigned long timeout_msecs)
2752{
2753        if (unlikely(lockup_detected(h))) {
2754                c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2755                return IO_OK;
2756        }
2757        return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2758}
2759
2760static u32 lockup_detected(struct ctlr_info *h)
2761{
2762        int cpu;
2763        u32 rc, *lockup_detected;
2764
2765        cpu = get_cpu();
2766        lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2767        rc = *lockup_detected;
2768        put_cpu();
2769        return rc;
2770}
2771
2772#define MAX_DRIVER_CMD_RETRIES 25
2773static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2774        struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2775{
2776        int backoff_time = 10, retry_count = 0;
2777        int rc;
2778
2779        do {
2780                memset(c->err_info, 0, sizeof(*c->err_info));
2781                rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2782                                                  timeout_msecs);
2783                if (rc)
2784                        break;
2785                retry_count++;
2786                if (retry_count > 3) {
2787                        msleep(backoff_time);
2788                        if (backoff_time < 1000)
2789                                backoff_time *= 2;
2790                }
2791        } while ((check_for_unit_attention(h, c) ||
2792                        check_for_busy(h, c)) &&
2793                        retry_count <= MAX_DRIVER_CMD_RETRIES);
2794        hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2795        if (retry_count > MAX_DRIVER_CMD_RETRIES)
2796                rc = -EIO;
2797        return rc;
2798}
2799
2800static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2801                                struct CommandList *c)
2802{
2803        const u8 *cdb = c->Request.CDB;
2804        const u8 *lun = c->Header.LUN.LunAddrBytes;
2805
2806        dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2807        " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2808                txt, lun[0], lun[1], lun[2], lun[3],
2809                lun[4], lun[5], lun[6], lun[7],
2810                cdb[0], cdb[1], cdb[2], cdb[3],
2811                cdb[4], cdb[5], cdb[6], cdb[7],
2812                cdb[8], cdb[9], cdb[10], cdb[11],
2813                cdb[12], cdb[13], cdb[14], cdb[15]);
2814}
2815
2816static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2817                        struct CommandList *cp)
2818{
2819        const struct ErrorInfo *ei = cp->err_info;
2820        struct device *d = &cp->h->pdev->dev;
2821        u8 sense_key, asc, ascq;
2822        int sense_len;
2823
2824        switch (ei->CommandStatus) {
2825        case CMD_TARGET_STATUS:
2826                if (ei->SenseLen > sizeof(ei->SenseInfo))
2827                        sense_len = sizeof(ei->SenseInfo);
2828                else
2829                        sense_len = ei->SenseLen;
2830                decode_sense_data(ei->SenseInfo, sense_len,
2831                                        &sense_key, &asc, &ascq);
2832                hpsa_print_cmd(h, "SCSI status", cp);
2833                if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2834                        dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2835                                sense_key, asc, ascq);
2836                else
2837                        dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2838                if (ei->ScsiStatus == 0)
2839                        dev_warn(d, "SCSI status is abnormally zero.  "
2840                        "(probably indicates selection timeout "
2841                        "reported incorrectly due to a known "
2842                        "firmware bug, circa July, 2001.)\n");
2843                break;
2844        case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2845                break;
2846        case CMD_DATA_OVERRUN:
2847                hpsa_print_cmd(h, "overrun condition", cp);
2848                break;
2849        case CMD_INVALID: {
2850                /* controller unfortunately reports SCSI passthru's
2851                 * to non-existent targets as invalid commands.
2852                 */
2853                hpsa_print_cmd(h, "invalid command", cp);
2854                dev_warn(d, "probably means device no longer present\n");
2855                }
2856                break;
2857        case CMD_PROTOCOL_ERR:
2858                hpsa_print_cmd(h, "protocol error", cp);
2859                break;
2860        case CMD_HARDWARE_ERR:
2861                hpsa_print_cmd(h, "hardware error", cp);
2862                break;
2863        case CMD_CONNECTION_LOST:
2864                hpsa_print_cmd(h, "connection lost", cp);
2865                break;
2866        case CMD_ABORTED:
2867                hpsa_print_cmd(h, "aborted", cp);
2868                break;
2869        case CMD_ABORT_FAILED:
2870                hpsa_print_cmd(h, "abort failed", cp);
2871                break;
2872        case CMD_UNSOLICITED_ABORT:
2873                hpsa_print_cmd(h, "unsolicited abort", cp);
2874                break;
2875        case CMD_TIMEOUT:
2876                hpsa_print_cmd(h, "timed out", cp);
2877                break;
2878        case CMD_UNABORTABLE:
2879                hpsa_print_cmd(h, "unabortable", cp);
2880                break;
2881        case CMD_CTLR_LOCKUP:
2882                hpsa_print_cmd(h, "controller lockup detected", cp);
2883                break;
2884        default:
2885                hpsa_print_cmd(h, "unknown status", cp);
2886                dev_warn(d, "Unknown command status %x\n",
2887                                ei->CommandStatus);
2888        }
2889}
2890
2891static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2892                        u16 page, unsigned char *buf,
2893                        unsigned char bufsize)
2894{
2895        int rc = IO_OK;
2896        struct CommandList *c;
2897        struct ErrorInfo *ei;
2898
2899        c = cmd_alloc(h);
2900
2901        if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2902                        page, scsi3addr, TYPE_CMD)) {
2903                rc = -1;
2904                goto out;
2905        }
2906        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2907                                        PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2908        if (rc)
2909                goto out;
2910        ei = c->err_info;
2911        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2912                hpsa_scsi_interpret_error(h, c);
2913                rc = -1;
2914        }
2915out:
2916        cmd_free(h, c);
2917        return rc;
2918}
2919
2920static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2921        u8 reset_type, int reply_queue)
2922{
2923        int rc = IO_OK;
2924        struct CommandList *c;
2925        struct ErrorInfo *ei;
2926
2927        c = cmd_alloc(h);
2928
2929
2930        /* fill_cmd can't fail here, no data buffer to map. */
2931        (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2932                        scsi3addr, TYPE_MSG);
2933        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2934        if (rc) {
2935                dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2936                goto out;
2937        }
2938        /* no unmap needed here because no data xfer. */
2939
2940        ei = c->err_info;
2941        if (ei->CommandStatus != 0) {
2942                hpsa_scsi_interpret_error(h, c);
2943                rc = -1;
2944        }
2945out:
2946        cmd_free(h, c);
2947        return rc;
2948}
2949
2950static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2951                               struct hpsa_scsi_dev_t *dev,
2952                               unsigned char *scsi3addr)
2953{
2954        int i;
2955        bool match = false;
2956        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2957        struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2958
2959        if (hpsa_is_cmd_idle(c))
2960                return false;
2961
2962        switch (c->cmd_type) {
2963        case CMD_SCSI:
2964        case CMD_IOCTL_PEND:
2965                match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2966                                sizeof(c->Header.LUN.LunAddrBytes));
2967                break;
2968
2969        case CMD_IOACCEL1:
2970        case CMD_IOACCEL2:
2971                if (c->phys_disk == dev) {
2972                        /* HBA mode match */
2973                        match = true;
2974                } else {
2975                        /* Possible RAID mode -- check each phys dev. */
2976                        /* FIXME:  Do we need to take out a lock here?  If
2977                         * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2978                         * instead. */
2979                        for (i = 0; i < dev->nphysical_disks && !match; i++) {
2980                                /* FIXME: an alternate test might be
2981                                 *
2982                                 * match = dev->phys_disk[i]->ioaccel_handle
2983                                 *              == c2->scsi_nexus;      */
2984                                match = dev->phys_disk[i] == c->phys_disk;
2985                        }
2986                }
2987                break;
2988
2989        case IOACCEL2_TMF:
2990                for (i = 0; i < dev->nphysical_disks && !match; i++) {
2991                        match = dev->phys_disk[i]->ioaccel_handle ==
2992                                        le32_to_cpu(ac->it_nexus);
2993                }
2994                break;
2995
2996        case 0:         /* The command is in the middle of being initialized. */
2997                match = false;
2998                break;
2999
3000        default:
3001                dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3002                        c->cmd_type);
3003                BUG();
3004        }
3005
3006        return match;
3007}
3008
3009static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3010        unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3011{
3012        int i;
3013        int rc = 0;
3014
3015        /* We can really only handle one reset at a time */
3016        if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3017                dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3018                return -EINTR;
3019        }
3020
3021        BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3022
3023        for (i = 0; i < h->nr_cmds; i++) {
3024                struct CommandList *c = h->cmd_pool + i;
3025                int refcount = atomic_inc_return(&c->refcount);
3026
3027                if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3028                        unsigned long flags;
3029
3030                        /*
3031                         * Mark the target command as having a reset pending,
3032                         * then lock a lock so that the command cannot complete
3033                         * while we're considering it.  If the command is not
3034                         * idle then count it; otherwise revoke the event.
3035                         */
3036                        c->reset_pending = dev;
3037                        spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3038                        if (!hpsa_is_cmd_idle(c))
3039                                atomic_inc(&dev->reset_cmds_out);
3040                        else
3041                                c->reset_pending = NULL;
3042                        spin_unlock_irqrestore(&h->lock, flags);
3043                }
3044
3045                cmd_free(h, c);
3046        }
3047
3048        rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3049        if (!rc)
3050                wait_event(h->event_sync_wait_queue,
3051                        atomic_read(&dev->reset_cmds_out) == 0 ||
3052                        lockup_detected(h));
3053
3054        if (unlikely(lockup_detected(h))) {
3055                dev_warn(&h->pdev->dev,
3056                         "Controller lockup detected during reset wait\n");
3057                rc = -ENODEV;
3058        }
3059
3060        if (unlikely(rc))
3061                atomic_set(&dev->reset_cmds_out, 0);
3062
3063        mutex_unlock(&h->reset_mutex);
3064        return rc;
3065}
3066
3067static void hpsa_get_raid_level(struct ctlr_info *h,
3068        unsigned char *scsi3addr, unsigned char *raid_level)
3069{
3070        int rc;
3071        unsigned char *buf;
3072
3073        *raid_level = RAID_UNKNOWN;
3074        buf = kzalloc(64, GFP_KERNEL);
3075        if (!buf)
3076                return;
3077        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
3078        if (rc == 0)
3079                *raid_level = buf[8];
3080        if (*raid_level > RAID_UNKNOWN)
3081                *raid_level = RAID_UNKNOWN;
3082        kfree(buf);
3083        return;
3084}
3085
3086#define HPSA_MAP_DEBUG
3087#ifdef HPSA_MAP_DEBUG
3088static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3089                                struct raid_map_data *map_buff)
3090{
3091        struct raid_map_disk_data *dd = &map_buff->data[0];
3092        int map, row, col;
3093        u16 map_cnt, row_cnt, disks_per_row;
3094
3095        if (rc != 0)
3096                return;
3097
3098        /* Show details only if debugging has been activated. */
3099        if (h->raid_offload_debug < 2)
3100                return;
3101
3102        dev_info(&h->pdev->dev, "structure_size = %u\n",
3103                                le32_to_cpu(map_buff->structure_size));
3104        dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3105                        le32_to_cpu(map_buff->volume_blk_size));
3106        dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3107                        le64_to_cpu(map_buff->volume_blk_cnt));
3108        dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3109                        map_buff->phys_blk_shift);
3110        dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3111                        map_buff->parity_rotation_shift);
3112        dev_info(&h->pdev->dev, "strip_size = %u\n",
3113                        le16_to_cpu(map_buff->strip_size));
3114        dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3115                        le64_to_cpu(map_buff->disk_starting_blk));
3116        dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3117                        le64_to_cpu(map_buff->disk_blk_cnt));
3118        dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3119                        le16_to_cpu(map_buff->data_disks_per_row));
3120        dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3121                        le16_to_cpu(map_buff->metadata_disks_per_row));
3122        dev_info(&h->pdev->dev, "row_cnt = %u\n",
3123                        le16_to_cpu(map_buff->row_cnt));
3124        dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3125                        le16_to_cpu(map_buff->layout_map_count));
3126        dev_info(&h->pdev->dev, "flags = 0x%x\n",
3127                        le16_to_cpu(map_buff->flags));
3128        dev_info(&h->pdev->dev, "encrypytion = %s\n",
3129                        le16_to_cpu(map_buff->flags) &
3130                        RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3131        dev_info(&h->pdev->dev, "dekindex = %u\n",
3132                        le16_to_cpu(map_buff->dekindex));
3133        map_cnt = le16_to_cpu(map_buff->layout_map_count);
3134        for (map = 0; map < map_cnt; map++) {
3135                dev_info(&h->pdev->dev, "Map%u:\n", map);
3136                row_cnt = le16_to_cpu(map_buff->row_cnt);
3137                for (row = 0; row < row_cnt; row++) {
3138                        dev_info(&h->pdev->dev, "  Row%u:\n", row);
3139                        disks_per_row =
3140                                le16_to_cpu(map_buff->data_disks_per_row);
3141                        for (col = 0; col < disks_per_row; col++, dd++)
3142                                dev_info(&h->pdev->dev,
3143                                        "    D%02u: h=0x%04x xor=%u,%u\n",
3144                                        col, dd->ioaccel_handle,
3145                                        dd->xor_mult[0], dd->xor_mult[1]);
3146                        disks_per_row =
3147                                le16_to_cpu(map_buff->metadata_disks_per_row);
3148                        for (col = 0; col < disks_per_row; col++, dd++)
3149                                dev_info(&h->pdev->dev,
3150                                        "    M%02u: h=0x%04x xor=%u,%u\n",
3151                                        col, dd->ioaccel_handle,
3152                                        dd->xor_mult[0], dd->xor_mult[1]);
3153                }
3154        }
3155}
3156#else
3157static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3158                        __attribute__((unused)) int rc,
3159                        __attribute__((unused)) struct raid_map_data *map_buff)
3160{
3161}
3162#endif
3163
3164static int hpsa_get_raid_map(struct ctlr_info *h,
3165        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3166{
3167        int rc = 0;
3168        struct CommandList *c;
3169        struct ErrorInfo *ei;
3170
3171        c = cmd_alloc(h);
3172
3173        if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3174                        sizeof(this_device->raid_map), 0,
3175                        scsi3addr, TYPE_CMD)) {
3176                dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3177                cmd_free(h, c);
3178                return -1;
3179        }
3180        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3181                                        PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3182        if (rc)
3183                goto out;
3184        ei = c->err_info;
3185        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3186                hpsa_scsi_interpret_error(h, c);
3187                rc = -1;
3188                goto out;
3189        }
3190        cmd_free(h, c);
3191
3192        /* @todo in the future, dynamically allocate RAID map memory */
3193        if (le32_to_cpu(this_device->raid_map.structure_size) >
3194                                sizeof(this_device->raid_map)) {
3195                dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3196                rc = -1;
3197        }
3198        hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3199        return rc;
3200out:
3201        cmd_free(h, c);
3202        return rc;
3203}
3204
3205static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3206                unsigned char scsi3addr[], u16 bmic_device_index,
3207                struct bmic_sense_subsystem_info *buf, size_t bufsize)
3208{
3209        int rc = IO_OK;
3210        struct CommandList *c;
3211        struct ErrorInfo *ei;
3212
3213        c = cmd_alloc(h);
3214
3215        rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3216                0, RAID_CTLR_LUNID, TYPE_CMD);
3217        if (rc)
3218                goto out;
3219
3220        c->Request.CDB[2] = bmic_device_index & 0xff;
3221        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3222
3223        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3224                                PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3225        if (rc)
3226                goto out;
3227        ei = c->err_info;
3228        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3229                hpsa_scsi_interpret_error(h, c);
3230                rc = -1;
3231        }
3232out:
3233        cmd_free(h, c);
3234        return rc;
3235}
3236
3237static int hpsa_bmic_id_controller(struct ctlr_info *h,
3238        struct bmic_identify_controller *buf, size_t bufsize)
3239{
3240        int rc = IO_OK;
3241        struct CommandList *c;
3242        struct ErrorInfo *ei;
3243
3244        c = cmd_alloc(h);
3245
3246        rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3247                0, RAID_CTLR_LUNID, TYPE_CMD);
3248        if (rc)
3249                goto out;
3250
3251        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3252                PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3253        if (rc)
3254                goto out;
3255        ei = c->err_info;
3256        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3257                hpsa_scsi_interpret_error(h, c);
3258                rc = -1;
3259        }
3260out:
3261        cmd_free(h, c);
3262        return rc;
3263}
3264
3265static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3266                unsigned char scsi3addr[], u16 bmic_device_index,
3267                struct bmic_identify_physical_device *buf, size_t bufsize)
3268{
3269        int rc = IO_OK;
3270        struct CommandList *c;
3271        struct ErrorInfo *ei;
3272
3273        c = cmd_alloc(h);
3274        rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3275                0, RAID_CTLR_LUNID, TYPE_CMD);
3276        if (rc)
3277                goto out;
3278
3279        c->Request.CDB[2] = bmic_device_index & 0xff;
3280        c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3281
3282        hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3283                                                DEFAULT_TIMEOUT);
3284        ei = c->err_info;
3285        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3286                hpsa_scsi_interpret_error(h, c);
3287                rc = -1;
3288        }
3289out:
3290        cmd_free(h, c);
3291
3292        return rc;
3293}
3294
3295/*
3296 * get enclosure information
3297 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3298 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3299 * Uses id_physical_device to determine the box_index.
3300 */
3301static void hpsa_get_enclosure_info(struct ctlr_info *h,
3302                        unsigned char *scsi3addr,
3303                        struct ReportExtendedLUNdata *rlep, int rle_index,
3304                        struct hpsa_scsi_dev_t *encl_dev)
3305{
3306        int rc = -1;
3307        struct CommandList *c = NULL;
3308        struct ErrorInfo *ei = NULL;
3309        struct bmic_sense_storage_box_params *bssbp = NULL;
3310        struct bmic_identify_physical_device *id_phys = NULL;
3311        struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3312        u16 bmic_device_index = 0;
3313
3314        bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3315
3316        if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3317                rc = IO_OK;
3318                goto out;
3319        }
3320
3321        bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3322        if (!bssbp)
3323                goto out;
3324
3325        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3326        if (!id_phys)
3327                goto out;
3328
3329        rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3330                                                id_phys, sizeof(*id_phys));
3331        if (rc) {
3332                dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3333                        __func__, encl_dev->external, bmic_device_index);
3334                goto out;
3335        }
3336
3337        c = cmd_alloc(h);
3338
3339        rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3340                        sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3341
3342        if (rc)
3343                goto out;
3344
3345        if (id_phys->phys_connector[1] == 'E')
3346                c->Request.CDB[5] = id_phys->box_index;
3347        else
3348                c->Request.CDB[5] = 0;
3349
3350        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3351                                                DEFAULT_TIMEOUT);
3352        if (rc)
3353                goto out;
3354
3355        ei = c->err_info;
3356        if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3357                rc = -1;
3358                goto out;
3359        }
3360
3361        encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3362        memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3363                bssbp->phys_connector, sizeof(bssbp->phys_connector));
3364
3365        rc = IO_OK;
3366out:
3367        kfree(bssbp);
3368        kfree(id_phys);
3369
3370        if (c)
3371                cmd_free(h, c);
3372
3373        if (rc != IO_OK)
3374                hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3375                        "Error, could not get enclosure information\n");
3376}
3377
3378static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3379                                                unsigned char *scsi3addr)
3380{
3381        struct ReportExtendedLUNdata *physdev;
3382        u32 nphysicals;
3383        u64 sa = 0;
3384        int i;
3385
3386        physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3387        if (!physdev)
3388                return 0;
3389
3390        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3391                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3392                kfree(physdev);
3393                return 0;
3394        }
3395        nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3396
3397        for (i = 0; i < nphysicals; i++)
3398                if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3399                        sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3400                        break;
3401                }
3402
3403        kfree(physdev);
3404
3405        return sa;
3406}
3407
3408static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3409                                        struct hpsa_scsi_dev_t *dev)
3410{
3411        int rc;
3412        u64 sa = 0;
3413
3414        if (is_hba_lunid(scsi3addr)) {
3415                struct bmic_sense_subsystem_info *ssi;
3416
3417                ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3418                if (ssi == NULL) {
3419                        dev_warn(&h->pdev->dev,
3420                                "%s: out of memory\n", __func__);
3421                        return;
3422                }
3423
3424                rc = hpsa_bmic_sense_subsystem_information(h,
3425                                        scsi3addr, 0, ssi, sizeof(*ssi));
3426                if (rc == 0) {
3427                        sa = get_unaligned_be64(ssi->primary_world_wide_id);
3428                        h->sas_address = sa;
3429                }
3430
3431                kfree(ssi);
3432        } else
3433                sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3434
3435        dev->sas_address = sa;
3436}
3437
3438/* Get a device id from inquiry page 0x83 */
3439static int hpsa_vpd_page_supported(struct ctlr_info *h,
3440        unsigned char scsi3addr[], u8 page)
3441{
3442        int rc;
3443        int i;
3444        int pages;
3445        unsigned char *buf, bufsize;
3446
3447        buf = kzalloc(256, GFP_KERNEL);
3448        if (!buf)
3449                return 0;
3450
3451        /* Get the size of the page list first */
3452        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3453                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3454                                buf, HPSA_VPD_HEADER_SZ);
3455        if (rc != 0)
3456                goto exit_unsupported;
3457        pages = buf[3];
3458        if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3459                bufsize = pages + HPSA_VPD_HEADER_SZ;
3460        else
3461                bufsize = 255;
3462
3463        /* Get the whole VPD page list */
3464        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3465                                VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3466                                buf, bufsize);
3467        if (rc != 0)
3468                goto exit_unsupported;
3469
3470        pages = buf[3];
3471        for (i = 1; i <= pages; i++)
3472                if (buf[3 + i] == page)
3473                        goto exit_supported;
3474exit_unsupported:
3475        kfree(buf);
3476        return 0;
3477exit_supported:
3478        kfree(buf);
3479        return 1;
3480}
3481
3482static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3483        unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3484{
3485        int rc;
3486        unsigned char *buf;
3487        u8 ioaccel_status;
3488
3489        this_device->offload_config = 0;
3490        this_device->offload_enabled = 0;
3491        this_device->offload_to_be_enabled = 0;
3492
3493        buf = kzalloc(64, GFP_KERNEL);
3494        if (!buf)
3495                return;
3496        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3497                goto out;
3498        rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3499                        VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3500        if (rc != 0)
3501                goto out;
3502
3503#define IOACCEL_STATUS_BYTE 4
3504#define OFFLOAD_CONFIGURED_BIT 0x01
3505#define OFFLOAD_ENABLED_BIT 0x02
3506        ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3507        this_device->offload_config =
3508                !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3509        if (this_device->offload_config) {
3510                this_device->offload_enabled =
3511                        !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3512                if (hpsa_get_raid_map(h, scsi3addr, this_device))
3513                        this_device->offload_enabled = 0;
3514        }
3515        this_device->offload_to_be_enabled = this_device->offload_enabled;
3516out:
3517        kfree(buf);
3518        return;
3519}
3520
3521/* Get the device id from inquiry page 0x83 */
3522static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3523        unsigned char *device_id, int index, int buflen)
3524{
3525        int rc;
3526        unsigned char *buf;
3527
3528        if (buflen > 16)
3529                buflen = 16;
3530        buf = kzalloc(64, GFP_KERNEL);
3531        if (!buf)
3532                return -ENOMEM;
3533        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3534        if (rc == 0)
3535                memcpy(device_id, &buf[index], buflen);
3536
3537        kfree(buf);
3538
3539        return rc != 0;
3540}
3541
3542static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3543                void *buf, int bufsize,
3544                int extended_response)
3545{
3546        int rc = IO_OK;
3547        struct CommandList *c;
3548        unsigned char scsi3addr[8];
3549        struct ErrorInfo *ei;
3550
3551        c = cmd_alloc(h);
3552
3553        /* address the controller */
3554        memset(scsi3addr, 0, sizeof(scsi3addr));
3555        if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3556                buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3557                rc = -1;
3558                goto out;
3559        }
3560        if (extended_response)
3561                c->Request.CDB[1] = extended_response;
3562        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3563                                        PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3564        if (rc)
3565                goto out;
3566        ei = c->err_info;
3567        if (ei->CommandStatus != 0 &&
3568            ei->CommandStatus != CMD_DATA_UNDERRUN) {
3569                hpsa_scsi_interpret_error(h, c);
3570                rc = -1;
3571        } else {
3572                struct ReportLUNdata *rld = buf;
3573
3574                if (rld->extended_response_flag != extended_response) {
3575                        dev_err(&h->pdev->dev,
3576                                "report luns requested format %u, got %u\n",
3577                                extended_response,
3578                                rld->extended_response_flag);
3579                        rc = -1;
3580                }
3581        }
3582out:
3583        cmd_free(h, c);
3584        return rc;
3585}
3586
3587static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3588                struct ReportExtendedLUNdata *buf, int bufsize)
3589{
3590        return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3591                                                HPSA_REPORT_PHYS_EXTENDED);
3592}
3593
3594static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3595                struct ReportLUNdata *buf, int bufsize)
3596{
3597        return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3598}
3599
3600static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3601        int bus, int target, int lun)
3602{
3603        device->bus = bus;
3604        device->target = target;
3605        device->lun = lun;
3606}
3607
3608/* Use VPD inquiry to get details of volume status */
3609static int hpsa_get_volume_status(struct ctlr_info *h,
3610                                        unsigned char scsi3addr[])
3611{
3612        int rc;
3613        int status;
3614        int size;
3615        unsigned char *buf;
3616
3617        buf = kzalloc(64, GFP_KERNEL);
3618        if (!buf)
3619                return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3620
3621        /* Does controller have VPD for logical volume status? */
3622        if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3623                goto exit_failed;
3624
3625        /* Get the size of the VPD return buffer */
3626        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3627                                        buf, HPSA_VPD_HEADER_SZ);
3628        if (rc != 0)
3629                goto exit_failed;
3630        size = buf[3];
3631
3632        /* Now get the whole VPD buffer */
3633        rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3634                                        buf, size + HPSA_VPD_HEADER_SZ);
3635        if (rc != 0)
3636                goto exit_failed;
3637        status = buf[4]; /* status byte */
3638
3639        kfree(buf);
3640        return status;
3641exit_failed:
3642        kfree(buf);
3643        return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3644}
3645
3646/* Determine offline status of a volume.
3647 * Return either:
3648 *  0 (not offline)
3649 *  0xff (offline for unknown reasons)
3650 *  # (integer code indicating one of several NOT READY states
3651 *     describing why a volume is to be kept offline)
3652 */
3653static int hpsa_volume_offline(struct ctlr_info *h,
3654                                        unsigned char scsi3addr[])
3655{
3656        struct CommandList *c;
3657        unsigned char *sense;
3658        u8 sense_key, asc, ascq;
3659        int sense_len;
3660        int rc, ldstat = 0;
3661        u16 cmd_status;
3662        u8 scsi_status;
3663#define ASC_LUN_NOT_READY 0x04
3664#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3665#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3666
3667        c = cmd_alloc(h);
3668
3669        (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3670        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3671                                        DEFAULT_TIMEOUT);
3672        if (rc) {
3673                cmd_free(h, c);
3674                return 0;
3675        }
3676        sense = c->err_info->SenseInfo;
3677        if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3678                sense_len = sizeof(c->err_info->SenseInfo);
3679        else
3680                sense_len = c->err_info->SenseLen;
3681        decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3682        cmd_status = c->err_info->CommandStatus;
3683        scsi_status = c->err_info->ScsiStatus;
3684        cmd_free(h, c);
3685        /* Is the volume 'not ready'? */
3686        if (cmd_status != CMD_TARGET_STATUS ||
3687                scsi_status != SAM_STAT_CHECK_CONDITION ||
3688                sense_key != NOT_READY ||
3689                asc != ASC_LUN_NOT_READY)  {
3690                return 0;
3691        }
3692
3693        /* Determine the reason for not ready state */
3694        ldstat = hpsa_get_volume_status(h, scsi3addr);
3695
3696        /* Keep volume offline in certain cases: */
3697        switch (ldstat) {
3698        case HPSA_LV_UNDERGOING_ERASE:
3699        case HPSA_LV_NOT_AVAILABLE:
3700        case HPSA_LV_UNDERGOING_RPI:
3701        case HPSA_LV_PENDING_RPI:
3702        case HPSA_LV_ENCRYPTED_NO_KEY:
3703        case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3704        case HPSA_LV_UNDERGOING_ENCRYPTION:
3705        case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3706        case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3707                return ldstat;
3708        case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3709                /* If VPD status page isn't available,
3710                 * use ASC/ASCQ to determine state
3711                 */
3712                if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3713                        (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3714                        return ldstat;
3715                break;
3716        default:
3717                break;
3718        }
3719        return 0;
3720}
3721
3722/*
3723 * Find out if a logical device supports aborts by simply trying one.
3724 * Smart Array may claim not to support aborts on logical drives, but
3725 * if a MSA2000 * is connected, the drives on that will be presented
3726 * by the Smart Array as logical drives, and aborts may be sent to
3727 * those devices successfully.  So the simplest way to find out is
3728 * to simply try an abort and see how the device responds.
3729 */
3730static int hpsa_device_supports_aborts(struct ctlr_info *h,
3731                                        unsigned char *scsi3addr)
3732{
3733        struct CommandList *c;
3734        struct ErrorInfo *ei;
3735        int rc = 0;
3736
3737        u64 tag = (u64) -1; /* bogus tag */
3738
3739        /* Assume that physical devices support aborts */
3740        if (!is_logical_dev_addr_mode(scsi3addr))
3741                return 1;
3742
3743        c = cmd_alloc(h);
3744
3745        (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3746        (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3747                                        DEFAULT_TIMEOUT);
3748        /* no unmap needed here because no data xfer. */
3749        ei = c->err_info;
3750        switch (ei->CommandStatus) {
3751        case CMD_INVALID:
3752                rc = 0;
3753                break;
3754        case CMD_UNABORTABLE:
3755        case CMD_ABORT_FAILED:
3756                rc = 1;
3757                break;
3758        case CMD_TMF_STATUS:
3759                rc = hpsa_evaluate_tmf_status(h, c);
3760                break;
3761        default:
3762                rc = 0;
3763                break;
3764        }
3765        cmd_free(h, c);
3766        return rc;
3767}
3768
3769static int hpsa_update_device_info(struct ctlr_info *h,
3770        unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3771        unsigned char *is_OBDR_device)
3772{
3773
3774#define OBDR_SIG_OFFSET 43
3775#define OBDR_TAPE_SIG "$DR-10"
3776#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3777#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3778
3779        unsigned char *inq_buff;
3780        unsigned char *obdr_sig;
3781        int rc = 0;
3782
3783        inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3784        if (!inq_buff) {
3785                rc = -ENOMEM;
3786                goto bail_out;
3787        }
3788
3789        /* Do an inquiry to the device to see what it is. */
3790        if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3791                (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3792                /* Inquiry failed (msg printed already) */
3793                dev_err(&h->pdev->dev,
3794                        "hpsa_update_device_info: inquiry failed\n");
3795                rc = -EIO;
3796                goto bail_out;
3797        }
3798
3799        scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3800        scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3801
3802        this_device->devtype = (inq_buff[0] & 0x1f);
3803        memcpy(this_device->scsi3addr, scsi3addr, 8);
3804        memcpy(this_device->vendor, &inq_buff[8],
3805                sizeof(this_device->vendor));
3806        memcpy(this_device->model, &inq_buff[16],
3807                sizeof(this_device->model));
3808        memset(this_device->device_id, 0,
3809                sizeof(this_device->device_id));
3810        hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3811                sizeof(this_device->device_id));
3812
3813        if ((this_device->devtype == TYPE_DISK ||
3814                this_device->devtype == TYPE_ZBC) &&
3815                is_logical_dev_addr_mode(scsi3addr)) {
3816                int volume_offline;
3817
3818                hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3819                if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3820                        hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3821                volume_offline = hpsa_volume_offline(h, scsi3addr);
3822                if (volume_offline < 0 || volume_offline > 0xff)
3823                        volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3824                this_device->volume_offline = volume_offline & 0xff;
3825        } else {
3826                this_device->raid_level = RAID_UNKNOWN;
3827                this_device->offload_config = 0;
3828                this_device->offload_enabled = 0;
3829                this_device->offload_to_be_enabled = 0;
3830                this_device->hba_ioaccel_enabled = 0;
3831                this_device->volume_offline = 0;
3832                this_device->queue_depth = h->nr_cmds;
3833        }
3834
3835        if (is_OBDR_device) {
3836                /* See if this is a One-Button-Disaster-Recovery device
3837                 * by looking for "$DR-10" at offset 43 in inquiry data.
3838                 */
3839                obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3840                *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3841                                        strncmp(obdr_sig, OBDR_TAPE_SIG,
3842                                                OBDR_SIG_LEN) == 0);
3843        }
3844        kfree(inq_buff);
3845        return 0;
3846
3847bail_out:
3848        kfree(inq_buff);
3849        return rc;
3850}
3851
3852static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3853                        struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3854{
3855        unsigned long flags;
3856        int rc, entry;
3857        /*
3858         * See if this device supports aborts.  If we already know
3859         * the device, we already know if it supports aborts, otherwise
3860         * we have to find out if it supports aborts by trying one.
3861         */
3862        spin_lock_irqsave(&h->devlock, flags);
3863        rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3864        if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3865                entry >= 0 && entry < h->ndevices) {
3866                dev->supports_aborts = h->dev[entry]->supports_aborts;
3867                spin_unlock_irqrestore(&h->devlock, flags);
3868        } else {
3869                spin_unlock_irqrestore(&h->devlock, flags);
3870                dev->supports_aborts =
3871                                hpsa_device_supports_aborts(h, scsi3addr);
3872                if (dev->supports_aborts < 0)
3873                        dev->supports_aborts = 0;
3874        }
3875}
3876
3877/*
3878 * Helper function to assign bus, target, lun mapping of devices.
3879 * Logical drive target and lun are assigned at this time, but
3880 * physical device lun and target assignment are deferred (assigned
3881 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3882*/
3883static void figure_bus_target_lun(struct ctlr_info *h,
3884        u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3885{
3886        u32 lunid = get_unaligned_le32(lunaddrbytes);
3887
3888        if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3889                /* physical device, target and lun filled in later */
3890                if (is_hba_lunid(lunaddrbytes))
3891                        hpsa_set_bus_target_lun(device,
3892                                        HPSA_HBA_BUS, 0, lunid & 0x3fff);
3893                else
3894                        /* defer target, lun assignment for physical devices */
3895                        hpsa_set_bus_target_lun(device,
3896                                        HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3897                return;
3898        }
3899        /* It's a logical device */
3900        if (device->external) {
3901                hpsa_set_bus_target_lun(device,
3902                        HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3903                        lunid & 0x00ff);
3904                return;
3905        }
3906        hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3907                                0, lunid & 0x3fff);
3908}
3909
3910
3911/*
3912 * Get address of physical disk used for an ioaccel2 mode command:
3913 *      1. Extract ioaccel2 handle from the command.
3914 *      2. Find a matching ioaccel2 handle from list of physical disks.
3915 *      3. Return:
3916 *              1 and set scsi3addr to address of matching physical
3917 *              0 if no matching physical disk was found.
3918 */
3919static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3920        struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3921{
3922        struct io_accel2_cmd *c2 =
3923                        &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3924        unsigned long flags;
3925        int i;
3926
3927        spin_lock_irqsave(&h->devlock, flags);
3928        for (i = 0; i < h->ndevices; i++)
3929                if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3930                        memcpy(scsi3addr, h->dev[i]->scsi3addr,
3931                                sizeof(h->dev[i]->scsi3addr));
3932                        spin_unlock_irqrestore(&h->devlock, flags);
3933                        return 1;
3934                }
3935        spin_unlock_irqrestore(&h->devlock, flags);
3936        return 0;
3937}
3938
3939static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3940        int i, int nphysicals, int nlocal_logicals)
3941{
3942        /* In report logicals, local logicals are listed first,
3943        * then any externals.
3944        */
3945        int logicals_start = nphysicals + (raid_ctlr_position == 0);
3946
3947        if (i == raid_ctlr_position)
3948                return 0;
3949
3950        if (i < logicals_start)
3951                return 0;
3952
3953        /* i is in logicals range, but still within local logicals */
3954        if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3955                return 0;
3956
3957        return 1; /* it's an external lun */
3958}
3959
3960/*
3961 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3962 * logdev.  The number of luns in physdev and logdev are returned in
3963 * *nphysicals and *nlogicals, respectively.
3964 * Returns 0 on success, -1 otherwise.
3965 */
3966static int hpsa_gather_lun_info(struct ctlr_info *h,
3967        struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3968        struct ReportLUNdata *logdev, u32 *nlogicals)
3969{
3970        if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3971                dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3972                return -1;
3973        }
3974        *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3975        if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3976                dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3977                        HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3978                *nphysicals = HPSA_MAX_PHYS_LUN;
3979        }
3980        if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3981                dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3982                return -1;
3983        }
3984        *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3985        /* Reject Logicals in excess of our max capability. */
3986        if (*nlogicals > HPSA_MAX_LUN) {
3987                dev_warn(&h->pdev->dev,
3988                        "maximum logical LUNs (%d) exceeded.  "
3989                        "%d LUNs ignored.\n", HPSA_MAX_LUN,
3990                        *nlogicals - HPSA_MAX_LUN);
3991                        *nlogicals = HPSA_MAX_LUN;
3992        }
3993        if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3994                dev_warn(&h->pdev->dev,
3995                        "maximum logical + physical LUNs (%d) exceeded. "
3996                        "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3997                        *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3998                *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3999        }
4000        return 0;
4001}
4002
4003static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4004        int i, int nphysicals, int nlogicals,
4005        struct ReportExtendedLUNdata *physdev_list,
4006        struct ReportLUNdata *logdev_list)
4007{
4008        /* Helper function, figure out where the LUN ID info is coming from
4009         * given index i, lists of physical and logical devices, where in
4010         * the list the raid controller is supposed to appear (first or last)
4011         */
4012
4013        int logicals_start = nphysicals + (raid_ctlr_position == 0);
4014        int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4015
4016        if (i == raid_ctlr_position)
4017                return RAID_CTLR_LUNID;
4018
4019        if (i < logicals_start)
4020                return &physdev_list->LUN[i -
4021                                (raid_ctlr_position == 0)].lunid[0];
4022
4023        if (i < last_device)
4024                return &logdev_list->LUN[i - nphysicals -
4025                        (raid_ctlr_position == 0)][0];
4026        BUG();
4027        return NULL;
4028}
4029
4030/* get physical drive ioaccel handle and queue depth */
4031static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4032                struct hpsa_scsi_dev_t *dev,
4033                struct ReportExtendedLUNdata *rlep, int rle_index,
4034                struct bmic_identify_physical_device *id_phys)
4035{
4036        int rc;
4037        struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4038
4039        dev->ioaccel_handle = rle->ioaccel_handle;
4040        if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4041                dev->hba_ioaccel_enabled = 1;
4042        memset(id_phys, 0, sizeof(*id_phys));
4043        rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4044                        GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4045                        sizeof(*id_phys));
4046        if (!rc)
4047                /* Reserve space for FW operations */
4048#define DRIVE_CMDS_RESERVED_FOR_FW 2
4049#define DRIVE_QUEUE_DEPTH 7
4050                dev->queue_depth =
4051                        le16_to_cpu(id_phys->current_queue_depth_limit) -
4052                                DRIVE_CMDS_RESERVED_FOR_FW;
4053        else
4054                dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4055}
4056
4057static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4058        struct ReportExtendedLUNdata *rlep, int rle_index,
4059        struct bmic_identify_physical_device *id_phys)
4060{
4061        struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4062
4063        if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4064                this_device->hba_ioaccel_enabled = 1;
4065
4066        memcpy(&this_device->active_path_index,
4067                &id_phys->active_path_number,
4068                sizeof(this_device->active_path_index));
4069        memcpy(&this_device->path_map,
4070                &id_phys->redundant_path_present_map,
4071                sizeof(this_device->path_map));
4072        memcpy(&this_device->box,
4073                &id_phys->alternate_paths_phys_box_on_port,
4074                sizeof(this_device->box));
4075        memcpy(&this_device->phys_connector,
4076                &id_phys->alternate_paths_phys_connector,
4077                sizeof(this_device->phys_connector));
4078        memcpy(&this_device->bay,
4079                &id_phys->phys_bay_in_box,
4080                sizeof(this_device->bay));
4081}
4082
4083/* get number of local logical disks. */
4084static int hpsa_set_local_logical_count(struct ctlr_info *h,
4085        struct bmic_identify_controller *id_ctlr,
4086        u32 *nlocals)
4087{
4088        int rc;
4089
4090        if (!id_ctlr) {
4091                dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4092                        __func__);
4093                return -ENOMEM;
4094        }
4095        memset(id_ctlr, 0, sizeof(*id_ctlr));
4096        rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4097        if (!rc)
4098                if (id_ctlr->configured_logical_drive_count < 256)
4099                        *nlocals = id_ctlr->configured_logical_drive_count;
4100                else
4101                        *nlocals = le16_to_cpu(
4102                                        id_ctlr->extended_logical_unit_count);
4103        else
4104                *nlocals = -1;
4105        return rc;
4106}
4107
4108
4109static void hpsa_update_scsi_devices(struct ctlr_info *h)
4110{
4111        /* the idea here is we could get notified
4112         * that some devices have changed, so we do a report
4113         * physical luns and report logical luns cmd, and adjust
4114         * our list of devices accordingly.
4115         *
4116         * The scsi3addr's of devices won't change so long as the
4117         * adapter is not reset.  That means we can rescan and
4118         * tell which devices we already know about, vs. new
4119         * devices, vs.  disappearing devices.
4120         */
4121        struct ReportExtendedLUNdata *physdev_list = NULL;
4122        struct ReportLUNdata *logdev_list = NULL;
4123        struct bmic_identify_physical_device *id_phys = NULL;
4124        struct bmic_identify_controller *id_ctlr = NULL;
4125        u32 nphysicals = 0;
4126        u32 nlogicals = 0;
4127        u32 nlocal_logicals = 0;
4128        u32 ndev_allocated = 0;
4129        struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4130        int ncurrent = 0;
4131        int i, n_ext_target_devs, ndevs_to_allocate;
4132        int raid_ctlr_position;
4133        bool physical_device;
4134        DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4135
4136        currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4137        physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4138        logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4139        tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4140        id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4141        id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4142
4143        if (!currentsd || !physdev_list || !logdev_list ||
4144                !tmpdevice || !id_phys || !id_ctlr) {
4145                dev_err(&h->pdev->dev, "out of memory\n");
4146                goto out;
4147        }
4148        memset(lunzerobits, 0, sizeof(lunzerobits));
4149
4150        h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4151
4152        if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4153                        logdev_list, &nlogicals)) {
4154                h->drv_req_rescan = 1;
4155                goto out;
4156        }
4157
4158        /* Set number of local logicals (non PTRAID) */
4159        if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4160                dev_warn(&h->pdev->dev,
4161                        "%s: Can't determine number of local logical devices.\n",
4162                        __func__);
4163        }
4164
4165        /* We might see up to the maximum number of logical and physical disks
4166         * plus external target devices, and a device for the local RAID
4167         * controller.
4168         */
4169        ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4170
4171        /* Allocate the per device structures */
4172        for (i = 0; i < ndevs_to_allocate; i++) {
4173                if (i >= HPSA_MAX_DEVICES) {
4174                        dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4175                                "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4176                                ndevs_to_allocate - HPSA_MAX_DEVICES);
4177                        break;
4178                }
4179
4180                currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4181                if (!currentsd[i]) {
4182                        dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4183                                __FILE__, __LINE__);
4184                        h->drv_req_rescan = 1;
4185                        goto out;
4186                }
4187                ndev_allocated++;
4188        }
4189
4190        if (is_scsi_rev_5(h))
4191                raid_ctlr_position = 0;
4192        else
4193                raid_ctlr_position = nphysicals + nlogicals;
4194
4195        /* adjust our table of devices */
4196        n_ext_target_devs = 0;
4197        for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4198                u8 *lunaddrbytes, is_OBDR = 0;
4199                int rc = 0;
4200                int phys_dev_index = i - (raid_ctlr_position == 0);
4201
4202                physical_device = i < nphysicals + (raid_ctlr_position == 0);
4203
4204                /* Figure out where the LUN ID info is coming from */
4205                lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4206                        i, nphysicals, nlogicals, physdev_list, logdev_list);
4207
4208                /* skip masked non-disk devices */
4209                if (MASKED_DEVICE(lunaddrbytes) && physical_device &&
4210                   (physdev_list->LUN[phys_dev_index].device_type != 0x06) &&
4211                   (physdev_list->LUN[phys_dev_index].device_flags & 0x01))
4212                        continue;
4213
4214                /* Get device type, vendor, model, device id */
4215                rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4216                                                        &is_OBDR);
4217                if (rc == -ENOMEM) {
4218                        dev_warn(&h->pdev->dev,
4219                                "Out of memory, rescan deferred.\n");
4220                        h->drv_req_rescan = 1;
4221                        goto out;
4222                }
4223                if (rc) {
4224                        dev_warn(&h->pdev->dev,
4225                                "Inquiry failed, skipping device.\n");
4226                        continue;
4227                }
4228
4229                /* Determine if this is a lun from an external target array */
4230                tmpdevice->external =
4231                        figure_external_status(h, raid_ctlr_position, i,
4232                                                nphysicals, nlocal_logicals);
4233
4234                figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4235                hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4236                this_device = currentsd[ncurrent];
4237
4238                /* Turn on discovery_polling if there are ext target devices.
4239                 * Event-based change notification is unreliable for those.
4240                 */
4241                if (!h->discovery_polling) {
4242                        if (tmpdevice->external) {
4243                                h->discovery_polling = 1;
4244                                dev_info(&h->pdev->dev,
4245                                        "External target, activate discovery polling.\n");
4246                        }
4247                }
4248
4249
4250                *this_device = *tmpdevice;
4251                this_device->physical_device = physical_device;
4252
4253                /*
4254                 * Expose all devices except for physical devices that
4255                 * are masked.
4256                 */
4257                if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4258                        this_device->expose_device = 0;
4259                else
4260                        this_device->expose_device = 1;
4261
4262
4263                /*
4264                 * Get the SAS address for physical devices that are exposed.
4265                 */
4266                if (this_device->physical_device && this_device->expose_device)
4267                        hpsa_get_sas_address(h, lunaddrbytes, this_device);
4268
4269                switch (this_device->devtype) {
4270                case TYPE_ROM:
4271                        /* We don't *really* support actual CD-ROM devices,
4272                         * just "One Button Disaster Recovery" tape drive
4273                         * which temporarily pretends to be a CD-ROM drive.
4274                         * So we check that the device is really an OBDR tape
4275                         * device by checking for "$DR-10" in bytes 43-48 of
4276                         * the inquiry data.
4277                         */
4278                        if (is_OBDR)
4279                                ncurrent++;
4280                        break;
4281                case TYPE_DISK:
4282                case TYPE_ZBC:
4283                        if (this_device->physical_device) {
4284                                /* The disk is in HBA mode. */
4285                                /* Never use RAID mapper in HBA mode. */
4286                                this_device->offload_enabled = 0;
4287                                hpsa_get_ioaccel_drive_info(h, this_device,
4288                                        physdev_list, phys_dev_index, id_phys);
4289                                hpsa_get_path_info(this_device,
4290                                        physdev_list, phys_dev_index, id_phys);
4291                        }
4292                        ncurrent++;
4293                        break;
4294                case TYPE_TAPE:
4295                case TYPE_MEDIUM_CHANGER:
4296                        ncurrent++;
4297                        break;
4298                case TYPE_ENCLOSURE:
4299                        if (!this_device->external)
4300                                hpsa_get_enclosure_info(h, lunaddrbytes,
4301                                                physdev_list, phys_dev_index,
4302                                                this_device);
4303                        ncurrent++;
4304                        break;
4305                case TYPE_RAID:
4306                        /* Only present the Smartarray HBA as a RAID controller.
4307                         * If it's a RAID controller other than the HBA itself
4308                         * (an external RAID controller, MSA500 or similar)
4309                         * don't present it.
4310                         */
4311                        if (!is_hba_lunid(lunaddrbytes))
4312                                break;
4313                        ncurrent++;
4314                        break;
4315                default:
4316                        break;
4317                }
4318                if (ncurrent >= HPSA_MAX_DEVICES)
4319                        break;
4320        }
4321
4322        if (h->sas_host == NULL) {
4323                int rc = 0;
4324
4325                rc = hpsa_add_sas_host(h);
4326                if (rc) {
4327                        dev_warn(&h->pdev->dev,
4328                                "Could not add sas host %d\n", rc);
4329                        goto out;
4330                }
4331        }
4332
4333        adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4334out:
4335        kfree(tmpdevice);
4336        for (i = 0; i < ndev_allocated; i++)
4337                kfree(currentsd[i]);
4338        kfree(currentsd);
4339        kfree(physdev_list);
4340        kfree(logdev_list);
4341        kfree(id_ctlr);
4342        kfree(id_phys);
4343}
4344
4345static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4346                                   struct scatterlist *sg)
4347{
4348        u64 addr64 = (u64) sg_dma_address(sg);
4349        unsigned int len = sg_dma_len(sg);
4350
4351        desc->Addr = cpu_to_le64(addr64);
4352        desc->Len = cpu_to_le32(len);
4353        desc->Ext = 0;
4354}
4355
4356/*
4357 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4358 * dma mapping  and fills in the scatter gather entries of the
4359 * hpsa command, cp.
4360 */
4361static int hpsa_scatter_gather(struct ctlr_info *h,
4362                struct CommandList *cp,
4363                struct scsi_cmnd *cmd)
4364{
4365        struct scatterlist *sg;
4366        int use_sg, i, sg_limit, chained, last_sg;
4367        struct SGDescriptor *curr_sg;
4368
4369        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4370
4371        use_sg = scsi_dma_map(cmd);
4372        if (use_sg < 0)
4373                return use_sg;
4374
4375        if (!use_sg)
4376                goto sglist_finished;
4377
4378        /*
4379         * If the number of entries is greater than the max for a single list,
4380         * then we have a chained list; we will set up all but one entry in the
4381         * first list (the last entry is saved for link information);
4382         * otherwise, we don't have a chained list and we'll set up at each of
4383         * the entries in the one list.
4384         */
4385        curr_sg = cp->SG;
4386        chained = use_sg > h->max_cmd_sg_entries;
4387        sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4388        last_sg = scsi_sg_count(cmd) - 1;
4389        scsi_for_each_sg(cmd, sg, sg_limit, i) {
4390                hpsa_set_sg_descriptor(curr_sg, sg);
4391                curr_sg++;
4392        }
4393
4394        if (chained) {
4395                /*
4396                 * Continue with the chained list.  Set curr_sg to the chained
4397                 * list.  Modify the limit to the total count less the entries
4398                 * we've already set up.  Resume the scan at the list entry
4399                 * where the previous loop left off.
4400                 */
4401                curr_sg = h->cmd_sg_list[cp->cmdindex];
4402                sg_limit = use_sg - sg_limit;
4403                for_each_sg(sg, sg, sg_limit, i) {
4404                        hpsa_set_sg_descriptor(curr_sg, sg);
4405                        curr_sg++;
4406                }
4407        }
4408
4409        /* Back the pointer up to the last entry and mark it as "last". */
4410        (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4411
4412        if (use_sg + chained > h->maxSG)
4413                h->maxSG = use_sg + chained;
4414
4415        if (chained) {
4416                cp->Header.SGList = h->max_cmd_sg_entries;
4417                cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4418                if (hpsa_map_sg_chain_block(h, cp)) {
4419                        scsi_dma_unmap(cmd);
4420                        return -1;
4421                }
4422                return 0;
4423        }
4424
4425sglist_finished:
4426
4427        cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4428        cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4429        return 0;
4430}
4431
4432#define IO_ACCEL_INELIGIBLE (1)
4433static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4434{
4435        int is_write = 0;
4436        u32 block;
4437        u32 block_cnt;
4438
4439        /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4440        switch (cdb[0]) {
4441        case WRITE_6:
4442        case WRITE_12:
4443                is_write = 1;
4444        case READ_6:
4445        case READ_12:
4446                if (*cdb_len == 6) {
4447                        block = get_unaligned_be16(&cdb[2]);
4448                        block_cnt = cdb[4];
4449                        if (block_cnt == 0)
4450                                block_cnt = 256;
4451                } else {
4452                        BUG_ON(*cdb_len != 12);
4453                        block = get_unaligned_be32(&cdb[2]);
4454                        block_cnt = get_unaligned_be32(&cdb[6]);
4455                }
4456                if (block_cnt > 0xffff)
4457                        return IO_ACCEL_INELIGIBLE;
4458
4459                cdb[0] = is_write ? WRITE_10 : READ_10;
4460                cdb[1] = 0;
4461                cdb[2] = (u8) (block >> 24);
4462                cdb[3] = (u8) (block >> 16);
4463                cdb[4] = (u8) (block >> 8);
4464                cdb[5] = (u8) (block);
4465                cdb[6] = 0;
4466                cdb[7] = (u8) (block_cnt >> 8);
4467                cdb[8] = (u8) (block_cnt);
4468                cdb[9] = 0;
4469                *cdb_len = 10;
4470                break;
4471        }
4472        return 0;
4473}
4474
4475static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4476        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4477        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4478{
4479        struct scsi_cmnd *cmd = c->scsi_cmd;
4480        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4481        unsigned int len;
4482        unsigned int total_len = 0;
4483        struct scatterlist *sg;
4484        u64 addr64;
4485        int use_sg, i;
4486        struct SGDescriptor *curr_sg;
4487        u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4488
4489        /* TODO: implement chaining support */
4490        if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4491                atomic_dec(&phys_disk->ioaccel_cmds_out);
4492                return IO_ACCEL_INELIGIBLE;
4493        }
4494
4495        BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4496
4497        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4498                atomic_dec(&phys_disk->ioaccel_cmds_out);
4499                return IO_ACCEL_INELIGIBLE;
4500        }
4501
4502        c->cmd_type = CMD_IOACCEL1;
4503
4504        /* Adjust the DMA address to point to the accelerated command buffer */
4505        c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4506                                (c->cmdindex * sizeof(*cp));
4507        BUG_ON(c->busaddr & 0x0000007F);
4508
4509        use_sg = scsi_dma_map(cmd);
4510        if (use_sg < 0) {
4511                atomic_dec(&phys_disk->ioaccel_cmds_out);
4512                return use_sg;
4513        }
4514
4515        if (use_sg) {
4516                curr_sg = cp->SG;
4517                scsi_for_each_sg(cmd, sg, use_sg, i) {
4518                        addr64 = (u64) sg_dma_address(sg);
4519                        len  = sg_dma_len(sg);
4520                        total_len += len;
4521                        curr_sg->Addr = cpu_to_le64(addr64);
4522                        curr_sg->Len = cpu_to_le32(len);
4523                        curr_sg->Ext = cpu_to_le32(0);
4524                        curr_sg++;
4525                }
4526                (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4527
4528                switch (cmd->sc_data_direction) {
4529                case DMA_TO_DEVICE:
4530                        control |= IOACCEL1_CONTROL_DATA_OUT;
4531                        break;
4532                case DMA_FROM_DEVICE:
4533                        control |= IOACCEL1_CONTROL_DATA_IN;
4534                        break;
4535                case DMA_NONE:
4536                        control |= IOACCEL1_CONTROL_NODATAXFER;
4537                        break;
4538                default:
4539                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4540                        cmd->sc_data_direction);
4541                        BUG();
4542                        break;
4543                }
4544        } else {
4545                control |= IOACCEL1_CONTROL_NODATAXFER;
4546        }
4547
4548        c->Header.SGList = use_sg;
4549        /* Fill out the command structure to submit */
4550        cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4551        cp->transfer_len = cpu_to_le32(total_len);
4552        cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4553                        (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4554        cp->control = cpu_to_le32(control);
4555        memcpy(cp->CDB, cdb, cdb_len);
4556        memcpy(cp->CISS_LUN, scsi3addr, 8);
4557        /* Tag was already set at init time. */
4558        enqueue_cmd_and_start_io(h, c);
4559        return 0;
4560}
4561
4562/*
4563 * Queue a command directly to a device behind the controller using the
4564 * I/O accelerator path.
4565 */
4566static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4567        struct CommandList *c)
4568{
4569        struct scsi_cmnd *cmd = c->scsi_cmd;
4570        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4571
4572        c->phys_disk = dev;
4573
4574        return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4575                cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4576}
4577
4578/*
4579 * Set encryption parameters for the ioaccel2 request
4580 */
4581static void set_encrypt_ioaccel2(struct ctlr_info *h,
4582        struct CommandList *c, struct io_accel2_cmd *cp)
4583{
4584        struct scsi_cmnd *cmd = c->scsi_cmd;
4585        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4586        struct raid_map_data *map = &dev->raid_map;
4587        u64 first_block;
4588
4589        /* Are we doing encryption on this device */
4590        if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4591                return;
4592        /* Set the data encryption key index. */
4593        cp->dekindex = map->dekindex;
4594
4595        /* Set the encryption enable flag, encoded into direction field. */
4596        cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4597
4598        /* Set encryption tweak values based on logical block address
4599         * If block size is 512, tweak value is LBA.
4600         * For other block sizes, tweak is (LBA * block size)/ 512)
4601         */
4602        switch (cmd->cmnd[0]) {
4603        /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4604        case WRITE_6:
4605        case READ_6:
4606                first_block = get_unaligned_be16(&cmd->cmnd[2]);
4607                break;
4608        case WRITE_10:
4609        case READ_10:
4610        /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4611        case WRITE_12:
4612        case READ_12:
4613                first_block = get_unaligned_be32(&cmd->cmnd[2]);
4614                break;
4615        case WRITE_16:
4616        case READ_16:
4617                first_block = get_unaligned_be64(&cmd->cmnd[2]);
4618                break;
4619        default:
4620                dev_err(&h->pdev->dev,
4621                        "ERROR: %s: size (0x%x) not supported for encryption\n",
4622                        __func__, cmd->cmnd[0]);
4623                BUG();
4624                break;
4625        }
4626
4627        if (le32_to_cpu(map->volume_blk_size) != 512)
4628                first_block = first_block *
4629                                le32_to_cpu(map->volume_blk_size)/512;
4630
4631        cp->tweak_lower = cpu_to_le32(first_block);
4632        cp->tweak_upper = cpu_to_le32(first_block >> 32);
4633}
4634
4635static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4636        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4637        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4638{
4639        struct scsi_cmnd *cmd = c->scsi_cmd;
4640        struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4641        struct ioaccel2_sg_element *curr_sg;
4642        int use_sg, i;
4643        struct scatterlist *sg;
4644        u64 addr64;
4645        u32 len;
4646        u32 total_len = 0;
4647
4648        BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4649
4650        if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4651                atomic_dec(&phys_disk->ioaccel_cmds_out);
4652                return IO_ACCEL_INELIGIBLE;
4653        }
4654
4655        c->cmd_type = CMD_IOACCEL2;
4656        /* Adjust the DMA address to point to the accelerated command buffer */
4657        c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4658                                (c->cmdindex * sizeof(*cp));
4659        BUG_ON(c->busaddr & 0x0000007F);
4660
4661        memset(cp, 0, sizeof(*cp));
4662        cp->IU_type = IOACCEL2_IU_TYPE;
4663
4664        use_sg = scsi_dma_map(cmd);
4665        if (use_sg < 0) {
4666                atomic_dec(&phys_disk->ioaccel_cmds_out);
4667                return use_sg;
4668        }
4669
4670        if (use_sg) {
4671                curr_sg = cp->sg;
4672                if (use_sg > h->ioaccel_maxsg) {
4673                        addr64 = le64_to_cpu(
4674                                h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4675                        curr_sg->address = cpu_to_le64(addr64);
4676                        curr_sg->length = 0;
4677                        curr_sg->reserved[0] = 0;
4678                        curr_sg->reserved[1] = 0;
4679                        curr_sg->reserved[2] = 0;
4680                        curr_sg->chain_indicator = 0x80;
4681
4682                        curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4683                }
4684                scsi_for_each_sg(cmd, sg, use_sg, i) {
4685                        addr64 = (u64) sg_dma_address(sg);
4686                        len  = sg_dma_len(sg);
4687                        total_len += len;
4688                        curr_sg->address = cpu_to_le64(addr64);
4689                        curr_sg->length = cpu_to_le32(len);
4690                        curr_sg->reserved[0] = 0;
4691                        curr_sg->reserved[1] = 0;
4692                        curr_sg->reserved[2] = 0;
4693                        curr_sg->chain_indicator = 0;
4694                        curr_sg++;
4695                }
4696
4697                switch (cmd->sc_data_direction) {
4698                case DMA_TO_DEVICE:
4699                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4700                        cp->direction |= IOACCEL2_DIR_DATA_OUT;
4701                        break;
4702                case DMA_FROM_DEVICE:
4703                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4704                        cp->direction |= IOACCEL2_DIR_DATA_IN;
4705                        break;
4706                case DMA_NONE:
4707                        cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4708                        cp->direction |= IOACCEL2_DIR_NO_DATA;
4709                        break;
4710                default:
4711                        dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4712                                cmd->sc_data_direction);
4713                        BUG();
4714                        break;
4715                }
4716        } else {
4717                cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4718                cp->direction |= IOACCEL2_DIR_NO_DATA;
4719        }
4720
4721        /* Set encryption parameters, if necessary */
4722        set_encrypt_ioaccel2(h, c, cp);
4723
4724        cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4725        cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4726        memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4727
4728        cp->data_len = cpu_to_le32(total_len);
4729        cp->err_ptr = cpu_to_le64(c->busaddr +
4730                        offsetof(struct io_accel2_cmd, error_data));
4731        cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4732
4733        /* fill in sg elements */
4734        if (use_sg > h->ioaccel_maxsg) {
4735                cp->sg_count = 1;
4736                cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4737                if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4738                        atomic_dec(&phys_disk->ioaccel_cmds_out);
4739                        scsi_dma_unmap(cmd);
4740                        return -1;
4741                }
4742        } else
4743                cp->sg_count = (u8) use_sg;
4744
4745        enqueue_cmd_and_start_io(h, c);
4746        return 0;
4747}
4748
4749/*
4750 * Queue a command to the correct I/O accelerator path.
4751 */
4752static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4753        struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4754        u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4755{
4756        /* Try to honor the device's queue depth */
4757        if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4758                                        phys_disk->queue_depth) {
4759                atomic_dec(&phys_disk->ioaccel_cmds_out);
4760                return IO_ACCEL_INELIGIBLE;
4761        }
4762        if (h->transMethod & CFGTBL_Trans_io_accel1)
4763                return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4764                                                cdb, cdb_len, scsi3addr,
4765                                                phys_disk);
4766        else
4767                return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4768                                                cdb, cdb_len, scsi3addr,
4769                                                phys_disk);
4770}
4771
4772static void raid_map_helper(struct raid_map_data *map,
4773                int offload_to_mirror, u32 *map_index, u32 *current_group)
4774{
4775        if (offload_to_mirror == 0)  {
4776                /* use physical disk in the first mirrored group. */
4777                *map_index %= le16_to_cpu(map->data_disks_per_row);
4778                return;
4779        }
4780        do {
4781                /* determine mirror group that *map_index indicates */
4782                *current_group = *map_index /
4783                        le16_to_cpu(map->data_disks_per_row);
4784                if (offload_to_mirror == *current_group)
4785                        continue;
4786                if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4787                        /* select map index from next group */
4788                        *map_index += le16_to_cpu(map->data_disks_per_row);
4789                        (*current_group)++;
4790                } else {
4791                        /* select map index from first group */
4792                        *map_index %= le16_to_cpu(map->data_disks_per_row);
4793                        *current_group = 0;
4794                }
4795        } while (offload_to_mirror != *current_group);
4796}
4797
4798/*
4799 * Attempt to perform offload RAID mapping for a logical volume I/O.
4800 */
4801static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4802        struct CommandList *c)
4803{
4804        struct scsi_cmnd *cmd = c->scsi_cmd;
4805        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4806        struct raid_map_data *map = &dev->raid_map;
4807        struct raid_map_disk_data *dd = &map->data[0];
4808        int is_write = 0;
4809        u32 map_index;
4810        u64 first_block, last_block;
4811        u32 block_cnt;
4812        u32 blocks_per_row;
4813        u64 first_row, last_row;
4814        u32 first_row_offset, last_row_offset;
4815        u32 first_column, last_column;
4816        u64 r0_first_row, r0_last_row;
4817        u32 r5or6_blocks_per_row;
4818        u64 r5or6_first_row, r5or6_last_row;
4819        u32 r5or6_first_row_offset, r5or6_last_row_offset;
4820        u32 r5or6_first_column, r5or6_last_column;
4821        u32 total_disks_per_row;
4822        u32 stripesize;
4823        u32 first_group, last_group, current_group;
4824        u32 map_row;
4825        u32 disk_handle;
4826        u64 disk_block;
4827        u32 disk_block_cnt;
4828        u8 cdb[16];
4829        u8 cdb_len;
4830        u16 strip_size;
4831#if BITS_PER_LONG == 32
4832        u64 tmpdiv;
4833#endif
4834        int offload_to_mirror;
4835
4836        /* check for valid opcode, get LBA and block count */
4837        switch (cmd->cmnd[0]) {
4838        case WRITE_6:
4839                is_write = 1;
4840        case READ_6:
4841                first_block = get_unaligned_be16(&cmd->cmnd[2]);
4842                block_cnt = cmd->cmnd[4];
4843                if (block_cnt == 0)
4844                        block_cnt = 256;
4845                break;
4846        case WRITE_10:
4847                is_write = 1;
4848        case READ_10:
4849                first_block =
4850                        (((u64) cmd->cmnd[2]) << 24) |
4851                        (((u64) cmd->cmnd[3]) << 16) |
4852                        (((u64) cmd->cmnd[4]) << 8) |
4853                        cmd->cmnd[5];
4854                block_cnt =
4855                        (((u32) cmd->cmnd[7]) << 8) |
4856                        cmd->cmnd[8];
4857                break;
4858        case WRITE_12:
4859                is_write = 1;
4860        case READ_12:
4861                first_block =
4862                        (((u64) cmd->cmnd[2]) << 24) |
4863                        (((u64) cmd->cmnd[3]) << 16) |
4864                        (((u64) cmd->cmnd[4]) << 8) |
4865                        cmd->cmnd[5];
4866                block_cnt =
4867                        (((u32) cmd->cmnd[6]) << 24) |
4868                        (((u32) cmd->cmnd[7]) << 16) |
4869                        (((u32) cmd->cmnd[8]) << 8) |
4870                cmd->cmnd[9];
4871                break;
4872        case WRITE_16:
4873                is_write = 1;
4874        case READ_16:
4875                first_block =
4876                        (((u64) cmd->cmnd[2]) << 56) |
4877                        (((u64) cmd->cmnd[3]) << 48) |
4878                        (((u64) cmd->cmnd[4]) << 40) |
4879                        (((u64) cmd->cmnd[5]) << 32) |
4880                        (((u64) cmd->cmnd[6]) << 24) |
4881                        (((u64) cmd->cmnd[7]) << 16) |
4882                        (((u64) cmd->cmnd[8]) << 8) |
4883                        cmd->cmnd[9];
4884                block_cnt =
4885                        (((u32) cmd->cmnd[10]) << 24) |
4886                        (((u32) cmd->cmnd[11]) << 16) |
4887                        (((u32) cmd->cmnd[12]) << 8) |
4888                        cmd->cmnd[13];
4889                break;
4890        default:
4891                return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4892        }
4893        last_block = first_block + block_cnt - 1;
4894
4895        /* check for write to non-RAID-0 */
4896        if (is_write && dev->raid_level != 0)
4897                return IO_ACCEL_INELIGIBLE;
4898
4899        /* check for invalid block or wraparound */
4900        if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4901                last_block < first_block)
4902                return IO_ACCEL_INELIGIBLE;
4903
4904        /* calculate stripe information for the request */
4905        blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4906                                le16_to_cpu(map->strip_size);
4907        strip_size = le16_to_cpu(map->strip_size);
4908#if BITS_PER_LONG == 32
4909        tmpdiv = first_block;
4910        (void) do_div(tmpdiv, blocks_per_row);
4911        first_row = tmpdiv;
4912        tmpdiv = last_block;
4913        (void) do_div(tmpdiv, blocks_per_row);
4914        last_row = tmpdiv;
4915        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4916        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4917        tmpdiv = first_row_offset;
4918        (void) do_div(tmpdiv, strip_size);
4919        first_column = tmpdiv;
4920        tmpdiv = last_row_offset;
4921        (void) do_div(tmpdiv, strip_size);
4922        last_column = tmpdiv;
4923#else
4924        first_row = first_block / blocks_per_row;
4925        last_row = last_block / blocks_per_row;
4926        first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4927        last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4928        first_column = first_row_offset / strip_size;
4929        last_column = last_row_offset / strip_size;
4930#endif
4931
4932        /* if this isn't a single row/column then give to the controller */
4933        if ((first_row != last_row) || (first_column != last_column))
4934                return IO_ACCEL_INELIGIBLE;
4935
4936        /* proceeding with driver mapping */
4937        total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4938                                le16_to_cpu(map->metadata_disks_per_row);
4939        map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4940                                le16_to_cpu(map->row_cnt);
4941        map_index = (map_row * total_disks_per_row) + first_column;
4942
4943        switch (dev->raid_level) {
4944        case HPSA_RAID_0:
4945                break; /* nothing special to do */
4946        case HPSA_RAID_1:
4947                /* Handles load balance across RAID 1 members.
4948                 * (2-drive R1 and R10 with even # of drives.)
4949                 * Appropriate for SSDs, not optimal for HDDs
4950                 */
4951                BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4952                if (dev->offload_to_mirror)
4953                        map_index += le16_to_cpu(map->data_disks_per_row);
4954                dev->offload_to_mirror = !dev->offload_to_mirror;
4955                break;
4956        case HPSA_RAID_ADM:
4957                /* Handles N-way mirrors  (R1-ADM)
4958                 * and R10 with # of drives divisible by 3.)
4959                 */
4960                BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4961
4962                offload_to_mirror = dev->offload_to_mirror;
4963                raid_map_helper(map, offload_to_mirror,
4964                                &map_index, &current_group);
4965                /* set mirror group to use next time */
4966                offload_to_mirror =
4967                        (offload_to_mirror >=
4968                        le16_to_cpu(map->layout_map_count) - 1)
4969                        ? 0 : offload_to_mirror + 1;
4970                dev->offload_to_mirror = offload_to_mirror;
4971                /* Avoid direct use of dev->offload_to_mirror within this
4972                 * function since multiple threads might simultaneously
4973                 * increment it beyond the range of dev->layout_map_count -1.
4974                 */
4975                break;
4976        case HPSA_RAID_5:
4977        case HPSA_RAID_6:
4978                if (le16_to_cpu(map->layout_map_count) <= 1)
4979                        break;
4980
4981                /* Verify first and last block are in same RAID group */
4982                r5or6_blocks_per_row =
4983                        le16_to_cpu(map->strip_size) *
4984                        le16_to_cpu(map->data_disks_per_row);
4985                BUG_ON(r5or6_blocks_per_row == 0);
4986                stripesize = r5or6_blocks_per_row *
4987                        le16_to_cpu(map->layout_map_count);
4988#if BITS_PER_LONG == 32
4989                tmpdiv = first_block;
4990                first_group = do_div(tmpdiv, stripesize);
4991                tmpdiv = first_group;
4992                (void) do_div(tmpdiv, r5or6_blocks_per_row);
4993                first_group = tmpdiv;
4994                tmpdiv = last_block;
4995                last_group = do_div(tmpdiv, stripesize);
4996                tmpdiv = last_group;
4997                (void) do_div(tmpdiv, r5or6_blocks_per_row);
4998                last_group = tmpdiv;
4999#else
5000                first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5001                last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5002#endif
5003                if (first_group != last_group)
5004                        return IO_ACCEL_INELIGIBLE;
5005
5006                /* Verify request is in a single row of RAID 5/6 */
5007#if BITS_PER_LONG == 32
5008                tmpdiv = first_block;
5009                (void) do_div(tmpdiv, stripesize);
5010                first_row = r5or6_first_row = r0_first_row = tmpdiv;
5011                tmpdiv = last_block;
5012                (void) do_div(tmpdiv, stripesize);
5013                r5or6_last_row = r0_last_row = tmpdiv;
5014#else
5015                first_row = r5or6_first_row = r0_first_row =
5016                                                first_block / stripesize;
5017                r5or6_last_row = r0_last_row = last_block / stripesize;
5018#endif
5019                if (r5or6_first_row != r5or6_last_row)
5020                        return IO_ACCEL_INELIGIBLE;
5021
5022
5023                /* Verify request is in a single column */
5024#if BITS_PER_LONG == 32
5025                tmpdiv = first_block;
5026                first_row_offset = do_div(tmpdiv, stripesize);
5027                tmpdiv = first_row_offset;
5028                first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5029                r5or6_first_row_offset = first_row_offset;
5030                tmpdiv = last_block;
5031                r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5032                tmpdiv = r5or6_last_row_offset;
5033                r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5034                tmpdiv = r5or6_first_row_offset;
5035                (void) do_div(tmpdiv, map->strip_size);
5036                first_column = r5or6_first_column = tmpdiv;
5037                tmpdiv = r5or6_last_row_offset;
5038                (void) do_div(tmpdiv, map->strip_size);
5039                r5or6_last_column = tmpdiv;
5040#else
5041                first_row_offset = r5or6_first_row_offset =
5042                        (u32)((first_block % stripesize) %
5043                                                r5or6_blocks_per_row);
5044
5045                r5or6_last_row_offset =
5046                        (u32)((last_block % stripesize) %
5047                                                r5or6_blocks_per_row);
5048
5049                first_column = r5or6_first_column =
5050                        r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5051                r5or6_last_column =
5052                        r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5053#endif
5054                if (r5or6_first_column != r5or6_last_column)
5055                        return IO_ACCEL_INELIGIBLE;
5056
5057                /* Request is eligible */
5058                map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5059                        le16_to_cpu(map->row_cnt);
5060
5061                map_index = (first_group *
5062                        (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5063                        (map_row * total_disks_per_row) + first_column;
5064                break;
5065        default:
5066                return IO_ACCEL_INELIGIBLE;
5067        }
5068
5069        if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5070                return IO_ACCEL_INELIGIBLE;
5071
5072        c->phys_disk = dev->phys_disk[map_index];
5073        if (!c->phys_disk)
5074                return IO_ACCEL_INELIGIBLE;
5075
5076        disk_handle = dd[map_index].ioaccel_handle;
5077        disk_block = le64_to_cpu(map->disk_starting_blk) +
5078                        first_row * le16_to_cpu(map->strip_size) +
5079                        (first_row_offset - first_column *
5080                        le16_to_cpu(map->strip_size));
5081        disk_block_cnt = block_cnt;
5082
5083        /* handle differing logical/physical block sizes */
5084        if (map->phys_blk_shift) {
5085                disk_block <<= map->phys_blk_shift;
5086                disk_block_cnt <<= map->phys_blk_shift;
5087        }
5088        BUG_ON(disk_block_cnt > 0xffff);
5089
5090        /* build the new CDB for the physical disk I/O */
5091        if (disk_block > 0xffffffff) {
5092                cdb[0] = is_write ? WRITE_16 : READ_16;
5093                cdb[1] = 0;
5094                cdb[2] = (u8) (disk_block >> 56);
5095                cdb[3] = (u8) (disk_block >> 48);
5096                cdb[4] = (u8) (disk_block >> 40);
5097                cdb[5] = (u8) (disk_block >> 32);
5098                cdb[6] = (u8) (disk_block >> 24);
5099                cdb[7] = (u8) (disk_block >> 16);
5100                cdb[8] = (u8) (disk_block >> 8);
5101                cdb[9] = (u8) (disk_block);
5102                cdb[10] = (u8) (disk_block_cnt >> 24);
5103                cdb[11] = (u8) (disk_block_cnt >> 16);
5104                cdb[12] = (u8) (disk_block_cnt >> 8);
5105                cdb[13] = (u8) (disk_block_cnt);
5106                cdb[14] = 0;
5107                cdb[15] = 0;
5108                cdb_len = 16;
5109        } else {
5110                cdb[0] = is_write ? WRITE_10 : READ_10;
5111                cdb[1] = 0;
5112                cdb[2] = (u8) (disk_block >> 24);
5113                cdb[3] = (u8) (disk_block >> 16);
5114                cdb[4] = (u8) (disk_block >> 8);
5115                cdb[5] = (u8) (disk_block);
5116                cdb[6] = 0;
5117                cdb[7] = (u8) (disk_block_cnt >> 8);
5118                cdb[8] = (u8) (disk_block_cnt);
5119                cdb[9] = 0;
5120                cdb_len = 10;
5121        }
5122        return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5123                                                dev->scsi3addr,
5124                                                dev->phys_disk[map_index]);
5125}
5126
5127/*
5128 * Submit commands down the "normal" RAID stack path
5129 * All callers to hpsa_ciss_submit must check lockup_detected
5130 * beforehand, before (opt.) and after calling cmd_alloc
5131 */
5132static int hpsa_ciss_submit(struct ctlr_info *h,
5133        struct CommandList *c, struct scsi_cmnd *cmd,
5134        unsigned char scsi3addr[])
5135{
5136        cmd->host_scribble = (unsigned char *) c;
5137        c->cmd_type = CMD_SCSI;
5138        c->scsi_cmd = cmd;
5139        c->Header.ReplyQueue = 0;  /* unused in simple mode */
5140        memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5141        c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5142
5143        /* Fill in the request block... */
5144
5145        c->Request.Timeout = 0;
5146        BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5147        c->Request.CDBLen = cmd->cmd_len;
5148        memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5149        switch (cmd->sc_data_direction) {
5150        case DMA_TO_DEVICE:
5151                c->Request.type_attr_dir =
5152                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5153                break;
5154        case DMA_FROM_DEVICE:
5155                c->Request.type_attr_dir =
5156                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5157                break;
5158        case DMA_NONE:
5159                c->Request.type_attr_dir =
5160                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5161                break;
5162        case DMA_BIDIRECTIONAL:
5163                /* This can happen if a buggy application does a scsi passthru
5164                 * and sets both inlen and outlen to non-zero. ( see
5165                 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5166                 */
5167
5168                c->Request.type_attr_dir =
5169                        TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5170                /* This is technically wrong, and hpsa controllers should
5171                 * reject it with CMD_INVALID, which is the most correct
5172                 * response, but non-fibre backends appear to let it
5173                 * slide by, and give the same results as if this field
5174                 * were set correctly.  Either way is acceptable for
5175                 * our purposes here.
5176                 */
5177
5178                break;
5179
5180        default:
5181                dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5182                        cmd->sc_data_direction);
5183                BUG();
5184                break;
5185        }
5186
5187        if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5188                hpsa_cmd_resolve_and_free(h, c);
5189                return SCSI_MLQUEUE_HOST_BUSY;
5190        }
5191        enqueue_cmd_and_start_io(h, c);
5192        /* the cmd'll come back via intr handler in complete_scsi_command()  */
5193        return 0;
5194}
5195
5196static void hpsa_cmd_init(struct ctlr_info *h, int index,
5197                                struct CommandList *c)
5198{
5199        dma_addr_t cmd_dma_handle, err_dma_handle;
5200
5201        /* Zero out all of commandlist except the last field, refcount */
5202        memset(c, 0, offsetof(struct CommandList, refcount));
5203        c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5204        cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5205        c->err_info = h->errinfo_pool + index;
5206        memset(c->err_info, 0, sizeof(*c->err_info));
5207        err_dma_handle = h->errinfo_pool_dhandle
5208            + index * sizeof(*c->err_info);
5209        c->cmdindex = index;
5210        c->busaddr = (u32) cmd_dma_handle;
5211        c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5212        c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5213        c->h = h;
5214        c->scsi_cmd = SCSI_CMD_IDLE;
5215}
5216
5217static void hpsa_preinitialize_commands(struct ctlr_info *h)
5218{
5219        int i;
5220
5221        for (i = 0; i < h->nr_cmds; i++) {
5222                struct CommandList *c = h->cmd_pool + i;
5223
5224                hpsa_cmd_init(h, i, c);
5225                atomic_set(&c->refcount, 0);
5226        }
5227}
5228
5229static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5230                                struct CommandList *c)
5231{
5232        dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5233
5234        BUG_ON(c->cmdindex != index);
5235
5236        memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5237        memset(c->err_info, 0, sizeof(*c->err_info));
5238        c->busaddr = (u32) cmd_dma_handle;
5239}
5240
5241static int hpsa_ioaccel_submit(struct ctlr_info *h,
5242                struct CommandList *c, struct scsi_cmnd *cmd,
5243                unsigned char *scsi3addr)
5244{
5245        struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5246        int rc = IO_ACCEL_INELIGIBLE;
5247
5248        cmd->host_scribble = (unsigned char *) c;
5249
5250        if (dev->offload_enabled) {
5251                hpsa_cmd_init(h, c->cmdindex, c);
5252                c->cmd_type = CMD_SCSI;
5253                c->scsi_cmd = cmd;
5254                rc = hpsa_scsi_ioaccel_raid_map(h, c);
5255                if (rc < 0)     /* scsi_dma_map failed. */
5256                        rc = SCSI_MLQUEUE_HOST_BUSY;
5257        } else if (dev->hba_ioaccel_enabled) {
5258                hpsa_cmd_init(h, c->cmdindex, c);
5259                c->cmd_type = CMD_SCSI;
5260                c->scsi_cmd = cmd;
5261                rc = hpsa_scsi_ioaccel_direct_map(h, c);
5262                if (rc < 0)     /* scsi_dma_map failed. */
5263                        rc = SCSI_MLQUEUE_HOST_BUSY;
5264        }
5265        return rc;
5266}
5267
5268static void hpsa_command_resubmit_worker(struct work_struct *work)
5269{
5270        struct scsi_cmnd *cmd;
5271        struct hpsa_scsi_dev_t *dev;
5272        struct CommandList *c = container_of(work, struct CommandList, work);
5273
5274        cmd = c->scsi_cmd;
5275        dev = cmd->device->hostdata;
5276        if (!dev) {
5277                cmd->result = DID_NO_CONNECT << 16;
5278                return hpsa_cmd_free_and_done(c->h, c, cmd);
5279        }
5280        if (c->reset_pending)
5281                return hpsa_cmd_resolve_and_free(c->h, c);
5282        if (c->abort_pending)
5283                return hpsa_cmd_abort_and_free(c->h, c, cmd);
5284        if (c->cmd_type == CMD_IOACCEL2) {
5285                struct ctlr_info *h = c->h;
5286                struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5287                int rc;
5288
5289                if (c2->error_data.serv_response ==
5290                                IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5291                        rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5292                        if (rc == 0)
5293                                return;
5294                        if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5295                                /*
5296                                 * If we get here, it means dma mapping failed.
5297                                 * Try again via scsi mid layer, which will
5298                                 * then get SCSI_MLQUEUE_HOST_BUSY.
5299                                 */
5300                                cmd->result = DID_IMM_RETRY << 16;
5301                                return hpsa_cmd_free_and_done(h, c, cmd);
5302                        }
5303                        /* else, fall thru and resubmit down CISS path */
5304                }
5305        }
5306        hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5307        if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5308                /*
5309                 * If we get here, it means dma mapping failed. Try
5310                 * again via scsi mid layer, which will then get
5311                 * SCSI_MLQUEUE_HOST_BUSY.
5312                 *
5313                 * hpsa_ciss_submit will have already freed c
5314                 * if it encountered a dma mapping failure.
5315                 */
5316                cmd->result = DID_IMM_RETRY << 16;
5317                cmd->scsi_done(cmd);
5318        }
5319}
5320
5321/* Running in struct Scsi_Host->host_lock less mode */
5322static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5323{
5324        struct ctlr_info *h;
5325        struct hpsa_scsi_dev_t *dev;
5326        unsigned char scsi3addr[8];
5327        struct CommandList *c;
5328        int rc = 0;
5329
5330        /* Get the ptr to our adapter structure out of cmd->host. */
5331        h = sdev_to_hba(cmd->device);
5332
5333        BUG_ON(cmd->request->tag < 0);
5334
5335        dev = cmd->device->hostdata;
5336        if (!dev) {
5337                cmd->result = NOT_READY << 16; /* host byte */
5338                cmd->scsi_done(cmd);
5339                return 0;
5340        }
5341
5342        if (dev->removed) {
5343                cmd->result = DID_NO_CONNECT << 16;
5344                cmd->scsi_done(cmd);
5345                return 0;
5346        }
5347
5348        memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5349
5350        if (unlikely(lockup_detected(h))) {
5351                cmd->result = DID_NO_CONNECT << 16;
5352                cmd->scsi_done(cmd);
5353                return 0;
5354        }
5355        c = cmd_tagged_alloc(h, cmd);
5356
5357        /*
5358         * Call alternate submit routine for I/O accelerated commands.
5359         * Retries always go down the normal I/O path.
5360         */
5361        if (likely(cmd->retries == 0 &&
5362                cmd->request->cmd_type == REQ_TYPE_FS &&
5363                h->acciopath_status)) {
5364                rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5365                if (rc == 0)
5366                        return 0;
5367                if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5368                        hpsa_cmd_resolve_and_free(h, c);
5369                        return SCSI_MLQUEUE_HOST_BUSY;
5370                }
5371        }
5372        return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5373}
5374
5375static void hpsa_scan_complete(struct ctlr_info *h)
5376{
5377        unsigned long flags;
5378
5379        spin_lock_irqsave(&h->scan_lock, flags);
5380        h->scan_finished = 1;
5381        wake_up_all(&h->scan_wait_queue);
5382        spin_unlock_irqrestore(&h->scan_lock, flags);
5383}
5384
5385static void hpsa_scan_start(struct Scsi_Host *sh)
5386{
5387        struct ctlr_info *h = shost_to_hba(sh);
5388        unsigned long flags;
5389
5390        /*
5391         * Don't let rescans be initiated on a controller known to be locked
5392         * up.  If the controller locks up *during* a rescan, that thread is
5393         * probably hosed, but at least we can prevent new rescan threads from
5394         * piling up on a locked up controller.
5395         */
5396        if (unlikely(lockup_detected(h)))
5397                return hpsa_scan_complete(h);
5398
5399        /* wait until any scan already in progress is finished. */
5400        while (1) {
5401                spin_lock_irqsave(&h->scan_lock, flags);
5402                if (h->scan_finished)
5403                        break;
5404                spin_unlock_irqrestore(&h->scan_lock, flags);
5405                wait_event(h->scan_wait_queue, h->scan_finished);
5406                /* Note: We don't need to worry about a race between this
5407                 * thread and driver unload because the midlayer will
5408                 * have incremented the reference count, so unload won't
5409                 * happen if we're in here.
5410                 */
5411        }
5412        h->scan_finished = 0; /* mark scan as in progress */
5413        spin_unlock_irqrestore(&h->scan_lock, flags);
5414
5415        if (unlikely(lockup_detected(h)))
5416                return hpsa_scan_complete(h);
5417
5418        hpsa_update_scsi_devices(h);
5419
5420        hpsa_scan_complete(h);
5421}
5422
5423static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5424{
5425        struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5426
5427        if (!logical_drive)
5428                return -ENODEV;
5429
5430        if (qdepth < 1)
5431                qdepth = 1;
5432        else if (qdepth > logical_drive->queue_depth)
5433                qdepth = logical_drive->queue_depth;
5434
5435        return scsi_change_queue_depth(sdev, qdepth);
5436}
5437
5438static int hpsa_scan_finished(struct Scsi_Host *sh,
5439        unsigned long elapsed_time)
5440{
5441        struct ctlr_info *h = shost_to_hba(sh);
5442        unsigned long flags;
5443        int finished;
5444
5445        spin_lock_irqsave(&h->scan_lock, flags);
5446        finished = h->scan_finished;
5447        spin_unlock_irqrestore(&h->scan_lock, flags);
5448        return finished;
5449}
5450
5451static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5452{
5453        struct Scsi_Host *sh;
5454
5455        sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5456        if (sh == NULL) {
5457                dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5458                return -ENOMEM;
5459        }
5460
5461        sh->io_port = 0;
5462        sh->n_io_port = 0;
5463        sh->this_id = -1;
5464        sh->max_channel = 3;
5465        sh->max_cmd_len = MAX_COMMAND_SIZE;
5466        sh->max_lun = HPSA_MAX_LUN;
5467        sh->max_id = HPSA_MAX_LUN;
5468        sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5469        sh->cmd_per_lun = sh->can_queue;
5470        sh->sg_tablesize = h->maxsgentries;
5471        sh->transportt = hpsa_sas_transport_template;
5472        sh->hostdata[0] = (unsigned long) h;
5473        sh->irq = h->intr[h->intr_mode];
5474        sh->unique_id = sh->irq;
5475
5476        h->scsi_host = sh;
5477        return 0;
5478}
5479
5480static int hpsa_scsi_add_host(struct ctlr_info *h)
5481{
5482        int rv;
5483
5484        rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5485        if (rv) {
5486                dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5487                return rv;
5488        }
5489        scsi_scan_host(h->scsi_host);
5490        return 0;
5491}
5492
5493/*
5494 * The block layer has already gone to the trouble of picking out a unique,
5495 * small-integer tag for this request.  We use an offset from that value as
5496 * an index to select our command block.  (The offset allows us to reserve the
5497 * low-numbered entries for our own uses.)
5498 */
5499static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5500{
5501        int idx = scmd->request->tag;
5502
5503        if (idx < 0)
5504                return idx;
5505
5506        /* Offset to leave space for internal cmds. */
5507        return idx += HPSA_NRESERVED_CMDS;
5508}
5509
5510/*
5511 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5512 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5513 */
5514static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5515                                struct CommandList *c, unsigned char lunaddr[],
5516                                int reply_queue)
5517{
5518        int rc;
5519
5520        /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5521        (void) fill_cmd(c, TEST_UNIT_READY, h,
5522                        NULL, 0, 0, lunaddr, TYPE_CMD);
5523        rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5524        if (rc)
5525                return rc;
5526        /* no unmap needed here because no data xfer. */
5527
5528        /* Check if the unit is already ready. */
5529        if (c->err_info->CommandStatus == CMD_SUCCESS)
5530                return 0;
5531
5532        /*
5533         * The first command sent after reset will receive "unit attention" to
5534         * indicate that the LUN has been reset...this is actually what we're
5535         * looking for (but, success is good too).
5536         */
5537        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5538                c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5539                        (c->err_info->SenseInfo[2] == NO_SENSE ||
5540                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5541                return 0;
5542
5543        return 1;
5544}
5545
5546/*
5547 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5548 * returns zero when the unit is ready, and non-zero when giving up.
5549 */
5550static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5551                                struct CommandList *c,
5552                                unsigned char lunaddr[], int reply_queue)
5553{
5554        int rc;
5555        int count = 0;
5556        int waittime = 1; /* seconds */
5557
5558        /* Send test unit ready until device ready, or give up. */
5559        for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5560
5561                /*
5562                 * Wait for a bit.  do this first, because if we send
5563                 * the TUR right away, the reset will just abort it.
5564                 */
5565                msleep(1000 * waittime);
5566
5567                rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5568                if (!rc)
5569                        break;
5570
5571                /* Increase wait time with each try, up to a point. */
5572                if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5573                        waittime *= 2;
5574
5575                dev_warn(&h->pdev->dev,
5576                         "waiting %d secs for device to become ready.\n",
5577                         waittime);
5578        }
5579
5580        return rc;
5581}
5582
5583static int wait_for_device_to_become_ready(struct ctlr_info *h,
5584                                           unsigned char lunaddr[],
5585                                           int reply_queue)
5586{
5587        int first_queue;
5588        int last_queue;
5589        int rq;
5590        int rc = 0;
5591        struct CommandList *c;
5592
5593        c = cmd_alloc(h);
5594
5595        /*
5596         * If no specific reply queue was requested, then send the TUR
5597         * repeatedly, requesting a reply on each reply queue; otherwise execute
5598         * the loop exactly once using only the specified queue.
5599         */
5600        if (reply_queue == DEFAULT_REPLY_QUEUE) {
5601                first_queue = 0;
5602                last_queue = h->nreply_queues - 1;
5603        } else {
5604                first_queue = reply_queue;
5605                last_queue = reply_queue;
5606        }
5607
5608        for (rq = first_queue; rq <= last_queue; rq++) {
5609                rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5610                if (rc)
5611                        break;
5612        }
5613
5614        if (rc)
5615                dev_warn(&h->pdev->dev, "giving up on device.\n");
5616        else
5617                dev_warn(&h->pdev->dev, "device is ready.\n");
5618
5619        cmd_free(h, c);
5620        return rc;
5621}
5622
5623/* Need at least one of these error handlers to keep ../scsi/hosts.c from
5624 * complaining.  Doing a host- or bus-reset can't do anything good here.
5625 */
5626static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5627{
5628        int rc;
5629        struct ctlr_info *h;
5630        struct hpsa_scsi_dev_t *dev;
5631        u8 reset_type;
5632        char msg[48];
5633
5634        /* find the controller to which the command to be aborted was sent */
5635        h = sdev_to_hba(scsicmd->device);
5636        if (h == NULL) /* paranoia */
5637                return FAILED;
5638
5639        if (lockup_detected(h))
5640                return FAILED;
5641
5642        dev = scsicmd->device->hostdata;
5643        if (!dev) {
5644                dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5645                return FAILED;
5646        }
5647
5648        /* if controller locked up, we can guarantee command won't complete */
5649        if (lockup_detected(h)) {
5650                snprintf(msg, sizeof(msg),
5651                         "cmd %d RESET FAILED, lockup detected",
5652                         hpsa_get_cmd_index(scsicmd));
5653                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5654                return FAILED;
5655        }
5656
5657        /* this reset request might be the result of a lockup; check */
5658        if (detect_controller_lockup(h)) {
5659                snprintf(msg, sizeof(msg),
5660                         "cmd %d RESET FAILED, new lockup detected",
5661                         hpsa_get_cmd_index(scsicmd));
5662                hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5663                return FAILED;
5664        }
5665
5666        /* Do not attempt on controller */
5667        if (is_hba_lunid(dev->scsi3addr))
5668                return SUCCESS;
5669
5670        if (is_logical_dev_addr_mode(dev->scsi3addr))
5671                reset_type = HPSA_DEVICE_RESET_MSG;
5672        else
5673                reset_type = HPSA_PHYS_TARGET_RESET;
5674
5675        sprintf(msg, "resetting %s",
5676                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5677        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5678
5679        h->reset_in_progress = 1;
5680
5681        /* send a reset to the SCSI LUN which the command was sent to */
5682        rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5683                           DEFAULT_REPLY_QUEUE);
5684        sprintf(msg, "reset %s %s",
5685                reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5686                rc == 0 ? "completed successfully" : "failed");
5687        hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5688        h->reset_in_progress = 0;
5689        return rc == 0 ? SUCCESS : FAILED;
5690}
5691
5692static void swizzle_abort_tag(u8 *tag)
5693{
5694        u8 original_tag[8];
5695
5696        memcpy(original_tag, tag, 8);
5697        tag[0] = original_tag[3];
5698        tag[1] = original_tag[2];
5699        tag[2] = original_tag[1];
5700        tag[3] = original_tag[0];
5701        tag[4] = original_tag[7];
5702        tag[5] = original_tag[6];
5703        tag[6] = original_tag[5];
5704        tag[7] = original_tag[4];
5705}
5706
5707static void hpsa_get_tag(struct ctlr_info *h,
5708        struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5709{
5710        u64 tag;
5711        if (c->cmd_type == CMD_IOACCEL1) {
5712                struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5713                        &h->ioaccel_cmd_pool[c->cmdindex];
5714                tag = le64_to_cpu(cm1->tag);
5715                *tagupper = cpu_to_le32(tag >> 32);
5716                *taglower = cpu_to_le32(tag);
5717                return;
5718        }
5719        if (c->cmd_type == CMD_IOACCEL2) {
5720                struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5721                        &h->ioaccel2_cmd_pool[c->cmdindex];
5722                /* upper tag not used in ioaccel2 mode */
5723                memset(tagupper, 0, sizeof(*tagupper));
5724                *taglower = cm2->Tag;
5725                return;
5726        }
5727        tag = le64_to_cpu(c->Header.tag);
5728        *tagupper = cpu_to_le32(tag >> 32);
5729        *taglower = cpu_to_le32(tag);
5730}
5731
5732static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5733        struct CommandList *abort, int reply_queue)
5734{
5735        int rc = IO_OK;
5736        struct CommandList *c;
5737        struct ErrorInfo *ei;
5738        __le32 tagupper, taglower;
5739
5740        c = cmd_alloc(h);
5741
5742        /* fill_cmd can't fail here, no buffer to map */
5743        (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5744                0, 0, scsi3addr, TYPE_MSG);
5745        if (h->needs_abort_tags_swizzled)
5746                swizzle_abort_tag(&c->Request.CDB[4]);
5747        (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5748        hpsa_get_tag(h, abort, &taglower, &tagupper);
5749        dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5750                __func__, tagupper, taglower);
5751        /* no unmap needed here because no data xfer. */
5752
5753        ei = c->err_info;
5754        switch (ei->CommandStatus) {
5755        case CMD_SUCCESS:
5756                break;
5757        case CMD_TMF_STATUS:
5758                rc = hpsa_evaluate_tmf_status(h, c);
5759                break;
5760        case CMD_UNABORTABLE: /* Very common, don't make noise. */
5761                rc = -1;
5762                break;
5763        default:
5764                dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5765                        __func__, tagupper, taglower);
5766                hpsa_scsi_interpret_error(h, c);
5767                rc = -1;
5768                break;
5769        }
5770        cmd_free(h, c);
5771        dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5772                __func__, tagupper, taglower);
5773        return rc;
5774}
5775
5776static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5777        struct CommandList *command_to_abort, int reply_queue)
5778{
5779        struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5780        struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5781        struct io_accel2_cmd *c2a =
5782                &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5783        struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5784        struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5785
5786        /*
5787         * We're overlaying struct hpsa_tmf_struct on top of something which
5788         * was allocated as a struct io_accel2_cmd, so we better be sure it
5789         * actually fits, and doesn't overrun the error info space.
5790         */
5791        BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5792                        sizeof(struct io_accel2_cmd));
5793        BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5794                        offsetof(struct hpsa_tmf_struct, error_len) +
5795                                sizeof(ac->error_len));
5796
5797        c->cmd_type = IOACCEL2_TMF;
5798        c->scsi_cmd = SCSI_CMD_BUSY;
5799
5800        /* Adjust the DMA address to point to the accelerated command buffer */
5801        c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5802                                (c->cmdindex * sizeof(struct io_accel2_cmd));
5803        BUG_ON(c->busaddr & 0x0000007F);
5804
5805        memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5806        ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5807        ac->reply_queue = reply_queue;
5808        ac->tmf = IOACCEL2_TMF_ABORT;
5809        ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5810        memset(ac->lun_id, 0, sizeof(ac->lun_id));
5811        ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5812        ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5813        ac->error_ptr = cpu_to_le64(c->busaddr +
5814                        offsetof(struct io_accel2_cmd, error_data));
5815        ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5816}
5817
5818/* ioaccel2 path firmware cannot handle abort task requests.
5819 * Change abort requests to physical target reset, and send to the
5820 * address of the physical disk used for the ioaccel 2 command.
5821 * Return 0 on success (IO_OK)
5822 *       -1 on failure
5823 */
5824
5825static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5826        unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5827{
5828        int rc = IO_OK;
5829        struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5830        struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5831        unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5832        unsigned char *psa = &phys_scsi3addr[0];
5833
5834        /* Get a pointer to the hpsa logical device. */
5835        scmd = abort->scsi_cmd;
5836        dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5837        if (dev == NULL) {
5838                dev_warn(&h->pdev->dev,
5839                        "Cannot abort: no device pointer for command.\n");
5840                        return -1; /* not abortable */
5841        }
5842
5843        if (h->raid_offload_debug > 0)
5844                dev_info(&h->pdev->dev,
5845                        "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5846                        h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5847                        "Reset as abort",
5848                        scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5849                        scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5850
5851        if (!dev->offload_enabled) {
5852                dev_warn(&h->pdev->dev,
5853                        "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5854                return -1; /* not abortable */
5855        }
5856
5857        /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5858        if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5859                dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5860                return -1; /* not abortable */
5861        }
5862
5863        /* send the reset */
5864        if (h->raid_offload_debug > 0)
5865                dev_info(&h->pdev->dev,
5866                        "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5867                        psa[0], psa[1], psa[2], psa[3],
5868                        psa[4], psa[5], psa[6], psa[7]);
5869        rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5870        if (rc != 0) {
5871                dev_warn(&h->pdev->dev,
5872                        "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5873                        psa[0], psa[1], psa[2], psa[3],
5874                        psa[4], psa[5], psa[6], psa[7]);
5875                return rc; /* failed to reset */
5876        }
5877
5878        /* wait for device to recover */
5879        if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5880                dev_warn(&h->pdev->dev,
5881                        "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5882                        psa[0], psa[1], psa[2], psa[3],
5883                        psa[4], psa[5], psa[6], psa[7]);
5884                return -1;  /* failed to recover */
5885        }
5886
5887        /* device recovered */
5888        dev_info(&h->pdev->dev,
5889                "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5890                psa[0], psa[1], psa[2], psa[3],
5891                psa[4], psa[5], psa[6], psa[7]);
5892
5893        return rc; /* success */
5894}
5895
5896static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5897        struct CommandList *abort, int reply_queue)
5898{
5899        int rc = IO_OK;
5900        struct CommandList *c;
5901        __le32 taglower, tagupper;
5902        struct hpsa_scsi_dev_t *dev;
5903        struct io_accel2_cmd *c2;
5904
5905        dev = abort->scsi_cmd->device->hostdata;
5906        if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5907                return -1;
5908
5909        c = cmd_alloc(h);
5910        setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5911        c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5912        (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5913        hpsa_get_tag(h, abort, &taglower, &tagupper);
5914        dev_dbg(&h->pdev->dev,
5915                "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5916                __func__, tagupper, taglower);
5917        /* no unmap needed here because no data xfer. */
5918
5919        dev_dbg(&h->pdev->dev,
5920                "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5921                __func__, tagupper, taglower, c2->error_data.serv_response);
5922        switch (c2->error_data.serv_response) {
5923        case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5924        case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5925                rc = 0;
5926                break;
5927        case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5928        case IOACCEL2_SERV_RESPONSE_FAILURE:
5929        case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5930                rc = -1;
5931                break;
5932        default:
5933                dev_warn(&h->pdev->dev,
5934                        "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5935                        __func__, tagupper, taglower,
5936                        c2->error_data.serv_response);
5937                rc = -1;
5938        }
5939        cmd_free(h, c);
5940        dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5941                tagupper, taglower);
5942        return rc;
5943}
5944
5945static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5946        struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
5947{
5948        /*
5949         * ioccelerator mode 2 commands should be aborted via the
5950         * accelerated path, since RAID path is unaware of these commands,
5951         * but not all underlying firmware can handle abort TMF.
5952         * Change abort to physical device reset when abort TMF is unsupported.
5953         */
5954        if (abort->cmd_type == CMD_IOACCEL2) {
5955                if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
5956                        dev->physical_device)
5957                        return hpsa_send_abort_ioaccel2(h, abort,
5958                                                reply_queue);
5959                else
5960                        return hpsa_send_reset_as_abort_ioaccel2(h,
5961                                                        dev->scsi3addr,
5962                                                        abort, reply_queue);
5963        }
5964        return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
5965}
5966
5967/* Find out which reply queue a command was meant to return on */
5968static int hpsa_extract_reply_queue(struct ctlr_info *h,
5969                                        struct CommandList *c)
5970{
5971        if (c->cmd_type == CMD_IOACCEL2)
5972                return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5973        return c->Header.ReplyQueue;
5974}
5975
5976/*
5977 * Limit concurrency of abort commands to prevent
5978 * over-subscription of commands
5979 */
5980static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5981{
5982#define ABORT_CMD_WAIT_MSECS 5000
5983        return !wait_event_timeout(h->abort_cmd_wait_queue,
5984                        atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5985                        msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5986}
5987
5988/* Send an abort for the specified command.
5989 *      If the device and controller support it,
5990 *              send a task abort request.
5991 */
5992static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5993{
5994
5995        int rc;
5996        struct ctlr_info *h;
5997        struct hpsa_scsi_dev_t *dev;
5998        struct CommandList *abort; /* pointer to command to be aborted */
5999        struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6000        char msg[256];          /* For debug messaging. */
6001        int ml = 0;
6002        __le32 tagupper, taglower;
6003        int refcount, reply_queue;
6004
6005        if (sc == NULL)
6006                return FAILED;
6007
6008        if (sc->device == NULL)
6009                return FAILED;
6010
6011        /* Find the controller of the command to be aborted */
6012        h = sdev_to_hba(sc->device);
6013        if (h == NULL)
6014                return FAILED;
6015
6016        /* Find the device of the command to be aborted */
6017        dev = sc->device->hostdata;
6018        if (!dev) {
6019                dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6020                                msg);
6021                return FAILED;
6022        }
6023
6024        /* If controller locked up, we can guarantee command won't complete */
6025        if (lockup_detected(h)) {
6026                hpsa_show_dev_msg(KERN_WARNING, h, dev,
6027                                        "ABORT FAILED, lockup detected");
6028                return FAILED;
6029        }
6030
6031        /* This is a good time to check if controller lockup has occurred */
6032        if (detect_controller_lockup(h)) {
6033                hpsa_show_dev_msg(KERN_WARNING, h, dev,
6034                                        "ABORT FAILED, new lockup detected");
6035                return FAILED;
6036        }
6037
6038        /* Check that controller supports some kind of task abort */
6039        if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6040                !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6041                return FAILED;
6042
6043        memset(msg, 0, sizeof(msg));
6044        ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6045                h->scsi_host->host_no, sc->device->channel,
6046                sc->device->id, sc->device->lun,
6047                "Aborting command", sc);
6048
6049        /* Get SCSI command to be aborted */
6050        abort = (struct CommandList *) sc->host_scribble;
6051        if (abort == NULL) {
6052                /* This can happen if the command already completed. */
6053                return SUCCESS;
6054        }
6055        refcount = atomic_inc_return(&abort->refcount);
6056        if (refcount == 1) { /* Command is done already. */
6057                cmd_free(h, abort);
6058                return SUCCESS;
6059        }
6060
6061        /* Don't bother trying the abort if we know it won't work. */
6062        if (abort->cmd_type != CMD_IOACCEL2 &&
6063                abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6064                cmd_free(h, abort);
6065                return FAILED;
6066        }
6067
6068        /*
6069         * Check that we're aborting the right command.
6070         * It's possible the CommandList already completed and got re-used.
6071         */
6072        if (abort->scsi_cmd != sc) {
6073                cmd_free(h, abort);
6074                return SUCCESS;
6075        }
6076
6077        abort->abort_pending = true;
6078        hpsa_get_tag(h, abort, &taglower, &tagupper);
6079        reply_queue = hpsa_extract_reply_queue(h, abort);
6080        ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6081        as  = abort->scsi_cmd;
6082        if (as != NULL)
6083                ml += sprintf(msg+ml,
6084                        "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6085                        as->cmd_len, as->cmnd[0], as->cmnd[1],
6086                        as->serial_number);
6087        dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6088        hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6089
6090        /*
6091         * Command is in flight, or possibly already completed
6092         * by the firmware (but not to the scsi mid layer) but we can't
6093         * distinguish which.  Send the abort down.
6094         */
6095        if (wait_for_available_abort_cmd(h)) {
6096                dev_warn(&h->pdev->dev,
6097                        "%s FAILED, timeout waiting for an abort command to become available.\n",
6098                        msg);
6099                cmd_free(h, abort);
6100                return FAILED;
6101        }
6102        rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6103        atomic_inc(&h->abort_cmds_available);
6104        wake_up_all(&h->abort_cmd_wait_queue);
6105        if (rc != 0) {
6106                dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6107                hpsa_show_dev_msg(KERN_WARNING, h, dev,
6108                                "FAILED to abort command");
6109                cmd_free(h, abort);
6110                return FAILED;
6111        }
6112        dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6113        wait_event(h->event_sync_wait_queue,
6114                   abort->scsi_cmd != sc || lockup_detected(h));
6115        cmd_free(h, abort);
6116        return !lockup_detected(h) ? SUCCESS : FAILED;
6117}
6118
6119/*
6120 * For operations with an associated SCSI command, a command block is allocated
6121 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6122 * block request tag as an index into a table of entries.  cmd_tagged_free() is
6123 * the complement, although cmd_free() may be called instead.
6124 */
6125static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6126                                            struct scsi_cmnd *scmd)
6127{
6128        int idx = hpsa_get_cmd_index(scmd);
6129        struct CommandList *c = h->cmd_pool + idx;
6130
6131        if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6132                dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6133                        idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6134                /* The index value comes from the block layer, so if it's out of
6135                 * bounds, it's probably not our bug.
6136                 */
6137                BUG();
6138        }
6139
6140        atomic_inc(&c->refcount);
6141        if (unlikely(!hpsa_is_cmd_idle(c))) {
6142                /*
6143                 * We expect that the SCSI layer will hand us a unique tag
6144                 * value.  Thus, there should never be a collision here between
6145                 * two requests...because if the selected command isn't idle
6146                 * then someone is going to be very disappointed.
6147                 */
6148                dev_err(&h->pdev->dev,
6149                        "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6150                        idx);
6151                if (c->scsi_cmd != NULL)
6152                        scsi_print_command(c->scsi_cmd);
6153                scsi_print_command(scmd);
6154        }
6155
6156        hpsa_cmd_partial_init(h, idx, c);
6157        return c;
6158}
6159
6160static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6161{
6162        /*
6163         * Release our reference to the block.  We don't need to do anything
6164         * else to free it, because it is accessed by index.  (There's no point
6165         * in checking the result of the decrement, since we cannot guarantee
6166         * that there isn't a concurrent abort which is also accessing it.)
6167         */
6168        (void)atomic_dec(&c->refcount);
6169}
6170
6171/*
6172 * For operations that cannot sleep, a command block is allocated at init,
6173 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6174 * which ones are free or in use.  Lock must be held when calling this.
6175 * cmd_free() is the complement.
6176 * This function never gives up and returns NULL.  If it hangs,
6177 * another thread must call cmd_free() to free some tags.
6178 */
6179
6180static struct CommandList *cmd_alloc(struct ctlr_info *h)
6181{
6182        struct CommandList *c;
6183        int refcount, i;
6184        int offset = 0;
6185
6186        /*
6187         * There is some *extremely* small but non-zero chance that that
6188         * multiple threads could get in here, and one thread could
6189         * be scanning through the list of bits looking for a free
6190         * one, but the free ones are always behind him, and other
6191         * threads sneak in behind him and eat them before he can
6192         * get to them, so that while there is always a free one, a
6193         * very unlucky thread might be starved anyway, never able to
6194         * beat the other threads.  In reality, this happens so
6195         * infrequently as to be indistinguishable from never.
6196         *
6197         * Note that we start allocating commands before the SCSI host structure
6198         * is initialized.  Since the search starts at bit zero, this
6199         * all works, since we have at least one command structure available;
6200         * however, it means that the structures with the low indexes have to be
6201         * reserved for driver-initiated requests, while requests from the block
6202         * layer will use the higher indexes.
6203         */
6204
6205        for (;;) {
6206                i = find_next_zero_bit(h->cmd_pool_bits,
6207                                        HPSA_NRESERVED_CMDS,
6208                                        offset);
6209                if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6210                        offset = 0;
6211                        continue;
6212                }
6213                c = h->cmd_pool + i;
6214                refcount = atomic_inc_return(&c->refcount);
6215                if (unlikely(refcount > 1)) {
6216                        cmd_free(h, c); /* already in use */
6217                        offset = (i + 1) % HPSA_NRESERVED_CMDS;
6218                        continue;
6219                }
6220                set_bit(i & (BITS_PER_LONG - 1),
6221                        h->cmd_pool_bits + (i / BITS_PER_LONG));
6222                break; /* it's ours now. */
6223        }
6224        hpsa_cmd_partial_init(h, i, c);
6225        return c;
6226}
6227
6228/*
6229 * This is the complementary operation to cmd_alloc().  Note, however, in some
6230 * corner cases it may also be used to free blocks allocated by
6231 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6232 * the clear-bit is harmless.
6233 */
6234static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6235{
6236        if (atomic_dec_and_test(&c->refcount)) {
6237                int i;
6238
6239                i = c - h->cmd_pool;
6240                clear_bit(i & (BITS_PER_LONG - 1),
6241                          h->cmd_pool_bits + (i / BITS_PER_LONG));
6242        }
6243}
6244
6245#ifdef CONFIG_COMPAT
6246
6247static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6248        void __user *arg)
6249{
6250        IOCTL32_Command_struct __user *arg32 =
6251            (IOCTL32_Command_struct __user *) arg;
6252        IOCTL_Command_struct arg64;
6253        IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6254        int err;
6255        u32 cp;
6256
6257        memset(&arg64, 0, sizeof(arg64));
6258        err = 0;
6259        err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6260                           sizeof(arg64.LUN_info));
6261        err |= copy_from_user(&arg64.Request, &arg32->Request,
6262                           sizeof(arg64.Request));
6263        err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6264                           sizeof(arg64.error_info));
6265        err |= get_user(arg64.buf_size, &arg32->buf_size);
6266        err |= get_user(cp, &arg32->buf);
6267        arg64.buf = compat_ptr(cp);
6268        err |= copy_to_user(p, &arg64, sizeof(arg64));
6269
6270        if (err)
6271                return -EFAULT;
6272
6273        err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6274        if (err)
6275                return err;
6276        err |= copy_in_user(&arg32->error_info, &p->error_info,
6277                         sizeof(arg32->error_info));
6278        if (err)
6279                return -EFAULT;
6280        return err;
6281}
6282
6283static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6284        int cmd, void __user *arg)
6285{
6286        BIG_IOCTL32_Command_struct __user *arg32 =
6287            (BIG_IOCTL32_Command_struct __user *) arg;
6288        BIG_IOCTL_Command_struct arg64;
6289        BIG_IOCTL_Command_struct __user *p =
6290            compat_alloc_user_space(sizeof(arg64));
6291        int err;
6292        u32 cp;
6293
6294        memset(&arg64, 0, sizeof(arg64));
6295        err = 0;
6296        err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6297                           sizeof(arg64.LUN_info));
6298        err |= copy_from_user(&arg64.Request, &arg32->Request,
6299                           sizeof(arg64.Request));
6300        err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6301                           sizeof(arg64.error_info));
6302        err |= get_user(arg64.buf_size, &arg32->buf_size);
6303        err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6304        err |= get_user(cp, &arg32->buf);
6305        arg64.buf = compat_ptr(cp);
6306        err |= copy_to_user(p, &arg64, sizeof(arg64));
6307
6308        if (err)
6309                return -EFAULT;
6310
6311        err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6312        if (err)
6313                return err;
6314        err |= copy_in_user(&arg32->error_info, &p->error_info,
6315                         sizeof(arg32->error_info));
6316        if (err)
6317                return -EFAULT;
6318        return err;
6319}
6320
6321static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6322{
6323        switch (cmd) {
6324        case CCISS_GETPCIINFO:
6325        case CCISS_GETINTINFO:
6326        case CCISS_SETINTINFO:
6327        case CCISS_GETNODENAME:
6328        case CCISS_SETNODENAME:
6329        case CCISS_GETHEARTBEAT:
6330        case CCISS_GETBUSTYPES:
6331        case CCISS_GETFIRMVER:
6332        case CCISS_GETDRIVVER:
6333        case CCISS_REVALIDVOLS:
6334        case CCISS_DEREGDISK:
6335        case CCISS_REGNEWDISK:
6336        case CCISS_REGNEWD:
6337        case CCISS_RESCANDISK:
6338        case CCISS_GETLUNINFO:
6339                return hpsa_ioctl(dev, cmd, arg);
6340
6341        case CCISS_PASSTHRU32:
6342                return hpsa_ioctl32_passthru(dev, cmd, arg);
6343        case CCISS_BIG_PASSTHRU32:
6344                return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6345
6346        default:
6347                return -ENOIOCTLCMD;
6348        }
6349}
6350#endif
6351
6352static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6353{
6354        struct hpsa_pci_info pciinfo;
6355
6356        if (!argp)
6357                return -EINVAL;
6358        pciinfo.domain = pci_domain_nr(h->pdev->bus);
6359        pciinfo.bus = h->pdev->bus->number;
6360        pciinfo.dev_fn = h->pdev->devfn;
6361        pciinfo.board_id = h->board_id;
6362        if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6363                return -EFAULT;
6364        return 0;
6365}
6366
6367static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6368{
6369        DriverVer_type DriverVer;
6370        unsigned char vmaj, vmin, vsubmin;
6371        int rc;
6372
6373        rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6374                &vmaj, &vmin, &vsubmin);
6375        if (rc != 3) {
6376                dev_info(&h->pdev->dev, "driver version string '%s' "
6377                        "unrecognized.", HPSA_DRIVER_VERSION);
6378                vmaj = 0;
6379                vmin = 0;
6380                vsubmin = 0;
6381        }
6382        DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6383        if (!argp)
6384                return -EINVAL;
6385        if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6386                return -EFAULT;
6387        return 0;
6388}
6389
6390static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6391{
6392        IOCTL_Command_struct iocommand;
6393        struct CommandList *c;
6394        char *buff = NULL;
6395        u64 temp64;
6396        int rc = 0;
6397
6398        if (!argp)
6399                return -EINVAL;
6400        if (!capable(CAP_SYS_RAWIO))
6401                return -EPERM;
6402        if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6403                return -EFAULT;
6404        if ((iocommand.buf_size < 1) &&
6405            (iocommand.Request.Type.Direction != XFER_NONE)) {
6406                return -EINVAL;
6407        }
6408        if (iocommand.buf_size > 0) {
6409                buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6410                if (buff == NULL)
6411                        return -ENOMEM;
6412                if (iocommand.Request.Type.Direction & XFER_WRITE) {
6413                        /* Copy the data into the buffer we created */
6414                        if (copy_from_user(buff, iocommand.buf,
6415                                iocommand.buf_size)) {
6416                                rc = -EFAULT;
6417                                goto out_kfree;
6418                        }
6419                } else {
6420                        memset(buff, 0, iocommand.buf_size);
6421                }
6422        }
6423        c = cmd_alloc(h);
6424
6425        /* Fill in the command type */
6426        c->cmd_type = CMD_IOCTL_PEND;
6427        c->scsi_cmd = SCSI_CMD_BUSY;
6428        /* Fill in Command Header */
6429        c->Header.ReplyQueue = 0; /* unused in simple mode */
6430        if (iocommand.buf_size > 0) {   /* buffer to fill */
6431                c->Header.SGList = 1;
6432                c->Header.SGTotal = cpu_to_le16(1);
6433        } else  { /* no buffers to fill */
6434                c->Header.SGList = 0;
6435                c->Header.SGTotal = cpu_to_le16(0);
6436        }
6437        memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6438
6439        /* Fill in Request block */
6440        memcpy(&c->Request, &iocommand.Request,
6441                sizeof(c->Request));
6442
6443        /* Fill in the scatter gather information */
6444        if (iocommand.buf_size > 0) {
6445                temp64 = pci_map_single(h->pdev, buff,
6446                        iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6447                if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6448                        c->SG[0].Addr = cpu_to_le64(0);
6449                        c->SG[0].Len = cpu_to_le32(0);
6450                        rc = -ENOMEM;
6451                        goto out;
6452                }
6453                c->SG[0].Addr = cpu_to_le64(temp64);
6454                c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6455                c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6456        }
6457        rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6458                                        DEFAULT_TIMEOUT);
6459        if (iocommand.buf_size > 0)
6460                hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6461        check_ioctl_unit_attention(h, c);
6462        if (rc) {
6463                rc = -EIO;
6464                goto out;
6465        }
6466
6467        /* Copy the error information out */
6468        memcpy(&iocommand.error_info, c->err_info,
6469                sizeof(iocommand.error_info));
6470        if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6471                rc = -EFAULT;
6472                goto out;
6473        }
6474        if ((iocommand.Request.Type.Direction & XFER_READ) &&
6475                iocommand.buf_size > 0) {
6476                /* Copy the data out of the buffer we created */
6477                if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6478                        rc = -EFAULT;
6479                        goto out;
6480                }
6481        }
6482out:
6483        cmd_free(h, c);
6484out_kfree:
6485        kfree(buff);
6486        return rc;
6487}
6488
6489static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6490{
6491        BIG_IOCTL_Command_struct *ioc;
6492        struct CommandList *c;
6493        unsigned char **buff = NULL;
6494        int *buff_size = NULL;
6495        u64 temp64;
6496        BYTE sg_used = 0;
6497        int status = 0;
6498        u32 left;
6499        u32 sz;
6500        BYTE __user *data_ptr;
6501
6502        if (!argp)
6503                return -EINVAL;
6504        if (!capable(CAP_SYS_RAWIO))
6505                return -EPERM;
6506        ioc = (BIG_IOCTL_Command_struct *)
6507            kmalloc(sizeof(*ioc), GFP_KERNEL);
6508        if (!ioc) {
6509                status = -ENOMEM;
6510                goto cleanup1;
6511        }
6512        if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6513                status = -EFAULT;
6514                goto cleanup1;
6515        }
6516        if ((ioc->buf_size < 1) &&
6517            (ioc->Request.Type.Direction != XFER_NONE)) {
6518                status = -EINVAL;
6519                goto cleanup1;
6520        }
6521        /* Check kmalloc limits  using all SGs */
6522        if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6523                status = -EINVAL;
6524                goto cleanup1;
6525        }
6526        if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6527                status = -EINVAL;
6528                goto cleanup1;
6529        }
6530        buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6531        if (!buff) {
6532                status = -ENOMEM;
6533                goto cleanup1;
6534        }
6535        buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6536        if (!buff_size) {
6537                status = -ENOMEM;
6538                goto cleanup1;
6539        }
6540        left = ioc->buf_size;
6541        data_ptr = ioc->buf;
6542        while (left) {
6543                sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6544                buff_size[sg_used] = sz;
6545                buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6546                if (buff[sg_used] == NULL) {
6547                        status = -ENOMEM;
6548                        goto cleanup1;
6549                }
6550                if (ioc->Request.Type.Direction & XFER_WRITE) {
6551                        if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6552                                status = -EFAULT;
6553                                goto cleanup1;
6554                        }
6555                } else
6556                        memset(buff[sg_used], 0, sz);
6557                left -= sz;
6558                data_ptr += sz;
6559                sg_used++;
6560        }
6561        c = cmd_alloc(h);
6562
6563        c->cmd_type = CMD_IOCTL_PEND;
6564        c->scsi_cmd = SCSI_CMD_BUSY;
6565        c->Header.ReplyQueue = 0;
6566        c->Header.SGList = (u8) sg_used;
6567        c->Header.SGTotal = cpu_to_le16(sg_used);
6568        memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6569        memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6570        if (ioc->buf_size > 0) {
6571                int i;
6572                for (i = 0; i < sg_used; i++) {
6573                        temp64 = pci_map_single(h->pdev, buff[i],
6574                                    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6575                        if (dma_mapping_error(&h->pdev->dev,
6576                                                        (dma_addr_t) temp64)) {
6577                                c->SG[i].Addr = cpu_to_le64(0);
6578                                c->SG[i].Len = cpu_to_le32(0);
6579                                hpsa_pci_unmap(h->pdev, c, i,
6580                                        PCI_DMA_BIDIRECTIONAL);
6581                                status = -ENOMEM;
6582                                goto cleanup0;
6583                        }
6584                        c->SG[i].Addr = cpu_to_le64(temp64);
6585                        c->SG[i].Len = cpu_to_le32(buff_size[i]);
6586                        c->SG[i].Ext = cpu_to_le32(0);
6587                }
6588                c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6589        }
6590        status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6591                                                DEFAULT_TIMEOUT);
6592        if (sg_used)
6593                hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6594        check_ioctl_unit_attention(h, c);
6595        if (status) {
6596                status = -EIO;
6597                goto cleanup0;
6598        }
6599
6600        /* Copy the error information out */
6601        memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6602        if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6603                status = -EFAULT;
6604                goto cleanup0;
6605        }
6606        if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6607                int i;
6608
6609                /* Copy the data out of the buffer we created */
6610                BYTE __user *ptr = ioc->buf;
6611                for (i = 0; i < sg_used; i++) {
6612                        if (copy_to_user(ptr, buff[i], buff_size[i])) {
6613                                status = -EFAULT;
6614                                goto cleanup0;
6615                        }
6616                        ptr += buff_size[i];
6617                }
6618        }
6619        status = 0;
6620cleanup0:
6621        cmd_free(h, c);
6622cleanup1:
6623        if (buff) {
6624                int i;
6625
6626                for (i = 0; i < sg_used; i++)
6627                        kfree(buff[i]);
6628                kfree(buff);
6629        }
6630        kfree(buff_size);
6631        kfree(ioc);
6632        return status;
6633}
6634
6635static void check_ioctl_unit_attention(struct ctlr_info *h,
6636        struct CommandList *c)
6637{
6638        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6639                        c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6640                (void) check_for_unit_attention(h, c);
6641}
6642
6643/*
6644 * ioctl
6645 */
6646static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6647{
6648        struct ctlr_info *h;
6649        void __user *argp = (void __user *)arg;
6650        int rc;
6651
6652        h = sdev_to_hba(dev);
6653
6654        switch (cmd) {
6655        case CCISS_DEREGDISK:
6656        case CCISS_REGNEWDISK:
6657        case CCISS_REGNEWD:
6658                hpsa_scan_start(h->scsi_host);
6659                return 0;
6660        case CCISS_GETPCIINFO:
6661                return hpsa_getpciinfo_ioctl(h, argp);
6662        case CCISS_GETDRIVVER:
6663                return hpsa_getdrivver_ioctl(h, argp);
6664        case CCISS_PASSTHRU:
6665                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6666                        return -EAGAIN;
6667                rc = hpsa_passthru_ioctl(h, argp);
6668                atomic_inc(&h->passthru_cmds_avail);
6669                return rc;
6670        case CCISS_BIG_PASSTHRU:
6671                if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6672                        return -EAGAIN;
6673                rc = hpsa_big_passthru_ioctl(h, argp);
6674                atomic_inc(&h->passthru_cmds_avail);
6675                return rc;
6676        default:
6677                return -ENOTTY;
6678        }
6679}
6680
6681static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6682                                u8 reset_type)
6683{
6684        struct CommandList *c;
6685
6686        c = cmd_alloc(h);
6687
6688        /* fill_cmd can't fail here, no data buffer to map */
6689        (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6690                RAID_CTLR_LUNID, TYPE_MSG);
6691        c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6692        c->waiting = NULL;
6693        enqueue_cmd_and_start_io(h, c);
6694        /* Don't wait for completion, the reset won't complete.  Don't free
6695         * the command either.  This is the last command we will send before
6696         * re-initializing everything, so it doesn't matter and won't leak.
6697         */
6698        return;
6699}
6700
6701static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6702        void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6703        int cmd_type)
6704{
6705        int pci_dir = XFER_NONE;
6706        u64 tag; /* for commands to be aborted */
6707
6708        c->cmd_type = CMD_IOCTL_PEND;
6709        c->scsi_cmd = SCSI_CMD_BUSY;
6710        c->Header.ReplyQueue = 0;
6711        if (buff != NULL && size > 0) {
6712                c->Header.SGList = 1;
6713                c->Header.SGTotal = cpu_to_le16(1);
6714        } else {
6715                c->Header.SGList = 0;
6716                c->Header.SGTotal = cpu_to_le16(0);
6717        }
6718        memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6719
6720        if (cmd_type == TYPE_CMD) {
6721                switch (cmd) {
6722                case HPSA_INQUIRY:
6723                        /* are we trying to read a vital product page */
6724                        if (page_code & VPD_PAGE) {
6725                                c->Request.CDB[1] = 0x01;
6726                                c->Request.CDB[2] = (page_code & 0xff);
6727                        }
6728                        c->Request.CDBLen = 6;
6729                        c->Request.type_attr_dir =
6730                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6731                        c->Request.Timeout = 0;
6732                        c->Request.CDB[0] = HPSA_INQUIRY;
6733                        c->Request.CDB[4] = size & 0xFF;
6734                        break;
6735                case HPSA_REPORT_LOG:
6736                case HPSA_REPORT_PHYS:
6737                        /* Talking to controller so It's a physical command
6738                           mode = 00 target = 0.  Nothing to write.
6739                         */
6740                        c->Request.CDBLen = 12;
6741                        c->Request.type_attr_dir =
6742                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6743                        c->Request.Timeout = 0;
6744                        c->Request.CDB[0] = cmd;
6745                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6746                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6747                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6748                        c->Request.CDB[9] = size & 0xFF;
6749                        break;
6750                case BMIC_SENSE_DIAG_OPTIONS:
6751                        c->Request.CDBLen = 16;
6752                        c->Request.type_attr_dir =
6753                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6754                        c->Request.Timeout = 0;
6755                        /* Spec says this should be BMIC_WRITE */
6756                        c->Request.CDB[0] = BMIC_READ;
6757                        c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6758                        break;
6759                case BMIC_SET_DIAG_OPTIONS:
6760                        c->Request.CDBLen = 16;
6761                        c->Request.type_attr_dir =
6762                                        TYPE_ATTR_DIR(cmd_type,
6763                                                ATTR_SIMPLE, XFER_WRITE);
6764                        c->Request.Timeout = 0;
6765                        c->Request.CDB[0] = BMIC_WRITE;
6766                        c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6767                        break;
6768                case HPSA_CACHE_FLUSH:
6769                        c->Request.CDBLen = 12;
6770                        c->Request.type_attr_dir =
6771                                        TYPE_ATTR_DIR(cmd_type,
6772                                                ATTR_SIMPLE, XFER_WRITE);
6773                        c->Request.Timeout = 0;
6774                        c->Request.CDB[0] = BMIC_WRITE;
6775                        c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6776                        c->Request.CDB[7] = (size >> 8) & 0xFF;
6777                        c->Request.CDB[8] = size & 0xFF;
6778                        break;
6779                case TEST_UNIT_READY:
6780                        c->Request.CDBLen = 6;
6781                        c->Request.type_attr_dir =
6782                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6783                        c->Request.Timeout = 0;
6784                        break;
6785                case HPSA_GET_RAID_MAP:
6786                        c->Request.CDBLen = 12;
6787                        c->Request.type_attr_dir =
6788                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6789                        c->Request.Timeout = 0;
6790                        c->Request.CDB[0] = HPSA_CISS_READ;
6791                        c->Request.CDB[1] = cmd;
6792                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6793                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6794                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6795                        c->Request.CDB[9] = size & 0xFF;
6796                        break;
6797                case BMIC_SENSE_CONTROLLER_PARAMETERS:
6798                        c->Request.CDBLen = 10;
6799                        c->Request.type_attr_dir =
6800                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6801                        c->Request.Timeout = 0;
6802                        c->Request.CDB[0] = BMIC_READ;
6803                        c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6804                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6805                        c->Request.CDB[8] = (size >> 8) & 0xFF;
6806                        break;
6807                case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6808                        c->Request.CDBLen = 10;
6809                        c->Request.type_attr_dir =
6810                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6811                        c->Request.Timeout = 0;
6812                        c->Request.CDB[0] = BMIC_READ;
6813                        c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6814                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6815                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6816                        break;
6817                case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6818                        c->Request.CDBLen = 10;
6819                        c->Request.type_attr_dir =
6820                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6821                        c->Request.Timeout = 0;
6822                        c->Request.CDB[0] = BMIC_READ;
6823                        c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6824                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6825                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6826                        break;
6827                case BMIC_SENSE_STORAGE_BOX_PARAMS:
6828                        c->Request.CDBLen = 10;
6829                        c->Request.type_attr_dir =
6830                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6831                        c->Request.Timeout = 0;
6832                        c->Request.CDB[0] = BMIC_READ;
6833                        c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6834                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6835                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6836                        break;
6837                case BMIC_IDENTIFY_CONTROLLER:
6838                        c->Request.CDBLen = 10;
6839                        c->Request.type_attr_dir =
6840                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6841                        c->Request.Timeout = 0;
6842                        c->Request.CDB[0] = BMIC_READ;
6843                        c->Request.CDB[1] = 0;
6844                        c->Request.CDB[2] = 0;
6845                        c->Request.CDB[3] = 0;
6846                        c->Request.CDB[4] = 0;
6847                        c->Request.CDB[5] = 0;
6848                        c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6849                        c->Request.CDB[7] = (size >> 16) & 0xFF;
6850                        c->Request.CDB[8] = (size >> 8) & 0XFF;
6851                        c->Request.CDB[9] = 0;
6852                        break;
6853                default:
6854                        dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6855                        BUG();
6856                        return -1;
6857                }
6858        } else if (cmd_type == TYPE_MSG) {
6859                switch (cmd) {
6860
6861                case  HPSA_PHYS_TARGET_RESET:
6862                        c->Request.CDBLen = 16;
6863                        c->Request.type_attr_dir =
6864                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6865                        c->Request.Timeout = 0; /* Don't time out */
6866                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6867                        c->Request.CDB[0] = HPSA_RESET;
6868                        c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6869                        /* Physical target reset needs no control bytes 4-7*/
6870                        c->Request.CDB[4] = 0x00;
6871                        c->Request.CDB[5] = 0x00;
6872                        c->Request.CDB[6] = 0x00;
6873                        c->Request.CDB[7] = 0x00;
6874                        break;
6875                case  HPSA_DEVICE_RESET_MSG:
6876                        c->Request.CDBLen = 16;
6877                        c->Request.type_attr_dir =
6878                                TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6879                        c->Request.Timeout = 0; /* Don't time out */
6880                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6881                        c->Request.CDB[0] =  cmd;
6882                        c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6883                        /* If bytes 4-7 are zero, it means reset the */
6884                        /* LunID device */
6885                        c->Request.CDB[4] = 0x00;
6886                        c->Request.CDB[5] = 0x00;
6887                        c->Request.CDB[6] = 0x00;
6888                        c->Request.CDB[7] = 0x00;
6889                        break;
6890                case  HPSA_ABORT_MSG:
6891                        memcpy(&tag, buff, sizeof(tag));
6892                        dev_dbg(&h->pdev->dev,
6893                                "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6894                                tag, c->Header.tag);
6895                        c->Request.CDBLen = 16;
6896                        c->Request.type_attr_dir =
6897                                        TYPE_ATTR_DIR(cmd_type,
6898                                                ATTR_SIMPLE, XFER_WRITE);
6899                        c->Request.Timeout = 0; /* Don't time out */
6900                        c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6901                        c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6902                        c->Request.CDB[2] = 0x00; /* reserved */
6903                        c->Request.CDB[3] = 0x00; /* reserved */
6904                        /* Tag to abort goes in CDB[4]-CDB[11] */
6905                        memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6906                        c->Request.CDB[12] = 0x00; /* reserved */
6907                        c->Request.CDB[13] = 0x00; /* reserved */
6908                        c->Request.CDB[14] = 0x00; /* reserved */
6909                        c->Request.CDB[15] = 0x00; /* reserved */
6910                break;
6911                default:
6912                        dev_warn(&h->pdev->dev, "unknown message type %d\n",
6913                                cmd);
6914                        BUG();
6915                }
6916        } else {
6917                dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6918                BUG();
6919        }
6920
6921        switch (GET_DIR(c->Request.type_attr_dir)) {
6922        case XFER_READ:
6923                pci_dir = PCI_DMA_FROMDEVICE;
6924                break;
6925        case XFER_WRITE:
6926                pci_dir = PCI_DMA_TODEVICE;
6927                break;
6928        case XFER_NONE:
6929                pci_dir = PCI_DMA_NONE;
6930                break;
6931        default:
6932                pci_dir = PCI_DMA_BIDIRECTIONAL;
6933        }
6934        if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6935                return -1;
6936        return 0;
6937}
6938
6939/*
6940 * Map (physical) PCI mem into (virtual) kernel space
6941 */
6942static void __iomem *remap_pci_mem(ulong base, ulong size)
6943{
6944        ulong page_base = ((ulong) base) & PAGE_MASK;
6945        ulong page_offs = ((ulong) base) - page_base;
6946        void __iomem *page_remapped = ioremap_nocache(page_base,
6947                page_offs + size);
6948
6949        return page_remapped ? (page_remapped + page_offs) : NULL;
6950}
6951
6952static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6953{
6954        return h->access.command_completed(h, q);
6955}
6956
6957static inline bool interrupt_pending(struct ctlr_info *h)
6958{
6959        return h->access.intr_pending(h);
6960}
6961
6962static inline long interrupt_not_for_us(struct ctlr_info *h)
6963{
6964        return (h->access.intr_pending(h) == 0) ||
6965                (h->interrupts_enabled == 0);
6966}
6967
6968static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6969        u32 raw_tag)
6970{
6971        if (unlikely(tag_index >= h->nr_cmds)) {
6972                dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6973                return 1;
6974        }
6975        return 0;
6976}
6977
6978static inline void finish_cmd(struct CommandList *c)
6979{
6980        dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6981        if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6982                        || c->cmd_type == CMD_IOACCEL2))
6983                complete_scsi_command(c);
6984        else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6985                complete(c->waiting);
6986}
6987
6988/* process completion of an indexed ("direct lookup") command */
6989static inline void process_indexed_cmd(struct ctlr_info *h,
6990        u32 raw_tag)
6991{
6992        u32 tag_index;
6993        struct CommandList *c;
6994
6995        tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6996        if (!bad_tag(h, tag_index, raw_tag)) {
6997                c = h->cmd_pool + tag_index;
6998                finish_cmd(c);
6999        }
7000}
7001
7002/* Some controllers, like p400, will give us one interrupt
7003 * after a soft reset, even if we turned interrupts off.
7004 * Only need to check for this in the hpsa_xxx_discard_completions
7005 * functions.
7006 */
7007static int ignore_bogus_interrupt(struct ctlr_info *h)
7008{
7009        if (likely(!reset_devices))
7010                return 0;
7011
7012        if (likely(h->interrupts_enabled))
7013                return 0;
7014
7015        dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7016                "(known firmware bug.)  Ignoring.\n");
7017
7018        return 1;
7019}
7020
7021/*
7022 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7023 * Relies on (h-q[x] == x) being true for x such that
7024 * 0 <= x < MAX_REPLY_QUEUES.
7025 */
7026static struct ctlr_info *queue_to_hba(u8 *queue)
7027{
7028        return container_of((queue - *queue), struct ctlr_info, q[0]);
7029}
7030
7031static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7032{
7033        struct ctlr_info *h = queue_to_hba(queue);
7034        u8 q = *(u8 *) queue;
7035        u32 raw_tag;
7036
7037        if (ignore_bogus_interrupt(h))
7038                return IRQ_NONE;
7039
7040        if (interrupt_not_for_us(h))
7041                return IRQ_NONE;
7042        h->last_intr_timestamp = get_jiffies_64();
7043        while (interrupt_pending(h)) {
7044                raw_tag = get_next_completion(h, q);
7045                while (raw_tag != FIFO_EMPTY)
7046                        raw_tag = next_command(h, q);
7047        }
7048        return IRQ_HANDLED;
7049}
7050
7051static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7052{
7053        struct ctlr_info *h = queue_to_hba(queue);
7054        u32 raw_tag;
7055        u8 q = *(u8 *) queue;
7056
7057        if (ignore_bogus_interrupt(h))
7058                return IRQ_NONE;
7059
7060        h->last_intr_timestamp = get_jiffies_64();
7061        raw_tag = get_next_completion(h, q);
7062        while (raw_tag != FIFO_EMPTY)
7063                raw_tag = next_command(h, q);
7064        return IRQ_HANDLED;
7065}
7066
7067static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7068{
7069        struct ctlr_info *h = queue_to_hba((u8 *) queue);
7070        u32 raw_tag;
7071        u8 q = *(u8 *) queue;
7072
7073        if (interrupt_not_for_us(h))
7074                return IRQ_NONE;
7075        h->last_intr_timestamp = get_jiffies_64();
7076        while (interrupt_pending(h)) {
7077                raw_tag = get_next_completion(h, q);
7078                while (raw_tag != FIFO_EMPTY) {
7079                        process_indexed_cmd(h, raw_tag);
7080                        raw_tag = next_command(h, q);
7081                }
7082        }
7083        return IRQ_HANDLED;
7084}
7085
7086static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7087{
7088        struct ctlr_info *h = queue_to_hba(queue);
7089        u32 raw_tag;
7090        u8 q = *(u8 *) queue;
7091
7092        h->last_intr_timestamp = get_jiffies_64();
7093        raw_tag = get_next_completion(h, q);
7094        while (raw_tag != FIFO_EMPTY) {
7095                process_indexed_cmd(h, raw_tag);
7096                raw_tag = next_command(h, q);
7097        }
7098        return IRQ_HANDLED;
7099}
7100
7101/* Send a message CDB to the firmware. Careful, this only works
7102 * in simple mode, not performant mode due to the tag lookup.
7103 * We only ever use this immediately after a controller reset.
7104 */
7105static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7106                        unsigned char type)
7107{
7108        struct Command {
7109                struct CommandListHeader CommandHeader;
7110                struct RequestBlock Request;
7111                struct ErrDescriptor ErrorDescriptor;
7112        };
7113        struct Command *cmd;
7114        static const size_t cmd_sz = sizeof(*cmd) +
7115                                        sizeof(cmd->ErrorDescriptor);
7116        dma_addr_t paddr64;
7117        __le32 paddr32;
7118        u32 tag;
7119        void __iomem *vaddr;
7120        int i, err;
7121
7122        vaddr = pci_ioremap_bar(pdev, 0);
7123        if (vaddr == NULL)
7124                return -ENOMEM;
7125
7126        /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7127         * CCISS commands, so they must be allocated from the lower 4GiB of
7128         * memory.
7129         */
7130        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7131        if (err) {
7132                iounmap(vaddr);
7133                return err;
7134        }
7135
7136        cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7137        if (cmd == NULL) {
7138                iounmap(vaddr);
7139                return -ENOMEM;
7140        }
7141
7142        /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7143         * although there's no guarantee, we assume that the address is at
7144         * least 4-byte aligned (most likely, it's page-aligned).
7145         */
7146        paddr32 = cpu_to_le32(paddr64);
7147
7148        cmd->CommandHeader.ReplyQueue = 0;
7149        cmd->CommandHeader.SGList = 0;
7150        cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7151        cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7152        memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7153
7154        cmd->Request.CDBLen = 16;
7155        cmd->Request.type_attr_dir =
7156                        TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7157        cmd->Request.Timeout = 0; /* Don't time out */
7158        cmd->Request.CDB[0] = opcode;
7159        cmd->Request.CDB[1] = type;
7160        memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7161        cmd->ErrorDescriptor.Addr =
7162                        cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7163        cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7164
7165        writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7166
7167        for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7168                tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7169                if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7170                        break;
7171                msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7172        }
7173
7174        iounmap(vaddr);
7175
7176        /* we leak the DMA buffer here ... no choice since the controller could
7177         *  still complete the command.
7178         */
7179        if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7180                dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7181                        opcode, type);
7182                return -ETIMEDOUT;
7183        }
7184
7185        pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7186
7187        if (tag & HPSA_ERROR_BIT) {
7188                dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7189                        opcode, type);
7190                return -EIO;
7191        }
7192
7193        dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7194                opcode, type);
7195        return 0;
7196}
7197
7198#define hpsa_noop(p) hpsa_message(p, 3, 0)
7199
7200static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7201        void __iomem *vaddr, u32 use_doorbell)
7202{
7203
7204        if (use_doorbell) {
7205                /* For everything after the P600, the PCI power state method
7206                 * of resetting the controller doesn't work, so we have this
7207                 * other way using the doorbell register.
7208                 */
7209                dev_info(&pdev->dev, "using doorbell to reset controller\n");
7210                writel(use_doorbell, vaddr + SA5_DOORBELL);
7211
7212                /* PMC hardware guys tell us we need a 10 second delay after
7213                 * doorbell reset and before any attempt to talk to the board
7214                 * at all to ensure that this actually works and doesn't fall
7215                 * over in some weird corner cases.
7216                 */
7217                msleep(10000);
7218        } else { /* Try to do it the PCI power state way */
7219
7220                /* Quoting from the Open CISS Specification: "The Power
7221                 * Management Control/Status Register (CSR) controls the power
7222                 * state of the device.  The normal operating state is D0,
7223                 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7224                 * the controller, place the interface device in D3 then to D0,
7225                 * this causes a secondary PCI reset which will reset the
7226                 * controller." */
7227
7228                int rc = 0;
7229
7230                dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7231
7232                /* enter the D3hot power management state */
7233                rc = pci_set_power_state(pdev, PCI_D3hot);
7234                if (rc)
7235                        return rc;
7236
7237                msleep(500);
7238
7239                /* enter the D0 power management state */
7240                rc = pci_set_power_state(pdev, PCI_D0);
7241                if (rc)
7242                        return rc;
7243
7244                /*
7245                 * The P600 requires a small delay when changing states.
7246                 * Otherwise we may think the board did not reset and we bail.
7247                 * This for kdump only and is particular to the P600.
7248                 */
7249                msleep(500);
7250        }
7251        return 0;
7252}
7253
7254static void init_driver_version(char *driver_version, int len)
7255{
7256        memset(driver_version, 0, len);
7257        strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7258}
7259
7260static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7261{
7262        char *driver_version;
7263        int i, size = sizeof(cfgtable->driver_version);
7264
7265        driver_version = kmalloc(size, GFP_KERNEL);
7266        if (!driver_version)
7267                return -ENOMEM;
7268
7269        init_driver_version(driver_version, size);
7270        for (i = 0; i < size; i++)
7271                writeb(driver_version[i], &cfgtable->driver_version[i]);
7272        kfree(driver_version);
7273        return 0;
7274}
7275
7276static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7277                                          unsigned char *driver_ver)
7278{
7279        int i;
7280
7281        for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7282                driver_ver[i] = readb(&cfgtable->driver_version[i]);
7283}
7284
7285static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7286{
7287
7288        char *driver_ver, *old_driver_ver;
7289        int rc, size = sizeof(cfgtable->driver_version);
7290
7291        old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7292        if (!old_driver_ver)
7293                return -ENOMEM;
7294        driver_ver = old_driver_ver + size;
7295
7296        /* After a reset, the 32 bytes of "driver version" in the cfgtable
7297         * should have been changed, otherwise we know the reset failed.
7298         */
7299        init_driver_version(old_driver_ver, size);
7300        read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7301        rc = !memcmp(driver_ver, old_driver_ver, size);
7302        kfree(old_driver_ver);
7303        return rc;
7304}
7305/* This does a hard reset of the controller using PCI power management
7306 * states or the using the doorbell register.
7307 */
7308static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7309{
7310        u64 cfg_offset;
7311        u32 cfg_base_addr;
7312        u64 cfg_base_addr_index;
7313        void __iomem *vaddr;
7314        unsigned long paddr;
7315        u32 misc_fw_support;
7316        int rc;
7317        struct CfgTable __iomem *cfgtable;
7318        u32 use_doorbell;
7319        u16 command_register;
7320
7321        /* For controllers as old as the P600, this is very nearly
7322         * the same thing as
7323         *
7324         * pci_save_state(pci_dev);
7325         * pci_set_power_state(pci_dev, PCI_D3hot);
7326         * pci_set_power_state(pci_dev, PCI_D0);
7327         * pci_restore_state(pci_dev);
7328         *
7329         * For controllers newer than the P600, the pci power state
7330         * method of resetting doesn't work so we have another way
7331         * using the doorbell register.
7332         */
7333
7334        if (!ctlr_is_resettable(board_id)) {
7335                dev_warn(&pdev->dev, "Controller not resettable\n");
7336                return -ENODEV;
7337        }
7338
7339        /* if controller is soft- but not hard resettable... */
7340        if (!ctlr_is_hard_resettable(board_id))
7341                return -ENOTSUPP; /* try soft reset later. */
7342
7343        /* Save the PCI command register */
7344        pci_read_config_word(pdev, 4, &command_register);
7345        pci_save_state(pdev);
7346
7347        /* find the first memory BAR, so we can find the cfg table */
7348        rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7349        if (rc)
7350                return rc;
7351        vaddr = remap_pci_mem(paddr, 0x250);
7352        if (!vaddr)
7353                return -ENOMEM;
7354
7355        /* find cfgtable in order to check if reset via doorbell is supported */
7356        rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7357                                        &cfg_base_addr_index, &cfg_offset);
7358        if (rc)
7359                goto unmap_vaddr;
7360        cfgtable = remap_pci_mem(pci_resource_start(pdev,
7361                       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7362        if (!cfgtable) {
7363                rc = -ENOMEM;
7364                goto unmap_vaddr;
7365        }
7366        rc = write_driver_ver_to_cfgtable(cfgtable);
7367        if (rc)
7368                goto unmap_cfgtable;
7369
7370        /* If reset via doorbell register is supported, use that.
7371         * There are two such methods.  Favor the newest method.
7372         */
7373        misc_fw_support = readl(&cfgtable->misc_fw_support);
7374        use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7375        if (use_doorbell) {
7376                use_doorbell = DOORBELL_CTLR_RESET2;
7377        } else {
7378                use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7379                if (use_doorbell) {
7380                        dev_warn(&pdev->dev,
7381                                "Soft reset not supported. Firmware update is required.\n");
7382                        rc = -ENOTSUPP; /* try soft reset */
7383                        goto unmap_cfgtable;
7384                }
7385        }
7386
7387        rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7388        if (rc)
7389                goto unmap_cfgtable;
7390
7391        pci_restore_state(pdev);
7392        pci_write_config_word(pdev, 4, command_register);
7393
7394        /* Some devices (notably the HP Smart Array 5i Controller)
7395           need a little pause here */
7396        msleep(HPSA_POST_RESET_PAUSE_MSECS);
7397
7398        rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7399        if (rc) {
7400                dev_warn(&pdev->dev,
7401                        "Failed waiting for board to become ready after hard reset\n");
7402                goto unmap_cfgtable;
7403        }
7404
7405        rc = controller_reset_failed(vaddr);
7406        if (rc < 0)
7407                goto unmap_cfgtable;
7408        if (rc) {
7409                dev_warn(&pdev->dev, "Unable to successfully reset "
7410                        "controller. Will try soft reset.\n");
7411                rc = -ENOTSUPP;
7412        } else {
7413                dev_info(&pdev->dev, "board ready after hard reset.\n");
7414        }
7415
7416unmap_cfgtable:
7417        iounmap(cfgtable);
7418
7419unmap_vaddr:
7420        iounmap(vaddr);
7421        return rc;
7422}
7423
7424/*
7425 *  We cannot read the structure directly, for portability we must use
7426 *   the io functions.
7427 *   This is for debug only.
7428 */
7429static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7430{
7431#ifdef HPSA_DEBUG
7432        int i;
7433        char temp_name[17];
7434
7435        dev_info(dev, "Controller Configuration information\n");
7436        dev_info(dev, "------------------------------------\n");
7437        for (i = 0; i < 4; i++)
7438                temp_name[i] = readb(&(tb->Signature[i]));
7439        temp_name[4] = '\0';
7440        dev_info(dev, "   Signature = %s\n", temp_name);
7441        dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7442        dev_info(dev, "   Transport methods supported = 0x%x\n",
7443               readl(&(tb->TransportSupport)));
7444        dev_info(dev, "   Transport methods active = 0x%x\n",
7445               readl(&(tb->TransportActive)));
7446        dev_info(dev, "   Requested transport Method = 0x%x\n",
7447               readl(&(tb->HostWrite.TransportRequest)));
7448        dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7449               readl(&(tb->HostWrite.CoalIntDelay)));
7450        dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7451               readl(&(tb->HostWrite.CoalIntCount)));
7452        dev_info(dev, "   Max outstanding commands = %d\n",
7453               readl(&(tb->CmdsOutMax)));
7454        dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7455        for (i = 0; i < 16; i++)
7456                temp_name[i] = readb(&(tb->ServerName[i]));
7457        temp_name[16] = '\0';
7458        dev_info(dev, "   Server Name = %s\n", temp_name);
7459        dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7460                readl(&(tb->HeartBeat)));
7461#endif                          /* HPSA_DEBUG */
7462}
7463
7464static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7465{
7466        int i, offset, mem_type, bar_type;
7467
7468        if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7469                return 0;
7470        offset = 0;
7471        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7472                bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7473                if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7474                        offset += 4;
7475                else {
7476                        mem_type = pci_resource_flags(pdev, i) &
7477                            PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7478                        switch (mem_type) {
7479                        case PCI_BASE_ADDRESS_MEM_TYPE_32:
7480                        case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7481                                offset += 4;    /* 32 bit */
7482                                break;
7483                        case PCI_BASE_ADDRESS_MEM_TYPE_64:
7484                                offset += 8;
7485                                break;
7486                        default:        /* reserved in PCI 2.2 */
7487                                dev_warn(&pdev->dev,
7488                                       "base address is invalid\n");
7489                                return -1;
7490                                break;
7491                        }
7492                }
7493                if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7494                        return i + 1;
7495        }
7496        return -1;
7497}
7498
7499static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7500{
7501        if (h->msix_vector) {
7502                if (h->pdev->msix_enabled)
7503                        pci_disable_msix(h->pdev);
7504                h->msix_vector = 0;
7505        } else if (h->msi_vector) {
7506                if (h->pdev->msi_enabled)
7507                        pci_disable_msi(h->pdev);
7508                h->msi_vector = 0;
7509        }
7510}
7511
7512/* If MSI/MSI-X is supported by the kernel we will try to enable it on
7513 * controllers that are capable. If not, we use legacy INTx mode.
7514 */
7515static void hpsa_interrupt_mode(struct ctlr_info *h)
7516{
7517#ifdef CONFIG_PCI_MSI
7518        int err, i;
7519        struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7520
7521        for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7522                hpsa_msix_entries[i].vector = 0;
7523                hpsa_msix_entries[i].entry = i;
7524        }
7525
7526        /* Some boards advertise MSI but don't really support it */
7527        if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7528            (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7529                goto default_int_mode;
7530        if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7531                dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7532                h->msix_vector = MAX_REPLY_QUEUES;
7533                if (h->msix_vector > num_online_cpus())
7534                        h->msix_vector = num_online_cpus();
7535                err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7536                                            1, h->msix_vector);
7537                if (err < 0) {
7538                        dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7539                        h->msix_vector = 0;
7540                        goto single_msi_mode;
7541                } else if (err < h->msix_vector) {
7542                        dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7543                               "available\n", err);
7544                }
7545                h->msix_vector = err;
7546                for (i = 0; i < h->msix_vector; i++)
7547                        h->intr[i] = hpsa_msix_entries[i].vector;
7548                return;
7549        }
7550single_msi_mode:
7551        if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7552                dev_info(&h->pdev->dev, "MSI capable controller\n");
7553                if (!pci_enable_msi(h->pdev))
7554                        h->msi_vector = 1;
7555                else
7556                        dev_warn(&h->pdev->dev, "MSI init failed\n");
7557        }
7558default_int_mode:
7559#endif                          /* CONFIG_PCI_MSI */
7560        /* if we get here we're going to use the default interrupt mode */
7561        h->intr[h->intr_mode] = h->pdev->irq;
7562}
7563
7564static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7565{
7566        int i;
7567        u32 subsystem_vendor_id, subsystem_device_id;
7568
7569        subsystem_vendor_id = pdev->subsystem_vendor;
7570        subsystem_device_id = pdev->subsystem_device;
7571        *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7572                    subsystem_vendor_id;
7573
7574        for (i = 0; i < ARRAY_SIZE(products); i++)
7575                if (*board_id == products[i].board_id)
7576                        return i;
7577
7578        if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7579                subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7580                !hpsa_allow_any) {
7581                dev_warn(&pdev->dev, "unrecognized board ID: "
7582                        "0x%08x, ignoring.\n", *board_id);
7583                        return -ENODEV;
7584        }
7585        return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7586}
7587
7588static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7589                                    unsigned long *memory_bar)
7590{
7591        int i;
7592
7593        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7594                if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7595                        /* addressing mode bits already removed */
7596                        *memory_bar = pci_resource_start(pdev, i);
7597                        dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7598                                *memory_bar);
7599                        return 0;
7600                }
7601        dev_warn(&pdev->dev, "no memory BAR found\n");
7602        return -ENODEV;
7603}
7604
7605static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7606                                     int wait_for_ready)
7607{
7608        int i, iterations;
7609        u32 scratchpad;
7610        if (wait_for_ready)
7611                iterations = HPSA_BOARD_READY_ITERATIONS;
7612        else
7613                iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7614
7615        for (i = 0; i < iterations; i++) {
7616                scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7617                if (wait_for_ready) {
7618                        if (scratchpad == HPSA_FIRMWARE_READY)
7619                                return 0;
7620                } else {
7621                        if (scratchpad != HPSA_FIRMWARE_READY)
7622                                return 0;
7623                }
7624                msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7625        }
7626        dev_warn(&pdev->dev, "board not ready, timed out.\n");
7627        return -ENODEV;
7628}
7629
7630static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7631                               u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7632                               u64 *cfg_offset)
7633{
7634        *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7635        *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7636        *cfg_base_addr &= (u32) 0x0000ffff;
7637        *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7638        if (*cfg_base_addr_index == -1) {
7639                dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7640                return -ENODEV;
7641        }
7642        return 0;
7643}
7644
7645static void hpsa_free_cfgtables(struct ctlr_info *h)
7646{
7647        if (h->transtable) {
7648                iounmap(h->transtable);
7649                h->transtable = NULL;
7650        }
7651        if (h->cfgtable) {
7652                iounmap(h->cfgtable);
7653                h->cfgtable = NULL;
7654        }
7655}
7656
7657/* Find and map CISS config table and transfer table
7658+ * several items must be unmapped (freed) later
7659+ * */
7660static int hpsa_find_cfgtables(struct ctlr_info *h)
7661{
7662        u64 cfg_offset;
7663        u32 cfg_base_addr;
7664        u64 cfg_base_addr_index;
7665        u32 trans_offset;
7666        int rc;
7667
7668        rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7669                &cfg_base_addr_index, &cfg_offset);
7670        if (rc)
7671                return rc;
7672        h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7673                       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7674        if (!h->cfgtable) {
7675                dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7676                return -ENOMEM;
7677        }
7678        rc = write_driver_ver_to_cfgtable(h->cfgtable);
7679        if (rc)
7680                return rc;
7681        /* Find performant mode table. */
7682        trans_offset = readl(&h->cfgtable->TransMethodOffset);
7683        h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7684                                cfg_base_addr_index)+cfg_offset+trans_offset,
7685                                sizeof(*h->transtable));
7686        if (!h->transtable) {
7687                dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7688                hpsa_free_cfgtables(h);
7689                return -ENOMEM;
7690        }
7691        return 0;
7692}
7693
7694static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7695{
7696#define MIN_MAX_COMMANDS 16
7697        BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7698
7699        h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7700
7701        /* Limit commands in memory limited kdump scenario. */
7702        if (reset_devices && h->max_commands > 32)
7703                h->max_commands = 32;
7704
7705        if (h->max_commands < MIN_MAX_COMMANDS) {
7706                dev_warn(&h->pdev->dev,
7707                        "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7708                        h->max_commands,
7709                        MIN_MAX_COMMANDS);
7710                h->max_commands = MIN_MAX_COMMANDS;
7711        }
7712}
7713
7714/* If the controller reports that the total max sg entries is greater than 512,
7715 * then we know that chained SG blocks work.  (Original smart arrays did not
7716 * support chained SG blocks and would return zero for max sg entries.)
7717 */
7718static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7719{
7720        return h->maxsgentries > 512;
7721}
7722
7723/* Interrogate the hardware for some limits:
7724 * max commands, max SG elements without chaining, and with chaining,
7725 * SG chain block size, etc.
7726 */
7727static void hpsa_find_board_params(struct ctlr_info *h)
7728{
7729        hpsa_get_max_perf_mode_cmds(h);
7730        h->nr_cmds = h->max_commands;
7731        h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7732        h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7733        if (hpsa_supports_chained_sg_blocks(h)) {
7734                /* Limit in-command s/g elements to 32 save dma'able memory. */
7735                h->max_cmd_sg_entries = 32;
7736                h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7737                h->maxsgentries--; /* save one for chain pointer */
7738        } else {
7739                /*
7740                 * Original smart arrays supported at most 31 s/g entries
7741                 * embedded inline in the command (trying to use more
7742                 * would lock up the controller)
7743                 */
7744                h->max_cmd_sg_entries = 31;
7745                h->maxsgentries = 31; /* default to traditional values */
7746                h->chainsize = 0;
7747        }
7748
7749        /* Find out what task management functions are supported and cache */
7750        h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7751        if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7752                dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7753        if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7754                dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7755        if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7756                dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7757}
7758
7759static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7760{
7761        if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7762                dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7763                return false;
7764        }
7765        return true;
7766}
7767
7768static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7769{
7770        u32 driver_support;
7771
7772        driver_support = readl(&(h->cfgtable->driver_support));
7773        /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7774#ifdef CONFIG_X86
7775        driver_support |= ENABLE_SCSI_PREFETCH;
7776#endif
7777        driver_support |= ENABLE_UNIT_ATTN;
7778        writel(driver_support, &(h->cfgtable->driver_support));
7779}
7780
7781/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7782 * in a prefetch beyond physical memory.
7783 */
7784static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7785{
7786        u32 dma_prefetch;
7787
7788        if (h->board_id != 0x3225103C)
7789                return;
7790        dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7791        dma_prefetch |= 0x8000;
7792        writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7793}
7794
7795static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7796{
7797        int i;
7798        u32 doorbell_value;
7799        unsigned long flags;
7800        /* wait until the clear_event_notify bit 6 is cleared by controller. */
7801        for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7802                spin_lock_irqsave(&h->lock, flags);
7803                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7804                spin_unlock_irqrestore(&h->lock, flags);
7805                if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7806                        goto done;
7807                /* delay and try again */
7808                msleep(CLEAR_EVENT_WAIT_INTERVAL);
7809        }
7810        return -ENODEV;
7811done:
7812        return 0;
7813}
7814
7815static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7816{
7817        int i;
7818        u32 doorbell_value;
7819        unsigned long flags;
7820
7821        /* under certain very rare conditions, this can take awhile.
7822         * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7823         * as we enter this code.)
7824         */
7825        for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7826                if (h->remove_in_progress)
7827                        goto done;
7828                spin_lock_irqsave(&h->lock, flags);
7829                doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7830                spin_unlock_irqrestore(&h->lock, flags);
7831                if (!(doorbell_value & CFGTBL_ChangeReq))
7832                        goto done;
7833                /* delay and try again */
7834                msleep(MODE_CHANGE_WAIT_INTERVAL);
7835        }
7836        return -ENODEV;
7837done:
7838        return 0;
7839}
7840
7841/* return -ENODEV or other reason on error, 0 on success */
7842static int hpsa_enter_simple_mode(struct ctlr_info *h)
7843{
7844        u32 trans_support;
7845
7846        trans_support = readl(&(h->cfgtable->TransportSupport));
7847        if (!(trans_support & SIMPLE_MODE))
7848                return -ENOTSUPP;
7849
7850        h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7851
7852        /* Update the field, and then ring the doorbell */
7853        writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7854        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7855        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7856        if (hpsa_wait_for_mode_change_ack(h))
7857                goto error;
7858        print_cfg_table(&h->pdev->dev, h->cfgtable);
7859        if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7860                goto error;
7861        h->transMethod = CFGTBL_Trans_Simple;
7862        return 0;
7863error:
7864        dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7865        return -ENODEV;
7866}
7867
7868/* free items allocated or mapped by hpsa_pci_init */
7869static void hpsa_free_pci_init(struct ctlr_info *h)
7870{
7871        hpsa_free_cfgtables(h);                 /* pci_init 4 */
7872        iounmap(h->vaddr);                      /* pci_init 3 */
7873        h->vaddr = NULL;
7874        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7875        /*
7876         * call pci_disable_device before pci_release_regions per
7877         * Documentation/PCI/pci.txt
7878         */
7879        pci_disable_device(h->pdev);            /* pci_init 1 */
7880        pci_release_regions(h->pdev);           /* pci_init 2 */
7881}
7882
7883/* several items must be freed later */
7884static int hpsa_pci_init(struct ctlr_info *h)
7885{
7886        int prod_index, err;
7887
7888        prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7889        if (prod_index < 0)
7890                return prod_index;
7891        h->product_name = products[prod_index].product_name;
7892        h->access = *(products[prod_index].access);
7893
7894        h->needs_abort_tags_swizzled =
7895                ctlr_needs_abort_tags_swizzled(h->board_id);
7896
7897        pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7898                               PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7899
7900        err = pci_enable_device(h->pdev);
7901        if (err) {
7902                dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7903                pci_disable_device(h->pdev);
7904                return err;
7905        }
7906
7907        err = pci_request_regions(h->pdev, HPSA);
7908        if (err) {
7909                dev_err(&h->pdev->dev,
7910                        "failed to obtain PCI resources\n");
7911                pci_disable_device(h->pdev);
7912                return err;
7913        }
7914
7915        pci_set_master(h->pdev);
7916
7917        hpsa_interrupt_mode(h);
7918        err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7919        if (err)
7920                goto clean2;    /* intmode+region, pci */
7921        h->vaddr = remap_pci_mem(h->paddr, 0x250);
7922        if (!h->vaddr) {
7923                dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7924                err = -ENOMEM;
7925                goto clean2;    /* intmode+region, pci */
7926        }
7927        err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7928        if (err)
7929                goto clean3;    /* vaddr, intmode+region, pci */
7930        err = hpsa_find_cfgtables(h);
7931        if (err)
7932                goto clean3;    /* vaddr, intmode+region, pci */
7933        hpsa_find_board_params(h);
7934
7935        if (!hpsa_CISS_signature_present(h)) {
7936                err = -ENODEV;
7937                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7938        }
7939        hpsa_set_driver_support_bits(h);
7940        hpsa_p600_dma_prefetch_quirk(h);
7941        err = hpsa_enter_simple_mode(h);
7942        if (err)
7943                goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7944        return 0;
7945
7946clean4: /* cfgtables, vaddr, intmode+region, pci */
7947        hpsa_free_cfgtables(h);
7948clean3: /* vaddr, intmode+region, pci */
7949        iounmap(h->vaddr);
7950        h->vaddr = NULL;
7951clean2: /* intmode+region, pci */
7952        hpsa_disable_interrupt_mode(h);
7953        /*
7954         * call pci_disable_device before pci_release_regions per
7955         * Documentation/PCI/pci.txt
7956         */
7957        pci_disable_device(h->pdev);
7958        pci_release_regions(h->pdev);
7959        return err;
7960}
7961
7962static void hpsa_hba_inquiry(struct ctlr_info *h)
7963{
7964        int rc;
7965
7966#define HBA_INQUIRY_BYTE_COUNT 64
7967        h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7968        if (!h->hba_inquiry_data)
7969                return;
7970        rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7971                h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7972        if (rc != 0) {
7973                kfree(h->hba_inquiry_data);
7974                h->hba_inquiry_data = NULL;
7975        }
7976}
7977
7978static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7979{
7980        int rc, i;
7981        void __iomem *vaddr;
7982
7983        if (!reset_devices)
7984                return 0;
7985
7986        /* kdump kernel is loading, we don't know in which state is
7987         * the pci interface. The dev->enable_cnt is equal zero
7988         * so we call enable+disable, wait a while and switch it on.
7989         */
7990        rc = pci_enable_device(pdev);
7991        if (rc) {
7992                dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7993                return -ENODEV;
7994        }
7995        pci_disable_device(pdev);
7996        msleep(260);                    /* a randomly chosen number */
7997        rc = pci_enable_device(pdev);
7998        if (rc) {
7999                dev_warn(&pdev->dev, "failed to enable device.\n");
8000                return -ENODEV;
8001        }
8002
8003        pci_set_master(pdev);
8004
8005        vaddr = pci_ioremap_bar(pdev, 0);
8006        if (vaddr == NULL) {
8007                rc = -ENOMEM;
8008                goto out_disable;
8009        }
8010        writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8011        iounmap(vaddr);
8012
8013        /* Reset the controller with a PCI power-cycle or via doorbell */
8014        rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8015
8016        /* -ENOTSUPP here means we cannot reset the controller
8017         * but it's already (and still) up and running in
8018         * "performant mode".  Or, it might be 640x, which can't reset
8019         * due to concerns about shared bbwc between 6402/6404 pair.
8020         */
8021        if (rc)
8022                goto out_disable;
8023
8024        /* Now try to get the controller to respond to a no-op */
8025        dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8026        for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8027                if (hpsa_noop(pdev) == 0)
8028                        break;
8029                else
8030                        dev_warn(&pdev->dev, "no-op failed%s\n",
8031                                        (i < 11 ? "; re-trying" : ""));
8032        }
8033
8034out_disable:
8035
8036        pci_disable_device(pdev);
8037        return rc;
8038}
8039
8040static void hpsa_free_cmd_pool(struct ctlr_info *h)
8041{
8042        kfree(h->cmd_pool_bits);
8043        h->cmd_pool_bits = NULL;
8044        if (h->cmd_pool) {
8045                pci_free_consistent(h->pdev,
8046                                h->nr_cmds * sizeof(struct CommandList),
8047                                h->cmd_pool,
8048                                h->cmd_pool_dhandle);
8049                h->cmd_pool = NULL;
8050                h->cmd_pool_dhandle = 0;
8051        }
8052        if (h->errinfo_pool) {
8053                pci_free_consistent(h->pdev,
8054                                h->nr_cmds * sizeof(struct ErrorInfo),
8055                                h->errinfo_pool,
8056                                h->errinfo_pool_dhandle);
8057                h->errinfo_pool = NULL;
8058                h->errinfo_pool_dhandle = 0;
8059        }
8060}
8061
8062static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8063{
8064        h->cmd_pool_bits = kzalloc(
8065                DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8066                sizeof(unsigned long), GFP_KERNEL);
8067        h->cmd_pool = pci_alloc_consistent(h->pdev,
8068                    h->nr_cmds * sizeof(*h->cmd_pool),
8069                    &(h->cmd_pool_dhandle));
8070        h->errinfo_pool = pci_alloc_consistent(h->pdev,
8071                    h->nr_cmds * sizeof(*h->errinfo_pool),
8072                    &(h->errinfo_pool_dhandle));
8073        if ((h->cmd_pool_bits == NULL)
8074            || (h->cmd_pool == NULL)
8075            || (h->errinfo_pool == NULL)) {
8076                dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8077                goto clean_up;
8078        }
8079        hpsa_preinitialize_commands(h);
8080        return 0;
8081clean_up:
8082        hpsa_free_cmd_pool(h);
8083        return -ENOMEM;
8084}
8085
8086static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8087{
8088        int i, cpu;
8089
8090        cpu = cpumask_first(cpu_online_mask);
8091        for (i = 0; i < h->msix_vector; i++) {
8092                irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8093                cpu = cpumask_next(cpu, cpu_online_mask);
8094        }
8095}
8096
8097/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8098static void hpsa_free_irqs(struct ctlr_info *h)
8099{
8100        int i;
8101
8102        if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8103                /* Single reply queue, only one irq to free */
8104                i = h->intr_mode;
8105                irq_set_affinity_hint(h->intr[i], NULL);
8106                free_irq(h->intr[i], &h->q[i]);
8107                h->q[i] = 0;
8108                return;
8109        }
8110
8111        for (i = 0; i < h->msix_vector; i++) {
8112                irq_set_affinity_hint(h->intr[i], NULL);
8113                free_irq(h->intr[i], &h->q[i]);
8114                h->q[i] = 0;
8115        }
8116        for (; i < MAX_REPLY_QUEUES; i++)
8117                h->q[i] = 0;
8118}
8119
8120/* returns 0 on success; cleans up and returns -Enn on error */
8121static int hpsa_request_irqs(struct ctlr_info *h,
8122        irqreturn_t (*msixhandler)(int, void *),
8123        irqreturn_t (*intxhandler)(int, void *))
8124{
8125        int rc, i;
8126
8127        /*
8128         * initialize h->q[x] = x so that interrupt handlers know which
8129         * queue to process.
8130         */
8131        for (i = 0; i < MAX_REPLY_QUEUES; i++)
8132                h->q[i] = (u8) i;
8133
8134        if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8135                /* If performant mode and MSI-X, use multiple reply queues */
8136                for (i = 0; i < h->msix_vector; i++) {
8137                        sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8138                        rc = request_irq(h->intr[i], msixhandler,
8139                                        0, h->intrname[i],
8140                                        &h->q[i]);
8141                        if (rc) {
8142                                int j;
8143
8144                                dev_err(&h->pdev->dev,
8145                                        "failed to get irq %d for %s\n",
8146                                       h->intr[i], h->devname);
8147                                for (j = 0; j < i; j++) {
8148                                        free_irq(h->intr[j], &h->q[j]);
8149                                        h->q[j] = 0;
8150                                }
8151                                for (; j < MAX_REPLY_QUEUES; j++)
8152                                        h->q[j] = 0;
8153                                return rc;
8154                        }
8155                }
8156                hpsa_irq_affinity_hints(h);
8157        } else {
8158                /* Use single reply pool */
8159                if (h->msix_vector > 0 || h->msi_vector) {
8160                        if (h->msix_vector)
8161                                sprintf(h->intrname[h->intr_mode],
8162                                        "%s-msix", h->devname);
8163                        else
8164                                sprintf(h->intrname[h->intr_mode],
8165                                        "%s-msi", h->devname);
8166                        rc = request_irq(h->intr[h->intr_mode],
8167                                msixhandler, 0,
8168                                h->intrname[h->intr_mode],
8169                                &h->q[h->intr_mode]);
8170                } else {
8171                        sprintf(h->intrname[h->intr_mode],
8172                                "%s-intx", h->devname);
8173                        rc = request_irq(h->intr[h->intr_mode],
8174                                intxhandler, IRQF_SHARED,
8175                                h->intrname[h->intr_mode],
8176                                &h->q[h->intr_mode]);
8177                }
8178                irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8179        }
8180        if (rc) {
8181                dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8182                       h->intr[h->intr_mode], h->devname);
8183                hpsa_free_irqs(h);
8184                return -ENODEV;
8185        }
8186        return 0;
8187}
8188
8189static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8190{
8191        int rc;
8192        hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8193
8194        dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8195        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8196        if (rc) {
8197                dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8198                return rc;
8199        }
8200
8201        dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8202        rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8203        if (rc) {
8204                dev_warn(&h->pdev->dev, "Board failed to become ready "
8205                        "after soft reset.\n");
8206                return rc;
8207        }
8208
8209        return 0;
8210}
8211
8212static void hpsa_free_reply_queues(struct ctlr_info *h)
8213{
8214        int i;
8215
8216        for (i = 0; i < h->nreply_queues; i++) {
8217                if (!h->reply_queue[i].head)
8218                        continue;
8219                pci_free_consistent(h->pdev,
8220                                        h->reply_queue_size,
8221                                        h->reply_queue[i].head,
8222                                        h->reply_queue[i].busaddr);
8223                h->reply_queue[i].head = NULL;
8224                h->reply_queue[i].busaddr = 0;
8225        }
8226        h->reply_queue_size = 0;
8227}
8228
8229static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8230{
8231        hpsa_free_performant_mode(h);           /* init_one 7 */
8232        hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8233        hpsa_free_cmd_pool(h);                  /* init_one 5 */
8234        hpsa_free_irqs(h);                      /* init_one 4 */
8235        scsi_host_put(h->scsi_host);            /* init_one 3 */
8236        h->scsi_host = NULL;                    /* init_one 3 */
8237        hpsa_free_pci_init(h);                  /* init_one 2_5 */
8238        free_percpu(h->lockup_detected);        /* init_one 2 */
8239        h->lockup_detected = NULL;              /* init_one 2 */
8240        if (h->resubmit_wq) {
8241                destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8242                h->resubmit_wq = NULL;
8243        }
8244        if (h->rescan_ctlr_wq) {
8245                destroy_workqueue(h->rescan_ctlr_wq);
8246                h->rescan_ctlr_wq = NULL;
8247        }
8248        kfree(h);                               /* init_one 1 */
8249}
8250
8251/* Called when controller lockup detected. */
8252static void fail_all_outstanding_cmds(struct ctlr_info *h)
8253{
8254        int i, refcount;
8255        struct CommandList *c;
8256        int failcount = 0;
8257
8258        flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8259        for (i = 0; i < h->nr_cmds; i++) {
8260                c = h->cmd_pool + i;
8261                refcount = atomic_inc_return(&c->refcount);
8262                if (refcount > 1) {
8263                        c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8264                        finish_cmd(c);
8265                        atomic_dec(&h->commands_outstanding);
8266                        failcount++;
8267                }
8268                cmd_free(h, c);
8269        }
8270        dev_warn(&h->pdev->dev,
8271                "failed %d commands in fail_all\n", failcount);
8272}
8273
8274static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8275{
8276        int cpu;
8277
8278        for_each_online_cpu(cpu) {
8279                u32 *lockup_detected;
8280                lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8281                *lockup_detected = value;
8282        }
8283        wmb(); /* be sure the per-cpu variables are out to memory */
8284}
8285
8286static void controller_lockup_detected(struct ctlr_info *h)
8287{
8288        unsigned long flags;
8289        u32 lockup_detected;
8290
8291        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8292        spin_lock_irqsave(&h->lock, flags);
8293        lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8294        if (!lockup_detected) {
8295                /* no heartbeat, but controller gave us a zero. */
8296                dev_warn(&h->pdev->dev,
8297                        "lockup detected after %d but scratchpad register is zero\n",
8298                        h->heartbeat_sample_interval / HZ);
8299                lockup_detected = 0xffffffff;
8300        }
8301        set_lockup_detected_for_all_cpus(h, lockup_detected);
8302        spin_unlock_irqrestore(&h->lock, flags);
8303        dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8304                        lockup_detected, h->heartbeat_sample_interval / HZ);
8305        pci_disable_device(h->pdev);
8306        fail_all_outstanding_cmds(h);
8307}
8308
8309static int detect_controller_lockup(struct ctlr_info *h)
8310{
8311        u64 now;
8312        u32 heartbeat;
8313        unsigned long flags;
8314
8315        now = get_jiffies_64();
8316        /* If we've received an interrupt recently, we're ok. */
8317        if (time_after64(h->last_intr_timestamp +
8318                                (h->heartbeat_sample_interval), now))
8319                return false;
8320
8321        /*
8322         * If we've already checked the heartbeat recently, we're ok.
8323         * This could happen if someone sends us a signal. We
8324         * otherwise don't care about signals in this thread.
8325         */
8326        if (time_after64(h->last_heartbeat_timestamp +
8327                                (h->heartbeat_sample_interval), now))
8328                return false;
8329
8330        /* If heartbeat has not changed since we last looked, we're not ok. */
8331        spin_lock_irqsave(&h->lock, flags);
8332        heartbeat = readl(&h->cfgtable->HeartBeat);
8333        spin_unlock_irqrestore(&h->lock, flags);
8334        if (h->last_heartbeat == heartbeat) {
8335                controller_lockup_detected(h);
8336                return true;
8337        }
8338
8339        /* We're ok. */
8340        h->last_heartbeat = heartbeat;
8341        h->last_heartbeat_timestamp = now;
8342        return false;
8343}
8344
8345static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8346{
8347        int i;
8348        char *event_type;
8349
8350        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8351                return;
8352
8353        /* Ask the controller to clear the events we're handling. */
8354        if ((h->transMethod & (CFGTBL_Trans_io_accel1
8355                        | CFGTBL_Trans_io_accel2)) &&
8356                (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8357                 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8358
8359                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8360                        event_type = "state change";
8361                if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8362                        event_type = "configuration change";
8363                /* Stop sending new RAID offload reqs via the IO accelerator */
8364                scsi_block_requests(h->scsi_host);
8365                for (i = 0; i < h->ndevices; i++) {
8366                        h->dev[i]->offload_enabled = 0;
8367                        h->dev[i]->offload_to_be_enabled = 0;
8368                }
8369                hpsa_drain_accel_commands(h);
8370                /* Set 'accelerator path config change' bit */
8371                dev_warn(&h->pdev->dev,
8372                        "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8373                        h->events, event_type);
8374                writel(h->events, &(h->cfgtable->clear_event_notify));
8375                /* Set the "clear event notify field update" bit 6 */
8376                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8377                /* Wait until ctlr clears 'clear event notify field', bit 6 */
8378                hpsa_wait_for_clear_event_notify_ack(h);
8379                scsi_unblock_requests(h->scsi_host);
8380        } else {
8381                /* Acknowledge controller notification events. */
8382                writel(h->events, &(h->cfgtable->clear_event_notify));
8383                writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8384                hpsa_wait_for_clear_event_notify_ack(h);
8385#if 0
8386                writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8387                hpsa_wait_for_mode_change_ack(h);
8388#endif
8389        }
8390        return;
8391}
8392
8393/* Check a register on the controller to see if there are configuration
8394 * changes (added/changed/removed logical drives, etc.) which mean that
8395 * we should rescan the controller for devices.
8396 * Also check flag for driver-initiated rescan.
8397 */
8398static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8399{
8400        if (h->drv_req_rescan) {
8401                h->drv_req_rescan = 0;
8402                return 1;
8403        }
8404
8405        if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8406                return 0;
8407
8408        h->events = readl(&(h->cfgtable->event_notify));
8409        return h->events & RESCAN_REQUIRED_EVENT_BITS;
8410}
8411
8412/*
8413 * Check if any of the offline devices have become ready
8414 */
8415static int hpsa_offline_devices_ready(struct ctlr_info *h)
8416{
8417        unsigned long flags;
8418        struct offline_device_entry *d;
8419        struct list_head *this, *tmp;
8420
8421        spin_lock_irqsave(&h->offline_device_lock, flags);
8422        list_for_each_safe(this, tmp, &h->offline_device_list) {
8423                d = list_entry(this, struct offline_device_entry,
8424                                offline_list);
8425                spin_unlock_irqrestore(&h->offline_device_lock, flags);
8426                if (!hpsa_volume_offline(h, d->scsi3addr)) {
8427                        spin_lock_irqsave(&h->offline_device_lock, flags);
8428                        list_del(&d->offline_list);
8429                        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8430                        return 1;
8431                }
8432                spin_lock_irqsave(&h->offline_device_lock, flags);
8433        }
8434        spin_unlock_irqrestore(&h->offline_device_lock, flags);
8435        return 0;
8436}
8437
8438static int hpsa_luns_changed(struct ctlr_info *h)
8439{
8440        int rc = 1; /* assume there are changes */
8441        struct ReportLUNdata *logdev = NULL;
8442
8443        /* if we can't find out if lun data has changed,
8444         * assume that it has.
8445         */
8446
8447        if (!h->lastlogicals)
8448                goto out;
8449
8450        logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8451        if (!logdev) {
8452                dev_warn(&h->pdev->dev,
8453                        "Out of memory, can't track lun changes.\n");
8454                goto out;
8455        }
8456        if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8457                dev_warn(&h->pdev->dev,
8458                        "report luns failed, can't track lun changes.\n");
8459                goto out;
8460        }
8461        if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8462                dev_info(&h->pdev->dev,
8463                        "Lun changes detected.\n");
8464                memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8465                goto out;
8466        } else
8467                rc = 0; /* no changes detected. */
8468out:
8469        kfree(logdev);
8470        return rc;
8471}
8472
8473static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8474{
8475        unsigned long flags;
8476        struct ctlr_info *h = container_of(to_delayed_work(work),
8477                                        struct ctlr_info, rescan_ctlr_work);
8478
8479
8480        if (h->remove_in_progress)
8481                return;
8482
8483        if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8484                scsi_host_get(h->scsi_host);
8485                hpsa_ack_ctlr_events(h);
8486                hpsa_scan_start(h->scsi_host);
8487                scsi_host_put(h->scsi_host);
8488        } else if (h->discovery_polling) {
8489                hpsa_disable_rld_caching(h);
8490                if (hpsa_luns_changed(h)) {
8491                        struct Scsi_Host *sh = NULL;
8492
8493                        dev_info(&h->pdev->dev,
8494                                "driver discovery polling rescan.\n");
8495                        sh = scsi_host_get(h->scsi_host);
8496                        if (sh != NULL) {
8497                                hpsa_scan_start(sh);
8498                                scsi_host_put(sh);
8499                        }
8500                }
8501        }
8502        spin_lock_irqsave(&h->lock, flags);
8503        if (!h->remove_in_progress)
8504                queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8505                                h->heartbeat_sample_interval);
8506        spin_unlock_irqrestore(&h->lock, flags);
8507}
8508
8509static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8510{
8511        unsigned long flags;
8512        struct ctlr_info *h = container_of(to_delayed_work(work),
8513                                        struct ctlr_info, monitor_ctlr_work);
8514
8515        detect_controller_lockup(h);
8516        if (lockup_detected(h))
8517                return;
8518
8519        spin_lock_irqsave(&h->lock, flags);
8520        if (!h->remove_in_progress)
8521                schedule_delayed_work(&h->monitor_ctlr_work,
8522                                h->heartbeat_sample_interval);
8523        spin_unlock_irqrestore(&h->lock, flags);
8524}
8525
8526static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8527                                                char *name)
8528{
8529        struct workqueue_struct *wq = NULL;
8530
8531        wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8532        if (!wq)
8533                dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8534
8535        return wq;
8536}
8537
8538static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8539{
8540        int dac, rc;
8541        struct ctlr_info *h;
8542        int try_soft_reset = 0;
8543        unsigned long flags;
8544        u32 board_id;
8545
8546        if (number_of_controllers == 0)
8547                printk(KERN_INFO DRIVER_NAME "\n");
8548
8549        rc = hpsa_lookup_board_id(pdev, &board_id);
8550        if (rc < 0) {
8551                dev_warn(&pdev->dev, "Board ID not found\n");
8552                return rc;
8553        }
8554
8555        rc = hpsa_init_reset_devices(pdev, board_id);
8556        if (rc) {
8557                if (rc != -ENOTSUPP)
8558                        return rc;
8559                /* If the reset fails in a particular way (it has no way to do
8560                 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8561                 * a soft reset once we get the controller configured up to the
8562                 * point that it can accept a command.
8563                 */
8564                try_soft_reset = 1;
8565                rc = 0;
8566        }
8567
8568reinit_after_soft_reset:
8569
8570        /* Command structures must be aligned on a 32-byte boundary because
8571         * the 5 lower bits of the address are used by the hardware. and by
8572         * the driver.  See comments in hpsa.h for more info.
8573         */
8574        BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8575        h = kzalloc(sizeof(*h), GFP_KERNEL);
8576        if (!h) {
8577                dev_err(&pdev->dev, "Failed to allocate controller head\n");
8578                return -ENOMEM;
8579        }
8580
8581        h->pdev = pdev;
8582
8583        h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8584        INIT_LIST_HEAD(&h->offline_device_list);
8585        spin_lock_init(&h->lock);
8586        spin_lock_init(&h->offline_device_lock);
8587        spin_lock_init(&h->scan_lock);
8588        atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8589        atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8590
8591        /* Allocate and clear per-cpu variable lockup_detected */
8592        h->lockup_detected = alloc_percpu(u32);
8593        if (!h->lockup_detected) {
8594                dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8595                rc = -ENOMEM;
8596                goto clean1;    /* aer/h */
8597        }
8598        set_lockup_detected_for_all_cpus(h, 0);
8599
8600        rc = hpsa_pci_init(h);
8601        if (rc)
8602                goto clean2;    /* lu, aer/h */
8603
8604        /* relies on h-> settings made by hpsa_pci_init, including
8605         * interrupt_mode h->intr */
8606        rc = hpsa_scsi_host_alloc(h);
8607        if (rc)
8608                goto clean2_5;  /* pci, lu, aer/h */
8609
8610        sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8611        h->ctlr = number_of_controllers;
8612        number_of_controllers++;
8613
8614        /* configure PCI DMA stuff */
8615        rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8616        if (rc == 0) {
8617                dac = 1;
8618        } else {
8619                rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8620                if (rc == 0) {
8621                        dac = 0;
8622                } else {
8623                        dev_err(&pdev->dev, "no suitable DMA available\n");
8624                        goto clean3;    /* shost, pci, lu, aer/h */
8625                }
8626        }
8627
8628        /* make sure the board interrupts are off */
8629        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8630
8631        rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8632        if (rc)
8633                goto clean3;    /* shost, pci, lu, aer/h */
8634        rc = hpsa_alloc_cmd_pool(h);
8635        if (rc)
8636                goto clean4;    /* irq, shost, pci, lu, aer/h */
8637        rc = hpsa_alloc_sg_chain_blocks(h);
8638        if (rc)
8639                goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8640        init_waitqueue_head(&h->scan_wait_queue);
8641        init_waitqueue_head(&h->abort_cmd_wait_queue);
8642        init_waitqueue_head(&h->event_sync_wait_queue);
8643        mutex_init(&h->reset_mutex);
8644        h->scan_finished = 1; /* no scan currently in progress */
8645
8646        pci_set_drvdata(pdev, h);
8647        h->ndevices = 0;
8648
8649        spin_lock_init(&h->devlock);
8650        rc = hpsa_put_ctlr_into_performant_mode(h);
8651        if (rc)
8652                goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8653
8654        /* create the resubmit workqueue */
8655        h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8656        if (!h->rescan_ctlr_wq) {
8657                rc = -ENOMEM;
8658                goto clean7;
8659        }
8660
8661        h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8662        if (!h->resubmit_wq) {
8663                rc = -ENOMEM;
8664                goto clean7;    /* aer/h */
8665        }
8666
8667        /*
8668         * At this point, the controller is ready to take commands.
8669         * Now, if reset_devices and the hard reset didn't work, try
8670         * the soft reset and see if that works.
8671         */
8672        if (try_soft_reset) {
8673
8674                /* This is kind of gross.  We may or may not get a completion
8675                 * from the soft reset command, and if we do, then the value
8676                 * from the fifo may or may not be valid.  So, we wait 10 secs
8677                 * after the reset throwing away any completions we get during
8678                 * that time.  Unregister the interrupt handler and register
8679                 * fake ones to scoop up any residual completions.
8680                 */
8681                spin_lock_irqsave(&h->lock, flags);
8682                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8683                spin_unlock_irqrestore(&h->lock, flags);
8684                hpsa_free_irqs(h);
8685                rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8686                                        hpsa_intx_discard_completions);
8687                if (rc) {
8688                        dev_warn(&h->pdev->dev,
8689                                "Failed to request_irq after soft reset.\n");
8690                        /*
8691                         * cannot goto clean7 or free_irqs will be called
8692                         * again. Instead, do its work
8693                         */
8694                        hpsa_free_performant_mode(h);   /* clean7 */
8695                        hpsa_free_sg_chain_blocks(h);   /* clean6 */
8696                        hpsa_free_cmd_pool(h);          /* clean5 */
8697                        /*
8698                         * skip hpsa_free_irqs(h) clean4 since that
8699                         * was just called before request_irqs failed
8700                         */
8701                        goto clean3;
8702                }
8703
8704                rc = hpsa_kdump_soft_reset(h);
8705                if (rc)
8706                        /* Neither hard nor soft reset worked, we're hosed. */
8707                        goto clean7;
8708
8709                dev_info(&h->pdev->dev, "Board READY.\n");
8710                dev_info(&h->pdev->dev,
8711                        "Waiting for stale completions to drain.\n");
8712                h->access.set_intr_mask(h, HPSA_INTR_ON);
8713                msleep(10000);
8714                h->access.set_intr_mask(h, HPSA_INTR_OFF);
8715
8716                rc = controller_reset_failed(h->cfgtable);
8717                if (rc)
8718                        dev_info(&h->pdev->dev,
8719                                "Soft reset appears to have failed.\n");
8720
8721                /* since the controller's reset, we have to go back and re-init
8722                 * everything.  Easiest to just forget what we've done and do it
8723                 * all over again.
8724                 */
8725                hpsa_undo_allocations_after_kdump_soft_reset(h);
8726                try_soft_reset = 0;
8727                if (rc)
8728                        /* don't goto clean, we already unallocated */
8729                        return -ENODEV;
8730
8731                goto reinit_after_soft_reset;
8732        }
8733
8734        /* Enable Accelerated IO path at driver layer */
8735        h->acciopath_status = 1;
8736        /* Disable discovery polling.*/
8737        h->discovery_polling = 0;
8738
8739
8740        /* Turn the interrupts on so we can service requests */
8741        h->access.set_intr_mask(h, HPSA_INTR_ON);
8742
8743        hpsa_hba_inquiry(h);
8744
8745        h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8746        if (!h->lastlogicals)
8747                dev_info(&h->pdev->dev,
8748                        "Can't track change to report lun data\n");
8749
8750        /* hook into SCSI subsystem */
8751        rc = hpsa_scsi_add_host(h);
8752        if (rc)
8753                goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8754
8755        /* Monitor the controller for firmware lockups */
8756        h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8757        INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8758        schedule_delayed_work(&h->monitor_ctlr_work,
8759                                h->heartbeat_sample_interval);
8760        INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8761        queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8762                                h->heartbeat_sample_interval);
8763        return 0;
8764
8765clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8766        hpsa_free_performant_mode(h);
8767        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8768clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8769        hpsa_free_sg_chain_blocks(h);
8770clean5: /* cmd, irq, shost, pci, lu, aer/h */
8771        hpsa_free_cmd_pool(h);
8772clean4: /* irq, shost, pci, lu, aer/h */
8773        hpsa_free_irqs(h);
8774clean3: /* shost, pci, lu, aer/h */
8775        scsi_host_put(h->scsi_host);
8776        h->scsi_host = NULL;
8777clean2_5: /* pci, lu, aer/h */
8778        hpsa_free_pci_init(h);
8779clean2: /* lu, aer/h */
8780        if (h->lockup_detected) {
8781                free_percpu(h->lockup_detected);
8782                h->lockup_detected = NULL;
8783        }
8784clean1: /* wq/aer/h */
8785        if (h->resubmit_wq) {
8786                destroy_workqueue(h->resubmit_wq);
8787                h->resubmit_wq = NULL;
8788        }
8789        if (h->rescan_ctlr_wq) {
8790                destroy_workqueue(h->rescan_ctlr_wq);
8791                h->rescan_ctlr_wq = NULL;
8792        }
8793        kfree(h);
8794        return rc;
8795}
8796
8797static void hpsa_flush_cache(struct ctlr_info *h)
8798{
8799        char *flush_buf;
8800        struct CommandList *c;
8801        int rc;
8802
8803        if (unlikely(lockup_detected(h)))
8804                return;
8805        flush_buf = kzalloc(4, GFP_KERNEL);
8806        if (!flush_buf)
8807                return;
8808
8809        c = cmd_alloc(h);
8810
8811        if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8812                RAID_CTLR_LUNID, TYPE_CMD)) {
8813                goto out;
8814        }
8815        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8816                                        PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8817        if (rc)
8818                goto out;
8819        if (c->err_info->CommandStatus != 0)
8820out:
8821                dev_warn(&h->pdev->dev,
8822                        "error flushing cache on controller\n");
8823        cmd_free(h, c);
8824        kfree(flush_buf);
8825}
8826
8827/* Make controller gather fresh report lun data each time we
8828 * send down a report luns request
8829 */
8830static void hpsa_disable_rld_caching(struct ctlr_info *h)
8831{
8832        u32 *options;
8833        struct CommandList *c;
8834        int rc;
8835
8836        /* Don't bother trying to set diag options if locked up */
8837        if (unlikely(h->lockup_detected))
8838                return;
8839
8840        options = kzalloc(sizeof(*options), GFP_KERNEL);
8841        if (!options) {
8842                dev_err(&h->pdev->dev,
8843                        "Error: failed to disable rld caching, during alloc.\n");
8844                return;
8845        }
8846
8847        c = cmd_alloc(h);
8848
8849        /* first, get the current diag options settings */
8850        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8851                RAID_CTLR_LUNID, TYPE_CMD))
8852                goto errout;
8853
8854        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8855                PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8856        if ((rc != 0) || (c->err_info->CommandStatus != 0))
8857                goto errout;
8858
8859        /* Now, set the bit for disabling the RLD caching */
8860        *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8861
8862        if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8863                RAID_CTLR_LUNID, TYPE_CMD))
8864                goto errout;
8865
8866        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8867                PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8868        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8869                goto errout;
8870
8871        /* Now verify that it got set: */
8872        if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8873                RAID_CTLR_LUNID, TYPE_CMD))
8874                goto errout;
8875
8876        rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8877                PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
8878        if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8879                goto errout;
8880
8881        if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8882                goto out;
8883
8884errout:
8885        dev_err(&h->pdev->dev,
8886                        "Error: failed to disable report lun data caching.\n");
8887out:
8888        cmd_free(h, c);
8889        kfree(options);
8890}
8891
8892static void hpsa_shutdown(struct pci_dev *pdev)
8893{
8894        struct ctlr_info *h;
8895
8896        h = pci_get_drvdata(pdev);
8897        /* Turn board interrupts off  and send the flush cache command
8898         * sendcmd will turn off interrupt, and send the flush...
8899         * To write all data in the battery backed cache to disks
8900         */
8901        hpsa_flush_cache(h);
8902        h->access.set_intr_mask(h, HPSA_INTR_OFF);
8903        hpsa_free_irqs(h);                      /* init_one 4 */
8904        hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8905}
8906
8907static void hpsa_free_device_info(struct ctlr_info *h)
8908{
8909        int i;
8910
8911        for (i = 0; i < h->ndevices; i++) {
8912                kfree(h->dev[i]);
8913                h->dev[i] = NULL;
8914        }
8915}
8916
8917static void hpsa_remove_one(struct pci_dev *pdev)
8918{
8919        struct ctlr_info *h;
8920        unsigned long flags;
8921
8922        if (pci_get_drvdata(pdev) == NULL) {
8923                dev_err(&pdev->dev, "unable to remove device\n");
8924                return;
8925        }
8926        h = pci_get_drvdata(pdev);
8927
8928        /* Get rid of any controller monitoring work items */
8929        spin_lock_irqsave(&h->lock, flags);
8930        h->remove_in_progress = 1;
8931        spin_unlock_irqrestore(&h->lock, flags);
8932        cancel_delayed_work_sync(&h->monitor_ctlr_work);
8933        cancel_delayed_work_sync(&h->rescan_ctlr_work);
8934        destroy_workqueue(h->rescan_ctlr_wq);
8935        destroy_workqueue(h->resubmit_wq);
8936
8937        /*
8938         * Call before disabling interrupts.
8939         * scsi_remove_host can trigger I/O operations especially
8940         * when multipath is enabled. There can be SYNCHRONIZE CACHE
8941         * operations which cannot complete and will hang the system.
8942         */
8943        if (h->scsi_host)
8944                scsi_remove_host(h->scsi_host);         /* init_one 8 */
8945        /* includes hpsa_free_irqs - init_one 4 */
8946        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8947        hpsa_shutdown(pdev);
8948
8949        hpsa_free_device_info(h);               /* scan */
8950
8951        kfree(h->hba_inquiry_data);                     /* init_one 10 */
8952        h->hba_inquiry_data = NULL;                     /* init_one 10 */
8953        hpsa_free_ioaccel2_sg_chain_blocks(h);
8954        hpsa_free_performant_mode(h);                   /* init_one 7 */
8955        hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8956        hpsa_free_cmd_pool(h);                          /* init_one 5 */
8957        kfree(h->lastlogicals);
8958
8959        /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8960
8961        scsi_host_put(h->scsi_host);                    /* init_one 3 */
8962        h->scsi_host = NULL;                            /* init_one 3 */
8963
8964        /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8965        hpsa_free_pci_init(h);                          /* init_one 2.5 */
8966
8967        free_percpu(h->lockup_detected);                /* init_one 2 */
8968        h->lockup_detected = NULL;                      /* init_one 2 */
8969        /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8970
8971        hpsa_delete_sas_host(h);
8972
8973        kfree(h);                                       /* init_one 1 */
8974}
8975
8976static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8977        __attribute__((unused)) pm_message_t state)
8978{
8979        return -ENOSYS;
8980}
8981
8982static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8983{
8984        return -ENOSYS;
8985}
8986
8987static struct pci_driver hpsa_pci_driver = {
8988        .name = HPSA,
8989        .probe = hpsa_init_one,
8990        .remove = hpsa_remove_one,
8991        .id_table = hpsa_pci_device_id, /* id_table */
8992        .shutdown = hpsa_shutdown,
8993        .suspend = hpsa_suspend,
8994        .resume = hpsa_resume,
8995};
8996
8997/* Fill in bucket_map[], given nsgs (the max number of
8998 * scatter gather elements supported) and bucket[],
8999 * which is an array of 8 integers.  The bucket[] array
9000 * contains 8 different DMA transfer sizes (in 16
9001 * byte increments) which the controller uses to fetch
9002 * commands.  This function fills in bucket_map[], which
9003 * maps a given number of scatter gather elements to one of
9004 * the 8 DMA transfer sizes.  The point of it is to allow the
9005 * controller to only do as much DMA as needed to fetch the
9006 * command, with the DMA transfer size encoded in the lower
9007 * bits of the command address.
9008 */
9009static void  calc_bucket_map(int bucket[], int num_buckets,
9010        int nsgs, int min_blocks, u32 *bucket_map)
9011{
9012        int i, j, b, size;
9013
9014        /* Note, bucket_map must have nsgs+1 entries. */
9015        for (i = 0; i <= nsgs; i++) {
9016                /* Compute size of a command with i SG entries */
9017                size = i + min_blocks;
9018                b = num_buckets; /* Assume the biggest bucket */
9019                /* Find the bucket that is just big enough */
9020                for (j = 0; j < num_buckets; j++) {
9021                        if (bucket[j] >= size) {
9022                                b = j;
9023                                break;
9024                        }
9025                }
9026                /* for a command with i SG entries, use bucket b. */
9027                bucket_map[i] = b;
9028        }
9029}
9030
9031/*
9032 * return -ENODEV on err, 0 on success (or no action)
9033 * allocates numerous items that must be freed later
9034 */
9035static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9036{
9037        int i;
9038        unsigned long register_value;
9039        unsigned long transMethod = CFGTBL_Trans_Performant |
9040                        (trans_support & CFGTBL_Trans_use_short_tags) |
9041                                CFGTBL_Trans_enable_directed_msix |
9042                        (trans_support & (CFGTBL_Trans_io_accel1 |
9043                                CFGTBL_Trans_io_accel2));
9044        struct access_method access = SA5_performant_access;
9045
9046        /* This is a bit complicated.  There are 8 registers on
9047         * the controller which we write to to tell it 8 different
9048         * sizes of commands which there may be.  It's a way of
9049         * reducing the DMA done to fetch each command.  Encoded into
9050         * each command's tag are 3 bits which communicate to the controller
9051         * which of the eight sizes that command fits within.  The size of
9052         * each command depends on how many scatter gather entries there are.
9053         * Each SG entry requires 16 bytes.  The eight registers are programmed
9054         * with the number of 16-byte blocks a command of that size requires.
9055         * The smallest command possible requires 5 such 16 byte blocks.
9056         * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9057         * blocks.  Note, this only extends to the SG entries contained
9058         * within the command block, and does not extend to chained blocks
9059         * of SG elements.   bft[] contains the eight values we write to
9060         * the registers.  They are not evenly distributed, but have more
9061         * sizes for small commands, and fewer sizes for larger commands.
9062         */
9063        int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9064#define MIN_IOACCEL2_BFT_ENTRY 5
9065#define HPSA_IOACCEL2_HEADER_SZ 4
9066        int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9067                        13, 14, 15, 16, 17, 18, 19,
9068                        HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9069        BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9070        BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9071        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9072                                 16 * MIN_IOACCEL2_BFT_ENTRY);
9073        BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9074        BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9075        /*  5 = 1 s/g entry or 4k
9076         *  6 = 2 s/g entry or 8k
9077         *  8 = 4 s/g entry or 16k
9078         * 10 = 6 s/g entry or 24k
9079         */
9080
9081        /* If the controller supports either ioaccel method then
9082         * we can also use the RAID stack submit path that does not
9083         * perform the superfluous readl() after each command submission.
9084         */
9085        if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9086                access = SA5_performant_access_no_read;
9087
9088        /* Controller spec: zero out this buffer. */
9089        for (i = 0; i < h->nreply_queues; i++)
9090                memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9091
9092        bft[7] = SG_ENTRIES_IN_CMD + 4;
9093        calc_bucket_map(bft, ARRAY_SIZE(bft),
9094                                SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9095        for (i = 0; i < 8; i++)
9096                writel(bft[i], &h->transtable->BlockFetch[i]);
9097
9098        /* size of controller ring buffer */
9099        writel(h->max_commands, &h->transtable->RepQSize);
9100        writel(h->nreply_queues, &h->transtable->RepQCount);
9101        writel(0, &h->transtable->RepQCtrAddrLow32);
9102        writel(0, &h->transtable->RepQCtrAddrHigh32);
9103
9104        for (i = 0; i < h->nreply_queues; i++) {
9105                writel(0, &h->transtable->RepQAddr[i].upper);
9106                writel(h->reply_queue[i].busaddr,
9107                        &h->transtable->RepQAddr[i].lower);
9108        }
9109
9110        writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9111        writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9112        /*
9113         * enable outbound interrupt coalescing in accelerator mode;
9114         */
9115        if (trans_support & CFGTBL_Trans_io_accel1) {
9116                access = SA5_ioaccel_mode1_access;
9117                writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9118                writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9119        } else {
9120                if (trans_support & CFGTBL_Trans_io_accel2) {
9121                        access = SA5_ioaccel_mode2_access;
9122                        writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9123                        writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9124                }
9125        }
9126        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9127        if (hpsa_wait_for_mode_change_ack(h)) {
9128                dev_err(&h->pdev->dev,
9129                        "performant mode problem - doorbell timeout\n");
9130                return -ENODEV;
9131        }
9132        register_value = readl(&(h->cfgtable->TransportActive));
9133        if (!(register_value & CFGTBL_Trans_Performant)) {
9134                dev_err(&h->pdev->dev,
9135                        "performant mode problem - transport not active\n");
9136                return -ENODEV;
9137        }
9138        /* Change the access methods to the performant access methods */
9139        h->access = access;
9140        h->transMethod = transMethod;
9141
9142        if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9143                (trans_support & CFGTBL_Trans_io_accel2)))
9144                return 0;
9145
9146        if (trans_support & CFGTBL_Trans_io_accel1) {
9147                /* Set up I/O accelerator mode */
9148                for (i = 0; i < h->nreply_queues; i++) {
9149                        writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9150                        h->reply_queue[i].current_entry =
9151                                readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9152                }
9153                bft[7] = h->ioaccel_maxsg + 8;
9154                calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9155                                h->ioaccel1_blockFetchTable);
9156
9157                /* initialize all reply queue entries to unused */
9158                for (i = 0; i < h->nreply_queues; i++)
9159                        memset(h->reply_queue[i].head,
9160                                (u8) IOACCEL_MODE1_REPLY_UNUSED,
9161                                h->reply_queue_size);
9162
9163                /* set all the constant fields in the accelerator command
9164                 * frames once at init time to save CPU cycles later.
9165                 */
9166                for (i = 0; i < h->nr_cmds; i++) {
9167                        struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9168
9169                        cp->function = IOACCEL1_FUNCTION_SCSIIO;
9170                        cp->err_info = (u32) (h->errinfo_pool_dhandle +
9171                                        (i * sizeof(struct ErrorInfo)));
9172                        cp->err_info_len = sizeof(struct ErrorInfo);
9173                        cp->sgl_offset = IOACCEL1_SGLOFFSET;
9174                        cp->host_context_flags =
9175                                cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9176                        cp->timeout_sec = 0;
9177                        cp->ReplyQueue = 0;
9178                        cp->tag =
9179                                cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9180                        cp->host_addr =
9181                                cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9182                                        (i * sizeof(struct io_accel1_cmd)));
9183                }
9184        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9185                u64 cfg_offset, cfg_base_addr_index;
9186                u32 bft2_offset, cfg_base_addr;
9187                int rc;
9188
9189                rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9190                        &cfg_base_addr_index, &cfg_offset);
9191                BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9192                bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9193                calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9194                                4, h->ioaccel2_blockFetchTable);
9195                bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9196                BUILD_BUG_ON(offsetof(struct CfgTable,
9197                                io_accel_request_size_offset) != 0xb8);
9198                h->ioaccel2_bft2_regs =
9199                        remap_pci_mem(pci_resource_start(h->pdev,
9200                                        cfg_base_addr_index) +
9201                                        cfg_offset + bft2_offset,
9202                                        ARRAY_SIZE(bft2) *
9203                                        sizeof(*h->ioaccel2_bft2_regs));
9204                for (i = 0; i < ARRAY_SIZE(bft2); i++)
9205                        writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9206        }
9207        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9208        if (hpsa_wait_for_mode_change_ack(h)) {
9209                dev_err(&h->pdev->dev,
9210                        "performant mode problem - enabling ioaccel mode\n");
9211                return -ENODEV;
9212        }
9213        return 0;
9214}
9215
9216/* Free ioaccel1 mode command blocks and block fetch table */
9217static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9218{
9219        if (h->ioaccel_cmd_pool) {
9220                pci_free_consistent(h->pdev,
9221                        h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9222                        h->ioaccel_cmd_pool,
9223                        h->ioaccel_cmd_pool_dhandle);
9224                h->ioaccel_cmd_pool = NULL;
9225                h->ioaccel_cmd_pool_dhandle = 0;
9226        }
9227        kfree(h->ioaccel1_blockFetchTable);
9228        h->ioaccel1_blockFetchTable = NULL;
9229}
9230
9231/* Allocate ioaccel1 mode command blocks and block fetch table */
9232static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9233{
9234        h->ioaccel_maxsg =
9235                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9236        if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9237                h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9238
9239        /* Command structures must be aligned on a 128-byte boundary
9240         * because the 7 lower bits of the address are used by the
9241         * hardware.
9242         */
9243        BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9244                        IOACCEL1_COMMANDLIST_ALIGNMENT);
9245        h->ioaccel_cmd_pool =
9246                pci_alloc_consistent(h->pdev,
9247                        h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9248                        &(h->ioaccel_cmd_pool_dhandle));
9249
9250        h->ioaccel1_blockFetchTable =
9251                kmalloc(((h->ioaccel_maxsg + 1) *
9252                                sizeof(u32)), GFP_KERNEL);
9253
9254        if ((h->ioaccel_cmd_pool == NULL) ||
9255                (h->ioaccel1_blockFetchTable == NULL))
9256                goto clean_up;
9257
9258        memset(h->ioaccel_cmd_pool, 0,
9259                h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9260        return 0;
9261
9262clean_up:
9263        hpsa_free_ioaccel1_cmd_and_bft(h);
9264        return -ENOMEM;
9265}
9266
9267/* Free ioaccel2 mode command blocks and block fetch table */
9268static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9269{
9270        hpsa_free_ioaccel2_sg_chain_blocks(h);
9271
9272        if (h->ioaccel2_cmd_pool) {
9273                pci_free_consistent(h->pdev,
9274                        h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9275                        h->ioaccel2_cmd_pool,
9276                        h->ioaccel2_cmd_pool_dhandle);
9277                h->ioaccel2_cmd_pool = NULL;
9278                h->ioaccel2_cmd_pool_dhandle = 0;
9279        }
9280        kfree(h->ioaccel2_blockFetchTable);
9281        h->ioaccel2_blockFetchTable = NULL;
9282}
9283
9284/* Allocate ioaccel2 mode command blocks and block fetch table */
9285static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9286{
9287        int rc;
9288
9289        /* Allocate ioaccel2 mode command blocks and block fetch table */
9290
9291        h->ioaccel_maxsg =
9292                readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9293        if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9294                h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9295
9296        BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9297                        IOACCEL2_COMMANDLIST_ALIGNMENT);
9298        h->ioaccel2_cmd_pool =
9299                pci_alloc_consistent(h->pdev,
9300                        h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9301                        &(h->ioaccel2_cmd_pool_dhandle));
9302
9303        h->ioaccel2_blockFetchTable =
9304                kmalloc(((h->ioaccel_maxsg + 1) *
9305                                sizeof(u32)), GFP_KERNEL);
9306
9307        if ((h->ioaccel2_cmd_pool == NULL) ||
9308                (h->ioaccel2_blockFetchTable == NULL)) {
9309                rc = -ENOMEM;
9310                goto clean_up;
9311        }
9312
9313        rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9314        if (rc)
9315                goto clean_up;
9316
9317        memset(h->ioaccel2_cmd_pool, 0,
9318                h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9319        return 0;
9320
9321clean_up:
9322        hpsa_free_ioaccel2_cmd_and_bft(h);
9323        return rc;
9324}
9325
9326/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9327static void hpsa_free_performant_mode(struct ctlr_info *h)
9328{
9329        kfree(h->blockFetchTable);
9330        h->blockFetchTable = NULL;
9331        hpsa_free_reply_queues(h);
9332        hpsa_free_ioaccel1_cmd_and_bft(h);
9333        hpsa_free_ioaccel2_cmd_and_bft(h);
9334}
9335
9336/* return -ENODEV on error, 0 on success (or no action)
9337 * allocates numerous items that must be freed later
9338 */
9339static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9340{
9341        u32 trans_support;
9342        unsigned long transMethod = CFGTBL_Trans_Performant |
9343                                        CFGTBL_Trans_use_short_tags;
9344        int i, rc;
9345
9346        if (hpsa_simple_mode)
9347                return 0;
9348
9349        trans_support = readl(&(h->cfgtable->TransportSupport));
9350        if (!(trans_support & PERFORMANT_MODE))
9351                return 0;
9352
9353        /* Check for I/O accelerator mode support */
9354        if (trans_support & CFGTBL_Trans_io_accel1) {
9355                transMethod |= CFGTBL_Trans_io_accel1 |
9356                                CFGTBL_Trans_enable_directed_msix;
9357                rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9358                if (rc)
9359                        return rc;
9360        } else if (trans_support & CFGTBL_Trans_io_accel2) {
9361                transMethod |= CFGTBL_Trans_io_accel2 |
9362                                CFGTBL_Trans_enable_directed_msix;
9363                rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9364                if (rc)
9365                        return rc;
9366        }
9367
9368        h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9369        hpsa_get_max_perf_mode_cmds(h);
9370        /* Performant mode ring buffer and supporting data structures */
9371        h->reply_queue_size = h->max_commands * sizeof(u64);
9372
9373        for (i = 0; i < h->nreply_queues; i++) {
9374                h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9375                                                h->reply_queue_size,
9376                                                &(h->reply_queue[i].busaddr));
9377                if (!h->reply_queue[i].head) {
9378                        rc = -ENOMEM;
9379                        goto clean1;    /* rq, ioaccel */
9380                }
9381                h->reply_queue[i].size = h->max_commands;
9382                h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9383                h->reply_queue[i].current_entry = 0;
9384        }
9385
9386        /* Need a block fetch table for performant mode */
9387        h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9388                                sizeof(u32)), GFP_KERNEL);
9389        if (!h->blockFetchTable) {
9390                rc = -ENOMEM;
9391                goto clean1;    /* rq, ioaccel */
9392        }
9393
9394        rc = hpsa_enter_performant_mode(h, trans_support);
9395        if (rc)
9396                goto clean2;    /* bft, rq, ioaccel */
9397        return 0;
9398
9399clean2: /* bft, rq, ioaccel */
9400        kfree(h->blockFetchTable);
9401        h->blockFetchTable = NULL;
9402clean1: /* rq, ioaccel */
9403        hpsa_free_reply_queues(h);
9404        hpsa_free_ioaccel1_cmd_and_bft(h);
9405        hpsa_free_ioaccel2_cmd_and_bft(h);
9406        return rc;
9407}
9408
9409static int is_accelerated_cmd(struct CommandList *c)
9410{
9411        return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9412}
9413
9414static void hpsa_drain_accel_commands(struct ctlr_info *h)
9415{
9416        struct CommandList *c = NULL;
9417        int i, accel_cmds_out;
9418        int refcount;
9419
9420        do { /* wait for all outstanding ioaccel commands to drain out */
9421                accel_cmds_out = 0;
9422                for (i = 0; i < h->nr_cmds; i++) {
9423                        c = h->cmd_pool + i;
9424                        refcount = atomic_inc_return(&c->refcount);
9425                        if (refcount > 1) /* Command is allocated */
9426                                accel_cmds_out += is_accelerated_cmd(c);
9427                        cmd_free(h, c);
9428                }
9429                if (accel_cmds_out <= 0)
9430                        break;
9431                msleep(100);
9432        } while (1);
9433}
9434
9435static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9436                                struct hpsa_sas_port *hpsa_sas_port)
9437{
9438        struct hpsa_sas_phy *hpsa_sas_phy;
9439        struct sas_phy *phy;
9440
9441        hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9442        if (!hpsa_sas_phy)
9443                return NULL;
9444
9445        phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9446                hpsa_sas_port->next_phy_index);
9447        if (!phy) {
9448                kfree(hpsa_sas_phy);
9449                return NULL;
9450        }
9451
9452        hpsa_sas_port->next_phy_index++;
9453        hpsa_sas_phy->phy = phy;
9454        hpsa_sas_phy->parent_port = hpsa_sas_port;
9455
9456        return hpsa_sas_phy;
9457}
9458
9459static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9460{
9461        struct sas_phy *phy = hpsa_sas_phy->phy;
9462
9463        sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9464        sas_phy_free(phy);
9465        if (hpsa_sas_phy->added_to_port)
9466                list_del(&hpsa_sas_phy->phy_list_entry);
9467        kfree(hpsa_sas_phy);
9468}
9469
9470static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9471{
9472        int rc;
9473        struct hpsa_sas_port *hpsa_sas_port;
9474        struct sas_phy *phy;
9475        struct sas_identify *identify;
9476
9477        hpsa_sas_port = hpsa_sas_phy->parent_port;
9478        phy = hpsa_sas_phy->phy;
9479
9480        identify = &phy->identify;
9481        memset(identify, 0, sizeof(*identify));
9482        identify->sas_address = hpsa_sas_port->sas_address;
9483        identify->device_type = SAS_END_DEVICE;
9484        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9485        identify->target_port_protocols = SAS_PROTOCOL_STP;
9486        phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9487        phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9488        phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9489        phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9490        phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9491
9492        rc = sas_phy_add(hpsa_sas_phy->phy);
9493        if (rc)
9494                return rc;
9495
9496        sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9497        list_add_tail(&hpsa_sas_phy->phy_list_entry,
9498                        &hpsa_sas_port->phy_list_head);
9499        hpsa_sas_phy->added_to_port = true;
9500
9501        return 0;
9502}
9503
9504static int
9505        hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9506                                struct sas_rphy *rphy)
9507{
9508        struct sas_identify *identify;
9509
9510        identify = &rphy->identify;
9511        identify->sas_address = hpsa_sas_port->sas_address;
9512        identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9513        identify->target_port_protocols = SAS_PROTOCOL_STP;
9514
9515        return sas_rphy_add(rphy);
9516}
9517
9518static struct hpsa_sas_port
9519        *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9520                                u64 sas_address)
9521{
9522        int rc;
9523        struct hpsa_sas_port *hpsa_sas_port;
9524        struct sas_port *port;
9525
9526        hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9527        if (!hpsa_sas_port)
9528                return NULL;
9529
9530        INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9531        hpsa_sas_port->parent_node = hpsa_sas_node;
9532
9533        port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9534        if (!port)
9535                goto free_hpsa_port;
9536
9537        rc = sas_port_add(port);
9538        if (rc)
9539                goto free_sas_port;
9540
9541        hpsa_sas_port->port = port;
9542        hpsa_sas_port->sas_address = sas_address;
9543        list_add_tail(&hpsa_sas_port->port_list_entry,
9544                        &hpsa_sas_node->port_list_head);
9545
9546        return hpsa_sas_port;
9547
9548free_sas_port:
9549        sas_port_free(port);
9550free_hpsa_port:
9551        kfree(hpsa_sas_port);
9552
9553        return NULL;
9554}
9555
9556static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9557{
9558        struct hpsa_sas_phy *hpsa_sas_phy;
9559        struct hpsa_sas_phy *next;
9560
9561        list_for_each_entry_safe(hpsa_sas_phy, next,
9562                        &hpsa_sas_port->phy_list_head, phy_list_entry)
9563                hpsa_free_sas_phy(hpsa_sas_phy);
9564
9565        sas_port_delete(hpsa_sas_port->port);
9566        list_del(&hpsa_sas_port->port_list_entry);
9567        kfree(hpsa_sas_port);
9568}
9569
9570static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9571{
9572        struct hpsa_sas_node *hpsa_sas_node;
9573
9574        hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9575        if (hpsa_sas_node) {
9576                hpsa_sas_node->parent_dev = parent_dev;
9577                INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9578        }
9579
9580        return hpsa_sas_node;
9581}
9582
9583static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9584{
9585        struct hpsa_sas_port *hpsa_sas_port;
9586        struct hpsa_sas_port *next;
9587
9588        if (!hpsa_sas_node)
9589                return;
9590
9591        list_for_each_entry_safe(hpsa_sas_port, next,
9592                        &hpsa_sas_node->port_list_head, port_list_entry)
9593                hpsa_free_sas_port(hpsa_sas_port);
9594
9595        kfree(hpsa_sas_node);
9596}
9597
9598static struct hpsa_scsi_dev_t
9599        *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9600                                        struct sas_rphy *rphy)
9601{
9602        int i;
9603        struct hpsa_scsi_dev_t *device;
9604
9605        for (i = 0; i < h->ndevices; i++) {
9606                device = h->dev[i];
9607                if (!device->sas_port)
9608                        continue;
9609                if (device->sas_port->rphy == rphy)
9610                        return device;
9611        }
9612
9613        return NULL;
9614}
9615
9616static int hpsa_add_sas_host(struct ctlr_info *h)
9617{
9618        int rc;
9619        struct device *parent_dev;
9620        struct hpsa_sas_node *hpsa_sas_node;
9621        struct hpsa_sas_port *hpsa_sas_port;
9622        struct hpsa_sas_phy *hpsa_sas_phy;
9623
9624        parent_dev = &h->scsi_host->shost_gendev;
9625
9626        hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9627        if (!hpsa_sas_node)
9628                return -ENOMEM;
9629
9630        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9631        if (!hpsa_sas_port) {
9632                rc = -ENODEV;
9633                goto free_sas_node;
9634        }
9635
9636        hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9637        if (!hpsa_sas_phy) {
9638                rc = -ENODEV;
9639                goto free_sas_port;
9640        }
9641
9642        rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9643        if (rc)
9644                goto free_sas_phy;
9645
9646        h->sas_host = hpsa_sas_node;
9647
9648        return 0;
9649
9650free_sas_phy:
9651        hpsa_free_sas_phy(hpsa_sas_phy);
9652free_sas_port:
9653        hpsa_free_sas_port(hpsa_sas_port);
9654free_sas_node:
9655        hpsa_free_sas_node(hpsa_sas_node);
9656
9657        return rc;
9658}
9659
9660static void hpsa_delete_sas_host(struct ctlr_info *h)
9661{
9662        hpsa_free_sas_node(h->sas_host);
9663}
9664
9665static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9666                                struct hpsa_scsi_dev_t *device)
9667{
9668        int rc;
9669        struct hpsa_sas_port *hpsa_sas_port;
9670        struct sas_rphy *rphy;
9671
9672        hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9673        if (!hpsa_sas_port)
9674                return -ENOMEM;
9675
9676        rphy = sas_end_device_alloc(hpsa_sas_port->port);
9677        if (!rphy) {
9678                rc = -ENODEV;
9679                goto free_sas_port;
9680        }
9681
9682        hpsa_sas_port->rphy = rphy;
9683        device->sas_port = hpsa_sas_port;
9684
9685        rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9686        if (rc)
9687                goto free_sas_port;
9688
9689        return 0;
9690
9691free_sas_port:
9692        hpsa_free_sas_port(hpsa_sas_port);
9693        device->sas_port = NULL;
9694
9695        return rc;
9696}
9697
9698static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9699{
9700        if (device->sas_port) {
9701                hpsa_free_sas_port(device->sas_port);
9702                device->sas_port = NULL;
9703        }
9704}
9705
9706static int
9707hpsa_sas_get_linkerrors(struct sas_phy *phy)
9708{
9709        return 0;
9710}
9711
9712static int
9713hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9714{
9715        *identifier = 0;
9716        return 0;
9717}
9718
9719static int
9720hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9721{
9722        return -ENXIO;
9723}
9724
9725static int
9726hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9727{
9728        return 0;
9729}
9730
9731static int
9732hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9733{
9734        return 0;
9735}
9736
9737static int
9738hpsa_sas_phy_setup(struct sas_phy *phy)
9739{
9740        return 0;
9741}
9742
9743static void
9744hpsa_sas_phy_release(struct sas_phy *phy)
9745{
9746}
9747
9748static int
9749hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9750{
9751        return -EINVAL;
9752}
9753
9754/* SMP = Serial Management Protocol */
9755static int
9756hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9757struct request *req)
9758{
9759        return -EINVAL;
9760}
9761
9762static struct sas_function_template hpsa_sas_transport_functions = {
9763        .get_linkerrors = hpsa_sas_get_linkerrors,
9764        .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9765        .get_bay_identifier = hpsa_sas_get_bay_identifier,
9766        .phy_reset = hpsa_sas_phy_reset,
9767        .phy_enable = hpsa_sas_phy_enable,
9768        .phy_setup = hpsa_sas_phy_setup,
9769        .phy_release = hpsa_sas_phy_release,
9770        .set_phy_speed = hpsa_sas_phy_speed,
9771        .smp_handler = hpsa_sas_smp_handler,
9772};
9773
9774/*
9775 *  This is it.  Register the PCI driver information for the cards we control
9776 *  the OS will call our registered routines when it finds one of our cards.
9777 */
9778static int __init hpsa_init(void)
9779{
9780        int rc;
9781
9782        hpsa_sas_transport_template =
9783                sas_attach_transport(&hpsa_sas_transport_functions);
9784        if (!hpsa_sas_transport_template)
9785                return -ENODEV;
9786
9787        rc = pci_register_driver(&hpsa_pci_driver);
9788
9789        if (rc)
9790                sas_release_transport(hpsa_sas_transport_template);
9791
9792        return rc;
9793}
9794
9795static void __exit hpsa_cleanup(void)
9796{
9797        pci_unregister_driver(&hpsa_pci_driver);
9798        sas_release_transport(hpsa_sas_transport_template);
9799}
9800
9801static void __attribute__((unused)) verify_offsets(void)
9802{
9803#define VERIFY_OFFSET(member, offset) \
9804        BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9805
9806        VERIFY_OFFSET(structure_size, 0);
9807        VERIFY_OFFSET(volume_blk_size, 4);
9808        VERIFY_OFFSET(volume_blk_cnt, 8);
9809        VERIFY_OFFSET(phys_blk_shift, 16);
9810        VERIFY_OFFSET(parity_rotation_shift, 17);
9811        VERIFY_OFFSET(strip_size, 18);
9812        VERIFY_OFFSET(disk_starting_blk, 20);
9813        VERIFY_OFFSET(disk_blk_cnt, 28);
9814        VERIFY_OFFSET(data_disks_per_row, 36);
9815        VERIFY_OFFSET(metadata_disks_per_row, 38);
9816        VERIFY_OFFSET(row_cnt, 40);
9817        VERIFY_OFFSET(layout_map_count, 42);
9818        VERIFY_OFFSET(flags, 44);
9819        VERIFY_OFFSET(dekindex, 46);
9820        /* VERIFY_OFFSET(reserved, 48 */
9821        VERIFY_OFFSET(data, 64);
9822
9823#undef VERIFY_OFFSET
9824
9825#define VERIFY_OFFSET(member, offset) \
9826        BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9827
9828        VERIFY_OFFSET(IU_type, 0);
9829        VERIFY_OFFSET(direction, 1);
9830        VERIFY_OFFSET(reply_queue, 2);
9831        /* VERIFY_OFFSET(reserved1, 3);  */
9832        VERIFY_OFFSET(scsi_nexus, 4);
9833        VERIFY_OFFSET(Tag, 8);
9834        VERIFY_OFFSET(cdb, 16);
9835        VERIFY_OFFSET(cciss_lun, 32);
9836        VERIFY_OFFSET(data_len, 40);
9837        VERIFY_OFFSET(cmd_priority_task_attr, 44);
9838        VERIFY_OFFSET(sg_count, 45);
9839        /* VERIFY_OFFSET(reserved3 */
9840        VERIFY_OFFSET(err_ptr, 48);
9841        VERIFY_OFFSET(err_len, 56);
9842        /* VERIFY_OFFSET(reserved4  */
9843        VERIFY_OFFSET(sg, 64);
9844
9845#undef VERIFY_OFFSET
9846
9847#define VERIFY_OFFSET(member, offset) \
9848        BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9849
9850        VERIFY_OFFSET(dev_handle, 0x00);
9851        VERIFY_OFFSET(reserved1, 0x02);
9852        VERIFY_OFFSET(function, 0x03);
9853        VERIFY_OFFSET(reserved2, 0x04);
9854        VERIFY_OFFSET(err_info, 0x0C);
9855        VERIFY_OFFSET(reserved3, 0x10);
9856        VERIFY_OFFSET(err_info_len, 0x12);
9857        VERIFY_OFFSET(reserved4, 0x13);
9858        VERIFY_OFFSET(sgl_offset, 0x14);
9859        VERIFY_OFFSET(reserved5, 0x15);
9860        VERIFY_OFFSET(transfer_len, 0x1C);
9861        VERIFY_OFFSET(reserved6, 0x20);
9862        VERIFY_OFFSET(io_flags, 0x24);
9863        VERIFY_OFFSET(reserved7, 0x26);
9864        VERIFY_OFFSET(LUN, 0x34);
9865        VERIFY_OFFSET(control, 0x3C);
9866        VERIFY_OFFSET(CDB, 0x40);
9867        VERIFY_OFFSET(reserved8, 0x50);
9868        VERIFY_OFFSET(host_context_flags, 0x60);
9869        VERIFY_OFFSET(timeout_sec, 0x62);
9870        VERIFY_OFFSET(ReplyQueue, 0x64);
9871        VERIFY_OFFSET(reserved9, 0x65);
9872        VERIFY_OFFSET(tag, 0x68);
9873        VERIFY_OFFSET(host_addr, 0x70);
9874        VERIFY_OFFSET(CISS_LUN, 0x78);
9875        VERIFY_OFFSET(SG, 0x78 + 8);
9876#undef VERIFY_OFFSET
9877}
9878
9879module_init(hpsa_init);
9880module_exit(hpsa_cleanup);
9881