linux/drivers/usb/gadget/function/f_fs.c
<<
>>
Prefs
   1/*
   2 * f_fs.c -- user mode file system API for USB composite function controllers
   3 *
   4 * Copyright (C) 2010 Samsung Electronics
   5 * Author: Michal Nazarewicz <mina86@mina86.com>
   6 *
   7 * Based on inode.c (GadgetFS) which was:
   8 * Copyright (C) 2003-2004 David Brownell
   9 * Copyright (C) 2003 Agilent Technologies
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 */
  16
  17
  18/* #define DEBUG */
  19/* #define VERBOSE_DEBUG */
  20
  21#include <linux/blkdev.h>
  22#include <linux/pagemap.h>
  23#include <linux/export.h>
  24#include <linux/hid.h>
  25#include <linux/module.h>
  26#include <linux/uio.h>
  27#include <asm/unaligned.h>
  28
  29#include <linux/usb/composite.h>
  30#include <linux/usb/functionfs.h>
  31
  32#include <linux/aio.h>
  33#include <linux/mmu_context.h>
  34#include <linux/poll.h>
  35#include <linux/eventfd.h>
  36
  37#include "u_fs.h"
  38#include "u_f.h"
  39#include "u_os_desc.h"
  40#include "configfs.h"
  41
  42#define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
  43
  44/* Reference counter handling */
  45static void ffs_data_get(struct ffs_data *ffs);
  46static void ffs_data_put(struct ffs_data *ffs);
  47/* Creates new ffs_data object. */
  48static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
  49
  50/* Opened counter handling. */
  51static void ffs_data_opened(struct ffs_data *ffs);
  52static void ffs_data_closed(struct ffs_data *ffs);
  53
  54/* Called with ffs->mutex held; take over ownership of data. */
  55static int __must_check
  56__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  57static int __must_check
  58__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  59
  60
  61/* The function structure ***************************************************/
  62
  63struct ffs_ep;
  64
  65struct ffs_function {
  66        struct usb_configuration        *conf;
  67        struct usb_gadget               *gadget;
  68        struct ffs_data                 *ffs;
  69
  70        struct ffs_ep                   *eps;
  71        u8                              eps_revmap[16];
  72        short                           *interfaces_nums;
  73
  74        struct usb_function             function;
  75};
  76
  77
  78static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  79{
  80        return container_of(f, struct ffs_function, function);
  81}
  82
  83
  84static inline enum ffs_setup_state
  85ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  86{
  87        return (enum ffs_setup_state)
  88                cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  89}
  90
  91
  92static void ffs_func_eps_disable(struct ffs_function *func);
  93static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  94
  95static int ffs_func_bind(struct usb_configuration *,
  96                         struct usb_function *);
  97static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
  98static void ffs_func_disable(struct usb_function *);
  99static int ffs_func_setup(struct usb_function *,
 100                          const struct usb_ctrlrequest *);
 101static void ffs_func_suspend(struct usb_function *);
 102static void ffs_func_resume(struct usb_function *);
 103
 104
 105static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 106static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 107
 108
 109/* The endpoints structures *************************************************/
 110
 111struct ffs_ep {
 112        struct usb_ep                   *ep;    /* P: ffs->eps_lock */
 113        struct usb_request              *req;   /* P: epfile->mutex */
 114
 115        /* [0]: full speed, [1]: high speed, [2]: super speed */
 116        struct usb_endpoint_descriptor  *descs[3];
 117
 118        u8                              num;
 119
 120        int                             status; /* P: epfile->mutex */
 121};
 122
 123struct ffs_epfile {
 124        /* Protects ep->ep and ep->req. */
 125        struct mutex                    mutex;
 126        wait_queue_head_t               wait;
 127
 128        struct ffs_data                 *ffs;
 129        struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
 130
 131        struct dentry                   *dentry;
 132
 133        char                            name[5];
 134
 135        unsigned char                   in;     /* P: ffs->eps_lock */
 136        unsigned char                   isoc;   /* P: ffs->eps_lock */
 137
 138        unsigned char                   _pad;
 139};
 140
 141/*  ffs_io_data structure ***************************************************/
 142
 143struct ffs_io_data {
 144        bool aio;
 145        bool read;
 146
 147        struct kiocb *kiocb;
 148        struct iov_iter data;
 149        const void *to_free;
 150        char *buf;
 151
 152        struct mm_struct *mm;
 153        struct work_struct work;
 154
 155        struct usb_ep *ep;
 156        struct usb_request *req;
 157
 158        struct ffs_data *ffs;
 159};
 160
 161struct ffs_desc_helper {
 162        struct ffs_data *ffs;
 163        unsigned interfaces_count;
 164        unsigned eps_count;
 165};
 166
 167static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 168static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 169
 170static struct dentry *
 171ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 172                   const struct file_operations *fops);
 173
 174/* Devices management *******************************************************/
 175
 176DEFINE_MUTEX(ffs_lock);
 177EXPORT_SYMBOL_GPL(ffs_lock);
 178
 179static struct ffs_dev *_ffs_find_dev(const char *name);
 180static struct ffs_dev *_ffs_alloc_dev(void);
 181static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
 182static void _ffs_free_dev(struct ffs_dev *dev);
 183static void *ffs_acquire_dev(const char *dev_name);
 184static void ffs_release_dev(struct ffs_data *ffs_data);
 185static int ffs_ready(struct ffs_data *ffs);
 186static void ffs_closed(struct ffs_data *ffs);
 187
 188/* Misc helper functions ****************************************************/
 189
 190static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 191        __attribute__((warn_unused_result, nonnull));
 192static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 193        __attribute__((warn_unused_result, nonnull));
 194
 195
 196/* Control file aka ep0 *****************************************************/
 197
 198static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 199{
 200        struct ffs_data *ffs = req->context;
 201
 202        complete_all(&ffs->ep0req_completion);
 203}
 204
 205static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 206{
 207        struct usb_request *req = ffs->ep0req;
 208        int ret;
 209
 210        req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 211
 212        spin_unlock_irq(&ffs->ev.waitq.lock);
 213
 214        req->buf      = data;
 215        req->length   = len;
 216
 217        /*
 218         * UDC layer requires to provide a buffer even for ZLP, but should
 219         * not use it at all. Let's provide some poisoned pointer to catch
 220         * possible bug in the driver.
 221         */
 222        if (req->buf == NULL)
 223                req->buf = (void *)0xDEADBABE;
 224
 225        reinit_completion(&ffs->ep0req_completion);
 226
 227        ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 228        if (unlikely(ret < 0))
 229                return ret;
 230
 231        ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 232        if (unlikely(ret)) {
 233                usb_ep_dequeue(ffs->gadget->ep0, req);
 234                return -EINTR;
 235        }
 236
 237        ffs->setup_state = FFS_NO_SETUP;
 238        return req->status ? req->status : req->actual;
 239}
 240
 241static int __ffs_ep0_stall(struct ffs_data *ffs)
 242{
 243        if (ffs->ev.can_stall) {
 244                pr_vdebug("ep0 stall\n");
 245                usb_ep_set_halt(ffs->gadget->ep0);
 246                ffs->setup_state = FFS_NO_SETUP;
 247                return -EL2HLT;
 248        } else {
 249                pr_debug("bogus ep0 stall!\n");
 250                return -ESRCH;
 251        }
 252}
 253
 254static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 255                             size_t len, loff_t *ptr)
 256{
 257        struct ffs_data *ffs = file->private_data;
 258        ssize_t ret;
 259        char *data;
 260
 261        ENTER();
 262
 263        /* Fast check if setup was canceled */
 264        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 265                return -EIDRM;
 266
 267        /* Acquire mutex */
 268        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 269        if (unlikely(ret < 0))
 270                return ret;
 271
 272        /* Check state */
 273        switch (ffs->state) {
 274        case FFS_READ_DESCRIPTORS:
 275        case FFS_READ_STRINGS:
 276                /* Copy data */
 277                if (unlikely(len < 16)) {
 278                        ret = -EINVAL;
 279                        break;
 280                }
 281
 282                data = ffs_prepare_buffer(buf, len);
 283                if (IS_ERR(data)) {
 284                        ret = PTR_ERR(data);
 285                        break;
 286                }
 287
 288                /* Handle data */
 289                if (ffs->state == FFS_READ_DESCRIPTORS) {
 290                        pr_info("read descriptors\n");
 291                        ret = __ffs_data_got_descs(ffs, data, len);
 292                        if (unlikely(ret < 0))
 293                                break;
 294
 295                        ffs->state = FFS_READ_STRINGS;
 296                        ret = len;
 297                } else {
 298                        pr_info("read strings\n");
 299                        ret = __ffs_data_got_strings(ffs, data, len);
 300                        if (unlikely(ret < 0))
 301                                break;
 302
 303                        ret = ffs_epfiles_create(ffs);
 304                        if (unlikely(ret)) {
 305                                ffs->state = FFS_CLOSING;
 306                                break;
 307                        }
 308
 309                        ffs->state = FFS_ACTIVE;
 310                        mutex_unlock(&ffs->mutex);
 311
 312                        ret = ffs_ready(ffs);
 313                        if (unlikely(ret < 0)) {
 314                                ffs->state = FFS_CLOSING;
 315                                return ret;
 316                        }
 317
 318                        return len;
 319                }
 320                break;
 321
 322        case FFS_ACTIVE:
 323                data = NULL;
 324                /*
 325                 * We're called from user space, we can use _irq
 326                 * rather then _irqsave
 327                 */
 328                spin_lock_irq(&ffs->ev.waitq.lock);
 329                switch (ffs_setup_state_clear_cancelled(ffs)) {
 330                case FFS_SETUP_CANCELLED:
 331                        ret = -EIDRM;
 332                        goto done_spin;
 333
 334                case FFS_NO_SETUP:
 335                        ret = -ESRCH;
 336                        goto done_spin;
 337
 338                case FFS_SETUP_PENDING:
 339                        break;
 340                }
 341
 342                /* FFS_SETUP_PENDING */
 343                if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 344                        spin_unlock_irq(&ffs->ev.waitq.lock);
 345                        ret = __ffs_ep0_stall(ffs);
 346                        break;
 347                }
 348
 349                /* FFS_SETUP_PENDING and not stall */
 350                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 351
 352                spin_unlock_irq(&ffs->ev.waitq.lock);
 353
 354                data = ffs_prepare_buffer(buf, len);
 355                if (IS_ERR(data)) {
 356                        ret = PTR_ERR(data);
 357                        break;
 358                }
 359
 360                spin_lock_irq(&ffs->ev.waitq.lock);
 361
 362                /*
 363                 * We are guaranteed to be still in FFS_ACTIVE state
 364                 * but the state of setup could have changed from
 365                 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 366                 * to check for that.  If that happened we copied data
 367                 * from user space in vain but it's unlikely.
 368                 *
 369                 * For sure we are not in FFS_NO_SETUP since this is
 370                 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 371                 * transition can be performed and it's protected by
 372                 * mutex.
 373                 */
 374                if (ffs_setup_state_clear_cancelled(ffs) ==
 375                    FFS_SETUP_CANCELLED) {
 376                        ret = -EIDRM;
 377done_spin:
 378                        spin_unlock_irq(&ffs->ev.waitq.lock);
 379                } else {
 380                        /* unlocks spinlock */
 381                        ret = __ffs_ep0_queue_wait(ffs, data, len);
 382                }
 383                kfree(data);
 384                break;
 385
 386        default:
 387                ret = -EBADFD;
 388                break;
 389        }
 390
 391        mutex_unlock(&ffs->mutex);
 392        return ret;
 393}
 394
 395/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 396static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 397                                     size_t n)
 398{
 399        /*
 400         * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 401         * size of ffs->ev.types array (which is four) so that's how much space
 402         * we reserve.
 403         */
 404        struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 405        const size_t size = n * sizeof *events;
 406        unsigned i = 0;
 407
 408        memset(events, 0, size);
 409
 410        do {
 411                events[i].type = ffs->ev.types[i];
 412                if (events[i].type == FUNCTIONFS_SETUP) {
 413                        events[i].u.setup = ffs->ev.setup;
 414                        ffs->setup_state = FFS_SETUP_PENDING;
 415                }
 416        } while (++i < n);
 417
 418        ffs->ev.count -= n;
 419        if (ffs->ev.count)
 420                memmove(ffs->ev.types, ffs->ev.types + n,
 421                        ffs->ev.count * sizeof *ffs->ev.types);
 422
 423        spin_unlock_irq(&ffs->ev.waitq.lock);
 424        mutex_unlock(&ffs->mutex);
 425
 426        return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 427}
 428
 429static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 430                            size_t len, loff_t *ptr)
 431{
 432        struct ffs_data *ffs = file->private_data;
 433        char *data = NULL;
 434        size_t n;
 435        int ret;
 436
 437        ENTER();
 438
 439        /* Fast check if setup was canceled */
 440        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 441                return -EIDRM;
 442
 443        /* Acquire mutex */
 444        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 445        if (unlikely(ret < 0))
 446                return ret;
 447
 448        /* Check state */
 449        if (ffs->state != FFS_ACTIVE) {
 450                ret = -EBADFD;
 451                goto done_mutex;
 452        }
 453
 454        /*
 455         * We're called from user space, we can use _irq rather then
 456         * _irqsave
 457         */
 458        spin_lock_irq(&ffs->ev.waitq.lock);
 459
 460        switch (ffs_setup_state_clear_cancelled(ffs)) {
 461        case FFS_SETUP_CANCELLED:
 462                ret = -EIDRM;
 463                break;
 464
 465        case FFS_NO_SETUP:
 466                n = len / sizeof(struct usb_functionfs_event);
 467                if (unlikely(!n)) {
 468                        ret = -EINVAL;
 469                        break;
 470                }
 471
 472                if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 473                        ret = -EAGAIN;
 474                        break;
 475                }
 476
 477                if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 478                                                        ffs->ev.count)) {
 479                        ret = -EINTR;
 480                        break;
 481                }
 482
 483                return __ffs_ep0_read_events(ffs, buf,
 484                                             min(n, (size_t)ffs->ev.count));
 485
 486        case FFS_SETUP_PENDING:
 487                if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 488                        spin_unlock_irq(&ffs->ev.waitq.lock);
 489                        ret = __ffs_ep0_stall(ffs);
 490                        goto done_mutex;
 491                }
 492
 493                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 494
 495                spin_unlock_irq(&ffs->ev.waitq.lock);
 496
 497                if (likely(len)) {
 498                        data = kmalloc(len, GFP_KERNEL);
 499                        if (unlikely(!data)) {
 500                                ret = -ENOMEM;
 501                                goto done_mutex;
 502                        }
 503                }
 504
 505                spin_lock_irq(&ffs->ev.waitq.lock);
 506
 507                /* See ffs_ep0_write() */
 508                if (ffs_setup_state_clear_cancelled(ffs) ==
 509                    FFS_SETUP_CANCELLED) {
 510                        ret = -EIDRM;
 511                        break;
 512                }
 513
 514                /* unlocks spinlock */
 515                ret = __ffs_ep0_queue_wait(ffs, data, len);
 516                if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 517                        ret = -EFAULT;
 518                goto done_mutex;
 519
 520        default:
 521                ret = -EBADFD;
 522                break;
 523        }
 524
 525        spin_unlock_irq(&ffs->ev.waitq.lock);
 526done_mutex:
 527        mutex_unlock(&ffs->mutex);
 528        kfree(data);
 529        return ret;
 530}
 531
 532static int ffs_ep0_open(struct inode *inode, struct file *file)
 533{
 534        struct ffs_data *ffs = inode->i_private;
 535
 536        ENTER();
 537
 538        if (unlikely(ffs->state == FFS_CLOSING))
 539                return -EBUSY;
 540
 541        file->private_data = ffs;
 542        ffs_data_opened(ffs);
 543
 544        return 0;
 545}
 546
 547static int ffs_ep0_release(struct inode *inode, struct file *file)
 548{
 549        struct ffs_data *ffs = file->private_data;
 550
 551        ENTER();
 552
 553        ffs_data_closed(ffs);
 554
 555        return 0;
 556}
 557
 558static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 559{
 560        struct ffs_data *ffs = file->private_data;
 561        struct usb_gadget *gadget = ffs->gadget;
 562        long ret;
 563
 564        ENTER();
 565
 566        if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 567                struct ffs_function *func = ffs->func;
 568                ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 569        } else if (gadget && gadget->ops->ioctl) {
 570                ret = gadget->ops->ioctl(gadget, code, value);
 571        } else {
 572                ret = -ENOTTY;
 573        }
 574
 575        return ret;
 576}
 577
 578static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
 579{
 580        struct ffs_data *ffs = file->private_data;
 581        unsigned int mask = POLLWRNORM;
 582        int ret;
 583
 584        poll_wait(file, &ffs->ev.waitq, wait);
 585
 586        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 587        if (unlikely(ret < 0))
 588                return mask;
 589
 590        switch (ffs->state) {
 591        case FFS_READ_DESCRIPTORS:
 592        case FFS_READ_STRINGS:
 593                mask |= POLLOUT;
 594                break;
 595
 596        case FFS_ACTIVE:
 597                switch (ffs->setup_state) {
 598                case FFS_NO_SETUP:
 599                        if (ffs->ev.count)
 600                                mask |= POLLIN;
 601                        break;
 602
 603                case FFS_SETUP_PENDING:
 604                case FFS_SETUP_CANCELLED:
 605                        mask |= (POLLIN | POLLOUT);
 606                        break;
 607                }
 608        case FFS_CLOSING:
 609                break;
 610        case FFS_DEACTIVATED:
 611                break;
 612        }
 613
 614        mutex_unlock(&ffs->mutex);
 615
 616        return mask;
 617}
 618
 619static const struct file_operations ffs_ep0_operations = {
 620        .llseek =       no_llseek,
 621
 622        .open =         ffs_ep0_open,
 623        .write =        ffs_ep0_write,
 624        .read =         ffs_ep0_read,
 625        .release =      ffs_ep0_release,
 626        .unlocked_ioctl =       ffs_ep0_ioctl,
 627        .poll =         ffs_ep0_poll,
 628};
 629
 630
 631/* "Normal" endpoints operations ********************************************/
 632
 633static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 634{
 635        ENTER();
 636        if (likely(req->context)) {
 637                struct ffs_ep *ep = _ep->driver_data;
 638                ep->status = req->status ? req->status : req->actual;
 639                complete(req->context);
 640        }
 641}
 642
 643static void ffs_user_copy_worker(struct work_struct *work)
 644{
 645        struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 646                                                   work);
 647        int ret = io_data->req->status ? io_data->req->status :
 648                                         io_data->req->actual;
 649        bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 650
 651        if (io_data->read && ret > 0) {
 652                use_mm(io_data->mm);
 653                ret = copy_to_iter(io_data->buf, ret, &io_data->data);
 654                if (ret != io_data->req->actual && iov_iter_count(&io_data->data))
 655                        ret = -EFAULT;
 656                unuse_mm(io_data->mm);
 657        }
 658
 659        io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 660
 661        if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 662                eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 663
 664        usb_ep_free_request(io_data->ep, io_data->req);
 665
 666        if (io_data->read)
 667                kfree(io_data->to_free);
 668        kfree(io_data->buf);
 669        kfree(io_data);
 670}
 671
 672static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 673                                         struct usb_request *req)
 674{
 675        struct ffs_io_data *io_data = req->context;
 676
 677        ENTER();
 678
 679        INIT_WORK(&io_data->work, ffs_user_copy_worker);
 680        schedule_work(&io_data->work);
 681}
 682
 683static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 684{
 685        struct ffs_epfile *epfile = file->private_data;
 686        struct usb_request *req;
 687        struct ffs_ep *ep;
 688        char *data = NULL;
 689        ssize_t ret, data_len = -EINVAL;
 690        int halt;
 691
 692        /* Are we still active? */
 693        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 694                return -ENODEV;
 695
 696        /* Wait for endpoint to be enabled */
 697        ep = epfile->ep;
 698        if (!ep) {
 699                if (file->f_flags & O_NONBLOCK)
 700                        return -EAGAIN;
 701
 702                ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
 703                if (ret)
 704                        return -EINTR;
 705        }
 706
 707        /* Do we halt? */
 708        halt = (!io_data->read == !epfile->in);
 709        if (halt && epfile->isoc)
 710                return -EINVAL;
 711
 712        /* Allocate & copy */
 713        if (!halt) {
 714                /*
 715                 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 716                 * before the waiting completes, so do not assign to 'gadget'
 717                 * earlier
 718                 */
 719                struct usb_gadget *gadget = epfile->ffs->gadget;
 720                size_t copied;
 721
 722                spin_lock_irq(&epfile->ffs->eps_lock);
 723                /* In the meantime, endpoint got disabled or changed. */
 724                if (epfile->ep != ep) {
 725                        spin_unlock_irq(&epfile->ffs->eps_lock);
 726                        return -ESHUTDOWN;
 727                }
 728                data_len = iov_iter_count(&io_data->data);
 729                /*
 730                 * Controller may require buffer size to be aligned to
 731                 * maxpacketsize of an out endpoint.
 732                 */
 733                if (io_data->read)
 734                        data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
 735                spin_unlock_irq(&epfile->ffs->eps_lock);
 736
 737                data = kmalloc(data_len, GFP_KERNEL);
 738                if (unlikely(!data))
 739                        return -ENOMEM;
 740                if (!io_data->read) {
 741                        copied = copy_from_iter(data, data_len, &io_data->data);
 742                        if (copied != data_len) {
 743                                ret = -EFAULT;
 744                                goto error;
 745                        }
 746                }
 747        }
 748
 749        /* We will be using request */
 750        ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 751        if (unlikely(ret))
 752                goto error;
 753
 754        spin_lock_irq(&epfile->ffs->eps_lock);
 755
 756        if (epfile->ep != ep) {
 757                /* In the meantime, endpoint got disabled or changed. */
 758                ret = -ESHUTDOWN;
 759        } else if (halt) {
 760                /* Halt */
 761                if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
 762                        usb_ep_set_halt(ep->ep);
 763                ret = -EBADMSG;
 764        } else if (unlikely(data_len == -EINVAL)) {
 765                /*
 766                 * Sanity Check: even though data_len can't be used
 767                 * uninitialized at the time I write this comment, some
 768                 * compilers complain about this situation.
 769                 * In order to keep the code clean from warnings, data_len is
 770                 * being initialized to -EINVAL during its declaration, which
 771                 * means we can't rely on compiler anymore to warn no future
 772                 * changes won't result in data_len being used uninitialized.
 773                 * For such reason, we're adding this redundant sanity check
 774                 * here.
 775                 */
 776                WARN(1, "%s: data_len == -EINVAL\n", __func__);
 777                ret = -EINVAL;
 778        } else if (!io_data->aio) {
 779                DECLARE_COMPLETION_ONSTACK(done);
 780                bool interrupted = false;
 781
 782                req = ep->req;
 783                req->buf      = data;
 784                req->length   = data_len;
 785
 786                req->context  = &done;
 787                req->complete = ffs_epfile_io_complete;
 788
 789                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
 790                if (unlikely(ret < 0))
 791                        goto error_lock;
 792
 793                spin_unlock_irq(&epfile->ffs->eps_lock);
 794
 795                if (unlikely(wait_for_completion_interruptible(&done))) {
 796                        /*
 797                         * To avoid race condition with ffs_epfile_io_complete,
 798                         * dequeue the request first then check
 799                         * status. usb_ep_dequeue API should guarantee no race
 800                         * condition with req->complete callback.
 801                         */
 802                        usb_ep_dequeue(ep->ep, req);
 803                        interrupted = ep->status < 0;
 804                }
 805
 806                /*
 807                 * XXX We may end up silently droping data here.  Since data_len
 808                 * (i.e. req->length) may be bigger than len (after being
 809                 * rounded up to maxpacketsize), we may end up with more data
 810                 * then user space has space for.
 811                 */
 812                ret = interrupted ? -EINTR : ep->status;
 813                if (io_data->read && ret > 0) {
 814                        ret = copy_to_iter(data, ret, &io_data->data);
 815                        if (!ret)
 816                                ret = -EFAULT;
 817                }
 818                goto error_mutex;
 819        } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
 820                ret = -ENOMEM;
 821        } else {
 822                req->buf      = data;
 823                req->length   = data_len;
 824
 825                io_data->buf = data;
 826                io_data->ep = ep->ep;
 827                io_data->req = req;
 828                io_data->ffs = epfile->ffs;
 829
 830                req->context  = io_data;
 831                req->complete = ffs_epfile_async_io_complete;
 832
 833                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
 834                if (unlikely(ret)) {
 835                        usb_ep_free_request(ep->ep, req);
 836                        goto error_lock;
 837                }
 838
 839                ret = -EIOCBQUEUED;
 840                /*
 841                 * Do not kfree the buffer in this function.  It will be freed
 842                 * by ffs_user_copy_worker.
 843                 */
 844                data = NULL;
 845        }
 846
 847error_lock:
 848        spin_unlock_irq(&epfile->ffs->eps_lock);
 849error_mutex:
 850        mutex_unlock(&epfile->mutex);
 851error:
 852        kfree(data);
 853        return ret;
 854}
 855
 856static int
 857ffs_epfile_open(struct inode *inode, struct file *file)
 858{
 859        struct ffs_epfile *epfile = inode->i_private;
 860
 861        ENTER();
 862
 863        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 864                return -ENODEV;
 865
 866        file->private_data = epfile;
 867        ffs_data_opened(epfile->ffs);
 868
 869        return 0;
 870}
 871
 872static int ffs_aio_cancel(struct kiocb *kiocb)
 873{
 874        struct ffs_io_data *io_data = kiocb->private;
 875        struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
 876        int value;
 877
 878        ENTER();
 879
 880        spin_lock_irq(&epfile->ffs->eps_lock);
 881
 882        if (likely(io_data && io_data->ep && io_data->req))
 883                value = usb_ep_dequeue(io_data->ep, io_data->req);
 884        else
 885                value = -EINVAL;
 886
 887        spin_unlock_irq(&epfile->ffs->eps_lock);
 888
 889        return value;
 890}
 891
 892static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
 893{
 894        struct ffs_io_data io_data, *p = &io_data;
 895        ssize_t res;
 896
 897        ENTER();
 898
 899        if (!is_sync_kiocb(kiocb)) {
 900                p = kmalloc(sizeof(io_data), GFP_KERNEL);
 901                if (unlikely(!p))
 902                        return -ENOMEM;
 903                p->aio = true;
 904        } else {
 905                p->aio = false;
 906        }
 907
 908        p->read = false;
 909        p->kiocb = kiocb;
 910        p->data = *from;
 911        p->mm = current->mm;
 912
 913        kiocb->private = p;
 914
 915        if (p->aio)
 916                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
 917
 918        res = ffs_epfile_io(kiocb->ki_filp, p);
 919        if (res == -EIOCBQUEUED)
 920                return res;
 921        if (p->aio)
 922                kfree(p);
 923        else
 924                *from = p->data;
 925        return res;
 926}
 927
 928static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
 929{
 930        struct ffs_io_data io_data, *p = &io_data;
 931        ssize_t res;
 932
 933        ENTER();
 934
 935        if (!is_sync_kiocb(kiocb)) {
 936                p = kmalloc(sizeof(io_data), GFP_KERNEL);
 937                if (unlikely(!p))
 938                        return -ENOMEM;
 939                p->aio = true;
 940        } else {
 941                p->aio = false;
 942        }
 943
 944        p->read = true;
 945        p->kiocb = kiocb;
 946        if (p->aio) {
 947                p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
 948                if (!p->to_free) {
 949                        kfree(p);
 950                        return -ENOMEM;
 951                }
 952        } else {
 953                p->data = *to;
 954                p->to_free = NULL;
 955        }
 956        p->mm = current->mm;
 957
 958        kiocb->private = p;
 959
 960        if (p->aio)
 961                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
 962
 963        res = ffs_epfile_io(kiocb->ki_filp, p);
 964        if (res == -EIOCBQUEUED)
 965                return res;
 966
 967        if (p->aio) {
 968                kfree(p->to_free);
 969                kfree(p);
 970        } else {
 971                *to = p->data;
 972        }
 973        return res;
 974}
 975
 976static int
 977ffs_epfile_release(struct inode *inode, struct file *file)
 978{
 979        struct ffs_epfile *epfile = inode->i_private;
 980
 981        ENTER();
 982
 983        ffs_data_closed(epfile->ffs);
 984
 985        return 0;
 986}
 987
 988static long ffs_epfile_ioctl(struct file *file, unsigned code,
 989                             unsigned long value)
 990{
 991        struct ffs_epfile *epfile = file->private_data;
 992        int ret;
 993
 994        ENTER();
 995
 996        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 997                return -ENODEV;
 998
 999        spin_lock_irq(&epfile->ffs->eps_lock);
1000        if (likely(epfile->ep)) {
1001                switch (code) {
1002                case FUNCTIONFS_FIFO_STATUS:
1003                        ret = usb_ep_fifo_status(epfile->ep->ep);
1004                        break;
1005                case FUNCTIONFS_FIFO_FLUSH:
1006                        usb_ep_fifo_flush(epfile->ep->ep);
1007                        ret = 0;
1008                        break;
1009                case FUNCTIONFS_CLEAR_HALT:
1010                        ret = usb_ep_clear_halt(epfile->ep->ep);
1011                        break;
1012                case FUNCTIONFS_ENDPOINT_REVMAP:
1013                        ret = epfile->ep->num;
1014                        break;
1015                case FUNCTIONFS_ENDPOINT_DESC:
1016                {
1017                        int desc_idx;
1018                        struct usb_endpoint_descriptor *desc;
1019
1020                        switch (epfile->ffs->gadget->speed) {
1021                        case USB_SPEED_SUPER:
1022                                desc_idx = 2;
1023                                break;
1024                        case USB_SPEED_HIGH:
1025                                desc_idx = 1;
1026                                break;
1027                        default:
1028                                desc_idx = 0;
1029                        }
1030                        desc = epfile->ep->descs[desc_idx];
1031
1032                        spin_unlock_irq(&epfile->ffs->eps_lock);
1033                        ret = copy_to_user((void *)value, desc, sizeof(*desc));
1034                        if (ret)
1035                                ret = -EFAULT;
1036                        return ret;
1037                }
1038                default:
1039                        ret = -ENOTTY;
1040                }
1041        } else {
1042                ret = -ENODEV;
1043        }
1044        spin_unlock_irq(&epfile->ffs->eps_lock);
1045
1046        return ret;
1047}
1048
1049static const struct file_operations ffs_epfile_operations = {
1050        .llseek =       no_llseek,
1051
1052        .open =         ffs_epfile_open,
1053        .write_iter =   ffs_epfile_write_iter,
1054        .read_iter =    ffs_epfile_read_iter,
1055        .release =      ffs_epfile_release,
1056        .unlocked_ioctl =       ffs_epfile_ioctl,
1057};
1058
1059
1060/* File system and super block operations ***********************************/
1061
1062/*
1063 * Mounting the file system creates a controller file, used first for
1064 * function configuration then later for event monitoring.
1065 */
1066
1067static struct inode *__must_check
1068ffs_sb_make_inode(struct super_block *sb, void *data,
1069                  const struct file_operations *fops,
1070                  const struct inode_operations *iops,
1071                  struct ffs_file_perms *perms)
1072{
1073        struct inode *inode;
1074
1075        ENTER();
1076
1077        inode = new_inode(sb);
1078
1079        if (likely(inode)) {
1080                struct timespec current_time = CURRENT_TIME;
1081
1082                inode->i_ino     = get_next_ino();
1083                inode->i_mode    = perms->mode;
1084                inode->i_uid     = perms->uid;
1085                inode->i_gid     = perms->gid;
1086                inode->i_atime   = current_time;
1087                inode->i_mtime   = current_time;
1088                inode->i_ctime   = current_time;
1089                inode->i_private = data;
1090                if (fops)
1091                        inode->i_fop = fops;
1092                if (iops)
1093                        inode->i_op  = iops;
1094        }
1095
1096        return inode;
1097}
1098
1099/* Create "regular" file */
1100static struct dentry *ffs_sb_create_file(struct super_block *sb,
1101                                        const char *name, void *data,
1102                                        const struct file_operations *fops)
1103{
1104        struct ffs_data *ffs = sb->s_fs_info;
1105        struct dentry   *dentry;
1106        struct inode    *inode;
1107
1108        ENTER();
1109
1110        dentry = d_alloc_name(sb->s_root, name);
1111        if (unlikely(!dentry))
1112                return NULL;
1113
1114        inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1115        if (unlikely(!inode)) {
1116                dput(dentry);
1117                return NULL;
1118        }
1119
1120        d_add(dentry, inode);
1121        return dentry;
1122}
1123
1124/* Super block */
1125static const struct super_operations ffs_sb_operations = {
1126        .statfs =       simple_statfs,
1127        .drop_inode =   generic_delete_inode,
1128};
1129
1130struct ffs_sb_fill_data {
1131        struct ffs_file_perms perms;
1132        umode_t root_mode;
1133        const char *dev_name;
1134        bool no_disconnect;
1135        struct ffs_data *ffs_data;
1136};
1137
1138static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1139{
1140        struct ffs_sb_fill_data *data = _data;
1141        struct inode    *inode;
1142        struct ffs_data *ffs = data->ffs_data;
1143
1144        ENTER();
1145
1146        ffs->sb              = sb;
1147        data->ffs_data       = NULL;
1148        sb->s_fs_info        = ffs;
1149        sb->s_blocksize      = PAGE_SIZE;
1150        sb->s_blocksize_bits = PAGE_SHIFT;
1151        sb->s_magic          = FUNCTIONFS_MAGIC;
1152        sb->s_op             = &ffs_sb_operations;
1153        sb->s_time_gran      = 1;
1154
1155        /* Root inode */
1156        data->perms.mode = data->root_mode;
1157        inode = ffs_sb_make_inode(sb, NULL,
1158                                  &simple_dir_operations,
1159                                  &simple_dir_inode_operations,
1160                                  &data->perms);
1161        sb->s_root = d_make_root(inode);
1162        if (unlikely(!sb->s_root))
1163                return -ENOMEM;
1164
1165        /* EP0 file */
1166        if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1167                                         &ffs_ep0_operations)))
1168                return -ENOMEM;
1169
1170        return 0;
1171}
1172
1173static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1174{
1175        ENTER();
1176
1177        if (!opts || !*opts)
1178                return 0;
1179
1180        for (;;) {
1181                unsigned long value;
1182                char *eq, *comma;
1183
1184                /* Option limit */
1185                comma = strchr(opts, ',');
1186                if (comma)
1187                        *comma = 0;
1188
1189                /* Value limit */
1190                eq = strchr(opts, '=');
1191                if (unlikely(!eq)) {
1192                        pr_err("'=' missing in %s\n", opts);
1193                        return -EINVAL;
1194                }
1195                *eq = 0;
1196
1197                /* Parse value */
1198                if (kstrtoul(eq + 1, 0, &value)) {
1199                        pr_err("%s: invalid value: %s\n", opts, eq + 1);
1200                        return -EINVAL;
1201                }
1202
1203                /* Interpret option */
1204                switch (eq - opts) {
1205                case 13:
1206                        if (!memcmp(opts, "no_disconnect", 13))
1207                                data->no_disconnect = !!value;
1208                        else
1209                                goto invalid;
1210                        break;
1211                case 5:
1212                        if (!memcmp(opts, "rmode", 5))
1213                                data->root_mode  = (value & 0555) | S_IFDIR;
1214                        else if (!memcmp(opts, "fmode", 5))
1215                                data->perms.mode = (value & 0666) | S_IFREG;
1216                        else
1217                                goto invalid;
1218                        break;
1219
1220                case 4:
1221                        if (!memcmp(opts, "mode", 4)) {
1222                                data->root_mode  = (value & 0555) | S_IFDIR;
1223                                data->perms.mode = (value & 0666) | S_IFREG;
1224                        } else {
1225                                goto invalid;
1226                        }
1227                        break;
1228
1229                case 3:
1230                        if (!memcmp(opts, "uid", 3)) {
1231                                data->perms.uid = make_kuid(current_user_ns(), value);
1232                                if (!uid_valid(data->perms.uid)) {
1233                                        pr_err("%s: unmapped value: %lu\n", opts, value);
1234                                        return -EINVAL;
1235                                }
1236                        } else if (!memcmp(opts, "gid", 3)) {
1237                                data->perms.gid = make_kgid(current_user_ns(), value);
1238                                if (!gid_valid(data->perms.gid)) {
1239                                        pr_err("%s: unmapped value: %lu\n", opts, value);
1240                                        return -EINVAL;
1241                                }
1242                        } else {
1243                                goto invalid;
1244                        }
1245                        break;
1246
1247                default:
1248invalid:
1249                        pr_err("%s: invalid option\n", opts);
1250                        return -EINVAL;
1251                }
1252
1253                /* Next iteration */
1254                if (!comma)
1255                        break;
1256                opts = comma + 1;
1257        }
1258
1259        return 0;
1260}
1261
1262/* "mount -t functionfs dev_name /dev/function" ends up here */
1263
1264static struct dentry *
1265ffs_fs_mount(struct file_system_type *t, int flags,
1266              const char *dev_name, void *opts)
1267{
1268        struct ffs_sb_fill_data data = {
1269                .perms = {
1270                        .mode = S_IFREG | 0600,
1271                        .uid = GLOBAL_ROOT_UID,
1272                        .gid = GLOBAL_ROOT_GID,
1273                },
1274                .root_mode = S_IFDIR | 0500,
1275                .no_disconnect = false,
1276        };
1277        struct dentry *rv;
1278        int ret;
1279        void *ffs_dev;
1280        struct ffs_data *ffs;
1281
1282        ENTER();
1283
1284        ret = ffs_fs_parse_opts(&data, opts);
1285        if (unlikely(ret < 0))
1286                return ERR_PTR(ret);
1287
1288        ffs = ffs_data_new();
1289        if (unlikely(!ffs))
1290                return ERR_PTR(-ENOMEM);
1291        ffs->file_perms = data.perms;
1292        ffs->no_disconnect = data.no_disconnect;
1293
1294        ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1295        if (unlikely(!ffs->dev_name)) {
1296                ffs_data_put(ffs);
1297                return ERR_PTR(-ENOMEM);
1298        }
1299
1300        ffs_dev = ffs_acquire_dev(dev_name);
1301        if (IS_ERR(ffs_dev)) {
1302                ffs_data_put(ffs);
1303                return ERR_CAST(ffs_dev);
1304        }
1305        ffs->private_data = ffs_dev;
1306        data.ffs_data = ffs;
1307
1308        rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1309        if (IS_ERR(rv) && data.ffs_data) {
1310                ffs_release_dev(data.ffs_data);
1311                ffs_data_put(data.ffs_data);
1312        }
1313        return rv;
1314}
1315
1316static void
1317ffs_fs_kill_sb(struct super_block *sb)
1318{
1319        ENTER();
1320
1321        kill_litter_super(sb);
1322        if (sb->s_fs_info) {
1323                ffs_release_dev(sb->s_fs_info);
1324                ffs_data_closed(sb->s_fs_info);
1325                ffs_data_put(sb->s_fs_info);
1326        }
1327}
1328
1329static struct file_system_type ffs_fs_type = {
1330        .owner          = THIS_MODULE,
1331        .name           = "functionfs",
1332        .mount          = ffs_fs_mount,
1333        .kill_sb        = ffs_fs_kill_sb,
1334};
1335MODULE_ALIAS_FS("functionfs");
1336
1337
1338/* Driver's main init/cleanup functions *************************************/
1339
1340static int functionfs_init(void)
1341{
1342        int ret;
1343
1344        ENTER();
1345
1346        ret = register_filesystem(&ffs_fs_type);
1347        if (likely(!ret))
1348                pr_info("file system registered\n");
1349        else
1350                pr_err("failed registering file system (%d)\n", ret);
1351
1352        return ret;
1353}
1354
1355static void functionfs_cleanup(void)
1356{
1357        ENTER();
1358
1359        pr_info("unloading\n");
1360        unregister_filesystem(&ffs_fs_type);
1361}
1362
1363
1364/* ffs_data and ffs_function construction and destruction code **************/
1365
1366static void ffs_data_clear(struct ffs_data *ffs);
1367static void ffs_data_reset(struct ffs_data *ffs);
1368
1369static void ffs_data_get(struct ffs_data *ffs)
1370{
1371        ENTER();
1372
1373        atomic_inc(&ffs->ref);
1374}
1375
1376static void ffs_data_opened(struct ffs_data *ffs)
1377{
1378        ENTER();
1379
1380        atomic_inc(&ffs->ref);
1381        if (atomic_add_return(1, &ffs->opened) == 1 &&
1382                        ffs->state == FFS_DEACTIVATED) {
1383                ffs->state = FFS_CLOSING;
1384                ffs_data_reset(ffs);
1385        }
1386}
1387
1388static void ffs_data_put(struct ffs_data *ffs)
1389{
1390        ENTER();
1391
1392        if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1393                pr_info("%s(): freeing\n", __func__);
1394                ffs_data_clear(ffs);
1395                BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1396                       waitqueue_active(&ffs->ep0req_completion.wait));
1397                kfree(ffs->dev_name);
1398                kfree(ffs);
1399        }
1400}
1401
1402static void ffs_data_closed(struct ffs_data *ffs)
1403{
1404        ENTER();
1405
1406        if (atomic_dec_and_test(&ffs->opened)) {
1407                if (ffs->no_disconnect) {
1408                        ffs->state = FFS_DEACTIVATED;
1409                        if (ffs->epfiles) {
1410                                ffs_epfiles_destroy(ffs->epfiles,
1411                                                   ffs->eps_count);
1412                                ffs->epfiles = NULL;
1413                        }
1414                        if (ffs->setup_state == FFS_SETUP_PENDING)
1415                                __ffs_ep0_stall(ffs);
1416                } else {
1417                        ffs->state = FFS_CLOSING;
1418                        ffs_data_reset(ffs);
1419                }
1420        }
1421        if (atomic_read(&ffs->opened) < 0) {
1422                ffs->state = FFS_CLOSING;
1423                ffs_data_reset(ffs);
1424        }
1425
1426        ffs_data_put(ffs);
1427}
1428
1429static struct ffs_data *ffs_data_new(void)
1430{
1431        struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1432        if (unlikely(!ffs))
1433                return NULL;
1434
1435        ENTER();
1436
1437        atomic_set(&ffs->ref, 1);
1438        atomic_set(&ffs->opened, 0);
1439        ffs->state = FFS_READ_DESCRIPTORS;
1440        mutex_init(&ffs->mutex);
1441        spin_lock_init(&ffs->eps_lock);
1442        init_waitqueue_head(&ffs->ev.waitq);
1443        init_completion(&ffs->ep0req_completion);
1444
1445        /* XXX REVISIT need to update it in some places, or do we? */
1446        ffs->ev.can_stall = 1;
1447
1448        return ffs;
1449}
1450
1451static void ffs_data_clear(struct ffs_data *ffs)
1452{
1453        ENTER();
1454
1455        ffs_closed(ffs);
1456
1457        BUG_ON(ffs->gadget);
1458
1459        if (ffs->epfiles)
1460                ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1461
1462        if (ffs->ffs_eventfd)
1463                eventfd_ctx_put(ffs->ffs_eventfd);
1464
1465        kfree(ffs->raw_descs_data);
1466        kfree(ffs->raw_strings);
1467        kfree(ffs->stringtabs);
1468}
1469
1470static void ffs_data_reset(struct ffs_data *ffs)
1471{
1472        ENTER();
1473
1474        ffs_data_clear(ffs);
1475
1476        ffs->epfiles = NULL;
1477        ffs->raw_descs_data = NULL;
1478        ffs->raw_descs = NULL;
1479        ffs->raw_strings = NULL;
1480        ffs->stringtabs = NULL;
1481
1482        ffs->raw_descs_length = 0;
1483        ffs->fs_descs_count = 0;
1484        ffs->hs_descs_count = 0;
1485        ffs->ss_descs_count = 0;
1486
1487        ffs->strings_count = 0;
1488        ffs->interfaces_count = 0;
1489        ffs->eps_count = 0;
1490
1491        ffs->ev.count = 0;
1492
1493        ffs->state = FFS_READ_DESCRIPTORS;
1494        ffs->setup_state = FFS_NO_SETUP;
1495        ffs->flags = 0;
1496}
1497
1498
1499static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1500{
1501        struct usb_gadget_strings **lang;
1502        int first_id;
1503
1504        ENTER();
1505
1506        if (WARN_ON(ffs->state != FFS_ACTIVE
1507                 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1508                return -EBADFD;
1509
1510        first_id = usb_string_ids_n(cdev, ffs->strings_count);
1511        if (unlikely(first_id < 0))
1512                return first_id;
1513
1514        ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1515        if (unlikely(!ffs->ep0req))
1516                return -ENOMEM;
1517        ffs->ep0req->complete = ffs_ep0_complete;
1518        ffs->ep0req->context = ffs;
1519
1520        lang = ffs->stringtabs;
1521        if (lang) {
1522                for (; *lang; ++lang) {
1523                        struct usb_string *str = (*lang)->strings;
1524                        int id = first_id;
1525                        for (; str->s; ++id, ++str)
1526                                str->id = id;
1527                }
1528        }
1529
1530        ffs->gadget = cdev->gadget;
1531        ffs_data_get(ffs);
1532        return 0;
1533}
1534
1535static void functionfs_unbind(struct ffs_data *ffs)
1536{
1537        ENTER();
1538
1539        if (!WARN_ON(!ffs->gadget)) {
1540                usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1541                ffs->ep0req = NULL;
1542                ffs->gadget = NULL;
1543                clear_bit(FFS_FL_BOUND, &ffs->flags);
1544                ffs_data_put(ffs);
1545        }
1546}
1547
1548static int ffs_epfiles_create(struct ffs_data *ffs)
1549{
1550        struct ffs_epfile *epfile, *epfiles;
1551        unsigned i, count;
1552
1553        ENTER();
1554
1555        count = ffs->eps_count;
1556        epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1557        if (!epfiles)
1558                return -ENOMEM;
1559
1560        epfile = epfiles;
1561        for (i = 1; i <= count; ++i, ++epfile) {
1562                epfile->ffs = ffs;
1563                mutex_init(&epfile->mutex);
1564                init_waitqueue_head(&epfile->wait);
1565                if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1566                        sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1567                else
1568                        sprintf(epfile->name, "ep%u", i);
1569                epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1570                                                 epfile,
1571                                                 &ffs_epfile_operations);
1572                if (unlikely(!epfile->dentry)) {
1573                        ffs_epfiles_destroy(epfiles, i - 1);
1574                        return -ENOMEM;
1575                }
1576        }
1577
1578        ffs->epfiles = epfiles;
1579        return 0;
1580}
1581
1582static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1583{
1584        struct ffs_epfile *epfile = epfiles;
1585
1586        ENTER();
1587
1588        for (; count; --count, ++epfile) {
1589                BUG_ON(mutex_is_locked(&epfile->mutex) ||
1590                       waitqueue_active(&epfile->wait));
1591                if (epfile->dentry) {
1592                        d_delete(epfile->dentry);
1593                        dput(epfile->dentry);
1594                        epfile->dentry = NULL;
1595                }
1596        }
1597
1598        kfree(epfiles);
1599}
1600
1601static void ffs_func_eps_disable(struct ffs_function *func)
1602{
1603        struct ffs_ep *ep         = func->eps;
1604        struct ffs_epfile *epfile = func->ffs->epfiles;
1605        unsigned count            = func->ffs->eps_count;
1606        unsigned long flags;
1607
1608        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1609        do {
1610                /* pending requests get nuked */
1611                if (likely(ep->ep))
1612                        usb_ep_disable(ep->ep);
1613                ++ep;
1614
1615                if (epfile) {
1616                        epfile->ep = NULL;
1617                        ++epfile;
1618                }
1619        } while (--count);
1620        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1621}
1622
1623static int ffs_func_eps_enable(struct ffs_function *func)
1624{
1625        struct ffs_data *ffs      = func->ffs;
1626        struct ffs_ep *ep         = func->eps;
1627        struct ffs_epfile *epfile = ffs->epfiles;
1628        unsigned count            = ffs->eps_count;
1629        unsigned long flags;
1630        int ret = 0;
1631
1632        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1633        do {
1634                struct usb_endpoint_descriptor *ds;
1635                int desc_idx;
1636
1637                if (ffs->gadget->speed == USB_SPEED_SUPER)
1638                        desc_idx = 2;
1639                else if (ffs->gadget->speed == USB_SPEED_HIGH)
1640                        desc_idx = 1;
1641                else
1642                        desc_idx = 0;
1643
1644                /* fall-back to lower speed if desc missing for current speed */
1645                do {
1646                        ds = ep->descs[desc_idx];
1647                } while (!ds && --desc_idx >= 0);
1648
1649                if (!ds) {
1650                        ret = -EINVAL;
1651                        break;
1652                }
1653
1654                ep->ep->driver_data = ep;
1655                ep->ep->desc = ds;
1656                ret = usb_ep_enable(ep->ep);
1657                if (likely(!ret)) {
1658                        epfile->ep = ep;
1659                        epfile->in = usb_endpoint_dir_in(ds);
1660                        epfile->isoc = usb_endpoint_xfer_isoc(ds);
1661                } else {
1662                        break;
1663                }
1664
1665                wake_up(&epfile->wait);
1666
1667                ++ep;
1668                ++epfile;
1669        } while (--count);
1670        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1671
1672        return ret;
1673}
1674
1675
1676/* Parsing and building descriptors and strings *****************************/
1677
1678/*
1679 * This validates if data pointed by data is a valid USB descriptor as
1680 * well as record how many interfaces, endpoints and strings are
1681 * required by given configuration.  Returns address after the
1682 * descriptor or NULL if data is invalid.
1683 */
1684
1685enum ffs_entity_type {
1686        FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1687};
1688
1689enum ffs_os_desc_type {
1690        FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1691};
1692
1693typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1694                                   u8 *valuep,
1695                                   struct usb_descriptor_header *desc,
1696                                   void *priv);
1697
1698typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1699                                    struct usb_os_desc_header *h, void *data,
1700                                    unsigned len, void *priv);
1701
1702static int __must_check ffs_do_single_desc(char *data, unsigned len,
1703                                           ffs_entity_callback entity,
1704                                           void *priv)
1705{
1706        struct usb_descriptor_header *_ds = (void *)data;
1707        u8 length;
1708        int ret;
1709
1710        ENTER();
1711
1712        /* At least two bytes are required: length and type */
1713        if (len < 2) {
1714                pr_vdebug("descriptor too short\n");
1715                return -EINVAL;
1716        }
1717
1718        /* If we have at least as many bytes as the descriptor takes? */
1719        length = _ds->bLength;
1720        if (len < length) {
1721                pr_vdebug("descriptor longer then available data\n");
1722                return -EINVAL;
1723        }
1724
1725#define __entity_check_INTERFACE(val)  1
1726#define __entity_check_STRING(val)     (val)
1727#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1728#define __entity(type, val) do {                                        \
1729                pr_vdebug("entity " #type "(%02x)\n", (val));           \
1730                if (unlikely(!__entity_check_ ##type(val))) {           \
1731                        pr_vdebug("invalid entity's value\n");          \
1732                        return -EINVAL;                                 \
1733                }                                                       \
1734                ret = entity(FFS_ ##type, &val, _ds, priv);             \
1735                if (unlikely(ret < 0)) {                                \
1736                        pr_debug("entity " #type "(%02x); ret = %d\n",  \
1737                                 (val), ret);                           \
1738                        return ret;                                     \
1739                }                                                       \
1740        } while (0)
1741
1742        /* Parse descriptor depending on type. */
1743        switch (_ds->bDescriptorType) {
1744        case USB_DT_DEVICE:
1745        case USB_DT_CONFIG:
1746        case USB_DT_STRING:
1747        case USB_DT_DEVICE_QUALIFIER:
1748                /* function can't have any of those */
1749                pr_vdebug("descriptor reserved for gadget: %d\n",
1750                      _ds->bDescriptorType);
1751                return -EINVAL;
1752
1753        case USB_DT_INTERFACE: {
1754                struct usb_interface_descriptor *ds = (void *)_ds;
1755                pr_vdebug("interface descriptor\n");
1756                if (length != sizeof *ds)
1757                        goto inv_length;
1758
1759                __entity(INTERFACE, ds->bInterfaceNumber);
1760                if (ds->iInterface)
1761                        __entity(STRING, ds->iInterface);
1762        }
1763                break;
1764
1765        case USB_DT_ENDPOINT: {
1766                struct usb_endpoint_descriptor *ds = (void *)_ds;
1767                pr_vdebug("endpoint descriptor\n");
1768                if (length != USB_DT_ENDPOINT_SIZE &&
1769                    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1770                        goto inv_length;
1771                __entity(ENDPOINT, ds->bEndpointAddress);
1772        }
1773                break;
1774
1775        case HID_DT_HID:
1776                pr_vdebug("hid descriptor\n");
1777                if (length != sizeof(struct hid_descriptor))
1778                        goto inv_length;
1779                break;
1780
1781        case USB_DT_OTG:
1782                if (length != sizeof(struct usb_otg_descriptor))
1783                        goto inv_length;
1784                break;
1785
1786        case USB_DT_INTERFACE_ASSOCIATION: {
1787                struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1788                pr_vdebug("interface association descriptor\n");
1789                if (length != sizeof *ds)
1790                        goto inv_length;
1791                if (ds->iFunction)
1792                        __entity(STRING, ds->iFunction);
1793        }
1794                break;
1795
1796        case USB_DT_SS_ENDPOINT_COMP:
1797                pr_vdebug("EP SS companion descriptor\n");
1798                if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1799                        goto inv_length;
1800                break;
1801
1802        case USB_DT_OTHER_SPEED_CONFIG:
1803        case USB_DT_INTERFACE_POWER:
1804        case USB_DT_DEBUG:
1805        case USB_DT_SECURITY:
1806        case USB_DT_CS_RADIO_CONTROL:
1807                /* TODO */
1808                pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1809                return -EINVAL;
1810
1811        default:
1812                /* We should never be here */
1813                pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1814                return -EINVAL;
1815
1816inv_length:
1817                pr_vdebug("invalid length: %d (descriptor %d)\n",
1818                          _ds->bLength, _ds->bDescriptorType);
1819                return -EINVAL;
1820        }
1821
1822#undef __entity
1823#undef __entity_check_DESCRIPTOR
1824#undef __entity_check_INTERFACE
1825#undef __entity_check_STRING
1826#undef __entity_check_ENDPOINT
1827
1828        return length;
1829}
1830
1831static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1832                                     ffs_entity_callback entity, void *priv)
1833{
1834        const unsigned _len = len;
1835        unsigned long num = 0;
1836
1837        ENTER();
1838
1839        for (;;) {
1840                int ret;
1841
1842                if (num == count)
1843                        data = NULL;
1844
1845                /* Record "descriptor" entity */
1846                ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1847                if (unlikely(ret < 0)) {
1848                        pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1849                                 num, ret);
1850                        return ret;
1851                }
1852
1853                if (!data)
1854                        return _len - len;
1855
1856                ret = ffs_do_single_desc(data, len, entity, priv);
1857                if (unlikely(ret < 0)) {
1858                        pr_debug("%s returns %d\n", __func__, ret);
1859                        return ret;
1860                }
1861
1862                len -= ret;
1863                data += ret;
1864                ++num;
1865        }
1866}
1867
1868static int __ffs_data_do_entity(enum ffs_entity_type type,
1869                                u8 *valuep, struct usb_descriptor_header *desc,
1870                                void *priv)
1871{
1872        struct ffs_desc_helper *helper = priv;
1873        struct usb_endpoint_descriptor *d;
1874
1875        ENTER();
1876
1877        switch (type) {
1878        case FFS_DESCRIPTOR:
1879                break;
1880
1881        case FFS_INTERFACE:
1882                /*
1883                 * Interfaces are indexed from zero so if we
1884                 * encountered interface "n" then there are at least
1885                 * "n+1" interfaces.
1886                 */
1887                if (*valuep >= helper->interfaces_count)
1888                        helper->interfaces_count = *valuep + 1;
1889                break;
1890
1891        case FFS_STRING:
1892                /*
1893                 * Strings are indexed from 1 (0 is magic ;) reserved
1894                 * for languages list or some such)
1895                 */
1896                if (*valuep > helper->ffs->strings_count)
1897                        helper->ffs->strings_count = *valuep;
1898                break;
1899
1900        case FFS_ENDPOINT:
1901                d = (void *)desc;
1902                helper->eps_count++;
1903                if (helper->eps_count >= 15)
1904                        return -EINVAL;
1905                /* Check if descriptors for any speed were already parsed */
1906                if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1907                        helper->ffs->eps_addrmap[helper->eps_count] =
1908                                d->bEndpointAddress;
1909                else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1910                                d->bEndpointAddress)
1911                        return -EINVAL;
1912                break;
1913        }
1914
1915        return 0;
1916}
1917
1918static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1919                                   struct usb_os_desc_header *desc)
1920{
1921        u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1922        u16 w_index = le16_to_cpu(desc->wIndex);
1923
1924        if (bcd_version != 1) {
1925                pr_vdebug("unsupported os descriptors version: %d",
1926                          bcd_version);
1927                return -EINVAL;
1928        }
1929        switch (w_index) {
1930        case 0x4:
1931                *next_type = FFS_OS_DESC_EXT_COMPAT;
1932                break;
1933        case 0x5:
1934                *next_type = FFS_OS_DESC_EXT_PROP;
1935                break;
1936        default:
1937                pr_vdebug("unsupported os descriptor type: %d", w_index);
1938                return -EINVAL;
1939        }
1940
1941        return sizeof(*desc);
1942}
1943
1944/*
1945 * Process all extended compatibility/extended property descriptors
1946 * of a feature descriptor
1947 */
1948static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
1949                                              enum ffs_os_desc_type type,
1950                                              u16 feature_count,
1951                                              ffs_os_desc_callback entity,
1952                                              void *priv,
1953                                              struct usb_os_desc_header *h)
1954{
1955        int ret;
1956        const unsigned _len = len;
1957
1958        ENTER();
1959
1960        /* loop over all ext compat/ext prop descriptors */
1961        while (feature_count--) {
1962                ret = entity(type, h, data, len, priv);
1963                if (unlikely(ret < 0)) {
1964                        pr_debug("bad OS descriptor, type: %d\n", type);
1965                        return ret;
1966                }
1967                data += ret;
1968                len -= ret;
1969        }
1970        return _len - len;
1971}
1972
1973/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
1974static int __must_check ffs_do_os_descs(unsigned count,
1975                                        char *data, unsigned len,
1976                                        ffs_os_desc_callback entity, void *priv)
1977{
1978        const unsigned _len = len;
1979        unsigned long num = 0;
1980
1981        ENTER();
1982
1983        for (num = 0; num < count; ++num) {
1984                int ret;
1985                enum ffs_os_desc_type type;
1986                u16 feature_count;
1987                struct usb_os_desc_header *desc = (void *)data;
1988
1989                if (len < sizeof(*desc))
1990                        return -EINVAL;
1991
1992                /*
1993                 * Record "descriptor" entity.
1994                 * Process dwLength, bcdVersion, wIndex, get b/wCount.
1995                 * Move the data pointer to the beginning of extended
1996                 * compatibilities proper or extended properties proper
1997                 * portions of the data
1998                 */
1999                if (le32_to_cpu(desc->dwLength) > len)
2000                        return -EINVAL;
2001
2002                ret = __ffs_do_os_desc_header(&type, desc);
2003                if (unlikely(ret < 0)) {
2004                        pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2005                                 num, ret);
2006                        return ret;
2007                }
2008                /*
2009                 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2010                 */
2011                feature_count = le16_to_cpu(desc->wCount);
2012                if (type == FFS_OS_DESC_EXT_COMPAT &&
2013                    (feature_count > 255 || desc->Reserved))
2014                                return -EINVAL;
2015                len -= ret;
2016                data += ret;
2017
2018                /*
2019                 * Process all function/property descriptors
2020                 * of this Feature Descriptor
2021                 */
2022                ret = ffs_do_single_os_desc(data, len, type,
2023                                            feature_count, entity, priv, desc);
2024                if (unlikely(ret < 0)) {
2025                        pr_debug("%s returns %d\n", __func__, ret);
2026                        return ret;
2027                }
2028
2029                len -= ret;
2030                data += ret;
2031        }
2032        return _len - len;
2033}
2034
2035/**
2036 * Validate contents of the buffer from userspace related to OS descriptors.
2037 */
2038static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2039                                 struct usb_os_desc_header *h, void *data,
2040                                 unsigned len, void *priv)
2041{
2042        struct ffs_data *ffs = priv;
2043        u8 length;
2044
2045        ENTER();
2046
2047        switch (type) {
2048        case FFS_OS_DESC_EXT_COMPAT: {
2049                struct usb_ext_compat_desc *d = data;
2050                int i;
2051
2052                if (len < sizeof(*d) ||
2053                    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2054                    !d->Reserved1)
2055                        return -EINVAL;
2056                for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2057                        if (d->Reserved2[i])
2058                                return -EINVAL;
2059
2060                length = sizeof(struct usb_ext_compat_desc);
2061        }
2062                break;
2063        case FFS_OS_DESC_EXT_PROP: {
2064                struct usb_ext_prop_desc *d = data;
2065                u32 type, pdl;
2066                u16 pnl;
2067
2068                if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2069                        return -EINVAL;
2070                length = le32_to_cpu(d->dwSize);
2071                type = le32_to_cpu(d->dwPropertyDataType);
2072                if (type < USB_EXT_PROP_UNICODE ||
2073                    type > USB_EXT_PROP_UNICODE_MULTI) {
2074                        pr_vdebug("unsupported os descriptor property type: %d",
2075                                  type);
2076                        return -EINVAL;
2077                }
2078                pnl = le16_to_cpu(d->wPropertyNameLength);
2079                pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2080                if (length != 14 + pnl + pdl) {
2081                        pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2082                                  length, pnl, pdl, type);
2083                        return -EINVAL;
2084                }
2085                ++ffs->ms_os_descs_ext_prop_count;
2086                /* property name reported to the host as "WCHAR"s */
2087                ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2088                ffs->ms_os_descs_ext_prop_data_len += pdl;
2089        }
2090                break;
2091        default:
2092                pr_vdebug("unknown descriptor: %d\n", type);
2093                return -EINVAL;
2094        }
2095        return length;
2096}
2097
2098static int __ffs_data_got_descs(struct ffs_data *ffs,
2099                                char *const _data, size_t len)
2100{
2101        char *data = _data, *raw_descs;
2102        unsigned os_descs_count = 0, counts[3], flags;
2103        int ret = -EINVAL, i;
2104        struct ffs_desc_helper helper;
2105
2106        ENTER();
2107
2108        if (get_unaligned_le32(data + 4) != len)
2109                goto error;
2110
2111        switch (get_unaligned_le32(data)) {
2112        case FUNCTIONFS_DESCRIPTORS_MAGIC:
2113                flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2114                data += 8;
2115                len  -= 8;
2116                break;
2117        case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2118                flags = get_unaligned_le32(data + 8);
2119                ffs->user_flags = flags;
2120                if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2121                              FUNCTIONFS_HAS_HS_DESC |
2122                              FUNCTIONFS_HAS_SS_DESC |
2123                              FUNCTIONFS_HAS_MS_OS_DESC |
2124                              FUNCTIONFS_VIRTUAL_ADDR |
2125                              FUNCTIONFS_EVENTFD)) {
2126                        ret = -ENOSYS;
2127                        goto error;
2128                }
2129                data += 12;
2130                len  -= 12;
2131                break;
2132        default:
2133                goto error;
2134        }
2135
2136        if (flags & FUNCTIONFS_EVENTFD) {
2137                if (len < 4)
2138                        goto error;
2139                ffs->ffs_eventfd =
2140                        eventfd_ctx_fdget((int)get_unaligned_le32(data));
2141                if (IS_ERR(ffs->ffs_eventfd)) {
2142                        ret = PTR_ERR(ffs->ffs_eventfd);
2143                        ffs->ffs_eventfd = NULL;
2144                        goto error;
2145                }
2146                data += 4;
2147                len  -= 4;
2148        }
2149
2150        /* Read fs_count, hs_count and ss_count (if present) */
2151        for (i = 0; i < 3; ++i) {
2152                if (!(flags & (1 << i))) {
2153                        counts[i] = 0;
2154                } else if (len < 4) {
2155                        goto error;
2156                } else {
2157                        counts[i] = get_unaligned_le32(data);
2158                        data += 4;
2159                        len  -= 4;
2160                }
2161        }
2162        if (flags & (1 << i)) {
2163                os_descs_count = get_unaligned_le32(data);
2164                data += 4;
2165                len -= 4;
2166        };
2167
2168        /* Read descriptors */
2169        raw_descs = data;
2170        helper.ffs = ffs;
2171        for (i = 0; i < 3; ++i) {
2172                if (!counts[i])
2173                        continue;
2174                helper.interfaces_count = 0;
2175                helper.eps_count = 0;
2176                ret = ffs_do_descs(counts[i], data, len,
2177                                   __ffs_data_do_entity, &helper);
2178                if (ret < 0)
2179                        goto error;
2180                if (!ffs->eps_count && !ffs->interfaces_count) {
2181                        ffs->eps_count = helper.eps_count;
2182                        ffs->interfaces_count = helper.interfaces_count;
2183                } else {
2184                        if (ffs->eps_count != helper.eps_count) {
2185                                ret = -EINVAL;
2186                                goto error;
2187                        }
2188                        if (ffs->interfaces_count != helper.interfaces_count) {
2189                                ret = -EINVAL;
2190                                goto error;
2191                        }
2192                }
2193                data += ret;
2194                len  -= ret;
2195        }
2196        if (os_descs_count) {
2197                ret = ffs_do_os_descs(os_descs_count, data, len,
2198                                      __ffs_data_do_os_desc, ffs);
2199                if (ret < 0)
2200                        goto error;
2201                data += ret;
2202                len -= ret;
2203        }
2204
2205        if (raw_descs == data || len) {
2206                ret = -EINVAL;
2207                goto error;
2208        }
2209
2210        ffs->raw_descs_data     = _data;
2211        ffs->raw_descs          = raw_descs;
2212        ffs->raw_descs_length   = data - raw_descs;
2213        ffs->fs_descs_count     = counts[0];
2214        ffs->hs_descs_count     = counts[1];
2215        ffs->ss_descs_count     = counts[2];
2216        ffs->ms_os_descs_count  = os_descs_count;
2217
2218        return 0;
2219
2220error:
2221        kfree(_data);
2222        return ret;
2223}
2224
2225static int __ffs_data_got_strings(struct ffs_data *ffs,
2226                                  char *const _data, size_t len)
2227{
2228        u32 str_count, needed_count, lang_count;
2229        struct usb_gadget_strings **stringtabs, *t;
2230        struct usb_string *strings, *s;
2231        const char *data = _data;
2232
2233        ENTER();
2234
2235        if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2236                     get_unaligned_le32(data + 4) != len))
2237                goto error;
2238        str_count  = get_unaligned_le32(data + 8);
2239        lang_count = get_unaligned_le32(data + 12);
2240
2241        /* if one is zero the other must be zero */
2242        if (unlikely(!str_count != !lang_count))
2243                goto error;
2244
2245        /* Do we have at least as many strings as descriptors need? */
2246        needed_count = ffs->strings_count;
2247        if (unlikely(str_count < needed_count))
2248                goto error;
2249
2250        /*
2251         * If we don't need any strings just return and free all
2252         * memory.
2253         */
2254        if (!needed_count) {
2255                kfree(_data);
2256                return 0;
2257        }
2258
2259        /* Allocate everything in one chunk so there's less maintenance. */
2260        {
2261                unsigned i = 0;
2262                vla_group(d);
2263                vla_item(d, struct usb_gadget_strings *, stringtabs,
2264                        lang_count + 1);
2265                vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2266                vla_item(d, struct usb_string, strings,
2267                        lang_count*(needed_count+1));
2268
2269                char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2270
2271                if (unlikely(!vlabuf)) {
2272                        kfree(_data);
2273                        return -ENOMEM;
2274                }
2275
2276                /* Initialize the VLA pointers */
2277                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2278                t = vla_ptr(vlabuf, d, stringtab);
2279                i = lang_count;
2280                do {
2281                        *stringtabs++ = t++;
2282                } while (--i);
2283                *stringtabs = NULL;
2284
2285                /* stringtabs = vlabuf = d_stringtabs for later kfree */
2286                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2287                t = vla_ptr(vlabuf, d, stringtab);
2288                s = vla_ptr(vlabuf, d, strings);
2289                strings = s;
2290        }
2291
2292        /* For each language */
2293        data += 16;
2294        len -= 16;
2295
2296        do { /* lang_count > 0 so we can use do-while */
2297                unsigned needed = needed_count;
2298
2299                if (unlikely(len < 3))
2300                        goto error_free;
2301                t->language = get_unaligned_le16(data);
2302                t->strings  = s;
2303                ++t;
2304
2305                data += 2;
2306                len -= 2;
2307
2308                /* For each string */
2309                do { /* str_count > 0 so we can use do-while */
2310                        size_t length = strnlen(data, len);
2311
2312                        if (unlikely(length == len))
2313                                goto error_free;
2314
2315                        /*
2316                         * User may provide more strings then we need,
2317                         * if that's the case we simply ignore the
2318                         * rest
2319                         */
2320                        if (likely(needed)) {
2321                                /*
2322                                 * s->id will be set while adding
2323                                 * function to configuration so for
2324                                 * now just leave garbage here.
2325                                 */
2326                                s->s = data;
2327                                --needed;
2328                                ++s;
2329                        }
2330
2331                        data += length + 1;
2332                        len -= length + 1;
2333                } while (--str_count);
2334
2335                s->id = 0;   /* terminator */
2336                s->s = NULL;
2337                ++s;
2338
2339        } while (--lang_count);
2340
2341        /* Some garbage left? */
2342        if (unlikely(len))
2343                goto error_free;
2344
2345        /* Done! */
2346        ffs->stringtabs = stringtabs;
2347        ffs->raw_strings = _data;
2348
2349        return 0;
2350
2351error_free:
2352        kfree(stringtabs);
2353error:
2354        kfree(_data);
2355        return -EINVAL;
2356}
2357
2358
2359/* Events handling and management *******************************************/
2360
2361static void __ffs_event_add(struct ffs_data *ffs,
2362                            enum usb_functionfs_event_type type)
2363{
2364        enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2365        int neg = 0;
2366
2367        /*
2368         * Abort any unhandled setup
2369         *
2370         * We do not need to worry about some cmpxchg() changing value
2371         * of ffs->setup_state without holding the lock because when
2372         * state is FFS_SETUP_PENDING cmpxchg() in several places in
2373         * the source does nothing.
2374         */
2375        if (ffs->setup_state == FFS_SETUP_PENDING)
2376                ffs->setup_state = FFS_SETUP_CANCELLED;
2377
2378        /*
2379         * Logic of this function guarantees that there are at most four pending
2380         * evens on ffs->ev.types queue.  This is important because the queue
2381         * has space for four elements only and __ffs_ep0_read_events function
2382         * depends on that limit as well.  If more event types are added, those
2383         * limits have to be revisited or guaranteed to still hold.
2384         */
2385        switch (type) {
2386        case FUNCTIONFS_RESUME:
2387                rem_type2 = FUNCTIONFS_SUSPEND;
2388                /* FALL THROUGH */
2389        case FUNCTIONFS_SUSPEND:
2390        case FUNCTIONFS_SETUP:
2391                rem_type1 = type;
2392                /* Discard all similar events */
2393                break;
2394
2395        case FUNCTIONFS_BIND:
2396        case FUNCTIONFS_UNBIND:
2397        case FUNCTIONFS_DISABLE:
2398        case FUNCTIONFS_ENABLE:
2399                /* Discard everything other then power management. */
2400                rem_type1 = FUNCTIONFS_SUSPEND;
2401                rem_type2 = FUNCTIONFS_RESUME;
2402                neg = 1;
2403                break;
2404
2405        default:
2406                WARN(1, "%d: unknown event, this should not happen\n", type);
2407                return;
2408        }
2409
2410        {
2411                u8 *ev  = ffs->ev.types, *out = ev;
2412                unsigned n = ffs->ev.count;
2413                for (; n; --n, ++ev)
2414                        if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2415                                *out++ = *ev;
2416                        else
2417                                pr_vdebug("purging event %d\n", *ev);
2418                ffs->ev.count = out - ffs->ev.types;
2419        }
2420
2421        pr_vdebug("adding event %d\n", type);
2422        ffs->ev.types[ffs->ev.count++] = type;
2423        wake_up_locked(&ffs->ev.waitq);
2424        if (ffs->ffs_eventfd)
2425                eventfd_signal(ffs->ffs_eventfd, 1);
2426}
2427
2428static void ffs_event_add(struct ffs_data *ffs,
2429                          enum usb_functionfs_event_type type)
2430{
2431        unsigned long flags;
2432        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2433        __ffs_event_add(ffs, type);
2434        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2435}
2436
2437/* Bind/unbind USB function hooks *******************************************/
2438
2439static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2440{
2441        int i;
2442
2443        for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2444                if (ffs->eps_addrmap[i] == endpoint_address)
2445                        return i;
2446        return -ENOENT;
2447}
2448
2449static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2450                                    struct usb_descriptor_header *desc,
2451                                    void *priv)
2452{
2453        struct usb_endpoint_descriptor *ds = (void *)desc;
2454        struct ffs_function *func = priv;
2455        struct ffs_ep *ffs_ep;
2456        unsigned ep_desc_id;
2457        int idx;
2458        static const char *speed_names[] = { "full", "high", "super" };
2459
2460        if (type != FFS_DESCRIPTOR)
2461                return 0;
2462
2463        /*
2464         * If ss_descriptors is not NULL, we are reading super speed
2465         * descriptors; if hs_descriptors is not NULL, we are reading high
2466         * speed descriptors; otherwise, we are reading full speed
2467         * descriptors.
2468         */
2469        if (func->function.ss_descriptors) {
2470                ep_desc_id = 2;
2471                func->function.ss_descriptors[(long)valuep] = desc;
2472        } else if (func->function.hs_descriptors) {
2473                ep_desc_id = 1;
2474                func->function.hs_descriptors[(long)valuep] = desc;
2475        } else {
2476                ep_desc_id = 0;
2477                func->function.fs_descriptors[(long)valuep]    = desc;
2478        }
2479
2480        if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2481                return 0;
2482
2483        idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2484        if (idx < 0)
2485                return idx;
2486
2487        ffs_ep = func->eps + idx;
2488
2489        if (unlikely(ffs_ep->descs[ep_desc_id])) {
2490                pr_err("two %sspeed descriptors for EP %d\n",
2491                          speed_names[ep_desc_id],
2492                          ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2493                return -EINVAL;
2494        }
2495        ffs_ep->descs[ep_desc_id] = ds;
2496
2497        ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2498        if (ffs_ep->ep) {
2499                ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2500                if (!ds->wMaxPacketSize)
2501                        ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2502        } else {
2503                struct usb_request *req;
2504                struct usb_ep *ep;
2505                u8 bEndpointAddress;
2506
2507                /*
2508                 * We back up bEndpointAddress because autoconfig overwrites
2509                 * it with physical endpoint address.
2510                 */
2511                bEndpointAddress = ds->bEndpointAddress;
2512                pr_vdebug("autoconfig\n");
2513                ep = usb_ep_autoconfig(func->gadget, ds);
2514                if (unlikely(!ep))
2515                        return -ENOTSUPP;
2516                ep->driver_data = func->eps + idx;
2517
2518                req = usb_ep_alloc_request(ep, GFP_KERNEL);
2519                if (unlikely(!req))
2520                        return -ENOMEM;
2521
2522                ffs_ep->ep  = ep;
2523                ffs_ep->req = req;
2524                func->eps_revmap[ds->bEndpointAddress &
2525                                 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2526                /*
2527                 * If we use virtual address mapping, we restore
2528                 * original bEndpointAddress value.
2529                 */
2530                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2531                        ds->bEndpointAddress = bEndpointAddress;
2532        }
2533        ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2534
2535        return 0;
2536}
2537
2538static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2539                                   struct usb_descriptor_header *desc,
2540                                   void *priv)
2541{
2542        struct ffs_function *func = priv;
2543        unsigned idx;
2544        u8 newValue;
2545
2546        switch (type) {
2547        default:
2548        case FFS_DESCRIPTOR:
2549                /* Handled in previous pass by __ffs_func_bind_do_descs() */
2550                return 0;
2551
2552        case FFS_INTERFACE:
2553                idx = *valuep;
2554                if (func->interfaces_nums[idx] < 0) {
2555                        int id = usb_interface_id(func->conf, &func->function);
2556                        if (unlikely(id < 0))
2557                                return id;
2558                        func->interfaces_nums[idx] = id;
2559                }
2560                newValue = func->interfaces_nums[idx];
2561                break;
2562
2563        case FFS_STRING:
2564                /* String' IDs are allocated when fsf_data is bound to cdev */
2565                newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2566                break;
2567
2568        case FFS_ENDPOINT:
2569                /*
2570                 * USB_DT_ENDPOINT are handled in
2571                 * __ffs_func_bind_do_descs().
2572                 */
2573                if (desc->bDescriptorType == USB_DT_ENDPOINT)
2574                        return 0;
2575
2576                idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2577                if (unlikely(!func->eps[idx].ep))
2578                        return -EINVAL;
2579
2580                {
2581                        struct usb_endpoint_descriptor **descs;
2582                        descs = func->eps[idx].descs;
2583                        newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2584                }
2585                break;
2586        }
2587
2588        pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2589        *valuep = newValue;
2590        return 0;
2591}
2592
2593static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2594                                      struct usb_os_desc_header *h, void *data,
2595                                      unsigned len, void *priv)
2596{
2597        struct ffs_function *func = priv;
2598        u8 length = 0;
2599
2600        switch (type) {
2601        case FFS_OS_DESC_EXT_COMPAT: {
2602                struct usb_ext_compat_desc *desc = data;
2603                struct usb_os_desc_table *t;
2604
2605                t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2606                t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2607                memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2608                       ARRAY_SIZE(desc->CompatibleID) +
2609                       ARRAY_SIZE(desc->SubCompatibleID));
2610                length = sizeof(*desc);
2611        }
2612                break;
2613        case FFS_OS_DESC_EXT_PROP: {
2614                struct usb_ext_prop_desc *desc = data;
2615                struct usb_os_desc_table *t;
2616                struct usb_os_desc_ext_prop *ext_prop;
2617                char *ext_prop_name;
2618                char *ext_prop_data;
2619
2620                t = &func->function.os_desc_table[h->interface];
2621                t->if_id = func->interfaces_nums[h->interface];
2622
2623                ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2624                func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2625
2626                ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2627                ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2628                ext_prop->data_len = le32_to_cpu(*(u32 *)
2629                        usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2630                length = ext_prop->name_len + ext_prop->data_len + 14;
2631
2632                ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2633                func->ffs->ms_os_descs_ext_prop_name_avail +=
2634                        ext_prop->name_len;
2635
2636                ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2637                func->ffs->ms_os_descs_ext_prop_data_avail +=
2638                        ext_prop->data_len;
2639                memcpy(ext_prop_data,
2640                       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2641                       ext_prop->data_len);
2642                /* unicode data reported to the host as "WCHAR"s */
2643                switch (ext_prop->type) {
2644                case USB_EXT_PROP_UNICODE:
2645                case USB_EXT_PROP_UNICODE_ENV:
2646                case USB_EXT_PROP_UNICODE_LINK:
2647                case USB_EXT_PROP_UNICODE_MULTI:
2648                        ext_prop->data_len *= 2;
2649                        break;
2650                }
2651                ext_prop->data = ext_prop_data;
2652
2653                memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2654                       ext_prop->name_len);
2655                /* property name reported to the host as "WCHAR"s */
2656                ext_prop->name_len *= 2;
2657                ext_prop->name = ext_prop_name;
2658
2659                t->os_desc->ext_prop_len +=
2660                        ext_prop->name_len + ext_prop->data_len + 14;
2661                ++t->os_desc->ext_prop_count;
2662                list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2663        }
2664                break;
2665        default:
2666                pr_vdebug("unknown descriptor: %d\n", type);
2667        }
2668
2669        return length;
2670}
2671
2672static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2673                                                struct usb_configuration *c)
2674{
2675        struct ffs_function *func = ffs_func_from_usb(f);
2676        struct f_fs_opts *ffs_opts =
2677                container_of(f->fi, struct f_fs_opts, func_inst);
2678        int ret;
2679
2680        ENTER();
2681
2682        /*
2683         * Legacy gadget triggers binding in functionfs_ready_callback,
2684         * which already uses locking; taking the same lock here would
2685         * cause a deadlock.
2686         *
2687         * Configfs-enabled gadgets however do need ffs_dev_lock.
2688         */
2689        if (!ffs_opts->no_configfs)
2690                ffs_dev_lock();
2691        ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2692        func->ffs = ffs_opts->dev->ffs_data;
2693        if (!ffs_opts->no_configfs)
2694                ffs_dev_unlock();
2695        if (ret)
2696                return ERR_PTR(ret);
2697
2698        func->conf = c;
2699        func->gadget = c->cdev->gadget;
2700
2701        /*
2702         * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2703         * configurations are bound in sequence with list_for_each_entry,
2704         * in each configuration its functions are bound in sequence
2705         * with list_for_each_entry, so we assume no race condition
2706         * with regard to ffs_opts->bound access
2707         */
2708        if (!ffs_opts->refcnt) {
2709                ret = functionfs_bind(func->ffs, c->cdev);
2710                if (ret)
2711                        return ERR_PTR(ret);
2712        }
2713        ffs_opts->refcnt++;
2714        func->function.strings = func->ffs->stringtabs;
2715
2716        return ffs_opts;
2717}
2718
2719static int _ffs_func_bind(struct usb_configuration *c,
2720                          struct usb_function *f)
2721{
2722        struct ffs_function *func = ffs_func_from_usb(f);
2723        struct ffs_data *ffs = func->ffs;
2724
2725        const int full = !!func->ffs->fs_descs_count;
2726        const int high = gadget_is_dualspeed(func->gadget) &&
2727                func->ffs->hs_descs_count;
2728        const int super = gadget_is_superspeed(func->gadget) &&
2729                func->ffs->ss_descs_count;
2730
2731        int fs_len, hs_len, ss_len, ret, i;
2732        struct ffs_ep *eps_ptr;
2733
2734        /* Make it a single chunk, less management later on */
2735        vla_group(d);
2736        vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2737        vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2738                full ? ffs->fs_descs_count + 1 : 0);
2739        vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2740                high ? ffs->hs_descs_count + 1 : 0);
2741        vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2742                super ? ffs->ss_descs_count + 1 : 0);
2743        vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2744        vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2745                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2746        vla_item_with_sz(d, char[16], ext_compat,
2747                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2748        vla_item_with_sz(d, struct usb_os_desc, os_desc,
2749                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2750        vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2751                         ffs->ms_os_descs_ext_prop_count);
2752        vla_item_with_sz(d, char, ext_prop_name,
2753                         ffs->ms_os_descs_ext_prop_name_len);
2754        vla_item_with_sz(d, char, ext_prop_data,
2755                         ffs->ms_os_descs_ext_prop_data_len);
2756        vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2757        char *vlabuf;
2758
2759        ENTER();
2760
2761        /* Has descriptors only for speeds gadget does not support */
2762        if (unlikely(!(full | high | super)))
2763                return -ENOTSUPP;
2764
2765        /* Allocate a single chunk, less management later on */
2766        vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2767        if (unlikely(!vlabuf))
2768                return -ENOMEM;
2769
2770        ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2771        ffs->ms_os_descs_ext_prop_name_avail =
2772                vla_ptr(vlabuf, d, ext_prop_name);
2773        ffs->ms_os_descs_ext_prop_data_avail =
2774                vla_ptr(vlabuf, d, ext_prop_data);
2775
2776        /* Copy descriptors  */
2777        memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2778               ffs->raw_descs_length);
2779
2780        memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2781        eps_ptr = vla_ptr(vlabuf, d, eps);
2782        for (i = 0; i < ffs->eps_count; i++)
2783                eps_ptr[i].num = -1;
2784
2785        /* Save pointers
2786         * d_eps == vlabuf, func->eps used to kfree vlabuf later
2787        */
2788        func->eps             = vla_ptr(vlabuf, d, eps);
2789        func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2790
2791        /*
2792         * Go through all the endpoint descriptors and allocate
2793         * endpoints first, so that later we can rewrite the endpoint
2794         * numbers without worrying that it may be described later on.
2795         */
2796        if (likely(full)) {
2797                func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2798                fs_len = ffs_do_descs(ffs->fs_descs_count,
2799                                      vla_ptr(vlabuf, d, raw_descs),
2800                                      d_raw_descs__sz,
2801                                      __ffs_func_bind_do_descs, func);
2802                if (unlikely(fs_len < 0)) {
2803                        ret = fs_len;
2804                        goto error;
2805                }
2806        } else {
2807                fs_len = 0;
2808        }
2809
2810        if (likely(high)) {
2811                func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2812                hs_len = ffs_do_descs(ffs->hs_descs_count,
2813                                      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2814                                      d_raw_descs__sz - fs_len,
2815                                      __ffs_func_bind_do_descs, func);
2816                if (unlikely(hs_len < 0)) {
2817                        ret = hs_len;
2818                        goto error;
2819                }
2820        } else {
2821                hs_len = 0;
2822        }
2823
2824        if (likely(super)) {
2825                func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2826                ss_len = ffs_do_descs(ffs->ss_descs_count,
2827                                vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2828                                d_raw_descs__sz - fs_len - hs_len,
2829                                __ffs_func_bind_do_descs, func);
2830                if (unlikely(ss_len < 0)) {
2831                        ret = ss_len;
2832                        goto error;
2833                }
2834        } else {
2835                ss_len = 0;
2836        }
2837
2838        /*
2839         * Now handle interface numbers allocation and interface and
2840         * endpoint numbers rewriting.  We can do that in one go
2841         * now.
2842         */
2843        ret = ffs_do_descs(ffs->fs_descs_count +
2844                           (high ? ffs->hs_descs_count : 0) +
2845                           (super ? ffs->ss_descs_count : 0),
2846                           vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2847                           __ffs_func_bind_do_nums, func);
2848        if (unlikely(ret < 0))
2849                goto error;
2850
2851        func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2852        if (c->cdev->use_os_string) {
2853                for (i = 0; i < ffs->interfaces_count; ++i) {
2854                        struct usb_os_desc *desc;
2855
2856                        desc = func->function.os_desc_table[i].os_desc =
2857                                vla_ptr(vlabuf, d, os_desc) +
2858                                i * sizeof(struct usb_os_desc);
2859                        desc->ext_compat_id =
2860                                vla_ptr(vlabuf, d, ext_compat) + i * 16;
2861                        INIT_LIST_HEAD(&desc->ext_prop);
2862                }
2863                ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2864                                      vla_ptr(vlabuf, d, raw_descs) +
2865                                      fs_len + hs_len + ss_len,
2866                                      d_raw_descs__sz - fs_len - hs_len -
2867                                      ss_len,
2868                                      __ffs_func_bind_do_os_desc, func);
2869                if (unlikely(ret < 0))
2870                        goto error;
2871        }
2872        func->function.os_desc_n =
2873                c->cdev->use_os_string ? ffs->interfaces_count : 0;
2874
2875        /* And we're done */
2876        ffs_event_add(ffs, FUNCTIONFS_BIND);
2877        return 0;
2878
2879error:
2880        /* XXX Do we need to release all claimed endpoints here? */
2881        return ret;
2882}
2883
2884static int ffs_func_bind(struct usb_configuration *c,
2885                         struct usb_function *f)
2886{
2887        struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2888        struct ffs_function *func = ffs_func_from_usb(f);
2889        int ret;
2890
2891        if (IS_ERR(ffs_opts))
2892                return PTR_ERR(ffs_opts);
2893
2894        ret = _ffs_func_bind(c, f);
2895        if (ret && !--ffs_opts->refcnt)
2896                functionfs_unbind(func->ffs);
2897
2898        return ret;
2899}
2900
2901
2902/* Other USB function hooks *************************************************/
2903
2904static void ffs_reset_work(struct work_struct *work)
2905{
2906        struct ffs_data *ffs = container_of(work,
2907                struct ffs_data, reset_work);
2908        ffs_data_reset(ffs);
2909}
2910
2911static int ffs_func_set_alt(struct usb_function *f,
2912                            unsigned interface, unsigned alt)
2913{
2914        struct ffs_function *func = ffs_func_from_usb(f);
2915        struct ffs_data *ffs = func->ffs;
2916        int ret = 0, intf;
2917
2918        if (alt != (unsigned)-1) {
2919                intf = ffs_func_revmap_intf(func, interface);
2920                if (unlikely(intf < 0))
2921                        return intf;
2922        }
2923
2924        if (ffs->func)
2925                ffs_func_eps_disable(ffs->func);
2926
2927        if (ffs->state == FFS_DEACTIVATED) {
2928                ffs->state = FFS_CLOSING;
2929                INIT_WORK(&ffs->reset_work, ffs_reset_work);
2930                schedule_work(&ffs->reset_work);
2931                return -ENODEV;
2932        }
2933
2934        if (ffs->state != FFS_ACTIVE)
2935                return -ENODEV;
2936
2937        if (alt == (unsigned)-1) {
2938                ffs->func = NULL;
2939                ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2940                return 0;
2941        }
2942
2943        ffs->func = func;
2944        ret = ffs_func_eps_enable(func);
2945        if (likely(ret >= 0))
2946                ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2947        return ret;
2948}
2949
2950static void ffs_func_disable(struct usb_function *f)
2951{
2952        ffs_func_set_alt(f, 0, (unsigned)-1);
2953}
2954
2955static int ffs_func_setup(struct usb_function *f,
2956                          const struct usb_ctrlrequest *creq)
2957{
2958        struct ffs_function *func = ffs_func_from_usb(f);
2959        struct ffs_data *ffs = func->ffs;
2960        unsigned long flags;
2961        int ret;
2962
2963        ENTER();
2964
2965        pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2966        pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
2967        pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
2968        pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
2969        pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
2970
2971        /*
2972         * Most requests directed to interface go through here
2973         * (notable exceptions are set/get interface) so we need to
2974         * handle them.  All other either handled by composite or
2975         * passed to usb_configuration->setup() (if one is set).  No
2976         * matter, we will handle requests directed to endpoint here
2977         * as well (as it's straightforward) but what to do with any
2978         * other request?
2979         */
2980        if (ffs->state != FFS_ACTIVE)
2981                return -ENODEV;
2982
2983        switch (creq->bRequestType & USB_RECIP_MASK) {
2984        case USB_RECIP_INTERFACE:
2985                ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2986                if (unlikely(ret < 0))
2987                        return ret;
2988                break;
2989
2990        case USB_RECIP_ENDPOINT:
2991                ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
2992                if (unlikely(ret < 0))
2993                        return ret;
2994                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2995                        ret = func->ffs->eps_addrmap[ret];
2996                break;
2997
2998        default:
2999                return -EOPNOTSUPP;
3000        }
3001
3002        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3003        ffs->ev.setup = *creq;
3004        ffs->ev.setup.wIndex = cpu_to_le16(ret);
3005        __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3006        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3007
3008        return 0;
3009}
3010
3011static void ffs_func_suspend(struct usb_function *f)
3012{
3013        ENTER();
3014        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3015}
3016
3017static void ffs_func_resume(struct usb_function *f)
3018{
3019        ENTER();
3020        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3021}
3022
3023
3024/* Endpoint and interface numbers reverse mapping ***************************/
3025
3026static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3027{
3028        num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3029        return num ? num : -EDOM;
3030}
3031
3032static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3033{
3034        short *nums = func->interfaces_nums;
3035        unsigned count = func->ffs->interfaces_count;
3036
3037        for (; count; --count, ++nums) {
3038                if (*nums >= 0 && *nums == intf)
3039                        return nums - func->interfaces_nums;
3040        }
3041
3042        return -EDOM;
3043}
3044
3045
3046/* Devices management *******************************************************/
3047
3048static LIST_HEAD(ffs_devices);
3049
3050static struct ffs_dev *_ffs_do_find_dev(const char *name)
3051{
3052        struct ffs_dev *dev;
3053
3054        list_for_each_entry(dev, &ffs_devices, entry) {
3055                if (!dev->name || !name)
3056                        continue;
3057                if (strcmp(dev->name, name) == 0)
3058                        return dev;
3059        }
3060
3061        return NULL;
3062}
3063
3064/*
3065 * ffs_lock must be taken by the caller of this function
3066 */
3067static struct ffs_dev *_ffs_get_single_dev(void)
3068{
3069        struct ffs_dev *dev;
3070
3071        if (list_is_singular(&ffs_devices)) {
3072                dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3073                if (dev->single)
3074                        return dev;
3075        }
3076
3077        return NULL;
3078}
3079
3080/*
3081 * ffs_lock must be taken by the caller of this function
3082 */
3083static struct ffs_dev *_ffs_find_dev(const char *name)
3084{
3085        struct ffs_dev *dev;
3086
3087        dev = _ffs_get_single_dev();
3088        if (dev)
3089                return dev;
3090
3091        return _ffs_do_find_dev(name);
3092}
3093
3094/* Configfs support *********************************************************/
3095
3096static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3097{
3098        return container_of(to_config_group(item), struct f_fs_opts,
3099                            func_inst.group);
3100}
3101
3102static void ffs_attr_release(struct config_item *item)
3103{
3104        struct f_fs_opts *opts = to_ffs_opts(item);
3105
3106        usb_put_function_instance(&opts->func_inst);
3107}
3108
3109static struct configfs_item_operations ffs_item_ops = {
3110        .release        = ffs_attr_release,
3111};
3112
3113static struct config_item_type ffs_func_type = {
3114        .ct_item_ops    = &ffs_item_ops,
3115        .ct_owner       = THIS_MODULE,
3116};
3117
3118
3119/* Function registration interface ******************************************/
3120
3121static void ffs_free_inst(struct usb_function_instance *f)
3122{
3123        struct f_fs_opts *opts;
3124
3125        opts = to_f_fs_opts(f);
3126        ffs_dev_lock();
3127        _ffs_free_dev(opts->dev);
3128        ffs_dev_unlock();
3129        kfree(opts);
3130}
3131
3132#define MAX_INST_NAME_LEN       40
3133
3134static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3135{
3136        struct f_fs_opts *opts;
3137        char *ptr;
3138        const char *tmp;
3139        int name_len, ret;
3140
3141        name_len = strlen(name) + 1;
3142        if (name_len > MAX_INST_NAME_LEN)
3143                return -ENAMETOOLONG;
3144
3145        ptr = kstrndup(name, name_len, GFP_KERNEL);
3146        if (!ptr)
3147                return -ENOMEM;
3148
3149        opts = to_f_fs_opts(fi);
3150        tmp = NULL;
3151
3152        ffs_dev_lock();
3153
3154        tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3155        ret = _ffs_name_dev(opts->dev, ptr);
3156        if (ret) {
3157                kfree(ptr);
3158                ffs_dev_unlock();
3159                return ret;
3160        }
3161        opts->dev->name_allocated = true;
3162
3163        ffs_dev_unlock();
3164
3165        kfree(tmp);
3166
3167        return 0;
3168}
3169
3170static struct usb_function_instance *ffs_alloc_inst(void)
3171{
3172        struct f_fs_opts *opts;
3173        struct ffs_dev *dev;
3174
3175        opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3176        if (!opts)
3177                return ERR_PTR(-ENOMEM);
3178
3179        opts->func_inst.set_inst_name = ffs_set_inst_name;
3180        opts->func_inst.free_func_inst = ffs_free_inst;
3181        ffs_dev_lock();
3182        dev = _ffs_alloc_dev();
3183        ffs_dev_unlock();
3184        if (IS_ERR(dev)) {
3185                kfree(opts);
3186                return ERR_CAST(dev);
3187        }
3188        opts->dev = dev;
3189        dev->opts = opts;
3190
3191        config_group_init_type_name(&opts->func_inst.group, "",
3192                                    &ffs_func_type);
3193        return &opts->func_inst;
3194}
3195
3196static void ffs_free(struct usb_function *f)
3197{
3198        kfree(ffs_func_from_usb(f));
3199}
3200
3201static void ffs_func_unbind(struct usb_configuration *c,
3202                            struct usb_function *f)
3203{
3204        struct ffs_function *func = ffs_func_from_usb(f);
3205        struct ffs_data *ffs = func->ffs;
3206        struct f_fs_opts *opts =
3207                container_of(f->fi, struct f_fs_opts, func_inst);
3208        struct ffs_ep *ep = func->eps;
3209        unsigned count = ffs->eps_count;
3210        unsigned long flags;
3211
3212        ENTER();
3213        if (ffs->func == func) {
3214                ffs_func_eps_disable(func);
3215                ffs->func = NULL;
3216        }
3217
3218        if (!--opts->refcnt)
3219                functionfs_unbind(ffs);
3220
3221        /* cleanup after autoconfig */
3222        spin_lock_irqsave(&func->ffs->eps_lock, flags);
3223        do {
3224                if (ep->ep && ep->req)
3225                        usb_ep_free_request(ep->ep, ep->req);
3226                ep->req = NULL;
3227                ++ep;
3228        } while (--count);
3229        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3230        kfree(func->eps);
3231        func->eps = NULL;
3232        /*
3233         * eps, descriptors and interfaces_nums are allocated in the
3234         * same chunk so only one free is required.
3235         */
3236        func->function.fs_descriptors = NULL;
3237        func->function.hs_descriptors = NULL;
3238        func->function.ss_descriptors = NULL;
3239        func->interfaces_nums = NULL;
3240
3241        ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3242}
3243
3244static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3245{
3246        struct ffs_function *func;
3247
3248        ENTER();
3249
3250        func = kzalloc(sizeof(*func), GFP_KERNEL);
3251        if (unlikely(!func))
3252                return ERR_PTR(-ENOMEM);
3253
3254        func->function.name    = "Function FS Gadget";
3255
3256        func->function.bind    = ffs_func_bind;
3257        func->function.unbind  = ffs_func_unbind;
3258        func->function.set_alt = ffs_func_set_alt;
3259        func->function.disable = ffs_func_disable;
3260        func->function.setup   = ffs_func_setup;
3261        func->function.suspend = ffs_func_suspend;
3262        func->function.resume  = ffs_func_resume;
3263        func->function.free_func = ffs_free;
3264
3265        return &func->function;
3266}
3267
3268/*
3269 * ffs_lock must be taken by the caller of this function
3270 */
3271static struct ffs_dev *_ffs_alloc_dev(void)
3272{
3273        struct ffs_dev *dev;
3274        int ret;
3275
3276        if (_ffs_get_single_dev())
3277                        return ERR_PTR(-EBUSY);
3278
3279        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3280        if (!dev)
3281                return ERR_PTR(-ENOMEM);
3282
3283        if (list_empty(&ffs_devices)) {
3284                ret = functionfs_init();
3285                if (ret) {
3286                        kfree(dev);
3287                        return ERR_PTR(ret);
3288                }
3289        }
3290
3291        list_add(&dev->entry, &ffs_devices);
3292
3293        return dev;
3294}
3295
3296/*
3297 * ffs_lock must be taken by the caller of this function
3298 * The caller is responsible for "name" being available whenever f_fs needs it
3299 */
3300static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3301{
3302        struct ffs_dev *existing;
3303
3304        existing = _ffs_do_find_dev(name);
3305        if (existing)
3306                return -EBUSY;
3307
3308        dev->name = name;
3309
3310        return 0;
3311}
3312
3313/*
3314 * The caller is responsible for "name" being available whenever f_fs needs it
3315 */
3316int ffs_name_dev(struct ffs_dev *dev, const char *name)
3317{
3318        int ret;
3319
3320        ffs_dev_lock();
3321        ret = _ffs_name_dev(dev, name);
3322        ffs_dev_unlock();
3323
3324        return ret;
3325}
3326EXPORT_SYMBOL_GPL(ffs_name_dev);
3327
3328int ffs_single_dev(struct ffs_dev *dev)
3329{
3330        int ret;
3331
3332        ret = 0;
3333        ffs_dev_lock();
3334
3335        if (!list_is_singular(&ffs_devices))
3336                ret = -EBUSY;
3337        else
3338                dev->single = true;
3339
3340        ffs_dev_unlock();
3341        return ret;
3342}
3343EXPORT_SYMBOL_GPL(ffs_single_dev);
3344
3345/*
3346 * ffs_lock must be taken by the caller of this function
3347 */
3348static void _ffs_free_dev(struct ffs_dev *dev)
3349{
3350        list_del(&dev->entry);
3351        if (dev->name_allocated)
3352                kfree(dev->name);
3353        kfree(dev);
3354        if (list_empty(&ffs_devices))
3355                functionfs_cleanup();
3356}
3357
3358static void *ffs_acquire_dev(const char *dev_name)
3359{
3360        struct ffs_dev *ffs_dev;
3361
3362        ENTER();
3363        ffs_dev_lock();
3364
3365        ffs_dev = _ffs_find_dev(dev_name);
3366        if (!ffs_dev)
3367                ffs_dev = ERR_PTR(-ENOENT);
3368        else if (ffs_dev->mounted)
3369                ffs_dev = ERR_PTR(-EBUSY);
3370        else if (ffs_dev->ffs_acquire_dev_callback &&
3371            ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3372                ffs_dev = ERR_PTR(-ENOENT);
3373        else
3374                ffs_dev->mounted = true;
3375
3376        ffs_dev_unlock();
3377        return ffs_dev;
3378}
3379
3380static void ffs_release_dev(struct ffs_data *ffs_data)
3381{
3382        struct ffs_dev *ffs_dev;
3383
3384        ENTER();
3385        ffs_dev_lock();
3386
3387        ffs_dev = ffs_data->private_data;
3388        if (ffs_dev) {
3389                ffs_dev->mounted = false;
3390
3391                if (ffs_dev->ffs_release_dev_callback)
3392                        ffs_dev->ffs_release_dev_callback(ffs_dev);
3393        }
3394
3395        ffs_dev_unlock();
3396}
3397
3398static int ffs_ready(struct ffs_data *ffs)
3399{
3400        struct ffs_dev *ffs_obj;
3401        int ret = 0;
3402
3403        ENTER();
3404        ffs_dev_lock();
3405
3406        ffs_obj = ffs->private_data;
3407        if (!ffs_obj) {
3408                ret = -EINVAL;
3409                goto done;
3410        }
3411        if (WARN_ON(ffs_obj->desc_ready)) {
3412                ret = -EBUSY;
3413                goto done;
3414        }
3415
3416        ffs_obj->desc_ready = true;
3417        ffs_obj->ffs_data = ffs;
3418
3419        if (ffs_obj->ffs_ready_callback) {
3420                ret = ffs_obj->ffs_ready_callback(ffs);
3421                if (ret)
3422                        goto done;
3423        }
3424
3425        set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3426done:
3427        ffs_dev_unlock();
3428        return ret;
3429}
3430
3431static void ffs_closed(struct ffs_data *ffs)
3432{
3433        struct ffs_dev *ffs_obj;
3434        struct f_fs_opts *opts;
3435
3436        ENTER();
3437        ffs_dev_lock();
3438
3439        ffs_obj = ffs->private_data;
3440        if (!ffs_obj)
3441                goto done;
3442
3443        ffs_obj->desc_ready = false;
3444
3445        if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3446            ffs_obj->ffs_closed_callback)
3447                ffs_obj->ffs_closed_callback(ffs);
3448
3449        if (ffs_obj->opts)
3450                opts = ffs_obj->opts;
3451        else
3452                goto done;
3453
3454        if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3455            || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3456                goto done;
3457
3458        unregister_gadget_item(ffs_obj->opts->
3459                               func_inst.group.cg_item.ci_parent->ci_parent);
3460done:
3461        ffs_dev_unlock();
3462}
3463
3464/* Misc helper functions ****************************************************/
3465
3466static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3467{
3468        return nonblock
3469                ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3470                : mutex_lock_interruptible(mutex);
3471}
3472
3473static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3474{
3475        char *data;
3476
3477        if (unlikely(!len))
3478                return NULL;
3479
3480        data = kmalloc(len, GFP_KERNEL);
3481        if (unlikely(!data))
3482                return ERR_PTR(-ENOMEM);
3483
3484        if (unlikely(copy_from_user(data, buf, len))) {
3485                kfree(data);
3486                return ERR_PTR(-EFAULT);
3487        }
3488
3489        pr_vdebug("Buffer from user space:\n");
3490        ffs_dump_mem("", data, len);
3491
3492        return data;
3493}
3494
3495DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3496MODULE_LICENSE("GPL");
3497MODULE_AUTHOR("Michal Nazarewicz");
3498