linux/drivers/usb/storage/alauda.c
<<
>>
Prefs
   1/*
   2 * Driver for Alauda-based card readers
   3 *
   4 * Current development and maintenance by:
   5 *   (c) 2005 Daniel Drake <dsd@gentoo.org>
   6 *
   7 * The 'Alauda' is a chip manufacturered by RATOC for OEM use.
   8 *
   9 * Alauda implements a vendor-specific command set to access two media reader
  10 * ports (XD, SmartMedia). This driver converts SCSI commands to the commands
  11 * which are accepted by these devices.
  12 *
  13 * The driver was developed through reverse-engineering, with the help of the
  14 * sddr09 driver which has many similarities, and with some help from the
  15 * (very old) vendor-supplied GPL sma03 driver.
  16 *
  17 * For protocol info, see http://alauda.sourceforge.net
  18 *
  19 * This program is free software; you can redistribute it and/or modify it
  20 * under the terms of the GNU General Public License as published by the
  21 * Free Software Foundation; either version 2, or (at your option) any
  22 * later version.
  23 *
  24 * This program is distributed in the hope that it will be useful, but
  25 * WITHOUT ANY WARRANTY; without even the implied warranty of
  26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  27 * General Public License for more details.
  28 *
  29 * You should have received a copy of the GNU General Public License along
  30 * with this program; if not, write to the Free Software Foundation, Inc.,
  31 * 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/module.h>
  35#include <linux/slab.h>
  36
  37#include <scsi/scsi.h>
  38#include <scsi/scsi_cmnd.h>
  39#include <scsi/scsi_device.h>
  40
  41#include "usb.h"
  42#include "transport.h"
  43#include "protocol.h"
  44#include "debug.h"
  45#include "scsiglue.h"
  46
  47#define DRV_NAME "ums-alauda"
  48
  49MODULE_DESCRIPTION("Driver for Alauda-based card readers");
  50MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>");
  51MODULE_LICENSE("GPL");
  52
  53/*
  54 * Status bytes
  55 */
  56#define ALAUDA_STATUS_ERROR             0x01
  57#define ALAUDA_STATUS_READY             0x40
  58
  59/*
  60 * Control opcodes (for request field)
  61 */
  62#define ALAUDA_GET_XD_MEDIA_STATUS      0x08
  63#define ALAUDA_GET_SM_MEDIA_STATUS      0x98
  64#define ALAUDA_ACK_XD_MEDIA_CHANGE      0x0a
  65#define ALAUDA_ACK_SM_MEDIA_CHANGE      0x9a
  66#define ALAUDA_GET_XD_MEDIA_SIG         0x86
  67#define ALAUDA_GET_SM_MEDIA_SIG         0x96
  68
  69/*
  70 * Bulk command identity (byte 0)
  71 */
  72#define ALAUDA_BULK_CMD                 0x40
  73
  74/*
  75 * Bulk opcodes (byte 1)
  76 */
  77#define ALAUDA_BULK_GET_REDU_DATA       0x85
  78#define ALAUDA_BULK_READ_BLOCK          0x94
  79#define ALAUDA_BULK_ERASE_BLOCK         0xa3
  80#define ALAUDA_BULK_WRITE_BLOCK         0xb4
  81#define ALAUDA_BULK_GET_STATUS2         0xb7
  82#define ALAUDA_BULK_RESET_MEDIA         0xe0
  83
  84/*
  85 * Port to operate on (byte 8)
  86 */
  87#define ALAUDA_PORT_XD                  0x00
  88#define ALAUDA_PORT_SM                  0x01
  89
  90/*
  91 * LBA and PBA are unsigned ints. Special values.
  92 */
  93#define UNDEF    0xffff
  94#define SPARE    0xfffe
  95#define UNUSABLE 0xfffd
  96
  97struct alauda_media_info {
  98        unsigned long capacity;         /* total media size in bytes */
  99        unsigned int pagesize;          /* page size in bytes */
 100        unsigned int blocksize;         /* number of pages per block */
 101        unsigned int uzonesize;         /* number of usable blocks per zone */
 102        unsigned int zonesize;          /* number of blocks per zone */
 103        unsigned int blockmask;         /* mask to get page from address */
 104
 105        unsigned char pageshift;
 106        unsigned char blockshift;
 107        unsigned char zoneshift;
 108
 109        u16 **lba_to_pba;               /* logical to physical block map */
 110        u16 **pba_to_lba;               /* physical to logical block map */
 111};
 112
 113struct alauda_info {
 114        struct alauda_media_info port[2];
 115        int wr_ep;                      /* endpoint to write data out of */
 116
 117        unsigned char sense_key;
 118        unsigned long sense_asc;        /* additional sense code */
 119        unsigned long sense_ascq;       /* additional sense code qualifier */
 120};
 121
 122#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 123#define LSB_of(s) ((s)&0xFF)
 124#define MSB_of(s) ((s)>>8)
 125
 126#define MEDIA_PORT(us) us->srb->device->lun
 127#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
 128
 129#define PBA_LO(pba) ((pba & 0xF) << 5)
 130#define PBA_HI(pba) (pba >> 3)
 131#define PBA_ZONE(pba) (pba >> 11)
 132
 133static int init_alauda(struct us_data *us);
 134
 135
 136/*
 137 * The table of devices
 138 */
 139#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
 140                    vendorName, productName, useProtocol, useTransport, \
 141                    initFunction, flags) \
 142{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
 143  .driver_info = (flags) }
 144
 145static struct usb_device_id alauda_usb_ids[] = {
 146#       include "unusual_alauda.h"
 147        { }             /* Terminating entry */
 148};
 149MODULE_DEVICE_TABLE(usb, alauda_usb_ids);
 150
 151#undef UNUSUAL_DEV
 152
 153/*
 154 * The flags table
 155 */
 156#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
 157                    vendor_name, product_name, use_protocol, use_transport, \
 158                    init_function, Flags) \
 159{ \
 160        .vendorName = vendor_name,      \
 161        .productName = product_name,    \
 162        .useProtocol = use_protocol,    \
 163        .useTransport = use_transport,  \
 164        .initFunction = init_function,  \
 165}
 166
 167static struct us_unusual_dev alauda_unusual_dev_list[] = {
 168#       include "unusual_alauda.h"
 169        { }             /* Terminating entry */
 170};
 171
 172#undef UNUSUAL_DEV
 173
 174
 175/*
 176 * Media handling
 177 */
 178
 179struct alauda_card_info {
 180        unsigned char id;               /* id byte */
 181        unsigned char chipshift;        /* 1<<cs bytes total capacity */
 182        unsigned char pageshift;        /* 1<<ps bytes in a page */
 183        unsigned char blockshift;       /* 1<<bs pages per block */
 184        unsigned char zoneshift;        /* 1<<zs blocks per zone */
 185};
 186
 187static struct alauda_card_info alauda_card_ids[] = {
 188        /* NAND flash */
 189        { 0x6e, 20, 8, 4, 8},   /* 1 MB */
 190        { 0xe8, 20, 8, 4, 8},   /* 1 MB */
 191        { 0xec, 20, 8, 4, 8},   /* 1 MB */
 192        { 0x64, 21, 8, 4, 9},   /* 2 MB */
 193        { 0xea, 21, 8, 4, 9},   /* 2 MB */
 194        { 0x6b, 22, 9, 4, 9},   /* 4 MB */
 195        { 0xe3, 22, 9, 4, 9},   /* 4 MB */
 196        { 0xe5, 22, 9, 4, 9},   /* 4 MB */
 197        { 0xe6, 23, 9, 4, 10},  /* 8 MB */
 198        { 0x73, 24, 9, 5, 10},  /* 16 MB */
 199        { 0x75, 25, 9, 5, 10},  /* 32 MB */
 200        { 0x76, 26, 9, 5, 10},  /* 64 MB */
 201        { 0x79, 27, 9, 5, 10},  /* 128 MB */
 202        { 0x71, 28, 9, 5, 10},  /* 256 MB */
 203
 204        /* MASK ROM */
 205        { 0x5d, 21, 9, 4, 8},   /* 2 MB */
 206        { 0xd5, 22, 9, 4, 9},   /* 4 MB */
 207        { 0xd6, 23, 9, 4, 10},  /* 8 MB */
 208        { 0x57, 24, 9, 4, 11},  /* 16 MB */
 209        { 0x58, 25, 9, 4, 12},  /* 32 MB */
 210        { 0,}
 211};
 212
 213static struct alauda_card_info *alauda_card_find_id(unsigned char id)
 214{
 215        int i;
 216
 217        for (i = 0; alauda_card_ids[i].id != 0; i++)
 218                if (alauda_card_ids[i].id == id)
 219                        return &(alauda_card_ids[i]);
 220        return NULL;
 221}
 222
 223/*
 224 * ECC computation.
 225 */
 226
 227static unsigned char parity[256];
 228static unsigned char ecc2[256];
 229
 230static void nand_init_ecc(void)
 231{
 232        int i, j, a;
 233
 234        parity[0] = 0;
 235        for (i = 1; i < 256; i++)
 236                parity[i] = (parity[i&(i-1)] ^ 1);
 237
 238        for (i = 0; i < 256; i++) {
 239                a = 0;
 240                for (j = 0; j < 8; j++) {
 241                        if (i & (1<<j)) {
 242                                if ((j & 1) == 0)
 243                                        a ^= 0x04;
 244                                if ((j & 2) == 0)
 245                                        a ^= 0x10;
 246                                if ((j & 4) == 0)
 247                                        a ^= 0x40;
 248                        }
 249                }
 250                ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 251        }
 252}
 253
 254/* compute 3-byte ecc on 256 bytes */
 255static void nand_compute_ecc(unsigned char *data, unsigned char *ecc)
 256{
 257        int i, j, a;
 258        unsigned char par = 0, bit, bits[8] = {0};
 259
 260        /* collect 16 checksum bits */
 261        for (i = 0; i < 256; i++) {
 262                par ^= data[i];
 263                bit = parity[data[i]];
 264                for (j = 0; j < 8; j++)
 265                        if ((i & (1<<j)) == 0)
 266                                bits[j] ^= bit;
 267        }
 268
 269        /* put 4+4+4 = 12 bits in the ecc */
 270        a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 271        ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 272
 273        a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 274        ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 275
 276        ecc[2] = ecc2[par];
 277}
 278
 279static int nand_compare_ecc(unsigned char *data, unsigned char *ecc)
 280{
 281        return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 282}
 283
 284static void nand_store_ecc(unsigned char *data, unsigned char *ecc)
 285{
 286        memcpy(data, ecc, 3);
 287}
 288
 289/*
 290 * Alauda driver
 291 */
 292
 293/*
 294 * Forget our PBA <---> LBA mappings for a particular port
 295 */
 296static void alauda_free_maps (struct alauda_media_info *media_info)
 297{
 298        unsigned int shift = media_info->zoneshift
 299                + media_info->blockshift + media_info->pageshift;
 300        unsigned int num_zones = media_info->capacity >> shift;
 301        unsigned int i;
 302
 303        if (media_info->lba_to_pba != NULL)
 304                for (i = 0; i < num_zones; i++) {
 305                        kfree(media_info->lba_to_pba[i]);
 306                        media_info->lba_to_pba[i] = NULL;
 307                }
 308
 309        if (media_info->pba_to_lba != NULL)
 310                for (i = 0; i < num_zones; i++) {
 311                        kfree(media_info->pba_to_lba[i]);
 312                        media_info->pba_to_lba[i] = NULL;
 313                }
 314}
 315
 316/*
 317 * Returns 2 bytes of status data
 318 * The first byte describes media status, and second byte describes door status
 319 */
 320static int alauda_get_media_status(struct us_data *us, unsigned char *data)
 321{
 322        int rc;
 323        unsigned char command;
 324
 325        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 326                command = ALAUDA_GET_XD_MEDIA_STATUS;
 327        else
 328                command = ALAUDA_GET_SM_MEDIA_STATUS;
 329
 330        rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 331                command, 0xc0, 0, 1, data, 2);
 332
 333        usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]);
 334
 335        return rc;
 336}
 337
 338/*
 339 * Clears the "media was changed" bit so that we know when it changes again
 340 * in the future.
 341 */
 342static int alauda_ack_media(struct us_data *us)
 343{
 344        unsigned char command;
 345
 346        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 347                command = ALAUDA_ACK_XD_MEDIA_CHANGE;
 348        else
 349                command = ALAUDA_ACK_SM_MEDIA_CHANGE;
 350
 351        return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
 352                command, 0x40, 0, 1, NULL, 0);
 353}
 354
 355/*
 356 * Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
 357 * and some other details.
 358 */
 359static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
 360{
 361        unsigned char command;
 362
 363        if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
 364                command = ALAUDA_GET_XD_MEDIA_SIG;
 365        else
 366                command = ALAUDA_GET_SM_MEDIA_SIG;
 367
 368        return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
 369                command, 0xc0, 0, 0, data, 4);
 370}
 371
 372/*
 373 * Resets the media status (but not the whole device?)
 374 */
 375static int alauda_reset_media(struct us_data *us)
 376{
 377        unsigned char *command = us->iobuf;
 378
 379        memset(command, 0, 9);
 380        command[0] = ALAUDA_BULK_CMD;
 381        command[1] = ALAUDA_BULK_RESET_MEDIA;
 382        command[8] = MEDIA_PORT(us);
 383
 384        return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 385                command, 9, NULL);
 386}
 387
 388/*
 389 * Examines the media and deduces capacity, etc.
 390 */
 391static int alauda_init_media(struct us_data *us)
 392{
 393        unsigned char *data = us->iobuf;
 394        int ready = 0;
 395        struct alauda_card_info *media_info;
 396        unsigned int num_zones;
 397
 398        while (ready == 0) {
 399                msleep(20);
 400
 401                if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 402                        return USB_STOR_TRANSPORT_ERROR;
 403
 404                if (data[0] & 0x10)
 405                        ready = 1;
 406        }
 407
 408        usb_stor_dbg(us, "We are ready for action!\n");
 409
 410        if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
 411                return USB_STOR_TRANSPORT_ERROR;
 412
 413        msleep(10);
 414
 415        if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
 416                return USB_STOR_TRANSPORT_ERROR;
 417
 418        if (data[0] != 0x14) {
 419                usb_stor_dbg(us, "Media not ready after ack\n");
 420                return USB_STOR_TRANSPORT_ERROR;
 421        }
 422
 423        if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
 424                return USB_STOR_TRANSPORT_ERROR;
 425
 426        usb_stor_dbg(us, "Media signature: %4ph\n", data);
 427        media_info = alauda_card_find_id(data[1]);
 428        if (media_info == NULL) {
 429                pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n",
 430                        data);
 431                return USB_STOR_TRANSPORT_ERROR;
 432        }
 433
 434        MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
 435        usb_stor_dbg(us, "Found media with capacity: %ldMB\n",
 436                     MEDIA_INFO(us).capacity >> 20);
 437
 438        MEDIA_INFO(us).pageshift = media_info->pageshift;
 439        MEDIA_INFO(us).blockshift = media_info->blockshift;
 440        MEDIA_INFO(us).zoneshift = media_info->zoneshift;
 441
 442        MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
 443        MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
 444        MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
 445
 446        MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
 447        MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
 448
 449        num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
 450                + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
 451        MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 452        MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
 453
 454        if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
 455                return USB_STOR_TRANSPORT_ERROR;
 456
 457        return USB_STOR_TRANSPORT_GOOD;
 458}
 459
 460/*
 461 * Examines the media status and does the right thing when the media has gone,
 462 * appeared, or changed.
 463 */
 464static int alauda_check_media(struct us_data *us)
 465{
 466        struct alauda_info *info = (struct alauda_info *) us->extra;
 467        unsigned char status[2];
 468        int rc;
 469
 470        rc = alauda_get_media_status(us, status);
 471
 472        /* Check for no media or door open */
 473        if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
 474                || ((status[1] & 0x01) == 0)) {
 475                usb_stor_dbg(us, "No media, or door open\n");
 476                alauda_free_maps(&MEDIA_INFO(us));
 477                info->sense_key = 0x02;
 478                info->sense_asc = 0x3A;
 479                info->sense_ascq = 0x00;
 480                return USB_STOR_TRANSPORT_FAILED;
 481        }
 482
 483        /* Check for media change */
 484        if (status[0] & 0x08) {
 485                usb_stor_dbg(us, "Media change detected\n");
 486                alauda_free_maps(&MEDIA_INFO(us));
 487                alauda_init_media(us);
 488
 489                info->sense_key = UNIT_ATTENTION;
 490                info->sense_asc = 0x28;
 491                info->sense_ascq = 0x00;
 492                return USB_STOR_TRANSPORT_FAILED;
 493        }
 494
 495        return USB_STOR_TRANSPORT_GOOD;
 496}
 497
 498/*
 499 * Checks the status from the 2nd status register
 500 * Returns 3 bytes of status data, only the first is known
 501 */
 502static int alauda_check_status2(struct us_data *us)
 503{
 504        int rc;
 505        unsigned char command[] = {
 506                ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
 507                0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
 508        };
 509        unsigned char data[3];
 510
 511        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 512                command, 9, NULL);
 513        if (rc != USB_STOR_XFER_GOOD)
 514                return rc;
 515
 516        rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 517                data, 3, NULL);
 518        if (rc != USB_STOR_XFER_GOOD)
 519                return rc;
 520
 521        usb_stor_dbg(us, "%3ph\n", data);
 522        if (data[0] & ALAUDA_STATUS_ERROR)
 523                return USB_STOR_XFER_ERROR;
 524
 525        return USB_STOR_XFER_GOOD;
 526}
 527
 528/*
 529 * Gets the redundancy data for the first page of a PBA
 530 * Returns 16 bytes.
 531 */
 532static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
 533{
 534        int rc;
 535        unsigned char command[] = {
 536                ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
 537                PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
 538        };
 539
 540        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 541                command, 9, NULL);
 542        if (rc != USB_STOR_XFER_GOOD)
 543                return rc;
 544
 545        return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 546                data, 16, NULL);
 547}
 548
 549/*
 550 * Finds the first unused PBA in a zone
 551 * Returns the absolute PBA of an unused PBA, or 0 if none found.
 552 */
 553static u16 alauda_find_unused_pba(struct alauda_media_info *info,
 554        unsigned int zone)
 555{
 556        u16 *pba_to_lba = info->pba_to_lba[zone];
 557        unsigned int i;
 558
 559        for (i = 0; i < info->zonesize; i++)
 560                if (pba_to_lba[i] == UNDEF)
 561                        return (zone << info->zoneshift) + i;
 562
 563        return 0;
 564}
 565
 566/*
 567 * Reads the redundancy data for all PBA's in a zone
 568 * Produces lba <--> pba mappings
 569 */
 570static int alauda_read_map(struct us_data *us, unsigned int zone)
 571{
 572        unsigned char *data = us->iobuf;
 573        int result;
 574        int i, j;
 575        unsigned int zonesize = MEDIA_INFO(us).zonesize;
 576        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 577        unsigned int lba_offset, lba_real, blocknum;
 578        unsigned int zone_base_lba = zone * uzonesize;
 579        unsigned int zone_base_pba = zone * zonesize;
 580        u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 581        u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
 582        if (lba_to_pba == NULL || pba_to_lba == NULL) {
 583                result = USB_STOR_TRANSPORT_ERROR;
 584                goto error;
 585        }
 586
 587        usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone);
 588
 589        /* 1024 PBA's per zone */
 590        for (i = 0; i < zonesize; i++)
 591                lba_to_pba[i] = pba_to_lba[i] = UNDEF;
 592
 593        for (i = 0; i < zonesize; i++) {
 594                blocknum = zone_base_pba + i;
 595
 596                result = alauda_get_redu_data(us, blocknum, data);
 597                if (result != USB_STOR_XFER_GOOD) {
 598                        result = USB_STOR_TRANSPORT_ERROR;
 599                        goto error;
 600                }
 601
 602                /* special PBAs have control field 0^16 */
 603                for (j = 0; j < 16; j++)
 604                        if (data[j] != 0)
 605                                goto nonz;
 606                pba_to_lba[i] = UNUSABLE;
 607                usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum);
 608                continue;
 609
 610        nonz:
 611                /* unwritten PBAs have control field FF^16 */
 612                for (j = 0; j < 16; j++)
 613                        if (data[j] != 0xff)
 614                                goto nonff;
 615                continue;
 616
 617        nonff:
 618                /* normal PBAs start with six FFs */
 619                if (j < 6) {
 620                        usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n",
 621                                     blocknum,
 622                                     data[0], data[1], data[2], data[3],
 623                                     data[4], data[5]);
 624                        pba_to_lba[i] = UNUSABLE;
 625                        continue;
 626                }
 627
 628                if ((data[6] >> 4) != 0x01) {
 629                        usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n",
 630                                     blocknum, data[6], data[7],
 631                                     data[11], data[12]);
 632                        pba_to_lba[i] = UNUSABLE;
 633                        continue;
 634                }
 635
 636                /* check even parity */
 637                if (parity[data[6] ^ data[7]]) {
 638                        printk(KERN_WARNING
 639                               "alauda_read_map: Bad parity in LBA for block %d"
 640                               " (%02X %02X)\n", i, data[6], data[7]);
 641                        pba_to_lba[i] = UNUSABLE;
 642                        continue;
 643                }
 644
 645                lba_offset = short_pack(data[7], data[6]);
 646                lba_offset = (lba_offset & 0x07FF) >> 1;
 647                lba_real = lba_offset + zone_base_lba;
 648
 649                /*
 650                 * Every 1024 physical blocks ("zone"), the LBA numbers
 651                 * go back to zero, but are within a higher block of LBA's.
 652                 * Also, there is a maximum of 1000 LBA's per zone.
 653                 * In other words, in PBA 1024-2047 you will find LBA 0-999
 654                 * which are really LBA 1000-1999. This allows for 24 bad
 655                 * or special physical blocks per zone.
 656                 */
 657
 658                if (lba_offset >= uzonesize) {
 659                        printk(KERN_WARNING
 660                               "alauda_read_map: Bad low LBA %d for block %d\n",
 661                               lba_real, blocknum);
 662                        continue;
 663                }
 664
 665                if (lba_to_pba[lba_offset] != UNDEF) {
 666                        printk(KERN_WARNING
 667                               "alauda_read_map: "
 668                               "LBA %d seen for PBA %d and %d\n",
 669                               lba_real, lba_to_pba[lba_offset], blocknum);
 670                        continue;
 671                }
 672
 673                pba_to_lba[i] = lba_real;
 674                lba_to_pba[lba_offset] = blocknum;
 675                continue;
 676        }
 677
 678        MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
 679        MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
 680        result = 0;
 681        goto out;
 682
 683error:
 684        kfree(lba_to_pba);
 685        kfree(pba_to_lba);
 686out:
 687        return result;
 688}
 689
 690/*
 691 * Checks to see whether we have already mapped a certain zone
 692 * If we haven't, the map is generated
 693 */
 694static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
 695{
 696        if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
 697                || MEDIA_INFO(us).pba_to_lba[zone] == NULL)
 698                alauda_read_map(us, zone);
 699}
 700
 701/*
 702 * Erases an entire block
 703 */
 704static int alauda_erase_block(struct us_data *us, u16 pba)
 705{
 706        int rc;
 707        unsigned char command[] = {
 708                ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
 709                PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
 710        };
 711        unsigned char buf[2];
 712
 713        usb_stor_dbg(us, "Erasing PBA %d\n", pba);
 714
 715        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 716                command, 9, NULL);
 717        if (rc != USB_STOR_XFER_GOOD)
 718                return rc;
 719
 720        rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 721                buf, 2, NULL);
 722        if (rc != USB_STOR_XFER_GOOD)
 723                return rc;
 724
 725        usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]);
 726        return rc;
 727}
 728
 729/*
 730 * Reads data from a certain offset page inside a PBA, including interleaved
 731 * redundancy data. Returns (pagesize+64)*pages bytes in data.
 732 */
 733static int alauda_read_block_raw(struct us_data *us, u16 pba,
 734                unsigned int page, unsigned int pages, unsigned char *data)
 735{
 736        int rc;
 737        unsigned char command[] = {
 738                ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
 739                PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
 740        };
 741
 742        usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages);
 743
 744        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 745                command, 9, NULL);
 746        if (rc != USB_STOR_XFER_GOOD)
 747                return rc;
 748
 749        return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 750                data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
 751}
 752
 753/*
 754 * Reads data from a certain offset page inside a PBA, excluding redundancy
 755 * data. Returns pagesize*pages bytes in data. Note that data must be big enough
 756 * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
 757 * trailing bytes outside this function.
 758 */
 759static int alauda_read_block(struct us_data *us, u16 pba,
 760                unsigned int page, unsigned int pages, unsigned char *data)
 761{
 762        int i, rc;
 763        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 764
 765        rc = alauda_read_block_raw(us, pba, page, pages, data);
 766        if (rc != USB_STOR_XFER_GOOD)
 767                return rc;
 768
 769        /* Cut out the redundancy data */
 770        for (i = 0; i < pages; i++) {
 771                int dest_offset = i * pagesize;
 772                int src_offset = i * (pagesize + 64);
 773                memmove(data + dest_offset, data + src_offset, pagesize);
 774        }
 775
 776        return rc;
 777}
 778
 779/*
 780 * Writes an entire block of data and checks status after write.
 781 * Redundancy data must be already included in data. Data should be
 782 * (pagesize+64)*blocksize bytes in length.
 783 */
 784static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
 785{
 786        int rc;
 787        struct alauda_info *info = (struct alauda_info *) us->extra;
 788        unsigned char command[] = {
 789                ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
 790                PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
 791        };
 792
 793        usb_stor_dbg(us, "pba %d\n", pba);
 794
 795        rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
 796                command, 9, NULL);
 797        if (rc != USB_STOR_XFER_GOOD)
 798                return rc;
 799
 800        rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
 801                (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
 802                NULL);
 803        if (rc != USB_STOR_XFER_GOOD)
 804                return rc;
 805
 806        return alauda_check_status2(us);
 807}
 808
 809/*
 810 * Write some data to a specific LBA.
 811 */
 812static int alauda_write_lba(struct us_data *us, u16 lba,
 813                 unsigned int page, unsigned int pages,
 814                 unsigned char *ptr, unsigned char *blockbuffer)
 815{
 816        u16 pba, lbap, new_pba;
 817        unsigned char *bptr, *cptr, *xptr;
 818        unsigned char ecc[3];
 819        int i, result;
 820        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 821        unsigned int zonesize = MEDIA_INFO(us).zonesize;
 822        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 823        unsigned int blocksize = MEDIA_INFO(us).blocksize;
 824        unsigned int lba_offset = lba % uzonesize;
 825        unsigned int new_pba_offset;
 826        unsigned int zone = lba / uzonesize;
 827
 828        alauda_ensure_map_for_zone(us, zone);
 829
 830        pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 831        if (pba == 1) {
 832                /*
 833                 * Maybe it is impossible to write to PBA 1.
 834                 * Fake success, but don't do anything.
 835                 */
 836                printk(KERN_WARNING
 837                       "alauda_write_lba: avoid writing to pba 1\n");
 838                return USB_STOR_TRANSPORT_GOOD;
 839        }
 840
 841        new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
 842        if (!new_pba) {
 843                printk(KERN_WARNING
 844                       "alauda_write_lba: Out of unused blocks\n");
 845                return USB_STOR_TRANSPORT_ERROR;
 846        }
 847
 848        /* read old contents */
 849        if (pba != UNDEF) {
 850                result = alauda_read_block_raw(us, pba, 0,
 851                        blocksize, blockbuffer);
 852                if (result != USB_STOR_XFER_GOOD)
 853                        return result;
 854        } else {
 855                memset(blockbuffer, 0, blocksize * (pagesize + 64));
 856        }
 857
 858        lbap = (lba_offset << 1) | 0x1000;
 859        if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 860                lbap ^= 1;
 861
 862        /* check old contents and fill lba */
 863        for (i = 0; i < blocksize; i++) {
 864                bptr = blockbuffer + (i * (pagesize + 64));
 865                cptr = bptr + pagesize;
 866                nand_compute_ecc(bptr, ecc);
 867                if (!nand_compare_ecc(cptr+13, ecc)) {
 868                        usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 869                                     i, pba);
 870                        nand_store_ecc(cptr+13, ecc);
 871                }
 872                nand_compute_ecc(bptr + (pagesize / 2), ecc);
 873                if (!nand_compare_ecc(cptr+8, ecc)) {
 874                        usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 875                                     i, pba);
 876                        nand_store_ecc(cptr+8, ecc);
 877                }
 878                cptr[6] = cptr[11] = MSB_of(lbap);
 879                cptr[7] = cptr[12] = LSB_of(lbap);
 880        }
 881
 882        /* copy in new stuff and compute ECC */
 883        xptr = ptr;
 884        for (i = page; i < page+pages; i++) {
 885                bptr = blockbuffer + (i * (pagesize + 64));
 886                cptr = bptr + pagesize;
 887                memcpy(bptr, xptr, pagesize);
 888                xptr += pagesize;
 889                nand_compute_ecc(bptr, ecc);
 890                nand_store_ecc(cptr+13, ecc);
 891                nand_compute_ecc(bptr + (pagesize / 2), ecc);
 892                nand_store_ecc(cptr+8, ecc);
 893        }
 894
 895        result = alauda_write_block(us, new_pba, blockbuffer);
 896        if (result != USB_STOR_XFER_GOOD)
 897                return result;
 898
 899        new_pba_offset = new_pba - (zone * zonesize);
 900        MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
 901        MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
 902        usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba);
 903
 904        if (pba != UNDEF) {
 905                unsigned int pba_offset = pba - (zone * zonesize);
 906                result = alauda_erase_block(us, pba);
 907                if (result != USB_STOR_XFER_GOOD)
 908                        return result;
 909                MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
 910        }
 911
 912        return USB_STOR_TRANSPORT_GOOD;
 913}
 914
 915/*
 916 * Read data from a specific sector address
 917 */
 918static int alauda_read_data(struct us_data *us, unsigned long address,
 919                unsigned int sectors)
 920{
 921        unsigned char *buffer;
 922        u16 lba, max_lba;
 923        unsigned int page, len, offset;
 924        unsigned int blockshift = MEDIA_INFO(us).blockshift;
 925        unsigned int pageshift = MEDIA_INFO(us).pageshift;
 926        unsigned int blocksize = MEDIA_INFO(us).blocksize;
 927        unsigned int pagesize = MEDIA_INFO(us).pagesize;
 928        unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
 929        struct scatterlist *sg;
 930        int result;
 931
 932        /*
 933         * Since we only read in one block at a time, we have to create
 934         * a bounce buffer and move the data a piece at a time between the
 935         * bounce buffer and the actual transfer buffer.
 936         * We make this buffer big enough to hold temporary redundancy data,
 937         * which we use when reading the data blocks.
 938         */
 939
 940        len = min(sectors, blocksize) * (pagesize + 64);
 941        buffer = kmalloc(len, GFP_NOIO);
 942        if (buffer == NULL) {
 943                printk(KERN_WARNING "alauda_read_data: Out of memory\n");
 944                return USB_STOR_TRANSPORT_ERROR;
 945        }
 946
 947        /* Figure out the initial LBA and page */
 948        lba = address >> blockshift;
 949        page = (address & MEDIA_INFO(us).blockmask);
 950        max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
 951
 952        result = USB_STOR_TRANSPORT_GOOD;
 953        offset = 0;
 954        sg = NULL;
 955
 956        while (sectors > 0) {
 957                unsigned int zone = lba / uzonesize; /* integer division */
 958                unsigned int lba_offset = lba - (zone * uzonesize);
 959                unsigned int pages;
 960                u16 pba;
 961                alauda_ensure_map_for_zone(us, zone);
 962
 963                /* Not overflowing capacity? */
 964                if (lba >= max_lba) {
 965                        usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 966                                     lba, max_lba);
 967                        result = USB_STOR_TRANSPORT_ERROR;
 968                        break;
 969                }
 970
 971                /* Find number of pages we can read in this block */
 972                pages = min(sectors, blocksize - page);
 973                len = pages << pageshift;
 974
 975                /* Find where this lba lives on disk */
 976                pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
 977
 978                if (pba == UNDEF) {     /* this lba was never written */
 979                        usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 980                                     pages, lba, page);
 981
 982                        /*
 983                         * This is not really an error. It just means
 984                         * that the block has never been written.
 985                         * Instead of returning USB_STOR_TRANSPORT_ERROR
 986                         * it is better to return all zero data.
 987                         */
 988
 989                        memset(buffer, 0, len);
 990                } else {
 991                        usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 992                                     pages, pba, lba, page);
 993
 994                        result = alauda_read_block(us, pba, page, pages, buffer);
 995                        if (result != USB_STOR_TRANSPORT_GOOD)
 996                                break;
 997                }
 998
 999                /* Store the data in the transfer buffer */
1000                usb_stor_access_xfer_buf(buffer, len, us->srb,
1001                                &sg, &offset, TO_XFER_BUF);
1002
1003                page = 0;
1004                lba++;
1005                sectors -= pages;
1006        }
1007
1008        kfree(buffer);
1009        return result;
1010}
1011
1012/*
1013 * Write data to a specific sector address
1014 */
1015static int alauda_write_data(struct us_data *us, unsigned long address,
1016                unsigned int sectors)
1017{
1018        unsigned char *buffer, *blockbuffer;
1019        unsigned int page, len, offset;
1020        unsigned int blockshift = MEDIA_INFO(us).blockshift;
1021        unsigned int pageshift = MEDIA_INFO(us).pageshift;
1022        unsigned int blocksize = MEDIA_INFO(us).blocksize;
1023        unsigned int pagesize = MEDIA_INFO(us).pagesize;
1024        struct scatterlist *sg;
1025        u16 lba, max_lba;
1026        int result;
1027
1028        /*
1029         * Since we don't write the user data directly to the device,
1030         * we have to create a bounce buffer and move the data a piece
1031         * at a time between the bounce buffer and the actual transfer buffer.
1032         */
1033
1034        len = min(sectors, blocksize) * pagesize;
1035        buffer = kmalloc(len, GFP_NOIO);
1036        if (buffer == NULL) {
1037                printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1038                return USB_STOR_TRANSPORT_ERROR;
1039        }
1040
1041        /*
1042         * We also need a temporary block buffer, where we read in the old data,
1043         * overwrite parts with the new data, and manipulate the redundancy data
1044         */
1045        blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
1046        if (blockbuffer == NULL) {
1047                printk(KERN_WARNING "alauda_write_data: Out of memory\n");
1048                kfree(buffer);
1049                return USB_STOR_TRANSPORT_ERROR;
1050        }
1051
1052        /* Figure out the initial LBA and page */
1053        lba = address >> blockshift;
1054        page = (address & MEDIA_INFO(us).blockmask);
1055        max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
1056
1057        result = USB_STOR_TRANSPORT_GOOD;
1058        offset = 0;
1059        sg = NULL;
1060
1061        while (sectors > 0) {
1062                /* Write as many sectors as possible in this block */
1063                unsigned int pages = min(sectors, blocksize - page);
1064                len = pages << pageshift;
1065
1066                /* Not overflowing capacity? */
1067                if (lba >= max_lba) {
1068                        usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n",
1069                                     lba, max_lba);
1070                        result = USB_STOR_TRANSPORT_ERROR;
1071                        break;
1072                }
1073
1074                /* Get the data from the transfer buffer */
1075                usb_stor_access_xfer_buf(buffer, len, us->srb,
1076                                &sg, &offset, FROM_XFER_BUF);
1077
1078                result = alauda_write_lba(us, lba, page, pages, buffer,
1079                        blockbuffer);
1080                if (result != USB_STOR_TRANSPORT_GOOD)
1081                        break;
1082
1083                page = 0;
1084                lba++;
1085                sectors -= pages;
1086        }
1087
1088        kfree(buffer);
1089        kfree(blockbuffer);
1090        return result;
1091}
1092
1093/*
1094 * Our interface with the rest of the world
1095 */
1096
1097static void alauda_info_destructor(void *extra)
1098{
1099        struct alauda_info *info = (struct alauda_info *) extra;
1100        int port;
1101
1102        if (!info)
1103                return;
1104
1105        for (port = 0; port < 2; port++) {
1106                struct alauda_media_info *media_info = &info->port[port];
1107
1108                alauda_free_maps(media_info);
1109                kfree(media_info->lba_to_pba);
1110                kfree(media_info->pba_to_lba);
1111        }
1112}
1113
1114/*
1115 * Initialize alauda_info struct and find the data-write endpoint
1116 */
1117static int init_alauda(struct us_data *us)
1118{
1119        struct alauda_info *info;
1120        struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
1121        nand_init_ecc();
1122
1123        us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
1124        if (!us->extra)
1125                return USB_STOR_TRANSPORT_ERROR;
1126
1127        info = (struct alauda_info *) us->extra;
1128        us->extra_destructor = alauda_info_destructor;
1129
1130        info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
1131                altsetting->endpoint[0].desc.bEndpointAddress
1132                & USB_ENDPOINT_NUMBER_MASK);
1133
1134        return USB_STOR_TRANSPORT_GOOD;
1135}
1136
1137static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
1138{
1139        int rc;
1140        struct alauda_info *info = (struct alauda_info *) us->extra;
1141        unsigned char *ptr = us->iobuf;
1142        static unsigned char inquiry_response[36] = {
1143                0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
1144        };
1145
1146        if (srb->cmnd[0] == INQUIRY) {
1147                usb_stor_dbg(us, "INQUIRY - Returning bogus response\n");
1148                memcpy(ptr, inquiry_response, sizeof(inquiry_response));
1149                fill_inquiry_response(us, ptr, 36);
1150                return USB_STOR_TRANSPORT_GOOD;
1151        }
1152
1153        if (srb->cmnd[0] == TEST_UNIT_READY) {
1154                usb_stor_dbg(us, "TEST_UNIT_READY\n");
1155                return alauda_check_media(us);
1156        }
1157
1158        if (srb->cmnd[0] == READ_CAPACITY) {
1159                unsigned int num_zones;
1160                unsigned long capacity;
1161
1162                rc = alauda_check_media(us);
1163                if (rc != USB_STOR_TRANSPORT_GOOD)
1164                        return rc;
1165
1166                num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
1167                        + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
1168
1169                capacity = num_zones * MEDIA_INFO(us).uzonesize
1170                        * MEDIA_INFO(us).blocksize;
1171
1172                /* Report capacity and page size */
1173                ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
1174                ((__be32 *) ptr)[1] = cpu_to_be32(512);
1175
1176                usb_stor_set_xfer_buf(ptr, 8, srb);
1177                return USB_STOR_TRANSPORT_GOOD;
1178        }
1179
1180        if (srb->cmnd[0] == READ_10) {
1181                unsigned int page, pages;
1182
1183                rc = alauda_check_media(us);
1184                if (rc != USB_STOR_TRANSPORT_GOOD)
1185                        return rc;
1186
1187                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1188                page <<= 16;
1189                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1190                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1191
1192                usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages);
1193
1194                return alauda_read_data(us, page, pages);
1195        }
1196
1197        if (srb->cmnd[0] == WRITE_10) {
1198                unsigned int page, pages;
1199
1200                rc = alauda_check_media(us);
1201                if (rc != USB_STOR_TRANSPORT_GOOD)
1202                        return rc;
1203
1204                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1205                page <<= 16;
1206                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1207                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1208
1209                usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages);
1210
1211                return alauda_write_data(us, page, pages);
1212        }
1213
1214        if (srb->cmnd[0] == REQUEST_SENSE) {
1215                usb_stor_dbg(us, "REQUEST_SENSE\n");
1216
1217                memset(ptr, 0, 18);
1218                ptr[0] = 0xF0;
1219                ptr[2] = info->sense_key;
1220                ptr[7] = 11;
1221                ptr[12] = info->sense_asc;
1222                ptr[13] = info->sense_ascq;
1223                usb_stor_set_xfer_buf(ptr, 18, srb);
1224
1225                return USB_STOR_TRANSPORT_GOOD;
1226        }
1227
1228        if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
1229                /*
1230                 * sure.  whatever.  not like we can stop the user from popping
1231                 * the media out of the device (no locking doors, etc)
1232                 */
1233                return USB_STOR_TRANSPORT_GOOD;
1234        }
1235
1236        usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n",
1237                     srb->cmnd[0], srb->cmnd[0]);
1238        info->sense_key = 0x05;
1239        info->sense_asc = 0x20;
1240        info->sense_ascq = 0x00;
1241        return USB_STOR_TRANSPORT_FAILED;
1242}
1243
1244static struct scsi_host_template alauda_host_template;
1245
1246static int alauda_probe(struct usb_interface *intf,
1247                         const struct usb_device_id *id)
1248{
1249        struct us_data *us;
1250        int result;
1251
1252        result = usb_stor_probe1(&us, intf, id,
1253                        (id - alauda_usb_ids) + alauda_unusual_dev_list,
1254                        &alauda_host_template);
1255        if (result)
1256                return result;
1257
1258        us->transport_name  = "Alauda Control/Bulk";
1259        us->transport = alauda_transport;
1260        us->transport_reset = usb_stor_Bulk_reset;
1261        us->max_lun = 1;
1262
1263        result = usb_stor_probe2(us);
1264        return result;
1265}
1266
1267static struct usb_driver alauda_driver = {
1268        .name =         DRV_NAME,
1269        .probe =        alauda_probe,
1270        .disconnect =   usb_stor_disconnect,
1271        .suspend =      usb_stor_suspend,
1272        .resume =       usb_stor_resume,
1273        .reset_resume = usb_stor_reset_resume,
1274        .pre_reset =    usb_stor_pre_reset,
1275        .post_reset =   usb_stor_post_reset,
1276        .id_table =     alauda_usb_ids,
1277        .soft_unbind =  1,
1278        .no_dynamic_id = 1,
1279};
1280
1281module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME);
1282