linux/drivers/usb/storage/sddr09.c
<<
>>
Prefs
   1/*
   2 * Driver for SanDisk SDDR-09 SmartMedia reader
   3 *
   4 *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
   5 *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
   6 * Developed with the assistance of:
   7 *   (c) 2002 Alan Stern <stern@rowland.org>
   8 *
   9 * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
  10 * This chip is a programmable USB controller. In the SDDR-09, it has
  11 * been programmed to obey a certain limited set of SCSI commands.
  12 * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
  13 * commands.
  14 *
  15 * This program is free software; you can redistribute it and/or modify it
  16 * under the terms of the GNU General Public License as published by the
  17 * Free Software Foundation; either version 2, or (at your option) any
  18 * later version.
  19 *
  20 * This program is distributed in the hope that it will be useful, but
  21 * WITHOUT ANY WARRANTY; without even the implied warranty of
  22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  23 * General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU General Public License along
  26 * with this program; if not, write to the Free Software Foundation, Inc.,
  27 * 675 Mass Ave, Cambridge, MA 02139, USA.
  28 */
  29
  30/*
  31 * Known vendor commands: 12 bytes, first byte is opcode
  32 *
  33 * E7: read scatter gather
  34 * E8: read
  35 * E9: write
  36 * EA: erase
  37 * EB: reset
  38 * EC: read status
  39 * ED: read ID
  40 * EE: write CIS (?)
  41 * EF: compute checksum (?)
  42 */
  43
  44#include <linux/errno.h>
  45#include <linux/module.h>
  46#include <linux/slab.h>
  47
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_device.h>
  51
  52#include "usb.h"
  53#include "transport.h"
  54#include "protocol.h"
  55#include "debug.h"
  56#include "scsiglue.h"
  57
  58#define DRV_NAME "ums-sddr09"
  59
  60MODULE_DESCRIPTION("Driver for SanDisk SDDR-09 SmartMedia reader");
  61MODULE_AUTHOR("Andries Brouwer <aeb@cwi.nl>, Robert Baruch <autophile@starband.net>");
  62MODULE_LICENSE("GPL");
  63
  64static int usb_stor_sddr09_dpcm_init(struct us_data *us);
  65static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us);
  66static int usb_stor_sddr09_init(struct us_data *us);
  67
  68
  69/*
  70 * The table of devices
  71 */
  72#define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \
  73                    vendorName, productName, useProtocol, useTransport, \
  74                    initFunction, flags) \
  75{ USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \
  76  .driver_info = (flags) }
  77
  78static struct usb_device_id sddr09_usb_ids[] = {
  79#       include "unusual_sddr09.h"
  80        { }             /* Terminating entry */
  81};
  82MODULE_DEVICE_TABLE(usb, sddr09_usb_ids);
  83
  84#undef UNUSUAL_DEV
  85
  86/*
  87 * The flags table
  88 */
  89#define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \
  90                    vendor_name, product_name, use_protocol, use_transport, \
  91                    init_function, Flags) \
  92{ \
  93        .vendorName = vendor_name,      \
  94        .productName = product_name,    \
  95        .useProtocol = use_protocol,    \
  96        .useTransport = use_transport,  \
  97        .initFunction = init_function,  \
  98}
  99
 100static struct us_unusual_dev sddr09_unusual_dev_list[] = {
 101#       include "unusual_sddr09.h"
 102        { }             /* Terminating entry */
 103};
 104
 105#undef UNUSUAL_DEV
 106
 107
 108#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
 109#define LSB_of(s) ((s)&0xFF)
 110#define MSB_of(s) ((s)>>8)
 111
 112/*
 113 * First some stuff that does not belong here:
 114 * data on SmartMedia and other cards, completely
 115 * unrelated to this driver.
 116 * Similar stuff occurs in <linux/mtd/nand_ids.h>.
 117 */
 118
 119struct nand_flash_dev {
 120        int model_id;
 121        int chipshift;          /* 1<<cs bytes total capacity */
 122        char pageshift;         /* 1<<ps bytes in a page */
 123        char blockshift;        /* 1<<bs pages in an erase block */
 124        char zoneshift;         /* 1<<zs blocks in a zone */
 125                                /* # of logical blocks is 125/128 of this */
 126        char pageadrlen;        /* length of an address in bytes - 1 */
 127};
 128
 129/*
 130 * NAND Flash Manufacturer ID Codes
 131 */
 132#define NAND_MFR_AMD            0x01
 133#define NAND_MFR_NATSEMI        0x8f
 134#define NAND_MFR_TOSHIBA        0x98
 135#define NAND_MFR_SAMSUNG        0xec
 136
 137static inline char *nand_flash_manufacturer(int manuf_id) {
 138        switch(manuf_id) {
 139        case NAND_MFR_AMD:
 140                return "AMD";
 141        case NAND_MFR_NATSEMI:
 142                return "NATSEMI";
 143        case NAND_MFR_TOSHIBA:
 144                return "Toshiba";
 145        case NAND_MFR_SAMSUNG:
 146                return "Samsung";
 147        default:
 148                return "unknown";
 149        }
 150}
 151
 152/*
 153 * It looks like it is unnecessary to attach manufacturer to the
 154 * remaining data: SSFDC prescribes manufacturer-independent id codes.
 155 *
 156 * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
 157 */
 158
 159static struct nand_flash_dev nand_flash_ids[] = {
 160        /* NAND flash */
 161        { 0x6e, 20, 8, 4, 8, 2},        /* 1 MB */
 162        { 0xe8, 20, 8, 4, 8, 2},        /* 1 MB */
 163        { 0xec, 20, 8, 4, 8, 2},        /* 1 MB */
 164        { 0x64, 21, 8, 4, 9, 2},        /* 2 MB */
 165        { 0xea, 21, 8, 4, 9, 2},        /* 2 MB */
 166        { 0x6b, 22, 9, 4, 9, 2},        /* 4 MB */
 167        { 0xe3, 22, 9, 4, 9, 2},        /* 4 MB */
 168        { 0xe5, 22, 9, 4, 9, 2},        /* 4 MB */
 169        { 0xe6, 23, 9, 4, 10, 2},       /* 8 MB */
 170        { 0x73, 24, 9, 5, 10, 2},       /* 16 MB */
 171        { 0x75, 25, 9, 5, 10, 2},       /* 32 MB */
 172        { 0x76, 26, 9, 5, 10, 3},       /* 64 MB */
 173        { 0x79, 27, 9, 5, 10, 3},       /* 128 MB */
 174
 175        /* MASK ROM */
 176        { 0x5d, 21, 9, 4, 8, 2},        /* 2 MB */
 177        { 0xd5, 22, 9, 4, 9, 2},        /* 4 MB */
 178        { 0xd6, 23, 9, 4, 10, 2},       /* 8 MB */
 179        { 0x57, 24, 9, 4, 11, 2},       /* 16 MB */
 180        { 0x58, 25, 9, 4, 12, 2},       /* 32 MB */
 181        { 0,}
 182};
 183
 184static struct nand_flash_dev *
 185nand_find_id(unsigned char id) {
 186        int i;
 187
 188        for (i = 0; i < ARRAY_SIZE(nand_flash_ids); i++)
 189                if (nand_flash_ids[i].model_id == id)
 190                        return &(nand_flash_ids[i]);
 191        return NULL;
 192}
 193
 194/*
 195 * ECC computation.
 196 */
 197static unsigned char parity[256];
 198static unsigned char ecc2[256];
 199
 200static void nand_init_ecc(void) {
 201        int i, j, a;
 202
 203        parity[0] = 0;
 204        for (i = 1; i < 256; i++)
 205                parity[i] = (parity[i&(i-1)] ^ 1);
 206
 207        for (i = 0; i < 256; i++) {
 208                a = 0;
 209                for (j = 0; j < 8; j++) {
 210                        if (i & (1<<j)) {
 211                                if ((j & 1) == 0)
 212                                        a ^= 0x04;
 213                                if ((j & 2) == 0)
 214                                        a ^= 0x10;
 215                                if ((j & 4) == 0)
 216                                        a ^= 0x40;
 217                        }
 218                }
 219                ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
 220        }
 221}
 222
 223/* compute 3-byte ecc on 256 bytes */
 224static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
 225        int i, j, a;
 226        unsigned char par = 0, bit, bits[8] = {0};
 227
 228        /* collect 16 checksum bits */
 229        for (i = 0; i < 256; i++) {
 230                par ^= data[i];
 231                bit = parity[data[i]];
 232                for (j = 0; j < 8; j++)
 233                        if ((i & (1<<j)) == 0)
 234                                bits[j] ^= bit;
 235        }
 236
 237        /* put 4+4+4 = 12 bits in the ecc */
 238        a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
 239        ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 240
 241        a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
 242        ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
 243
 244        ecc[2] = ecc2[par];
 245}
 246
 247static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
 248        return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
 249}
 250
 251static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
 252        memcpy(data, ecc, 3);
 253}
 254
 255/*
 256 * The actual driver starts here.
 257 */
 258
 259struct sddr09_card_info {
 260        unsigned long   capacity;       /* Size of card in bytes */
 261        int             pagesize;       /* Size of page in bytes */
 262        int             pageshift;      /* log2 of pagesize */
 263        int             blocksize;      /* Size of block in pages */
 264        int             blockshift;     /* log2 of blocksize */
 265        int             blockmask;      /* 2^blockshift - 1 */
 266        int             *lba_to_pba;    /* logical to physical map */
 267        int             *pba_to_lba;    /* physical to logical map */
 268        int             lbact;          /* number of available pages */
 269        int             flags;
 270#define SDDR09_WP       1               /* write protected */
 271};
 272
 273/*
 274 * On my 16MB card, control blocks have size 64 (16 real control bytes,
 275 * and 48 junk bytes). In reality of course the card uses 16 control bytes,
 276 * so the reader makes up the remaining 48. Don't know whether these numbers
 277 * depend on the card. For now a constant.
 278 */
 279#define CONTROL_SHIFT 6
 280
 281/*
 282 * On my Combo CF/SM reader, the SM reader has LUN 1.
 283 * (and things fail with LUN 0).
 284 * It seems LUN is irrelevant for others.
 285 */
 286#define LUN     1
 287#define LUNBITS (LUN << 5)
 288
 289/*
 290 * LBA and PBA are unsigned ints. Special values.
 291 */
 292#define UNDEF    0xffffffff
 293#define SPARE    0xfffffffe
 294#define UNUSABLE 0xfffffffd
 295
 296static const int erase_bad_lba_entries = 0;
 297
 298/* send vendor interface command (0x41) */
 299/* called for requests 0, 1, 8 */
 300static int
 301sddr09_send_command(struct us_data *us,
 302                    unsigned char request,
 303                    unsigned char direction,
 304                    unsigned char *xfer_data,
 305                    unsigned int xfer_len) {
 306        unsigned int pipe;
 307        unsigned char requesttype = (0x41 | direction);
 308        int rc;
 309
 310        // Get the receive or send control pipe number
 311
 312        if (direction == USB_DIR_IN)
 313                pipe = us->recv_ctrl_pipe;
 314        else
 315                pipe = us->send_ctrl_pipe;
 316
 317        rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
 318                                   0, 0, xfer_data, xfer_len);
 319        switch (rc) {
 320                case USB_STOR_XFER_GOOD:        return 0;
 321                case USB_STOR_XFER_STALLED:     return -EPIPE;
 322                default:                        return -EIO;
 323        }
 324}
 325
 326static int
 327sddr09_send_scsi_command(struct us_data *us,
 328                         unsigned char *command,
 329                         unsigned int command_len) {
 330        return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
 331}
 332
 333#if 0
 334/*
 335 * Test Unit Ready Command: 12 bytes.
 336 * byte 0: opcode: 00
 337 */
 338static int
 339sddr09_test_unit_ready(struct us_data *us) {
 340        unsigned char *command = us->iobuf;
 341        int result;
 342
 343        memset(command, 0, 6);
 344        command[1] = LUNBITS;
 345
 346        result = sddr09_send_scsi_command(us, command, 6);
 347
 348        usb_stor_dbg(us, "sddr09_test_unit_ready returns %d\n", result);
 349
 350        return result;
 351}
 352#endif
 353
 354/*
 355 * Request Sense Command: 12 bytes.
 356 * byte 0: opcode: 03
 357 * byte 4: data length
 358 */
 359static int
 360sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
 361        unsigned char *command = us->iobuf;
 362        int result;
 363
 364        memset(command, 0, 12);
 365        command[0] = 0x03;
 366        command[1] = LUNBITS;
 367        command[4] = buflen;
 368
 369        result = sddr09_send_scsi_command(us, command, 12);
 370        if (result)
 371                return result;
 372
 373        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 374                        sensebuf, buflen, NULL);
 375        return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 376}
 377
 378/*
 379 * Read Command: 12 bytes.
 380 * byte 0: opcode: E8
 381 * byte 1: last two bits: 00: read data, 01: read blockwise control,
 382 *                      10: read both, 11: read pagewise control.
 383 *       It turns out we need values 20, 21, 22, 23 here (LUN 1).
 384 * bytes 2-5: address (interpretation depends on byte 1, see below)
 385 * bytes 10-11: count (idem)
 386 *
 387 * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
 388 * A read data command gets data in 512-byte pages.
 389 * A read control command gets control in 64-byte chunks.
 390 * A read both command gets data+control in 576-byte chunks.
 391 *
 392 * Blocks are groups of 32 pages, and read blockwise control jumps to the
 393 * next block, while read pagewise control jumps to the next page after
 394 * reading a group of 64 control bytes.
 395 * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
 396 *
 397 * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
 398 */
 399
 400static int
 401sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
 402             int nr_of_pages, int bulklen, unsigned char *buf,
 403             int use_sg) {
 404
 405        unsigned char *command = us->iobuf;
 406        int result;
 407
 408        command[0] = 0xE8;
 409        command[1] = LUNBITS | x;
 410        command[2] = MSB_of(fromaddress>>16);
 411        command[3] = LSB_of(fromaddress>>16); 
 412        command[4] = MSB_of(fromaddress & 0xFFFF);
 413        command[5] = LSB_of(fromaddress & 0xFFFF); 
 414        command[6] = 0;
 415        command[7] = 0;
 416        command[8] = 0;
 417        command[9] = 0;
 418        command[10] = MSB_of(nr_of_pages);
 419        command[11] = LSB_of(nr_of_pages);
 420
 421        result = sddr09_send_scsi_command(us, command, 12);
 422
 423        if (result) {
 424                usb_stor_dbg(us, "Result for send_control in sddr09_read2%d %d\n",
 425                             x, result);
 426                return result;
 427        }
 428
 429        result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
 430                                       buf, bulklen, use_sg, NULL);
 431
 432        if (result != USB_STOR_XFER_GOOD) {
 433                usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read2%d %d\n",
 434                             x, result);
 435                return -EIO;
 436        }
 437        return 0;
 438}
 439
 440/*
 441 * Read Data
 442 *
 443 * fromaddress counts data shorts:
 444 * increasing it by 256 shifts the bytestream by 512 bytes;
 445 * the last 8 bits are ignored.
 446 *
 447 * nr_of_pages counts pages of size (1 << pageshift).
 448 */
 449static int
 450sddr09_read20(struct us_data *us, unsigned long fromaddress,
 451              int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 452        int bulklen = nr_of_pages << pageshift;
 453
 454        /* The last 8 bits of fromaddress are ignored. */
 455        return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
 456                            buf, use_sg);
 457}
 458
 459/*
 460 * Read Blockwise Control
 461 *
 462 * fromaddress gives the starting position (as in read data;
 463 * the last 8 bits are ignored); increasing it by 32*256 shifts
 464 * the output stream by 64 bytes.
 465 *
 466 * count counts control groups of size (1 << controlshift).
 467 * For me, controlshift = 6. Is this constant?
 468 *
 469 * After getting one control group, jump to the next block
 470 * (fromaddress += 8192).
 471 */
 472static int
 473sddr09_read21(struct us_data *us, unsigned long fromaddress,
 474              int count, int controlshift, unsigned char *buf, int use_sg) {
 475
 476        int bulklen = (count << controlshift);
 477        return sddr09_readX(us, 1, fromaddress, count, bulklen,
 478                            buf, use_sg);
 479}
 480
 481/*
 482 * Read both Data and Control
 483 *
 484 * fromaddress counts data shorts, ignoring control:
 485 * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
 486 * the last 8 bits are ignored.
 487 *
 488 * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
 489 */
 490static int
 491sddr09_read22(struct us_data *us, unsigned long fromaddress,
 492              int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
 493
 494        int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 495        usb_stor_dbg(us, "reading %d pages, %d bytes\n", nr_of_pages, bulklen);
 496        return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
 497                            buf, use_sg);
 498}
 499
 500#if 0
 501/*
 502 * Read Pagewise Control
 503 *
 504 * fromaddress gives the starting position (as in read data;
 505 * the last 8 bits are ignored); increasing it by 256 shifts
 506 * the output stream by 64 bytes.
 507 *
 508 * count counts control groups of size (1 << controlshift).
 509 * For me, controlshift = 6. Is this constant?
 510 *
 511 * After getting one control group, jump to the next page
 512 * (fromaddress += 256).
 513 */
 514static int
 515sddr09_read23(struct us_data *us, unsigned long fromaddress,
 516              int count, int controlshift, unsigned char *buf, int use_sg) {
 517
 518        int bulklen = (count << controlshift);
 519        return sddr09_readX(us, 3, fromaddress, count, bulklen,
 520                            buf, use_sg);
 521}
 522#endif
 523
 524/*
 525 * Erase Command: 12 bytes.
 526 * byte 0: opcode: EA
 527 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 528 * 
 529 * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
 530 * The byte address being erased is 2*Eaddress.
 531 * The CIS cannot be erased.
 532 */
 533static int
 534sddr09_erase(struct us_data *us, unsigned long Eaddress) {
 535        unsigned char *command = us->iobuf;
 536        int result;
 537
 538        usb_stor_dbg(us, "erase address %lu\n", Eaddress);
 539
 540        memset(command, 0, 12);
 541        command[0] = 0xEA;
 542        command[1] = LUNBITS;
 543        command[6] = MSB_of(Eaddress>>16);
 544        command[7] = LSB_of(Eaddress>>16);
 545        command[8] = MSB_of(Eaddress & 0xFFFF);
 546        command[9] = LSB_of(Eaddress & 0xFFFF);
 547
 548        result = sddr09_send_scsi_command(us, command, 12);
 549
 550        if (result)
 551                usb_stor_dbg(us, "Result for send_control in sddr09_erase %d\n",
 552                             result);
 553
 554        return result;
 555}
 556
 557/*
 558 * Write CIS Command: 12 bytes.
 559 * byte 0: opcode: EE
 560 * bytes 2-5: write address in shorts
 561 * bytes 10-11: sector count
 562 *
 563 * This writes at the indicated address. Don't know how it differs
 564 * from E9. Maybe it does not erase? However, it will also write to
 565 * the CIS.
 566 *
 567 * When two such commands on the same page follow each other directly,
 568 * the second one is not done.
 569 */
 570
 571/*
 572 * Write Command: 12 bytes.
 573 * byte 0: opcode: E9
 574 * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
 575 * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
 576 * bytes 10-11: sector count (big-endian, in 512-byte sectors).
 577 *
 578 * If write address equals erase address, the erase is done first,
 579 * otherwise the write is done first. When erase address equals zero
 580 * no erase is done?
 581 */
 582static int
 583sddr09_writeX(struct us_data *us,
 584              unsigned long Waddress, unsigned long Eaddress,
 585              int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
 586
 587        unsigned char *command = us->iobuf;
 588        int result;
 589
 590        command[0] = 0xE9;
 591        command[1] = LUNBITS;
 592
 593        command[2] = MSB_of(Waddress>>16);
 594        command[3] = LSB_of(Waddress>>16);
 595        command[4] = MSB_of(Waddress & 0xFFFF);
 596        command[5] = LSB_of(Waddress & 0xFFFF);
 597
 598        command[6] = MSB_of(Eaddress>>16);
 599        command[7] = LSB_of(Eaddress>>16);
 600        command[8] = MSB_of(Eaddress & 0xFFFF);
 601        command[9] = LSB_of(Eaddress & 0xFFFF);
 602
 603        command[10] = MSB_of(nr_of_pages);
 604        command[11] = LSB_of(nr_of_pages);
 605
 606        result = sddr09_send_scsi_command(us, command, 12);
 607
 608        if (result) {
 609                usb_stor_dbg(us, "Result for send_control in sddr09_writeX %d\n",
 610                             result);
 611                return result;
 612        }
 613
 614        result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
 615                                       buf, bulklen, use_sg, NULL);
 616
 617        if (result != USB_STOR_XFER_GOOD) {
 618                usb_stor_dbg(us, "Result for bulk_transfer in sddr09_writeX %d\n",
 619                             result);
 620                return -EIO;
 621        }
 622        return 0;
 623}
 624
 625/* erase address, write same address */
 626static int
 627sddr09_write_inplace(struct us_data *us, unsigned long address,
 628                     int nr_of_pages, int pageshift, unsigned char *buf,
 629                     int use_sg) {
 630        int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
 631        return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
 632                             buf, use_sg);
 633}
 634
 635#if 0
 636/*
 637 * Read Scatter Gather Command: 3+4n bytes.
 638 * byte 0: opcode E7
 639 * byte 2: n
 640 * bytes 4i-1,4i,4i+1: page address
 641 * byte 4i+2: page count
 642 * (i=1..n)
 643 *
 644 * This reads several pages from the card to a single memory buffer.
 645 * The last two bits of byte 1 have the same meaning as for E8.
 646 */
 647static int
 648sddr09_read_sg_test_only(struct us_data *us) {
 649        unsigned char *command = us->iobuf;
 650        int result, bulklen, nsg, ct;
 651        unsigned char *buf;
 652        unsigned long address;
 653
 654        nsg = bulklen = 0;
 655        command[0] = 0xE7;
 656        command[1] = LUNBITS;
 657        command[2] = 0;
 658        address = 040000; ct = 1;
 659        nsg++;
 660        bulklen += (ct << 9);
 661        command[4*nsg+2] = ct;
 662        command[4*nsg+1] = ((address >> 9) & 0xFF);
 663        command[4*nsg+0] = ((address >> 17) & 0xFF);
 664        command[4*nsg-1] = ((address >> 25) & 0xFF);
 665
 666        address = 0340000; ct = 1;
 667        nsg++;
 668        bulklen += (ct << 9);
 669        command[4*nsg+2] = ct;
 670        command[4*nsg+1] = ((address >> 9) & 0xFF);
 671        command[4*nsg+0] = ((address >> 17) & 0xFF);
 672        command[4*nsg-1] = ((address >> 25) & 0xFF);
 673
 674        address = 01000000; ct = 2;
 675        nsg++;
 676        bulklen += (ct << 9);
 677        command[4*nsg+2] = ct;
 678        command[4*nsg+1] = ((address >> 9) & 0xFF);
 679        command[4*nsg+0] = ((address >> 17) & 0xFF);
 680        command[4*nsg-1] = ((address >> 25) & 0xFF);
 681
 682        command[2] = nsg;
 683
 684        result = sddr09_send_scsi_command(us, command, 4*nsg+3);
 685
 686        if (result) {
 687                usb_stor_dbg(us, "Result for send_control in sddr09_read_sg %d\n",
 688                             result);
 689                return result;
 690        }
 691
 692        buf = kmalloc(bulklen, GFP_NOIO);
 693        if (!buf)
 694                return -ENOMEM;
 695
 696        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 697                                       buf, bulklen, NULL);
 698        kfree(buf);
 699        if (result != USB_STOR_XFER_GOOD) {
 700                usb_stor_dbg(us, "Result for bulk_transfer in sddr09_read_sg %d\n",
 701                             result);
 702                return -EIO;
 703        }
 704
 705        return 0;
 706}
 707#endif
 708
 709/*
 710 * Read Status Command: 12 bytes.
 711 * byte 0: opcode: EC
 712 *
 713 * Returns 64 bytes, all zero except for the first.
 714 * bit 0: 1: Error
 715 * bit 5: 1: Suspended
 716 * bit 6: 1: Ready
 717 * bit 7: 1: Not write-protected
 718 */
 719
 720static int
 721sddr09_read_status(struct us_data *us, unsigned char *status) {
 722
 723        unsigned char *command = us->iobuf;
 724        unsigned char *data = us->iobuf;
 725        int result;
 726
 727        usb_stor_dbg(us, "Reading status...\n");
 728
 729        memset(command, 0, 12);
 730        command[0] = 0xEC;
 731        command[1] = LUNBITS;
 732
 733        result = sddr09_send_scsi_command(us, command, 12);
 734        if (result)
 735                return result;
 736
 737        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
 738                                       data, 64, NULL);
 739        *status = data[0];
 740        return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
 741}
 742
 743static int
 744sddr09_read_data(struct us_data *us,
 745                 unsigned long address,
 746                 unsigned int sectors) {
 747
 748        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 749        unsigned char *buffer;
 750        unsigned int lba, maxlba, pba;
 751        unsigned int page, pages;
 752        unsigned int len, offset;
 753        struct scatterlist *sg;
 754        int result;
 755
 756        // Figure out the initial LBA and page
 757        lba = address >> info->blockshift;
 758        page = (address & info->blockmask);
 759        maxlba = info->capacity >> (info->pageshift + info->blockshift);
 760        if (lba >= maxlba)
 761                return -EIO;
 762
 763        // Since we only read in one block at a time, we have to create
 764        // a bounce buffer and move the data a piece at a time between the
 765        // bounce buffer and the actual transfer buffer.
 766
 767        len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
 768        buffer = kmalloc(len, GFP_NOIO);
 769        if (buffer == NULL) {
 770                printk(KERN_WARNING "sddr09_read_data: Out of memory\n");
 771                return -ENOMEM;
 772        }
 773
 774        // This could be made much more efficient by checking for
 775        // contiguous LBA's. Another exercise left to the student.
 776
 777        result = 0;
 778        offset = 0;
 779        sg = NULL;
 780
 781        while (sectors > 0) {
 782
 783                /* Find number of pages we can read in this block */
 784                pages = min(sectors, info->blocksize - page);
 785                len = pages << info->pageshift;
 786
 787                /* Not overflowing capacity? */
 788                if (lba >= maxlba) {
 789                        usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
 790                                     lba, maxlba);
 791                        result = -EIO;
 792                        break;
 793                }
 794
 795                /* Find where this lba lives on disk */
 796                pba = info->lba_to_pba[lba];
 797
 798                if (pba == UNDEF) {     /* this lba was never written */
 799
 800                        usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n",
 801                                     pages, lba, page);
 802
 803                        /*
 804                         * This is not really an error. It just means
 805                         * that the block has never been written.
 806                         * Instead of returning an error
 807                         * it is better to return all zero data.
 808                         */
 809
 810                        memset(buffer, 0, len);
 811
 812                } else {
 813                        usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n",
 814                                     pages, pba, lba, page);
 815
 816                        address = ((pba << info->blockshift) + page) << 
 817                                info->pageshift;
 818
 819                        result = sddr09_read20(us, address>>1,
 820                                        pages, info->pageshift, buffer, 0);
 821                        if (result)
 822                                break;
 823                }
 824
 825                // Store the data in the transfer buffer
 826                usb_stor_access_xfer_buf(buffer, len, us->srb,
 827                                &sg, &offset, TO_XFER_BUF);
 828
 829                page = 0;
 830                lba++;
 831                sectors -= pages;
 832        }
 833
 834        kfree(buffer);
 835        return result;
 836}
 837
 838static unsigned int
 839sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
 840        static unsigned int lastpba = 1;
 841        int zonestart, end, i;
 842
 843        zonestart = (lba/1000) << 10;
 844        end = info->capacity >> (info->blockshift + info->pageshift);
 845        end -= zonestart;
 846        if (end > 1024)
 847                end = 1024;
 848
 849        for (i = lastpba+1; i < end; i++) {
 850                if (info->pba_to_lba[zonestart+i] == UNDEF) {
 851                        lastpba = i;
 852                        return zonestart+i;
 853                }
 854        }
 855        for (i = 0; i <= lastpba; i++) {
 856                if (info->pba_to_lba[zonestart+i] == UNDEF) {
 857                        lastpba = i;
 858                        return zonestart+i;
 859                }
 860        }
 861        return 0;
 862}
 863
 864static int
 865sddr09_write_lba(struct us_data *us, unsigned int lba,
 866                 unsigned int page, unsigned int pages,
 867                 unsigned char *ptr, unsigned char *blockbuffer) {
 868
 869        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 870        unsigned long address;
 871        unsigned int pba, lbap;
 872        unsigned int pagelen;
 873        unsigned char *bptr, *cptr, *xptr;
 874        unsigned char ecc[3];
 875        int i, result, isnew;
 876
 877        lbap = ((lba % 1000) << 1) | 0x1000;
 878        if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
 879                lbap ^= 1;
 880        pba = info->lba_to_pba[lba];
 881        isnew = 0;
 882
 883        if (pba == UNDEF) {
 884                pba = sddr09_find_unused_pba(info, lba);
 885                if (!pba) {
 886                        printk(KERN_WARNING
 887                               "sddr09_write_lba: Out of unused blocks\n");
 888                        return -ENOSPC;
 889                }
 890                info->pba_to_lba[pba] = lba;
 891                info->lba_to_pba[lba] = pba;
 892                isnew = 1;
 893        }
 894
 895        if (pba == 1) {
 896                /*
 897                 * Maybe it is impossible to write to PBA 1.
 898                 * Fake success, but don't do anything.
 899                 */
 900                printk(KERN_WARNING "sddr09: avoid writing to pba 1\n");
 901                return 0;
 902        }
 903
 904        pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
 905
 906        /* read old contents */
 907        address = (pba << (info->pageshift + info->blockshift));
 908        result = sddr09_read22(us, address>>1, info->blocksize,
 909                               info->pageshift, blockbuffer, 0);
 910        if (result)
 911                return result;
 912
 913        /* check old contents and fill lba */
 914        for (i = 0; i < info->blocksize; i++) {
 915                bptr = blockbuffer + i*pagelen;
 916                cptr = bptr + info->pagesize;
 917                nand_compute_ecc(bptr, ecc);
 918                if (!nand_compare_ecc(cptr+13, ecc)) {
 919                        usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n",
 920                                     i, pba);
 921                        nand_store_ecc(cptr+13, ecc);
 922                }
 923                nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 924                if (!nand_compare_ecc(cptr+8, ecc)) {
 925                        usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n",
 926                                     i, pba);
 927                        nand_store_ecc(cptr+8, ecc);
 928                }
 929                cptr[6] = cptr[11] = MSB_of(lbap);
 930                cptr[7] = cptr[12] = LSB_of(lbap);
 931        }
 932
 933        /* copy in new stuff and compute ECC */
 934        xptr = ptr;
 935        for (i = page; i < page+pages; i++) {
 936                bptr = blockbuffer + i*pagelen;
 937                cptr = bptr + info->pagesize;
 938                memcpy(bptr, xptr, info->pagesize);
 939                xptr += info->pagesize;
 940                nand_compute_ecc(bptr, ecc);
 941                nand_store_ecc(cptr+13, ecc);
 942                nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
 943                nand_store_ecc(cptr+8, ecc);
 944        }
 945
 946        usb_stor_dbg(us, "Rewrite PBA %d (LBA %d)\n", pba, lba);
 947
 948        result = sddr09_write_inplace(us, address>>1, info->blocksize,
 949                                      info->pageshift, blockbuffer, 0);
 950
 951        usb_stor_dbg(us, "sddr09_write_inplace returns %d\n", result);
 952
 953#if 0
 954        {
 955                unsigned char status = 0;
 956                int result2 = sddr09_read_status(us, &status);
 957                if (result2)
 958                        usb_stor_dbg(us, "cannot read status\n");
 959                else if (status != 0xc0)
 960                        usb_stor_dbg(us, "status after write: 0x%x\n", status);
 961        }
 962#endif
 963
 964#if 0
 965        {
 966                int result2 = sddr09_test_unit_ready(us);
 967        }
 968#endif
 969
 970        return result;
 971}
 972
 973static int
 974sddr09_write_data(struct us_data *us,
 975                  unsigned long address,
 976                  unsigned int sectors) {
 977
 978        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
 979        unsigned int lba, maxlba, page, pages;
 980        unsigned int pagelen, blocklen;
 981        unsigned char *blockbuffer;
 982        unsigned char *buffer;
 983        unsigned int len, offset;
 984        struct scatterlist *sg;
 985        int result;
 986
 987        /* Figure out the initial LBA and page */
 988        lba = address >> info->blockshift;
 989        page = (address & info->blockmask);
 990        maxlba = info->capacity >> (info->pageshift + info->blockshift);
 991        if (lba >= maxlba)
 992                return -EIO;
 993
 994        /*
 995         * blockbuffer is used for reading in the old data, overwriting
 996         * with the new data, and performing ECC calculations
 997         */
 998
 999        /*
1000         * TODO: instead of doing kmalloc/kfree for each write,
1001         * add a bufferpointer to the info structure
1002         */
1003
1004        pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
1005        blocklen = (pagelen << info->blockshift);
1006        blockbuffer = kmalloc(blocklen, GFP_NOIO);
1007        if (!blockbuffer) {
1008                printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1009                return -ENOMEM;
1010        }
1011
1012        /*
1013         * Since we don't write the user data directly to the device,
1014         * we have to create a bounce buffer and move the data a piece
1015         * at a time between the bounce buffer and the actual transfer buffer.
1016         */
1017
1018        len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
1019        buffer = kmalloc(len, GFP_NOIO);
1020        if (buffer == NULL) {
1021                printk(KERN_WARNING "sddr09_write_data: Out of memory\n");
1022                kfree(blockbuffer);
1023                return -ENOMEM;
1024        }
1025
1026        result = 0;
1027        offset = 0;
1028        sg = NULL;
1029
1030        while (sectors > 0) {
1031
1032                /* Write as many sectors as possible in this block */
1033
1034                pages = min(sectors, info->blocksize - page);
1035                len = (pages << info->pageshift);
1036
1037                /* Not overflowing capacity? */
1038                if (lba >= maxlba) {
1039                        usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n",
1040                                     lba, maxlba);
1041                        result = -EIO;
1042                        break;
1043                }
1044
1045                /* Get the data from the transfer buffer */
1046                usb_stor_access_xfer_buf(buffer, len, us->srb,
1047                                &sg, &offset, FROM_XFER_BUF);
1048
1049                result = sddr09_write_lba(us, lba, page, pages,
1050                                buffer, blockbuffer);
1051                if (result)
1052                        break;
1053
1054                page = 0;
1055                lba++;
1056                sectors -= pages;
1057        }
1058
1059        kfree(buffer);
1060        kfree(blockbuffer);
1061
1062        return result;
1063}
1064
1065static int
1066sddr09_read_control(struct us_data *us,
1067                unsigned long address,
1068                unsigned int blocks,
1069                unsigned char *content,
1070                int use_sg) {
1071
1072        usb_stor_dbg(us, "Read control address %lu, blocks %d\n",
1073                     address, blocks);
1074
1075        return sddr09_read21(us, address, blocks,
1076                             CONTROL_SHIFT, content, use_sg);
1077}
1078
1079/*
1080 * Read Device ID Command: 12 bytes.
1081 * byte 0: opcode: ED
1082 *
1083 * Returns 2 bytes: Manufacturer ID and Device ID.
1084 * On more recent cards 3 bytes: the third byte is an option code A5
1085 * signifying that the secret command to read an 128-bit ID is available.
1086 * On still more recent cards 4 bytes: the fourth byte C0 means that
1087 * a second read ID cmd is available.
1088 */
1089static int
1090sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
1091        unsigned char *command = us->iobuf;
1092        unsigned char *content = us->iobuf;
1093        int result, i;
1094
1095        memset(command, 0, 12);
1096        command[0] = 0xED;
1097        command[1] = LUNBITS;
1098
1099        result = sddr09_send_scsi_command(us, command, 12);
1100        if (result)
1101                return result;
1102
1103        result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
1104                        content, 64, NULL);
1105
1106        for (i = 0; i < 4; i++)
1107                deviceID[i] = content[i];
1108
1109        return (result == USB_STOR_XFER_GOOD ? 0 : -EIO);
1110}
1111
1112static int
1113sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
1114        int result;
1115        unsigned char status;
1116        const char *wp_fmt;
1117
1118        result = sddr09_read_status(us, &status);
1119        if (result) {
1120                usb_stor_dbg(us, "read_status fails\n");
1121                return result;
1122        }
1123        if ((status & 0x80) == 0) {
1124                info->flags |= SDDR09_WP;       /* write protected */
1125                wp_fmt = " WP";
1126        } else {
1127                wp_fmt = "";
1128        }
1129        usb_stor_dbg(us, "status 0x%02X%s%s%s%s\n", status, wp_fmt,
1130                     status & 0x40 ? " Ready" : "",
1131                     status & LUNBITS ? " Suspended" : "",
1132                     status & 0x01 ? " Error" : "");
1133
1134        return 0;
1135}
1136
1137#if 0
1138/*
1139 * Reset Command: 12 bytes.
1140 * byte 0: opcode: EB
1141 */
1142static int
1143sddr09_reset(struct us_data *us) {
1144
1145        unsigned char *command = us->iobuf;
1146
1147        memset(command, 0, 12);
1148        command[0] = 0xEB;
1149        command[1] = LUNBITS;
1150
1151        return sddr09_send_scsi_command(us, command, 12);
1152}
1153#endif
1154
1155static struct nand_flash_dev *
1156sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
1157        struct nand_flash_dev *cardinfo;
1158        unsigned char deviceID[4];
1159        char blurbtxt[256];
1160        int result;
1161
1162        usb_stor_dbg(us, "Reading capacity...\n");
1163
1164        result = sddr09_read_deviceID(us, deviceID);
1165
1166        if (result) {
1167                usb_stor_dbg(us, "Result of read_deviceID is %d\n", result);
1168                printk(KERN_WARNING "sddr09: could not read card info\n");
1169                return NULL;
1170        }
1171
1172        sprintf(blurbtxt, "sddr09: Found Flash card, ID = %4ph", deviceID);
1173
1174        /* Byte 0 is the manufacturer */
1175        sprintf(blurbtxt + strlen(blurbtxt),
1176                ": Manuf. %s",
1177                nand_flash_manufacturer(deviceID[0]));
1178
1179        /* Byte 1 is the device type */
1180        cardinfo = nand_find_id(deviceID[1]);
1181        if (cardinfo) {
1182                /*
1183                 * MB or MiB? It is neither. A 16 MB card has
1184                 * 17301504 raw bytes, of which 16384000 are
1185                 * usable for user data.
1186                 */
1187                sprintf(blurbtxt + strlen(blurbtxt),
1188                        ", %d MB", 1<<(cardinfo->chipshift - 20));
1189        } else {
1190                sprintf(blurbtxt + strlen(blurbtxt),
1191                        ", type unrecognized");
1192        }
1193
1194        /* Byte 2 is code to signal availability of 128-bit ID */
1195        if (deviceID[2] == 0xa5) {
1196                sprintf(blurbtxt + strlen(blurbtxt),
1197                        ", 128-bit ID");
1198        }
1199
1200        /* Byte 3 announces the availability of another read ID command */
1201        if (deviceID[3] == 0xc0) {
1202                sprintf(blurbtxt + strlen(blurbtxt),
1203                        ", extra cmd");
1204        }
1205
1206        if (flags & SDDR09_WP)
1207                sprintf(blurbtxt + strlen(blurbtxt),
1208                        ", WP");
1209
1210        printk(KERN_WARNING "%s\n", blurbtxt);
1211
1212        return cardinfo;
1213}
1214
1215static int
1216sddr09_read_map(struct us_data *us) {
1217
1218        struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
1219        int numblocks, alloc_len, alloc_blocks;
1220        int i, j, result;
1221        unsigned char *buffer, *buffer_end, *ptr;
1222        unsigned int lba, lbact;
1223
1224        if (!info->capacity)
1225                return -1;
1226
1227        /*
1228         * size of a block is 1 << (blockshift + pageshift) bytes
1229         * divide into the total capacity to get the number of blocks
1230         */
1231
1232        numblocks = info->capacity >> (info->blockshift + info->pageshift);
1233
1234        /*
1235         * read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
1236         * but only use a 64 KB buffer
1237         * buffer size used must be a multiple of (1 << CONTROL_SHIFT)
1238         */
1239#define SDDR09_READ_MAP_BUFSZ 65536
1240
1241        alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
1242        alloc_len = (alloc_blocks << CONTROL_SHIFT);
1243        buffer = kmalloc(alloc_len, GFP_NOIO);
1244        if (buffer == NULL) {
1245                printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1246                result = -1;
1247                goto done;
1248        }
1249        buffer_end = buffer + alloc_len;
1250
1251#undef SDDR09_READ_MAP_BUFSZ
1252
1253        kfree(info->lba_to_pba);
1254        kfree(info->pba_to_lba);
1255        info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1256        info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
1257
1258        if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
1259                printk(KERN_WARNING "sddr09_read_map: out of memory\n");
1260                result = -1;
1261                goto done;
1262        }
1263
1264        for (i = 0; i < numblocks; i++)
1265                info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
1266
1267        /*
1268         * Define lba-pba translation table
1269         */
1270
1271        ptr = buffer_end;
1272        for (i = 0; i < numblocks; i++) {
1273                ptr += (1 << CONTROL_SHIFT);
1274                if (ptr >= buffer_end) {
1275                        unsigned long address;
1276
1277                        address = i << (info->pageshift + info->blockshift);
1278                        result = sddr09_read_control(
1279                                us, address>>1,
1280                                min(alloc_blocks, numblocks - i),
1281                                buffer, 0);
1282                        if (result) {
1283                                result = -1;
1284                                goto done;
1285                        }
1286                        ptr = buffer;
1287                }
1288
1289                if (i == 0 || i == 1) {
1290                        info->pba_to_lba[i] = UNUSABLE;
1291                        continue;
1292                }
1293
1294                /* special PBAs have control field 0^16 */
1295                for (j = 0; j < 16; j++)
1296                        if (ptr[j] != 0)
1297                                goto nonz;
1298                info->pba_to_lba[i] = UNUSABLE;
1299                printk(KERN_WARNING "sddr09: PBA %d has no logical mapping\n",
1300                       i);
1301                continue;
1302
1303        nonz:
1304                /* unwritten PBAs have control field FF^16 */
1305                for (j = 0; j < 16; j++)
1306                        if (ptr[j] != 0xff)
1307                                goto nonff;
1308                continue;
1309
1310        nonff:
1311                /* normal PBAs start with six FFs */
1312                if (j < 6) {
1313                        printk(KERN_WARNING
1314                               "sddr09: PBA %d has no logical mapping: "
1315                               "reserved area = %02X%02X%02X%02X "
1316                               "data status %02X block status %02X\n",
1317                               i, ptr[0], ptr[1], ptr[2], ptr[3],
1318                               ptr[4], ptr[5]);
1319                        info->pba_to_lba[i] = UNUSABLE;
1320                        continue;
1321                }
1322
1323                if ((ptr[6] >> 4) != 0x01) {
1324                        printk(KERN_WARNING
1325                               "sddr09: PBA %d has invalid address field "
1326                               "%02X%02X/%02X%02X\n",
1327                               i, ptr[6], ptr[7], ptr[11], ptr[12]);
1328                        info->pba_to_lba[i] = UNUSABLE;
1329                        continue;
1330                }
1331
1332                /* check even parity */
1333                if (parity[ptr[6] ^ ptr[7]]) {
1334                        printk(KERN_WARNING
1335                               "sddr09: Bad parity in LBA for block %d"
1336                               " (%02X %02X)\n", i, ptr[6], ptr[7]);
1337                        info->pba_to_lba[i] = UNUSABLE;
1338                        continue;
1339                }
1340
1341                lba = short_pack(ptr[7], ptr[6]);
1342                lba = (lba & 0x07FF) >> 1;
1343
1344                /*
1345                 * Every 1024 physical blocks ("zone"), the LBA numbers
1346                 * go back to zero, but are within a higher block of LBA's.
1347                 * Also, there is a maximum of 1000 LBA's per zone.
1348                 * In other words, in PBA 1024-2047 you will find LBA 0-999
1349                 * which are really LBA 1000-1999. This allows for 24 bad
1350                 * or special physical blocks per zone.
1351                 */
1352
1353                if (lba >= 1000) {
1354                        printk(KERN_WARNING
1355                               "sddr09: Bad low LBA %d for block %d\n",
1356                               lba, i);
1357                        goto possibly_erase;
1358                }
1359
1360                lba += 1000*(i/0x400);
1361
1362                if (info->lba_to_pba[lba] != UNDEF) {
1363                        printk(KERN_WARNING
1364                               "sddr09: LBA %d seen for PBA %d and %d\n",
1365                               lba, info->lba_to_pba[lba], i);
1366                        goto possibly_erase;
1367                }
1368
1369                info->pba_to_lba[i] = lba;
1370                info->lba_to_pba[lba] = i;
1371                continue;
1372
1373        possibly_erase:
1374                if (erase_bad_lba_entries) {
1375                        unsigned long address;
1376
1377                        address = (i << (info->pageshift + info->blockshift));
1378                        sddr09_erase(us, address>>1);
1379                        info->pba_to_lba[i] = UNDEF;
1380                } else
1381                        info->pba_to_lba[i] = UNUSABLE;
1382        }
1383
1384        /*
1385         * Approximate capacity. This is not entirely correct yet,
1386         * since a zone with less than 1000 usable pages leads to
1387         * missing LBAs. Especially if it is the last zone, some
1388         * LBAs can be past capacity.
1389         */
1390        lbact = 0;
1391        for (i = 0; i < numblocks; i += 1024) {
1392                int ct = 0;
1393
1394                for (j = 0; j < 1024 && i+j < numblocks; j++) {
1395                        if (info->pba_to_lba[i+j] != UNUSABLE) {
1396                                if (ct >= 1000)
1397                                        info->pba_to_lba[i+j] = SPARE;
1398                                else
1399                                        ct++;
1400                        }
1401                }
1402                lbact += ct;
1403        }
1404        info->lbact = lbact;
1405        usb_stor_dbg(us, "Found %d LBA's\n", lbact);
1406        result = 0;
1407
1408 done:
1409        if (result != 0) {
1410                kfree(info->lba_to_pba);
1411                kfree(info->pba_to_lba);
1412                info->lba_to_pba = NULL;
1413                info->pba_to_lba = NULL;
1414        }
1415        kfree(buffer);
1416        return result;
1417}
1418
1419static void
1420sddr09_card_info_destructor(void *extra) {
1421        struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
1422
1423        if (!info)
1424                return;
1425
1426        kfree(info->lba_to_pba);
1427        kfree(info->pba_to_lba);
1428}
1429
1430static int
1431sddr09_common_init(struct us_data *us) {
1432        int result;
1433
1434        /* set the configuration -- STALL is an acceptable response here */
1435        if (us->pusb_dev->actconfig->desc.bConfigurationValue != 1) {
1436                usb_stor_dbg(us, "active config #%d != 1 ??\n",
1437                             us->pusb_dev->actconfig->desc.bConfigurationValue);
1438                return -EINVAL;
1439        }
1440
1441        result = usb_reset_configuration(us->pusb_dev);
1442        usb_stor_dbg(us, "Result of usb_reset_configuration is %d\n", result);
1443        if (result == -EPIPE) {
1444                usb_stor_dbg(us, "-- stall on control interface\n");
1445        } else if (result != 0) {
1446                /* it's not a stall, but another error -- time to bail */
1447                usb_stor_dbg(us, "-- Unknown error.  Rejecting device\n");
1448                return -EINVAL;
1449        }
1450
1451        us->extra = kzalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
1452        if (!us->extra)
1453                return -ENOMEM;
1454        us->extra_destructor = sddr09_card_info_destructor;
1455
1456        nand_init_ecc();
1457        return 0;
1458}
1459
1460
1461/*
1462 * This is needed at a very early stage. If this is not listed in the
1463 * unusual devices list but called from here then LUN 0 of the combo reader
1464 * is not recognized. But I do not know what precisely these calls do.
1465 */
1466static int
1467usb_stor_sddr09_dpcm_init(struct us_data *us) {
1468        int result;
1469        unsigned char *data = us->iobuf;
1470
1471        result = sddr09_common_init(us);
1472        if (result)
1473                return result;
1474
1475        result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
1476        if (result) {
1477                usb_stor_dbg(us, "send_command fails\n");
1478                return result;
1479        }
1480
1481        usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1482        // get 07 02
1483
1484        result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
1485        if (result) {
1486                usb_stor_dbg(us, "2nd send_command fails\n");
1487                return result;
1488        }
1489
1490        usb_stor_dbg(us, "%02X %02X\n", data[0], data[1]);
1491        // get 07 00
1492
1493        result = sddr09_request_sense(us, data, 18);
1494        if (result == 0 && data[2] != 0) {
1495                int j;
1496                for (j=0; j<18; j++)
1497                        printk(" %02X", data[j]);
1498                printk("\n");
1499                // get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
1500                // 70: current command
1501                // sense key 0, sense code 0, extd sense code 0
1502                // additional transfer length * = sizeof(data) - 7
1503                // Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
1504                // sense key 06, sense code 28: unit attention,
1505                // not ready to ready transition
1506        }
1507
1508        // test unit ready
1509
1510        return 0;               /* not result */
1511}
1512
1513/*
1514 * Transport for the Microtech DPCM-USB
1515 */
1516static int dpcm_transport(struct scsi_cmnd *srb, struct us_data *us)
1517{
1518        int ret;
1519
1520        usb_stor_dbg(us, "LUN=%d\n", (u8)srb->device->lun);
1521
1522        switch (srb->device->lun) {
1523        case 0:
1524
1525                /*
1526                 * LUN 0 corresponds to the CompactFlash card reader.
1527                 */
1528                ret = usb_stor_CB_transport(srb, us);
1529                break;
1530
1531        case 1:
1532
1533                /*
1534                 * LUN 1 corresponds to the SmartMedia card reader.
1535                 */
1536
1537                /*
1538                 * Set the LUN to 0 (just in case).
1539                 */
1540                srb->device->lun = 0;
1541                ret = sddr09_transport(srb, us);
1542                srb->device->lun = 1;
1543                break;
1544
1545        default:
1546            usb_stor_dbg(us, "Invalid LUN %d\n", (u8)srb->device->lun);
1547                ret = USB_STOR_TRANSPORT_ERROR;
1548                break;
1549        }
1550        return ret;
1551}
1552
1553
1554/*
1555 * Transport for the Sandisk SDDR-09
1556 */
1557static int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
1558{
1559        static unsigned char sensekey = 0, sensecode = 0;
1560        static unsigned char havefakesense = 0;
1561        int result, i;
1562        unsigned char *ptr = us->iobuf;
1563        unsigned long capacity;
1564        unsigned int page, pages;
1565
1566        struct sddr09_card_info *info;
1567
1568        static unsigned char inquiry_response[8] = {
1569                0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
1570        };
1571
1572        /* note: no block descriptor support */
1573        static unsigned char mode_page_01[19] = {
1574                0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
1575                0x01, 0x0A,
1576                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
1577        };
1578
1579        info = (struct sddr09_card_info *)us->extra;
1580
1581        if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
1582                /* for a faked command, we have to follow with a faked sense */
1583                memset(ptr, 0, 18);
1584                ptr[0] = 0x70;
1585                ptr[2] = sensekey;
1586                ptr[7] = 11;
1587                ptr[12] = sensecode;
1588                usb_stor_set_xfer_buf(ptr, 18, srb);
1589                sensekey = sensecode = havefakesense = 0;
1590                return USB_STOR_TRANSPORT_GOOD;
1591        }
1592
1593        havefakesense = 1;
1594
1595        /*
1596         * Dummy up a response for INQUIRY since SDDR09 doesn't
1597         * respond to INQUIRY commands
1598         */
1599
1600        if (srb->cmnd[0] == INQUIRY) {
1601                memcpy(ptr, inquiry_response, 8);
1602                fill_inquiry_response(us, ptr, 36);
1603                return USB_STOR_TRANSPORT_GOOD;
1604        }
1605
1606        if (srb->cmnd[0] == READ_CAPACITY) {
1607                struct nand_flash_dev *cardinfo;
1608
1609                sddr09_get_wp(us, info);        /* read WP bit */
1610
1611                cardinfo = sddr09_get_cardinfo(us, info->flags);
1612                if (!cardinfo) {
1613                        /* probably no media */
1614                init_error:
1615                        sensekey = 0x02;        /* not ready */
1616                        sensecode = 0x3a;       /* medium not present */
1617                        return USB_STOR_TRANSPORT_FAILED;
1618                }
1619
1620                info->capacity = (1 << cardinfo->chipshift);
1621                info->pageshift = cardinfo->pageshift;
1622                info->pagesize = (1 << info->pageshift);
1623                info->blockshift = cardinfo->blockshift;
1624                info->blocksize = (1 << info->blockshift);
1625                info->blockmask = info->blocksize - 1;
1626
1627                // map initialization, must follow get_cardinfo()
1628                if (sddr09_read_map(us)) {
1629                        /* probably out of memory */
1630                        goto init_error;
1631                }
1632
1633                // Report capacity
1634
1635                capacity = (info->lbact << info->blockshift) - 1;
1636
1637                ((__be32 *) ptr)[0] = cpu_to_be32(capacity);
1638
1639                // Report page size
1640
1641                ((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
1642                usb_stor_set_xfer_buf(ptr, 8, srb);
1643
1644                return USB_STOR_TRANSPORT_GOOD;
1645        }
1646
1647        if (srb->cmnd[0] == MODE_SENSE_10) {
1648                int modepage = (srb->cmnd[2] & 0x3F);
1649
1650                /*
1651                 * They ask for the Read/Write error recovery page,
1652                 * or for all pages.
1653                 */
1654                /* %% We should check DBD %% */
1655                if (modepage == 0x01 || modepage == 0x3F) {
1656                        usb_stor_dbg(us, "Dummy up request for mode page 0x%x\n",
1657                                     modepage);
1658
1659                        memcpy(ptr, mode_page_01, sizeof(mode_page_01));
1660                        ((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
1661                        ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
1662                        usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
1663                        return USB_STOR_TRANSPORT_GOOD;
1664                }
1665
1666                sensekey = 0x05;        /* illegal request */
1667                sensecode = 0x24;       /* invalid field in CDB */
1668                return USB_STOR_TRANSPORT_FAILED;
1669        }
1670
1671        if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
1672                return USB_STOR_TRANSPORT_GOOD;
1673
1674        havefakesense = 0;
1675
1676        if (srb->cmnd[0] == READ_10) {
1677
1678                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1679                page <<= 16;
1680                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1681                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1682
1683                usb_stor_dbg(us, "READ_10: read page %d pagect %d\n",
1684                             page, pages);
1685
1686                result = sddr09_read_data(us, page, pages);
1687                return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1688                                USB_STOR_TRANSPORT_ERROR);
1689        }
1690
1691        if (srb->cmnd[0] == WRITE_10) {
1692
1693                page = short_pack(srb->cmnd[3], srb->cmnd[2]);
1694                page <<= 16;
1695                page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
1696                pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
1697
1698                usb_stor_dbg(us, "WRITE_10: write page %d pagect %d\n",
1699                             page, pages);
1700
1701                result = sddr09_write_data(us, page, pages);
1702                return (result == 0 ? USB_STOR_TRANSPORT_GOOD :
1703                                USB_STOR_TRANSPORT_ERROR);
1704        }
1705
1706        /*
1707         * catch-all for all other commands, except
1708         * pass TEST_UNIT_READY and REQUEST_SENSE through
1709         */
1710        if (srb->cmnd[0] != TEST_UNIT_READY &&
1711            srb->cmnd[0] != REQUEST_SENSE) {
1712                sensekey = 0x05;        /* illegal request */
1713                sensecode = 0x20;       /* invalid command */
1714                havefakesense = 1;
1715                return USB_STOR_TRANSPORT_FAILED;
1716        }
1717
1718        for (; srb->cmd_len<12; srb->cmd_len++)
1719                srb->cmnd[srb->cmd_len] = 0;
1720
1721        srb->cmnd[1] = LUNBITS;
1722
1723        ptr[0] = 0;
1724        for (i=0; i<12; i++)
1725                sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
1726
1727        usb_stor_dbg(us, "Send control for command %s\n", ptr);
1728
1729        result = sddr09_send_scsi_command(us, srb->cmnd, 12);
1730        if (result) {
1731                usb_stor_dbg(us, "sddr09_send_scsi_command returns %d\n",
1732                             result);
1733                return USB_STOR_TRANSPORT_ERROR;
1734        }
1735
1736        if (scsi_bufflen(srb) == 0)
1737                return USB_STOR_TRANSPORT_GOOD;
1738
1739        if (srb->sc_data_direction == DMA_TO_DEVICE ||
1740            srb->sc_data_direction == DMA_FROM_DEVICE) {
1741                unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
1742                                ? us->send_bulk_pipe : us->recv_bulk_pipe;
1743
1744                usb_stor_dbg(us, "%s %d bytes\n",
1745                             (srb->sc_data_direction == DMA_TO_DEVICE) ?
1746                             "sending" : "receiving",
1747                             scsi_bufflen(srb));
1748
1749                result = usb_stor_bulk_srb(us, pipe, srb);
1750
1751                return (result == USB_STOR_XFER_GOOD ?
1752                        USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
1753        } 
1754
1755        return USB_STOR_TRANSPORT_GOOD;
1756}
1757
1758/*
1759 * Initialization routine for the sddr09 subdriver
1760 */
1761static int
1762usb_stor_sddr09_init(struct us_data *us) {
1763        return sddr09_common_init(us);
1764}
1765
1766static struct scsi_host_template sddr09_host_template;
1767
1768static int sddr09_probe(struct usb_interface *intf,
1769                         const struct usb_device_id *id)
1770{
1771        struct us_data *us;
1772        int result;
1773
1774        result = usb_stor_probe1(&us, intf, id,
1775                        (id - sddr09_usb_ids) + sddr09_unusual_dev_list,
1776                        &sddr09_host_template);
1777        if (result)
1778                return result;
1779
1780        if (us->protocol == USB_PR_DPCM_USB) {
1781                us->transport_name = "Control/Bulk-EUSB/SDDR09";
1782                us->transport = dpcm_transport;
1783                us->transport_reset = usb_stor_CB_reset;
1784                us->max_lun = 1;
1785        } else {
1786                us->transport_name = "EUSB/SDDR09";
1787                us->transport = sddr09_transport;
1788                us->transport_reset = usb_stor_CB_reset;
1789                us->max_lun = 0;
1790        }
1791
1792        result = usb_stor_probe2(us);
1793        return result;
1794}
1795
1796static struct usb_driver sddr09_driver = {
1797        .name =         DRV_NAME,
1798        .probe =        sddr09_probe,
1799        .disconnect =   usb_stor_disconnect,
1800        .suspend =      usb_stor_suspend,
1801        .resume =       usb_stor_resume,
1802        .reset_resume = usb_stor_reset_resume,
1803        .pre_reset =    usb_stor_pre_reset,
1804        .post_reset =   usb_stor_post_reset,
1805        .id_table =     sddr09_usb_ids,
1806        .soft_unbind =  1,
1807        .no_dynamic_id = 1,
1808};
1809
1810module_usb_stor_driver(sddr09_driver, sddr09_host_template, DRV_NAME);
1811