linux/fs/block_dev.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/block_dev.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
   6 */
   7
   8#include <linux/init.h>
   9#include <linux/mm.h>
  10#include <linux/fcntl.h>
  11#include <linux/slab.h>
  12#include <linux/kmod.h>
  13#include <linux/major.h>
  14#include <linux/device_cgroup.h>
  15#include <linux/highmem.h>
  16#include <linux/blkdev.h>
  17#include <linux/backing-dev.h>
  18#include <linux/module.h>
  19#include <linux/blkpg.h>
  20#include <linux/magic.h>
  21#include <linux/buffer_head.h>
  22#include <linux/swap.h>
  23#include <linux/pagevec.h>
  24#include <linux/writeback.h>
  25#include <linux/mpage.h>
  26#include <linux/mount.h>
  27#include <linux/uio.h>
  28#include <linux/namei.h>
  29#include <linux/log2.h>
  30#include <linux/cleancache.h>
  31#include <linux/dax.h>
  32#include <linux/badblocks.h>
  33#include <asm/uaccess.h>
  34#include "internal.h"
  35
  36struct bdev_inode {
  37        struct block_device bdev;
  38        struct inode vfs_inode;
  39};
  40
  41static const struct address_space_operations def_blk_aops;
  42
  43static inline struct bdev_inode *BDEV_I(struct inode *inode)
  44{
  45        return container_of(inode, struct bdev_inode, vfs_inode);
  46}
  47
  48struct block_device *I_BDEV(struct inode *inode)
  49{
  50        return &BDEV_I(inode)->bdev;
  51}
  52EXPORT_SYMBOL(I_BDEV);
  53
  54void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
  55{
  56        struct va_format vaf;
  57        va_list args;
  58
  59        va_start(args, fmt);
  60        vaf.fmt = fmt;
  61        vaf.va = &args;
  62        printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
  63        va_end(args);
  64}
  65
  66static void bdev_write_inode(struct block_device *bdev)
  67{
  68        struct inode *inode = bdev->bd_inode;
  69        int ret;
  70
  71        spin_lock(&inode->i_lock);
  72        while (inode->i_state & I_DIRTY) {
  73                spin_unlock(&inode->i_lock);
  74                ret = write_inode_now(inode, true);
  75                if (ret) {
  76                        char name[BDEVNAME_SIZE];
  77                        pr_warn_ratelimited("VFS: Dirty inode writeback failed "
  78                                            "for block device %s (err=%d).\n",
  79                                            bdevname(bdev, name), ret);
  80                }
  81                spin_lock(&inode->i_lock);
  82        }
  83        spin_unlock(&inode->i_lock);
  84}
  85
  86/* Kill _all_ buffers and pagecache , dirty or not.. */
  87void kill_bdev(struct block_device *bdev)
  88{
  89        struct address_space *mapping = bdev->bd_inode->i_mapping;
  90
  91        if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
  92                return;
  93
  94        invalidate_bh_lrus();
  95        truncate_inode_pages(mapping, 0);
  96}       
  97EXPORT_SYMBOL(kill_bdev);
  98
  99/* Invalidate clean unused buffers and pagecache. */
 100void invalidate_bdev(struct block_device *bdev)
 101{
 102        struct address_space *mapping = bdev->bd_inode->i_mapping;
 103
 104        if (mapping->nrpages == 0)
 105                return;
 106
 107        invalidate_bh_lrus();
 108        lru_add_drain_all();    /* make sure all lru add caches are flushed */
 109        invalidate_mapping_pages(mapping, 0, -1);
 110        /* 99% of the time, we don't need to flush the cleancache on the bdev.
 111         * But, for the strange corners, lets be cautious
 112         */
 113        cleancache_invalidate_inode(mapping);
 114}
 115EXPORT_SYMBOL(invalidate_bdev);
 116
 117int set_blocksize(struct block_device *bdev, int size)
 118{
 119        /* Size must be a power of two, and between 512 and PAGE_SIZE */
 120        if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
 121                return -EINVAL;
 122
 123        /* Size cannot be smaller than the size supported by the device */
 124        if (size < bdev_logical_block_size(bdev))
 125                return -EINVAL;
 126
 127        /* Don't change the size if it is same as current */
 128        if (bdev->bd_block_size != size) {
 129                sync_blockdev(bdev);
 130                bdev->bd_block_size = size;
 131                bdev->bd_inode->i_blkbits = blksize_bits(size);
 132                kill_bdev(bdev);
 133        }
 134        return 0;
 135}
 136
 137EXPORT_SYMBOL(set_blocksize);
 138
 139int sb_set_blocksize(struct super_block *sb, int size)
 140{
 141        if (set_blocksize(sb->s_bdev, size))
 142                return 0;
 143        /* If we get here, we know size is power of two
 144         * and it's value is between 512 and PAGE_SIZE */
 145        sb->s_blocksize = size;
 146        sb->s_blocksize_bits = blksize_bits(size);
 147        return sb->s_blocksize;
 148}
 149
 150EXPORT_SYMBOL(sb_set_blocksize);
 151
 152int sb_min_blocksize(struct super_block *sb, int size)
 153{
 154        int minsize = bdev_logical_block_size(sb->s_bdev);
 155        if (size < minsize)
 156                size = minsize;
 157        return sb_set_blocksize(sb, size);
 158}
 159
 160EXPORT_SYMBOL(sb_min_blocksize);
 161
 162static int
 163blkdev_get_block(struct inode *inode, sector_t iblock,
 164                struct buffer_head *bh, int create)
 165{
 166        bh->b_bdev = I_BDEV(inode);
 167        bh->b_blocknr = iblock;
 168        set_buffer_mapped(bh);
 169        return 0;
 170}
 171
 172static struct inode *bdev_file_inode(struct file *file)
 173{
 174        return file->f_mapping->host;
 175}
 176
 177static ssize_t
 178blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 179{
 180        struct file *file = iocb->ki_filp;
 181        struct inode *inode = bdev_file_inode(file);
 182
 183        if (IS_DAX(inode))
 184                return dax_do_io(iocb, inode, iter, blkdev_get_block,
 185                                NULL, DIO_SKIP_DIO_COUNT);
 186        return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter,
 187                                    blkdev_get_block, NULL, NULL,
 188                                    DIO_SKIP_DIO_COUNT);
 189}
 190
 191int __sync_blockdev(struct block_device *bdev, int wait)
 192{
 193        if (!bdev)
 194                return 0;
 195        if (!wait)
 196                return filemap_flush(bdev->bd_inode->i_mapping);
 197        return filemap_write_and_wait(bdev->bd_inode->i_mapping);
 198}
 199
 200/*
 201 * Write out and wait upon all the dirty data associated with a block
 202 * device via its mapping.  Does not take the superblock lock.
 203 */
 204int sync_blockdev(struct block_device *bdev)
 205{
 206        return __sync_blockdev(bdev, 1);
 207}
 208EXPORT_SYMBOL(sync_blockdev);
 209
 210/*
 211 * Write out and wait upon all dirty data associated with this
 212 * device.   Filesystem data as well as the underlying block
 213 * device.  Takes the superblock lock.
 214 */
 215int fsync_bdev(struct block_device *bdev)
 216{
 217        struct super_block *sb = get_super(bdev);
 218        if (sb) {
 219                int res = sync_filesystem(sb);
 220                drop_super(sb);
 221                return res;
 222        }
 223        return sync_blockdev(bdev);
 224}
 225EXPORT_SYMBOL(fsync_bdev);
 226
 227/**
 228 * freeze_bdev  --  lock a filesystem and force it into a consistent state
 229 * @bdev:       blockdevice to lock
 230 *
 231 * If a superblock is found on this device, we take the s_umount semaphore
 232 * on it to make sure nobody unmounts until the snapshot creation is done.
 233 * The reference counter (bd_fsfreeze_count) guarantees that only the last
 234 * unfreeze process can unfreeze the frozen filesystem actually when multiple
 235 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
 236 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
 237 * actually.
 238 */
 239struct super_block *freeze_bdev(struct block_device *bdev)
 240{
 241        struct super_block *sb;
 242        int error = 0;
 243
 244        mutex_lock(&bdev->bd_fsfreeze_mutex);
 245        if (++bdev->bd_fsfreeze_count > 1) {
 246                /*
 247                 * We don't even need to grab a reference - the first call
 248                 * to freeze_bdev grab an active reference and only the last
 249                 * thaw_bdev drops it.
 250                 */
 251                sb = get_super(bdev);
 252                drop_super(sb);
 253                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 254                return sb;
 255        }
 256
 257        sb = get_active_super(bdev);
 258        if (!sb)
 259                goto out;
 260        if (sb->s_op->freeze_super)
 261                error = sb->s_op->freeze_super(sb);
 262        else
 263                error = freeze_super(sb);
 264        if (error) {
 265                deactivate_super(sb);
 266                bdev->bd_fsfreeze_count--;
 267                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 268                return ERR_PTR(error);
 269        }
 270        deactivate_super(sb);
 271 out:
 272        sync_blockdev(bdev);
 273        mutex_unlock(&bdev->bd_fsfreeze_mutex);
 274        return sb;      /* thaw_bdev releases s->s_umount */
 275}
 276EXPORT_SYMBOL(freeze_bdev);
 277
 278/**
 279 * thaw_bdev  -- unlock filesystem
 280 * @bdev:       blockdevice to unlock
 281 * @sb:         associated superblock
 282 *
 283 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
 284 */
 285int thaw_bdev(struct block_device *bdev, struct super_block *sb)
 286{
 287        int error = -EINVAL;
 288
 289        mutex_lock(&bdev->bd_fsfreeze_mutex);
 290        if (!bdev->bd_fsfreeze_count)
 291                goto out;
 292
 293        error = 0;
 294        if (--bdev->bd_fsfreeze_count > 0)
 295                goto out;
 296
 297        if (!sb)
 298                goto out;
 299
 300        if (sb->s_op->thaw_super)
 301                error = sb->s_op->thaw_super(sb);
 302        else
 303                error = thaw_super(sb);
 304        if (error) {
 305                bdev->bd_fsfreeze_count++;
 306                mutex_unlock(&bdev->bd_fsfreeze_mutex);
 307                return error;
 308        }
 309out:
 310        mutex_unlock(&bdev->bd_fsfreeze_mutex);
 311        return 0;
 312}
 313EXPORT_SYMBOL(thaw_bdev);
 314
 315static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
 316{
 317        return block_write_full_page(page, blkdev_get_block, wbc);
 318}
 319
 320static int blkdev_readpage(struct file * file, struct page * page)
 321{
 322        return block_read_full_page(page, blkdev_get_block);
 323}
 324
 325static int blkdev_readpages(struct file *file, struct address_space *mapping,
 326                        struct list_head *pages, unsigned nr_pages)
 327{
 328        return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
 329}
 330
 331static int blkdev_write_begin(struct file *file, struct address_space *mapping,
 332                        loff_t pos, unsigned len, unsigned flags,
 333                        struct page **pagep, void **fsdata)
 334{
 335        return block_write_begin(mapping, pos, len, flags, pagep,
 336                                 blkdev_get_block);
 337}
 338
 339static int blkdev_write_end(struct file *file, struct address_space *mapping,
 340                        loff_t pos, unsigned len, unsigned copied,
 341                        struct page *page, void *fsdata)
 342{
 343        int ret;
 344        ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
 345
 346        unlock_page(page);
 347        put_page(page);
 348
 349        return ret;
 350}
 351
 352/*
 353 * private llseek:
 354 * for a block special file file_inode(file)->i_size is zero
 355 * so we compute the size by hand (just as in block_read/write above)
 356 */
 357static loff_t block_llseek(struct file *file, loff_t offset, int whence)
 358{
 359        struct inode *bd_inode = bdev_file_inode(file);
 360        loff_t retval;
 361
 362        inode_lock(bd_inode);
 363        retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
 364        inode_unlock(bd_inode);
 365        return retval;
 366}
 367        
 368int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
 369{
 370        struct inode *bd_inode = bdev_file_inode(filp);
 371        struct block_device *bdev = I_BDEV(bd_inode);
 372        int error;
 373        
 374        error = filemap_write_and_wait_range(filp->f_mapping, start, end);
 375        if (error)
 376                return error;
 377
 378        /*
 379         * There is no need to serialise calls to blkdev_issue_flush with
 380         * i_mutex and doing so causes performance issues with concurrent
 381         * O_SYNC writers to a block device.
 382         */
 383        error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
 384        if (error == -EOPNOTSUPP)
 385                error = 0;
 386
 387        return error;
 388}
 389EXPORT_SYMBOL(blkdev_fsync);
 390
 391/**
 392 * bdev_read_page() - Start reading a page from a block device
 393 * @bdev: The device to read the page from
 394 * @sector: The offset on the device to read the page to (need not be aligned)
 395 * @page: The page to read
 396 *
 397 * On entry, the page should be locked.  It will be unlocked when the page
 398 * has been read.  If the block driver implements rw_page synchronously,
 399 * that will be true on exit from this function, but it need not be.
 400 *
 401 * Errors returned by this function are usually "soft", eg out of memory, or
 402 * queue full; callers should try a different route to read this page rather
 403 * than propagate an error back up the stack.
 404 *
 405 * Return: negative errno if an error occurs, 0 if submission was successful.
 406 */
 407int bdev_read_page(struct block_device *bdev, sector_t sector,
 408                        struct page *page)
 409{
 410        const struct block_device_operations *ops = bdev->bd_disk->fops;
 411        int result = -EOPNOTSUPP;
 412
 413        if (!ops->rw_page || bdev_get_integrity(bdev))
 414                return result;
 415
 416        result = blk_queue_enter(bdev->bd_queue, false);
 417        if (result)
 418                return result;
 419        result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
 420        blk_queue_exit(bdev->bd_queue);
 421        return result;
 422}
 423EXPORT_SYMBOL_GPL(bdev_read_page);
 424
 425/**
 426 * bdev_write_page() - Start writing a page to a block device
 427 * @bdev: The device to write the page to
 428 * @sector: The offset on the device to write the page to (need not be aligned)
 429 * @page: The page to write
 430 * @wbc: The writeback_control for the write
 431 *
 432 * On entry, the page should be locked and not currently under writeback.
 433 * On exit, if the write started successfully, the page will be unlocked and
 434 * under writeback.  If the write failed already (eg the driver failed to
 435 * queue the page to the device), the page will still be locked.  If the
 436 * caller is a ->writepage implementation, it will need to unlock the page.
 437 *
 438 * Errors returned by this function are usually "soft", eg out of memory, or
 439 * queue full; callers should try a different route to write this page rather
 440 * than propagate an error back up the stack.
 441 *
 442 * Return: negative errno if an error occurs, 0 if submission was successful.
 443 */
 444int bdev_write_page(struct block_device *bdev, sector_t sector,
 445                        struct page *page, struct writeback_control *wbc)
 446{
 447        int result;
 448        int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
 449        const struct block_device_operations *ops = bdev->bd_disk->fops;
 450
 451        if (!ops->rw_page || bdev_get_integrity(bdev))
 452                return -EOPNOTSUPP;
 453        result = blk_queue_enter(bdev->bd_queue, false);
 454        if (result)
 455                return result;
 456
 457        set_page_writeback(page);
 458        result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
 459        if (result)
 460                end_page_writeback(page);
 461        else
 462                unlock_page(page);
 463        blk_queue_exit(bdev->bd_queue);
 464        return result;
 465}
 466EXPORT_SYMBOL_GPL(bdev_write_page);
 467
 468/**
 469 * bdev_direct_access() - Get the address for directly-accessibly memory
 470 * @bdev: The device containing the memory
 471 * @dax: control and output parameters for ->direct_access
 472 *
 473 * If a block device is made up of directly addressable memory, this function
 474 * will tell the caller the PFN and the address of the memory.  The address
 475 * may be directly dereferenced within the kernel without the need to call
 476 * ioremap(), kmap() or similar.  The PFN is suitable for inserting into
 477 * page tables.
 478 *
 479 * Return: negative errno if an error occurs, otherwise the number of bytes
 480 * accessible at this address.
 481 */
 482long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
 483{
 484        sector_t sector = dax->sector;
 485        long avail, size = dax->size;
 486        const struct block_device_operations *ops = bdev->bd_disk->fops;
 487
 488        /*
 489         * The device driver is allowed to sleep, in order to make the
 490         * memory directly accessible.
 491         */
 492        might_sleep();
 493
 494        if (size < 0)
 495                return size;
 496        if (!ops->direct_access)
 497                return -EOPNOTSUPP;
 498        if ((sector + DIV_ROUND_UP(size, 512)) >
 499                                        part_nr_sects_read(bdev->bd_part))
 500                return -ERANGE;
 501        sector += get_start_sect(bdev);
 502        if (sector % (PAGE_SIZE / 512))
 503                return -EINVAL;
 504        avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
 505        if (!avail)
 506                return -ERANGE;
 507        if (avail > 0 && avail & ~PAGE_MASK)
 508                return -ENXIO;
 509        return min(avail, size);
 510}
 511EXPORT_SYMBOL_GPL(bdev_direct_access);
 512
 513/**
 514 * bdev_dax_supported() - Check if the device supports dax for filesystem
 515 * @sb: The superblock of the device
 516 * @blocksize: The block size of the device
 517 *
 518 * This is a library function for filesystems to check if the block device
 519 * can be mounted with dax option.
 520 *
 521 * Return: negative errno if unsupported, 0 if supported.
 522 */
 523int bdev_dax_supported(struct super_block *sb, int blocksize)
 524{
 525        struct blk_dax_ctl dax = {
 526                .sector = 0,
 527                .size = PAGE_SIZE,
 528        };
 529        int err;
 530
 531        if (blocksize != PAGE_SIZE) {
 532                vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
 533                return -EINVAL;
 534        }
 535
 536        err = bdev_direct_access(sb->s_bdev, &dax);
 537        if (err < 0) {
 538                switch (err) {
 539                case -EOPNOTSUPP:
 540                        vfs_msg(sb, KERN_ERR,
 541                                "error: device does not support dax");
 542                        break;
 543                case -EINVAL:
 544                        vfs_msg(sb, KERN_ERR,
 545                                "error: unaligned partition for dax");
 546                        break;
 547                default:
 548                        vfs_msg(sb, KERN_ERR,
 549                                "error: dax access failed (%d)", err);
 550                }
 551                return err;
 552        }
 553
 554        return 0;
 555}
 556EXPORT_SYMBOL_GPL(bdev_dax_supported);
 557
 558/**
 559 * bdev_dax_capable() - Return if the raw device is capable for dax
 560 * @bdev: The device for raw block device access
 561 */
 562bool bdev_dax_capable(struct block_device *bdev)
 563{
 564        struct blk_dax_ctl dax = {
 565                .size = PAGE_SIZE,
 566        };
 567
 568        if (!IS_ENABLED(CONFIG_FS_DAX))
 569                return false;
 570
 571        dax.sector = 0;
 572        if (bdev_direct_access(bdev, &dax) < 0)
 573                return false;
 574
 575        dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
 576        if (bdev_direct_access(bdev, &dax) < 0)
 577                return false;
 578
 579        return true;
 580}
 581
 582/*
 583 * pseudo-fs
 584 */
 585
 586static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
 587static struct kmem_cache * bdev_cachep __read_mostly;
 588
 589static struct inode *bdev_alloc_inode(struct super_block *sb)
 590{
 591        struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
 592        if (!ei)
 593                return NULL;
 594        return &ei->vfs_inode;
 595}
 596
 597static void bdev_i_callback(struct rcu_head *head)
 598{
 599        struct inode *inode = container_of(head, struct inode, i_rcu);
 600        struct bdev_inode *bdi = BDEV_I(inode);
 601
 602        kmem_cache_free(bdev_cachep, bdi);
 603}
 604
 605static void bdev_destroy_inode(struct inode *inode)
 606{
 607        call_rcu(&inode->i_rcu, bdev_i_callback);
 608}
 609
 610static void init_once(void *foo)
 611{
 612        struct bdev_inode *ei = (struct bdev_inode *) foo;
 613        struct block_device *bdev = &ei->bdev;
 614
 615        memset(bdev, 0, sizeof(*bdev));
 616        mutex_init(&bdev->bd_mutex);
 617        INIT_LIST_HEAD(&bdev->bd_inodes);
 618        INIT_LIST_HEAD(&bdev->bd_list);
 619#ifdef CONFIG_SYSFS
 620        INIT_LIST_HEAD(&bdev->bd_holder_disks);
 621#endif
 622        inode_init_once(&ei->vfs_inode);
 623        /* Initialize mutex for freeze. */
 624        mutex_init(&bdev->bd_fsfreeze_mutex);
 625}
 626
 627static inline void __bd_forget(struct inode *inode)
 628{
 629        list_del_init(&inode->i_devices);
 630        inode->i_bdev = NULL;
 631        inode->i_mapping = &inode->i_data;
 632}
 633
 634static void bdev_evict_inode(struct inode *inode)
 635{
 636        struct block_device *bdev = &BDEV_I(inode)->bdev;
 637        struct list_head *p;
 638        truncate_inode_pages_final(&inode->i_data);
 639        invalidate_inode_buffers(inode); /* is it needed here? */
 640        clear_inode(inode);
 641        spin_lock(&bdev_lock);
 642        while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
 643                __bd_forget(list_entry(p, struct inode, i_devices));
 644        }
 645        list_del_init(&bdev->bd_list);
 646        spin_unlock(&bdev_lock);
 647}
 648
 649static const struct super_operations bdev_sops = {
 650        .statfs = simple_statfs,
 651        .alloc_inode = bdev_alloc_inode,
 652        .destroy_inode = bdev_destroy_inode,
 653        .drop_inode = generic_delete_inode,
 654        .evict_inode = bdev_evict_inode,
 655};
 656
 657static struct dentry *bd_mount(struct file_system_type *fs_type,
 658        int flags, const char *dev_name, void *data)
 659{
 660        struct dentry *dent;
 661        dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
 662        if (dent)
 663                dent->d_sb->s_iflags |= SB_I_CGROUPWB;
 664        return dent;
 665}
 666
 667static struct file_system_type bd_type = {
 668        .name           = "bdev",
 669        .mount          = bd_mount,
 670        .kill_sb        = kill_anon_super,
 671};
 672
 673struct super_block *blockdev_superblock __read_mostly;
 674EXPORT_SYMBOL_GPL(blockdev_superblock);
 675
 676void __init bdev_cache_init(void)
 677{
 678        int err;
 679        static struct vfsmount *bd_mnt;
 680
 681        bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
 682                        0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
 683                                SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
 684                        init_once);
 685        err = register_filesystem(&bd_type);
 686        if (err)
 687                panic("Cannot register bdev pseudo-fs");
 688        bd_mnt = kern_mount(&bd_type);
 689        if (IS_ERR(bd_mnt))
 690                panic("Cannot create bdev pseudo-fs");
 691        blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
 692}
 693
 694/*
 695 * Most likely _very_ bad one - but then it's hardly critical for small
 696 * /dev and can be fixed when somebody will need really large one.
 697 * Keep in mind that it will be fed through icache hash function too.
 698 */
 699static inline unsigned long hash(dev_t dev)
 700{
 701        return MAJOR(dev)+MINOR(dev);
 702}
 703
 704static int bdev_test(struct inode *inode, void *data)
 705{
 706        return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
 707}
 708
 709static int bdev_set(struct inode *inode, void *data)
 710{
 711        BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
 712        return 0;
 713}
 714
 715static LIST_HEAD(all_bdevs);
 716
 717struct block_device *bdget(dev_t dev)
 718{
 719        struct block_device *bdev;
 720        struct inode *inode;
 721
 722        inode = iget5_locked(blockdev_superblock, hash(dev),
 723                        bdev_test, bdev_set, &dev);
 724
 725        if (!inode)
 726                return NULL;
 727
 728        bdev = &BDEV_I(inode)->bdev;
 729
 730        if (inode->i_state & I_NEW) {
 731                bdev->bd_contains = NULL;
 732                bdev->bd_super = NULL;
 733                bdev->bd_inode = inode;
 734                bdev->bd_block_size = (1 << inode->i_blkbits);
 735                bdev->bd_part_count = 0;
 736                bdev->bd_invalidated = 0;
 737                inode->i_mode = S_IFBLK;
 738                inode->i_rdev = dev;
 739                inode->i_bdev = bdev;
 740                inode->i_data.a_ops = &def_blk_aops;
 741                mapping_set_gfp_mask(&inode->i_data, GFP_USER);
 742                spin_lock(&bdev_lock);
 743                list_add(&bdev->bd_list, &all_bdevs);
 744                spin_unlock(&bdev_lock);
 745                unlock_new_inode(inode);
 746        }
 747        return bdev;
 748}
 749
 750EXPORT_SYMBOL(bdget);
 751
 752/**
 753 * bdgrab -- Grab a reference to an already referenced block device
 754 * @bdev:       Block device to grab a reference to.
 755 */
 756struct block_device *bdgrab(struct block_device *bdev)
 757{
 758        ihold(bdev->bd_inode);
 759        return bdev;
 760}
 761EXPORT_SYMBOL(bdgrab);
 762
 763long nr_blockdev_pages(void)
 764{
 765        struct block_device *bdev;
 766        long ret = 0;
 767        spin_lock(&bdev_lock);
 768        list_for_each_entry(bdev, &all_bdevs, bd_list) {
 769                ret += bdev->bd_inode->i_mapping->nrpages;
 770        }
 771        spin_unlock(&bdev_lock);
 772        return ret;
 773}
 774
 775void bdput(struct block_device *bdev)
 776{
 777        iput(bdev->bd_inode);
 778}
 779
 780EXPORT_SYMBOL(bdput);
 781 
 782static struct block_device *bd_acquire(struct inode *inode)
 783{
 784        struct block_device *bdev;
 785
 786        spin_lock(&bdev_lock);
 787        bdev = inode->i_bdev;
 788        if (bdev) {
 789                bdgrab(bdev);
 790                spin_unlock(&bdev_lock);
 791                return bdev;
 792        }
 793        spin_unlock(&bdev_lock);
 794
 795        bdev = bdget(inode->i_rdev);
 796        if (bdev) {
 797                spin_lock(&bdev_lock);
 798                if (!inode->i_bdev) {
 799                        /*
 800                         * We take an additional reference to bd_inode,
 801                         * and it's released in clear_inode() of inode.
 802                         * So, we can access it via ->i_mapping always
 803                         * without igrab().
 804                         */
 805                        bdgrab(bdev);
 806                        inode->i_bdev = bdev;
 807                        inode->i_mapping = bdev->bd_inode->i_mapping;
 808                        list_add(&inode->i_devices, &bdev->bd_inodes);
 809                }
 810                spin_unlock(&bdev_lock);
 811        }
 812        return bdev;
 813}
 814
 815/* Call when you free inode */
 816
 817void bd_forget(struct inode *inode)
 818{
 819        struct block_device *bdev = NULL;
 820
 821        spin_lock(&bdev_lock);
 822        if (!sb_is_blkdev_sb(inode->i_sb))
 823                bdev = inode->i_bdev;
 824        __bd_forget(inode);
 825        spin_unlock(&bdev_lock);
 826
 827        if (bdev)
 828                bdput(bdev);
 829}
 830
 831/**
 832 * bd_may_claim - test whether a block device can be claimed
 833 * @bdev: block device of interest
 834 * @whole: whole block device containing @bdev, may equal @bdev
 835 * @holder: holder trying to claim @bdev
 836 *
 837 * Test whether @bdev can be claimed by @holder.
 838 *
 839 * CONTEXT:
 840 * spin_lock(&bdev_lock).
 841 *
 842 * RETURNS:
 843 * %true if @bdev can be claimed, %false otherwise.
 844 */
 845static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
 846                         void *holder)
 847{
 848        if (bdev->bd_holder == holder)
 849                return true;     /* already a holder */
 850        else if (bdev->bd_holder != NULL)
 851                return false;    /* held by someone else */
 852        else if (bdev->bd_contains == bdev)
 853                return true;     /* is a whole device which isn't held */
 854
 855        else if (whole->bd_holder == bd_may_claim)
 856                return true;     /* is a partition of a device that is being partitioned */
 857        else if (whole->bd_holder != NULL)
 858                return false;    /* is a partition of a held device */
 859        else
 860                return true;     /* is a partition of an un-held device */
 861}
 862
 863/**
 864 * bd_prepare_to_claim - prepare to claim a block device
 865 * @bdev: block device of interest
 866 * @whole: the whole device containing @bdev, may equal @bdev
 867 * @holder: holder trying to claim @bdev
 868 *
 869 * Prepare to claim @bdev.  This function fails if @bdev is already
 870 * claimed by another holder and waits if another claiming is in
 871 * progress.  This function doesn't actually claim.  On successful
 872 * return, the caller has ownership of bd_claiming and bd_holder[s].
 873 *
 874 * CONTEXT:
 875 * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
 876 * it multiple times.
 877 *
 878 * RETURNS:
 879 * 0 if @bdev can be claimed, -EBUSY otherwise.
 880 */
 881static int bd_prepare_to_claim(struct block_device *bdev,
 882                               struct block_device *whole, void *holder)
 883{
 884retry:
 885        /* if someone else claimed, fail */
 886        if (!bd_may_claim(bdev, whole, holder))
 887                return -EBUSY;
 888
 889        /* if claiming is already in progress, wait for it to finish */
 890        if (whole->bd_claiming) {
 891                wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
 892                DEFINE_WAIT(wait);
 893
 894                prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
 895                spin_unlock(&bdev_lock);
 896                schedule();
 897                finish_wait(wq, &wait);
 898                spin_lock(&bdev_lock);
 899                goto retry;
 900        }
 901
 902        /* yay, all mine */
 903        return 0;
 904}
 905
 906/**
 907 * bd_start_claiming - start claiming a block device
 908 * @bdev: block device of interest
 909 * @holder: holder trying to claim @bdev
 910 *
 911 * @bdev is about to be opened exclusively.  Check @bdev can be opened
 912 * exclusively and mark that an exclusive open is in progress.  Each
 913 * successful call to this function must be matched with a call to
 914 * either bd_finish_claiming() or bd_abort_claiming() (which do not
 915 * fail).
 916 *
 917 * This function is used to gain exclusive access to the block device
 918 * without actually causing other exclusive open attempts to fail. It
 919 * should be used when the open sequence itself requires exclusive
 920 * access but may subsequently fail.
 921 *
 922 * CONTEXT:
 923 * Might sleep.
 924 *
 925 * RETURNS:
 926 * Pointer to the block device containing @bdev on success, ERR_PTR()
 927 * value on failure.
 928 */
 929static struct block_device *bd_start_claiming(struct block_device *bdev,
 930                                              void *holder)
 931{
 932        struct gendisk *disk;
 933        struct block_device *whole;
 934        int partno, err;
 935
 936        might_sleep();
 937
 938        /*
 939         * @bdev might not have been initialized properly yet, look up
 940         * and grab the outer block device the hard way.
 941         */
 942        disk = get_gendisk(bdev->bd_dev, &partno);
 943        if (!disk)
 944                return ERR_PTR(-ENXIO);
 945
 946        /*
 947         * Normally, @bdev should equal what's returned from bdget_disk()
 948         * if partno is 0; however, some drivers (floppy) use multiple
 949         * bdev's for the same physical device and @bdev may be one of the
 950         * aliases.  Keep @bdev if partno is 0.  This means claimer
 951         * tracking is broken for those devices but it has always been that
 952         * way.
 953         */
 954        if (partno)
 955                whole = bdget_disk(disk, 0);
 956        else
 957                whole = bdgrab(bdev);
 958
 959        module_put(disk->fops->owner);
 960        put_disk(disk);
 961        if (!whole)
 962                return ERR_PTR(-ENOMEM);
 963
 964        /* prepare to claim, if successful, mark claiming in progress */
 965        spin_lock(&bdev_lock);
 966
 967        err = bd_prepare_to_claim(bdev, whole, holder);
 968        if (err == 0) {
 969                whole->bd_claiming = holder;
 970                spin_unlock(&bdev_lock);
 971                return whole;
 972        } else {
 973                spin_unlock(&bdev_lock);
 974                bdput(whole);
 975                return ERR_PTR(err);
 976        }
 977}
 978
 979#ifdef CONFIG_SYSFS
 980struct bd_holder_disk {
 981        struct list_head        list;
 982        struct gendisk          *disk;
 983        int                     refcnt;
 984};
 985
 986static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
 987                                                  struct gendisk *disk)
 988{
 989        struct bd_holder_disk *holder;
 990
 991        list_for_each_entry(holder, &bdev->bd_holder_disks, list)
 992                if (holder->disk == disk)
 993                        return holder;
 994        return NULL;
 995}
 996
 997static int add_symlink(struct kobject *from, struct kobject *to)
 998{
 999        return sysfs_create_link(from, to, kobject_name(to));
1000}
1001
1002static void del_symlink(struct kobject *from, struct kobject *to)
1003{
1004        sysfs_remove_link(from, kobject_name(to));
1005}
1006
1007/**
1008 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1009 * @bdev: the claimed slave bdev
1010 * @disk: the holding disk
1011 *
1012 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1013 *
1014 * This functions creates the following sysfs symlinks.
1015 *
1016 * - from "slaves" directory of the holder @disk to the claimed @bdev
1017 * - from "holders" directory of the @bdev to the holder @disk
1018 *
1019 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1020 * passed to bd_link_disk_holder(), then:
1021 *
1022 *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1023 *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1024 *
1025 * The caller must have claimed @bdev before calling this function and
1026 * ensure that both @bdev and @disk are valid during the creation and
1027 * lifetime of these symlinks.
1028 *
1029 * CONTEXT:
1030 * Might sleep.
1031 *
1032 * RETURNS:
1033 * 0 on success, -errno on failure.
1034 */
1035int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1036{
1037        struct bd_holder_disk *holder;
1038        int ret = 0;
1039
1040        mutex_lock(&bdev->bd_mutex);
1041
1042        WARN_ON_ONCE(!bdev->bd_holder);
1043
1044        /* FIXME: remove the following once add_disk() handles errors */
1045        if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1046                goto out_unlock;
1047
1048        holder = bd_find_holder_disk(bdev, disk);
1049        if (holder) {
1050                holder->refcnt++;
1051                goto out_unlock;
1052        }
1053
1054        holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1055        if (!holder) {
1056                ret = -ENOMEM;
1057                goto out_unlock;
1058        }
1059
1060        INIT_LIST_HEAD(&holder->list);
1061        holder->disk = disk;
1062        holder->refcnt = 1;
1063
1064        ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1065        if (ret)
1066                goto out_free;
1067
1068        ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1069        if (ret)
1070                goto out_del;
1071        /*
1072         * bdev could be deleted beneath us which would implicitly destroy
1073         * the holder directory.  Hold on to it.
1074         */
1075        kobject_get(bdev->bd_part->holder_dir);
1076
1077        list_add(&holder->list, &bdev->bd_holder_disks);
1078        goto out_unlock;
1079
1080out_del:
1081        del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1082out_free:
1083        kfree(holder);
1084out_unlock:
1085        mutex_unlock(&bdev->bd_mutex);
1086        return ret;
1087}
1088EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1089
1090/**
1091 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1092 * @bdev: the calimed slave bdev
1093 * @disk: the holding disk
1094 *
1095 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1096 *
1097 * CONTEXT:
1098 * Might sleep.
1099 */
1100void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1101{
1102        struct bd_holder_disk *holder;
1103
1104        mutex_lock(&bdev->bd_mutex);
1105
1106        holder = bd_find_holder_disk(bdev, disk);
1107
1108        if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1109                del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1110                del_symlink(bdev->bd_part->holder_dir,
1111                            &disk_to_dev(disk)->kobj);
1112                kobject_put(bdev->bd_part->holder_dir);
1113                list_del_init(&holder->list);
1114                kfree(holder);
1115        }
1116
1117        mutex_unlock(&bdev->bd_mutex);
1118}
1119EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1120#endif
1121
1122/**
1123 * flush_disk - invalidates all buffer-cache entries on a disk
1124 *
1125 * @bdev:      struct block device to be flushed
1126 * @kill_dirty: flag to guide handling of dirty inodes
1127 *
1128 * Invalidates all buffer-cache entries on a disk. It should be called
1129 * when a disk has been changed -- either by a media change or online
1130 * resize.
1131 */
1132static void flush_disk(struct block_device *bdev, bool kill_dirty)
1133{
1134        if (__invalidate_device(bdev, kill_dirty)) {
1135                printk(KERN_WARNING "VFS: busy inodes on changed media or "
1136                       "resized disk %s\n",
1137                       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1138        }
1139
1140        if (!bdev->bd_disk)
1141                return;
1142        if (disk_part_scan_enabled(bdev->bd_disk))
1143                bdev->bd_invalidated = 1;
1144}
1145
1146/**
1147 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1148 * @disk: struct gendisk to check
1149 * @bdev: struct bdev to adjust.
1150 *
1151 * This routine checks to see if the bdev size does not match the disk size
1152 * and adjusts it if it differs.
1153 */
1154void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1155{
1156        loff_t disk_size, bdev_size;
1157
1158        disk_size = (loff_t)get_capacity(disk) << 9;
1159        bdev_size = i_size_read(bdev->bd_inode);
1160        if (disk_size != bdev_size) {
1161                printk(KERN_INFO
1162                       "%s: detected capacity change from %lld to %lld\n",
1163                       disk->disk_name, bdev_size, disk_size);
1164                i_size_write(bdev->bd_inode, disk_size);
1165                flush_disk(bdev, false);
1166        }
1167}
1168EXPORT_SYMBOL(check_disk_size_change);
1169
1170/**
1171 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1172 * @disk: struct gendisk to be revalidated
1173 *
1174 * This routine is a wrapper for lower-level driver's revalidate_disk
1175 * call-backs.  It is used to do common pre and post operations needed
1176 * for all revalidate_disk operations.
1177 */
1178int revalidate_disk(struct gendisk *disk)
1179{
1180        struct block_device *bdev;
1181        int ret = 0;
1182
1183        if (disk->fops->revalidate_disk)
1184                ret = disk->fops->revalidate_disk(disk);
1185        blk_integrity_revalidate(disk);
1186        bdev = bdget_disk(disk, 0);
1187        if (!bdev)
1188                return ret;
1189
1190        mutex_lock(&bdev->bd_mutex);
1191        check_disk_size_change(disk, bdev);
1192        bdev->bd_invalidated = 0;
1193        mutex_unlock(&bdev->bd_mutex);
1194        bdput(bdev);
1195        return ret;
1196}
1197EXPORT_SYMBOL(revalidate_disk);
1198
1199/*
1200 * This routine checks whether a removable media has been changed,
1201 * and invalidates all buffer-cache-entries in that case. This
1202 * is a relatively slow routine, so we have to try to minimize using
1203 * it. Thus it is called only upon a 'mount' or 'open'. This
1204 * is the best way of combining speed and utility, I think.
1205 * People changing diskettes in the middle of an operation deserve
1206 * to lose :-)
1207 */
1208int check_disk_change(struct block_device *bdev)
1209{
1210        struct gendisk *disk = bdev->bd_disk;
1211        const struct block_device_operations *bdops = disk->fops;
1212        unsigned int events;
1213
1214        events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1215                                   DISK_EVENT_EJECT_REQUEST);
1216        if (!(events & DISK_EVENT_MEDIA_CHANGE))
1217                return 0;
1218
1219        flush_disk(bdev, true);
1220        if (bdops->revalidate_disk)
1221                bdops->revalidate_disk(bdev->bd_disk);
1222        return 1;
1223}
1224
1225EXPORT_SYMBOL(check_disk_change);
1226
1227void bd_set_size(struct block_device *bdev, loff_t size)
1228{
1229        unsigned bsize = bdev_logical_block_size(bdev);
1230
1231        inode_lock(bdev->bd_inode);
1232        i_size_write(bdev->bd_inode, size);
1233        inode_unlock(bdev->bd_inode);
1234        while (bsize < PAGE_SIZE) {
1235                if (size & bsize)
1236                        break;
1237                bsize <<= 1;
1238        }
1239        bdev->bd_block_size = bsize;
1240        bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1241}
1242EXPORT_SYMBOL(bd_set_size);
1243
1244static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1245
1246/*
1247 * bd_mutex locking:
1248 *
1249 *  mutex_lock(part->bd_mutex)
1250 *    mutex_lock_nested(whole->bd_mutex, 1)
1251 */
1252
1253static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1254{
1255        struct gendisk *disk;
1256        struct module *owner;
1257        int ret;
1258        int partno;
1259        int perm = 0;
1260
1261        if (mode & FMODE_READ)
1262                perm |= MAY_READ;
1263        if (mode & FMODE_WRITE)
1264                perm |= MAY_WRITE;
1265        /*
1266         * hooks: /n/, see "layering violations".
1267         */
1268        if (!for_part) {
1269                ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1270                if (ret != 0) {
1271                        bdput(bdev);
1272                        return ret;
1273                }
1274        }
1275
1276 restart:
1277
1278        ret = -ENXIO;
1279        disk = get_gendisk(bdev->bd_dev, &partno);
1280        if (!disk)
1281                goto out;
1282        owner = disk->fops->owner;
1283
1284        disk_block_events(disk);
1285        mutex_lock_nested(&bdev->bd_mutex, for_part);
1286        if (!bdev->bd_openers) {
1287                bdev->bd_disk = disk;
1288                bdev->bd_queue = disk->queue;
1289                bdev->bd_contains = bdev;
1290                if (IS_ENABLED(CONFIG_BLK_DEV_DAX) && disk->fops->direct_access)
1291                        bdev->bd_inode->i_flags = S_DAX;
1292                else
1293                        bdev->bd_inode->i_flags = 0;
1294
1295                if (!partno) {
1296                        ret = -ENXIO;
1297                        bdev->bd_part = disk_get_part(disk, partno);
1298                        if (!bdev->bd_part)
1299                                goto out_clear;
1300
1301                        ret = 0;
1302                        if (disk->fops->open) {
1303                                ret = disk->fops->open(bdev, mode);
1304                                if (ret == -ERESTARTSYS) {
1305                                        /* Lost a race with 'disk' being
1306                                         * deleted, try again.
1307                                         * See md.c
1308                                         */
1309                                        disk_put_part(bdev->bd_part);
1310                                        bdev->bd_part = NULL;
1311                                        bdev->bd_disk = NULL;
1312                                        bdev->bd_queue = NULL;
1313                                        mutex_unlock(&bdev->bd_mutex);
1314                                        disk_unblock_events(disk);
1315                                        put_disk(disk);
1316                                        module_put(owner);
1317                                        goto restart;
1318                                }
1319                        }
1320
1321                        if (!ret) {
1322                                bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1323                                if (!bdev_dax_capable(bdev))
1324                                        bdev->bd_inode->i_flags &= ~S_DAX;
1325                        }
1326
1327                        /*
1328                         * If the device is invalidated, rescan partition
1329                         * if open succeeded or failed with -ENOMEDIUM.
1330                         * The latter is necessary to prevent ghost
1331                         * partitions on a removed medium.
1332                         */
1333                        if (bdev->bd_invalidated) {
1334                                if (!ret)
1335                                        rescan_partitions(disk, bdev);
1336                                else if (ret == -ENOMEDIUM)
1337                                        invalidate_partitions(disk, bdev);
1338                        }
1339
1340                        if (ret)
1341                                goto out_clear;
1342                } else {
1343                        struct block_device *whole;
1344                        whole = bdget_disk(disk, 0);
1345                        ret = -ENOMEM;
1346                        if (!whole)
1347                                goto out_clear;
1348                        BUG_ON(for_part);
1349                        ret = __blkdev_get(whole, mode, 1);
1350                        if (ret)
1351                                goto out_clear;
1352                        bdev->bd_contains = whole;
1353                        bdev->bd_part = disk_get_part(disk, partno);
1354                        if (!(disk->flags & GENHD_FL_UP) ||
1355                            !bdev->bd_part || !bdev->bd_part->nr_sects) {
1356                                ret = -ENXIO;
1357                                goto out_clear;
1358                        }
1359                        bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1360                        if (!bdev_dax_capable(bdev))
1361                                bdev->bd_inode->i_flags &= ~S_DAX;
1362                }
1363        } else {
1364                if (bdev->bd_contains == bdev) {
1365                        ret = 0;
1366                        if (bdev->bd_disk->fops->open)
1367                                ret = bdev->bd_disk->fops->open(bdev, mode);
1368                        /* the same as first opener case, read comment there */
1369                        if (bdev->bd_invalidated) {
1370                                if (!ret)
1371                                        rescan_partitions(bdev->bd_disk, bdev);
1372                                else if (ret == -ENOMEDIUM)
1373                                        invalidate_partitions(bdev->bd_disk, bdev);
1374                        }
1375                        if (ret)
1376                                goto out_unlock_bdev;
1377                }
1378                /* only one opener holds refs to the module and disk */
1379                put_disk(disk);
1380                module_put(owner);
1381        }
1382        bdev->bd_openers++;
1383        if (for_part)
1384                bdev->bd_part_count++;
1385        mutex_unlock(&bdev->bd_mutex);
1386        disk_unblock_events(disk);
1387        return 0;
1388
1389 out_clear:
1390        disk_put_part(bdev->bd_part);
1391        bdev->bd_disk = NULL;
1392        bdev->bd_part = NULL;
1393        bdev->bd_queue = NULL;
1394        if (bdev != bdev->bd_contains)
1395                __blkdev_put(bdev->bd_contains, mode, 1);
1396        bdev->bd_contains = NULL;
1397 out_unlock_bdev:
1398        mutex_unlock(&bdev->bd_mutex);
1399        disk_unblock_events(disk);
1400        put_disk(disk);
1401        module_put(owner);
1402 out:
1403        bdput(bdev);
1404
1405        return ret;
1406}
1407
1408/**
1409 * blkdev_get - open a block device
1410 * @bdev: block_device to open
1411 * @mode: FMODE_* mask
1412 * @holder: exclusive holder identifier
1413 *
1414 * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1415 * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1416 * @holder is invalid.  Exclusive opens may nest for the same @holder.
1417 *
1418 * On success, the reference count of @bdev is unchanged.  On failure,
1419 * @bdev is put.
1420 *
1421 * CONTEXT:
1422 * Might sleep.
1423 *
1424 * RETURNS:
1425 * 0 on success, -errno on failure.
1426 */
1427int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1428{
1429        struct block_device *whole = NULL;
1430        int res;
1431
1432        WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1433
1434        if ((mode & FMODE_EXCL) && holder) {
1435                whole = bd_start_claiming(bdev, holder);
1436                if (IS_ERR(whole)) {
1437                        bdput(bdev);
1438                        return PTR_ERR(whole);
1439                }
1440        }
1441
1442        res = __blkdev_get(bdev, mode, 0);
1443
1444        if (whole) {
1445                struct gendisk *disk = whole->bd_disk;
1446
1447                /* finish claiming */
1448                mutex_lock(&bdev->bd_mutex);
1449                spin_lock(&bdev_lock);
1450
1451                if (!res) {
1452                        BUG_ON(!bd_may_claim(bdev, whole, holder));
1453                        /*
1454                         * Note that for a whole device bd_holders
1455                         * will be incremented twice, and bd_holder
1456                         * will be set to bd_may_claim before being
1457                         * set to holder
1458                         */
1459                        whole->bd_holders++;
1460                        whole->bd_holder = bd_may_claim;
1461                        bdev->bd_holders++;
1462                        bdev->bd_holder = holder;
1463                }
1464
1465                /* tell others that we're done */
1466                BUG_ON(whole->bd_claiming != holder);
1467                whole->bd_claiming = NULL;
1468                wake_up_bit(&whole->bd_claiming, 0);
1469
1470                spin_unlock(&bdev_lock);
1471
1472                /*
1473                 * Block event polling for write claims if requested.  Any
1474                 * write holder makes the write_holder state stick until
1475                 * all are released.  This is good enough and tracking
1476                 * individual writeable reference is too fragile given the
1477                 * way @mode is used in blkdev_get/put().
1478                 */
1479                if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1480                    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1481                        bdev->bd_write_holder = true;
1482                        disk_block_events(disk);
1483                }
1484
1485                mutex_unlock(&bdev->bd_mutex);
1486                bdput(whole);
1487        }
1488
1489        return res;
1490}
1491EXPORT_SYMBOL(blkdev_get);
1492
1493/**
1494 * blkdev_get_by_path - open a block device by name
1495 * @path: path to the block device to open
1496 * @mode: FMODE_* mask
1497 * @holder: exclusive holder identifier
1498 *
1499 * Open the blockdevice described by the device file at @path.  @mode
1500 * and @holder are identical to blkdev_get().
1501 *
1502 * On success, the returned block_device has reference count of one.
1503 *
1504 * CONTEXT:
1505 * Might sleep.
1506 *
1507 * RETURNS:
1508 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1509 */
1510struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1511                                        void *holder)
1512{
1513        struct block_device *bdev;
1514        int err;
1515
1516        bdev = lookup_bdev(path);
1517        if (IS_ERR(bdev))
1518                return bdev;
1519
1520        err = blkdev_get(bdev, mode, holder);
1521        if (err)
1522                return ERR_PTR(err);
1523
1524        if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1525                blkdev_put(bdev, mode);
1526                return ERR_PTR(-EACCES);
1527        }
1528
1529        return bdev;
1530}
1531EXPORT_SYMBOL(blkdev_get_by_path);
1532
1533/**
1534 * blkdev_get_by_dev - open a block device by device number
1535 * @dev: device number of block device to open
1536 * @mode: FMODE_* mask
1537 * @holder: exclusive holder identifier
1538 *
1539 * Open the blockdevice described by device number @dev.  @mode and
1540 * @holder are identical to blkdev_get().
1541 *
1542 * Use it ONLY if you really do not have anything better - i.e. when
1543 * you are behind a truly sucky interface and all you are given is a
1544 * device number.  _Never_ to be used for internal purposes.  If you
1545 * ever need it - reconsider your API.
1546 *
1547 * On success, the returned block_device has reference count of one.
1548 *
1549 * CONTEXT:
1550 * Might sleep.
1551 *
1552 * RETURNS:
1553 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1554 */
1555struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1556{
1557        struct block_device *bdev;
1558        int err;
1559
1560        bdev = bdget(dev);
1561        if (!bdev)
1562                return ERR_PTR(-ENOMEM);
1563
1564        err = blkdev_get(bdev, mode, holder);
1565        if (err)
1566                return ERR_PTR(err);
1567
1568        return bdev;
1569}
1570EXPORT_SYMBOL(blkdev_get_by_dev);
1571
1572static int blkdev_open(struct inode * inode, struct file * filp)
1573{
1574        struct block_device *bdev;
1575
1576        /*
1577         * Preserve backwards compatibility and allow large file access
1578         * even if userspace doesn't ask for it explicitly. Some mkfs
1579         * binary needs it. We might want to drop this workaround
1580         * during an unstable branch.
1581         */
1582        filp->f_flags |= O_LARGEFILE;
1583
1584        if (filp->f_flags & O_NDELAY)
1585                filp->f_mode |= FMODE_NDELAY;
1586        if (filp->f_flags & O_EXCL)
1587                filp->f_mode |= FMODE_EXCL;
1588        if ((filp->f_flags & O_ACCMODE) == 3)
1589                filp->f_mode |= FMODE_WRITE_IOCTL;
1590
1591        bdev = bd_acquire(inode);
1592        if (bdev == NULL)
1593                return -ENOMEM;
1594
1595        filp->f_mapping = bdev->bd_inode->i_mapping;
1596
1597        return blkdev_get(bdev, filp->f_mode, filp);
1598}
1599
1600static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1601{
1602        struct gendisk *disk = bdev->bd_disk;
1603        struct block_device *victim = NULL;
1604
1605        mutex_lock_nested(&bdev->bd_mutex, for_part);
1606        if (for_part)
1607                bdev->bd_part_count--;
1608
1609        if (!--bdev->bd_openers) {
1610                WARN_ON_ONCE(bdev->bd_holders);
1611                sync_blockdev(bdev);
1612                kill_bdev(bdev);
1613
1614                bdev_write_inode(bdev);
1615                /*
1616                 * Detaching bdev inode from its wb in __destroy_inode()
1617                 * is too late: the queue which embeds its bdi (along with
1618                 * root wb) can be gone as soon as we put_disk() below.
1619                 */
1620                inode_detach_wb(bdev->bd_inode);
1621        }
1622        if (bdev->bd_contains == bdev) {
1623                if (disk->fops->release)
1624                        disk->fops->release(disk, mode);
1625        }
1626        if (!bdev->bd_openers) {
1627                struct module *owner = disk->fops->owner;
1628
1629                disk_put_part(bdev->bd_part);
1630                bdev->bd_part = NULL;
1631                bdev->bd_disk = NULL;
1632                if (bdev != bdev->bd_contains)
1633                        victim = bdev->bd_contains;
1634                bdev->bd_contains = NULL;
1635
1636                put_disk(disk);
1637                module_put(owner);
1638        }
1639        mutex_unlock(&bdev->bd_mutex);
1640        bdput(bdev);
1641        if (victim)
1642                __blkdev_put(victim, mode, 1);
1643}
1644
1645void blkdev_put(struct block_device *bdev, fmode_t mode)
1646{
1647        mutex_lock(&bdev->bd_mutex);
1648
1649        if (mode & FMODE_EXCL) {
1650                bool bdev_free;
1651
1652                /*
1653                 * Release a claim on the device.  The holder fields
1654                 * are protected with bdev_lock.  bd_mutex is to
1655                 * synchronize disk_holder unlinking.
1656                 */
1657                spin_lock(&bdev_lock);
1658
1659                WARN_ON_ONCE(--bdev->bd_holders < 0);
1660                WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1661
1662                /* bd_contains might point to self, check in a separate step */
1663                if ((bdev_free = !bdev->bd_holders))
1664                        bdev->bd_holder = NULL;
1665                if (!bdev->bd_contains->bd_holders)
1666                        bdev->bd_contains->bd_holder = NULL;
1667
1668                spin_unlock(&bdev_lock);
1669
1670                /*
1671                 * If this was the last claim, remove holder link and
1672                 * unblock evpoll if it was a write holder.
1673                 */
1674                if (bdev_free && bdev->bd_write_holder) {
1675                        disk_unblock_events(bdev->bd_disk);
1676                        bdev->bd_write_holder = false;
1677                }
1678        }
1679
1680        /*
1681         * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1682         * event.  This is to ensure detection of media removal commanded
1683         * from userland - e.g. eject(1).
1684         */
1685        disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1686
1687        mutex_unlock(&bdev->bd_mutex);
1688
1689        __blkdev_put(bdev, mode, 0);
1690}
1691EXPORT_SYMBOL(blkdev_put);
1692
1693static int blkdev_close(struct inode * inode, struct file * filp)
1694{
1695        struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1696        blkdev_put(bdev, filp->f_mode);
1697        return 0;
1698}
1699
1700static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1701{
1702        struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1703        fmode_t mode = file->f_mode;
1704
1705        /*
1706         * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1707         * to updated it before every ioctl.
1708         */
1709        if (file->f_flags & O_NDELAY)
1710                mode |= FMODE_NDELAY;
1711        else
1712                mode &= ~FMODE_NDELAY;
1713
1714        return blkdev_ioctl(bdev, mode, cmd, arg);
1715}
1716
1717/*
1718 * Write data to the block device.  Only intended for the block device itself
1719 * and the raw driver which basically is a fake block device.
1720 *
1721 * Does not take i_mutex for the write and thus is not for general purpose
1722 * use.
1723 */
1724ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1725{
1726        struct file *file = iocb->ki_filp;
1727        struct inode *bd_inode = bdev_file_inode(file);
1728        loff_t size = i_size_read(bd_inode);
1729        struct blk_plug plug;
1730        ssize_t ret;
1731
1732        if (bdev_read_only(I_BDEV(bd_inode)))
1733                return -EPERM;
1734
1735        if (!iov_iter_count(from))
1736                return 0;
1737
1738        if (iocb->ki_pos >= size)
1739                return -ENOSPC;
1740
1741        iov_iter_truncate(from, size - iocb->ki_pos);
1742
1743        blk_start_plug(&plug);
1744        ret = __generic_file_write_iter(iocb, from);
1745        if (ret > 0)
1746                ret = generic_write_sync(iocb, ret);
1747        blk_finish_plug(&plug);
1748        return ret;
1749}
1750EXPORT_SYMBOL_GPL(blkdev_write_iter);
1751
1752ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1753{
1754        struct file *file = iocb->ki_filp;
1755        struct inode *bd_inode = bdev_file_inode(file);
1756        loff_t size = i_size_read(bd_inode);
1757        loff_t pos = iocb->ki_pos;
1758
1759        if (pos >= size)
1760                return 0;
1761
1762        size -= pos;
1763        iov_iter_truncate(to, size);
1764        return generic_file_read_iter(iocb, to);
1765}
1766EXPORT_SYMBOL_GPL(blkdev_read_iter);
1767
1768/*
1769 * Try to release a page associated with block device when the system
1770 * is under memory pressure.
1771 */
1772static int blkdev_releasepage(struct page *page, gfp_t wait)
1773{
1774        struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1775
1776        if (super && super->s_op->bdev_try_to_free_page)
1777                return super->s_op->bdev_try_to_free_page(super, page, wait);
1778
1779        return try_to_free_buffers(page);
1780}
1781
1782static int blkdev_writepages(struct address_space *mapping,
1783                             struct writeback_control *wbc)
1784{
1785        if (dax_mapping(mapping)) {
1786                struct block_device *bdev = I_BDEV(mapping->host);
1787
1788                return dax_writeback_mapping_range(mapping, bdev, wbc);
1789        }
1790        return generic_writepages(mapping, wbc);
1791}
1792
1793static const struct address_space_operations def_blk_aops = {
1794        .readpage       = blkdev_readpage,
1795        .readpages      = blkdev_readpages,
1796        .writepage      = blkdev_writepage,
1797        .write_begin    = blkdev_write_begin,
1798        .write_end      = blkdev_write_end,
1799        .writepages     = blkdev_writepages,
1800        .releasepage    = blkdev_releasepage,
1801        .direct_IO      = blkdev_direct_IO,
1802        .is_dirty_writeback = buffer_check_dirty_writeback,
1803};
1804
1805const struct file_operations def_blk_fops = {
1806        .open           = blkdev_open,
1807        .release        = blkdev_close,
1808        .llseek         = block_llseek,
1809        .read_iter      = blkdev_read_iter,
1810        .write_iter     = blkdev_write_iter,
1811        .mmap           = generic_file_mmap,
1812        .fsync          = blkdev_fsync,
1813        .unlocked_ioctl = block_ioctl,
1814#ifdef CONFIG_COMPAT
1815        .compat_ioctl   = compat_blkdev_ioctl,
1816#endif
1817        .splice_read    = generic_file_splice_read,
1818        .splice_write   = iter_file_splice_write,
1819};
1820
1821int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1822{
1823        int res;
1824        mm_segment_t old_fs = get_fs();
1825        set_fs(KERNEL_DS);
1826        res = blkdev_ioctl(bdev, 0, cmd, arg);
1827        set_fs(old_fs);
1828        return res;
1829}
1830
1831EXPORT_SYMBOL(ioctl_by_bdev);
1832
1833/**
1834 * lookup_bdev  - lookup a struct block_device by name
1835 * @pathname:   special file representing the block device
1836 *
1837 * Get a reference to the blockdevice at @pathname in the current
1838 * namespace if possible and return it.  Return ERR_PTR(error)
1839 * otherwise.
1840 */
1841struct block_device *lookup_bdev(const char *pathname)
1842{
1843        struct block_device *bdev;
1844        struct inode *inode;
1845        struct path path;
1846        int error;
1847
1848        if (!pathname || !*pathname)
1849                return ERR_PTR(-EINVAL);
1850
1851        error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1852        if (error)
1853                return ERR_PTR(error);
1854
1855        inode = d_backing_inode(path.dentry);
1856        error = -ENOTBLK;
1857        if (!S_ISBLK(inode->i_mode))
1858                goto fail;
1859        error = -EACCES;
1860        if (path.mnt->mnt_flags & MNT_NODEV)
1861                goto fail;
1862        error = -ENOMEM;
1863        bdev = bd_acquire(inode);
1864        if (!bdev)
1865                goto fail;
1866out:
1867        path_put(&path);
1868        return bdev;
1869fail:
1870        bdev = ERR_PTR(error);
1871        goto out;
1872}
1873EXPORT_SYMBOL(lookup_bdev);
1874
1875int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1876{
1877        struct super_block *sb = get_super(bdev);
1878        int res = 0;
1879
1880        if (sb) {
1881                /*
1882                 * no need to lock the super, get_super holds the
1883                 * read mutex so the filesystem cannot go away
1884                 * under us (->put_super runs with the write lock
1885                 * hold).
1886                 */
1887                shrink_dcache_sb(sb);
1888                res = invalidate_inodes(sb, kill_dirty);
1889                drop_super(sb);
1890        }
1891        invalidate_bdev(bdev);
1892        return res;
1893}
1894EXPORT_SYMBOL(__invalidate_device);
1895
1896void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1897{
1898        struct inode *inode, *old_inode = NULL;
1899
1900        spin_lock(&blockdev_superblock->s_inode_list_lock);
1901        list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1902                struct address_space *mapping = inode->i_mapping;
1903
1904                spin_lock(&inode->i_lock);
1905                if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1906                    mapping->nrpages == 0) {
1907                        spin_unlock(&inode->i_lock);
1908                        continue;
1909                }
1910                __iget(inode);
1911                spin_unlock(&inode->i_lock);
1912                spin_unlock(&blockdev_superblock->s_inode_list_lock);
1913                /*
1914                 * We hold a reference to 'inode' so it couldn't have been
1915                 * removed from s_inodes list while we dropped the
1916                 * s_inode_list_lock  We cannot iput the inode now as we can
1917                 * be holding the last reference and we cannot iput it under
1918                 * s_inode_list_lock. So we keep the reference and iput it
1919                 * later.
1920                 */
1921                iput(old_inode);
1922                old_inode = inode;
1923
1924                func(I_BDEV(inode), arg);
1925
1926                spin_lock(&blockdev_superblock->s_inode_list_lock);
1927        }
1928        spin_unlock(&blockdev_superblock->s_inode_list_lock);
1929        iput(old_inode);
1930}
1931