linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/slab.h>
  29#include <linux/migrate.h>
  30#include <linux/ratelimit.h>
  31#include <linux/uuid.h>
  32#include <linux/semaphore.h>
  33#include <asm/unaligned.h>
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "hash.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "locking.h"
  42#include "tree-log.h"
  43#include "free-space-cache.h"
  44#include "free-space-tree.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48#include "dev-replace.h"
  49#include "raid56.h"
  50#include "sysfs.h"
  51#include "qgroup.h"
  52#include "compression.h"
  53
  54#ifdef CONFIG_X86
  55#include <asm/cpufeature.h>
  56#endif
  57
  58#define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
  59                                 BTRFS_HEADER_FLAG_RELOC |\
  60                                 BTRFS_SUPER_FLAG_ERROR |\
  61                                 BTRFS_SUPER_FLAG_SEEDING |\
  62                                 BTRFS_SUPER_FLAG_METADUMP)
  63
  64static const struct extent_io_ops btree_extent_io_ops;
  65static void end_workqueue_fn(struct btrfs_work *work);
  66static void free_fs_root(struct btrfs_root *root);
  67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  68                                    int read_only);
  69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  71                                      struct btrfs_root *root);
  72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  74                                        struct extent_io_tree *dirty_pages,
  75                                        int mark);
  76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  77                                       struct extent_io_tree *pinned_extents);
  78static int btrfs_cleanup_transaction(struct btrfs_root *root);
  79static void btrfs_error_commit_super(struct btrfs_root *root);
  80
  81/*
  82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  83 * is complete.  This is used during reads to verify checksums, and it is used
  84 * by writes to insert metadata for new file extents after IO is complete.
  85 */
  86struct btrfs_end_io_wq {
  87        struct bio *bio;
  88        bio_end_io_t *end_io;
  89        void *private;
  90        struct btrfs_fs_info *info;
  91        int error;
  92        enum btrfs_wq_endio_type metadata;
  93        struct list_head list;
  94        struct btrfs_work work;
  95};
  96
  97static struct kmem_cache *btrfs_end_io_wq_cache;
  98
  99int __init btrfs_end_io_wq_init(void)
 100{
 101        btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
 102                                        sizeof(struct btrfs_end_io_wq),
 103                                        0,
 104                                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
 105                                        NULL);
 106        if (!btrfs_end_io_wq_cache)
 107                return -ENOMEM;
 108        return 0;
 109}
 110
 111void btrfs_end_io_wq_exit(void)
 112{
 113        kmem_cache_destroy(btrfs_end_io_wq_cache);
 114}
 115
 116/*
 117 * async submit bios are used to offload expensive checksumming
 118 * onto the worker threads.  They checksum file and metadata bios
 119 * just before they are sent down the IO stack.
 120 */
 121struct async_submit_bio {
 122        struct inode *inode;
 123        struct bio *bio;
 124        struct list_head list;
 125        extent_submit_bio_hook_t *submit_bio_start;
 126        extent_submit_bio_hook_t *submit_bio_done;
 127        int rw;
 128        int mirror_num;
 129        unsigned long bio_flags;
 130        /*
 131         * bio_offset is optional, can be used if the pages in the bio
 132         * can't tell us where in the file the bio should go
 133         */
 134        u64 bio_offset;
 135        struct btrfs_work work;
 136        int error;
 137};
 138
 139/*
 140 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 142 * the level the eb occupies in the tree.
 143 *
 144 * Different roots are used for different purposes and may nest inside each
 145 * other and they require separate keysets.  As lockdep keys should be
 146 * static, assign keysets according to the purpose of the root as indicated
 147 * by btrfs_root->objectid.  This ensures that all special purpose roots
 148 * have separate keysets.
 149 *
 150 * Lock-nesting across peer nodes is always done with the immediate parent
 151 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 152 * subclass to avoid triggering lockdep warning in such cases.
 153 *
 154 * The key is set by the readpage_end_io_hook after the buffer has passed
 155 * csum validation but before the pages are unlocked.  It is also set by
 156 * btrfs_init_new_buffer on freshly allocated blocks.
 157 *
 158 * We also add a check to make sure the highest level of the tree is the
 159 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 160 * needs update as well.
 161 */
 162#ifdef CONFIG_DEBUG_LOCK_ALLOC
 163# if BTRFS_MAX_LEVEL != 8
 164#  error
 165# endif
 166
 167static struct btrfs_lockdep_keyset {
 168        u64                     id;             /* root objectid */
 169        const char              *name_stem;     /* lock name stem */
 170        char                    names[BTRFS_MAX_LEVEL + 1][20];
 171        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 172} btrfs_lockdep_keysets[] = {
 173        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 174        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 175        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 176        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 177        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 178        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 179        { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
 180        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 181        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 182        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 183        { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
 184        { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
 185        { .id = 0,                              .name_stem = "tree"     },
 186};
 187
 188void __init btrfs_init_lockdep(void)
 189{
 190        int i, j;
 191
 192        /* initialize lockdep class names */
 193        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 194                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 195
 196                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 197                        snprintf(ks->names[j], sizeof(ks->names[j]),
 198                                 "btrfs-%s-%02d", ks->name_stem, j);
 199        }
 200}
 201
 202void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 203                                    int level)
 204{
 205        struct btrfs_lockdep_keyset *ks;
 206
 207        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 208
 209        /* find the matching keyset, id 0 is the default entry */
 210        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 211                if (ks->id == objectid)
 212                        break;
 213
 214        lockdep_set_class_and_name(&eb->lock,
 215                                   &ks->keys[level], ks->names[level]);
 216}
 217
 218#endif
 219
 220/*
 221 * extents on the btree inode are pretty simple, there's one extent
 222 * that covers the entire device
 223 */
 224static struct extent_map *btree_get_extent(struct inode *inode,
 225                struct page *page, size_t pg_offset, u64 start, u64 len,
 226                int create)
 227{
 228        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 229        struct extent_map *em;
 230        int ret;
 231
 232        read_lock(&em_tree->lock);
 233        em = lookup_extent_mapping(em_tree, start, len);
 234        if (em) {
 235                em->bdev =
 236                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 237                read_unlock(&em_tree->lock);
 238                goto out;
 239        }
 240        read_unlock(&em_tree->lock);
 241
 242        em = alloc_extent_map();
 243        if (!em) {
 244                em = ERR_PTR(-ENOMEM);
 245                goto out;
 246        }
 247        em->start = 0;
 248        em->len = (u64)-1;
 249        em->block_len = (u64)-1;
 250        em->block_start = 0;
 251        em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 252
 253        write_lock(&em_tree->lock);
 254        ret = add_extent_mapping(em_tree, em, 0);
 255        if (ret == -EEXIST) {
 256                free_extent_map(em);
 257                em = lookup_extent_mapping(em_tree, start, len);
 258                if (!em)
 259                        em = ERR_PTR(-EIO);
 260        } else if (ret) {
 261                free_extent_map(em);
 262                em = ERR_PTR(ret);
 263        }
 264        write_unlock(&em_tree->lock);
 265
 266out:
 267        return em;
 268}
 269
 270u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 271{
 272        return btrfs_crc32c(seed, data, len);
 273}
 274
 275void btrfs_csum_final(u32 crc, char *result)
 276{
 277        put_unaligned_le32(~crc, result);
 278}
 279
 280/*
 281 * compute the csum for a btree block, and either verify it or write it
 282 * into the csum field of the block.
 283 */
 284static int csum_tree_block(struct btrfs_fs_info *fs_info,
 285                           struct extent_buffer *buf,
 286                           int verify)
 287{
 288        u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 289        char *result = NULL;
 290        unsigned long len;
 291        unsigned long cur_len;
 292        unsigned long offset = BTRFS_CSUM_SIZE;
 293        char *kaddr;
 294        unsigned long map_start;
 295        unsigned long map_len;
 296        int err;
 297        u32 crc = ~(u32)0;
 298        unsigned long inline_result;
 299
 300        len = buf->len - offset;
 301        while (len > 0) {
 302                err = map_private_extent_buffer(buf, offset, 32,
 303                                        &kaddr, &map_start, &map_len);
 304                if (err)
 305                        return err;
 306                cur_len = min(len, map_len - (offset - map_start));
 307                crc = btrfs_csum_data(kaddr + offset - map_start,
 308                                      crc, cur_len);
 309                len -= cur_len;
 310                offset += cur_len;
 311        }
 312        if (csum_size > sizeof(inline_result)) {
 313                result = kzalloc(csum_size, GFP_NOFS);
 314                if (!result)
 315                        return -ENOMEM;
 316        } else {
 317                result = (char *)&inline_result;
 318        }
 319
 320        btrfs_csum_final(crc, result);
 321
 322        if (verify) {
 323                if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 324                        u32 val;
 325                        u32 found = 0;
 326                        memcpy(&found, result, csum_size);
 327
 328                        read_extent_buffer(buf, &val, 0, csum_size);
 329                        btrfs_warn_rl(fs_info,
 330                                "%s checksum verify failed on %llu wanted %X found %X "
 331                                "level %d",
 332                                fs_info->sb->s_id, buf->start,
 333                                val, found, btrfs_header_level(buf));
 334                        if (result != (char *)&inline_result)
 335                                kfree(result);
 336                        return -EUCLEAN;
 337                }
 338        } else {
 339                write_extent_buffer(buf, result, 0, csum_size);
 340        }
 341        if (result != (char *)&inline_result)
 342                kfree(result);
 343        return 0;
 344}
 345
 346/*
 347 * we can't consider a given block up to date unless the transid of the
 348 * block matches the transid in the parent node's pointer.  This is how we
 349 * detect blocks that either didn't get written at all or got written
 350 * in the wrong place.
 351 */
 352static int verify_parent_transid(struct extent_io_tree *io_tree,
 353                                 struct extent_buffer *eb, u64 parent_transid,
 354                                 int atomic)
 355{
 356        struct extent_state *cached_state = NULL;
 357        int ret;
 358        bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 359
 360        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 361                return 0;
 362
 363        if (atomic)
 364                return -EAGAIN;
 365
 366        if (need_lock) {
 367                btrfs_tree_read_lock(eb);
 368                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 369        }
 370
 371        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 372                         &cached_state);
 373        if (extent_buffer_uptodate(eb) &&
 374            btrfs_header_generation(eb) == parent_transid) {
 375                ret = 0;
 376                goto out;
 377        }
 378        btrfs_err_rl(eb->fs_info,
 379                "parent transid verify failed on %llu wanted %llu found %llu",
 380                        eb->start,
 381                        parent_transid, btrfs_header_generation(eb));
 382        ret = 1;
 383
 384        /*
 385         * Things reading via commit roots that don't have normal protection,
 386         * like send, can have a really old block in cache that may point at a
 387         * block that has been freed and re-allocated.  So don't clear uptodate
 388         * if we find an eb that is under IO (dirty/writeback) because we could
 389         * end up reading in the stale data and then writing it back out and
 390         * making everybody very sad.
 391         */
 392        if (!extent_buffer_under_io(eb))
 393                clear_extent_buffer_uptodate(eb);
 394out:
 395        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 396                             &cached_state, GFP_NOFS);
 397        if (need_lock)
 398                btrfs_tree_read_unlock_blocking(eb);
 399        return ret;
 400}
 401
 402/*
 403 * Return 0 if the superblock checksum type matches the checksum value of that
 404 * algorithm. Pass the raw disk superblock data.
 405 */
 406static int btrfs_check_super_csum(char *raw_disk_sb)
 407{
 408        struct btrfs_super_block *disk_sb =
 409                (struct btrfs_super_block *)raw_disk_sb;
 410        u16 csum_type = btrfs_super_csum_type(disk_sb);
 411        int ret = 0;
 412
 413        if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 414                u32 crc = ~(u32)0;
 415                const int csum_size = sizeof(crc);
 416                char result[csum_size];
 417
 418                /*
 419                 * The super_block structure does not span the whole
 420                 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 421                 * is filled with zeros and is included in the checksum.
 422                 */
 423                crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 424                                crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 425                btrfs_csum_final(crc, result);
 426
 427                if (memcmp(raw_disk_sb, result, csum_size))
 428                        ret = 1;
 429        }
 430
 431        if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 432                printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
 433                                csum_type);
 434                ret = 1;
 435        }
 436
 437        return ret;
 438}
 439
 440/*
 441 * helper to read a given tree block, doing retries as required when
 442 * the checksums don't match and we have alternate mirrors to try.
 443 */
 444static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 445                                          struct extent_buffer *eb,
 446                                          u64 start, u64 parent_transid)
 447{
 448        struct extent_io_tree *io_tree;
 449        int failed = 0;
 450        int ret;
 451        int num_copies = 0;
 452        int mirror_num = 0;
 453        int failed_mirror = 0;
 454
 455        clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 456        io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 457        while (1) {
 458                ret = read_extent_buffer_pages(io_tree, eb, start,
 459                                               WAIT_COMPLETE,
 460                                               btree_get_extent, mirror_num);
 461                if (!ret) {
 462                        if (!verify_parent_transid(io_tree, eb,
 463                                                   parent_transid, 0))
 464                                break;
 465                        else
 466                                ret = -EIO;
 467                }
 468
 469                /*
 470                 * This buffer's crc is fine, but its contents are corrupted, so
 471                 * there is no reason to read the other copies, they won't be
 472                 * any less wrong.
 473                 */
 474                if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 475                        break;
 476
 477                num_copies = btrfs_num_copies(root->fs_info,
 478                                              eb->start, eb->len);
 479                if (num_copies == 1)
 480                        break;
 481
 482                if (!failed_mirror) {
 483                        failed = 1;
 484                        failed_mirror = eb->read_mirror;
 485                }
 486
 487                mirror_num++;
 488                if (mirror_num == failed_mirror)
 489                        mirror_num++;
 490
 491                if (mirror_num > num_copies)
 492                        break;
 493        }
 494
 495        if (failed && !ret && failed_mirror)
 496                repair_eb_io_failure(root, eb, failed_mirror);
 497
 498        return ret;
 499}
 500
 501/*
 502 * checksum a dirty tree block before IO.  This has extra checks to make sure
 503 * we only fill in the checksum field in the first page of a multi-page block
 504 */
 505
 506static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 507{
 508        u64 start = page_offset(page);
 509        u64 found_start;
 510        struct extent_buffer *eb;
 511
 512        eb = (struct extent_buffer *)page->private;
 513        if (page != eb->pages[0])
 514                return 0;
 515
 516        found_start = btrfs_header_bytenr(eb);
 517        /*
 518         * Please do not consolidate these warnings into a single if.
 519         * It is useful to know what went wrong.
 520         */
 521        if (WARN_ON(found_start != start))
 522                return -EUCLEAN;
 523        if (WARN_ON(!PageUptodate(page)))
 524                return -EUCLEAN;
 525
 526        ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 527                        btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 528
 529        return csum_tree_block(fs_info, eb, 0);
 530}
 531
 532static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 533                                 struct extent_buffer *eb)
 534{
 535        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 536        u8 fsid[BTRFS_UUID_SIZE];
 537        int ret = 1;
 538
 539        read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 540        while (fs_devices) {
 541                if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 542                        ret = 0;
 543                        break;
 544                }
 545                fs_devices = fs_devices->seed;
 546        }
 547        return ret;
 548}
 549
 550#define CORRUPT(reason, eb, root, slot)                         \
 551        btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
 552                   "root=%llu, slot=%d", reason,                        \
 553               btrfs_header_bytenr(eb), root->objectid, slot)
 554
 555static noinline int check_leaf(struct btrfs_root *root,
 556                               struct extent_buffer *leaf)
 557{
 558        struct btrfs_key key;
 559        struct btrfs_key leaf_key;
 560        u32 nritems = btrfs_header_nritems(leaf);
 561        int slot;
 562
 563        if (nritems == 0)
 564                return 0;
 565
 566        /* Check the 0 item */
 567        if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 568            BTRFS_LEAF_DATA_SIZE(root)) {
 569                CORRUPT("invalid item offset size pair", leaf, root, 0);
 570                return -EIO;
 571        }
 572
 573        /*
 574         * Check to make sure each items keys are in the correct order and their
 575         * offsets make sense.  We only have to loop through nritems-1 because
 576         * we check the current slot against the next slot, which verifies the
 577         * next slot's offset+size makes sense and that the current's slot
 578         * offset is correct.
 579         */
 580        for (slot = 0; slot < nritems - 1; slot++) {
 581                btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 582                btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 583
 584                /* Make sure the keys are in the right order */
 585                if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 586                        CORRUPT("bad key order", leaf, root, slot);
 587                        return -EIO;
 588                }
 589
 590                /*
 591                 * Make sure the offset and ends are right, remember that the
 592                 * item data starts at the end of the leaf and grows towards the
 593                 * front.
 594                 */
 595                if (btrfs_item_offset_nr(leaf, slot) !=
 596                        btrfs_item_end_nr(leaf, slot + 1)) {
 597                        CORRUPT("slot offset bad", leaf, root, slot);
 598                        return -EIO;
 599                }
 600
 601                /*
 602                 * Check to make sure that we don't point outside of the leaf,
 603                 * just in case all the items are consistent to each other, but
 604                 * all point outside of the leaf.
 605                 */
 606                if (btrfs_item_end_nr(leaf, slot) >
 607                    BTRFS_LEAF_DATA_SIZE(root)) {
 608                        CORRUPT("slot end outside of leaf", leaf, root, slot);
 609                        return -EIO;
 610                }
 611        }
 612
 613        return 0;
 614}
 615
 616static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 617                                      u64 phy_offset, struct page *page,
 618                                      u64 start, u64 end, int mirror)
 619{
 620        u64 found_start;
 621        int found_level;
 622        struct extent_buffer *eb;
 623        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 624        struct btrfs_fs_info *fs_info = root->fs_info;
 625        int ret = 0;
 626        int reads_done;
 627
 628        if (!page->private)
 629                goto out;
 630
 631        eb = (struct extent_buffer *)page->private;
 632
 633        /* the pending IO might have been the only thing that kept this buffer
 634         * in memory.  Make sure we have a ref for all this other checks
 635         */
 636        extent_buffer_get(eb);
 637
 638        reads_done = atomic_dec_and_test(&eb->io_pages);
 639        if (!reads_done)
 640                goto err;
 641
 642        eb->read_mirror = mirror;
 643        if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 644                ret = -EIO;
 645                goto err;
 646        }
 647
 648        found_start = btrfs_header_bytenr(eb);
 649        if (found_start != eb->start) {
 650                btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 651                             found_start, eb->start);
 652                ret = -EIO;
 653                goto err;
 654        }
 655        if (check_tree_block_fsid(fs_info, eb)) {
 656                btrfs_err_rl(fs_info, "bad fsid on block %llu",
 657                             eb->start);
 658                ret = -EIO;
 659                goto err;
 660        }
 661        found_level = btrfs_header_level(eb);
 662        if (found_level >= BTRFS_MAX_LEVEL) {
 663                btrfs_err(fs_info, "bad tree block level %d",
 664                          (int)btrfs_header_level(eb));
 665                ret = -EIO;
 666                goto err;
 667        }
 668
 669        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 670                                       eb, found_level);
 671
 672        ret = csum_tree_block(fs_info, eb, 1);
 673        if (ret)
 674                goto err;
 675
 676        /*
 677         * If this is a leaf block and it is corrupt, set the corrupt bit so
 678         * that we don't try and read the other copies of this block, just
 679         * return -EIO.
 680         */
 681        if (found_level == 0 && check_leaf(root, eb)) {
 682                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 683                ret = -EIO;
 684        }
 685
 686        if (!ret)
 687                set_extent_buffer_uptodate(eb);
 688err:
 689        if (reads_done &&
 690            test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 691                btree_readahead_hook(fs_info, eb, eb->start, ret);
 692
 693        if (ret) {
 694                /*
 695                 * our io error hook is going to dec the io pages
 696                 * again, we have to make sure it has something
 697                 * to decrement
 698                 */
 699                atomic_inc(&eb->io_pages);
 700                clear_extent_buffer_uptodate(eb);
 701        }
 702        free_extent_buffer(eb);
 703out:
 704        return ret;
 705}
 706
 707static int btree_io_failed_hook(struct page *page, int failed_mirror)
 708{
 709        struct extent_buffer *eb;
 710
 711        eb = (struct extent_buffer *)page->private;
 712        set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 713        eb->read_mirror = failed_mirror;
 714        atomic_dec(&eb->io_pages);
 715        if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 716                btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
 717        return -EIO;    /* we fixed nothing */
 718}
 719
 720static void end_workqueue_bio(struct bio *bio)
 721{
 722        struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 723        struct btrfs_fs_info *fs_info;
 724        struct btrfs_workqueue *wq;
 725        btrfs_work_func_t func;
 726
 727        fs_info = end_io_wq->info;
 728        end_io_wq->error = bio->bi_error;
 729
 730        if (bio->bi_rw & REQ_WRITE) {
 731                if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 732                        wq = fs_info->endio_meta_write_workers;
 733                        func = btrfs_endio_meta_write_helper;
 734                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 735                        wq = fs_info->endio_freespace_worker;
 736                        func = btrfs_freespace_write_helper;
 737                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 738                        wq = fs_info->endio_raid56_workers;
 739                        func = btrfs_endio_raid56_helper;
 740                } else {
 741                        wq = fs_info->endio_write_workers;
 742                        func = btrfs_endio_write_helper;
 743                }
 744        } else {
 745                if (unlikely(end_io_wq->metadata ==
 746                             BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 747                        wq = fs_info->endio_repair_workers;
 748                        func = btrfs_endio_repair_helper;
 749                } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 750                        wq = fs_info->endio_raid56_workers;
 751                        func = btrfs_endio_raid56_helper;
 752                } else if (end_io_wq->metadata) {
 753                        wq = fs_info->endio_meta_workers;
 754                        func = btrfs_endio_meta_helper;
 755                } else {
 756                        wq = fs_info->endio_workers;
 757                        func = btrfs_endio_helper;
 758                }
 759        }
 760
 761        btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 762        btrfs_queue_work(wq, &end_io_wq->work);
 763}
 764
 765int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 766                        enum btrfs_wq_endio_type metadata)
 767{
 768        struct btrfs_end_io_wq *end_io_wq;
 769
 770        end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 771        if (!end_io_wq)
 772                return -ENOMEM;
 773
 774        end_io_wq->private = bio->bi_private;
 775        end_io_wq->end_io = bio->bi_end_io;
 776        end_io_wq->info = info;
 777        end_io_wq->error = 0;
 778        end_io_wq->bio = bio;
 779        end_io_wq->metadata = metadata;
 780
 781        bio->bi_private = end_io_wq;
 782        bio->bi_end_io = end_workqueue_bio;
 783        return 0;
 784}
 785
 786unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 787{
 788        unsigned long limit = min_t(unsigned long,
 789                                    info->thread_pool_size,
 790                                    info->fs_devices->open_devices);
 791        return 256 * limit;
 792}
 793
 794static void run_one_async_start(struct btrfs_work *work)
 795{
 796        struct async_submit_bio *async;
 797        int ret;
 798
 799        async = container_of(work, struct  async_submit_bio, work);
 800        ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 801                                      async->mirror_num, async->bio_flags,
 802                                      async->bio_offset);
 803        if (ret)
 804                async->error = ret;
 805}
 806
 807static void run_one_async_done(struct btrfs_work *work)
 808{
 809        struct btrfs_fs_info *fs_info;
 810        struct async_submit_bio *async;
 811        int limit;
 812
 813        async = container_of(work, struct  async_submit_bio, work);
 814        fs_info = BTRFS_I(async->inode)->root->fs_info;
 815
 816        limit = btrfs_async_submit_limit(fs_info);
 817        limit = limit * 2 / 3;
 818
 819        /*
 820         * atomic_dec_return implies a barrier for waitqueue_active
 821         */
 822        if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 823            waitqueue_active(&fs_info->async_submit_wait))
 824                wake_up(&fs_info->async_submit_wait);
 825
 826        /* If an error occurred we just want to clean up the bio and move on */
 827        if (async->error) {
 828                async->bio->bi_error = async->error;
 829                bio_endio(async->bio);
 830                return;
 831        }
 832
 833        async->submit_bio_done(async->inode, async->rw, async->bio,
 834                               async->mirror_num, async->bio_flags,
 835                               async->bio_offset);
 836}
 837
 838static void run_one_async_free(struct btrfs_work *work)
 839{
 840        struct async_submit_bio *async;
 841
 842        async = container_of(work, struct  async_submit_bio, work);
 843        kfree(async);
 844}
 845
 846int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 847                        int rw, struct bio *bio, int mirror_num,
 848                        unsigned long bio_flags,
 849                        u64 bio_offset,
 850                        extent_submit_bio_hook_t *submit_bio_start,
 851                        extent_submit_bio_hook_t *submit_bio_done)
 852{
 853        struct async_submit_bio *async;
 854
 855        async = kmalloc(sizeof(*async), GFP_NOFS);
 856        if (!async)
 857                return -ENOMEM;
 858
 859        async->inode = inode;
 860        async->rw = rw;
 861        async->bio = bio;
 862        async->mirror_num = mirror_num;
 863        async->submit_bio_start = submit_bio_start;
 864        async->submit_bio_done = submit_bio_done;
 865
 866        btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 867                        run_one_async_done, run_one_async_free);
 868
 869        async->bio_flags = bio_flags;
 870        async->bio_offset = bio_offset;
 871
 872        async->error = 0;
 873
 874        atomic_inc(&fs_info->nr_async_submits);
 875
 876        if (rw & REQ_SYNC)
 877                btrfs_set_work_high_priority(&async->work);
 878
 879        btrfs_queue_work(fs_info->workers, &async->work);
 880
 881        while (atomic_read(&fs_info->async_submit_draining) &&
 882              atomic_read(&fs_info->nr_async_submits)) {
 883                wait_event(fs_info->async_submit_wait,
 884                           (atomic_read(&fs_info->nr_async_submits) == 0));
 885        }
 886
 887        return 0;
 888}
 889
 890static int btree_csum_one_bio(struct bio *bio)
 891{
 892        struct bio_vec *bvec;
 893        struct btrfs_root *root;
 894        int i, ret = 0;
 895
 896        bio_for_each_segment_all(bvec, bio, i) {
 897                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 898                ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 899                if (ret)
 900                        break;
 901        }
 902
 903        return ret;
 904}
 905
 906static int __btree_submit_bio_start(struct inode *inode, int rw,
 907                                    struct bio *bio, int mirror_num,
 908                                    unsigned long bio_flags,
 909                                    u64 bio_offset)
 910{
 911        /*
 912         * when we're called for a write, we're already in the async
 913         * submission context.  Just jump into btrfs_map_bio
 914         */
 915        return btree_csum_one_bio(bio);
 916}
 917
 918static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 919                                 int mirror_num, unsigned long bio_flags,
 920                                 u64 bio_offset)
 921{
 922        int ret;
 923
 924        /*
 925         * when we're called for a write, we're already in the async
 926         * submission context.  Just jump into btrfs_map_bio
 927         */
 928        ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 929        if (ret) {
 930                bio->bi_error = ret;
 931                bio_endio(bio);
 932        }
 933        return ret;
 934}
 935
 936static int check_async_write(struct inode *inode, unsigned long bio_flags)
 937{
 938        if (bio_flags & EXTENT_BIO_TREE_LOG)
 939                return 0;
 940#ifdef CONFIG_X86
 941        if (static_cpu_has(X86_FEATURE_XMM4_2))
 942                return 0;
 943#endif
 944        return 1;
 945}
 946
 947static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 948                                 int mirror_num, unsigned long bio_flags,
 949                                 u64 bio_offset)
 950{
 951        int async = check_async_write(inode, bio_flags);
 952        int ret;
 953
 954        if (!(rw & REQ_WRITE)) {
 955                /*
 956                 * called for a read, do the setup so that checksum validation
 957                 * can happen in the async kernel threads
 958                 */
 959                ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 960                                          bio, BTRFS_WQ_ENDIO_METADATA);
 961                if (ret)
 962                        goto out_w_error;
 963                ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 964                                    mirror_num, 0);
 965        } else if (!async) {
 966                ret = btree_csum_one_bio(bio);
 967                if (ret)
 968                        goto out_w_error;
 969                ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 970                                    mirror_num, 0);
 971        } else {
 972                /*
 973                 * kthread helpers are used to submit writes so that
 974                 * checksumming can happen in parallel across all CPUs
 975                 */
 976                ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 977                                          inode, rw, bio, mirror_num, 0,
 978                                          bio_offset,
 979                                          __btree_submit_bio_start,
 980                                          __btree_submit_bio_done);
 981        }
 982
 983        if (ret)
 984                goto out_w_error;
 985        return 0;
 986
 987out_w_error:
 988        bio->bi_error = ret;
 989        bio_endio(bio);
 990        return ret;
 991}
 992
 993#ifdef CONFIG_MIGRATION
 994static int btree_migratepage(struct address_space *mapping,
 995                        struct page *newpage, struct page *page,
 996                        enum migrate_mode mode)
 997{
 998        /*
 999         * we can't safely write a btree page from here,
1000         * we haven't done the locking hook
1001         */
1002        if (PageDirty(page))
1003                return -EAGAIN;
1004        /*
1005         * Buffers may be managed in a filesystem specific way.
1006         * We must have no buffers or drop them.
1007         */
1008        if (page_has_private(page) &&
1009            !try_to_release_page(page, GFP_KERNEL))
1010                return -EAGAIN;
1011        return migrate_page(mapping, newpage, page, mode);
1012}
1013#endif
1014
1015
1016static int btree_writepages(struct address_space *mapping,
1017                            struct writeback_control *wbc)
1018{
1019        struct btrfs_fs_info *fs_info;
1020        int ret;
1021
1022        if (wbc->sync_mode == WB_SYNC_NONE) {
1023
1024                if (wbc->for_kupdate)
1025                        return 0;
1026
1027                fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028                /* this is a bit racy, but that's ok */
1029                ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030                                             BTRFS_DIRTY_METADATA_THRESH);
1031                if (ret < 0)
1032                        return 0;
1033        }
1034        return btree_write_cache_pages(mapping, wbc);
1035}
1036
1037static int btree_readpage(struct file *file, struct page *page)
1038{
1039        struct extent_io_tree *tree;
1040        tree = &BTRFS_I(page->mapping->host)->io_tree;
1041        return extent_read_full_page(tree, page, btree_get_extent, 0);
1042}
1043
1044static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045{
1046        if (PageWriteback(page) || PageDirty(page))
1047                return 0;
1048
1049        return try_release_extent_buffer(page);
1050}
1051
1052static void btree_invalidatepage(struct page *page, unsigned int offset,
1053                                 unsigned int length)
1054{
1055        struct extent_io_tree *tree;
1056        tree = &BTRFS_I(page->mapping->host)->io_tree;
1057        extent_invalidatepage(tree, page, offset);
1058        btree_releasepage(page, GFP_NOFS);
1059        if (PagePrivate(page)) {
1060                btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061                           "page private not zero on page %llu",
1062                           (unsigned long long)page_offset(page));
1063                ClearPagePrivate(page);
1064                set_page_private(page, 0);
1065                put_page(page);
1066        }
1067}
1068
1069static int btree_set_page_dirty(struct page *page)
1070{
1071#ifdef DEBUG
1072        struct extent_buffer *eb;
1073
1074        BUG_ON(!PagePrivate(page));
1075        eb = (struct extent_buffer *)page->private;
1076        BUG_ON(!eb);
1077        BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078        BUG_ON(!atomic_read(&eb->refs));
1079        btrfs_assert_tree_locked(eb);
1080#endif
1081        return __set_page_dirty_nobuffers(page);
1082}
1083
1084static const struct address_space_operations btree_aops = {
1085        .readpage       = btree_readpage,
1086        .writepages     = btree_writepages,
1087        .releasepage    = btree_releasepage,
1088        .invalidatepage = btree_invalidatepage,
1089#ifdef CONFIG_MIGRATION
1090        .migratepage    = btree_migratepage,
1091#endif
1092        .set_page_dirty = btree_set_page_dirty,
1093};
1094
1095void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096{
1097        struct extent_buffer *buf = NULL;
1098        struct inode *btree_inode = root->fs_info->btree_inode;
1099
1100        buf = btrfs_find_create_tree_block(root, bytenr);
1101        if (IS_ERR(buf))
1102                return;
1103        read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104                                 buf, 0, WAIT_NONE, btree_get_extent, 0);
1105        free_extent_buffer(buf);
1106}
1107
1108int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109                         int mirror_num, struct extent_buffer **eb)
1110{
1111        struct extent_buffer *buf = NULL;
1112        struct inode *btree_inode = root->fs_info->btree_inode;
1113        struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114        int ret;
1115
1116        buf = btrfs_find_create_tree_block(root, bytenr);
1117        if (IS_ERR(buf))
1118                return 0;
1119
1120        set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122        ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123                                       btree_get_extent, mirror_num);
1124        if (ret) {
1125                free_extent_buffer(buf);
1126                return ret;
1127        }
1128
1129        if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130                free_extent_buffer(buf);
1131                return -EIO;
1132        } else if (extent_buffer_uptodate(buf)) {
1133                *eb = buf;
1134        } else {
1135                free_extent_buffer(buf);
1136        }
1137        return 0;
1138}
1139
1140struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141                                            u64 bytenr)
1142{
1143        return find_extent_buffer(fs_info, bytenr);
1144}
1145
1146struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147                                                 u64 bytenr)
1148{
1149        if (btrfs_test_is_dummy_root(root))
1150                return alloc_test_extent_buffer(root->fs_info, bytenr,
1151                                root->nodesize);
1152        return alloc_extent_buffer(root->fs_info, bytenr);
1153}
1154
1155
1156int btrfs_write_tree_block(struct extent_buffer *buf)
1157{
1158        return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1159                                        buf->start + buf->len - 1);
1160}
1161
1162int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1163{
1164        return filemap_fdatawait_range(buf->pages[0]->mapping,
1165                                       buf->start, buf->start + buf->len - 1);
1166}
1167
1168struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1169                                      u64 parent_transid)
1170{
1171        struct extent_buffer *buf = NULL;
1172        int ret;
1173
1174        buf = btrfs_find_create_tree_block(root, bytenr);
1175        if (IS_ERR(buf))
1176                return buf;
1177
1178        ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1179        if (ret) {
1180                free_extent_buffer(buf);
1181                return ERR_PTR(ret);
1182        }
1183        return buf;
1184
1185}
1186
1187void clean_tree_block(struct btrfs_trans_handle *trans,
1188                      struct btrfs_fs_info *fs_info,
1189                      struct extent_buffer *buf)
1190{
1191        if (btrfs_header_generation(buf) ==
1192            fs_info->running_transaction->transid) {
1193                btrfs_assert_tree_locked(buf);
1194
1195                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1196                        __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1197                                             -buf->len,
1198                                             fs_info->dirty_metadata_batch);
1199                        /* ugh, clear_extent_buffer_dirty needs to lock the page */
1200                        btrfs_set_lock_blocking(buf);
1201                        clear_extent_buffer_dirty(buf);
1202                }
1203        }
1204}
1205
1206static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1207{
1208        struct btrfs_subvolume_writers *writers;
1209        int ret;
1210
1211        writers = kmalloc(sizeof(*writers), GFP_NOFS);
1212        if (!writers)
1213                return ERR_PTR(-ENOMEM);
1214
1215        ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1216        if (ret < 0) {
1217                kfree(writers);
1218                return ERR_PTR(ret);
1219        }
1220
1221        init_waitqueue_head(&writers->wait);
1222        return writers;
1223}
1224
1225static void
1226btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1227{
1228        percpu_counter_destroy(&writers->counter);
1229        kfree(writers);
1230}
1231
1232static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1233                         struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1234                         u64 objectid)
1235{
1236        root->node = NULL;
1237        root->commit_root = NULL;
1238        root->sectorsize = sectorsize;
1239        root->nodesize = nodesize;
1240        root->stripesize = stripesize;
1241        root->state = 0;
1242        root->orphan_cleanup_state = 0;
1243
1244        root->objectid = objectid;
1245        root->last_trans = 0;
1246        root->highest_objectid = 0;
1247        root->nr_delalloc_inodes = 0;
1248        root->nr_ordered_extents = 0;
1249        root->name = NULL;
1250        root->inode_tree = RB_ROOT;
1251        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1252        root->block_rsv = NULL;
1253        root->orphan_block_rsv = NULL;
1254
1255        INIT_LIST_HEAD(&root->dirty_list);
1256        INIT_LIST_HEAD(&root->root_list);
1257        INIT_LIST_HEAD(&root->delalloc_inodes);
1258        INIT_LIST_HEAD(&root->delalloc_root);
1259        INIT_LIST_HEAD(&root->ordered_extents);
1260        INIT_LIST_HEAD(&root->ordered_root);
1261        INIT_LIST_HEAD(&root->logged_list[0]);
1262        INIT_LIST_HEAD(&root->logged_list[1]);
1263        spin_lock_init(&root->orphan_lock);
1264        spin_lock_init(&root->inode_lock);
1265        spin_lock_init(&root->delalloc_lock);
1266        spin_lock_init(&root->ordered_extent_lock);
1267        spin_lock_init(&root->accounting_lock);
1268        spin_lock_init(&root->log_extents_lock[0]);
1269        spin_lock_init(&root->log_extents_lock[1]);
1270        mutex_init(&root->objectid_mutex);
1271        mutex_init(&root->log_mutex);
1272        mutex_init(&root->ordered_extent_mutex);
1273        mutex_init(&root->delalloc_mutex);
1274        init_waitqueue_head(&root->log_writer_wait);
1275        init_waitqueue_head(&root->log_commit_wait[0]);
1276        init_waitqueue_head(&root->log_commit_wait[1]);
1277        INIT_LIST_HEAD(&root->log_ctxs[0]);
1278        INIT_LIST_HEAD(&root->log_ctxs[1]);
1279        atomic_set(&root->log_commit[0], 0);
1280        atomic_set(&root->log_commit[1], 0);
1281        atomic_set(&root->log_writers, 0);
1282        atomic_set(&root->log_batch, 0);
1283        atomic_set(&root->orphan_inodes, 0);
1284        atomic_set(&root->refs, 1);
1285        atomic_set(&root->will_be_snapshoted, 0);
1286        atomic_set(&root->qgroup_meta_rsv, 0);
1287        root->log_transid = 0;
1288        root->log_transid_committed = -1;
1289        root->last_log_commit = 0;
1290        if (fs_info)
1291                extent_io_tree_init(&root->dirty_log_pages,
1292                                     fs_info->btree_inode->i_mapping);
1293
1294        memset(&root->root_key, 0, sizeof(root->root_key));
1295        memset(&root->root_item, 0, sizeof(root->root_item));
1296        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1297        if (fs_info)
1298                root->defrag_trans_start = fs_info->generation;
1299        else
1300                root->defrag_trans_start = 0;
1301        root->root_key.objectid = objectid;
1302        root->anon_dev = 0;
1303
1304        spin_lock_init(&root->root_item_lock);
1305}
1306
1307static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1308                gfp_t flags)
1309{
1310        struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1311        if (root)
1312                root->fs_info = fs_info;
1313        return root;
1314}
1315
1316#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1317/* Should only be used by the testing infrastructure */
1318struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize)
1319{
1320        struct btrfs_root *root;
1321
1322        root = btrfs_alloc_root(NULL, GFP_KERNEL);
1323        if (!root)
1324                return ERR_PTR(-ENOMEM);
1325        /* We don't use the stripesize in selftest, set it as sectorsize */
1326        __setup_root(nodesize, sectorsize, sectorsize, root, NULL,
1327                        BTRFS_ROOT_TREE_OBJECTID);
1328        set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1329        root->alloc_bytenr = 0;
1330
1331        return root;
1332}
1333#endif
1334
1335struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1336                                     struct btrfs_fs_info *fs_info,
1337                                     u64 objectid)
1338{
1339        struct extent_buffer *leaf;
1340        struct btrfs_root *tree_root = fs_info->tree_root;
1341        struct btrfs_root *root;
1342        struct btrfs_key key;
1343        int ret = 0;
1344        uuid_le uuid;
1345
1346        root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1347        if (!root)
1348                return ERR_PTR(-ENOMEM);
1349
1350        __setup_root(tree_root->nodesize, tree_root->sectorsize,
1351                tree_root->stripesize, root, fs_info, objectid);
1352        root->root_key.objectid = objectid;
1353        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354        root->root_key.offset = 0;
1355
1356        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1357        if (IS_ERR(leaf)) {
1358                ret = PTR_ERR(leaf);
1359                leaf = NULL;
1360                goto fail;
1361        }
1362
1363        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1364        btrfs_set_header_bytenr(leaf, leaf->start);
1365        btrfs_set_header_generation(leaf, trans->transid);
1366        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1367        btrfs_set_header_owner(leaf, objectid);
1368        root->node = leaf;
1369
1370        write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1371                            BTRFS_FSID_SIZE);
1372        write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1373                            btrfs_header_chunk_tree_uuid(leaf),
1374                            BTRFS_UUID_SIZE);
1375        btrfs_mark_buffer_dirty(leaf);
1376
1377        root->commit_root = btrfs_root_node(root);
1378        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1379
1380        root->root_item.flags = 0;
1381        root->root_item.byte_limit = 0;
1382        btrfs_set_root_bytenr(&root->root_item, leaf->start);
1383        btrfs_set_root_generation(&root->root_item, trans->transid);
1384        btrfs_set_root_level(&root->root_item, 0);
1385        btrfs_set_root_refs(&root->root_item, 1);
1386        btrfs_set_root_used(&root->root_item, leaf->len);
1387        btrfs_set_root_last_snapshot(&root->root_item, 0);
1388        btrfs_set_root_dirid(&root->root_item, 0);
1389        uuid_le_gen(&uuid);
1390        memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1391        root->root_item.drop_level = 0;
1392
1393        key.objectid = objectid;
1394        key.type = BTRFS_ROOT_ITEM_KEY;
1395        key.offset = 0;
1396        ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1397        if (ret)
1398                goto fail;
1399
1400        btrfs_tree_unlock(leaf);
1401
1402        return root;
1403
1404fail:
1405        if (leaf) {
1406                btrfs_tree_unlock(leaf);
1407                free_extent_buffer(root->commit_root);
1408                free_extent_buffer(leaf);
1409        }
1410        kfree(root);
1411
1412        return ERR_PTR(ret);
1413}
1414
1415static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1416                                         struct btrfs_fs_info *fs_info)
1417{
1418        struct btrfs_root *root;
1419        struct btrfs_root *tree_root = fs_info->tree_root;
1420        struct extent_buffer *leaf;
1421
1422        root = btrfs_alloc_root(fs_info, GFP_NOFS);
1423        if (!root)
1424                return ERR_PTR(-ENOMEM);
1425
1426        __setup_root(tree_root->nodesize, tree_root->sectorsize,
1427                     tree_root->stripesize, root, fs_info,
1428                     BTRFS_TREE_LOG_OBJECTID);
1429
1430        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1431        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1432        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1433
1434        /*
1435         * DON'T set REF_COWS for log trees
1436         *
1437         * log trees do not get reference counted because they go away
1438         * before a real commit is actually done.  They do store pointers
1439         * to file data extents, and those reference counts still get
1440         * updated (along with back refs to the log tree).
1441         */
1442
1443        leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1444                        NULL, 0, 0, 0);
1445        if (IS_ERR(leaf)) {
1446                kfree(root);
1447                return ERR_CAST(leaf);
1448        }
1449
1450        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1451        btrfs_set_header_bytenr(leaf, leaf->start);
1452        btrfs_set_header_generation(leaf, trans->transid);
1453        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1454        btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1455        root->node = leaf;
1456
1457        write_extent_buffer(root->node, root->fs_info->fsid,
1458                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
1459        btrfs_mark_buffer_dirty(root->node);
1460        btrfs_tree_unlock(root->node);
1461        return root;
1462}
1463
1464int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1465                             struct btrfs_fs_info *fs_info)
1466{
1467        struct btrfs_root *log_root;
1468
1469        log_root = alloc_log_tree(trans, fs_info);
1470        if (IS_ERR(log_root))
1471                return PTR_ERR(log_root);
1472        WARN_ON(fs_info->log_root_tree);
1473        fs_info->log_root_tree = log_root;
1474        return 0;
1475}
1476
1477int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1478                       struct btrfs_root *root)
1479{
1480        struct btrfs_root *log_root;
1481        struct btrfs_inode_item *inode_item;
1482
1483        log_root = alloc_log_tree(trans, root->fs_info);
1484        if (IS_ERR(log_root))
1485                return PTR_ERR(log_root);
1486
1487        log_root->last_trans = trans->transid;
1488        log_root->root_key.offset = root->root_key.objectid;
1489
1490        inode_item = &log_root->root_item.inode;
1491        btrfs_set_stack_inode_generation(inode_item, 1);
1492        btrfs_set_stack_inode_size(inode_item, 3);
1493        btrfs_set_stack_inode_nlink(inode_item, 1);
1494        btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1495        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1496
1497        btrfs_set_root_node(&log_root->root_item, log_root->node);
1498
1499        WARN_ON(root->log_root);
1500        root->log_root = log_root;
1501        root->log_transid = 0;
1502        root->log_transid_committed = -1;
1503        root->last_log_commit = 0;
1504        return 0;
1505}
1506
1507static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1508                                               struct btrfs_key *key)
1509{
1510        struct btrfs_root *root;
1511        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1512        struct btrfs_path *path;
1513        u64 generation;
1514        int ret;
1515
1516        path = btrfs_alloc_path();
1517        if (!path)
1518                return ERR_PTR(-ENOMEM);
1519
1520        root = btrfs_alloc_root(fs_info, GFP_NOFS);
1521        if (!root) {
1522                ret = -ENOMEM;
1523                goto alloc_fail;
1524        }
1525
1526        __setup_root(tree_root->nodesize, tree_root->sectorsize,
1527                tree_root->stripesize, root, fs_info, key->objectid);
1528
1529        ret = btrfs_find_root(tree_root, key, path,
1530                              &root->root_item, &root->root_key);
1531        if (ret) {
1532                if (ret > 0)
1533                        ret = -ENOENT;
1534                goto find_fail;
1535        }
1536
1537        generation = btrfs_root_generation(&root->root_item);
1538        root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1539                                     generation);
1540        if (IS_ERR(root->node)) {
1541                ret = PTR_ERR(root->node);
1542                goto find_fail;
1543        } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1544                ret = -EIO;
1545                free_extent_buffer(root->node);
1546                goto find_fail;
1547        }
1548        root->commit_root = btrfs_root_node(root);
1549out:
1550        btrfs_free_path(path);
1551        return root;
1552
1553find_fail:
1554        kfree(root);
1555alloc_fail:
1556        root = ERR_PTR(ret);
1557        goto out;
1558}
1559
1560struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1561                                      struct btrfs_key *location)
1562{
1563        struct btrfs_root *root;
1564
1565        root = btrfs_read_tree_root(tree_root, location);
1566        if (IS_ERR(root))
1567                return root;
1568
1569        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1570                set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1571                btrfs_check_and_init_root_item(&root->root_item);
1572        }
1573
1574        return root;
1575}
1576
1577int btrfs_init_fs_root(struct btrfs_root *root)
1578{
1579        int ret;
1580        struct btrfs_subvolume_writers *writers;
1581
1582        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1583        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1584                                        GFP_NOFS);
1585        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1586                ret = -ENOMEM;
1587                goto fail;
1588        }
1589
1590        writers = btrfs_alloc_subvolume_writers();
1591        if (IS_ERR(writers)) {
1592                ret = PTR_ERR(writers);
1593                goto fail;
1594        }
1595        root->subv_writers = writers;
1596
1597        btrfs_init_free_ino_ctl(root);
1598        spin_lock_init(&root->ino_cache_lock);
1599        init_waitqueue_head(&root->ino_cache_wait);
1600
1601        ret = get_anon_bdev(&root->anon_dev);
1602        if (ret)
1603                goto free_writers;
1604
1605        mutex_lock(&root->objectid_mutex);
1606        ret = btrfs_find_highest_objectid(root,
1607                                        &root->highest_objectid);
1608        if (ret) {
1609                mutex_unlock(&root->objectid_mutex);
1610                goto free_root_dev;
1611        }
1612
1613        ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1614
1615        mutex_unlock(&root->objectid_mutex);
1616
1617        return 0;
1618
1619free_root_dev:
1620        free_anon_bdev(root->anon_dev);
1621free_writers:
1622        btrfs_free_subvolume_writers(root->subv_writers);
1623fail:
1624        kfree(root->free_ino_ctl);
1625        kfree(root->free_ino_pinned);
1626        return ret;
1627}
1628
1629static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1630                                               u64 root_id)
1631{
1632        struct btrfs_root *root;
1633
1634        spin_lock(&fs_info->fs_roots_radix_lock);
1635        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1636                                 (unsigned long)root_id);
1637        spin_unlock(&fs_info->fs_roots_radix_lock);
1638        return root;
1639}
1640
1641int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1642                         struct btrfs_root *root)
1643{
1644        int ret;
1645
1646        ret = radix_tree_preload(GFP_NOFS);
1647        if (ret)
1648                return ret;
1649
1650        spin_lock(&fs_info->fs_roots_radix_lock);
1651        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1652                                (unsigned long)root->root_key.objectid,
1653                                root);
1654        if (ret == 0)
1655                set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1656        spin_unlock(&fs_info->fs_roots_radix_lock);
1657        radix_tree_preload_end();
1658
1659        return ret;
1660}
1661
1662struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1663                                     struct btrfs_key *location,
1664                                     bool check_ref)
1665{
1666        struct btrfs_root *root;
1667        struct btrfs_path *path;
1668        struct btrfs_key key;
1669        int ret;
1670
1671        if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1672                return fs_info->tree_root;
1673        if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1674                return fs_info->extent_root;
1675        if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1676                return fs_info->chunk_root;
1677        if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1678                return fs_info->dev_root;
1679        if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1680                return fs_info->csum_root;
1681        if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1682                return fs_info->quota_root ? fs_info->quota_root :
1683                                             ERR_PTR(-ENOENT);
1684        if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1685                return fs_info->uuid_root ? fs_info->uuid_root :
1686                                            ERR_PTR(-ENOENT);
1687        if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1688                return fs_info->free_space_root ? fs_info->free_space_root :
1689                                                  ERR_PTR(-ENOENT);
1690again:
1691        root = btrfs_lookup_fs_root(fs_info, location->objectid);
1692        if (root) {
1693                if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1694                        return ERR_PTR(-ENOENT);
1695                return root;
1696        }
1697
1698        root = btrfs_read_fs_root(fs_info->tree_root, location);
1699        if (IS_ERR(root))
1700                return root;
1701
1702        if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1703                ret = -ENOENT;
1704                goto fail;
1705        }
1706
1707        ret = btrfs_init_fs_root(root);
1708        if (ret)
1709                goto fail;
1710
1711        path = btrfs_alloc_path();
1712        if (!path) {
1713                ret = -ENOMEM;
1714                goto fail;
1715        }
1716        key.objectid = BTRFS_ORPHAN_OBJECTID;
1717        key.type = BTRFS_ORPHAN_ITEM_KEY;
1718        key.offset = location->objectid;
1719
1720        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1721        btrfs_free_path(path);
1722        if (ret < 0)
1723                goto fail;
1724        if (ret == 0)
1725                set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1726
1727        ret = btrfs_insert_fs_root(fs_info, root);
1728        if (ret) {
1729                if (ret == -EEXIST) {
1730                        free_fs_root(root);
1731                        goto again;
1732                }
1733                goto fail;
1734        }
1735        return root;
1736fail:
1737        free_fs_root(root);
1738        return ERR_PTR(ret);
1739}
1740
1741static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1742{
1743        struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1744        int ret = 0;
1745        struct btrfs_device *device;
1746        struct backing_dev_info *bdi;
1747
1748        rcu_read_lock();
1749        list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1750                if (!device->bdev)
1751                        continue;
1752                bdi = blk_get_backing_dev_info(device->bdev);
1753                if (bdi_congested(bdi, bdi_bits)) {
1754                        ret = 1;
1755                        break;
1756                }
1757        }
1758        rcu_read_unlock();
1759        return ret;
1760}
1761
1762static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1763{
1764        int err;
1765
1766        err = bdi_setup_and_register(bdi, "btrfs");
1767        if (err)
1768                return err;
1769
1770        bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1771        bdi->congested_fn       = btrfs_congested_fn;
1772        bdi->congested_data     = info;
1773        bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1774        return 0;
1775}
1776
1777/*
1778 * called by the kthread helper functions to finally call the bio end_io
1779 * functions.  This is where read checksum verification actually happens
1780 */
1781static void end_workqueue_fn(struct btrfs_work *work)
1782{
1783        struct bio *bio;
1784        struct btrfs_end_io_wq *end_io_wq;
1785
1786        end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1787        bio = end_io_wq->bio;
1788
1789        bio->bi_error = end_io_wq->error;
1790        bio->bi_private = end_io_wq->private;
1791        bio->bi_end_io = end_io_wq->end_io;
1792        kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1793        bio_endio(bio);
1794}
1795
1796static int cleaner_kthread(void *arg)
1797{
1798        struct btrfs_root *root = arg;
1799        int again;
1800        struct btrfs_trans_handle *trans;
1801
1802        do {
1803                again = 0;
1804
1805                /* Make the cleaner go to sleep early. */
1806                if (btrfs_need_cleaner_sleep(root))
1807                        goto sleep;
1808
1809                /*
1810                 * Do not do anything if we might cause open_ctree() to block
1811                 * before we have finished mounting the filesystem.
1812                 */
1813                if (!root->fs_info->open)
1814                        goto sleep;
1815
1816                if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1817                        goto sleep;
1818
1819                /*
1820                 * Avoid the problem that we change the status of the fs
1821                 * during the above check and trylock.
1822                 */
1823                if (btrfs_need_cleaner_sleep(root)) {
1824                        mutex_unlock(&root->fs_info->cleaner_mutex);
1825                        goto sleep;
1826                }
1827
1828                mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1829                btrfs_run_delayed_iputs(root);
1830                mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1831
1832                again = btrfs_clean_one_deleted_snapshot(root);
1833                mutex_unlock(&root->fs_info->cleaner_mutex);
1834
1835                /*
1836                 * The defragger has dealt with the R/O remount and umount,
1837                 * needn't do anything special here.
1838                 */
1839                btrfs_run_defrag_inodes(root->fs_info);
1840
1841                /*
1842                 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1843                 * with relocation (btrfs_relocate_chunk) and relocation
1844                 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1845                 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1846                 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1847                 * unused block groups.
1848                 */
1849                btrfs_delete_unused_bgs(root->fs_info);
1850sleep:
1851                if (!again) {
1852                        set_current_state(TASK_INTERRUPTIBLE);
1853                        if (!kthread_should_stop())
1854                                schedule();
1855                        __set_current_state(TASK_RUNNING);
1856                }
1857        } while (!kthread_should_stop());
1858
1859        /*
1860         * Transaction kthread is stopped before us and wakes us up.
1861         * However we might have started a new transaction and COWed some
1862         * tree blocks when deleting unused block groups for example. So
1863         * make sure we commit the transaction we started to have a clean
1864         * shutdown when evicting the btree inode - if it has dirty pages
1865         * when we do the final iput() on it, eviction will trigger a
1866         * writeback for it which will fail with null pointer dereferences
1867         * since work queues and other resources were already released and
1868         * destroyed by the time the iput/eviction/writeback is made.
1869         */
1870        trans = btrfs_attach_transaction(root);
1871        if (IS_ERR(trans)) {
1872                if (PTR_ERR(trans) != -ENOENT)
1873                        btrfs_err(root->fs_info,
1874                                  "cleaner transaction attach returned %ld",
1875                                  PTR_ERR(trans));
1876        } else {
1877                int ret;
1878
1879                ret = btrfs_commit_transaction(trans, root);
1880                if (ret)
1881                        btrfs_err(root->fs_info,
1882                                  "cleaner open transaction commit returned %d",
1883                                  ret);
1884        }
1885
1886        return 0;
1887}
1888
1889static int transaction_kthread(void *arg)
1890{
1891        struct btrfs_root *root = arg;
1892        struct btrfs_trans_handle *trans;
1893        struct btrfs_transaction *cur;
1894        u64 transid;
1895        unsigned long now;
1896        unsigned long delay;
1897        bool cannot_commit;
1898
1899        do {
1900                cannot_commit = false;
1901                delay = HZ * root->fs_info->commit_interval;
1902                mutex_lock(&root->fs_info->transaction_kthread_mutex);
1903
1904                spin_lock(&root->fs_info->trans_lock);
1905                cur = root->fs_info->running_transaction;
1906                if (!cur) {
1907                        spin_unlock(&root->fs_info->trans_lock);
1908                        goto sleep;
1909                }
1910
1911                now = get_seconds();
1912                if (cur->state < TRANS_STATE_BLOCKED &&
1913                    (now < cur->start_time ||
1914                     now - cur->start_time < root->fs_info->commit_interval)) {
1915                        spin_unlock(&root->fs_info->trans_lock);
1916                        delay = HZ * 5;
1917                        goto sleep;
1918                }
1919                transid = cur->transid;
1920                spin_unlock(&root->fs_info->trans_lock);
1921
1922                /* If the file system is aborted, this will always fail. */
1923                trans = btrfs_attach_transaction(root);
1924                if (IS_ERR(trans)) {
1925                        if (PTR_ERR(trans) != -ENOENT)
1926                                cannot_commit = true;
1927                        goto sleep;
1928                }
1929                if (transid == trans->transid) {
1930                        btrfs_commit_transaction(trans, root);
1931                } else {
1932                        btrfs_end_transaction(trans, root);
1933                }
1934sleep:
1935                wake_up_process(root->fs_info->cleaner_kthread);
1936                mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1937
1938                if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1939                                      &root->fs_info->fs_state)))
1940                        btrfs_cleanup_transaction(root);
1941                set_current_state(TASK_INTERRUPTIBLE);
1942                if (!kthread_should_stop() &&
1943                                (!btrfs_transaction_blocked(root->fs_info) ||
1944                                 cannot_commit))
1945                        schedule_timeout(delay);
1946                __set_current_state(TASK_RUNNING);
1947        } while (!kthread_should_stop());
1948        return 0;
1949}
1950
1951/*
1952 * this will find the highest generation in the array of
1953 * root backups.  The index of the highest array is returned,
1954 * or -1 if we can't find anything.
1955 *
1956 * We check to make sure the array is valid by comparing the
1957 * generation of the latest  root in the array with the generation
1958 * in the super block.  If they don't match we pitch it.
1959 */
1960static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1961{
1962        u64 cur;
1963        int newest_index = -1;
1964        struct btrfs_root_backup *root_backup;
1965        int i;
1966
1967        for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1968                root_backup = info->super_copy->super_roots + i;
1969                cur = btrfs_backup_tree_root_gen(root_backup);
1970                if (cur == newest_gen)
1971                        newest_index = i;
1972        }
1973
1974        /* check to see if we actually wrapped around */
1975        if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1976                root_backup = info->super_copy->super_roots;
1977                cur = btrfs_backup_tree_root_gen(root_backup);
1978                if (cur == newest_gen)
1979                        newest_index = 0;
1980        }
1981        return newest_index;
1982}
1983
1984
1985/*
1986 * find the oldest backup so we know where to store new entries
1987 * in the backup array.  This will set the backup_root_index
1988 * field in the fs_info struct
1989 */
1990static void find_oldest_super_backup(struct btrfs_fs_info *info,
1991                                     u64 newest_gen)
1992{
1993        int newest_index = -1;
1994
1995        newest_index = find_newest_super_backup(info, newest_gen);
1996        /* if there was garbage in there, just move along */
1997        if (newest_index == -1) {
1998                info->backup_root_index = 0;
1999        } else {
2000                info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2001        }
2002}
2003
2004/*
2005 * copy all the root pointers into the super backup array.
2006 * this will bump the backup pointer by one when it is
2007 * done
2008 */
2009static void backup_super_roots(struct btrfs_fs_info *info)
2010{
2011        int next_backup;
2012        struct btrfs_root_backup *root_backup;
2013        int last_backup;
2014
2015        next_backup = info->backup_root_index;
2016        last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2017                BTRFS_NUM_BACKUP_ROOTS;
2018
2019        /*
2020         * just overwrite the last backup if we're at the same generation
2021         * this happens only at umount
2022         */
2023        root_backup = info->super_for_commit->super_roots + last_backup;
2024        if (btrfs_backup_tree_root_gen(root_backup) ==
2025            btrfs_header_generation(info->tree_root->node))
2026                next_backup = last_backup;
2027
2028        root_backup = info->super_for_commit->super_roots + next_backup;
2029
2030        /*
2031         * make sure all of our padding and empty slots get zero filled
2032         * regardless of which ones we use today
2033         */
2034        memset(root_backup, 0, sizeof(*root_backup));
2035
2036        info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2037
2038        btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2039        btrfs_set_backup_tree_root_gen(root_backup,
2040                               btrfs_header_generation(info->tree_root->node));
2041
2042        btrfs_set_backup_tree_root_level(root_backup,
2043                               btrfs_header_level(info->tree_root->node));
2044
2045        btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2046        btrfs_set_backup_chunk_root_gen(root_backup,
2047                               btrfs_header_generation(info->chunk_root->node));
2048        btrfs_set_backup_chunk_root_level(root_backup,
2049                               btrfs_header_level(info->chunk_root->node));
2050
2051        btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2052        btrfs_set_backup_extent_root_gen(root_backup,
2053                               btrfs_header_generation(info->extent_root->node));
2054        btrfs_set_backup_extent_root_level(root_backup,
2055                               btrfs_header_level(info->extent_root->node));
2056
2057        /*
2058         * we might commit during log recovery, which happens before we set
2059         * the fs_root.  Make sure it is valid before we fill it in.
2060         */
2061        if (info->fs_root && info->fs_root->node) {
2062                btrfs_set_backup_fs_root(root_backup,
2063                                         info->fs_root->node->start);
2064                btrfs_set_backup_fs_root_gen(root_backup,
2065                               btrfs_header_generation(info->fs_root->node));
2066                btrfs_set_backup_fs_root_level(root_backup,
2067                               btrfs_header_level(info->fs_root->node));
2068        }
2069
2070        btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2071        btrfs_set_backup_dev_root_gen(root_backup,
2072                               btrfs_header_generation(info->dev_root->node));
2073        btrfs_set_backup_dev_root_level(root_backup,
2074                                       btrfs_header_level(info->dev_root->node));
2075
2076        btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2077        btrfs_set_backup_csum_root_gen(root_backup,
2078                               btrfs_header_generation(info->csum_root->node));
2079        btrfs_set_backup_csum_root_level(root_backup,
2080                               btrfs_header_level(info->csum_root->node));
2081
2082        btrfs_set_backup_total_bytes(root_backup,
2083                             btrfs_super_total_bytes(info->super_copy));
2084        btrfs_set_backup_bytes_used(root_backup,
2085                             btrfs_super_bytes_used(info->super_copy));
2086        btrfs_set_backup_num_devices(root_backup,
2087                             btrfs_super_num_devices(info->super_copy));
2088
2089        /*
2090         * if we don't copy this out to the super_copy, it won't get remembered
2091         * for the next commit
2092         */
2093        memcpy(&info->super_copy->super_roots,
2094               &info->super_for_commit->super_roots,
2095               sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2096}
2097
2098/*
2099 * this copies info out of the root backup array and back into
2100 * the in-memory super block.  It is meant to help iterate through
2101 * the array, so you send it the number of backups you've already
2102 * tried and the last backup index you used.
2103 *
2104 * this returns -1 when it has tried all the backups
2105 */
2106static noinline int next_root_backup(struct btrfs_fs_info *info,
2107                                     struct btrfs_super_block *super,
2108                                     int *num_backups_tried, int *backup_index)
2109{
2110        struct btrfs_root_backup *root_backup;
2111        int newest = *backup_index;
2112
2113        if (*num_backups_tried == 0) {
2114                u64 gen = btrfs_super_generation(super);
2115
2116                newest = find_newest_super_backup(info, gen);
2117                if (newest == -1)
2118                        return -1;
2119
2120                *backup_index = newest;
2121                *num_backups_tried = 1;
2122        } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2123                /* we've tried all the backups, all done */
2124                return -1;
2125        } else {
2126                /* jump to the next oldest backup */
2127                newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2128                        BTRFS_NUM_BACKUP_ROOTS;
2129                *backup_index = newest;
2130                *num_backups_tried += 1;
2131        }
2132        root_backup = super->super_roots + newest;
2133
2134        btrfs_set_super_generation(super,
2135                                   btrfs_backup_tree_root_gen(root_backup));
2136        btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2137        btrfs_set_super_root_level(super,
2138                                   btrfs_backup_tree_root_level(root_backup));
2139        btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2140
2141        /*
2142         * fixme: the total bytes and num_devices need to match or we should
2143         * need a fsck
2144         */
2145        btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2146        btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2147        return 0;
2148}
2149
2150/* helper to cleanup workers */
2151static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2152{
2153        btrfs_destroy_workqueue(fs_info->fixup_workers);
2154        btrfs_destroy_workqueue(fs_info->delalloc_workers);
2155        btrfs_destroy_workqueue(fs_info->workers);
2156        btrfs_destroy_workqueue(fs_info->endio_workers);
2157        btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2158        btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2159        btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2160        btrfs_destroy_workqueue(fs_info->rmw_workers);
2161        btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2162        btrfs_destroy_workqueue(fs_info->endio_write_workers);
2163        btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2164        btrfs_destroy_workqueue(fs_info->submit_workers);
2165        btrfs_destroy_workqueue(fs_info->delayed_workers);
2166        btrfs_destroy_workqueue(fs_info->caching_workers);
2167        btrfs_destroy_workqueue(fs_info->readahead_workers);
2168        btrfs_destroy_workqueue(fs_info->flush_workers);
2169        btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2170        btrfs_destroy_workqueue(fs_info->extent_workers);
2171}
2172
2173static void free_root_extent_buffers(struct btrfs_root *root)
2174{
2175        if (root) {
2176                free_extent_buffer(root->node);
2177                free_extent_buffer(root->commit_root);
2178                root->node = NULL;
2179                root->commit_root = NULL;
2180        }
2181}
2182
2183/* helper to cleanup tree roots */
2184static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2185{
2186        free_root_extent_buffers(info->tree_root);
2187
2188        free_root_extent_buffers(info->dev_root);
2189        free_root_extent_buffers(info->extent_root);
2190        free_root_extent_buffers(info->csum_root);
2191        free_root_extent_buffers(info->quota_root);
2192        free_root_extent_buffers(info->uuid_root);
2193        if (chunk_root)
2194                free_root_extent_buffers(info->chunk_root);
2195        free_root_extent_buffers(info->free_space_root);
2196}
2197
2198void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2199{
2200        int ret;
2201        struct btrfs_root *gang[8];
2202        int i;
2203
2204        while (!list_empty(&fs_info->dead_roots)) {
2205                gang[0] = list_entry(fs_info->dead_roots.next,
2206                                     struct btrfs_root, root_list);
2207                list_del(&gang[0]->root_list);
2208
2209                if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2210                        btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2211                } else {
2212                        free_extent_buffer(gang[0]->node);
2213                        free_extent_buffer(gang[0]->commit_root);
2214                        btrfs_put_fs_root(gang[0]);
2215                }
2216        }
2217
2218        while (1) {
2219                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2220                                             (void **)gang, 0,
2221                                             ARRAY_SIZE(gang));
2222                if (!ret)
2223                        break;
2224                for (i = 0; i < ret; i++)
2225                        btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2226        }
2227
2228        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2229                btrfs_free_log_root_tree(NULL, fs_info);
2230                btrfs_destroy_pinned_extent(fs_info->tree_root,
2231                                            fs_info->pinned_extents);
2232        }
2233}
2234
2235static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2236{
2237        mutex_init(&fs_info->scrub_lock);
2238        atomic_set(&fs_info->scrubs_running, 0);
2239        atomic_set(&fs_info->scrub_pause_req, 0);
2240        atomic_set(&fs_info->scrubs_paused, 0);
2241        atomic_set(&fs_info->scrub_cancel_req, 0);
2242        init_waitqueue_head(&fs_info->scrub_pause_wait);
2243        fs_info->scrub_workers_refcnt = 0;
2244}
2245
2246static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2247{
2248        spin_lock_init(&fs_info->balance_lock);
2249        mutex_init(&fs_info->balance_mutex);
2250        atomic_set(&fs_info->balance_running, 0);
2251        atomic_set(&fs_info->balance_pause_req, 0);
2252        atomic_set(&fs_info->balance_cancel_req, 0);
2253        fs_info->balance_ctl = NULL;
2254        init_waitqueue_head(&fs_info->balance_wait_q);
2255}
2256
2257static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2258                                   struct btrfs_root *tree_root)
2259{
2260        fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2261        set_nlink(fs_info->btree_inode, 1);
2262        /*
2263         * we set the i_size on the btree inode to the max possible int.
2264         * the real end of the address space is determined by all of
2265         * the devices in the system
2266         */
2267        fs_info->btree_inode->i_size = OFFSET_MAX;
2268        fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2269
2270        RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2271        extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2272                             fs_info->btree_inode->i_mapping);
2273        BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2274        extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2275
2276        BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2277
2278        BTRFS_I(fs_info->btree_inode)->root = tree_root;
2279        memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2280               sizeof(struct btrfs_key));
2281        set_bit(BTRFS_INODE_DUMMY,
2282                &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2283        btrfs_insert_inode_hash(fs_info->btree_inode);
2284}
2285
2286static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2287{
2288        fs_info->dev_replace.lock_owner = 0;
2289        atomic_set(&fs_info->dev_replace.nesting_level, 0);
2290        mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2291        rwlock_init(&fs_info->dev_replace.lock);
2292        atomic_set(&fs_info->dev_replace.read_locks, 0);
2293        atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2294        init_waitqueue_head(&fs_info->replace_wait);
2295        init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2296}
2297
2298static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2299{
2300        spin_lock_init(&fs_info->qgroup_lock);
2301        mutex_init(&fs_info->qgroup_ioctl_lock);
2302        fs_info->qgroup_tree = RB_ROOT;
2303        fs_info->qgroup_op_tree = RB_ROOT;
2304        INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2305        fs_info->qgroup_seq = 1;
2306        fs_info->quota_enabled = 0;
2307        fs_info->pending_quota_state = 0;
2308        fs_info->qgroup_ulist = NULL;
2309        mutex_init(&fs_info->qgroup_rescan_lock);
2310}
2311
2312static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2313                struct btrfs_fs_devices *fs_devices)
2314{
2315        int max_active = fs_info->thread_pool_size;
2316        unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2317
2318        fs_info->workers =
2319                btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2320                                      max_active, 16);
2321
2322        fs_info->delalloc_workers =
2323                btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2324
2325        fs_info->flush_workers =
2326                btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2327
2328        fs_info->caching_workers =
2329                btrfs_alloc_workqueue("cache", flags, max_active, 0);
2330
2331        /*
2332         * a higher idle thresh on the submit workers makes it much more
2333         * likely that bios will be send down in a sane order to the
2334         * devices
2335         */
2336        fs_info->submit_workers =
2337                btrfs_alloc_workqueue("submit", flags,
2338                                      min_t(u64, fs_devices->num_devices,
2339                                            max_active), 64);
2340
2341        fs_info->fixup_workers =
2342                btrfs_alloc_workqueue("fixup", flags, 1, 0);
2343
2344        /*
2345         * endios are largely parallel and should have a very
2346         * low idle thresh
2347         */
2348        fs_info->endio_workers =
2349                btrfs_alloc_workqueue("endio", flags, max_active, 4);
2350        fs_info->endio_meta_workers =
2351                btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2352        fs_info->endio_meta_write_workers =
2353                btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2354        fs_info->endio_raid56_workers =
2355                btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2356        fs_info->endio_repair_workers =
2357                btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2358        fs_info->rmw_workers =
2359                btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2360        fs_info->endio_write_workers =
2361                btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2362        fs_info->endio_freespace_worker =
2363                btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2364        fs_info->delayed_workers =
2365                btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2366        fs_info->readahead_workers =
2367                btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2368        fs_info->qgroup_rescan_workers =
2369                btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2370        fs_info->extent_workers =
2371                btrfs_alloc_workqueue("extent-refs", flags,
2372                                      min_t(u64, fs_devices->num_devices,
2373                                            max_active), 8);
2374
2375        if (!(fs_info->workers && fs_info->delalloc_workers &&
2376              fs_info->submit_workers && fs_info->flush_workers &&
2377              fs_info->endio_workers && fs_info->endio_meta_workers &&
2378              fs_info->endio_meta_write_workers &&
2379              fs_info->endio_repair_workers &&
2380              fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2381              fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2382              fs_info->caching_workers && fs_info->readahead_workers &&
2383              fs_info->fixup_workers && fs_info->delayed_workers &&
2384              fs_info->extent_workers &&
2385              fs_info->qgroup_rescan_workers)) {
2386                return -ENOMEM;
2387        }
2388
2389        return 0;
2390}
2391
2392static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2393                            struct btrfs_fs_devices *fs_devices)
2394{
2395        int ret;
2396        struct btrfs_root *tree_root = fs_info->tree_root;
2397        struct btrfs_root *log_tree_root;
2398        struct btrfs_super_block *disk_super = fs_info->super_copy;
2399        u64 bytenr = btrfs_super_log_root(disk_super);
2400
2401        if (fs_devices->rw_devices == 0) {
2402                btrfs_warn(fs_info, "log replay required on RO media");
2403                return -EIO;
2404        }
2405
2406        log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2407        if (!log_tree_root)
2408                return -ENOMEM;
2409
2410        __setup_root(tree_root->nodesize, tree_root->sectorsize,
2411                        tree_root->stripesize, log_tree_root, fs_info,
2412                        BTRFS_TREE_LOG_OBJECTID);
2413
2414        log_tree_root->node = read_tree_block(tree_root, bytenr,
2415                        fs_info->generation + 1);
2416        if (IS_ERR(log_tree_root->node)) {
2417                btrfs_warn(fs_info, "failed to read log tree");
2418                ret = PTR_ERR(log_tree_root->node);
2419                kfree(log_tree_root);
2420                return ret;
2421        } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2422                btrfs_err(fs_info, "failed to read log tree");
2423                free_extent_buffer(log_tree_root->node);
2424                kfree(log_tree_root);
2425                return -EIO;
2426        }
2427        /* returns with log_tree_root freed on success */
2428        ret = btrfs_recover_log_trees(log_tree_root);
2429        if (ret) {
2430                btrfs_handle_fs_error(tree_root->fs_info, ret,
2431                            "Failed to recover log tree");
2432                free_extent_buffer(log_tree_root->node);
2433                kfree(log_tree_root);
2434                return ret;
2435        }
2436
2437        if (fs_info->sb->s_flags & MS_RDONLY) {
2438                ret = btrfs_commit_super(tree_root);
2439                if (ret)
2440                        return ret;
2441        }
2442
2443        return 0;
2444}
2445
2446static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2447                            struct btrfs_root *tree_root)
2448{
2449        struct btrfs_root *root;
2450        struct btrfs_key location;
2451        int ret;
2452
2453        location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2454        location.type = BTRFS_ROOT_ITEM_KEY;
2455        location.offset = 0;
2456
2457        root = btrfs_read_tree_root(tree_root, &location);
2458        if (IS_ERR(root))
2459                return PTR_ERR(root);
2460        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2461        fs_info->extent_root = root;
2462
2463        location.objectid = BTRFS_DEV_TREE_OBJECTID;
2464        root = btrfs_read_tree_root(tree_root, &location);
2465        if (IS_ERR(root))
2466                return PTR_ERR(root);
2467        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2468        fs_info->dev_root = root;
2469        btrfs_init_devices_late(fs_info);
2470
2471        location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2472        root = btrfs_read_tree_root(tree_root, &location);
2473        if (IS_ERR(root))
2474                return PTR_ERR(root);
2475        set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2476        fs_info->csum_root = root;
2477
2478        location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2479        root = btrfs_read_tree_root(tree_root, &location);
2480        if (!IS_ERR(root)) {
2481                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2482                fs_info->quota_enabled = 1;
2483                fs_info->pending_quota_state = 1;
2484                fs_info->quota_root = root;
2485        }
2486
2487        location.objectid = BTRFS_UUID_TREE_OBJECTID;
2488        root = btrfs_read_tree_root(tree_root, &location);
2489        if (IS_ERR(root)) {
2490                ret = PTR_ERR(root);
2491                if (ret != -ENOENT)
2492                        return ret;
2493        } else {
2494                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2495                fs_info->uuid_root = root;
2496        }
2497
2498        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2499                location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2500                root = btrfs_read_tree_root(tree_root, &location);
2501                if (IS_ERR(root))
2502                        return PTR_ERR(root);
2503                set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2504                fs_info->free_space_root = root;
2505        }
2506
2507        return 0;
2508}
2509
2510int open_ctree(struct super_block *sb,
2511               struct btrfs_fs_devices *fs_devices,
2512               char *options)
2513{
2514        u32 sectorsize;
2515        u32 nodesize;
2516        u32 stripesize;
2517        u64 generation;
2518        u64 features;
2519        struct btrfs_key location;
2520        struct buffer_head *bh;
2521        struct btrfs_super_block *disk_super;
2522        struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2523        struct btrfs_root *tree_root;
2524        struct btrfs_root *chunk_root;
2525        int ret;
2526        int err = -EINVAL;
2527        int num_backups_tried = 0;
2528        int backup_index = 0;
2529        int max_active;
2530
2531        tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2532        chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2533        if (!tree_root || !chunk_root) {
2534                err = -ENOMEM;
2535                goto fail;
2536        }
2537
2538        ret = init_srcu_struct(&fs_info->subvol_srcu);
2539        if (ret) {
2540                err = ret;
2541                goto fail;
2542        }
2543
2544        ret = setup_bdi(fs_info, &fs_info->bdi);
2545        if (ret) {
2546                err = ret;
2547                goto fail_srcu;
2548        }
2549
2550        ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2551        if (ret) {
2552                err = ret;
2553                goto fail_bdi;
2554        }
2555        fs_info->dirty_metadata_batch = PAGE_SIZE *
2556                                        (1 + ilog2(nr_cpu_ids));
2557
2558        ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2559        if (ret) {
2560                err = ret;
2561                goto fail_dirty_metadata_bytes;
2562        }
2563
2564        ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2565        if (ret) {
2566                err = ret;
2567                goto fail_delalloc_bytes;
2568        }
2569
2570        fs_info->btree_inode = new_inode(sb);
2571        if (!fs_info->btree_inode) {
2572                err = -ENOMEM;
2573                goto fail_bio_counter;
2574        }
2575
2576        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2577
2578        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2579        INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2580        INIT_LIST_HEAD(&fs_info->trans_list);
2581        INIT_LIST_HEAD(&fs_info->dead_roots);
2582        INIT_LIST_HEAD(&fs_info->delayed_iputs);
2583        INIT_LIST_HEAD(&fs_info->delalloc_roots);
2584        INIT_LIST_HEAD(&fs_info->caching_block_groups);
2585        spin_lock_init(&fs_info->delalloc_root_lock);
2586        spin_lock_init(&fs_info->trans_lock);
2587        spin_lock_init(&fs_info->fs_roots_radix_lock);
2588        spin_lock_init(&fs_info->delayed_iput_lock);
2589        spin_lock_init(&fs_info->defrag_inodes_lock);
2590        spin_lock_init(&fs_info->free_chunk_lock);
2591        spin_lock_init(&fs_info->tree_mod_seq_lock);
2592        spin_lock_init(&fs_info->super_lock);
2593        spin_lock_init(&fs_info->qgroup_op_lock);
2594        spin_lock_init(&fs_info->buffer_lock);
2595        spin_lock_init(&fs_info->unused_bgs_lock);
2596        rwlock_init(&fs_info->tree_mod_log_lock);
2597        mutex_init(&fs_info->unused_bg_unpin_mutex);
2598        mutex_init(&fs_info->delete_unused_bgs_mutex);
2599        mutex_init(&fs_info->reloc_mutex);
2600        mutex_init(&fs_info->delalloc_root_mutex);
2601        mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2602        seqlock_init(&fs_info->profiles_lock);
2603
2604        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2605        INIT_LIST_HEAD(&fs_info->space_info);
2606        INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2607        INIT_LIST_HEAD(&fs_info->unused_bgs);
2608        btrfs_mapping_init(&fs_info->mapping_tree);
2609        btrfs_init_block_rsv(&fs_info->global_block_rsv,
2610                             BTRFS_BLOCK_RSV_GLOBAL);
2611        btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2612                             BTRFS_BLOCK_RSV_DELALLOC);
2613        btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2614        btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2615        btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2616        btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2617                             BTRFS_BLOCK_RSV_DELOPS);
2618        atomic_set(&fs_info->nr_async_submits, 0);
2619        atomic_set(&fs_info->async_delalloc_pages, 0);
2620        atomic_set(&fs_info->async_submit_draining, 0);
2621        atomic_set(&fs_info->nr_async_bios, 0);
2622        atomic_set(&fs_info->defrag_running, 0);
2623        atomic_set(&fs_info->qgroup_op_seq, 0);
2624        atomic_set(&fs_info->reada_works_cnt, 0);
2625        atomic64_set(&fs_info->tree_mod_seq, 0);
2626        fs_info->sb = sb;
2627        fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2628        fs_info->metadata_ratio = 0;
2629        fs_info->defrag_inodes = RB_ROOT;
2630        fs_info->free_chunk_space = 0;
2631        fs_info->tree_mod_log = RB_ROOT;
2632        fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2633        fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2634        /* readahead state */
2635        INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2636        spin_lock_init(&fs_info->reada_lock);
2637
2638        fs_info->thread_pool_size = min_t(unsigned long,
2639                                          num_online_cpus() + 2, 8);
2640
2641        INIT_LIST_HEAD(&fs_info->ordered_roots);
2642        spin_lock_init(&fs_info->ordered_root_lock);
2643        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2644                                        GFP_KERNEL);
2645        if (!fs_info->delayed_root) {
2646                err = -ENOMEM;
2647                goto fail_iput;
2648        }
2649        btrfs_init_delayed_root(fs_info->delayed_root);
2650
2651        btrfs_init_scrub(fs_info);
2652#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2653        fs_info->check_integrity_print_mask = 0;
2654#endif
2655        btrfs_init_balance(fs_info);
2656        btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2657
2658        sb->s_blocksize = 4096;
2659        sb->s_blocksize_bits = blksize_bits(4096);
2660        sb->s_bdi = &fs_info->bdi;
2661
2662        btrfs_init_btree_inode(fs_info, tree_root);
2663
2664        spin_lock_init(&fs_info->block_group_cache_lock);
2665        fs_info->block_group_cache_tree = RB_ROOT;
2666        fs_info->first_logical_byte = (u64)-1;
2667
2668        extent_io_tree_init(&fs_info->freed_extents[0],
2669                             fs_info->btree_inode->i_mapping);
2670        extent_io_tree_init(&fs_info->freed_extents[1],
2671                             fs_info->btree_inode->i_mapping);
2672        fs_info->pinned_extents = &fs_info->freed_extents[0];
2673        fs_info->do_barriers = 1;
2674
2675
2676        mutex_init(&fs_info->ordered_operations_mutex);
2677        mutex_init(&fs_info->tree_log_mutex);
2678        mutex_init(&fs_info->chunk_mutex);
2679        mutex_init(&fs_info->transaction_kthread_mutex);
2680        mutex_init(&fs_info->cleaner_mutex);
2681        mutex_init(&fs_info->volume_mutex);
2682        mutex_init(&fs_info->ro_block_group_mutex);
2683        init_rwsem(&fs_info->commit_root_sem);
2684        init_rwsem(&fs_info->cleanup_work_sem);
2685        init_rwsem(&fs_info->subvol_sem);
2686        sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2687
2688        btrfs_init_dev_replace_locks(fs_info);
2689        btrfs_init_qgroup(fs_info);
2690
2691        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2692        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2693
2694        init_waitqueue_head(&fs_info->transaction_throttle);
2695        init_waitqueue_head(&fs_info->transaction_wait);
2696        init_waitqueue_head(&fs_info->transaction_blocked_wait);
2697        init_waitqueue_head(&fs_info->async_submit_wait);
2698
2699        INIT_LIST_HEAD(&fs_info->pinned_chunks);
2700
2701        ret = btrfs_alloc_stripe_hash_table(fs_info);
2702        if (ret) {
2703                err = ret;
2704                goto fail_alloc;
2705        }
2706
2707        __setup_root(4096, 4096, 4096, tree_root,
2708                     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2709
2710        invalidate_bdev(fs_devices->latest_bdev);
2711
2712        /*
2713         * Read super block and check the signature bytes only
2714         */
2715        bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2716        if (IS_ERR(bh)) {
2717                err = PTR_ERR(bh);
2718                goto fail_alloc;
2719        }
2720
2721        /*
2722         * We want to check superblock checksum, the type is stored inside.
2723         * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2724         */
2725        if (btrfs_check_super_csum(bh->b_data)) {
2726                btrfs_err(fs_info, "superblock checksum mismatch");
2727                err = -EINVAL;
2728                brelse(bh);
2729                goto fail_alloc;
2730        }
2731
2732        /*
2733         * super_copy is zeroed at allocation time and we never touch the
2734         * following bytes up to INFO_SIZE, the checksum is calculated from
2735         * the whole block of INFO_SIZE
2736         */
2737        memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2738        memcpy(fs_info->super_for_commit, fs_info->super_copy,
2739               sizeof(*fs_info->super_for_commit));
2740        brelse(bh);
2741
2742        memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2743
2744        ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2745        if (ret) {
2746                btrfs_err(fs_info, "superblock contains fatal errors");
2747                err = -EINVAL;
2748                goto fail_alloc;
2749        }
2750
2751        disk_super = fs_info->super_copy;
2752        if (!btrfs_super_root(disk_super))
2753                goto fail_alloc;
2754
2755        /* check FS state, whether FS is broken. */
2756        if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2757                set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2758
2759        /*
2760         * run through our array of backup supers and setup
2761         * our ring pointer to the oldest one
2762         */
2763        generation = btrfs_super_generation(disk_super);
2764        find_oldest_super_backup(fs_info, generation);
2765
2766        /*
2767         * In the long term, we'll store the compression type in the super
2768         * block, and it'll be used for per file compression control.
2769         */
2770        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2771
2772        ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2773        if (ret) {
2774                err = ret;
2775                goto fail_alloc;
2776        }
2777
2778        features = btrfs_super_incompat_flags(disk_super) &
2779                ~BTRFS_FEATURE_INCOMPAT_SUPP;
2780        if (features) {
2781                btrfs_err(fs_info,
2782                    "cannot mount because of unsupported optional features (%llx)",
2783                    features);
2784                err = -EINVAL;
2785                goto fail_alloc;
2786        }
2787
2788        features = btrfs_super_incompat_flags(disk_super);
2789        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2790        if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2791                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2792
2793        if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2794                btrfs_info(fs_info, "has skinny extents");
2795
2796        /*
2797         * flag our filesystem as having big metadata blocks if
2798         * they are bigger than the page size
2799         */
2800        if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2801                if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2802                        btrfs_info(fs_info,
2803                                "flagging fs with big metadata feature");
2804                features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2805        }
2806
2807        nodesize = btrfs_super_nodesize(disk_super);
2808        sectorsize = btrfs_super_sectorsize(disk_super);
2809        stripesize = sectorsize;
2810        fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2811        fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2812
2813        /*
2814         * mixed block groups end up with duplicate but slightly offset
2815         * extent buffers for the same range.  It leads to corruptions
2816         */
2817        if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2818            (sectorsize != nodesize)) {
2819                btrfs_err(fs_info,
2820"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2821                        nodesize, sectorsize);
2822                goto fail_alloc;
2823        }
2824
2825        /*
2826         * Needn't use the lock because there is no other task which will
2827         * update the flag.
2828         */
2829        btrfs_set_super_incompat_flags(disk_super, features);
2830
2831        features = btrfs_super_compat_ro_flags(disk_super) &
2832                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2833        if (!(sb->s_flags & MS_RDONLY) && features) {
2834                btrfs_err(fs_info,
2835        "cannot mount read-write because of unsupported optional features (%llx)",
2836                       features);
2837                err = -EINVAL;
2838                goto fail_alloc;
2839        }
2840
2841        max_active = fs_info->thread_pool_size;
2842
2843        ret = btrfs_init_workqueues(fs_info, fs_devices);
2844        if (ret) {
2845                err = ret;
2846                goto fail_sb_buffer;
2847        }
2848
2849        fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2850        fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2851                                    SZ_4M / PAGE_SIZE);
2852
2853        tree_root->nodesize = nodesize;
2854        tree_root->sectorsize = sectorsize;
2855        tree_root->stripesize = stripesize;
2856
2857        sb->s_blocksize = sectorsize;
2858        sb->s_blocksize_bits = blksize_bits(sectorsize);
2859
2860        mutex_lock(&fs_info->chunk_mutex);
2861        ret = btrfs_read_sys_array(tree_root);
2862        mutex_unlock(&fs_info->chunk_mutex);
2863        if (ret) {
2864                btrfs_err(fs_info, "failed to read the system array: %d", ret);
2865                goto fail_sb_buffer;
2866        }
2867
2868        generation = btrfs_super_chunk_root_generation(disk_super);
2869
2870        __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2871                     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2872
2873        chunk_root->node = read_tree_block(chunk_root,
2874                                           btrfs_super_chunk_root(disk_super),
2875                                           generation);
2876        if (IS_ERR(chunk_root->node) ||
2877            !extent_buffer_uptodate(chunk_root->node)) {
2878                btrfs_err(fs_info, "failed to read chunk root");
2879                if (!IS_ERR(chunk_root->node))
2880                        free_extent_buffer(chunk_root->node);
2881                chunk_root->node = NULL;
2882                goto fail_tree_roots;
2883        }
2884        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2885        chunk_root->commit_root = btrfs_root_node(chunk_root);
2886
2887        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2888           btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2889
2890        ret = btrfs_read_chunk_tree(chunk_root);
2891        if (ret) {
2892                btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2893                goto fail_tree_roots;
2894        }
2895
2896        /*
2897         * keep the device that is marked to be the target device for the
2898         * dev_replace procedure
2899         */
2900        btrfs_close_extra_devices(fs_devices, 0);
2901
2902        if (!fs_devices->latest_bdev) {
2903                btrfs_err(fs_info, "failed to read devices");
2904                goto fail_tree_roots;
2905        }
2906
2907retry_root_backup:
2908        generation = btrfs_super_generation(disk_super);
2909
2910        tree_root->node = read_tree_block(tree_root,
2911                                          btrfs_super_root(disk_super),
2912                                          generation);
2913        if (IS_ERR(tree_root->node) ||
2914            !extent_buffer_uptodate(tree_root->node)) {
2915                btrfs_warn(fs_info, "failed to read tree root");
2916                if (!IS_ERR(tree_root->node))
2917                        free_extent_buffer(tree_root->node);
2918                tree_root->node = NULL;
2919                goto recovery_tree_root;
2920        }
2921
2922        btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2923        tree_root->commit_root = btrfs_root_node(tree_root);
2924        btrfs_set_root_refs(&tree_root->root_item, 1);
2925
2926        mutex_lock(&tree_root->objectid_mutex);
2927        ret = btrfs_find_highest_objectid(tree_root,
2928                                        &tree_root->highest_objectid);
2929        if (ret) {
2930                mutex_unlock(&tree_root->objectid_mutex);
2931                goto recovery_tree_root;
2932        }
2933
2934        ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2935
2936        mutex_unlock(&tree_root->objectid_mutex);
2937
2938        ret = btrfs_read_roots(fs_info, tree_root);
2939        if (ret)
2940                goto recovery_tree_root;
2941
2942        fs_info->generation = generation;
2943        fs_info->last_trans_committed = generation;
2944
2945        ret = btrfs_recover_balance(fs_info);
2946        if (ret) {
2947                btrfs_err(fs_info, "failed to recover balance: %d", ret);
2948                goto fail_block_groups;
2949        }
2950
2951        ret = btrfs_init_dev_stats(fs_info);
2952        if (ret) {
2953                btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2954                goto fail_block_groups;
2955        }
2956
2957        ret = btrfs_init_dev_replace(fs_info);
2958        if (ret) {
2959                btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2960                goto fail_block_groups;
2961        }
2962
2963        btrfs_close_extra_devices(fs_devices, 1);
2964
2965        ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2966        if (ret) {
2967                btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2968                                ret);
2969                goto fail_block_groups;
2970        }
2971
2972        ret = btrfs_sysfs_add_device(fs_devices);
2973        if (ret) {
2974                btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2975                                ret);
2976                goto fail_fsdev_sysfs;
2977        }
2978
2979        ret = btrfs_sysfs_add_mounted(fs_info);
2980        if (ret) {
2981                btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2982                goto fail_fsdev_sysfs;
2983        }
2984
2985        ret = btrfs_init_space_info(fs_info);
2986        if (ret) {
2987                btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2988                goto fail_sysfs;
2989        }
2990
2991        ret = btrfs_read_block_groups(fs_info->extent_root);
2992        if (ret) {
2993                btrfs_err(fs_info, "failed to read block groups: %d", ret);
2994                goto fail_sysfs;
2995        }
2996        fs_info->num_tolerated_disk_barrier_failures =
2997                btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2998        if (fs_info->fs_devices->missing_devices >
2999             fs_info->num_tolerated_disk_barrier_failures &&
3000            !(sb->s_flags & MS_RDONLY)) {
3001                btrfs_warn(fs_info,
3002"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3003                        fs_info->fs_devices->missing_devices,
3004                        fs_info->num_tolerated_disk_barrier_failures);
3005                goto fail_sysfs;
3006        }
3007
3008        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3009                                               "btrfs-cleaner");
3010        if (IS_ERR(fs_info->cleaner_kthread))
3011                goto fail_sysfs;
3012
3013        fs_info->transaction_kthread = kthread_run(transaction_kthread,
3014                                                   tree_root,
3015                                                   "btrfs-transaction");
3016        if (IS_ERR(fs_info->transaction_kthread))
3017                goto fail_cleaner;
3018
3019        if (!btrfs_test_opt(tree_root, SSD) &&
3020            !btrfs_test_opt(tree_root, NOSSD) &&
3021            !fs_info->fs_devices->rotating) {
3022                btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3023                btrfs_set_opt(fs_info->mount_opt, SSD);
3024        }
3025
3026        /*
3027         * Mount does not set all options immediately, we can do it now and do
3028         * not have to wait for transaction commit
3029         */
3030        btrfs_apply_pending_changes(fs_info);
3031
3032#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3033        if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3034                ret = btrfsic_mount(tree_root, fs_devices,
3035                                    btrfs_test_opt(tree_root,
3036                                        CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3037                                    1 : 0,
3038                                    fs_info->check_integrity_print_mask);
3039                if (ret)
3040                        btrfs_warn(fs_info,
3041                                "failed to initialize integrity check module: %d",
3042                                ret);
3043        }
3044#endif
3045        ret = btrfs_read_qgroup_config(fs_info);
3046        if (ret)
3047                goto fail_trans_kthread;
3048
3049        /* do not make disk changes in broken FS or nologreplay is given */
3050        if (btrfs_super_log_root(disk_super) != 0 &&
3051            !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3052                ret = btrfs_replay_log(fs_info, fs_devices);
3053                if (ret) {
3054                        err = ret;
3055                        goto fail_qgroup;
3056                }
3057        }
3058
3059        ret = btrfs_find_orphan_roots(tree_root);
3060        if (ret)
3061                goto fail_qgroup;
3062
3063        if (!(sb->s_flags & MS_RDONLY)) {
3064                ret = btrfs_cleanup_fs_roots(fs_info);
3065                if (ret)
3066                        goto fail_qgroup;
3067
3068                mutex_lock(&fs_info->cleaner_mutex);
3069                ret = btrfs_recover_relocation(tree_root);
3070                mutex_unlock(&fs_info->cleaner_mutex);
3071                if (ret < 0) {
3072                        btrfs_warn(fs_info, "failed to recover relocation: %d",
3073                                        ret);
3074                        err = -EINVAL;
3075                        goto fail_qgroup;
3076                }
3077        }
3078
3079        location.objectid = BTRFS_FS_TREE_OBJECTID;
3080        location.type = BTRFS_ROOT_ITEM_KEY;
3081        location.offset = 0;
3082
3083        fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3084        if (IS_ERR(fs_info->fs_root)) {
3085                err = PTR_ERR(fs_info->fs_root);
3086                goto fail_qgroup;
3087        }
3088
3089        if (sb->s_flags & MS_RDONLY)
3090                return 0;
3091
3092        if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3093            !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3094                btrfs_info(fs_info, "creating free space tree");
3095                ret = btrfs_create_free_space_tree(fs_info);
3096                if (ret) {
3097                        btrfs_warn(fs_info,
3098                                "failed to create free space tree: %d", ret);
3099                        close_ctree(tree_root);
3100                        return ret;
3101                }
3102        }
3103
3104        down_read(&fs_info->cleanup_work_sem);
3105        if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3106            (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3107                up_read(&fs_info->cleanup_work_sem);
3108                close_ctree(tree_root);
3109                return ret;
3110        }
3111        up_read(&fs_info->cleanup_work_sem);
3112
3113        ret = btrfs_resume_balance_async(fs_info);
3114        if (ret) {
3115                btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3116                close_ctree(tree_root);
3117                return ret;
3118        }
3119
3120        ret = btrfs_resume_dev_replace_async(fs_info);
3121        if (ret) {
3122                btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3123                close_ctree(tree_root);
3124                return ret;
3125        }
3126
3127        btrfs_qgroup_rescan_resume(fs_info);
3128
3129        if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3130            btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3131                btrfs_info(fs_info, "clearing free space tree");
3132                ret = btrfs_clear_free_space_tree(fs_info);
3133                if (ret) {
3134                        btrfs_warn(fs_info,
3135                                "failed to clear free space tree: %d", ret);
3136                        close_ctree(tree_root);
3137                        return ret;
3138                }
3139        }
3140
3141        if (!fs_info->uuid_root) {
3142                btrfs_info(fs_info, "creating UUID tree");
3143                ret = btrfs_create_uuid_tree(fs_info);
3144                if (ret) {
3145                        btrfs_warn(fs_info,
3146                                "failed to create the UUID tree: %d", ret);
3147                        close_ctree(tree_root);
3148                        return ret;
3149                }
3150        } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3151                   fs_info->generation !=
3152                                btrfs_super_uuid_tree_generation(disk_super)) {
3153                btrfs_info(fs_info, "checking UUID tree");
3154                ret = btrfs_check_uuid_tree(fs_info);
3155                if (ret) {
3156                        btrfs_warn(fs_info,
3157                                "failed to check the UUID tree: %d", ret);
3158                        close_ctree(tree_root);
3159                        return ret;
3160                }
3161        } else {
3162                fs_info->update_uuid_tree_gen = 1;
3163        }
3164
3165        fs_info->open = 1;
3166
3167        /*
3168         * backuproot only affect mount behavior, and if open_ctree succeeded,
3169         * no need to keep the flag
3170         */
3171        btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3172
3173        return 0;
3174
3175fail_qgroup:
3176        btrfs_free_qgroup_config(fs_info);
3177fail_trans_kthread:
3178        kthread_stop(fs_info->transaction_kthread);
3179        btrfs_cleanup_transaction(fs_info->tree_root);
3180        btrfs_free_fs_roots(fs_info);
3181fail_cleaner:
3182        kthread_stop(fs_info->cleaner_kthread);
3183
3184        /*
3185         * make sure we're done with the btree inode before we stop our
3186         * kthreads
3187         */
3188        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3189
3190fail_sysfs:
3191        btrfs_sysfs_remove_mounted(fs_info);
3192
3193fail_fsdev_sysfs:
3194        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3195
3196fail_block_groups:
3197        btrfs_put_block_group_cache(fs_info);
3198        btrfs_free_block_groups(fs_info);
3199
3200fail_tree_roots:
3201        free_root_pointers(fs_info, 1);
3202        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3203
3204fail_sb_buffer:
3205        btrfs_stop_all_workers(fs_info);
3206fail_alloc:
3207fail_iput:
3208        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3209
3210        iput(fs_info->btree_inode);
3211fail_bio_counter:
3212        percpu_counter_destroy(&fs_info->bio_counter);
3213fail_delalloc_bytes:
3214        percpu_counter_destroy(&fs_info->delalloc_bytes);
3215fail_dirty_metadata_bytes:
3216        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3217fail_bdi:
3218        bdi_destroy(&fs_info->bdi);
3219fail_srcu:
3220        cleanup_srcu_struct(&fs_info->subvol_srcu);
3221fail:
3222        btrfs_free_stripe_hash_table(fs_info);
3223        btrfs_close_devices(fs_info->fs_devices);
3224        return err;
3225
3226recovery_tree_root:
3227        if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3228                goto fail_tree_roots;
3229
3230        free_root_pointers(fs_info, 0);
3231
3232        /* don't use the log in recovery mode, it won't be valid */
3233        btrfs_set_super_log_root(disk_super, 0);
3234
3235        /* we can't trust the free space cache either */
3236        btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3237
3238        ret = next_root_backup(fs_info, fs_info->super_copy,
3239                               &num_backups_tried, &backup_index);
3240        if (ret == -1)
3241                goto fail_block_groups;
3242        goto retry_root_backup;
3243}
3244
3245static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3246{
3247        if (uptodate) {
3248                set_buffer_uptodate(bh);
3249        } else {
3250                struct btrfs_device *device = (struct btrfs_device *)
3251                        bh->b_private;
3252
3253                btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3254                                "lost page write due to IO error on %s",
3255                                          rcu_str_deref(device->name));
3256                /* note, we don't set_buffer_write_io_error because we have
3257                 * our own ways of dealing with the IO errors
3258                 */
3259                clear_buffer_uptodate(bh);
3260                btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3261        }
3262        unlock_buffer(bh);
3263        put_bh(bh);
3264}
3265
3266int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3267                        struct buffer_head **bh_ret)
3268{
3269        struct buffer_head *bh;
3270        struct btrfs_super_block *super;
3271        u64 bytenr;
3272
3273        bytenr = btrfs_sb_offset(copy_num);
3274        if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3275                return -EINVAL;
3276
3277        bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3278        /*
3279         * If we fail to read from the underlying devices, as of now
3280         * the best option we have is to mark it EIO.
3281         */
3282        if (!bh)
3283                return -EIO;
3284
3285        super = (struct btrfs_super_block *)bh->b_data;
3286        if (btrfs_super_bytenr(super) != bytenr ||
3287                    btrfs_super_magic(super) != BTRFS_MAGIC) {
3288                brelse(bh);
3289                return -EINVAL;
3290        }
3291
3292        *bh_ret = bh;
3293        return 0;
3294}
3295
3296
3297struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3298{
3299        struct buffer_head *bh;
3300        struct buffer_head *latest = NULL;
3301        struct btrfs_super_block *super;
3302        int i;
3303        u64 transid = 0;
3304        int ret = -EINVAL;
3305
3306        /* we would like to check all the supers, but that would make
3307         * a btrfs mount succeed after a mkfs from a different FS.
3308         * So, we need to add a special mount option to scan for
3309         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3310         */
3311        for (i = 0; i < 1; i++) {
3312                ret = btrfs_read_dev_one_super(bdev, i, &bh);
3313                if (ret)
3314                        continue;
3315
3316                super = (struct btrfs_super_block *)bh->b_data;
3317
3318                if (!latest || btrfs_super_generation(super) > transid) {
3319                        brelse(latest);
3320                        latest = bh;
3321                        transid = btrfs_super_generation(super);
3322                } else {
3323                        brelse(bh);
3324                }
3325        }
3326
3327        if (!latest)
3328                return ERR_PTR(ret);
3329
3330        return latest;
3331}
3332
3333/*
3334 * this should be called twice, once with wait == 0 and
3335 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3336 * we write are pinned.
3337 *
3338 * They are released when wait == 1 is done.
3339 * max_mirrors must be the same for both runs, and it indicates how
3340 * many supers on this one device should be written.
3341 *
3342 * max_mirrors == 0 means to write them all.
3343 */
3344static int write_dev_supers(struct btrfs_device *device,
3345                            struct btrfs_super_block *sb,
3346                            int do_barriers, int wait, int max_mirrors)
3347{
3348        struct buffer_head *bh;
3349        int i;
3350        int ret;
3351        int errors = 0;
3352        u32 crc;
3353        u64 bytenr;
3354
3355        if (max_mirrors == 0)
3356                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3357
3358        for (i = 0; i < max_mirrors; i++) {
3359                bytenr = btrfs_sb_offset(i);
3360                if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3361                    device->commit_total_bytes)
3362                        break;
3363
3364                if (wait) {
3365                        bh = __find_get_block(device->bdev, bytenr / 4096,
3366                                              BTRFS_SUPER_INFO_SIZE);
3367                        if (!bh) {
3368                                errors++;
3369                                continue;
3370                        }
3371                        wait_on_buffer(bh);
3372                        if (!buffer_uptodate(bh))
3373                                errors++;
3374
3375                        /* drop our reference */
3376                        brelse(bh);
3377
3378                        /* drop the reference from the wait == 0 run */
3379                        brelse(bh);
3380                        continue;
3381                } else {
3382                        btrfs_set_super_bytenr(sb, bytenr);
3383
3384                        crc = ~(u32)0;
3385                        crc = btrfs_csum_data((char *)sb +
3386                                              BTRFS_CSUM_SIZE, crc,
3387                                              BTRFS_SUPER_INFO_SIZE -
3388                                              BTRFS_CSUM_SIZE);
3389                        btrfs_csum_final(crc, sb->csum);
3390
3391                        /*
3392                         * one reference for us, and we leave it for the
3393                         * caller
3394                         */
3395                        bh = __getblk(device->bdev, bytenr / 4096,
3396                                      BTRFS_SUPER_INFO_SIZE);
3397                        if (!bh) {
3398                                btrfs_err(device->dev_root->fs_info,
3399                                    "couldn't get super buffer head for bytenr %llu",
3400                                    bytenr);
3401                                errors++;
3402                                continue;
3403                        }
3404
3405                        memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3406
3407                        /* one reference for submit_bh */
3408                        get_bh(bh);
3409
3410                        set_buffer_uptodate(bh);
3411                        lock_buffer(bh);
3412                        bh->b_end_io = btrfs_end_buffer_write_sync;
3413                        bh->b_private = device;
3414                }
3415
3416                /*
3417                 * we fua the first super.  The others we allow
3418                 * to go down lazy.
3419                 */
3420                if (i == 0)
3421                        ret = btrfsic_submit_bh(WRITE_FUA, bh);
3422                else
3423                        ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3424                if (ret)
3425                        errors++;
3426        }
3427        return errors < i ? 0 : -1;
3428}
3429
3430/*
3431 * endio for the write_dev_flush, this will wake anyone waiting
3432 * for the barrier when it is done
3433 */
3434static void btrfs_end_empty_barrier(struct bio *bio)
3435{
3436        if (bio->bi_private)
3437                complete(bio->bi_private);
3438        bio_put(bio);
3439}
3440
3441/*
3442 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3443 * sent down.  With wait == 1, it waits for the previous flush.
3444 *
3445 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3446 * capable
3447 */
3448static int write_dev_flush(struct btrfs_device *device, int wait)
3449{
3450        struct bio *bio;
3451        int ret = 0;
3452
3453        if (device->nobarriers)
3454                return 0;
3455
3456        if (wait) {
3457                bio = device->flush_bio;
3458                if (!bio)
3459                        return 0;
3460
3461                wait_for_completion(&device->flush_wait);
3462
3463                if (bio->bi_error) {
3464                        ret = bio->bi_error;
3465                        btrfs_dev_stat_inc_and_print(device,
3466                                BTRFS_DEV_STAT_FLUSH_ERRS);
3467                }
3468
3469                /* drop the reference from the wait == 0 run */
3470                bio_put(bio);
3471                device->flush_bio = NULL;
3472
3473                return ret;
3474        }
3475
3476        /*
3477         * one reference for us, and we leave it for the
3478         * caller
3479         */
3480        device->flush_bio = NULL;
3481        bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3482        if (!bio)
3483                return -ENOMEM;
3484
3485        bio->bi_end_io = btrfs_end_empty_barrier;
3486        bio->bi_bdev = device->bdev;
3487        init_completion(&device->flush_wait);
3488        bio->bi_private = &device->flush_wait;
3489        device->flush_bio = bio;
3490
3491        bio_get(bio);
3492        btrfsic_submit_bio(WRITE_FLUSH, bio);
3493
3494        return 0;
3495}
3496
3497/*
3498 * send an empty flush down to each device in parallel,
3499 * then wait for them
3500 */
3501static int barrier_all_devices(struct btrfs_fs_info *info)
3502{
3503        struct list_head *head;
3504        struct btrfs_device *dev;
3505        int errors_send = 0;
3506        int errors_wait = 0;
3507        int ret;
3508
3509        /* send down all the barriers */
3510        head = &info->fs_devices->devices;
3511        list_for_each_entry_rcu(dev, head, dev_list) {
3512                if (dev->missing)
3513                        continue;
3514                if (!dev->bdev) {
3515                        errors_send++;
3516                        continue;
3517                }
3518                if (!dev->in_fs_metadata || !dev->writeable)
3519                        continue;
3520
3521                ret = write_dev_flush(dev, 0);
3522                if (ret)
3523                        errors_send++;
3524        }
3525
3526        /* wait for all the barriers */
3527        list_for_each_entry_rcu(dev, head, dev_list) {
3528                if (dev->missing)
3529                        continue;
3530                if (!dev->bdev) {
3531                        errors_wait++;
3532                        continue;
3533                }
3534                if (!dev->in_fs_metadata || !dev->writeable)
3535                        continue;
3536
3537                ret = write_dev_flush(dev, 1);
3538                if (ret)
3539                        errors_wait++;
3540        }
3541        if (errors_send > info->num_tolerated_disk_barrier_failures ||
3542            errors_wait > info->num_tolerated_disk_barrier_failures)
3543                return -EIO;
3544        return 0;
3545}
3546
3547int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3548{
3549        int raid_type;
3550        int min_tolerated = INT_MAX;
3551
3552        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3553            (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3554                min_tolerated = min(min_tolerated,
3555                                    btrfs_raid_array[BTRFS_RAID_SINGLE].
3556                                    tolerated_failures);
3557
3558        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3559                if (raid_type == BTRFS_RAID_SINGLE)
3560                        continue;
3561                if (!(flags & btrfs_raid_group[raid_type]))
3562                        continue;
3563                min_tolerated = min(min_tolerated,
3564                                    btrfs_raid_array[raid_type].
3565                                    tolerated_failures);
3566        }
3567
3568        if (min_tolerated == INT_MAX) {
3569                pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3570                min_tolerated = 0;
3571        }
3572
3573        return min_tolerated;
3574}
3575
3576int btrfs_calc_num_tolerated_disk_barrier_failures(
3577        struct btrfs_fs_info *fs_info)
3578{
3579        struct btrfs_ioctl_space_info space;
3580        struct btrfs_space_info *sinfo;
3581        u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3582                       BTRFS_BLOCK_GROUP_SYSTEM,
3583                       BTRFS_BLOCK_GROUP_METADATA,
3584                       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3585        int i;
3586        int c;
3587        int num_tolerated_disk_barrier_failures =
3588                (int)fs_info->fs_devices->num_devices;
3589
3590        for (i = 0; i < ARRAY_SIZE(types); i++) {
3591                struct btrfs_space_info *tmp;
3592
3593                sinfo = NULL;
3594                rcu_read_lock();
3595                list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3596                        if (tmp->flags == types[i]) {
3597                                sinfo = tmp;
3598                                break;
3599                        }
3600                }
3601                rcu_read_unlock();
3602
3603                if (!sinfo)
3604                        continue;
3605
3606                down_read(&sinfo->groups_sem);
3607                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3608                        u64 flags;
3609
3610                        if (list_empty(&sinfo->block_groups[c]))
3611                                continue;
3612
3613                        btrfs_get_block_group_info(&sinfo->block_groups[c],
3614                                                   &space);
3615                        if (space.total_bytes == 0 || space.used_bytes == 0)
3616                                continue;
3617                        flags = space.flags;
3618
3619                        num_tolerated_disk_barrier_failures = min(
3620                                num_tolerated_disk_barrier_failures,
3621                                btrfs_get_num_tolerated_disk_barrier_failures(
3622                                        flags));
3623                }
3624                up_read(&sinfo->groups_sem);
3625        }
3626
3627        return num_tolerated_disk_barrier_failures;
3628}
3629
3630static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3631{
3632        struct list_head *head;
3633        struct btrfs_device *dev;
3634        struct btrfs_super_block *sb;
3635        struct btrfs_dev_item *dev_item;
3636        int ret;
3637        int do_barriers;
3638        int max_errors;
3639        int total_errors = 0;
3640        u64 flags;
3641
3642        do_barriers = !btrfs_test_opt(root, NOBARRIER);
3643        backup_super_roots(root->fs_info);
3644
3645        sb = root->fs_info->super_for_commit;
3646        dev_item = &sb->dev_item;
3647
3648        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3649        head = &root->fs_info->fs_devices->devices;
3650        max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3651
3652        if (do_barriers) {
3653                ret = barrier_all_devices(root->fs_info);
3654                if (ret) {
3655                        mutex_unlock(
3656                                &root->fs_info->fs_devices->device_list_mutex);
3657                        btrfs_handle_fs_error(root->fs_info, ret,
3658                                    "errors while submitting device barriers.");
3659                        return ret;
3660                }
3661        }
3662
3663        list_for_each_entry_rcu(dev, head, dev_list) {
3664                if (!dev->bdev) {
3665                        total_errors++;
3666                        continue;
3667                }
3668                if (!dev->in_fs_metadata || !dev->writeable)
3669                        continue;
3670
3671                btrfs_set_stack_device_generation(dev_item, 0);
3672                btrfs_set_stack_device_type(dev_item, dev->type);
3673                btrfs_set_stack_device_id(dev_item, dev->devid);
3674                btrfs_set_stack_device_total_bytes(dev_item,
3675                                                   dev->commit_total_bytes);
3676                btrfs_set_stack_device_bytes_used(dev_item,
3677                                                  dev->commit_bytes_used);
3678                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3679                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3680                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3681                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3682                memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3683
3684                flags = btrfs_super_flags(sb);
3685                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3686
3687                ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3688                if (ret)
3689                        total_errors++;
3690        }
3691        if (total_errors > max_errors) {
3692                btrfs_err(root->fs_info, "%d errors while writing supers",
3693                       total_errors);
3694                mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3695
3696                /* FUA is masked off if unsupported and can't be the reason */
3697                btrfs_handle_fs_error(root->fs_info, -EIO,
3698                            "%d errors while writing supers", total_errors);
3699                return -EIO;
3700        }
3701
3702        total_errors = 0;
3703        list_for_each_entry_rcu(dev, head, dev_list) {
3704                if (!dev->bdev)
3705                        continue;
3706                if (!dev->in_fs_metadata || !dev->writeable)
3707                        continue;
3708
3709                ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3710                if (ret)
3711                        total_errors++;
3712        }
3713        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3714        if (total_errors > max_errors) {
3715                btrfs_handle_fs_error(root->fs_info, -EIO,
3716                            "%d errors while writing supers", total_errors);
3717                return -EIO;
3718        }
3719        return 0;
3720}
3721
3722int write_ctree_super(struct btrfs_trans_handle *trans,
3723                      struct btrfs_root *root, int max_mirrors)
3724{
3725        return write_all_supers(root, max_mirrors);
3726}
3727
3728/* Drop a fs root from the radix tree and free it. */
3729void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3730                                  struct btrfs_root *root)
3731{
3732        spin_lock(&fs_info->fs_roots_radix_lock);
3733        radix_tree_delete(&fs_info->fs_roots_radix,
3734                          (unsigned long)root->root_key.objectid);
3735        spin_unlock(&fs_info->fs_roots_radix_lock);
3736
3737        if (btrfs_root_refs(&root->root_item) == 0)
3738                synchronize_srcu(&fs_info->subvol_srcu);
3739
3740        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3741                btrfs_free_log(NULL, root);
3742
3743        if (root->free_ino_pinned)
3744                __btrfs_remove_free_space_cache(root->free_ino_pinned);
3745        if (root->free_ino_ctl)
3746                __btrfs_remove_free_space_cache(root->free_ino_ctl);
3747        free_fs_root(root);
3748}
3749
3750static void free_fs_root(struct btrfs_root *root)
3751{
3752        iput(root->ino_cache_inode);
3753        WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3754        btrfs_free_block_rsv(root, root->orphan_block_rsv);
3755        root->orphan_block_rsv = NULL;
3756        if (root->anon_dev)
3757                free_anon_bdev(root->anon_dev);
3758        if (root->subv_writers)
3759                btrfs_free_subvolume_writers(root->subv_writers);
3760        free_extent_buffer(root->node);
3761        free_extent_buffer(root->commit_root);
3762        kfree(root->free_ino_ctl);
3763        kfree(root->free_ino_pinned);
3764        kfree(root->name);
3765        btrfs_put_fs_root(root);
3766}
3767
3768void btrfs_free_fs_root(struct btrfs_root *root)
3769{
3770        free_fs_root(root);
3771}
3772
3773int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3774{
3775        u64 root_objectid = 0;
3776        struct btrfs_root *gang[8];
3777        int i = 0;
3778        int err = 0;
3779        unsigned int ret = 0;
3780        int index;
3781
3782        while (1) {
3783                index = srcu_read_lock(&fs_info->subvol_srcu);
3784                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3785                                             (void **)gang, root_objectid,
3786                                             ARRAY_SIZE(gang));
3787                if (!ret) {
3788                        srcu_read_unlock(&fs_info->subvol_srcu, index);
3789                        break;
3790                }
3791                root_objectid = gang[ret - 1]->root_key.objectid + 1;
3792
3793                for (i = 0; i < ret; i++) {
3794                        /* Avoid to grab roots in dead_roots */
3795                        if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3796                                gang[i] = NULL;
3797                                continue;
3798                        }
3799                        /* grab all the search result for later use */
3800                        gang[i] = btrfs_grab_fs_root(gang[i]);
3801                }
3802                srcu_read_unlock(&fs_info->subvol_srcu, index);
3803
3804                for (i = 0; i < ret; i++) {
3805                        if (!gang[i])
3806                                continue;
3807                        root_objectid = gang[i]->root_key.objectid;
3808                        err = btrfs_orphan_cleanup(gang[i]);
3809                        if (err)
3810                                break;
3811                        btrfs_put_fs_root(gang[i]);
3812                }
3813                root_objectid++;
3814        }
3815
3816        /* release the uncleaned roots due to error */
3817        for (; i < ret; i++) {
3818                if (gang[i])
3819                        btrfs_put_fs_root(gang[i]);
3820        }
3821        return err;
3822}
3823
3824int btrfs_commit_super(struct btrfs_root *root)
3825{
3826        struct btrfs_trans_handle *trans;
3827
3828        mutex_lock(&root->fs_info->cleaner_mutex);
3829        btrfs_run_delayed_iputs(root);
3830        mutex_unlock(&root->fs_info->cleaner_mutex);
3831        wake_up_process(root->fs_info->cleaner_kthread);
3832
3833        /* wait until ongoing cleanup work done */
3834        down_write(&root->fs_info->cleanup_work_sem);
3835        up_write(&root->fs_info->cleanup_work_sem);
3836
3837        trans = btrfs_join_transaction(root);
3838        if (IS_ERR(trans))
3839                return PTR_ERR(trans);
3840        return btrfs_commit_transaction(trans, root);
3841}
3842
3843void close_ctree(struct btrfs_root *root)
3844{
3845        struct btrfs_fs_info *fs_info = root->fs_info;
3846        int ret;
3847
3848        fs_info->closing = 1;
3849        smp_mb();
3850
3851        /* wait for the qgroup rescan worker to stop */
3852        btrfs_qgroup_wait_for_completion(fs_info);
3853
3854        /* wait for the uuid_scan task to finish */
3855        down(&fs_info->uuid_tree_rescan_sem);
3856        /* avoid complains from lockdep et al., set sem back to initial state */
3857        up(&fs_info->uuid_tree_rescan_sem);
3858
3859        /* pause restriper - we want to resume on mount */
3860        btrfs_pause_balance(fs_info);
3861
3862        btrfs_dev_replace_suspend_for_unmount(fs_info);
3863
3864        btrfs_scrub_cancel(fs_info);
3865
3866        /* wait for any defraggers to finish */
3867        wait_event(fs_info->transaction_wait,
3868                   (atomic_read(&fs_info->defrag_running) == 0));
3869
3870        /* clear out the rbtree of defraggable inodes */
3871        btrfs_cleanup_defrag_inodes(fs_info);
3872
3873        cancel_work_sync(&fs_info->async_reclaim_work);
3874
3875        if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3876                /*
3877                 * If the cleaner thread is stopped and there are
3878                 * block groups queued for removal, the deletion will be
3879                 * skipped when we quit the cleaner thread.
3880                 */
3881                btrfs_delete_unused_bgs(root->fs_info);
3882
3883                ret = btrfs_commit_super(root);
3884                if (ret)
3885                        btrfs_err(fs_info, "commit super ret %d", ret);
3886        }
3887
3888        if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3889                btrfs_error_commit_super(root);
3890
3891        kthread_stop(fs_info->transaction_kthread);
3892        kthread_stop(fs_info->cleaner_kthread);
3893
3894        fs_info->closing = 2;
3895        smp_mb();
3896
3897        btrfs_free_qgroup_config(fs_info);
3898
3899        if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3900                btrfs_info(fs_info, "at unmount delalloc count %lld",
3901                       percpu_counter_sum(&fs_info->delalloc_bytes));
3902        }
3903
3904        btrfs_sysfs_remove_mounted(fs_info);
3905        btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3906
3907        btrfs_free_fs_roots(fs_info);
3908
3909        btrfs_put_block_group_cache(fs_info);
3910
3911        btrfs_free_block_groups(fs_info);
3912
3913        /*
3914         * we must make sure there is not any read request to
3915         * submit after we stopping all workers.
3916         */
3917        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3918        btrfs_stop_all_workers(fs_info);
3919
3920        fs_info->open = 0;
3921        free_root_pointers(fs_info, 1);
3922
3923        iput(fs_info->btree_inode);
3924
3925#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3926        if (btrfs_test_opt(root, CHECK_INTEGRITY))
3927                btrfsic_unmount(root, fs_info->fs_devices);
3928#endif
3929
3930        btrfs_close_devices(fs_info->fs_devices);
3931        btrfs_mapping_tree_free(&fs_info->mapping_tree);
3932
3933        percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3934        percpu_counter_destroy(&fs_info->delalloc_bytes);
3935        percpu_counter_destroy(&fs_info->bio_counter);
3936        bdi_destroy(&fs_info->bdi);
3937        cleanup_srcu_struct(&fs_info->subvol_srcu);
3938
3939        btrfs_free_stripe_hash_table(fs_info);
3940
3941        __btrfs_free_block_rsv(root->orphan_block_rsv);
3942        root->orphan_block_rsv = NULL;
3943
3944        lock_chunks(root);
3945        while (!list_empty(&fs_info->pinned_chunks)) {
3946                struct extent_map *em;
3947
3948                em = list_first_entry(&fs_info->pinned_chunks,
3949                                      struct extent_map, list);
3950                list_del_init(&em->list);
3951                free_extent_map(em);
3952        }
3953        unlock_chunks(root);
3954}
3955
3956int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3957                          int atomic)
3958{
3959        int ret;
3960        struct inode *btree_inode = buf->pages[0]->mapping->host;
3961
3962        ret = extent_buffer_uptodate(buf);
3963        if (!ret)
3964                return ret;
3965
3966        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3967                                    parent_transid, atomic);
3968        if (ret == -EAGAIN)
3969                return ret;
3970        return !ret;
3971}
3972
3973void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3974{
3975        struct btrfs_root *root;
3976        u64 transid = btrfs_header_generation(buf);
3977        int was_dirty;
3978
3979#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3980        /*
3981         * This is a fast path so only do this check if we have sanity tests
3982         * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3983         * outside of the sanity tests.
3984         */
3985        if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3986                return;
3987#endif
3988        root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3989        btrfs_assert_tree_locked(buf);
3990        if (transid != root->fs_info->generation)
3991                WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3992                       "found %llu running %llu\n",
3993                        buf->start, transid, root->fs_info->generation);
3994        was_dirty = set_extent_buffer_dirty(buf);
3995        if (!was_dirty)
3996                __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3997                                     buf->len,
3998                                     root->fs_info->dirty_metadata_batch);
3999#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4000        if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4001                btrfs_print_leaf(root, buf);
4002                ASSERT(0);
4003        }
4004#endif
4005}
4006
4007static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4008                                        int flush_delayed)
4009{
4010        /*
4011         * looks as though older kernels can get into trouble with
4012         * this code, they end up stuck in balance_dirty_pages forever
4013         */
4014        int ret;
4015
4016        if (current->flags & PF_MEMALLOC)
4017                return;
4018
4019        if (flush_delayed)
4020                btrfs_balance_delayed_items(root);
4021
4022        ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4023                                     BTRFS_DIRTY_METADATA_THRESH);
4024        if (ret > 0) {
4025                balance_dirty_pages_ratelimited(
4026                                   root->fs_info->btree_inode->i_mapping);
4027        }
4028}
4029
4030void btrfs_btree_balance_dirty(struct btrfs_root *root)
4031{
4032        __btrfs_btree_balance_dirty(root, 1);
4033}
4034
4035void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4036{
4037        __btrfs_btree_balance_dirty(root, 0);
4038}
4039
4040int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4041{
4042        struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4043        return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4044}
4045
4046static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4047                              int read_only)
4048{
4049        struct btrfs_super_block *sb = fs_info->super_copy;
4050        u64 nodesize = btrfs_super_nodesize(sb);
4051        u64 sectorsize = btrfs_super_sectorsize(sb);
4052        int ret = 0;
4053
4054        if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4055                printk(KERN_ERR "BTRFS: no valid FS found\n");
4056                ret = -EINVAL;
4057        }
4058        if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4059                printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4060                                btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4061        if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4062                printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4063                                btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4064                ret = -EINVAL;
4065        }
4066        if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4067                printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4068                                btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4069                ret = -EINVAL;
4070        }
4071        if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4072                printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4073                                btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4074                ret = -EINVAL;
4075        }
4076
4077        /*
4078         * Check sectorsize and nodesize first, other check will need it.
4079         * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4080         */
4081        if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4082            sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4083                printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4084                ret = -EINVAL;
4085        }
4086        /* Only PAGE SIZE is supported yet */
4087        if (sectorsize != PAGE_SIZE) {
4088                printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4089                                sectorsize, PAGE_SIZE);
4090                ret = -EINVAL;
4091        }
4092        if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4093            nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4094                printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4095                ret = -EINVAL;
4096        }
4097        if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4098                printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4099                                le32_to_cpu(sb->__unused_leafsize),
4100                                nodesize);
4101                ret = -EINVAL;
4102        }
4103
4104        /* Root alignment check */
4105        if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4106                printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4107                                btrfs_super_root(sb));
4108                ret = -EINVAL;
4109        }
4110        if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4111                printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4112                                btrfs_super_chunk_root(sb));
4113                ret = -EINVAL;
4114        }
4115        if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4116                printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4117                                btrfs_super_log_root(sb));
4118                ret = -EINVAL;
4119        }
4120
4121        if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4122                printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4123                                fs_info->fsid, sb->dev_item.fsid);
4124                ret = -EINVAL;
4125        }
4126
4127        /*
4128         * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4129         * done later
4130         */
4131        if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4132                btrfs_err(fs_info, "bytes_used is too small %llu",
4133                       btrfs_super_bytes_used(sb));
4134                ret = -EINVAL;
4135        }
4136        if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4137                btrfs_err(fs_info, "invalid stripesize %u",
4138                       btrfs_super_stripesize(sb));
4139                ret = -EINVAL;
4140        }
4141        if (btrfs_super_num_devices(sb) > (1UL << 31))
4142                printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4143                                btrfs_super_num_devices(sb));
4144        if (btrfs_super_num_devices(sb) == 0) {
4145                printk(KERN_ERR "BTRFS: number of devices is 0\n");
4146                ret = -EINVAL;
4147        }
4148
4149        if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4150                printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4151                                btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4152                ret = -EINVAL;
4153        }
4154
4155        /*
4156         * Obvious sys_chunk_array corruptions, it must hold at least one key
4157         * and one chunk
4158         */
4159        if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4160                printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4161                                btrfs_super_sys_array_size(sb),
4162                                BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4163                ret = -EINVAL;
4164        }
4165        if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4166                        + sizeof(struct btrfs_chunk)) {
4167                printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4168                                btrfs_super_sys_array_size(sb),
4169                                sizeof(struct btrfs_disk_key)
4170                                + sizeof(struct btrfs_chunk));
4171                ret = -EINVAL;
4172        }
4173
4174        /*
4175         * The generation is a global counter, we'll trust it more than the others
4176         * but it's still possible that it's the one that's wrong.
4177         */
4178        if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4179                printk(KERN_WARNING
4180                        "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4181                        btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4182        if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4183            && btrfs_super_cache_generation(sb) != (u64)-1)
4184                printk(KERN_WARNING
4185                        "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4186                        btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4187
4188        return ret;
4189}
4190
4191static void btrfs_error_commit_super(struct btrfs_root *root)
4192{
4193        mutex_lock(&root->fs_info->cleaner_mutex);
4194        btrfs_run_delayed_iputs(root);
4195        mutex_unlock(&root->fs_info->cleaner_mutex);
4196
4197        down_write(&root->fs_info->cleanup_work_sem);
4198        up_write(&root->fs_info->cleanup_work_sem);
4199
4200        /* cleanup FS via transaction */
4201        btrfs_cleanup_transaction(root);
4202}
4203
4204static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4205{
4206        struct btrfs_ordered_extent *ordered;
4207
4208        spin_lock(&root->ordered_extent_lock);
4209        /*
4210         * This will just short circuit the ordered completion stuff which will
4211         * make sure the ordered extent gets properly cleaned up.
4212         */
4213        list_for_each_entry(ordered, &root->ordered_extents,
4214                            root_extent_list)
4215                set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4216        spin_unlock(&root->ordered_extent_lock);
4217}
4218
4219static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4220{
4221        struct btrfs_root *root;
4222        struct list_head splice;
4223
4224        INIT_LIST_HEAD(&splice);
4225
4226        spin_lock(&fs_info->ordered_root_lock);
4227        list_splice_init(&fs_info->ordered_roots, &splice);
4228        while (!list_empty(&splice)) {
4229                root = list_first_entry(&splice, struct btrfs_root,
4230                                        ordered_root);
4231                list_move_tail(&root->ordered_root,
4232                               &fs_info->ordered_roots);
4233
4234                spin_unlock(&fs_info->ordered_root_lock);
4235                btrfs_destroy_ordered_extents(root);
4236
4237                cond_resched();
4238                spin_lock(&fs_info->ordered_root_lock);
4239        }
4240        spin_unlock(&fs_info->ordered_root_lock);
4241}
4242
4243static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4244                                      struct btrfs_root *root)
4245{
4246        struct rb_node *node;
4247        struct btrfs_delayed_ref_root *delayed_refs;
4248        struct btrfs_delayed_ref_node *ref;
4249        int ret = 0;
4250
4251        delayed_refs = &trans->delayed_refs;
4252
4253        spin_lock(&delayed_refs->lock);
4254        if (atomic_read(&delayed_refs->num_entries) == 0) {
4255                spin_unlock(&delayed_refs->lock);
4256                btrfs_info(root->fs_info, "delayed_refs has NO entry");
4257                return ret;
4258        }
4259
4260        while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4261                struct btrfs_delayed_ref_head *head;
4262                struct btrfs_delayed_ref_node *tmp;
4263                bool pin_bytes = false;
4264
4265                head = rb_entry(node, struct btrfs_delayed_ref_head,
4266                                href_node);
4267                if (!mutex_trylock(&head->mutex)) {
4268                        atomic_inc(&head->node.refs);
4269                        spin_unlock(&delayed_refs->lock);
4270
4271                        mutex_lock(&head->mutex);
4272                        mutex_unlock(&head->mutex);
4273                        btrfs_put_delayed_ref(&head->node);
4274                        spin_lock(&delayed_refs->lock);
4275                        continue;
4276                }
4277                spin_lock(&head->lock);
4278                list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4279                                                 list) {
4280                        ref->in_tree = 0;
4281                        list_del(&ref->list);
4282                        atomic_dec(&delayed_refs->num_entries);
4283                        btrfs_put_delayed_ref(ref);
4284                }
4285                if (head->must_insert_reserved)
4286                        pin_bytes = true;
4287                btrfs_free_delayed_extent_op(head->extent_op);
4288                delayed_refs->num_heads--;
4289                if (head->processing == 0)
4290                        delayed_refs->num_heads_ready--;
4291                atomic_dec(&delayed_refs->num_entries);
4292                head->node.in_tree = 0;
4293                rb_erase(&head->href_node, &delayed_refs->href_root);
4294                spin_unlock(&head->lock);
4295                spin_unlock(&delayed_refs->lock);
4296                mutex_unlock(&head->mutex);
4297
4298                if (pin_bytes)
4299                        btrfs_pin_extent(root, head->node.bytenr,
4300                                         head->node.num_bytes, 1);
4301                btrfs_put_delayed_ref(&head->node);
4302                cond_resched();
4303                spin_lock(&delayed_refs->lock);
4304        }
4305
4306        spin_unlock(&delayed_refs->lock);
4307
4308        return ret;
4309}
4310
4311static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4312{
4313        struct btrfs_inode *btrfs_inode;
4314        struct list_head splice;
4315
4316        INIT_LIST_HEAD(&splice);
4317
4318        spin_lock(&root->delalloc_lock);
4319        list_splice_init(&root->delalloc_inodes, &splice);
4320
4321        while (!list_empty(&splice)) {
4322                btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4323                                               delalloc_inodes);
4324
4325                list_del_init(&btrfs_inode->delalloc_inodes);
4326                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4327                          &btrfs_inode->runtime_flags);
4328                spin_unlock(&root->delalloc_lock);
4329
4330                btrfs_invalidate_inodes(btrfs_inode->root);
4331
4332                spin_lock(&root->delalloc_lock);
4333        }
4334
4335        spin_unlock(&root->delalloc_lock);
4336}
4337
4338static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4339{
4340        struct btrfs_root *root;
4341        struct list_head splice;
4342
4343        INIT_LIST_HEAD(&splice);
4344
4345        spin_lock(&fs_info->delalloc_root_lock);
4346        list_splice_init(&fs_info->delalloc_roots, &splice);
4347        while (!list_empty(&splice)) {
4348                root = list_first_entry(&splice, struct btrfs_root,
4349                                         delalloc_root);
4350                list_del_init(&root->delalloc_root);
4351                root = btrfs_grab_fs_root(root);
4352                BUG_ON(!root);
4353                spin_unlock(&fs_info->delalloc_root_lock);
4354
4355                btrfs_destroy_delalloc_inodes(root);
4356                btrfs_put_fs_root(root);
4357
4358                spin_lock(&fs_info->delalloc_root_lock);
4359        }
4360        spin_unlock(&fs_info->delalloc_root_lock);
4361}
4362
4363static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4364                                        struct extent_io_tree *dirty_pages,
4365                                        int mark)
4366{
4367        int ret;
4368        struct extent_buffer *eb;
4369        u64 start = 0;
4370        u64 end;
4371
4372        while (1) {
4373                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4374                                            mark, NULL);
4375                if (ret)
4376                        break;
4377
4378                clear_extent_bits(dirty_pages, start, end, mark);
4379                while (start <= end) {
4380                        eb = btrfs_find_tree_block(root->fs_info, start);
4381                        start += root->nodesize;
4382                        if (!eb)
4383                                continue;
4384                        wait_on_extent_buffer_writeback(eb);
4385
4386                        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4387                                               &eb->bflags))
4388                                clear_extent_buffer_dirty(eb);
4389                        free_extent_buffer_stale(eb);
4390                }
4391        }
4392
4393        return ret;
4394}
4395
4396static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4397                                       struct extent_io_tree *pinned_extents)
4398{
4399        struct extent_io_tree *unpin;
4400        u64 start;
4401        u64 end;
4402        int ret;
4403        bool loop = true;
4404
4405        unpin = pinned_extents;
4406again:
4407        while (1) {
4408                ret = find_first_extent_bit(unpin, 0, &start, &end,
4409                                            EXTENT_DIRTY, NULL);
4410                if (ret)
4411                        break;
4412
4413                clear_extent_dirty(unpin, start, end);
4414                btrfs_error_unpin_extent_range(root, start, end);
4415                cond_resched();
4416        }
4417
4418        if (loop) {
4419                if (unpin == &root->fs_info->freed_extents[0])
4420                        unpin = &root->fs_info->freed_extents[1];
4421                else
4422                        unpin = &root->fs_info->freed_extents[0];
4423                loop = false;
4424                goto again;
4425        }
4426
4427        return 0;
4428}
4429
4430void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4431                                   struct btrfs_root *root)
4432{
4433        btrfs_destroy_delayed_refs(cur_trans, root);
4434
4435        cur_trans->state = TRANS_STATE_COMMIT_START;
4436        wake_up(&root->fs_info->transaction_blocked_wait);
4437
4438        cur_trans->state = TRANS_STATE_UNBLOCKED;
4439        wake_up(&root->fs_info->transaction_wait);
4440
4441        btrfs_destroy_delayed_inodes(root);
4442        btrfs_assert_delayed_root_empty(root);
4443
4444        btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4445                                     EXTENT_DIRTY);
4446        btrfs_destroy_pinned_extent(root,
4447                                    root->fs_info->pinned_extents);
4448
4449        cur_trans->state =TRANS_STATE_COMPLETED;
4450        wake_up(&cur_trans->commit_wait);
4451
4452        /*
4453        memset(cur_trans, 0, sizeof(*cur_trans));
4454        kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4455        */
4456}
4457
4458static int btrfs_cleanup_transaction(struct btrfs_root *root)
4459{
4460        struct btrfs_transaction *t;
4461
4462        mutex_lock(&root->fs_info->transaction_kthread_mutex);
4463
4464        spin_lock(&root->fs_info->trans_lock);
4465        while (!list_empty(&root->fs_info->trans_list)) {
4466                t = list_first_entry(&root->fs_info->trans_list,
4467                                     struct btrfs_transaction, list);
4468                if (t->state >= TRANS_STATE_COMMIT_START) {
4469                        atomic_inc(&t->use_count);
4470                        spin_unlock(&root->fs_info->trans_lock);
4471                        btrfs_wait_for_commit(root, t->transid);
4472                        btrfs_put_transaction(t);
4473                        spin_lock(&root->fs_info->trans_lock);
4474                        continue;
4475                }
4476                if (t == root->fs_info->running_transaction) {
4477                        t->state = TRANS_STATE_COMMIT_DOING;
4478                        spin_unlock(&root->fs_info->trans_lock);
4479                        /*
4480                         * We wait for 0 num_writers since we don't hold a trans
4481                         * handle open currently for this transaction.
4482                         */
4483                        wait_event(t->writer_wait,
4484                                   atomic_read(&t->num_writers) == 0);
4485                } else {
4486                        spin_unlock(&root->fs_info->trans_lock);
4487                }
4488                btrfs_cleanup_one_transaction(t, root);
4489
4490                spin_lock(&root->fs_info->trans_lock);
4491                if (t == root->fs_info->running_transaction)
4492                        root->fs_info->running_transaction = NULL;
4493                list_del_init(&t->list);
4494                spin_unlock(&root->fs_info->trans_lock);
4495
4496                btrfs_put_transaction(t);
4497                trace_btrfs_transaction_commit(root);
4498                spin_lock(&root->fs_info->trans_lock);
4499        }
4500        spin_unlock(&root->fs_info->trans_lock);
4501        btrfs_destroy_all_ordered_extents(root->fs_info);
4502        btrfs_destroy_delayed_inodes(root);
4503        btrfs_assert_delayed_root_empty(root);
4504        btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4505        btrfs_destroy_all_delalloc_inodes(root->fs_info);
4506        mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4507
4508        return 0;
4509}
4510
4511static const struct extent_io_ops btree_extent_io_ops = {
4512        .readpage_end_io_hook = btree_readpage_end_io_hook,
4513        .readpage_io_failed_hook = btree_io_failed_hook,
4514        .submit_bio_hook = btree_submit_bio_hook,
4515        /* note we're sharing with inode.c for the merge bio hook */
4516        .merge_bio_hook = btrfs_merge_bio_hook,
4517};
4518