linux/fs/btrfs/extent-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18#include <linux/sched.h>
  19#include <linux/pagemap.h>
  20#include <linux/writeback.h>
  21#include <linux/blkdev.h>
  22#include <linux/sort.h>
  23#include <linux/rcupdate.h>
  24#include <linux/kthread.h>
  25#include <linux/slab.h>
  26#include <linux/ratelimit.h>
  27#include <linux/percpu_counter.h>
  28#include "hash.h"
  29#include "tree-log.h"
  30#include "disk-io.h"
  31#include "print-tree.h"
  32#include "volumes.h"
  33#include "raid56.h"
  34#include "locking.h"
  35#include "free-space-cache.h"
  36#include "free-space-tree.h"
  37#include "math.h"
  38#include "sysfs.h"
  39#include "qgroup.h"
  40
  41#undef SCRAMBLE_DELAYED_REFS
  42
  43/*
  44 * control flags for do_chunk_alloc's force field
  45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  46 * if we really need one.
  47 *
  48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
  49 * if we have very few chunks already allocated.  This is
  50 * used as part of the clustering code to help make sure
  51 * we have a good pool of storage to cluster in, without
  52 * filling the FS with empty chunks
  53 *
  54 * CHUNK_ALLOC_FORCE means it must try to allocate one
  55 *
  56 */
  57enum {
  58        CHUNK_ALLOC_NO_FORCE = 0,
  59        CHUNK_ALLOC_LIMITED = 1,
  60        CHUNK_ALLOC_FORCE = 2,
  61};
  62
  63/*
  64 * Control how reservations are dealt with.
  65 *
  66 * RESERVE_FREE - freeing a reservation.
  67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  68 *   ENOSPC accounting
  69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  70 *   bytes_may_use as the ENOSPC accounting is done elsewhere
  71 */
  72enum {
  73        RESERVE_FREE = 0,
  74        RESERVE_ALLOC = 1,
  75        RESERVE_ALLOC_NO_ACCOUNT = 2,
  76};
  77
  78static int update_block_group(struct btrfs_trans_handle *trans,
  79                              struct btrfs_root *root, u64 bytenr,
  80                              u64 num_bytes, int alloc);
  81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  82                                struct btrfs_root *root,
  83                                struct btrfs_delayed_ref_node *node, u64 parent,
  84                                u64 root_objectid, u64 owner_objectid,
  85                                u64 owner_offset, int refs_to_drop,
  86                                struct btrfs_delayed_extent_op *extra_op);
  87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  88                                    struct extent_buffer *leaf,
  89                                    struct btrfs_extent_item *ei);
  90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  91                                      struct btrfs_root *root,
  92                                      u64 parent, u64 root_objectid,
  93                                      u64 flags, u64 owner, u64 offset,
  94                                      struct btrfs_key *ins, int ref_mod);
  95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  96                                     struct btrfs_root *root,
  97                                     u64 parent, u64 root_objectid,
  98                                     u64 flags, struct btrfs_disk_key *key,
  99                                     int level, struct btrfs_key *ins);
 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
 101                          struct btrfs_root *extent_root, u64 flags,
 102                          int force);
 103static int find_next_key(struct btrfs_path *path, int level,
 104                         struct btrfs_key *key);
 105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
 106                            int dump_block_groups);
 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
 108                                       u64 num_bytes, int reserve,
 109                                       int delalloc);
 110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
 111                               u64 num_bytes);
 112int btrfs_pin_extent(struct btrfs_root *root,
 113                     u64 bytenr, u64 num_bytes, int reserved);
 114
 115static noinline int
 116block_group_cache_done(struct btrfs_block_group_cache *cache)
 117{
 118        smp_mb();
 119        return cache->cached == BTRFS_CACHE_FINISHED ||
 120                cache->cached == BTRFS_CACHE_ERROR;
 121}
 122
 123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
 124{
 125        return (cache->flags & bits) == bits;
 126}
 127
 128void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
 129{
 130        atomic_inc(&cache->count);
 131}
 132
 133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
 134{
 135        if (atomic_dec_and_test(&cache->count)) {
 136                WARN_ON(cache->pinned > 0);
 137                WARN_ON(cache->reserved > 0);
 138                kfree(cache->free_space_ctl);
 139                kfree(cache);
 140        }
 141}
 142
 143/*
 144 * this adds the block group to the fs_info rb tree for the block group
 145 * cache
 146 */
 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
 148                                struct btrfs_block_group_cache *block_group)
 149{
 150        struct rb_node **p;
 151        struct rb_node *parent = NULL;
 152        struct btrfs_block_group_cache *cache;
 153
 154        spin_lock(&info->block_group_cache_lock);
 155        p = &info->block_group_cache_tree.rb_node;
 156
 157        while (*p) {
 158                parent = *p;
 159                cache = rb_entry(parent, struct btrfs_block_group_cache,
 160                                 cache_node);
 161                if (block_group->key.objectid < cache->key.objectid) {
 162                        p = &(*p)->rb_left;
 163                } else if (block_group->key.objectid > cache->key.objectid) {
 164                        p = &(*p)->rb_right;
 165                } else {
 166                        spin_unlock(&info->block_group_cache_lock);
 167                        return -EEXIST;
 168                }
 169        }
 170
 171        rb_link_node(&block_group->cache_node, parent, p);
 172        rb_insert_color(&block_group->cache_node,
 173                        &info->block_group_cache_tree);
 174
 175        if (info->first_logical_byte > block_group->key.objectid)
 176                info->first_logical_byte = block_group->key.objectid;
 177
 178        spin_unlock(&info->block_group_cache_lock);
 179
 180        return 0;
 181}
 182
 183/*
 184 * This will return the block group at or after bytenr if contains is 0, else
 185 * it will return the block group that contains the bytenr
 186 */
 187static struct btrfs_block_group_cache *
 188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
 189                              int contains)
 190{
 191        struct btrfs_block_group_cache *cache, *ret = NULL;
 192        struct rb_node *n;
 193        u64 end, start;
 194
 195        spin_lock(&info->block_group_cache_lock);
 196        n = info->block_group_cache_tree.rb_node;
 197
 198        while (n) {
 199                cache = rb_entry(n, struct btrfs_block_group_cache,
 200                                 cache_node);
 201                end = cache->key.objectid + cache->key.offset - 1;
 202                start = cache->key.objectid;
 203
 204                if (bytenr < start) {
 205                        if (!contains && (!ret || start < ret->key.objectid))
 206                                ret = cache;
 207                        n = n->rb_left;
 208                } else if (bytenr > start) {
 209                        if (contains && bytenr <= end) {
 210                                ret = cache;
 211                                break;
 212                        }
 213                        n = n->rb_right;
 214                } else {
 215                        ret = cache;
 216                        break;
 217                }
 218        }
 219        if (ret) {
 220                btrfs_get_block_group(ret);
 221                if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
 222                        info->first_logical_byte = ret->key.objectid;
 223        }
 224        spin_unlock(&info->block_group_cache_lock);
 225
 226        return ret;
 227}
 228
 229static int add_excluded_extent(struct btrfs_root *root,
 230                               u64 start, u64 num_bytes)
 231{
 232        u64 end = start + num_bytes - 1;
 233        set_extent_bits(&root->fs_info->freed_extents[0],
 234                        start, end, EXTENT_UPTODATE);
 235        set_extent_bits(&root->fs_info->freed_extents[1],
 236                        start, end, EXTENT_UPTODATE);
 237        return 0;
 238}
 239
 240static void free_excluded_extents(struct btrfs_root *root,
 241                                  struct btrfs_block_group_cache *cache)
 242{
 243        u64 start, end;
 244
 245        start = cache->key.objectid;
 246        end = start + cache->key.offset - 1;
 247
 248        clear_extent_bits(&root->fs_info->freed_extents[0],
 249                          start, end, EXTENT_UPTODATE);
 250        clear_extent_bits(&root->fs_info->freed_extents[1],
 251                          start, end, EXTENT_UPTODATE);
 252}
 253
 254static int exclude_super_stripes(struct btrfs_root *root,
 255                                 struct btrfs_block_group_cache *cache)
 256{
 257        u64 bytenr;
 258        u64 *logical;
 259        int stripe_len;
 260        int i, nr, ret;
 261
 262        if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
 263                stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
 264                cache->bytes_super += stripe_len;
 265                ret = add_excluded_extent(root, cache->key.objectid,
 266                                          stripe_len);
 267                if (ret)
 268                        return ret;
 269        }
 270
 271        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 272                bytenr = btrfs_sb_offset(i);
 273                ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
 274                                       cache->key.objectid, bytenr,
 275                                       0, &logical, &nr, &stripe_len);
 276                if (ret)
 277                        return ret;
 278
 279                while (nr--) {
 280                        u64 start, len;
 281
 282                        if (logical[nr] > cache->key.objectid +
 283                            cache->key.offset)
 284                                continue;
 285
 286                        if (logical[nr] + stripe_len <= cache->key.objectid)
 287                                continue;
 288
 289                        start = logical[nr];
 290                        if (start < cache->key.objectid) {
 291                                start = cache->key.objectid;
 292                                len = (logical[nr] + stripe_len) - start;
 293                        } else {
 294                                len = min_t(u64, stripe_len,
 295                                            cache->key.objectid +
 296                                            cache->key.offset - start);
 297                        }
 298
 299                        cache->bytes_super += len;
 300                        ret = add_excluded_extent(root, start, len);
 301                        if (ret) {
 302                                kfree(logical);
 303                                return ret;
 304                        }
 305                }
 306
 307                kfree(logical);
 308        }
 309        return 0;
 310}
 311
 312static struct btrfs_caching_control *
 313get_caching_control(struct btrfs_block_group_cache *cache)
 314{
 315        struct btrfs_caching_control *ctl;
 316
 317        spin_lock(&cache->lock);
 318        if (!cache->caching_ctl) {
 319                spin_unlock(&cache->lock);
 320                return NULL;
 321        }
 322
 323        ctl = cache->caching_ctl;
 324        atomic_inc(&ctl->count);
 325        spin_unlock(&cache->lock);
 326        return ctl;
 327}
 328
 329static void put_caching_control(struct btrfs_caching_control *ctl)
 330{
 331        if (atomic_dec_and_test(&ctl->count))
 332                kfree(ctl);
 333}
 334
 335#ifdef CONFIG_BTRFS_DEBUG
 336static void fragment_free_space(struct btrfs_root *root,
 337                                struct btrfs_block_group_cache *block_group)
 338{
 339        u64 start = block_group->key.objectid;
 340        u64 len = block_group->key.offset;
 341        u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
 342                root->nodesize : root->sectorsize;
 343        u64 step = chunk << 1;
 344
 345        while (len > chunk) {
 346                btrfs_remove_free_space(block_group, start, chunk);
 347                start += step;
 348                if (len < step)
 349                        len = 0;
 350                else
 351                        len -= step;
 352        }
 353}
 354#endif
 355
 356/*
 357 * this is only called by cache_block_group, since we could have freed extents
 358 * we need to check the pinned_extents for any extents that can't be used yet
 359 * since their free space will be released as soon as the transaction commits.
 360 */
 361u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
 362                       struct btrfs_fs_info *info, u64 start, u64 end)
 363{
 364        u64 extent_start, extent_end, size, total_added = 0;
 365        int ret;
 366
 367        while (start < end) {
 368                ret = find_first_extent_bit(info->pinned_extents, start,
 369                                            &extent_start, &extent_end,
 370                                            EXTENT_DIRTY | EXTENT_UPTODATE,
 371                                            NULL);
 372                if (ret)
 373                        break;
 374
 375                if (extent_start <= start) {
 376                        start = extent_end + 1;
 377                } else if (extent_start > start && extent_start < end) {
 378                        size = extent_start - start;
 379                        total_added += size;
 380                        ret = btrfs_add_free_space(block_group, start,
 381                                                   size);
 382                        BUG_ON(ret); /* -ENOMEM or logic error */
 383                        start = extent_end + 1;
 384                } else {
 385                        break;
 386                }
 387        }
 388
 389        if (start < end) {
 390                size = end - start;
 391                total_added += size;
 392                ret = btrfs_add_free_space(block_group, start, size);
 393                BUG_ON(ret); /* -ENOMEM or logic error */
 394        }
 395
 396        return total_added;
 397}
 398
 399static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
 400{
 401        struct btrfs_block_group_cache *block_group;
 402        struct btrfs_fs_info *fs_info;
 403        struct btrfs_root *extent_root;
 404        struct btrfs_path *path;
 405        struct extent_buffer *leaf;
 406        struct btrfs_key key;
 407        u64 total_found = 0;
 408        u64 last = 0;
 409        u32 nritems;
 410        int ret;
 411        bool wakeup = true;
 412
 413        block_group = caching_ctl->block_group;
 414        fs_info = block_group->fs_info;
 415        extent_root = fs_info->extent_root;
 416
 417        path = btrfs_alloc_path();
 418        if (!path)
 419                return -ENOMEM;
 420
 421        last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
 422
 423#ifdef CONFIG_BTRFS_DEBUG
 424        /*
 425         * If we're fragmenting we don't want to make anybody think we can
 426         * allocate from this block group until we've had a chance to fragment
 427         * the free space.
 428         */
 429        if (btrfs_should_fragment_free_space(extent_root, block_group))
 430                wakeup = false;
 431#endif
 432        /*
 433         * We don't want to deadlock with somebody trying to allocate a new
 434         * extent for the extent root while also trying to search the extent
 435         * root to add free space.  So we skip locking and search the commit
 436         * root, since its read-only
 437         */
 438        path->skip_locking = 1;
 439        path->search_commit_root = 1;
 440        path->reada = READA_FORWARD;
 441
 442        key.objectid = last;
 443        key.offset = 0;
 444        key.type = BTRFS_EXTENT_ITEM_KEY;
 445
 446next:
 447        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
 448        if (ret < 0)
 449                goto out;
 450
 451        leaf = path->nodes[0];
 452        nritems = btrfs_header_nritems(leaf);
 453
 454        while (1) {
 455                if (btrfs_fs_closing(fs_info) > 1) {
 456                        last = (u64)-1;
 457                        break;
 458                }
 459
 460                if (path->slots[0] < nritems) {
 461                        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
 462                } else {
 463                        ret = find_next_key(path, 0, &key);
 464                        if (ret)
 465                                break;
 466
 467                        if (need_resched() ||
 468                            rwsem_is_contended(&fs_info->commit_root_sem)) {
 469                                if (wakeup)
 470                                        caching_ctl->progress = last;
 471                                btrfs_release_path(path);
 472                                up_read(&fs_info->commit_root_sem);
 473                                mutex_unlock(&caching_ctl->mutex);
 474                                cond_resched();
 475                                mutex_lock(&caching_ctl->mutex);
 476                                down_read(&fs_info->commit_root_sem);
 477                                goto next;
 478                        }
 479
 480                        ret = btrfs_next_leaf(extent_root, path);
 481                        if (ret < 0)
 482                                goto out;
 483                        if (ret)
 484                                break;
 485                        leaf = path->nodes[0];
 486                        nritems = btrfs_header_nritems(leaf);
 487                        continue;
 488                }
 489
 490                if (key.objectid < last) {
 491                        key.objectid = last;
 492                        key.offset = 0;
 493                        key.type = BTRFS_EXTENT_ITEM_KEY;
 494
 495                        if (wakeup)
 496                                caching_ctl->progress = last;
 497                        btrfs_release_path(path);
 498                        goto next;
 499                }
 500
 501                if (key.objectid < block_group->key.objectid) {
 502                        path->slots[0]++;
 503                        continue;
 504                }
 505
 506                if (key.objectid >= block_group->key.objectid +
 507                    block_group->key.offset)
 508                        break;
 509
 510                if (key.type == BTRFS_EXTENT_ITEM_KEY ||
 511                    key.type == BTRFS_METADATA_ITEM_KEY) {
 512                        total_found += add_new_free_space(block_group,
 513                                                          fs_info, last,
 514                                                          key.objectid);
 515                        if (key.type == BTRFS_METADATA_ITEM_KEY)
 516                                last = key.objectid +
 517                                        fs_info->tree_root->nodesize;
 518                        else
 519                                last = key.objectid + key.offset;
 520
 521                        if (total_found > CACHING_CTL_WAKE_UP) {
 522                                total_found = 0;
 523                                if (wakeup)
 524                                        wake_up(&caching_ctl->wait);
 525                        }
 526                }
 527                path->slots[0]++;
 528        }
 529        ret = 0;
 530
 531        total_found += add_new_free_space(block_group, fs_info, last,
 532                                          block_group->key.objectid +
 533                                          block_group->key.offset);
 534        caching_ctl->progress = (u64)-1;
 535
 536out:
 537        btrfs_free_path(path);
 538        return ret;
 539}
 540
 541static noinline void caching_thread(struct btrfs_work *work)
 542{
 543        struct btrfs_block_group_cache *block_group;
 544        struct btrfs_fs_info *fs_info;
 545        struct btrfs_caching_control *caching_ctl;
 546        struct btrfs_root *extent_root;
 547        int ret;
 548
 549        caching_ctl = container_of(work, struct btrfs_caching_control, work);
 550        block_group = caching_ctl->block_group;
 551        fs_info = block_group->fs_info;
 552        extent_root = fs_info->extent_root;
 553
 554        mutex_lock(&caching_ctl->mutex);
 555        down_read(&fs_info->commit_root_sem);
 556
 557        if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
 558                ret = load_free_space_tree(caching_ctl);
 559        else
 560                ret = load_extent_tree_free(caching_ctl);
 561
 562        spin_lock(&block_group->lock);
 563        block_group->caching_ctl = NULL;
 564        block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
 565        spin_unlock(&block_group->lock);
 566
 567#ifdef CONFIG_BTRFS_DEBUG
 568        if (btrfs_should_fragment_free_space(extent_root, block_group)) {
 569                u64 bytes_used;
 570
 571                spin_lock(&block_group->space_info->lock);
 572                spin_lock(&block_group->lock);
 573                bytes_used = block_group->key.offset -
 574                        btrfs_block_group_used(&block_group->item);
 575                block_group->space_info->bytes_used += bytes_used >> 1;
 576                spin_unlock(&block_group->lock);
 577                spin_unlock(&block_group->space_info->lock);
 578                fragment_free_space(extent_root, block_group);
 579        }
 580#endif
 581
 582        caching_ctl->progress = (u64)-1;
 583
 584        up_read(&fs_info->commit_root_sem);
 585        free_excluded_extents(fs_info->extent_root, block_group);
 586        mutex_unlock(&caching_ctl->mutex);
 587
 588        wake_up(&caching_ctl->wait);
 589
 590        put_caching_control(caching_ctl);
 591        btrfs_put_block_group(block_group);
 592}
 593
 594static int cache_block_group(struct btrfs_block_group_cache *cache,
 595                             int load_cache_only)
 596{
 597        DEFINE_WAIT(wait);
 598        struct btrfs_fs_info *fs_info = cache->fs_info;
 599        struct btrfs_caching_control *caching_ctl;
 600        int ret = 0;
 601
 602        caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
 603        if (!caching_ctl)
 604                return -ENOMEM;
 605
 606        INIT_LIST_HEAD(&caching_ctl->list);
 607        mutex_init(&caching_ctl->mutex);
 608        init_waitqueue_head(&caching_ctl->wait);
 609        caching_ctl->block_group = cache;
 610        caching_ctl->progress = cache->key.objectid;
 611        atomic_set(&caching_ctl->count, 1);
 612        btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
 613                        caching_thread, NULL, NULL);
 614
 615        spin_lock(&cache->lock);
 616        /*
 617         * This should be a rare occasion, but this could happen I think in the
 618         * case where one thread starts to load the space cache info, and then
 619         * some other thread starts a transaction commit which tries to do an
 620         * allocation while the other thread is still loading the space cache
 621         * info.  The previous loop should have kept us from choosing this block
 622         * group, but if we've moved to the state where we will wait on caching
 623         * block groups we need to first check if we're doing a fast load here,
 624         * so we can wait for it to finish, otherwise we could end up allocating
 625         * from a block group who's cache gets evicted for one reason or
 626         * another.
 627         */
 628        while (cache->cached == BTRFS_CACHE_FAST) {
 629                struct btrfs_caching_control *ctl;
 630
 631                ctl = cache->caching_ctl;
 632                atomic_inc(&ctl->count);
 633                prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
 634                spin_unlock(&cache->lock);
 635
 636                schedule();
 637
 638                finish_wait(&ctl->wait, &wait);
 639                put_caching_control(ctl);
 640                spin_lock(&cache->lock);
 641        }
 642
 643        if (cache->cached != BTRFS_CACHE_NO) {
 644                spin_unlock(&cache->lock);
 645                kfree(caching_ctl);
 646                return 0;
 647        }
 648        WARN_ON(cache->caching_ctl);
 649        cache->caching_ctl = caching_ctl;
 650        cache->cached = BTRFS_CACHE_FAST;
 651        spin_unlock(&cache->lock);
 652
 653        if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
 654                mutex_lock(&caching_ctl->mutex);
 655                ret = load_free_space_cache(fs_info, cache);
 656
 657                spin_lock(&cache->lock);
 658                if (ret == 1) {
 659                        cache->caching_ctl = NULL;
 660                        cache->cached = BTRFS_CACHE_FINISHED;
 661                        cache->last_byte_to_unpin = (u64)-1;
 662                        caching_ctl->progress = (u64)-1;
 663                } else {
 664                        if (load_cache_only) {
 665                                cache->caching_ctl = NULL;
 666                                cache->cached = BTRFS_CACHE_NO;
 667                        } else {
 668                                cache->cached = BTRFS_CACHE_STARTED;
 669                                cache->has_caching_ctl = 1;
 670                        }
 671                }
 672                spin_unlock(&cache->lock);
 673#ifdef CONFIG_BTRFS_DEBUG
 674                if (ret == 1 &&
 675                    btrfs_should_fragment_free_space(fs_info->extent_root,
 676                                                     cache)) {
 677                        u64 bytes_used;
 678
 679                        spin_lock(&cache->space_info->lock);
 680                        spin_lock(&cache->lock);
 681                        bytes_used = cache->key.offset -
 682                                btrfs_block_group_used(&cache->item);
 683                        cache->space_info->bytes_used += bytes_used >> 1;
 684                        spin_unlock(&cache->lock);
 685                        spin_unlock(&cache->space_info->lock);
 686                        fragment_free_space(fs_info->extent_root, cache);
 687                }
 688#endif
 689                mutex_unlock(&caching_ctl->mutex);
 690
 691                wake_up(&caching_ctl->wait);
 692                if (ret == 1) {
 693                        put_caching_control(caching_ctl);
 694                        free_excluded_extents(fs_info->extent_root, cache);
 695                        return 0;
 696                }
 697        } else {
 698                /*
 699                 * We're either using the free space tree or no caching at all.
 700                 * Set cached to the appropriate value and wakeup any waiters.
 701                 */
 702                spin_lock(&cache->lock);
 703                if (load_cache_only) {
 704                        cache->caching_ctl = NULL;
 705                        cache->cached = BTRFS_CACHE_NO;
 706                } else {
 707                        cache->cached = BTRFS_CACHE_STARTED;
 708                        cache->has_caching_ctl = 1;
 709                }
 710                spin_unlock(&cache->lock);
 711                wake_up(&caching_ctl->wait);
 712        }
 713
 714        if (load_cache_only) {
 715                put_caching_control(caching_ctl);
 716                return 0;
 717        }
 718
 719        down_write(&fs_info->commit_root_sem);
 720        atomic_inc(&caching_ctl->count);
 721        list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
 722        up_write(&fs_info->commit_root_sem);
 723
 724        btrfs_get_block_group(cache);
 725
 726        btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
 727
 728        return ret;
 729}
 730
 731/*
 732 * return the block group that starts at or after bytenr
 733 */
 734static struct btrfs_block_group_cache *
 735btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
 736{
 737        struct btrfs_block_group_cache *cache;
 738
 739        cache = block_group_cache_tree_search(info, bytenr, 0);
 740
 741        return cache;
 742}
 743
 744/*
 745 * return the block group that contains the given bytenr
 746 */
 747struct btrfs_block_group_cache *btrfs_lookup_block_group(
 748                                                 struct btrfs_fs_info *info,
 749                                                 u64 bytenr)
 750{
 751        struct btrfs_block_group_cache *cache;
 752
 753        cache = block_group_cache_tree_search(info, bytenr, 1);
 754
 755        return cache;
 756}
 757
 758static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
 759                                                  u64 flags)
 760{
 761        struct list_head *head = &info->space_info;
 762        struct btrfs_space_info *found;
 763
 764        flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
 765
 766        rcu_read_lock();
 767        list_for_each_entry_rcu(found, head, list) {
 768                if (found->flags & flags) {
 769                        rcu_read_unlock();
 770                        return found;
 771                }
 772        }
 773        rcu_read_unlock();
 774        return NULL;
 775}
 776
 777/*
 778 * after adding space to the filesystem, we need to clear the full flags
 779 * on all the space infos.
 780 */
 781void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
 782{
 783        struct list_head *head = &info->space_info;
 784        struct btrfs_space_info *found;
 785
 786        rcu_read_lock();
 787        list_for_each_entry_rcu(found, head, list)
 788                found->full = 0;
 789        rcu_read_unlock();
 790}
 791
 792/* simple helper to search for an existing data extent at a given offset */
 793int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
 794{
 795        int ret;
 796        struct btrfs_key key;
 797        struct btrfs_path *path;
 798
 799        path = btrfs_alloc_path();
 800        if (!path)
 801                return -ENOMEM;
 802
 803        key.objectid = start;
 804        key.offset = len;
 805        key.type = BTRFS_EXTENT_ITEM_KEY;
 806        ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
 807                                0, 0);
 808        btrfs_free_path(path);
 809        return ret;
 810}
 811
 812/*
 813 * helper function to lookup reference count and flags of a tree block.
 814 *
 815 * the head node for delayed ref is used to store the sum of all the
 816 * reference count modifications queued up in the rbtree. the head
 817 * node may also store the extent flags to set. This way you can check
 818 * to see what the reference count and extent flags would be if all of
 819 * the delayed refs are not processed.
 820 */
 821int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
 822                             struct btrfs_root *root, u64 bytenr,
 823                             u64 offset, int metadata, u64 *refs, u64 *flags)
 824{
 825        struct btrfs_delayed_ref_head *head;
 826        struct btrfs_delayed_ref_root *delayed_refs;
 827        struct btrfs_path *path;
 828        struct btrfs_extent_item *ei;
 829        struct extent_buffer *leaf;
 830        struct btrfs_key key;
 831        u32 item_size;
 832        u64 num_refs;
 833        u64 extent_flags;
 834        int ret;
 835
 836        /*
 837         * If we don't have skinny metadata, don't bother doing anything
 838         * different
 839         */
 840        if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
 841                offset = root->nodesize;
 842                metadata = 0;
 843        }
 844
 845        path = btrfs_alloc_path();
 846        if (!path)
 847                return -ENOMEM;
 848
 849        if (!trans) {
 850                path->skip_locking = 1;
 851                path->search_commit_root = 1;
 852        }
 853
 854search_again:
 855        key.objectid = bytenr;
 856        key.offset = offset;
 857        if (metadata)
 858                key.type = BTRFS_METADATA_ITEM_KEY;
 859        else
 860                key.type = BTRFS_EXTENT_ITEM_KEY;
 861
 862        ret = btrfs_search_slot(trans, root->fs_info->extent_root,
 863                                &key, path, 0, 0);
 864        if (ret < 0)
 865                goto out_free;
 866
 867        if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
 868                if (path->slots[0]) {
 869                        path->slots[0]--;
 870                        btrfs_item_key_to_cpu(path->nodes[0], &key,
 871                                              path->slots[0]);
 872                        if (key.objectid == bytenr &&
 873                            key.type == BTRFS_EXTENT_ITEM_KEY &&
 874                            key.offset == root->nodesize)
 875                                ret = 0;
 876                }
 877        }
 878
 879        if (ret == 0) {
 880                leaf = path->nodes[0];
 881                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
 882                if (item_size >= sizeof(*ei)) {
 883                        ei = btrfs_item_ptr(leaf, path->slots[0],
 884                                            struct btrfs_extent_item);
 885                        num_refs = btrfs_extent_refs(leaf, ei);
 886                        extent_flags = btrfs_extent_flags(leaf, ei);
 887                } else {
 888#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 889                        struct btrfs_extent_item_v0 *ei0;
 890                        BUG_ON(item_size != sizeof(*ei0));
 891                        ei0 = btrfs_item_ptr(leaf, path->slots[0],
 892                                             struct btrfs_extent_item_v0);
 893                        num_refs = btrfs_extent_refs_v0(leaf, ei0);
 894                        /* FIXME: this isn't correct for data */
 895                        extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 896#else
 897                        BUG();
 898#endif
 899                }
 900                BUG_ON(num_refs == 0);
 901        } else {
 902                num_refs = 0;
 903                extent_flags = 0;
 904                ret = 0;
 905        }
 906
 907        if (!trans)
 908                goto out;
 909
 910        delayed_refs = &trans->transaction->delayed_refs;
 911        spin_lock(&delayed_refs->lock);
 912        head = btrfs_find_delayed_ref_head(trans, bytenr);
 913        if (head) {
 914                if (!mutex_trylock(&head->mutex)) {
 915                        atomic_inc(&head->node.refs);
 916                        spin_unlock(&delayed_refs->lock);
 917
 918                        btrfs_release_path(path);
 919
 920                        /*
 921                         * Mutex was contended, block until it's released and try
 922                         * again
 923                         */
 924                        mutex_lock(&head->mutex);
 925                        mutex_unlock(&head->mutex);
 926                        btrfs_put_delayed_ref(&head->node);
 927                        goto search_again;
 928                }
 929                spin_lock(&head->lock);
 930                if (head->extent_op && head->extent_op->update_flags)
 931                        extent_flags |= head->extent_op->flags_to_set;
 932                else
 933                        BUG_ON(num_refs == 0);
 934
 935                num_refs += head->node.ref_mod;
 936                spin_unlock(&head->lock);
 937                mutex_unlock(&head->mutex);
 938        }
 939        spin_unlock(&delayed_refs->lock);
 940out:
 941        WARN_ON(num_refs == 0);
 942        if (refs)
 943                *refs = num_refs;
 944        if (flags)
 945                *flags = extent_flags;
 946out_free:
 947        btrfs_free_path(path);
 948        return ret;
 949}
 950
 951/*
 952 * Back reference rules.  Back refs have three main goals:
 953 *
 954 * 1) differentiate between all holders of references to an extent so that
 955 *    when a reference is dropped we can make sure it was a valid reference
 956 *    before freeing the extent.
 957 *
 958 * 2) Provide enough information to quickly find the holders of an extent
 959 *    if we notice a given block is corrupted or bad.
 960 *
 961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
 962 *    maintenance.  This is actually the same as #2, but with a slightly
 963 *    different use case.
 964 *
 965 * There are two kinds of back refs. The implicit back refs is optimized
 966 * for pointers in non-shared tree blocks. For a given pointer in a block,
 967 * back refs of this kind provide information about the block's owner tree
 968 * and the pointer's key. These information allow us to find the block by
 969 * b-tree searching. The full back refs is for pointers in tree blocks not
 970 * referenced by their owner trees. The location of tree block is recorded
 971 * in the back refs. Actually the full back refs is generic, and can be
 972 * used in all cases the implicit back refs is used. The major shortcoming
 973 * of the full back refs is its overhead. Every time a tree block gets
 974 * COWed, we have to update back refs entry for all pointers in it.
 975 *
 976 * For a newly allocated tree block, we use implicit back refs for
 977 * pointers in it. This means most tree related operations only involve
 978 * implicit back refs. For a tree block created in old transaction, the
 979 * only way to drop a reference to it is COW it. So we can detect the
 980 * event that tree block loses its owner tree's reference and do the
 981 * back refs conversion.
 982 *
 983 * When a tree block is COWed through a tree, there are four cases:
 984 *
 985 * The reference count of the block is one and the tree is the block's
 986 * owner tree. Nothing to do in this case.
 987 *
 988 * The reference count of the block is one and the tree is not the
 989 * block's owner tree. In this case, full back refs is used for pointers
 990 * in the block. Remove these full back refs, add implicit back refs for
 991 * every pointers in the new block.
 992 *
 993 * The reference count of the block is greater than one and the tree is
 994 * the block's owner tree. In this case, implicit back refs is used for
 995 * pointers in the block. Add full back refs for every pointers in the
 996 * block, increase lower level extents' reference counts. The original
 997 * implicit back refs are entailed to the new block.
 998 *
 999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
1013 * - different files inside a single subvolume
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
1016 * The extent ref structure for the implicit back refs has fields for:
1017 *
1018 * - Objectid of the subvolume root
1019 * - objectid of the file holding the reference
1020 * - original offset in the file
1021 * - how many bookend extents
1022 *
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
1025 *
1026 * The extent ref structure for the full back refs has field for:
1027 *
1028 * - number of pointers in the tree leaf
1029 *
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
1032 *
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
1035 *
1036 *     (root_key.objectid, inode objectid, offset in file, 1)
1037 *
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
1040 *
1041 *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1042 *
1043 * Btree extents can be referenced by:
1044 *
1045 * - Different subvolumes
1046 *
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
1051 *
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
1055 */
1056
1057#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1059                                  struct btrfs_root *root,
1060                                  struct btrfs_path *path,
1061                                  u64 owner, u32 extra_size)
1062{
1063        struct btrfs_extent_item *item;
1064        struct btrfs_extent_item_v0 *ei0;
1065        struct btrfs_extent_ref_v0 *ref0;
1066        struct btrfs_tree_block_info *bi;
1067        struct extent_buffer *leaf;
1068        struct btrfs_key key;
1069        struct btrfs_key found_key;
1070        u32 new_size = sizeof(*item);
1071        u64 refs;
1072        int ret;
1073
1074        leaf = path->nodes[0];
1075        BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1076
1077        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1078        ei0 = btrfs_item_ptr(leaf, path->slots[0],
1079                             struct btrfs_extent_item_v0);
1080        refs = btrfs_extent_refs_v0(leaf, ei0);
1081
1082        if (owner == (u64)-1) {
1083                while (1) {
1084                        if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1085                                ret = btrfs_next_leaf(root, path);
1086                                if (ret < 0)
1087                                        return ret;
1088                                BUG_ON(ret > 0); /* Corruption */
1089                                leaf = path->nodes[0];
1090                        }
1091                        btrfs_item_key_to_cpu(leaf, &found_key,
1092                                              path->slots[0]);
1093                        BUG_ON(key.objectid != found_key.objectid);
1094                        if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1095                                path->slots[0]++;
1096                                continue;
1097                        }
1098                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1099                                              struct btrfs_extent_ref_v0);
1100                        owner = btrfs_ref_objectid_v0(leaf, ref0);
1101                        break;
1102                }
1103        }
1104        btrfs_release_path(path);
1105
1106        if (owner < BTRFS_FIRST_FREE_OBJECTID)
1107                new_size += sizeof(*bi);
1108
1109        new_size -= sizeof(*ei0);
1110        ret = btrfs_search_slot(trans, root, &key, path,
1111                                new_size + extra_size, 1);
1112        if (ret < 0)
1113                return ret;
1114        BUG_ON(ret); /* Corruption */
1115
1116        btrfs_extend_item(root, path, new_size);
1117
1118        leaf = path->nodes[0];
1119        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1120        btrfs_set_extent_refs(leaf, item, refs);
1121        /* FIXME: get real generation */
1122        btrfs_set_extent_generation(leaf, item, 0);
1123        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1124                btrfs_set_extent_flags(leaf, item,
1125                                       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1126                                       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1127                bi = (struct btrfs_tree_block_info *)(item + 1);
1128                /* FIXME: get first key of the block */
1129                memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1130                btrfs_set_tree_block_level(leaf, bi, (int)owner);
1131        } else {
1132                btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1133        }
1134        btrfs_mark_buffer_dirty(leaf);
1135        return 0;
1136}
1137#endif
1138
1139static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1140{
1141        u32 high_crc = ~(u32)0;
1142        u32 low_crc = ~(u32)0;
1143        __le64 lenum;
1144
1145        lenum = cpu_to_le64(root_objectid);
1146        high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1147        lenum = cpu_to_le64(owner);
1148        low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1149        lenum = cpu_to_le64(offset);
1150        low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1151
1152        return ((u64)high_crc << 31) ^ (u64)low_crc;
1153}
1154
1155static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1156                                     struct btrfs_extent_data_ref *ref)
1157{
1158        return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1159                                    btrfs_extent_data_ref_objectid(leaf, ref),
1160                                    btrfs_extent_data_ref_offset(leaf, ref));
1161}
1162
1163static int match_extent_data_ref(struct extent_buffer *leaf,
1164                                 struct btrfs_extent_data_ref *ref,
1165                                 u64 root_objectid, u64 owner, u64 offset)
1166{
1167        if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1168            btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1169            btrfs_extent_data_ref_offset(leaf, ref) != offset)
1170                return 0;
1171        return 1;
1172}
1173
1174static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1175                                           struct btrfs_root *root,
1176                                           struct btrfs_path *path,
1177                                           u64 bytenr, u64 parent,
1178                                           u64 root_objectid,
1179                                           u64 owner, u64 offset)
1180{
1181        struct btrfs_key key;
1182        struct btrfs_extent_data_ref *ref;
1183        struct extent_buffer *leaf;
1184        u32 nritems;
1185        int ret;
1186        int recow;
1187        int err = -ENOENT;
1188
1189        key.objectid = bytenr;
1190        if (parent) {
1191                key.type = BTRFS_SHARED_DATA_REF_KEY;
1192                key.offset = parent;
1193        } else {
1194                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1195                key.offset = hash_extent_data_ref(root_objectid,
1196                                                  owner, offset);
1197        }
1198again:
1199        recow = 0;
1200        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201        if (ret < 0) {
1202                err = ret;
1203                goto fail;
1204        }
1205
1206        if (parent) {
1207                if (!ret)
1208                        return 0;
1209#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210                key.type = BTRFS_EXTENT_REF_V0_KEY;
1211                btrfs_release_path(path);
1212                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1213                if (ret < 0) {
1214                        err = ret;
1215                        goto fail;
1216                }
1217                if (!ret)
1218                        return 0;
1219#endif
1220                goto fail;
1221        }
1222
1223        leaf = path->nodes[0];
1224        nritems = btrfs_header_nritems(leaf);
1225        while (1) {
1226                if (path->slots[0] >= nritems) {
1227                        ret = btrfs_next_leaf(root, path);
1228                        if (ret < 0)
1229                                err = ret;
1230                        if (ret)
1231                                goto fail;
1232
1233                        leaf = path->nodes[0];
1234                        nritems = btrfs_header_nritems(leaf);
1235                        recow = 1;
1236                }
1237
1238                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1239                if (key.objectid != bytenr ||
1240                    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1241                        goto fail;
1242
1243                ref = btrfs_item_ptr(leaf, path->slots[0],
1244                                     struct btrfs_extent_data_ref);
1245
1246                if (match_extent_data_ref(leaf, ref, root_objectid,
1247                                          owner, offset)) {
1248                        if (recow) {
1249                                btrfs_release_path(path);
1250                                goto again;
1251                        }
1252                        err = 0;
1253                        break;
1254                }
1255                path->slots[0]++;
1256        }
1257fail:
1258        return err;
1259}
1260
1261static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1262                                           struct btrfs_root *root,
1263                                           struct btrfs_path *path,
1264                                           u64 bytenr, u64 parent,
1265                                           u64 root_objectid, u64 owner,
1266                                           u64 offset, int refs_to_add)
1267{
1268        struct btrfs_key key;
1269        struct extent_buffer *leaf;
1270        u32 size;
1271        u32 num_refs;
1272        int ret;
1273
1274        key.objectid = bytenr;
1275        if (parent) {
1276                key.type = BTRFS_SHARED_DATA_REF_KEY;
1277                key.offset = parent;
1278                size = sizeof(struct btrfs_shared_data_ref);
1279        } else {
1280                key.type = BTRFS_EXTENT_DATA_REF_KEY;
1281                key.offset = hash_extent_data_ref(root_objectid,
1282                                                  owner, offset);
1283                size = sizeof(struct btrfs_extent_data_ref);
1284        }
1285
1286        ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1287        if (ret && ret != -EEXIST)
1288                goto fail;
1289
1290        leaf = path->nodes[0];
1291        if (parent) {
1292                struct btrfs_shared_data_ref *ref;
1293                ref = btrfs_item_ptr(leaf, path->slots[0],
1294                                     struct btrfs_shared_data_ref);
1295                if (ret == 0) {
1296                        btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1297                } else {
1298                        num_refs = btrfs_shared_data_ref_count(leaf, ref);
1299                        num_refs += refs_to_add;
1300                        btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1301                }
1302        } else {
1303                struct btrfs_extent_data_ref *ref;
1304                while (ret == -EEXIST) {
1305                        ref = btrfs_item_ptr(leaf, path->slots[0],
1306                                             struct btrfs_extent_data_ref);
1307                        if (match_extent_data_ref(leaf, ref, root_objectid,
1308                                                  owner, offset))
1309                                break;
1310                        btrfs_release_path(path);
1311                        key.offset++;
1312                        ret = btrfs_insert_empty_item(trans, root, path, &key,
1313                                                      size);
1314                        if (ret && ret != -EEXIST)
1315                                goto fail;
1316
1317                        leaf = path->nodes[0];
1318                }
1319                ref = btrfs_item_ptr(leaf, path->slots[0],
1320                                     struct btrfs_extent_data_ref);
1321                if (ret == 0) {
1322                        btrfs_set_extent_data_ref_root(leaf, ref,
1323                                                       root_objectid);
1324                        btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1325                        btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1326                        btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1327                } else {
1328                        num_refs = btrfs_extent_data_ref_count(leaf, ref);
1329                        num_refs += refs_to_add;
1330                        btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1331                }
1332        }
1333        btrfs_mark_buffer_dirty(leaf);
1334        ret = 0;
1335fail:
1336        btrfs_release_path(path);
1337        return ret;
1338}
1339
1340static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1341                                           struct btrfs_root *root,
1342                                           struct btrfs_path *path,
1343                                           int refs_to_drop, int *last_ref)
1344{
1345        struct btrfs_key key;
1346        struct btrfs_extent_data_ref *ref1 = NULL;
1347        struct btrfs_shared_data_ref *ref2 = NULL;
1348        struct extent_buffer *leaf;
1349        u32 num_refs = 0;
1350        int ret = 0;
1351
1352        leaf = path->nodes[0];
1353        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1354
1355        if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1356                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1357                                      struct btrfs_extent_data_ref);
1358                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1359        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1360                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1361                                      struct btrfs_shared_data_ref);
1362                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1363#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1365                struct btrfs_extent_ref_v0 *ref0;
1366                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1367                                      struct btrfs_extent_ref_v0);
1368                num_refs = btrfs_ref_count_v0(leaf, ref0);
1369#endif
1370        } else {
1371                BUG();
1372        }
1373
1374        BUG_ON(num_refs < refs_to_drop);
1375        num_refs -= refs_to_drop;
1376
1377        if (num_refs == 0) {
1378                ret = btrfs_del_item(trans, root, path);
1379                *last_ref = 1;
1380        } else {
1381                if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1382                        btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1383                else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1384                        btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1385#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1386                else {
1387                        struct btrfs_extent_ref_v0 *ref0;
1388                        ref0 = btrfs_item_ptr(leaf, path->slots[0],
1389                                        struct btrfs_extent_ref_v0);
1390                        btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1391                }
1392#endif
1393                btrfs_mark_buffer_dirty(leaf);
1394        }
1395        return ret;
1396}
1397
1398static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1399                                          struct btrfs_extent_inline_ref *iref)
1400{
1401        struct btrfs_key key;
1402        struct extent_buffer *leaf;
1403        struct btrfs_extent_data_ref *ref1;
1404        struct btrfs_shared_data_ref *ref2;
1405        u32 num_refs = 0;
1406
1407        leaf = path->nodes[0];
1408        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1409        if (iref) {
1410                if (btrfs_extent_inline_ref_type(leaf, iref) ==
1411                    BTRFS_EXTENT_DATA_REF_KEY) {
1412                        ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1413                        num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1414                } else {
1415                        ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1416                        num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1417                }
1418        } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1419                ref1 = btrfs_item_ptr(leaf, path->slots[0],
1420                                      struct btrfs_extent_data_ref);
1421                num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1422        } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1423                ref2 = btrfs_item_ptr(leaf, path->slots[0],
1424                                      struct btrfs_shared_data_ref);
1425                num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1426#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427        } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1428                struct btrfs_extent_ref_v0 *ref0;
1429                ref0 = btrfs_item_ptr(leaf, path->slots[0],
1430                                      struct btrfs_extent_ref_v0);
1431                num_refs = btrfs_ref_count_v0(leaf, ref0);
1432#endif
1433        } else {
1434                WARN_ON(1);
1435        }
1436        return num_refs;
1437}
1438
1439static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1440                                          struct btrfs_root *root,
1441                                          struct btrfs_path *path,
1442                                          u64 bytenr, u64 parent,
1443                                          u64 root_objectid)
1444{
1445        struct btrfs_key key;
1446        int ret;
1447
1448        key.objectid = bytenr;
1449        if (parent) {
1450                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1451                key.offset = parent;
1452        } else {
1453                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1454                key.offset = root_objectid;
1455        }
1456
1457        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1458        if (ret > 0)
1459                ret = -ENOENT;
1460#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461        if (ret == -ENOENT && parent) {
1462                btrfs_release_path(path);
1463                key.type = BTRFS_EXTENT_REF_V0_KEY;
1464                ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1465                if (ret > 0)
1466                        ret = -ENOENT;
1467        }
1468#endif
1469        return ret;
1470}
1471
1472static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1473                                          struct btrfs_root *root,
1474                                          struct btrfs_path *path,
1475                                          u64 bytenr, u64 parent,
1476                                          u64 root_objectid)
1477{
1478        struct btrfs_key key;
1479        int ret;
1480
1481        key.objectid = bytenr;
1482        if (parent) {
1483                key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1484                key.offset = parent;
1485        } else {
1486                key.type = BTRFS_TREE_BLOCK_REF_KEY;
1487                key.offset = root_objectid;
1488        }
1489
1490        ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1491        btrfs_release_path(path);
1492        return ret;
1493}
1494
1495static inline int extent_ref_type(u64 parent, u64 owner)
1496{
1497        int type;
1498        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1499                if (parent > 0)
1500                        type = BTRFS_SHARED_BLOCK_REF_KEY;
1501                else
1502                        type = BTRFS_TREE_BLOCK_REF_KEY;
1503        } else {
1504                if (parent > 0)
1505                        type = BTRFS_SHARED_DATA_REF_KEY;
1506                else
1507                        type = BTRFS_EXTENT_DATA_REF_KEY;
1508        }
1509        return type;
1510}
1511
1512static int find_next_key(struct btrfs_path *path, int level,
1513                         struct btrfs_key *key)
1514
1515{
1516        for (; level < BTRFS_MAX_LEVEL; level++) {
1517                if (!path->nodes[level])
1518                        break;
1519                if (path->slots[level] + 1 >=
1520                    btrfs_header_nritems(path->nodes[level]))
1521                        continue;
1522                if (level == 0)
1523                        btrfs_item_key_to_cpu(path->nodes[level], key,
1524                                              path->slots[level] + 1);
1525                else
1526                        btrfs_node_key_to_cpu(path->nodes[level], key,
1527                                              path->slots[level] + 1);
1528                return 0;
1529        }
1530        return 1;
1531}
1532
1533/*
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1536 *
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1539 *
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1542 *
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 *       items in the tree are ordered.
1545 */
1546static noinline_for_stack
1547int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1548                                 struct btrfs_root *root,
1549                                 struct btrfs_path *path,
1550                                 struct btrfs_extent_inline_ref **ref_ret,
1551                                 u64 bytenr, u64 num_bytes,
1552                                 u64 parent, u64 root_objectid,
1553                                 u64 owner, u64 offset, int insert)
1554{
1555        struct btrfs_key key;
1556        struct extent_buffer *leaf;
1557        struct btrfs_extent_item *ei;
1558        struct btrfs_extent_inline_ref *iref;
1559        u64 flags;
1560        u64 item_size;
1561        unsigned long ptr;
1562        unsigned long end;
1563        int extra_size;
1564        int type;
1565        int want;
1566        int ret;
1567        int err = 0;
1568        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1569                                                 SKINNY_METADATA);
1570
1571        key.objectid = bytenr;
1572        key.type = BTRFS_EXTENT_ITEM_KEY;
1573        key.offset = num_bytes;
1574
1575        want = extent_ref_type(parent, owner);
1576        if (insert) {
1577                extra_size = btrfs_extent_inline_ref_size(want);
1578                path->keep_locks = 1;
1579        } else
1580                extra_size = -1;
1581
1582        /*
1583         * Owner is our parent level, so we can just add one to get the level
1584         * for the block we are interested in.
1585         */
1586        if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1587                key.type = BTRFS_METADATA_ITEM_KEY;
1588                key.offset = owner;
1589        }
1590
1591again:
1592        ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1593        if (ret < 0) {
1594                err = ret;
1595                goto out;
1596        }
1597
1598        /*
1599         * We may be a newly converted file system which still has the old fat
1600         * extent entries for metadata, so try and see if we have one of those.
1601         */
1602        if (ret > 0 && skinny_metadata) {
1603                skinny_metadata = false;
1604                if (path->slots[0]) {
1605                        path->slots[0]--;
1606                        btrfs_item_key_to_cpu(path->nodes[0], &key,
1607                                              path->slots[0]);
1608                        if (key.objectid == bytenr &&
1609                            key.type == BTRFS_EXTENT_ITEM_KEY &&
1610                            key.offset == num_bytes)
1611                                ret = 0;
1612                }
1613                if (ret) {
1614                        key.objectid = bytenr;
1615                        key.type = BTRFS_EXTENT_ITEM_KEY;
1616                        key.offset = num_bytes;
1617                        btrfs_release_path(path);
1618                        goto again;
1619                }
1620        }
1621
1622        if (ret && !insert) {
1623                err = -ENOENT;
1624                goto out;
1625        } else if (WARN_ON(ret)) {
1626                err = -EIO;
1627                goto out;
1628        }
1629
1630        leaf = path->nodes[0];
1631        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1632#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633        if (item_size < sizeof(*ei)) {
1634                if (!insert) {
1635                        err = -ENOENT;
1636                        goto out;
1637                }
1638                ret = convert_extent_item_v0(trans, root, path, owner,
1639                                             extra_size);
1640                if (ret < 0) {
1641                        err = ret;
1642                        goto out;
1643                }
1644                leaf = path->nodes[0];
1645                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1646        }
1647#endif
1648        BUG_ON(item_size < sizeof(*ei));
1649
1650        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1651        flags = btrfs_extent_flags(leaf, ei);
1652
1653        ptr = (unsigned long)(ei + 1);
1654        end = (unsigned long)ei + item_size;
1655
1656        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1657                ptr += sizeof(struct btrfs_tree_block_info);
1658                BUG_ON(ptr > end);
1659        }
1660
1661        err = -ENOENT;
1662        while (1) {
1663                if (ptr >= end) {
1664                        WARN_ON(ptr > end);
1665                        break;
1666                }
1667                iref = (struct btrfs_extent_inline_ref *)ptr;
1668                type = btrfs_extent_inline_ref_type(leaf, iref);
1669                if (want < type)
1670                        break;
1671                if (want > type) {
1672                        ptr += btrfs_extent_inline_ref_size(type);
1673                        continue;
1674                }
1675
1676                if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1677                        struct btrfs_extent_data_ref *dref;
1678                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1679                        if (match_extent_data_ref(leaf, dref, root_objectid,
1680                                                  owner, offset)) {
1681                                err = 0;
1682                                break;
1683                        }
1684                        if (hash_extent_data_ref_item(leaf, dref) <
1685                            hash_extent_data_ref(root_objectid, owner, offset))
1686                                break;
1687                } else {
1688                        u64 ref_offset;
1689                        ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1690                        if (parent > 0) {
1691                                if (parent == ref_offset) {
1692                                        err = 0;
1693                                        break;
1694                                }
1695                                if (ref_offset < parent)
1696                                        break;
1697                        } else {
1698                                if (root_objectid == ref_offset) {
1699                                        err = 0;
1700                                        break;
1701                                }
1702                                if (ref_offset < root_objectid)
1703                                        break;
1704                        }
1705                }
1706                ptr += btrfs_extent_inline_ref_size(type);
1707        }
1708        if (err == -ENOENT && insert) {
1709                if (item_size + extra_size >=
1710                    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1711                        err = -EAGAIN;
1712                        goto out;
1713                }
1714                /*
1715                 * To add new inline back ref, we have to make sure
1716                 * there is no corresponding back ref item.
1717                 * For simplicity, we just do not add new inline back
1718                 * ref if there is any kind of item for this block
1719                 */
1720                if (find_next_key(path, 0, &key) == 0 &&
1721                    key.objectid == bytenr &&
1722                    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1723                        err = -EAGAIN;
1724                        goto out;
1725                }
1726        }
1727        *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1728out:
1729        if (insert) {
1730                path->keep_locks = 0;
1731                btrfs_unlock_up_safe(path, 1);
1732        }
1733        return err;
1734}
1735
1736/*
1737 * helper to add new inline back ref
1738 */
1739static noinline_for_stack
1740void setup_inline_extent_backref(struct btrfs_root *root,
1741                                 struct btrfs_path *path,
1742                                 struct btrfs_extent_inline_ref *iref,
1743                                 u64 parent, u64 root_objectid,
1744                                 u64 owner, u64 offset, int refs_to_add,
1745                                 struct btrfs_delayed_extent_op *extent_op)
1746{
1747        struct extent_buffer *leaf;
1748        struct btrfs_extent_item *ei;
1749        unsigned long ptr;
1750        unsigned long end;
1751        unsigned long item_offset;
1752        u64 refs;
1753        int size;
1754        int type;
1755
1756        leaf = path->nodes[0];
1757        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1758        item_offset = (unsigned long)iref - (unsigned long)ei;
1759
1760        type = extent_ref_type(parent, owner);
1761        size = btrfs_extent_inline_ref_size(type);
1762
1763        btrfs_extend_item(root, path, size);
1764
1765        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1766        refs = btrfs_extent_refs(leaf, ei);
1767        refs += refs_to_add;
1768        btrfs_set_extent_refs(leaf, ei, refs);
1769        if (extent_op)
1770                __run_delayed_extent_op(extent_op, leaf, ei);
1771
1772        ptr = (unsigned long)ei + item_offset;
1773        end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1774        if (ptr < end - size)
1775                memmove_extent_buffer(leaf, ptr + size, ptr,
1776                                      end - size - ptr);
1777
1778        iref = (struct btrfs_extent_inline_ref *)ptr;
1779        btrfs_set_extent_inline_ref_type(leaf, iref, type);
1780        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1781                struct btrfs_extent_data_ref *dref;
1782                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1783                btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1784                btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1785                btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1786                btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1787        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788                struct btrfs_shared_data_ref *sref;
1789                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1790                btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1791                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1792        } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1793                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1794        } else {
1795                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1796        }
1797        btrfs_mark_buffer_dirty(leaf);
1798}
1799
1800static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1801                                 struct btrfs_root *root,
1802                                 struct btrfs_path *path,
1803                                 struct btrfs_extent_inline_ref **ref_ret,
1804                                 u64 bytenr, u64 num_bytes, u64 parent,
1805                                 u64 root_objectid, u64 owner, u64 offset)
1806{
1807        int ret;
1808
1809        ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1810                                           bytenr, num_bytes, parent,
1811                                           root_objectid, owner, offset, 0);
1812        if (ret != -ENOENT)
1813                return ret;
1814
1815        btrfs_release_path(path);
1816        *ref_ret = NULL;
1817
1818        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1819                ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1820                                            root_objectid);
1821        } else {
1822                ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1823                                             root_objectid, owner, offset);
1824        }
1825        return ret;
1826}
1827
1828/*
1829 * helper to update/remove inline back ref
1830 */
1831static noinline_for_stack
1832void update_inline_extent_backref(struct btrfs_root *root,
1833                                  struct btrfs_path *path,
1834                                  struct btrfs_extent_inline_ref *iref,
1835                                  int refs_to_mod,
1836                                  struct btrfs_delayed_extent_op *extent_op,
1837                                  int *last_ref)
1838{
1839        struct extent_buffer *leaf;
1840        struct btrfs_extent_item *ei;
1841        struct btrfs_extent_data_ref *dref = NULL;
1842        struct btrfs_shared_data_ref *sref = NULL;
1843        unsigned long ptr;
1844        unsigned long end;
1845        u32 item_size;
1846        int size;
1847        int type;
1848        u64 refs;
1849
1850        leaf = path->nodes[0];
1851        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1852        refs = btrfs_extent_refs(leaf, ei);
1853        WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1854        refs += refs_to_mod;
1855        btrfs_set_extent_refs(leaf, ei, refs);
1856        if (extent_op)
1857                __run_delayed_extent_op(extent_op, leaf, ei);
1858
1859        type = btrfs_extent_inline_ref_type(leaf, iref);
1860
1861        if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862                dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1863                refs = btrfs_extent_data_ref_count(leaf, dref);
1864        } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1865                sref = (struct btrfs_shared_data_ref *)(iref + 1);
1866                refs = btrfs_shared_data_ref_count(leaf, sref);
1867        } else {
1868                refs = 1;
1869                BUG_ON(refs_to_mod != -1);
1870        }
1871
1872        BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1873        refs += refs_to_mod;
1874
1875        if (refs > 0) {
1876                if (type == BTRFS_EXTENT_DATA_REF_KEY)
1877                        btrfs_set_extent_data_ref_count(leaf, dref, refs);
1878                else
1879                        btrfs_set_shared_data_ref_count(leaf, sref, refs);
1880        } else {
1881                *last_ref = 1;
1882                size =  btrfs_extent_inline_ref_size(type);
1883                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1884                ptr = (unsigned long)iref;
1885                end = (unsigned long)ei + item_size;
1886                if (ptr + size < end)
1887                        memmove_extent_buffer(leaf, ptr, ptr + size,
1888                                              end - ptr - size);
1889                item_size -= size;
1890                btrfs_truncate_item(root, path, item_size, 1);
1891        }
1892        btrfs_mark_buffer_dirty(leaf);
1893}
1894
1895static noinline_for_stack
1896int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1897                                 struct btrfs_root *root,
1898                                 struct btrfs_path *path,
1899                                 u64 bytenr, u64 num_bytes, u64 parent,
1900                                 u64 root_objectid, u64 owner,
1901                                 u64 offset, int refs_to_add,
1902                                 struct btrfs_delayed_extent_op *extent_op)
1903{
1904        struct btrfs_extent_inline_ref *iref;
1905        int ret;
1906
1907        ret = lookup_inline_extent_backref(trans, root, path, &iref,
1908                                           bytenr, num_bytes, parent,
1909                                           root_objectid, owner, offset, 1);
1910        if (ret == 0) {
1911                BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1912                update_inline_extent_backref(root, path, iref,
1913                                             refs_to_add, extent_op, NULL);
1914        } else if (ret == -ENOENT) {
1915                setup_inline_extent_backref(root, path, iref, parent,
1916                                            root_objectid, owner, offset,
1917                                            refs_to_add, extent_op);
1918                ret = 0;
1919        }
1920        return ret;
1921}
1922
1923static int insert_extent_backref(struct btrfs_trans_handle *trans,
1924                                 struct btrfs_root *root,
1925                                 struct btrfs_path *path,
1926                                 u64 bytenr, u64 parent, u64 root_objectid,
1927                                 u64 owner, u64 offset, int refs_to_add)
1928{
1929        int ret;
1930        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1931                BUG_ON(refs_to_add != 1);
1932                ret = insert_tree_block_ref(trans, root, path, bytenr,
1933                                            parent, root_objectid);
1934        } else {
1935                ret = insert_extent_data_ref(trans, root, path, bytenr,
1936                                             parent, root_objectid,
1937                                             owner, offset, refs_to_add);
1938        }
1939        return ret;
1940}
1941
1942static int remove_extent_backref(struct btrfs_trans_handle *trans,
1943                                 struct btrfs_root *root,
1944                                 struct btrfs_path *path,
1945                                 struct btrfs_extent_inline_ref *iref,
1946                                 int refs_to_drop, int is_data, int *last_ref)
1947{
1948        int ret = 0;
1949
1950        BUG_ON(!is_data && refs_to_drop != 1);
1951        if (iref) {
1952                update_inline_extent_backref(root, path, iref,
1953                                             -refs_to_drop, NULL, last_ref);
1954        } else if (is_data) {
1955                ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1956                                             last_ref);
1957        } else {
1958                *last_ref = 1;
1959                ret = btrfs_del_item(trans, root, path);
1960        }
1961        return ret;
1962}
1963
1964#define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
1965static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1966                               u64 *discarded_bytes)
1967{
1968        int j, ret = 0;
1969        u64 bytes_left, end;
1970        u64 aligned_start = ALIGN(start, 1 << 9);
1971
1972        if (WARN_ON(start != aligned_start)) {
1973                len -= aligned_start - start;
1974                len = round_down(len, 1 << 9);
1975                start = aligned_start;
1976        }
1977
1978        *discarded_bytes = 0;
1979
1980        if (!len)
1981                return 0;
1982
1983        end = start + len;
1984        bytes_left = len;
1985
1986        /* Skip any superblocks on this device. */
1987        for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1988                u64 sb_start = btrfs_sb_offset(j);
1989                u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1990                u64 size = sb_start - start;
1991
1992                if (!in_range(sb_start, start, bytes_left) &&
1993                    !in_range(sb_end, start, bytes_left) &&
1994                    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1995                        continue;
1996
1997                /*
1998                 * Superblock spans beginning of range.  Adjust start and
1999                 * try again.
2000                 */
2001                if (sb_start <= start) {
2002                        start += sb_end - start;
2003                        if (start > end) {
2004                                bytes_left = 0;
2005                                break;
2006                        }
2007                        bytes_left = end - start;
2008                        continue;
2009                }
2010
2011                if (size) {
2012                        ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2013                                                   GFP_NOFS, 0);
2014                        if (!ret)
2015                                *discarded_bytes += size;
2016                        else if (ret != -EOPNOTSUPP)
2017                                return ret;
2018                }
2019
2020                start = sb_end;
2021                if (start > end) {
2022                        bytes_left = 0;
2023                        break;
2024                }
2025                bytes_left = end - start;
2026        }
2027
2028        if (bytes_left) {
2029                ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2030                                           GFP_NOFS, 0);
2031                if (!ret)
2032                        *discarded_bytes += bytes_left;
2033        }
2034        return ret;
2035}
2036
2037int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2038                         u64 num_bytes, u64 *actual_bytes)
2039{
2040        int ret;
2041        u64 discarded_bytes = 0;
2042        struct btrfs_bio *bbio = NULL;
2043
2044
2045        /*
2046         * Avoid races with device replace and make sure our bbio has devices
2047         * associated to its stripes that don't go away while we are discarding.
2048         */
2049        btrfs_bio_counter_inc_blocked(root->fs_info);
2050        /* Tell the block device(s) that the sectors can be discarded */
2051        ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
2052                              bytenr, &num_bytes, &bbio, 0);
2053        /* Error condition is -ENOMEM */
2054        if (!ret) {
2055                struct btrfs_bio_stripe *stripe = bbio->stripes;
2056                int i;
2057
2058
2059                for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2060                        u64 bytes;
2061                        if (!stripe->dev->can_discard)
2062                                continue;
2063
2064                        ret = btrfs_issue_discard(stripe->dev->bdev,
2065                                                  stripe->physical,
2066                                                  stripe->length,
2067                                                  &bytes);
2068                        if (!ret)
2069                                discarded_bytes += bytes;
2070                        else if (ret != -EOPNOTSUPP)
2071                                break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2072
2073                        /*
2074                         * Just in case we get back EOPNOTSUPP for some reason,
2075                         * just ignore the return value so we don't screw up
2076                         * people calling discard_extent.
2077                         */
2078                        ret = 0;
2079                }
2080                btrfs_put_bbio(bbio);
2081        }
2082        btrfs_bio_counter_dec(root->fs_info);
2083
2084        if (actual_bytes)
2085                *actual_bytes = discarded_bytes;
2086
2087
2088        if (ret == -EOPNOTSUPP)
2089                ret = 0;
2090        return ret;
2091}
2092
2093/* Can return -ENOMEM */
2094int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2095                         struct btrfs_root *root,
2096                         u64 bytenr, u64 num_bytes, u64 parent,
2097                         u64 root_objectid, u64 owner, u64 offset)
2098{
2099        int ret;
2100        struct btrfs_fs_info *fs_info = root->fs_info;
2101
2102        BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2103               root_objectid == BTRFS_TREE_LOG_OBJECTID);
2104
2105        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2106                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2107                                        num_bytes,
2108                                        parent, root_objectid, (int)owner,
2109                                        BTRFS_ADD_DELAYED_REF, NULL);
2110        } else {
2111                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2112                                        num_bytes, parent, root_objectid,
2113                                        owner, offset, 0,
2114                                        BTRFS_ADD_DELAYED_REF, NULL);
2115        }
2116        return ret;
2117}
2118
2119static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2120                                  struct btrfs_root *root,
2121                                  struct btrfs_delayed_ref_node *node,
2122                                  u64 parent, u64 root_objectid,
2123                                  u64 owner, u64 offset, int refs_to_add,
2124                                  struct btrfs_delayed_extent_op *extent_op)
2125{
2126        struct btrfs_fs_info *fs_info = root->fs_info;
2127        struct btrfs_path *path;
2128        struct extent_buffer *leaf;
2129        struct btrfs_extent_item *item;
2130        struct btrfs_key key;
2131        u64 bytenr = node->bytenr;
2132        u64 num_bytes = node->num_bytes;
2133        u64 refs;
2134        int ret;
2135
2136        path = btrfs_alloc_path();
2137        if (!path)
2138                return -ENOMEM;
2139
2140        path->reada = READA_FORWARD;
2141        path->leave_spinning = 1;
2142        /* this will setup the path even if it fails to insert the back ref */
2143        ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2144                                           bytenr, num_bytes, parent,
2145                                           root_objectid, owner, offset,
2146                                           refs_to_add, extent_op);
2147        if ((ret < 0 && ret != -EAGAIN) || !ret)
2148                goto out;
2149
2150        /*
2151         * Ok we had -EAGAIN which means we didn't have space to insert and
2152         * inline extent ref, so just update the reference count and add a
2153         * normal backref.
2154         */
2155        leaf = path->nodes[0];
2156        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2157        item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2158        refs = btrfs_extent_refs(leaf, item);
2159        btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2160        if (extent_op)
2161                __run_delayed_extent_op(extent_op, leaf, item);
2162
2163        btrfs_mark_buffer_dirty(leaf);
2164        btrfs_release_path(path);
2165
2166        path->reada = READA_FORWARD;
2167        path->leave_spinning = 1;
2168        /* now insert the actual backref */
2169        ret = insert_extent_backref(trans, root->fs_info->extent_root,
2170                                    path, bytenr, parent, root_objectid,
2171                                    owner, offset, refs_to_add);
2172        if (ret)
2173                btrfs_abort_transaction(trans, root, ret);
2174out:
2175        btrfs_free_path(path);
2176        return ret;
2177}
2178
2179static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2180                                struct btrfs_root *root,
2181                                struct btrfs_delayed_ref_node *node,
2182                                struct btrfs_delayed_extent_op *extent_op,
2183                                int insert_reserved)
2184{
2185        int ret = 0;
2186        struct btrfs_delayed_data_ref *ref;
2187        struct btrfs_key ins;
2188        u64 parent = 0;
2189        u64 ref_root = 0;
2190        u64 flags = 0;
2191
2192        ins.objectid = node->bytenr;
2193        ins.offset = node->num_bytes;
2194        ins.type = BTRFS_EXTENT_ITEM_KEY;
2195
2196        ref = btrfs_delayed_node_to_data_ref(node);
2197        trace_run_delayed_data_ref(node, ref, node->action);
2198
2199        if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2200                parent = ref->parent;
2201        ref_root = ref->root;
2202
2203        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2204                if (extent_op)
2205                        flags |= extent_op->flags_to_set;
2206                ret = alloc_reserved_file_extent(trans, root,
2207                                                 parent, ref_root, flags,
2208                                                 ref->objectid, ref->offset,
2209                                                 &ins, node->ref_mod);
2210        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2211                ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2212                                             ref_root, ref->objectid,
2213                                             ref->offset, node->ref_mod,
2214                                             extent_op);
2215        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2216                ret = __btrfs_free_extent(trans, root, node, parent,
2217                                          ref_root, ref->objectid,
2218                                          ref->offset, node->ref_mod,
2219                                          extent_op);
2220        } else {
2221                BUG();
2222        }
2223        return ret;
2224}
2225
2226static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2227                                    struct extent_buffer *leaf,
2228                                    struct btrfs_extent_item *ei)
2229{
2230        u64 flags = btrfs_extent_flags(leaf, ei);
2231        if (extent_op->update_flags) {
2232                flags |= extent_op->flags_to_set;
2233                btrfs_set_extent_flags(leaf, ei, flags);
2234        }
2235
2236        if (extent_op->update_key) {
2237                struct btrfs_tree_block_info *bi;
2238                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2239                bi = (struct btrfs_tree_block_info *)(ei + 1);
2240                btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2241        }
2242}
2243
2244static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2245                                 struct btrfs_root *root,
2246                                 struct btrfs_delayed_ref_node *node,
2247                                 struct btrfs_delayed_extent_op *extent_op)
2248{
2249        struct btrfs_key key;
2250        struct btrfs_path *path;
2251        struct btrfs_extent_item *ei;
2252        struct extent_buffer *leaf;
2253        u32 item_size;
2254        int ret;
2255        int err = 0;
2256        int metadata = !extent_op->is_data;
2257
2258        if (trans->aborted)
2259                return 0;
2260
2261        if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2262                metadata = 0;
2263
2264        path = btrfs_alloc_path();
2265        if (!path)
2266                return -ENOMEM;
2267
2268        key.objectid = node->bytenr;
2269
2270        if (metadata) {
2271                key.type = BTRFS_METADATA_ITEM_KEY;
2272                key.offset = extent_op->level;
2273        } else {
2274                key.type = BTRFS_EXTENT_ITEM_KEY;
2275                key.offset = node->num_bytes;
2276        }
2277
2278again:
2279        path->reada = READA_FORWARD;
2280        path->leave_spinning = 1;
2281        ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2282                                path, 0, 1);
2283        if (ret < 0) {
2284                err = ret;
2285                goto out;
2286        }
2287        if (ret > 0) {
2288                if (metadata) {
2289                        if (path->slots[0] > 0) {
2290                                path->slots[0]--;
2291                                btrfs_item_key_to_cpu(path->nodes[0], &key,
2292                                                      path->slots[0]);
2293                                if (key.objectid == node->bytenr &&
2294                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
2295                                    key.offset == node->num_bytes)
2296                                        ret = 0;
2297                        }
2298                        if (ret > 0) {
2299                                btrfs_release_path(path);
2300                                metadata = 0;
2301
2302                                key.objectid = node->bytenr;
2303                                key.offset = node->num_bytes;
2304                                key.type = BTRFS_EXTENT_ITEM_KEY;
2305                                goto again;
2306                        }
2307                } else {
2308                        err = -EIO;
2309                        goto out;
2310                }
2311        }
2312
2313        leaf = path->nodes[0];
2314        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2315#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2316        if (item_size < sizeof(*ei)) {
2317                ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2318                                             path, (u64)-1, 0);
2319                if (ret < 0) {
2320                        err = ret;
2321                        goto out;
2322                }
2323                leaf = path->nodes[0];
2324                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325        }
2326#endif
2327        BUG_ON(item_size < sizeof(*ei));
2328        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2329        __run_delayed_extent_op(extent_op, leaf, ei);
2330
2331        btrfs_mark_buffer_dirty(leaf);
2332out:
2333        btrfs_free_path(path);
2334        return err;
2335}
2336
2337static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2338                                struct btrfs_root *root,
2339                                struct btrfs_delayed_ref_node *node,
2340                                struct btrfs_delayed_extent_op *extent_op,
2341                                int insert_reserved)
2342{
2343        int ret = 0;
2344        struct btrfs_delayed_tree_ref *ref;
2345        struct btrfs_key ins;
2346        u64 parent = 0;
2347        u64 ref_root = 0;
2348        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2349                                                 SKINNY_METADATA);
2350
2351        ref = btrfs_delayed_node_to_tree_ref(node);
2352        trace_run_delayed_tree_ref(node, ref, node->action);
2353
2354        if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2355                parent = ref->parent;
2356        ref_root = ref->root;
2357
2358        ins.objectid = node->bytenr;
2359        if (skinny_metadata) {
2360                ins.offset = ref->level;
2361                ins.type = BTRFS_METADATA_ITEM_KEY;
2362        } else {
2363                ins.offset = node->num_bytes;
2364                ins.type = BTRFS_EXTENT_ITEM_KEY;
2365        }
2366
2367        BUG_ON(node->ref_mod != 1);
2368        if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2369                BUG_ON(!extent_op || !extent_op->update_flags);
2370                ret = alloc_reserved_tree_block(trans, root,
2371                                                parent, ref_root,
2372                                                extent_op->flags_to_set,
2373                                                &extent_op->key,
2374                                                ref->level, &ins);
2375        } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2376                ret = __btrfs_inc_extent_ref(trans, root, node,
2377                                             parent, ref_root,
2378                                             ref->level, 0, 1,
2379                                             extent_op);
2380        } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2381                ret = __btrfs_free_extent(trans, root, node,
2382                                          parent, ref_root,
2383                                          ref->level, 0, 1, extent_op);
2384        } else {
2385                BUG();
2386        }
2387        return ret;
2388}
2389
2390/* helper function to actually process a single delayed ref entry */
2391static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2392                               struct btrfs_root *root,
2393                               struct btrfs_delayed_ref_node *node,
2394                               struct btrfs_delayed_extent_op *extent_op,
2395                               int insert_reserved)
2396{
2397        int ret = 0;
2398
2399        if (trans->aborted) {
2400                if (insert_reserved)
2401                        btrfs_pin_extent(root, node->bytenr,
2402                                         node->num_bytes, 1);
2403                return 0;
2404        }
2405
2406        if (btrfs_delayed_ref_is_head(node)) {
2407                struct btrfs_delayed_ref_head *head;
2408                /*
2409                 * we've hit the end of the chain and we were supposed
2410                 * to insert this extent into the tree.  But, it got
2411                 * deleted before we ever needed to insert it, so all
2412                 * we have to do is clean up the accounting
2413                 */
2414                BUG_ON(extent_op);
2415                head = btrfs_delayed_node_to_head(node);
2416                trace_run_delayed_ref_head(node, head, node->action);
2417
2418                if (insert_reserved) {
2419                        btrfs_pin_extent(root, node->bytenr,
2420                                         node->num_bytes, 1);
2421                        if (head->is_data) {
2422                                ret = btrfs_del_csums(trans, root,
2423                                                      node->bytenr,
2424                                                      node->num_bytes);
2425                        }
2426                }
2427
2428                /* Also free its reserved qgroup space */
2429                btrfs_qgroup_free_delayed_ref(root->fs_info,
2430                                              head->qgroup_ref_root,
2431                                              head->qgroup_reserved);
2432                return ret;
2433        }
2434
2435        if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2436            node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2437                ret = run_delayed_tree_ref(trans, root, node, extent_op,
2438                                           insert_reserved);
2439        else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2440                 node->type == BTRFS_SHARED_DATA_REF_KEY)
2441                ret = run_delayed_data_ref(trans, root, node, extent_op,
2442                                           insert_reserved);
2443        else
2444                BUG();
2445        return ret;
2446}
2447
2448static inline struct btrfs_delayed_ref_node *
2449select_delayed_ref(struct btrfs_delayed_ref_head *head)
2450{
2451        struct btrfs_delayed_ref_node *ref;
2452
2453        if (list_empty(&head->ref_list))
2454                return NULL;
2455
2456        /*
2457         * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2458         * This is to prevent a ref count from going down to zero, which deletes
2459         * the extent item from the extent tree, when there still are references
2460         * to add, which would fail because they would not find the extent item.
2461         */
2462        list_for_each_entry(ref, &head->ref_list, list) {
2463                if (ref->action == BTRFS_ADD_DELAYED_REF)
2464                        return ref;
2465        }
2466
2467        return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2468                          list);
2469}
2470
2471/*
2472 * Returns 0 on success or if called with an already aborted transaction.
2473 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2474 */
2475static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2476                                             struct btrfs_root *root,
2477                                             unsigned long nr)
2478{
2479        struct btrfs_delayed_ref_root *delayed_refs;
2480        struct btrfs_delayed_ref_node *ref;
2481        struct btrfs_delayed_ref_head *locked_ref = NULL;
2482        struct btrfs_delayed_extent_op *extent_op;
2483        struct btrfs_fs_info *fs_info = root->fs_info;
2484        ktime_t start = ktime_get();
2485        int ret;
2486        unsigned long count = 0;
2487        unsigned long actual_count = 0;
2488        int must_insert_reserved = 0;
2489
2490        delayed_refs = &trans->transaction->delayed_refs;
2491        while (1) {
2492                if (!locked_ref) {
2493                        if (count >= nr)
2494                                break;
2495
2496                        spin_lock(&delayed_refs->lock);
2497                        locked_ref = btrfs_select_ref_head(trans);
2498                        if (!locked_ref) {
2499                                spin_unlock(&delayed_refs->lock);
2500                                break;
2501                        }
2502
2503                        /* grab the lock that says we are going to process
2504                         * all the refs for this head */
2505                        ret = btrfs_delayed_ref_lock(trans, locked_ref);
2506                        spin_unlock(&delayed_refs->lock);
2507                        /*
2508                         * we may have dropped the spin lock to get the head
2509                         * mutex lock, and that might have given someone else
2510                         * time to free the head.  If that's true, it has been
2511                         * removed from our list and we can move on.
2512                         */
2513                        if (ret == -EAGAIN) {
2514                                locked_ref = NULL;
2515                                count++;
2516                                continue;
2517                        }
2518                }
2519
2520                /*
2521                 * We need to try and merge add/drops of the same ref since we
2522                 * can run into issues with relocate dropping the implicit ref
2523                 * and then it being added back again before the drop can
2524                 * finish.  If we merged anything we need to re-loop so we can
2525                 * get a good ref.
2526                 * Or we can get node references of the same type that weren't
2527                 * merged when created due to bumps in the tree mod seq, and
2528                 * we need to merge them to prevent adding an inline extent
2529                 * backref before dropping it (triggering a BUG_ON at
2530                 * insert_inline_extent_backref()).
2531                 */
2532                spin_lock(&locked_ref->lock);
2533                btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2534                                         locked_ref);
2535
2536                /*
2537                 * locked_ref is the head node, so we have to go one
2538                 * node back for any delayed ref updates
2539                 */
2540                ref = select_delayed_ref(locked_ref);
2541
2542                if (ref && ref->seq &&
2543                    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2544                        spin_unlock(&locked_ref->lock);
2545                        btrfs_delayed_ref_unlock(locked_ref);
2546                        spin_lock(&delayed_refs->lock);
2547                        locked_ref->processing = 0;
2548                        delayed_refs->num_heads_ready++;
2549                        spin_unlock(&delayed_refs->lock);
2550                        locked_ref = NULL;
2551                        cond_resched();
2552                        count++;
2553                        continue;
2554                }
2555
2556                /*
2557                 * record the must insert reserved flag before we
2558                 * drop the spin lock.
2559                 */
2560                must_insert_reserved = locked_ref->must_insert_reserved;
2561                locked_ref->must_insert_reserved = 0;
2562
2563                extent_op = locked_ref->extent_op;
2564                locked_ref->extent_op = NULL;
2565
2566                if (!ref) {
2567
2568
2569                        /* All delayed refs have been processed, Go ahead
2570                         * and send the head node to run_one_delayed_ref,
2571                         * so that any accounting fixes can happen
2572                         */
2573                        ref = &locked_ref->node;
2574
2575                        if (extent_op && must_insert_reserved) {
2576                                btrfs_free_delayed_extent_op(extent_op);
2577                                extent_op = NULL;
2578                        }
2579
2580                        if (extent_op) {
2581                                spin_unlock(&locked_ref->lock);
2582                                ret = run_delayed_extent_op(trans, root,
2583                                                            ref, extent_op);
2584                                btrfs_free_delayed_extent_op(extent_op);
2585
2586                                if (ret) {
2587                                        /*
2588                                         * Need to reset must_insert_reserved if
2589                                         * there was an error so the abort stuff
2590                                         * can cleanup the reserved space
2591                                         * properly.
2592                                         */
2593                                        if (must_insert_reserved)
2594                                                locked_ref->must_insert_reserved = 1;
2595                                        locked_ref->processing = 0;
2596                                        btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2597                                        btrfs_delayed_ref_unlock(locked_ref);
2598                                        return ret;
2599                                }
2600                                continue;
2601                        }
2602
2603                        /*
2604                         * Need to drop our head ref lock and re-acquire the
2605                         * delayed ref lock and then re-check to make sure
2606                         * nobody got added.
2607                         */
2608                        spin_unlock(&locked_ref->lock);
2609                        spin_lock(&delayed_refs->lock);
2610                        spin_lock(&locked_ref->lock);
2611                        if (!list_empty(&locked_ref->ref_list) ||
2612                            locked_ref->extent_op) {
2613                                spin_unlock(&locked_ref->lock);
2614                                spin_unlock(&delayed_refs->lock);
2615                                continue;
2616                        }
2617                        ref->in_tree = 0;
2618                        delayed_refs->num_heads--;
2619                        rb_erase(&locked_ref->href_node,
2620                                 &delayed_refs->href_root);
2621                        spin_unlock(&delayed_refs->lock);
2622                } else {
2623                        actual_count++;
2624                        ref->in_tree = 0;
2625                        list_del(&ref->list);
2626                }
2627                atomic_dec(&delayed_refs->num_entries);
2628
2629                if (!btrfs_delayed_ref_is_head(ref)) {
2630                        /*
2631                         * when we play the delayed ref, also correct the
2632                         * ref_mod on head
2633                         */
2634                        switch (ref->action) {
2635                        case BTRFS_ADD_DELAYED_REF:
2636                        case BTRFS_ADD_DELAYED_EXTENT:
2637                                locked_ref->node.ref_mod -= ref->ref_mod;
2638                                break;
2639                        case BTRFS_DROP_DELAYED_REF:
2640                                locked_ref->node.ref_mod += ref->ref_mod;
2641                                break;
2642                        default:
2643                                WARN_ON(1);
2644                        }
2645                }
2646                spin_unlock(&locked_ref->lock);
2647
2648                ret = run_one_delayed_ref(trans, root, ref, extent_op,
2649                                          must_insert_reserved);
2650
2651                btrfs_free_delayed_extent_op(extent_op);
2652                if (ret) {
2653                        locked_ref->processing = 0;
2654                        btrfs_delayed_ref_unlock(locked_ref);
2655                        btrfs_put_delayed_ref(ref);
2656                        btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2657                        return ret;
2658                }
2659
2660                /*
2661                 * If this node is a head, that means all the refs in this head
2662                 * have been dealt with, and we will pick the next head to deal
2663                 * with, so we must unlock the head and drop it from the cluster
2664                 * list before we release it.
2665                 */
2666                if (btrfs_delayed_ref_is_head(ref)) {
2667                        if (locked_ref->is_data &&
2668                            locked_ref->total_ref_mod < 0) {
2669                                spin_lock(&delayed_refs->lock);
2670                                delayed_refs->pending_csums -= ref->num_bytes;
2671                                spin_unlock(&delayed_refs->lock);
2672                        }
2673                        btrfs_delayed_ref_unlock(locked_ref);
2674                        locked_ref = NULL;
2675                }
2676                btrfs_put_delayed_ref(ref);
2677                count++;
2678                cond_resched();
2679        }
2680
2681        /*
2682         * We don't want to include ref heads since we can have empty ref heads
2683         * and those will drastically skew our runtime down since we just do
2684         * accounting, no actual extent tree updates.
2685         */
2686        if (actual_count > 0) {
2687                u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2688                u64 avg;
2689
2690                /*
2691                 * We weigh the current average higher than our current runtime
2692                 * to avoid large swings in the average.
2693                 */
2694                spin_lock(&delayed_refs->lock);
2695                avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2696                fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2697                spin_unlock(&delayed_refs->lock);
2698        }
2699        return 0;
2700}
2701
2702#ifdef SCRAMBLE_DELAYED_REFS
2703/*
2704 * Normally delayed refs get processed in ascending bytenr order. This
2705 * correlates in most cases to the order added. To expose dependencies on this
2706 * order, we start to process the tree in the middle instead of the beginning
2707 */
2708static u64 find_middle(struct rb_root *root)
2709{
2710        struct rb_node *n = root->rb_node;
2711        struct btrfs_delayed_ref_node *entry;
2712        int alt = 1;
2713        u64 middle;
2714        u64 first = 0, last = 0;
2715
2716        n = rb_first(root);
2717        if (n) {
2718                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2719                first = entry->bytenr;
2720        }
2721        n = rb_last(root);
2722        if (n) {
2723                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2724                last = entry->bytenr;
2725        }
2726        n = root->rb_node;
2727
2728        while (n) {
2729                entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2730                WARN_ON(!entry->in_tree);
2731
2732                middle = entry->bytenr;
2733
2734                if (alt)
2735                        n = n->rb_left;
2736                else
2737                        n = n->rb_right;
2738
2739                alt = 1 - alt;
2740        }
2741        return middle;
2742}
2743#endif
2744
2745static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2746{
2747        u64 num_bytes;
2748
2749        num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2750                             sizeof(struct btrfs_extent_inline_ref));
2751        if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2752                num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2753
2754        /*
2755         * We don't ever fill up leaves all the way so multiply by 2 just to be
2756         * closer to what we're really going to want to use.
2757         */
2758        return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2759}
2760
2761/*
2762 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2763 * would require to store the csums for that many bytes.
2764 */
2765u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2766{
2767        u64 csum_size;
2768        u64 num_csums_per_leaf;
2769        u64 num_csums;
2770
2771        csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2772        num_csums_per_leaf = div64_u64(csum_size,
2773                        (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2774        num_csums = div64_u64(csum_bytes, root->sectorsize);
2775        num_csums += num_csums_per_leaf - 1;
2776        num_csums = div64_u64(num_csums, num_csums_per_leaf);
2777        return num_csums;
2778}
2779
2780int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2781                                       struct btrfs_root *root)
2782{
2783        struct btrfs_block_rsv *global_rsv;
2784        u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2785        u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2786        u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2787        u64 num_bytes, num_dirty_bgs_bytes;
2788        int ret = 0;
2789
2790        num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2791        num_heads = heads_to_leaves(root, num_heads);
2792        if (num_heads > 1)
2793                num_bytes += (num_heads - 1) * root->nodesize;
2794        num_bytes <<= 1;
2795        num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2796        num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2797                                                             num_dirty_bgs);
2798        global_rsv = &root->fs_info->global_block_rsv;
2799
2800        /*
2801         * If we can't allocate any more chunks lets make sure we have _lots_ of
2802         * wiggle room since running delayed refs can create more delayed refs.
2803         */
2804        if (global_rsv->space_info->full) {
2805                num_dirty_bgs_bytes <<= 1;
2806                num_bytes <<= 1;
2807        }
2808
2809        spin_lock(&global_rsv->lock);
2810        if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2811                ret = 1;
2812        spin_unlock(&global_rsv->lock);
2813        return ret;
2814}
2815
2816int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2817                                       struct btrfs_root *root)
2818{
2819        struct btrfs_fs_info *fs_info = root->fs_info;
2820        u64 num_entries =
2821                atomic_read(&trans->transaction->delayed_refs.num_entries);
2822        u64 avg_runtime;
2823        u64 val;
2824
2825        smp_mb();
2826        avg_runtime = fs_info->avg_delayed_ref_runtime;
2827        val = num_entries * avg_runtime;
2828        if (num_entries * avg_runtime >= NSEC_PER_SEC)
2829                return 1;
2830        if (val >= NSEC_PER_SEC / 2)
2831                return 2;
2832
2833        return btrfs_check_space_for_delayed_refs(trans, root);
2834}
2835
2836struct async_delayed_refs {
2837        struct btrfs_root *root;
2838        u64 transid;
2839        int count;
2840        int error;
2841        int sync;
2842        struct completion wait;
2843        struct btrfs_work work;
2844};
2845
2846static void delayed_ref_async_start(struct btrfs_work *work)
2847{
2848        struct async_delayed_refs *async;
2849        struct btrfs_trans_handle *trans;
2850        int ret;
2851
2852        async = container_of(work, struct async_delayed_refs, work);
2853
2854        /* if the commit is already started, we don't need to wait here */
2855        if (btrfs_transaction_blocked(async->root->fs_info))
2856                goto done;
2857
2858        trans = btrfs_join_transaction(async->root);
2859        if (IS_ERR(trans)) {
2860                async->error = PTR_ERR(trans);
2861                goto done;
2862        }
2863
2864        /*
2865         * trans->sync means that when we call end_transaction, we won't
2866         * wait on delayed refs
2867         */
2868        trans->sync = true;
2869
2870        /* Don't bother flushing if we got into a different transaction */
2871        if (trans->transid > async->transid)
2872                goto end;
2873
2874        ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2875        if (ret)
2876                async->error = ret;
2877end:
2878        ret = btrfs_end_transaction(trans, async->root);
2879        if (ret && !async->error)
2880                async->error = ret;
2881done:
2882        if (async->sync)
2883                complete(&async->wait);
2884        else
2885                kfree(async);
2886}
2887
2888int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2889                                 unsigned long count, u64 transid, int wait)
2890{
2891        struct async_delayed_refs *async;
2892        int ret;
2893
2894        async = kmalloc(sizeof(*async), GFP_NOFS);
2895        if (!async)
2896                return -ENOMEM;
2897
2898        async->root = root->fs_info->tree_root;
2899        async->count = count;
2900        async->error = 0;
2901        async->transid = transid;
2902        if (wait)
2903                async->sync = 1;
2904        else
2905                async->sync = 0;
2906        init_completion(&async->wait);
2907
2908        btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2909                        delayed_ref_async_start, NULL, NULL);
2910
2911        btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2912
2913        if (wait) {
2914                wait_for_completion(&async->wait);
2915                ret = async->error;
2916                kfree(async);
2917                return ret;
2918        }
2919        return 0;
2920}
2921
2922/*
2923 * this starts processing the delayed reference count updates and
2924 * extent insertions we have queued up so far.  count can be
2925 * 0, which means to process everything in the tree at the start
2926 * of the run (but not newly added entries), or it can be some target
2927 * number you'd like to process.
2928 *
2929 * Returns 0 on success or if called with an aborted transaction
2930 * Returns <0 on error and aborts the transaction
2931 */
2932int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2933                           struct btrfs_root *root, unsigned long count)
2934{
2935        struct rb_node *node;
2936        struct btrfs_delayed_ref_root *delayed_refs;
2937        struct btrfs_delayed_ref_head *head;
2938        int ret;
2939        int run_all = count == (unsigned long)-1;
2940        bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2941
2942        /* We'll clean this up in btrfs_cleanup_transaction */
2943        if (trans->aborted)
2944                return 0;
2945
2946        if (root->fs_info->creating_free_space_tree)
2947                return 0;
2948
2949        if (root == root->fs_info->extent_root)
2950                root = root->fs_info->tree_root;
2951
2952        delayed_refs = &trans->transaction->delayed_refs;
2953        if (count == 0)
2954                count = atomic_read(&delayed_refs->num_entries) * 2;
2955
2956again:
2957#ifdef SCRAMBLE_DELAYED_REFS
2958        delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2959#endif
2960        trans->can_flush_pending_bgs = false;
2961        ret = __btrfs_run_delayed_refs(trans, root, count);
2962        if (ret < 0) {
2963                btrfs_abort_transaction(trans, root, ret);
2964                return ret;
2965        }
2966
2967        if (run_all) {
2968                if (!list_empty(&trans->new_bgs))
2969                        btrfs_create_pending_block_groups(trans, root);
2970
2971                spin_lock(&delayed_refs->lock);
2972                node = rb_first(&delayed_refs->href_root);
2973                if (!node) {
2974                        spin_unlock(&delayed_refs->lock);
2975                        goto out;
2976                }
2977                count = (unsigned long)-1;
2978
2979                while (node) {
2980                        head = rb_entry(node, struct btrfs_delayed_ref_head,
2981                                        href_node);
2982                        if (btrfs_delayed_ref_is_head(&head->node)) {
2983                                struct btrfs_delayed_ref_node *ref;
2984
2985                                ref = &head->node;
2986                                atomic_inc(&ref->refs);
2987
2988                                spin_unlock(&delayed_refs->lock);
2989                                /*
2990                                 * Mutex was contended, block until it's
2991                                 * released and try again
2992                                 */
2993                                mutex_lock(&head->mutex);
2994                                mutex_unlock(&head->mutex);
2995
2996                                btrfs_put_delayed_ref(ref);
2997                                cond_resched();
2998                                goto again;
2999                        } else {
3000                                WARN_ON(1);
3001                        }
3002                        node = rb_next(node);
3003                }
3004                spin_unlock(&delayed_refs->lock);
3005                cond_resched();
3006                goto again;
3007        }
3008out:
3009        assert_qgroups_uptodate(trans);
3010        trans->can_flush_pending_bgs = can_flush_pending_bgs;
3011        return 0;
3012}
3013
3014int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3015                                struct btrfs_root *root,
3016                                u64 bytenr, u64 num_bytes, u64 flags,
3017                                int level, int is_data)
3018{
3019        struct btrfs_delayed_extent_op *extent_op;
3020        int ret;
3021
3022        extent_op = btrfs_alloc_delayed_extent_op();
3023        if (!extent_op)
3024                return -ENOMEM;
3025
3026        extent_op->flags_to_set = flags;
3027        extent_op->update_flags = true;
3028        extent_op->update_key = false;
3029        extent_op->is_data = is_data ? true : false;
3030        extent_op->level = level;
3031
3032        ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3033                                          num_bytes, extent_op);
3034        if (ret)
3035                btrfs_free_delayed_extent_op(extent_op);
3036        return ret;
3037}
3038
3039static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3040                                      struct btrfs_root *root,
3041                                      struct btrfs_path *path,
3042                                      u64 objectid, u64 offset, u64 bytenr)
3043{
3044        struct btrfs_delayed_ref_head *head;
3045        struct btrfs_delayed_ref_node *ref;
3046        struct btrfs_delayed_data_ref *data_ref;
3047        struct btrfs_delayed_ref_root *delayed_refs;
3048        int ret = 0;
3049
3050        delayed_refs = &trans->transaction->delayed_refs;
3051        spin_lock(&delayed_refs->lock);
3052        head = btrfs_find_delayed_ref_head(trans, bytenr);
3053        if (!head) {
3054                spin_unlock(&delayed_refs->lock);
3055                return 0;
3056        }
3057
3058        if (!mutex_trylock(&head->mutex)) {
3059                atomic_inc(&head->node.refs);
3060                spin_unlock(&delayed_refs->lock);
3061
3062                btrfs_release_path(path);
3063
3064                /*
3065                 * Mutex was contended, block until it's released and let
3066                 * caller try again
3067                 */
3068                mutex_lock(&head->mutex);
3069                mutex_unlock(&head->mutex);
3070                btrfs_put_delayed_ref(&head->node);
3071                return -EAGAIN;
3072        }
3073        spin_unlock(&delayed_refs->lock);
3074
3075        spin_lock(&head->lock);
3076        list_for_each_entry(ref, &head->ref_list, list) {
3077                /* If it's a shared ref we know a cross reference exists */
3078                if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3079                        ret = 1;
3080                        break;
3081                }
3082
3083                data_ref = btrfs_delayed_node_to_data_ref(ref);
3084
3085                /*
3086                 * If our ref doesn't match the one we're currently looking at
3087                 * then we have a cross reference.
3088                 */
3089                if (data_ref->root != root->root_key.objectid ||
3090                    data_ref->objectid != objectid ||
3091                    data_ref->offset != offset) {
3092                        ret = 1;
3093                        break;
3094                }
3095        }
3096        spin_unlock(&head->lock);
3097        mutex_unlock(&head->mutex);
3098        return ret;
3099}
3100
3101static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3102                                        struct btrfs_root *root,
3103                                        struct btrfs_path *path,
3104                                        u64 objectid, u64 offset, u64 bytenr)
3105{
3106        struct btrfs_root *extent_root = root->fs_info->extent_root;
3107        struct extent_buffer *leaf;
3108        struct btrfs_extent_data_ref *ref;
3109        struct btrfs_extent_inline_ref *iref;
3110        struct btrfs_extent_item *ei;
3111        struct btrfs_key key;
3112        u32 item_size;
3113        int ret;
3114
3115        key.objectid = bytenr;
3116        key.offset = (u64)-1;
3117        key.type = BTRFS_EXTENT_ITEM_KEY;
3118
3119        ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3120        if (ret < 0)
3121                goto out;
3122        BUG_ON(ret == 0); /* Corruption */
3123
3124        ret = -ENOENT;
3125        if (path->slots[0] == 0)
3126                goto out;
3127
3128        path->slots[0]--;
3129        leaf = path->nodes[0];
3130        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3131
3132        if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3133                goto out;
3134
3135        ret = 1;
3136        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3137#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3138        if (item_size < sizeof(*ei)) {
3139                WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3140                goto out;
3141        }
3142#endif
3143        ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3144
3145        if (item_size != sizeof(*ei) +
3146            btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3147                goto out;
3148
3149        if (btrfs_extent_generation(leaf, ei) <=
3150            btrfs_root_last_snapshot(&root->root_item))
3151                goto out;
3152
3153        iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3154        if (btrfs_extent_inline_ref_type(leaf, iref) !=
3155            BTRFS_EXTENT_DATA_REF_KEY)
3156                goto out;
3157
3158        ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3159        if (btrfs_extent_refs(leaf, ei) !=
3160            btrfs_extent_data_ref_count(leaf, ref) ||
3161            btrfs_extent_data_ref_root(leaf, ref) !=
3162            root->root_key.objectid ||
3163            btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3164            btrfs_extent_data_ref_offset(leaf, ref) != offset)
3165                goto out;
3166
3167        ret = 0;
3168out:
3169        return ret;
3170}
3171
3172int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3173                          struct btrfs_root *root,
3174                          u64 objectid, u64 offset, u64 bytenr)
3175{
3176        struct btrfs_path *path;
3177        int ret;
3178        int ret2;
3179
3180        path = btrfs_alloc_path();
3181        if (!path)
3182                return -ENOENT;
3183
3184        do {
3185                ret = check_committed_ref(trans, root, path, objectid,
3186                                          offset, bytenr);
3187                if (ret && ret != -ENOENT)
3188                        goto out;
3189
3190                ret2 = check_delayed_ref(trans, root, path, objectid,
3191                                         offset, bytenr);
3192        } while (ret2 == -EAGAIN);
3193
3194        if (ret2 && ret2 != -ENOENT) {
3195                ret = ret2;
3196                goto out;
3197        }
3198
3199        if (ret != -ENOENT || ret2 != -ENOENT)
3200                ret = 0;
3201out:
3202        btrfs_free_path(path);
3203        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3204                WARN_ON(ret > 0);
3205        return ret;
3206}
3207
3208static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3209                           struct btrfs_root *root,
3210                           struct extent_buffer *buf,
3211                           int full_backref, int inc)
3212{
3213        u64 bytenr;
3214        u64 num_bytes;
3215        u64 parent;
3216        u64 ref_root;
3217        u32 nritems;
3218        struct btrfs_key key;
3219        struct btrfs_file_extent_item *fi;
3220        int i;
3221        int level;
3222        int ret = 0;
3223        int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3224                            u64, u64, u64, u64, u64, u64);
3225
3226
3227        if (btrfs_test_is_dummy_root(root))
3228                return 0;
3229
3230        ref_root = btrfs_header_owner(buf);
3231        nritems = btrfs_header_nritems(buf);
3232        level = btrfs_header_level(buf);
3233
3234        if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3235                return 0;
3236
3237        if (inc)
3238                process_func = btrfs_inc_extent_ref;
3239        else
3240                process_func = btrfs_free_extent;
3241
3242        if (full_backref)
3243                parent = buf->start;
3244        else
3245                parent = 0;
3246
3247        for (i = 0; i < nritems; i++) {
3248                if (level == 0) {
3249                        btrfs_item_key_to_cpu(buf, &key, i);
3250                        if (key.type != BTRFS_EXTENT_DATA_KEY)
3251                                continue;
3252                        fi = btrfs_item_ptr(buf, i,
3253                                            struct btrfs_file_extent_item);
3254                        if (btrfs_file_extent_type(buf, fi) ==
3255                            BTRFS_FILE_EXTENT_INLINE)
3256                                continue;
3257                        bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3258                        if (bytenr == 0)
3259                                continue;
3260
3261                        num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3262                        key.offset -= btrfs_file_extent_offset(buf, fi);
3263                        ret = process_func(trans, root, bytenr, num_bytes,
3264                                           parent, ref_root, key.objectid,
3265                                           key.offset);
3266                        if (ret)
3267                                goto fail;
3268                } else {
3269                        bytenr = btrfs_node_blockptr(buf, i);
3270                        num_bytes = root->nodesize;
3271                        ret = process_func(trans, root, bytenr, num_bytes,
3272                                           parent, ref_root, level - 1, 0);
3273                        if (ret)
3274                                goto fail;
3275                }
3276        }
3277        return 0;
3278fail:
3279        return ret;
3280}
3281
3282int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3283                  struct extent_buffer *buf, int full_backref)
3284{
3285        return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3286}
3287
3288int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3289                  struct extent_buffer *buf, int full_backref)
3290{
3291        return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3292}
3293
3294static int write_one_cache_group(struct btrfs_trans_handle *trans,
3295                                 struct btrfs_root *root,
3296                                 struct btrfs_path *path,
3297                                 struct btrfs_block_group_cache *cache)
3298{
3299        int ret;
3300        struct btrfs_root *extent_root = root->fs_info->extent_root;
3301        unsigned long bi;
3302        struct extent_buffer *leaf;
3303
3304        ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3305        if (ret) {
3306                if (ret > 0)
3307                        ret = -ENOENT;
3308                goto fail;
3309        }
3310
3311        leaf = path->nodes[0];
3312        bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3313        write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3314        btrfs_mark_buffer_dirty(leaf);
3315fail:
3316        btrfs_release_path(path);
3317        return ret;
3318
3319}
3320
3321static struct btrfs_block_group_cache *
3322next_block_group(struct btrfs_root *root,
3323                 struct btrfs_block_group_cache *cache)
3324{
3325        struct rb_node *node;
3326
3327        spin_lock(&root->fs_info->block_group_cache_lock);
3328
3329        /* If our block group was removed, we need a full search. */
3330        if (RB_EMPTY_NODE(&cache->cache_node)) {
3331                const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3332
3333                spin_unlock(&root->fs_info->block_group_cache_lock);
3334                btrfs_put_block_group(cache);
3335                cache = btrfs_lookup_first_block_group(root->fs_info,
3336                                                       next_bytenr);
3337                return cache;
3338        }
3339        node = rb_next(&cache->cache_node);
3340        btrfs_put_block_group(cache);
3341        if (node) {
3342                cache = rb_entry(node, struct btrfs_block_group_cache,
3343                                 cache_node);
3344                btrfs_get_block_group(cache);
3345        } else
3346                cache = NULL;
3347        spin_unlock(&root->fs_info->block_group_cache_lock);
3348        return cache;
3349}
3350
3351static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3352                            struct btrfs_trans_handle *trans,
3353                            struct btrfs_path *path)
3354{
3355        struct btrfs_root *root = block_group->fs_info->tree_root;
3356        struct inode *inode = NULL;
3357        u64 alloc_hint = 0;
3358        int dcs = BTRFS_DC_ERROR;
3359        u64 num_pages = 0;
3360        int retries = 0;
3361        int ret = 0;
3362
3363        /*
3364         * If this block group is smaller than 100 megs don't bother caching the
3365         * block group.
3366         */
3367        if (block_group->key.offset < (100 * SZ_1M)) {
3368                spin_lock(&block_group->lock);
3369                block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3370                spin_unlock(&block_group->lock);
3371                return 0;
3372        }
3373
3374        if (trans->aborted)
3375                return 0;
3376again:
3377        inode = lookup_free_space_inode(root, block_group, path);
3378        if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3379                ret = PTR_ERR(inode);
3380                btrfs_release_path(path);
3381                goto out;
3382        }
3383
3384        if (IS_ERR(inode)) {
3385                BUG_ON(retries);
3386                retries++;
3387
3388                if (block_group->ro)
3389                        goto out_free;
3390
3391                ret = create_free_space_inode(root, trans, block_group, path);
3392                if (ret)
3393                        goto out_free;
3394                goto again;
3395        }
3396
3397        /* We've already setup this transaction, go ahead and exit */
3398        if (block_group->cache_generation == trans->transid &&
3399            i_size_read(inode)) {
3400                dcs = BTRFS_DC_SETUP;
3401                goto out_put;
3402        }
3403
3404        /*
3405         * We want to set the generation to 0, that way if anything goes wrong
3406         * from here on out we know not to trust this cache when we load up next
3407         * time.
3408         */
3409        BTRFS_I(inode)->generation = 0;
3410        ret = btrfs_update_inode(trans, root, inode);
3411        if (ret) {
3412                /*
3413                 * So theoretically we could recover from this, simply set the
3414                 * super cache generation to 0 so we know to invalidate the
3415                 * cache, but then we'd have to keep track of the block groups
3416                 * that fail this way so we know we _have_ to reset this cache
3417                 * before the next commit or risk reading stale cache.  So to
3418                 * limit our exposure to horrible edge cases lets just abort the
3419                 * transaction, this only happens in really bad situations
3420                 * anyway.
3421                 */
3422                btrfs_abort_transaction(trans, root, ret);
3423                goto out_put;
3424        }
3425        WARN_ON(ret);
3426
3427        if (i_size_read(inode) > 0) {
3428                ret = btrfs_check_trunc_cache_free_space(root,
3429                                        &root->fs_info->global_block_rsv);
3430                if (ret)
3431                        goto out_put;
3432
3433                ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3434                if (ret)
3435                        goto out_put;
3436        }
3437
3438        spin_lock(&block_group->lock);
3439        if (block_group->cached != BTRFS_CACHE_FINISHED ||
3440            !btrfs_test_opt(root, SPACE_CACHE)) {
3441                /*
3442                 * don't bother trying to write stuff out _if_
3443                 * a) we're not cached,
3444                 * b) we're with nospace_cache mount option.
3445                 */
3446                dcs = BTRFS_DC_WRITTEN;
3447                spin_unlock(&block_group->lock);
3448                goto out_put;
3449        }
3450        spin_unlock(&block_group->lock);
3451
3452        /*
3453         * We hit an ENOSPC when setting up the cache in this transaction, just
3454         * skip doing the setup, we've already cleared the cache so we're safe.
3455         */
3456        if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3457                ret = -ENOSPC;
3458                goto out_put;
3459        }
3460
3461        /*
3462         * Try to preallocate enough space based on how big the block group is.
3463         * Keep in mind this has to include any pinned space which could end up
3464         * taking up quite a bit since it's not folded into the other space
3465         * cache.
3466         */
3467        num_pages = div_u64(block_group->key.offset, SZ_256M);
3468        if (!num_pages)
3469                num_pages = 1;
3470
3471        num_pages *= 16;
3472        num_pages *= PAGE_SIZE;
3473
3474        ret = btrfs_check_data_free_space(inode, 0, num_pages);
3475        if (ret)
3476                goto out_put;
3477
3478        ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3479                                              num_pages, num_pages,
3480                                              &alloc_hint);
3481        /*
3482         * Our cache requires contiguous chunks so that we don't modify a bunch
3483         * of metadata or split extents when writing the cache out, which means
3484         * we can enospc if we are heavily fragmented in addition to just normal
3485         * out of space conditions.  So if we hit this just skip setting up any
3486         * other block groups for this transaction, maybe we'll unpin enough
3487         * space the next time around.
3488         */
3489        if (!ret)
3490                dcs = BTRFS_DC_SETUP;
3491        else if (ret == -ENOSPC)
3492                set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3493        btrfs_free_reserved_data_space(inode, 0, num_pages);
3494
3495out_put:
3496        iput(inode);
3497out_free:
3498        btrfs_release_path(path);
3499out:
3500        spin_lock(&block_group->lock);
3501        if (!ret && dcs == BTRFS_DC_SETUP)
3502                block_group->cache_generation = trans->transid;
3503        block_group->disk_cache_state = dcs;
3504        spin_unlock(&block_group->lock);
3505
3506        return ret;
3507}
3508
3509int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3510                            struct btrfs_root *root)
3511{
3512        struct btrfs_block_group_cache *cache, *tmp;
3513        struct btrfs_transaction *cur_trans = trans->transaction;
3514        struct btrfs_path *path;
3515
3516        if (list_empty(&cur_trans->dirty_bgs) ||
3517            !btrfs_test_opt(root, SPACE_CACHE))
3518                return 0;
3519
3520        path = btrfs_alloc_path();
3521        if (!path)
3522                return -ENOMEM;
3523
3524        /* Could add new block groups, use _safe just in case */
3525        list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3526                                 dirty_list) {
3527                if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3528                        cache_save_setup(cache, trans, path);
3529        }
3530
3531        btrfs_free_path(path);
3532        return 0;
3533}
3534
3535/*
3536 * transaction commit does final block group cache writeback during a
3537 * critical section where nothing is allowed to change the FS.  This is
3538 * required in order for the cache to actually match the block group,
3539 * but can introduce a lot of latency into the commit.
3540 *
3541 * So, btrfs_start_dirty_block_groups is here to kick off block group
3542 * cache IO.  There's a chance we'll have to redo some of it if the
3543 * block group changes again during the commit, but it greatly reduces
3544 * the commit latency by getting rid of the easy block groups while
3545 * we're still allowing others to join the commit.
3546 */
3547int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3548                                   struct btrfs_root *root)
3549{
3550        struct btrfs_block_group_cache *cache;
3551        struct btrfs_transaction *cur_trans = trans->transaction;
3552        int ret = 0;
3553        int should_put;
3554        struct btrfs_path *path = NULL;
3555        LIST_HEAD(dirty);
3556        struct list_head *io = &cur_trans->io_bgs;
3557        int num_started = 0;
3558        int loops = 0;
3559
3560        spin_lock(&cur_trans->dirty_bgs_lock);
3561        if (list_empty(&cur_trans->dirty_bgs)) {
3562                spin_unlock(&cur_trans->dirty_bgs_lock);
3563                return 0;
3564        }
3565        list_splice_init(&cur_trans->dirty_bgs, &dirty);
3566        spin_unlock(&cur_trans->dirty_bgs_lock);
3567
3568again:
3569        /*
3570         * make sure all the block groups on our dirty list actually
3571         * exist
3572         */
3573        btrfs_create_pending_block_groups(trans, root);
3574
3575        if (!path) {
3576                path = btrfs_alloc_path();
3577                if (!path)
3578                        return -ENOMEM;
3579        }
3580
3581        /*
3582         * cache_write_mutex is here only to save us from balance or automatic
3583         * removal of empty block groups deleting this block group while we are
3584         * writing out the cache
3585         */
3586        mutex_lock(&trans->transaction->cache_write_mutex);
3587        while (!list_empty(&dirty)) {
3588                cache = list_first_entry(&dirty,
3589                                         struct btrfs_block_group_cache,
3590                                         dirty_list);
3591                /*
3592                 * this can happen if something re-dirties a block
3593                 * group that is already under IO.  Just wait for it to
3594                 * finish and then do it all again
3595                 */
3596                if (!list_empty(&cache->io_list)) {
3597                        list_del_init(&cache->io_list);
3598                        btrfs_wait_cache_io(root, trans, cache,
3599                                            &cache->io_ctl, path,
3600                                            cache->key.objectid);
3601                        btrfs_put_block_group(cache);
3602                }
3603
3604
3605                /*
3606                 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3607                 * if it should update the cache_state.  Don't delete
3608                 * until after we wait.
3609                 *
3610                 * Since we're not running in the commit critical section
3611                 * we need the dirty_bgs_lock to protect from update_block_group
3612                 */
3613                spin_lock(&cur_trans->dirty_bgs_lock);
3614                list_del_init(&cache->dirty_list);
3615                spin_unlock(&cur_trans->dirty_bgs_lock);
3616
3617                should_put = 1;
3618
3619                cache_save_setup(cache, trans, path);
3620
3621                if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3622                        cache->io_ctl.inode = NULL;
3623                        ret = btrfs_write_out_cache(root, trans, cache, path);
3624                        if (ret == 0 && cache->io_ctl.inode) {
3625                                num_started++;
3626                                should_put = 0;
3627
3628                                /*
3629                                 * the cache_write_mutex is protecting
3630                                 * the io_list
3631                                 */
3632                                list_add_tail(&cache->io_list, io);
3633                        } else {
3634                                /*
3635                                 * if we failed to write the cache, the
3636                                 * generation will be bad and life goes on
3637                                 */
3638                                ret = 0;
3639                        }
3640                }
3641                if (!ret) {
3642                        ret = write_one_cache_group(trans, root, path, cache);
3643                        /*
3644                         * Our block group might still be attached to the list
3645                         * of new block groups in the transaction handle of some
3646                         * other task (struct btrfs_trans_handle->new_bgs). This
3647                         * means its block group item isn't yet in the extent
3648                         * tree. If this happens ignore the error, as we will
3649                         * try again later in the critical section of the
3650                         * transaction commit.
3651                         */
3652                        if (ret == -ENOENT) {
3653                                ret = 0;
3654                                spin_lock(&cur_trans->dirty_bgs_lock);
3655                                if (list_empty(&cache->dirty_list)) {
3656                                        list_add_tail(&cache->dirty_list,
3657                                                      &cur_trans->dirty_bgs);
3658                                        btrfs_get_block_group(cache);
3659                                }
3660                                spin_unlock(&cur_trans->dirty_bgs_lock);
3661                        } else if (ret) {
3662                                btrfs_abort_transaction(trans, root, ret);
3663                        }
3664                }
3665
3666                /* if its not on the io list, we need to put the block group */
3667                if (should_put)
3668                        btrfs_put_block_group(cache);
3669
3670                if (ret)
3671                        break;
3672
3673                /*
3674                 * Avoid blocking other tasks for too long. It might even save
3675                 * us from writing caches for block groups that are going to be
3676                 * removed.
3677                 */
3678                mutex_unlock(&trans->transaction->cache_write_mutex);
3679                mutex_lock(&trans->transaction->cache_write_mutex);
3680        }
3681        mutex_unlock(&trans->transaction->cache_write_mutex);
3682
3683        /*
3684         * go through delayed refs for all the stuff we've just kicked off
3685         * and then loop back (just once)
3686         */
3687        ret = btrfs_run_delayed_refs(trans, root, 0);
3688        if (!ret && loops == 0) {
3689                loops++;
3690                spin_lock(&cur_trans->dirty_bgs_lock);
3691                list_splice_init(&cur_trans->dirty_bgs, &dirty);
3692                /*
3693                 * dirty_bgs_lock protects us from concurrent block group
3694                 * deletes too (not just cache_write_mutex).
3695                 */
3696                if (!list_empty(&dirty)) {
3697                        spin_unlock(&cur_trans->dirty_bgs_lock);
3698                        goto again;
3699                }
3700                spin_unlock(&cur_trans->dirty_bgs_lock);
3701        }
3702
3703        btrfs_free_path(path);
3704        return ret;
3705}
3706
3707int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3708                                   struct btrfs_root *root)
3709{
3710        struct btrfs_block_group_cache *cache;
3711        struct btrfs_transaction *cur_trans = trans->transaction;
3712        int ret = 0;
3713        int should_put;
3714        struct btrfs_path *path;
3715        struct list_head *io = &cur_trans->io_bgs;
3716        int num_started = 0;
3717
3718        path = btrfs_alloc_path();
3719        if (!path)
3720                return -ENOMEM;
3721
3722        /*
3723         * Even though we are in the critical section of the transaction commit,
3724         * we can still have concurrent tasks adding elements to this
3725         * transaction's list of dirty block groups. These tasks correspond to
3726         * endio free space workers started when writeback finishes for a
3727         * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3728         * allocate new block groups as a result of COWing nodes of the root
3729         * tree when updating the free space inode. The writeback for the space
3730         * caches is triggered by an earlier call to
3731         * btrfs_start_dirty_block_groups() and iterations of the following
3732         * loop.
3733         * Also we want to do the cache_save_setup first and then run the
3734         * delayed refs to make sure we have the best chance at doing this all
3735         * in one shot.
3736         */
3737        spin_lock(&cur_trans->dirty_bgs_lock);
3738        while (!list_empty(&cur_trans->dirty_bgs)) {
3739                cache = list_first_entry(&cur_trans->dirty_bgs,
3740                                         struct btrfs_block_group_cache,
3741                                         dirty_list);
3742
3743                /*
3744                 * this can happen if cache_save_setup re-dirties a block
3745                 * group that is already under IO.  Just wait for it to
3746                 * finish and then do it all again
3747                 */
3748                if (!list_empty(&cache->io_list)) {
3749                        spin_unlock(&cur_trans->dirty_bgs_lock);
3750                        list_del_init(&cache->io_list);
3751                        btrfs_wait_cache_io(root, trans, cache,
3752                                            &cache->io_ctl, path,
3753                                            cache->key.objectid);
3754                        btrfs_put_block_group(cache);
3755                        spin_lock(&cur_trans->dirty_bgs_lock);
3756                }
3757
3758                /*
3759                 * don't remove from the dirty list until after we've waited
3760                 * on any pending IO
3761                 */
3762                list_del_init(&cache->dirty_list);
3763                spin_unlock(&cur_trans->dirty_bgs_lock);
3764                should_put = 1;
3765
3766                cache_save_setup(cache, trans, path);
3767
3768                if (!ret)
3769                        ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3770
3771                if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3772                        cache->io_ctl.inode = NULL;
3773                        ret = btrfs_write_out_cache(root, trans, cache, path);
3774                        if (ret == 0 && cache->io_ctl.inode) {
3775                                num_started++;
3776                                should_put = 0;
3777                                list_add_tail(&cache->io_list, io);
3778                        } else {
3779                                /*
3780                                 * if we failed to write the cache, the
3781                                 * generation will be bad and life goes on
3782                                 */
3783                                ret = 0;
3784                        }
3785                }
3786                if (!ret) {
3787                        ret = write_one_cache_group(trans, root, path, cache);
3788                        /*
3789                         * One of the free space endio workers might have
3790                         * created a new block group while updating a free space
3791                         * cache's inode (at inode.c:btrfs_finish_ordered_io())
3792                         * and hasn't released its transaction handle yet, in
3793                         * which case the new block group is still attached to
3794                         * its transaction handle and its creation has not
3795                         * finished yet (no block group item in the extent tree
3796                         * yet, etc). If this is the case, wait for all free
3797                         * space endio workers to finish and retry. This is a
3798                         * a very rare case so no need for a more efficient and
3799                         * complex approach.
3800                         */
3801                        if (ret == -ENOENT) {
3802                                wait_event(cur_trans->writer_wait,
3803                                   atomic_read(&cur_trans->num_writers) == 1);
3804                                ret = write_one_cache_group(trans, root, path,
3805                                                            cache);
3806                        }
3807                        if (ret)
3808                                btrfs_abort_transaction(trans, root, ret);
3809                }
3810
3811                /* if its not on the io list, we need to put the block group */
3812                if (should_put)
3813                        btrfs_put_block_group(cache);
3814                spin_lock(&cur_trans->dirty_bgs_lock);
3815        }
3816        spin_unlock(&cur_trans->dirty_bgs_lock);
3817
3818        while (!list_empty(io)) {
3819                cache = list_first_entry(io, struct btrfs_block_group_cache,
3820                                         io_list);
3821                list_del_init(&cache->io_list);
3822                btrfs_wait_cache_io(root, trans, cache,
3823                                    &cache->io_ctl, path, cache->key.objectid);
3824                btrfs_put_block_group(cache);
3825        }
3826
3827        btrfs_free_path(path);
3828        return ret;
3829}
3830
3831int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3832{
3833        struct btrfs_block_group_cache *block_group;
3834        int readonly = 0;
3835
3836        block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3837        if (!block_group || block_group->ro)
3838                readonly = 1;
3839        if (block_group)
3840                btrfs_put_block_group(block_group);
3841        return readonly;
3842}
3843
3844bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3845{
3846        struct btrfs_block_group_cache *bg;
3847        bool ret = true;
3848
3849        bg = btrfs_lookup_block_group(fs_info, bytenr);
3850        if (!bg)
3851                return false;
3852
3853        spin_lock(&bg->lock);
3854        if (bg->ro)
3855                ret = false;
3856        else
3857                atomic_inc(&bg->nocow_writers);
3858        spin_unlock(&bg->lock);
3859
3860        /* no put on block group, done by btrfs_dec_nocow_writers */
3861        if (!ret)
3862                btrfs_put_block_group(bg);
3863
3864        return ret;
3865
3866}
3867
3868void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3869{
3870        struct btrfs_block_group_cache *bg;
3871
3872        bg = btrfs_lookup_block_group(fs_info, bytenr);
3873        ASSERT(bg);
3874        if (atomic_dec_and_test(&bg->nocow_writers))
3875                wake_up_atomic_t(&bg->nocow_writers);
3876        /*
3877         * Once for our lookup and once for the lookup done by a previous call
3878         * to btrfs_inc_nocow_writers()
3879         */
3880        btrfs_put_block_group(bg);
3881        btrfs_put_block_group(bg);
3882}
3883
3884static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3885{
3886        schedule();
3887        return 0;
3888}
3889
3890void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3891{
3892        wait_on_atomic_t(&bg->nocow_writers,
3893                         btrfs_wait_nocow_writers_atomic_t,
3894                         TASK_UNINTERRUPTIBLE);
3895}
3896
3897static const char *alloc_name(u64 flags)
3898{
3899        switch (flags) {
3900        case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3901                return "mixed";
3902        case BTRFS_BLOCK_GROUP_METADATA:
3903                return "metadata";
3904        case BTRFS_BLOCK_GROUP_DATA:
3905                return "data";
3906        case BTRFS_BLOCK_GROUP_SYSTEM:
3907                return "system";
3908        default:
3909                WARN_ON(1);
3910                return "invalid-combination";
3911        };
3912}
3913
3914static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3915                             u64 total_bytes, u64 bytes_used,
3916                             struct btrfs_space_info **space_info)
3917{
3918        struct btrfs_space_info *found;
3919        int i;
3920        int factor;
3921        int ret;
3922
3923        if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3924                     BTRFS_BLOCK_GROUP_RAID10))
3925                factor = 2;
3926        else
3927                factor = 1;
3928
3929        found = __find_space_info(info, flags);
3930        if (found) {
3931                spin_lock(&found->lock);
3932                found->total_bytes += total_bytes;
3933                found->disk_total += total_bytes * factor;
3934                found->bytes_used += bytes_used;
3935                found->disk_used += bytes_used * factor;
3936                if (total_bytes > 0)
3937                        found->full = 0;
3938                spin_unlock(&found->lock);
3939                *space_info = found;
3940                return 0;
3941        }
3942        found = kzalloc(sizeof(*found), GFP_NOFS);
3943        if (!found)
3944                return -ENOMEM;
3945
3946        ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3947        if (ret) {
3948                kfree(found);
3949                return ret;
3950        }
3951
3952        for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3953                INIT_LIST_HEAD(&found->block_groups[i]);
3954        init_rwsem(&found->groups_sem);
3955        spin_lock_init(&found->lock);
3956        found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3957        found->total_bytes = total_bytes;
3958        found->disk_total = total_bytes * factor;
3959        found->bytes_used = bytes_used;
3960        found->disk_used = bytes_used * factor;
3961        found->bytes_pinned = 0;
3962        found->bytes_reserved = 0;
3963        found->bytes_readonly = 0;
3964        found->bytes_may_use = 0;
3965        found->full = 0;
3966        found->max_extent_size = 0;
3967        found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3968        found->chunk_alloc = 0;
3969        found->flush = 0;
3970        init_waitqueue_head(&found->wait);
3971        INIT_LIST_HEAD(&found->ro_bgs);
3972
3973        ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3974                                    info->space_info_kobj, "%s",
3975                                    alloc_name(found->flags));
3976        if (ret) {
3977                kfree(found);
3978                return ret;
3979        }
3980
3981        *space_info = found;
3982        list_add_rcu(&found->list, &info->space_info);
3983        if (flags & BTRFS_BLOCK_GROUP_DATA)
3984                info->data_sinfo = found;
3985
3986        return ret;
3987}
3988
3989static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3990{
3991        u64 extra_flags = chunk_to_extended(flags) &
3992                                BTRFS_EXTENDED_PROFILE_MASK;
3993
3994        write_seqlock(&fs_info->profiles_lock);
3995        if (flags & BTRFS_BLOCK_GROUP_DATA)
3996                fs_info->avail_data_alloc_bits |= extra_flags;
3997        if (flags & BTRFS_BLOCK_GROUP_METADATA)
3998                fs_info->avail_metadata_alloc_bits |= extra_flags;
3999        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4000                fs_info->avail_system_alloc_bits |= extra_flags;
4001        write_sequnlock(&fs_info->profiles_lock);
4002}
4003
4004/*
4005 * returns target flags in extended format or 0 if restripe for this
4006 * chunk_type is not in progress
4007 *
4008 * should be called with either volume_mutex or balance_lock held
4009 */
4010static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4011{
4012        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4013        u64 target = 0;
4014
4015        if (!bctl)
4016                return 0;
4017
4018        if (flags & BTRFS_BLOCK_GROUP_DATA &&
4019            bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4020                target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4021        } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4022                   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4023                target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4024        } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4025                   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4026                target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4027        }
4028
4029        return target;
4030}
4031
4032/*
4033 * @flags: available profiles in extended format (see ctree.h)
4034 *
4035 * Returns reduced profile in chunk format.  If profile changing is in
4036 * progress (either running or paused) picks the target profile (if it's
4037 * already available), otherwise falls back to plain reducing.
4038 */
4039static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4040{
4041        u64 num_devices = root->fs_info->fs_devices->rw_devices;
4042        u64 target;
4043        u64 raid_type;
4044        u64 allowed = 0;
4045
4046        /*
4047         * see if restripe for this chunk_type is in progress, if so
4048         * try to reduce to the target profile
4049         */
4050        spin_lock(&root->fs_info->balance_lock);
4051        target = get_restripe_target(root->fs_info, flags);
4052        if (target) {
4053                /* pick target profile only if it's already available */
4054                if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4055                        spin_unlock(&root->fs_info->balance_lock);
4056                        return extended_to_chunk(target);
4057                }
4058        }
4059        spin_unlock(&root->fs_info->balance_lock);
4060
4061        /* First, mask out the RAID levels which aren't possible */
4062        for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4063                if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4064                        allowed |= btrfs_raid_group[raid_type];
4065        }
4066        allowed &= flags;
4067
4068        if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4069                allowed = BTRFS_BLOCK_GROUP_RAID6;
4070        else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4071                allowed = BTRFS_BLOCK_GROUP_RAID5;
4072        else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4073                allowed = BTRFS_BLOCK_GROUP_RAID10;
4074        else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4075                allowed = BTRFS_BLOCK_GROUP_RAID1;
4076        else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4077                allowed = BTRFS_BLOCK_GROUP_RAID0;
4078
4079        flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4080
4081        return extended_to_chunk(flags | allowed);
4082}
4083
4084static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4085{
4086        unsigned seq;
4087        u64 flags;
4088
4089        do {
4090                flags = orig_flags;
4091                seq = read_seqbegin(&root->fs_info->profiles_lock);
4092
4093                if (flags & BTRFS_BLOCK_GROUP_DATA)
4094                        flags |= root->fs_info->avail_data_alloc_bits;
4095                else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4096                        flags |= root->fs_info->avail_system_alloc_bits;
4097                else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4098                        flags |= root->fs_info->avail_metadata_alloc_bits;
4099        } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4100
4101        return btrfs_reduce_alloc_profile(root, flags);
4102}
4103
4104u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4105{
4106        u64 flags;
4107        u64 ret;
4108
4109        if (data)
4110                flags = BTRFS_BLOCK_GROUP_DATA;
4111        else if (root == root->fs_info->chunk_root)
4112                flags = BTRFS_BLOCK_GROUP_SYSTEM;
4113        else
4114                flags = BTRFS_BLOCK_GROUP_METADATA;
4115
4116        ret = get_alloc_profile(root, flags);
4117        return ret;
4118}
4119
4120int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4121{
4122        struct btrfs_space_info *data_sinfo;
4123        struct btrfs_root *root = BTRFS_I(inode)->root;
4124        struct btrfs_fs_info *fs_info = root->fs_info;
4125        u64 used;
4126        int ret = 0;
4127        int need_commit = 2;
4128        int have_pinned_space;
4129
4130        /* make sure bytes are sectorsize aligned */
4131        bytes = ALIGN(bytes, root->sectorsize);
4132
4133        if (btrfs_is_free_space_inode(inode)) {
4134                need_commit = 0;
4135                ASSERT(current->journal_info);
4136        }
4137
4138        data_sinfo = fs_info->data_sinfo;
4139        if (!data_sinfo)
4140                goto alloc;
4141
4142again:
4143        /* make sure we have enough space to handle the data first */
4144        spin_lock(&data_sinfo->lock);
4145        used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4146                data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4147                data_sinfo->bytes_may_use;
4148
4149        if (used + bytes > data_sinfo->total_bytes) {
4150                struct btrfs_trans_handle *trans;
4151
4152                /*
4153                 * if we don't have enough free bytes in this space then we need
4154                 * to alloc a new chunk.
4155                 */
4156                if (!data_sinfo->full) {
4157                        u64 alloc_target;
4158
4159                        data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4160                        spin_unlock(&data_sinfo->lock);
4161alloc:
4162                        alloc_target = btrfs_get_alloc_profile(root, 1);
4163                        /*
4164                         * It is ugly that we don't call nolock join
4165                         * transaction for the free space inode case here.
4166                         * But it is safe because we only do the data space
4167                         * reservation for the free space cache in the
4168                         * transaction context, the common join transaction
4169                         * just increase the counter of the current transaction
4170                         * handler, doesn't try to acquire the trans_lock of
4171                         * the fs.
4172                         */
4173                        trans = btrfs_join_transaction(root);
4174                        if (IS_ERR(trans))
4175                                return PTR_ERR(trans);
4176
4177                        ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4178                                             alloc_target,
4179                                             CHUNK_ALLOC_NO_FORCE);
4180                        btrfs_end_transaction(trans, root);
4181                        if (ret < 0) {
4182                                if (ret != -ENOSPC)
4183                                        return ret;
4184                                else {
4185                                        have_pinned_space = 1;
4186                                        goto commit_trans;
4187                                }
4188                        }
4189
4190                        if (!data_sinfo)
4191                                data_sinfo = fs_info->data_sinfo;
4192
4193                        goto again;
4194                }
4195
4196                /*
4197                 * If we don't have enough pinned space to deal with this
4198                 * allocation, and no removed chunk in current transaction,
4199                 * don't bother committing the transaction.
4200                 */
4201                have_pinned_space = percpu_counter_compare(
4202                        &data_sinfo->total_bytes_pinned,
4203                        used + bytes - data_sinfo->total_bytes);
4204                spin_unlock(&data_sinfo->lock);
4205
4206                /* commit the current transaction and try again */
4207commit_trans:
4208                if (need_commit &&
4209                    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4210                        need_commit--;
4211
4212                        if (need_commit > 0) {
4213                                btrfs_start_delalloc_roots(fs_info, 0, -1);
4214                                btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4215                        }
4216
4217                        trans = btrfs_join_transaction(root);
4218                        if (IS_ERR(trans))
4219                                return PTR_ERR(trans);
4220                        if (have_pinned_space >= 0 ||
4221                            test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4222                                     &trans->transaction->flags) ||
4223                            need_commit > 0) {
4224                                ret = btrfs_commit_transaction(trans, root);
4225                                if (ret)
4226                                        return ret;
4227                                /*
4228                                 * The cleaner kthread might still be doing iput
4229                                 * operations. Wait for it to finish so that
4230                                 * more space is released.
4231                                 */
4232                                mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4233                                mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4234                                goto again;
4235                        } else {
4236                                btrfs_end_transaction(trans, root);
4237                        }
4238                }
4239
4240                trace_btrfs_space_reservation(root->fs_info,
4241                                              "space_info:enospc",
4242                                              data_sinfo->flags, bytes, 1);
4243                return -ENOSPC;
4244        }
4245        data_sinfo->bytes_may_use += bytes;
4246        trace_btrfs_space_reservation(root->fs_info, "space_info",
4247                                      data_sinfo->flags, bytes, 1);
4248        spin_unlock(&data_sinfo->lock);
4249
4250        return ret;
4251}
4252
4253/*
4254 * New check_data_free_space() with ability for precious data reservation
4255 * Will replace old btrfs_check_data_free_space(), but for patch split,
4256 * add a new function first and then replace it.
4257 */
4258int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4259{
4260        struct btrfs_root *root = BTRFS_I(inode)->root;
4261        int ret;
4262
4263        /* align the range */
4264        len = round_up(start + len, root->sectorsize) -
4265              round_down(start, root->sectorsize);
4266        start = round_down(start, root->sectorsize);
4267
4268        ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4269        if (ret < 0)
4270                return ret;
4271
4272        /*
4273         * Use new btrfs_qgroup_reserve_data to reserve precious data space
4274         *
4275         * TODO: Find a good method to avoid reserve data space for NOCOW
4276         * range, but don't impact performance on quota disable case.
4277         */
4278        ret = btrfs_qgroup_reserve_data(inode, start, len);
4279        return ret;
4280}
4281
4282/*
4283 * Called if we need to clear a data reservation for this inode
4284 * Normally in a error case.
4285 *
4286 * This one will *NOT* use accurate qgroup reserved space API, just for case
4287 * which we can't sleep and is sure it won't affect qgroup reserved space.
4288 * Like clear_bit_hook().
4289 */
4290void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4291                                            u64 len)
4292{
4293        struct btrfs_root *root = BTRFS_I(inode)->root;
4294        struct btrfs_space_info *data_sinfo;
4295
4296        /* Make sure the range is aligned to sectorsize */
4297        len = round_up(start + len, root->sectorsize) -
4298              round_down(start, root->sectorsize);
4299        start = round_down(start, root->sectorsize);
4300
4301        data_sinfo = root->fs_info->data_sinfo;
4302        spin_lock(&data_sinfo->lock);
4303        if (WARN_ON(data_sinfo->bytes_may_use < len))
4304                data_sinfo->bytes_may_use = 0;
4305        else
4306                data_sinfo->bytes_may_use -= len;
4307        trace_btrfs_space_reservation(root->fs_info, "space_info",
4308                                      data_sinfo->flags, len, 0);
4309        spin_unlock(&data_sinfo->lock);
4310}
4311
4312/*
4313 * Called if we need to clear a data reservation for this inode
4314 * Normally in a error case.
4315 *
4316 * This one will handle the per-inode data rsv map for accurate reserved
4317 * space framework.
4318 */
4319void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4320{
4321        btrfs_free_reserved_data_space_noquota(inode, start, len);
4322        btrfs_qgroup_free_data(inode, start, len);
4323}
4324
4325static void force_metadata_allocation(struct btrfs_fs_info *info)
4326{
4327        struct list_head *head = &info->space_info;
4328        struct btrfs_space_info *found;
4329
4330        rcu_read_lock();
4331        list_for_each_entry_rcu(found, head, list) {
4332                if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4333                        found->force_alloc = CHUNK_ALLOC_FORCE;
4334        }
4335        rcu_read_unlock();
4336}
4337
4338static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4339{
4340        return (global->size << 1);
4341}
4342
4343static int should_alloc_chunk(struct btrfs_root *root,
4344                              struct btrfs_space_info *sinfo, int force)
4345{
4346        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4347        u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4348        u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4349        u64 thresh;
4350
4351        if (force == CHUNK_ALLOC_FORCE)
4352                return 1;
4353
4354        /*
4355         * We need to take into account the global rsv because for all intents
4356         * and purposes it's used space.  Don't worry about locking the
4357         * global_rsv, it doesn't change except when the transaction commits.
4358         */
4359        if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4360                num_allocated += calc_global_rsv_need_space(global_rsv);
4361
4362        /*
4363         * in limited mode, we want to have some free space up to
4364         * about 1% of the FS size.
4365         */
4366        if (force == CHUNK_ALLOC_LIMITED) {
4367                thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4368                thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4369
4370                if (num_bytes - num_allocated < thresh)
4371                        return 1;
4372        }
4373
4374        if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4375                return 0;
4376        return 1;
4377}
4378
4379static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4380{
4381        u64 num_dev;
4382
4383        if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4384                    BTRFS_BLOCK_GROUP_RAID0 |
4385                    BTRFS_BLOCK_GROUP_RAID5 |
4386                    BTRFS_BLOCK_GROUP_RAID6))
4387                num_dev = root->fs_info->fs_devices->rw_devices;
4388        else if (type & BTRFS_BLOCK_GROUP_RAID1)
4389                num_dev = 2;
4390        else
4391                num_dev = 1;    /* DUP or single */
4392
4393        return num_dev;
4394}
4395
4396/*
4397 * If @is_allocation is true, reserve space in the system space info necessary
4398 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4399 * removing a chunk.
4400 */
4401void check_system_chunk(struct btrfs_trans_handle *trans,
4402                        struct btrfs_root *root,
4403                        u64 type)
4404{
4405        struct btrfs_space_info *info;
4406        u64 left;
4407        u64 thresh;
4408        int ret = 0;
4409        u64 num_devs;
4410
4411        /*
4412         * Needed because we can end up allocating a system chunk and for an
4413         * atomic and race free space reservation in the chunk block reserve.
4414         */
4415        ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4416
4417        info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4418        spin_lock(&info->lock);
4419        left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4420                info->bytes_reserved - info->bytes_readonly -
4421                info->bytes_may_use;
4422        spin_unlock(&info->lock);
4423
4424        num_devs = get_profile_num_devs(root, type);
4425
4426        /* num_devs device items to update and 1 chunk item to add or remove */
4427        thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4428                btrfs_calc_trans_metadata_size(root, 1);
4429
4430        if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
4431                btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4432                        left, thresh, type);
4433                dump_space_info(info, 0, 0);
4434        }
4435
4436        if (left < thresh) {
4437                u64 flags;
4438
4439                flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4440                /*
4441                 * Ignore failure to create system chunk. We might end up not
4442                 * needing it, as we might not need to COW all nodes/leafs from
4443                 * the paths we visit in the chunk tree (they were already COWed
4444                 * or created in the current transaction for example).
4445                 */
4446                ret = btrfs_alloc_chunk(trans, root, flags);
4447        }
4448
4449        if (!ret) {
4450                ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4451                                          &root->fs_info->chunk_block_rsv,
4452                                          thresh, BTRFS_RESERVE_NO_FLUSH);
4453                if (!ret)
4454                        trans->chunk_bytes_reserved += thresh;
4455        }
4456}
4457
4458static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4459                          struct btrfs_root *extent_root, u64 flags, int force)
4460{
4461        struct btrfs_space_info *space_info;
4462        struct btrfs_fs_info *fs_info = extent_root->fs_info;
4463        int wait_for_alloc = 0;
4464        int ret = 0;
4465
4466        /* Don't re-enter if we're already allocating a chunk */
4467        if (trans->allocating_chunk)
4468                return -ENOSPC;
4469
4470        space_info = __find_space_info(extent_root->fs_info, flags);
4471        if (!space_info) {
4472                ret = update_space_info(extent_root->fs_info, flags,
4473                                        0, 0, &space_info);
4474                BUG_ON(ret); /* -ENOMEM */
4475        }
4476        BUG_ON(!space_info); /* Logic error */
4477
4478again:
4479        spin_lock(&space_info->lock);
4480        if (force < space_info->force_alloc)
4481                force = space_info->force_alloc;
4482        if (space_info->full) {
4483                if (should_alloc_chunk(extent_root, space_info, force))
4484                        ret = -ENOSPC;
4485                else
4486                        ret = 0;
4487                spin_unlock(&space_info->lock);
4488                return ret;
4489        }
4490
4491        if (!should_alloc_chunk(extent_root, space_info, force)) {
4492                spin_unlock(&space_info->lock);
4493                return 0;
4494        } else if (space_info->chunk_alloc) {
4495                wait_for_alloc = 1;
4496        } else {
4497                space_info->chunk_alloc = 1;
4498        }
4499
4500        spin_unlock(&space_info->lock);
4501
4502        mutex_lock(&fs_info->chunk_mutex);
4503
4504        /*
4505         * The chunk_mutex is held throughout the entirety of a chunk
4506         * allocation, so once we've acquired the chunk_mutex we know that the
4507         * other guy is done and we need to recheck and see if we should
4508         * allocate.
4509         */
4510        if (wait_for_alloc) {
4511                mutex_unlock(&fs_info->chunk_mutex);
4512                wait_for_alloc = 0;
4513                goto again;
4514        }
4515
4516        trans->allocating_chunk = true;
4517
4518        /*
4519         * If we have mixed data/metadata chunks we want to make sure we keep
4520         * allocating mixed chunks instead of individual chunks.
4521         */
4522        if (btrfs_mixed_space_info(space_info))
4523                flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4524
4525        /*
4526         * if we're doing a data chunk, go ahead and make sure that
4527         * we keep a reasonable number of metadata chunks allocated in the
4528         * FS as well.
4529         */
4530        if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4531                fs_info->data_chunk_allocations++;
4532                if (!(fs_info->data_chunk_allocations %
4533                      fs_info->metadata_ratio))
4534                        force_metadata_allocation(fs_info);
4535        }
4536
4537        /*
4538         * Check if we have enough space in SYSTEM chunk because we may need
4539         * to update devices.
4540         */
4541        check_system_chunk(trans, extent_root, flags);
4542
4543        ret = btrfs_alloc_chunk(trans, extent_root, flags);
4544        trans->allocating_chunk = false;
4545
4546        spin_lock(&space_info->lock);
4547        if (ret < 0 && ret != -ENOSPC)
4548                goto out;
4549        if (ret)
4550                space_info->full = 1;
4551        else
4552                ret = 1;
4553
4554        space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4555out:
4556        space_info->chunk_alloc = 0;
4557        spin_unlock(&space_info->lock);
4558        mutex_unlock(&fs_info->chunk_mutex);
4559        /*
4560         * When we allocate a new chunk we reserve space in the chunk block
4561         * reserve to make sure we can COW nodes/leafs in the chunk tree or
4562         * add new nodes/leafs to it if we end up needing to do it when
4563         * inserting the chunk item and updating device items as part of the
4564         * second phase of chunk allocation, performed by
4565         * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4566         * large number of new block groups to create in our transaction
4567         * handle's new_bgs list to avoid exhausting the chunk block reserve
4568         * in extreme cases - like having a single transaction create many new
4569         * block groups when starting to write out the free space caches of all
4570         * the block groups that were made dirty during the lifetime of the
4571         * transaction.
4572         */
4573        if (trans->can_flush_pending_bgs &&
4574            trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4575                btrfs_create_pending_block_groups(trans, trans->root);
4576                btrfs_trans_release_chunk_metadata(trans);
4577        }
4578        return ret;
4579}
4580
4581static int can_overcommit(struct btrfs_root *root,
4582                          struct btrfs_space_info *space_info, u64 bytes,
4583                          enum btrfs_reserve_flush_enum flush)
4584{
4585        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4586        u64 profile = btrfs_get_alloc_profile(root, 0);
4587        u64 space_size;
4588        u64 avail;
4589        u64 used;
4590
4591        used = space_info->bytes_used + space_info->bytes_reserved +
4592                space_info->bytes_pinned + space_info->bytes_readonly;
4593
4594        /*
4595         * We only want to allow over committing if we have lots of actual space
4596         * free, but if we don't have enough space to handle the global reserve
4597         * space then we could end up having a real enospc problem when trying
4598         * to allocate a chunk or some other such important allocation.
4599         */
4600        spin_lock(&global_rsv->lock);
4601        space_size = calc_global_rsv_need_space(global_rsv);
4602        spin_unlock(&global_rsv->lock);
4603        if (used + space_size >= space_info->total_bytes)
4604                return 0;
4605
4606        used += space_info->bytes_may_use;
4607
4608        spin_lock(&root->fs_info->free_chunk_lock);
4609        avail = root->fs_info->free_chunk_space;
4610        spin_unlock(&root->fs_info->free_chunk_lock);
4611
4612        /*
4613         * If we have dup, raid1 or raid10 then only half of the free
4614         * space is actually useable.  For raid56, the space info used
4615         * doesn't include the parity drive, so we don't have to
4616         * change the math
4617         */
4618        if (profile & (BTRFS_BLOCK_GROUP_DUP |
4619                       BTRFS_BLOCK_GROUP_RAID1 |
4620                       BTRFS_BLOCK_GROUP_RAID10))
4621                avail >>= 1;
4622
4623        /*
4624         * If we aren't flushing all things, let us overcommit up to
4625         * 1/2th of the space. If we can flush, don't let us overcommit
4626         * too much, let it overcommit up to 1/8 of the space.
4627         */
4628        if (flush == BTRFS_RESERVE_FLUSH_ALL)
4629                avail >>= 3;
4630        else
4631                avail >>= 1;
4632
4633        if (used + bytes < space_info->total_bytes + avail)
4634                return 1;
4635        return 0;
4636}
4637
4638static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4639                                         unsigned long nr_pages, int nr_items)
4640{
4641        struct super_block *sb = root->fs_info->sb;
4642
4643        if (down_read_trylock(&sb->s_umount)) {
4644                writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4645                up_read(&sb->s_umount);
4646        } else {
4647                /*
4648                 * We needn't worry the filesystem going from r/w to r/o though
4649                 * we don't acquire ->s_umount mutex, because the filesystem
4650                 * should guarantee the delalloc inodes list be empty after
4651                 * the filesystem is readonly(all dirty pages are written to
4652                 * the disk).
4653                 */
4654                btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4655                if (!current->journal_info)
4656                        btrfs_wait_ordered_roots(root->fs_info, nr_items,
4657                                                 0, (u64)-1);
4658        }
4659}
4660
4661static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4662{
4663        u64 bytes;
4664        int nr;
4665
4666        bytes = btrfs_calc_trans_metadata_size(root, 1);
4667        nr = (int)div64_u64(to_reclaim, bytes);
4668        if (!nr)
4669                nr = 1;
4670        return nr;
4671}
4672
4673#define EXTENT_SIZE_PER_ITEM    SZ_256K
4674
4675/*
4676 * shrink metadata reservation for delalloc
4677 */
4678static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4679                            bool wait_ordered)
4680{
4681        struct btrfs_block_rsv *block_rsv;
4682        struct btrfs_space_info *space_info;
4683        struct btrfs_trans_handle *trans;
4684        u64 delalloc_bytes;
4685        u64 max_reclaim;
4686        long time_left;
4687        unsigned long nr_pages;
4688        int loops;
4689        int items;
4690        enum btrfs_reserve_flush_enum flush;
4691
4692        /* Calc the number of the pages we need flush for space reservation */
4693        items = calc_reclaim_items_nr(root, to_reclaim);
4694        to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4695
4696        trans = (struct btrfs_trans_handle *)current->journal_info;
4697        block_rsv = &root->fs_info->delalloc_block_rsv;
4698        space_info = block_rsv->space_info;
4699
4700        delalloc_bytes = percpu_counter_sum_positive(
4701                                                &root->fs_info->delalloc_bytes);
4702        if (delalloc_bytes == 0) {
4703                if (trans)
4704                        return;
4705                if (wait_ordered)
4706                        btrfs_wait_ordered_roots(root->fs_info, items,
4707                                                 0, (u64)-1);
4708                return;
4709        }
4710
4711        loops = 0;
4712        while (delalloc_bytes && loops < 3) {
4713                max_reclaim = min(delalloc_bytes, to_reclaim);
4714                nr_pages = max_reclaim >> PAGE_SHIFT;
4715                btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4716                /*
4717                 * We need to wait for the async pages to actually start before
4718                 * we do anything.
4719                 */
4720                max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4721                if (!max_reclaim)
4722                        goto skip_async;
4723
4724                if (max_reclaim <= nr_pages)
4725                        max_reclaim = 0;
4726                else
4727                        max_reclaim -= nr_pages;
4728
4729                wait_event(root->fs_info->async_submit_wait,
4730                           atomic_read(&root->fs_info->async_delalloc_pages) <=
4731                           (int)max_reclaim);
4732skip_async:
4733                if (!trans)
4734                        flush = BTRFS_RESERVE_FLUSH_ALL;
4735                else
4736                        flush = BTRFS_RESERVE_NO_FLUSH;
4737                spin_lock(&space_info->lock);
4738                if (can_overcommit(root, space_info, orig, flush)) {
4739                        spin_unlock(&space_info->lock);
4740                        break;
4741                }
4742                spin_unlock(&space_info->lock);
4743
4744                loops++;
4745                if (wait_ordered && !trans) {
4746                        btrfs_wait_ordered_roots(root->fs_info, items,
4747                                                 0, (u64)-1);
4748                } else {
4749                        time_left = schedule_timeout_killable(1);
4750                        if (time_left)
4751                                break;
4752                }
4753                delalloc_bytes = percpu_counter_sum_positive(
4754                                                &root->fs_info->delalloc_bytes);
4755        }
4756}
4757
4758/**
4759 * maybe_commit_transaction - possibly commit the transaction if its ok to
4760 * @root - the root we're allocating for
4761 * @bytes - the number of bytes we want to reserve
4762 * @force - force the commit
4763 *
4764 * This will check to make sure that committing the transaction will actually
4765 * get us somewhere and then commit the transaction if it does.  Otherwise it
4766 * will return -ENOSPC.
4767 */
4768static int may_commit_transaction(struct btrfs_root *root,
4769                                  struct btrfs_space_info *space_info,
4770                                  u64 bytes, int force)
4771{
4772        struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4773        struct btrfs_trans_handle *trans;
4774
4775        trans = (struct btrfs_trans_handle *)current->journal_info;
4776        if (trans)
4777                return -EAGAIN;
4778
4779        if (force)
4780                goto commit;
4781
4782        /* See if there is enough pinned space to make this reservation */
4783        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4784                                   bytes) >= 0)
4785                goto commit;
4786
4787        /*
4788         * See if there is some space in the delayed insertion reservation for
4789         * this reservation.
4790         */
4791        if (space_info != delayed_rsv->space_info)
4792                return -ENOSPC;
4793
4794        spin_lock(&delayed_rsv->lock);
4795        if (percpu_counter_compare(&space_info->total_bytes_pinned,
4796                                   bytes - delayed_rsv->size) >= 0) {
4797                spin_unlock(&delayed_rsv->lock);
4798                return -ENOSPC;
4799        }
4800        spin_unlock(&delayed_rsv->lock);
4801
4802commit:
4803        trans = btrfs_join_transaction(root);
4804        if (IS_ERR(trans))
4805                return -ENOSPC;
4806
4807        return btrfs_commit_transaction(trans, root);
4808}
4809
4810enum flush_state {
4811        FLUSH_DELAYED_ITEMS_NR  =       1,
4812        FLUSH_DELAYED_ITEMS     =       2,
4813        FLUSH_DELALLOC          =       3,
4814        FLUSH_DELALLOC_WAIT     =       4,
4815        ALLOC_CHUNK             =       5,
4816        COMMIT_TRANS            =       6,
4817};
4818
4819static int flush_space(struct btrfs_root *root,
4820                       struct btrfs_space_info *space_info, u64 num_bytes,
4821                       u64 orig_bytes, int state)
4822{
4823        struct btrfs_trans_handle *trans;
4824        int nr;
4825        int ret = 0;
4826
4827        switch (state) {
4828        case FLUSH_DELAYED_ITEMS_NR:
4829        case FLUSH_DELAYED_ITEMS:
4830                if (state == FLUSH_DELAYED_ITEMS_NR)
4831                        nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4832                else
4833                        nr = -1;
4834
4835                trans = btrfs_join_transaction(root);
4836                if (IS_ERR(trans)) {
4837                        ret = PTR_ERR(trans);
4838                        break;
4839                }
4840                ret = btrfs_run_delayed_items_nr(trans, root, nr);
4841                btrfs_end_transaction(trans, root);
4842                break;
4843        case FLUSH_DELALLOC:
4844        case FLUSH_DELALLOC_WAIT:
4845                shrink_delalloc(root, num_bytes * 2, orig_bytes,
4846                                state == FLUSH_DELALLOC_WAIT);
4847                break;
4848        case ALLOC_CHUNK:
4849                trans = btrfs_join_transaction(root);
4850                if (IS_ERR(trans)) {
4851                        ret = PTR_ERR(trans);
4852                        break;
4853                }
4854                ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4855                                     btrfs_get_alloc_profile(root, 0),
4856                                     CHUNK_ALLOC_NO_FORCE);
4857                btrfs_end_transaction(trans, root);
4858                if (ret == -ENOSPC)
4859                        ret = 0;
4860                break;
4861        case COMMIT_TRANS:
4862                ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4863                break;
4864        default:
4865                ret = -ENOSPC;
4866                break;
4867        }
4868
4869        return ret;
4870}
4871
4872static inline u64
4873btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4874                                 struct btrfs_space_info *space_info)
4875{
4876        u64 used;
4877        u64 expected;
4878        u64 to_reclaim;
4879
4880        to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4881        spin_lock(&space_info->lock);
4882        if (can_overcommit(root, space_info, to_reclaim,
4883                           BTRFS_RESERVE_FLUSH_ALL)) {
4884                to_reclaim = 0;
4885                goto out;
4886        }
4887
4888        used = space_info->bytes_used + space_info->bytes_reserved +
4889               space_info->bytes_pinned + space_info->bytes_readonly +
4890               space_info->bytes_may_use;
4891        if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4892                expected = div_factor_fine(space_info->total_bytes, 95);
4893        else
4894                expected = div_factor_fine(space_info->total_bytes, 90);
4895
4896        if (used > expected)
4897                to_reclaim = used - expected;
4898        else
4899                to_reclaim = 0;
4900        to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4901                                     space_info->bytes_reserved);
4902out:
4903        spin_unlock(&space_info->lock);
4904
4905        return to_reclaim;
4906}
4907
4908static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4909                                        struct btrfs_fs_info *fs_info, u64 used)
4910{
4911        u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4912
4913        /* If we're just plain full then async reclaim just slows us down. */
4914        if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4915                return 0;
4916
4917        return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4918                !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4919}
4920
4921static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
4922                                       struct btrfs_fs_info *fs_info,
4923                                       int flush_state)
4924{
4925        u64 used;
4926
4927        spin_lock(&space_info->lock);
4928        /*
4929         * We run out of space and have not got any free space via flush_space,
4930         * so don't bother doing async reclaim.
4931         */
4932        if (flush_state > COMMIT_TRANS && space_info->full) {
4933                spin_unlock(&space_info->lock);
4934                return 0;
4935        }
4936
4937        used = space_info->bytes_used + space_info->bytes_reserved +
4938               space_info->bytes_pinned + space_info->bytes_readonly +
4939               space_info->bytes_may_use;
4940        if (need_do_async_reclaim(space_info, fs_info, used)) {
4941                spin_unlock(&space_info->lock);
4942                return 1;
4943        }
4944        spin_unlock(&space_info->lock);
4945
4946        return 0;
4947}
4948
4949static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4950{
4951        struct btrfs_fs_info *fs_info;
4952        struct btrfs_space_info *space_info;
4953        u64 to_reclaim;
4954        int flush_state;
4955
4956        fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4957        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4958
4959        to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4960                                                      space_info);
4961        if (!to_reclaim)
4962                return;
4963
4964        flush_state = FLUSH_DELAYED_ITEMS_NR;
4965        do {
4966                flush_space(fs_info->fs_root, space_info, to_reclaim,
4967                            to_reclaim, flush_state);
4968                flush_state++;
4969                if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4970                                                 flush_state))
4971                        return;
4972        } while (flush_state < COMMIT_TRANS);
4973}
4974
4975void btrfs_init_async_reclaim_work(struct work_struct *work)
4976{
4977        INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4978}
4979
4980/**
4981 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4982 * @root - the root we're allocating for
4983 * @block_rsv - the block_rsv we're allocating for
4984 * @orig_bytes - the number of bytes we want
4985 * @flush - whether or not we can flush to make our reservation
4986 *
4987 * This will reserve orig_bytes number of bytes from the space info associated
4988 * with the block_rsv.  If there is not enough space it will make an attempt to
4989 * flush out space to make room.  It will do this by flushing delalloc if
4990 * possible or committing the transaction.  If flush is 0 then no attempts to
4991 * regain reservations will be made and this will fail if there is not enough
4992 * space already.
4993 */
4994static int reserve_metadata_bytes(struct btrfs_root *root,
4995                                  struct btrfs_block_rsv *block_rsv,
4996                                  u64 orig_bytes,
4997                                  enum btrfs_reserve_flush_enum flush)
4998{
4999        struct btrfs_space_info *space_info = block_rsv->space_info;
5000        u64 used;
5001        u64 num_bytes = orig_bytes;
5002        int flush_state = FLUSH_DELAYED_ITEMS_NR;
5003        int ret = 0;
5004        bool flushing = false;
5005
5006again:
5007        ret = 0;
5008        spin_lock(&space_info->lock);
5009        /*
5010         * We only want to wait if somebody other than us is flushing and we
5011         * are actually allowed to flush all things.
5012         */
5013        while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
5014               space_info->flush) {
5015                spin_unlock(&space_info->lock);
5016                /*
5017                 * If we have a trans handle we can't wait because the flusher
5018                 * may have to commit the transaction, which would mean we would
5019                 * deadlock since we are waiting for the flusher to finish, but
5020                 * hold the current transaction open.
5021                 */
5022                if (current->journal_info)
5023                        return -EAGAIN;
5024                ret = wait_event_killable(space_info->wait, !space_info->flush);
5025                /* Must have been killed, return */
5026                if (ret)
5027                        return -EINTR;
5028
5029                spin_lock(&space_info->lock);
5030        }
5031
5032        ret = -ENOSPC;
5033        used = space_info->bytes_used + space_info->bytes_reserved +
5034                space_info->bytes_pinned + space_info->bytes_readonly +
5035                space_info->bytes_may_use;
5036
5037        /*
5038         * The idea here is that we've not already over-reserved the block group
5039         * then we can go ahead and save our reservation first and then start
5040         * flushing if we need to.  Otherwise if we've already overcommitted
5041         * lets start flushing stuff first and then come back and try to make
5042         * our reservation.
5043         */
5044        if (used <= space_info->total_bytes) {
5045                if (used + orig_bytes <= space_info->total_bytes) {
5046                        space_info->bytes_may_use += orig_bytes;
5047                        trace_btrfs_space_reservation(root->fs_info,
5048                                "space_info", space_info->flags, orig_bytes, 1);
5049                        ret = 0;
5050                } else {
5051                        /*
5052                         * Ok set num_bytes to orig_bytes since we aren't
5053                         * overocmmitted, this way we only try and reclaim what
5054                         * we need.
5055                         */
5056                        num_bytes = orig_bytes;
5057                }
5058        } else {
5059                /*
5060                 * Ok we're over committed, set num_bytes to the overcommitted
5061                 * amount plus the amount of bytes that we need for this
5062                 * reservation.
5063                 */
5064                num_bytes = used - space_info->total_bytes +
5065                        (orig_bytes * 2);
5066        }
5067
5068        if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
5069                space_info->bytes_may_use += orig_bytes;
5070                trace_btrfs_space_reservation(root->fs_info, "space_info",
5071                                              space_info->flags, orig_bytes,
5072                                              1);
5073                ret = 0;
5074        }
5075
5076        /*
5077         * Couldn't make our reservation, save our place so while we're trying
5078         * to reclaim space we can actually use it instead of somebody else
5079         * stealing it from us.
5080         *
5081         * We make the other tasks wait for the flush only when we can flush
5082         * all things.
5083         */
5084        if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5085                flushing = true;
5086                space_info->flush = 1;
5087        } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5088                used += orig_bytes;
5089                /*
5090                 * We will do the space reservation dance during log replay,
5091                 * which means we won't have fs_info->fs_root set, so don't do
5092                 * the async reclaim as we will panic.
5093                 */
5094                if (!root->fs_info->log_root_recovering &&
5095                    need_do_async_reclaim(space_info, root->fs_info, used) &&
5096                    !work_busy(&root->fs_info->async_reclaim_work))
5097                        queue_work(system_unbound_wq,
5098                                   &root->fs_info->async_reclaim_work);
5099        }
5100        spin_unlock(&space_info->lock);
5101
5102        if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5103                goto out;
5104
5105        ret = flush_space(root, space_info, num_bytes, orig_bytes,
5106                          flush_state);
5107        flush_state++;
5108
5109        /*
5110         * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5111         * would happen. So skip delalloc flush.
5112         */
5113        if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5114            (flush_state == FLUSH_DELALLOC ||
5115             flush_state == FLUSH_DELALLOC_WAIT))
5116                flush_state = ALLOC_CHUNK;
5117
5118        if (!ret)
5119                goto again;
5120        else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
5121                 flush_state < COMMIT_TRANS)
5122                goto again;
5123        else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
5124                 flush_state <= COMMIT_TRANS)
5125                goto again;
5126
5127out:
5128        if (ret == -ENOSPC &&
5129            unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5130                struct btrfs_block_rsv *global_rsv =
5131                        &root->fs_info->global_block_rsv;
5132
5133                if (block_rsv != global_rsv &&
5134                    !block_rsv_use_bytes(global_rsv, orig_bytes))
5135                        ret = 0;
5136        }
5137        if (ret == -ENOSPC)
5138                trace_btrfs_space_reservation(root->fs_info,
5139                                              "space_info:enospc",
5140                                              space_info->flags, orig_bytes, 1);
5141        if (flushing) {
5142                spin_lock(&space_info->lock);
5143                space_info->flush = 0;
5144                wake_up_all(&space_info->wait);
5145                spin_unlock(&space_info->lock);
5146        }
5147        return ret;
5148}
5149
5150static struct btrfs_block_rsv *get_block_rsv(
5151                                        const struct btrfs_trans_handle *trans,
5152                                        const struct btrfs_root *root)
5153{
5154        struct btrfs_block_rsv *block_rsv = NULL;
5155
5156        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5157            (root == root->fs_info->csum_root && trans->adding_csums) ||
5158             (root == root->fs_info->uuid_root))
5159                block_rsv = trans->block_rsv;
5160
5161        if (!block_rsv)
5162                block_rsv = root->block_rsv;
5163
5164        if (!block_rsv)
5165                block_rsv = &root->fs_info->empty_block_rsv;
5166
5167        return block_rsv;
5168}
5169
5170static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5171                               u64 num_bytes)
5172{
5173        int ret = -ENOSPC;
5174        spin_lock(&block_rsv->lock);
5175        if (block_rsv->reserved >= num_bytes) {
5176                block_rsv->reserved -= num_bytes;
5177                if (block_rsv->reserved < block_rsv->size)
5178                        block_rsv->full = 0;
5179                ret = 0;
5180        }
5181        spin_unlock(&block_rsv->lock);
5182        return ret;
5183}
5184
5185static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5186                                u64 num_bytes, int update_size)
5187{
5188        spin_lock(&block_rsv->lock);
5189        block_rsv->reserved += num_bytes;
5190        if (update_size)
5191                block_rsv->size += num_bytes;
5192        else if (block_rsv->reserved >= block_rsv->size)
5193                block_rsv->full = 1;
5194        spin_unlock(&block_rsv->lock);
5195}
5196
5197int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5198                             struct btrfs_block_rsv *dest, u64 num_bytes,
5199                             int min_factor)
5200{
5201        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5202        u64 min_bytes;
5203
5204        if (global_rsv->space_info != dest->space_info)
5205                return -ENOSPC;
5206
5207        spin_lock(&global_rsv->lock);
5208        min_bytes = div_factor(global_rsv->size, min_factor);
5209        if (global_rsv->reserved < min_bytes + num_bytes) {
5210                spin_unlock(&global_rsv->lock);
5211                return -ENOSPC;
5212        }
5213        global_rsv->reserved -= num_bytes;
5214        if (global_rsv->reserved < global_rsv->size)
5215                global_rsv->full = 0;
5216        spin_unlock(&global_rsv->lock);
5217
5218        block_rsv_add_bytes(dest, num_bytes, 1);
5219        return 0;
5220}
5221
5222static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5223                                    struct btrfs_block_rsv *block_rsv,
5224                                    struct btrfs_block_rsv *dest, u64 num_bytes)
5225{
5226        struct btrfs_space_info *space_info = block_rsv->space_info;
5227
5228        spin_lock(&block_rsv->lock);
5229        if (num_bytes == (u64)-1)
5230                num_bytes = block_rsv->size;
5231        block_rsv->size -= num_bytes;
5232        if (block_rsv->reserved >= block_rsv->size) {
5233                num_bytes = block_rsv->reserved - block_rsv->size;
5234                block_rsv->reserved = block_rsv->size;
5235                block_rsv->full = 1;
5236        } else {
5237                num_bytes = 0;
5238        }
5239        spin_unlock(&block_rsv->lock);
5240
5241        if (num_bytes > 0) {
5242                if (dest) {
5243                        spin_lock(&dest->lock);
5244                        if (!dest->full) {
5245                                u64 bytes_to_add;
5246
5247                                bytes_to_add = dest->size - dest->reserved;
5248                                bytes_to_add = min(num_bytes, bytes_to_add);
5249                                dest->reserved += bytes_to_add;
5250                                if (dest->reserved >= dest->size)
5251                                        dest->full = 1;
5252                                num_bytes -= bytes_to_add;
5253                        }
5254                        spin_unlock(&dest->lock);
5255                }
5256                if (num_bytes) {
5257                        spin_lock(&space_info->lock);
5258                        space_info->bytes_may_use -= num_bytes;
5259                        trace_btrfs_space_reservation(fs_info, "space_info",
5260                                        space_info->flags, num_bytes, 0);
5261                        spin_unlock(&space_info->lock);
5262                }
5263        }
5264}
5265
5266static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5267                                   struct btrfs_block_rsv *dst, u64 num_bytes)
5268{
5269        int ret;
5270
5271        ret = block_rsv_use_bytes(src, num_bytes);
5272        if (ret)
5273                return ret;
5274
5275        block_rsv_add_bytes(dst, num_bytes, 1);
5276        return 0;
5277}
5278
5279void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5280{
5281        memset(rsv, 0, sizeof(*rsv));
5282        spin_lock_init(&rsv->lock);
5283        rsv->type = type;
5284}
5285
5286struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5287                                              unsigned short type)
5288{
5289        struct btrfs_block_rsv *block_rsv;
5290        struct btrfs_fs_info *fs_info = root->fs_info;
5291
5292        block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5293        if (!block_rsv)
5294                return NULL;
5295
5296        btrfs_init_block_rsv(block_rsv, type);
5297        block_rsv->space_info = __find_space_info(fs_info,
5298                                                  BTRFS_BLOCK_GROUP_METADATA);
5299        return block_rsv;
5300}
5301
5302void btrfs_free_block_rsv(struct btrfs_root *root,
5303                          struct btrfs_block_rsv *rsv)
5304{
5305        if (!rsv)
5306                return;
5307        btrfs_block_rsv_release(root, rsv, (u64)-1);
5308        kfree(rsv);
5309}
5310
5311void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5312{
5313        kfree(rsv);
5314}
5315
5316int btrfs_block_rsv_add(struct btrfs_root *root,
5317                        struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5318                        enum btrfs_reserve_flush_enum flush)
5319{
5320        int ret;
5321
5322        if (num_bytes == 0)
5323                return 0;
5324
5325        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5326        if (!ret) {
5327                block_rsv_add_bytes(block_rsv, num_bytes, 1);
5328                return 0;
5329        }
5330
5331        return ret;
5332}
5333
5334int btrfs_block_rsv_check(struct btrfs_root *root,
5335                          struct btrfs_block_rsv *block_rsv, int min_factor)
5336{
5337        u64 num_bytes = 0;
5338        int ret = -ENOSPC;
5339
5340        if (!block_rsv)
5341                return 0;
5342
5343        spin_lock(&block_rsv->lock);
5344        num_bytes = div_factor(block_rsv->size, min_factor);
5345        if (block_rsv->reserved >= num_bytes)
5346                ret = 0;
5347        spin_unlock(&block_rsv->lock);
5348
5349        return ret;
5350}
5351
5352int btrfs_block_rsv_refill(struct btrfs_root *root,
5353                           struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5354                           enum btrfs_reserve_flush_enum flush)
5355{
5356        u64 num_bytes = 0;
5357        int ret = -ENOSPC;
5358
5359        if (!block_rsv)
5360                return 0;
5361
5362        spin_lock(&block_rsv->lock);
5363        num_bytes = min_reserved;
5364        if (block_rsv->reserved >= num_bytes)
5365                ret = 0;
5366        else
5367                num_bytes -= block_rsv->reserved;
5368        spin_unlock(&block_rsv->lock);
5369
5370        if (!ret)
5371                return 0;
5372
5373        ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5374        if (!ret) {
5375                block_rsv_add_bytes(block_rsv, num_bytes, 0);
5376                return 0;
5377        }
5378
5379        return ret;
5380}
5381
5382int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5383                            struct btrfs_block_rsv *dst_rsv,
5384                            u64 num_bytes)
5385{
5386        return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5387}
5388
5389void btrfs_block_rsv_release(struct btrfs_root *root,
5390                             struct btrfs_block_rsv *block_rsv,
5391                             u64 num_bytes)
5392{
5393        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5394        if (global_rsv == block_rsv ||
5395            block_rsv->space_info != global_rsv->space_info)
5396                global_rsv = NULL;
5397        block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5398                                num_bytes);
5399}
5400
5401/*
5402 * helper to calculate size of global block reservation.
5403 * the desired value is sum of space used by extent tree,
5404 * checksum tree and root tree
5405 */
5406static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
5407{
5408        struct btrfs_space_info *sinfo;
5409        u64 num_bytes;
5410        u64 meta_used;
5411        u64 data_used;
5412        int csum_size = btrfs_super_csum_size(fs_info->super_copy);
5413
5414        sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5415        spin_lock(&sinfo->lock);
5416        data_used = sinfo->bytes_used;
5417        spin_unlock(&sinfo->lock);
5418
5419        sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5420        spin_lock(&sinfo->lock);
5421        if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5422                data_used = 0;
5423        meta_used = sinfo->bytes_used;
5424        spin_unlock(&sinfo->lock);
5425
5426        num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5427                    csum_size * 2;
5428        num_bytes += div_u64(data_used + meta_used, 50);
5429
5430        if (num_bytes * 3 > meta_used)
5431                num_bytes = div_u64(meta_used, 3);
5432
5433        return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
5434}
5435
5436static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5437{
5438        struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5439        struct btrfs_space_info *sinfo = block_rsv->space_info;
5440        u64 num_bytes;
5441
5442        num_bytes = calc_global_metadata_size(fs_info);
5443
5444        spin_lock(&sinfo->lock);
5445        spin_lock(&block_rsv->lock);
5446
5447        block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5448
5449        if (block_rsv->reserved < block_rsv->size) {
5450                num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5451                        sinfo->bytes_reserved + sinfo->bytes_readonly +
5452                        sinfo->bytes_may_use;
5453                if (sinfo->total_bytes > num_bytes) {
5454                        num_bytes = sinfo->total_bytes - num_bytes;
5455                        num_bytes = min(num_bytes,
5456                                        block_rsv->size - block_rsv->reserved);
5457                        block_rsv->reserved += num_bytes;
5458                        sinfo->bytes_may_use += num_bytes;
5459                        trace_btrfs_space_reservation(fs_info, "space_info",
5460                                                      sinfo->flags, num_bytes,
5461                                                      1);
5462                }
5463        } else if (block_rsv->reserved > block_rsv->size) {
5464                num_bytes = block_rsv->reserved - block_rsv->size;
5465                sinfo->bytes_may_use -= num_bytes;
5466                trace_btrfs_space_reservation(fs_info, "space_info",
5467                                      sinfo->flags, num_bytes, 0);
5468                block_rsv->reserved = block_rsv->size;
5469        }
5470
5471        if (block_rsv->reserved == block_rsv->size)
5472                block_rsv->full = 1;
5473        else
5474                block_rsv->full = 0;
5475
5476        spin_unlock(&block_rsv->lock);
5477        spin_unlock(&sinfo->lock);
5478}
5479
5480static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5481{
5482        struct btrfs_space_info *space_info;
5483
5484        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5485        fs_info->chunk_block_rsv.space_info = space_info;
5486
5487        space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5488        fs_info->global_block_rsv.space_info = space_info;
5489        fs_info->delalloc_block_rsv.space_info = space_info;
5490        fs_info->trans_block_rsv.space_info = space_info;
5491        fs_info->empty_block_rsv.space_info = space_info;
5492        fs_info->delayed_block_rsv.space_info = space_info;
5493
5494        fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5495        fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5496        fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5497        fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5498        if (fs_info->quota_root)
5499                fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5500        fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5501
5502        update_global_block_rsv(fs_info);
5503}
5504
5505static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5506{
5507        block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5508                                (u64)-1);
5509        WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5510        WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5511        WARN_ON(fs_info->trans_block_rsv.size > 0);
5512        WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5513        WARN_ON(fs_info->chunk_block_rsv.size > 0);
5514        WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5515        WARN_ON(fs_info->delayed_block_rsv.size > 0);
5516        WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5517}
5518
5519void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5520                                  struct btrfs_root *root)
5521{
5522        if (!trans->block_rsv)
5523                return;
5524
5525        if (!trans->bytes_reserved)
5526                return;
5527
5528        trace_btrfs_space_reservation(root->fs_info, "transaction",
5529                                      trans->transid, trans->bytes_reserved, 0);
5530        btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5531        trans->bytes_reserved = 0;
5532}
5533
5534/*
5535 * To be called after all the new block groups attached to the transaction
5536 * handle have been created (btrfs_create_pending_block_groups()).
5537 */
5538void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5539{
5540        struct btrfs_fs_info *fs_info = trans->root->fs_info;
5541
5542        if (!trans->chunk_bytes_reserved)
5543                return;
5544
5545        WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5546
5547        block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5548                                trans->chunk_bytes_reserved);
5549        trans->chunk_bytes_reserved = 0;
5550}
5551
5552/* Can only return 0 or -ENOSPC */
5553int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5554                                  struct inode *inode)
5555{
5556        struct btrfs_root *root = BTRFS_I(inode)->root;
5557        struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5558        struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5559
5560        /*
5561         * We need to hold space in order to delete our orphan item once we've
5562         * added it, so this takes the reservation so we can release it later
5563         * when we are truly done with the orphan item.
5564         */
5565        u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5566        trace_btrfs_space_reservation(root->fs_info, "orphan",
5567                                      btrfs_ino(inode), num_bytes, 1);
5568        return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5569}
5570
5571void btrfs_orphan_release_metadata(struct inode *inode)
5572{
5573        struct btrfs_root *root = BTRFS_I(inode)->root;
5574        u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5575        trace_btrfs_space_reservation(root->fs_info, "orphan",
5576                                      btrfs_ino(inode), num_bytes, 0);
5577        btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5578}
5579
5580/*
5581 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5582 * root: the root of the parent directory
5583 * rsv: block reservation
5584 * items: the number of items that we need do reservation
5585 * qgroup_reserved: used to return the reserved size in qgroup
5586 *
5587 * This function is used to reserve the space for snapshot/subvolume
5588 * creation and deletion. Those operations are different with the
5589 * common file/directory operations, they change two fs/file trees
5590 * and root tree, the number of items that the qgroup reserves is
5591 * different with the free space reservation. So we can not use
5592 * the space reservation mechanism in start_transaction().
5593 */
5594int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5595                                     struct btrfs_block_rsv *rsv,
5596                                     int items,
5597                                     u64 *qgroup_reserved,
5598                                     bool use_global_rsv)
5599{
5600        u64 num_bytes;
5601        int ret;
5602        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5603
5604        if (root->fs_info->quota_enabled) {
5605                /* One for parent inode, two for dir entries */
5606                num_bytes = 3 * root->nodesize;
5607                ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5608                if (ret)
5609                        return ret;
5610        } else {
5611                num_bytes = 0;
5612        }
5613
5614        *qgroup_reserved = num_bytes;
5615
5616        num_bytes = btrfs_calc_trans_metadata_size(root, items);
5617        rsv->space_info = __find_space_info(root->fs_info,
5618                                            BTRFS_BLOCK_GROUP_METADATA);
5619        ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5620                                  BTRFS_RESERVE_FLUSH_ALL);
5621
5622        if (ret == -ENOSPC && use_global_rsv)
5623                ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5624
5625        if (ret && *qgroup_reserved)
5626                btrfs_qgroup_free_meta(root, *qgroup_reserved);
5627
5628        return ret;
5629}
5630
5631void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5632                                      struct btrfs_block_rsv *rsv,
5633                                      u64 qgroup_reserved)
5634{
5635        btrfs_block_rsv_release(root, rsv, (u64)-1);
5636}
5637
5638/**
5639 * drop_outstanding_extent - drop an outstanding extent
5640 * @inode: the inode we're dropping the extent for
5641 * @num_bytes: the number of bytes we're releasing.
5642 *
5643 * This is called when we are freeing up an outstanding extent, either called
5644 * after an error or after an extent is written.  This will return the number of
5645 * reserved extents that need to be freed.  This must be called with
5646 * BTRFS_I(inode)->lock held.
5647 */
5648static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5649{
5650        unsigned drop_inode_space = 0;
5651        unsigned dropped_extents = 0;
5652        unsigned num_extents = 0;
5653
5654        num_extents = (unsigned)div64_u64(num_bytes +
5655                                          BTRFS_MAX_EXTENT_SIZE - 1,
5656                                          BTRFS_MAX_EXTENT_SIZE);
5657        ASSERT(num_extents);
5658        ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5659        BTRFS_I(inode)->outstanding_extents -= num_extents;
5660
5661        if (BTRFS_I(inode)->outstanding_extents == 0 &&
5662            test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5663                               &BTRFS_I(inode)->runtime_flags))
5664                drop_inode_space = 1;
5665
5666        /*
5667         * If we have more or the same amount of outstanding extents than we have
5668         * reserved then we need to leave the reserved extents count alone.
5669         */
5670        if (BTRFS_I(inode)->outstanding_extents >=
5671            BTRFS_I(inode)->reserved_extents)
5672                return drop_inode_space;
5673
5674        dropped_extents = BTRFS_I(inode)->reserved_extents -
5675                BTRFS_I(inode)->outstanding_extents;
5676        BTRFS_I(inode)->reserved_extents -= dropped_extents;
5677        return dropped_extents + drop_inode_space;
5678}
5679
5680/**
5681 * calc_csum_metadata_size - return the amount of metadata space that must be
5682 *      reserved/freed for the given bytes.
5683 * @inode: the inode we're manipulating
5684 * @num_bytes: the number of bytes in question
5685 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5686 *
5687 * This adjusts the number of csum_bytes in the inode and then returns the
5688 * correct amount of metadata that must either be reserved or freed.  We
5689 * calculate how many checksums we can fit into one leaf and then divide the
5690 * number of bytes that will need to be checksumed by this value to figure out
5691 * how many checksums will be required.  If we are adding bytes then the number
5692 * may go up and we will return the number of additional bytes that must be
5693 * reserved.  If it is going down we will return the number of bytes that must
5694 * be freed.
5695 *
5696 * This must be called with BTRFS_I(inode)->lock held.
5697 */
5698static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5699                                   int reserve)
5700{
5701        struct btrfs_root *root = BTRFS_I(inode)->root;
5702        u64 old_csums, num_csums;
5703
5704        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5705            BTRFS_I(inode)->csum_bytes == 0)
5706                return 0;
5707
5708        old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5709        if (reserve)
5710                BTRFS_I(inode)->csum_bytes += num_bytes;
5711        else
5712                BTRFS_I(inode)->csum_bytes -= num_bytes;
5713        num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5714
5715        /* No change, no need to reserve more */
5716        if (old_csums == num_csums)
5717                return 0;
5718
5719        if (reserve)
5720                return btrfs_calc_trans_metadata_size(root,
5721                                                      num_csums - old_csums);
5722
5723        return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5724}
5725
5726int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5727{
5728        struct btrfs_root *root = BTRFS_I(inode)->root;
5729        struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5730        u64 to_reserve = 0;
5731        u64 csum_bytes;
5732        unsigned nr_extents = 0;
5733        int extra_reserve = 0;
5734        enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5735        int ret = 0;
5736        bool delalloc_lock = true;
5737        u64 to_free = 0;
5738        unsigned dropped;
5739
5740        /* If we are a free space inode we need to not flush since we will be in
5741         * the middle of a transaction commit.  We also don't need the delalloc
5742         * mutex since we won't race with anybody.  We need this mostly to make
5743         * lockdep shut its filthy mouth.
5744         */
5745        if (btrfs_is_free_space_inode(inode)) {
5746                flush = BTRFS_RESERVE_NO_FLUSH;
5747                delalloc_lock = false;
5748        }
5749
5750        if (flush != BTRFS_RESERVE_NO_FLUSH &&
5751            btrfs_transaction_in_commit(root->fs_info))
5752                schedule_timeout(1);
5753
5754        if (delalloc_lock)
5755                mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5756
5757        num_bytes = ALIGN(num_bytes, root->sectorsize);
5758
5759        spin_lock(&BTRFS_I(inode)->lock);
5760        nr_extents = (unsigned)div64_u64(num_bytes +
5761                                         BTRFS_MAX_EXTENT_SIZE - 1,
5762                                         BTRFS_MAX_EXTENT_SIZE);
5763        BTRFS_I(inode)->outstanding_extents += nr_extents;
5764        nr_extents = 0;
5765
5766        if (BTRFS_I(inode)->outstanding_extents >
5767            BTRFS_I(inode)->reserved_extents)
5768                nr_extents = BTRFS_I(inode)->outstanding_extents -
5769                        BTRFS_I(inode)->reserved_extents;
5770
5771        /*
5772         * Add an item to reserve for updating the inode when we complete the
5773         * delalloc io.
5774         */
5775        if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5776                      &BTRFS_I(inode)->runtime_flags)) {
5777                nr_extents++;
5778                extra_reserve = 1;
5779        }
5780
5781        to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
5782        to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5783        csum_bytes = BTRFS_I(inode)->csum_bytes;
5784        spin_unlock(&BTRFS_I(inode)->lock);
5785
5786        if (root->fs_info->quota_enabled) {
5787                ret = btrfs_qgroup_reserve_meta(root,
5788                                nr_extents * root->nodesize);
5789                if (ret)
5790                        goto out_fail;
5791        }
5792
5793        ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5794        if (unlikely(ret)) {
5795                btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5796                goto out_fail;
5797        }
5798
5799        spin_lock(&BTRFS_I(inode)->lock);
5800        if (extra_reserve) {
5801                set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5802                        &BTRFS_I(inode)->runtime_flags);
5803                nr_extents--;
5804        }
5805        BTRFS_I(inode)->reserved_extents += nr_extents;
5806        spin_unlock(&BTRFS_I(inode)->lock);
5807
5808        if (delalloc_lock)
5809                mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5810
5811        if (to_reserve)
5812                trace_btrfs_space_reservation(root->fs_info, "delalloc",
5813                                              btrfs_ino(inode), to_reserve, 1);
5814        block_rsv_add_bytes(block_rsv, to_reserve, 1);
5815
5816        return 0;
5817
5818out_fail:
5819        spin_lock(&BTRFS_I(inode)->lock);
5820        dropped = drop_outstanding_extent(inode, num_bytes);
5821        /*
5822         * If the inodes csum_bytes is the same as the original
5823         * csum_bytes then we know we haven't raced with any free()ers
5824         * so we can just reduce our inodes csum bytes and carry on.
5825         */
5826        if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
5827                calc_csum_metadata_size(inode, num_bytes, 0);
5828        } else {
5829                u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5830                u64 bytes;
5831
5832                /*
5833                 * This is tricky, but first we need to figure out how much we
5834                 * freed from any free-ers that occurred during this
5835                 * reservation, so we reset ->csum_bytes to the csum_bytes
5836                 * before we dropped our lock, and then call the free for the
5837                 * number of bytes that were freed while we were trying our
5838                 * reservation.
5839                 */
5840                bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5841                BTRFS_I(inode)->csum_bytes = csum_bytes;
5842                to_free = calc_csum_metadata_size(inode, bytes, 0);
5843
5844
5845                /*
5846                 * Now we need to see how much we would have freed had we not
5847                 * been making this reservation and our ->csum_bytes were not
5848                 * artificially inflated.
5849                 */
5850                BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5851                bytes = csum_bytes - orig_csum_bytes;
5852                bytes = calc_csum_metadata_size(inode, bytes, 0);
5853
5854                /*
5855                 * Now reset ->csum_bytes to what it should be.  If bytes is
5856                 * more than to_free then we would have freed more space had we
5857                 * not had an artificially high ->csum_bytes, so we need to free
5858                 * the remainder.  If bytes is the same or less then we don't
5859                 * need to do anything, the other free-ers did the correct
5860                 * thing.
5861                 */
5862                BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5863                if (bytes > to_free)
5864                        to_free = bytes - to_free;
5865                else
5866                        to_free = 0;
5867        }
5868        spin_unlock(&BTRFS_I(inode)->lock);
5869        if (dropped)
5870                to_free += btrfs_calc_trans_metadata_size(root, dropped);
5871
5872        if (to_free) {
5873                btrfs_block_rsv_release(root, block_rsv, to_free);
5874                trace_btrfs_space_reservation(root->fs_info, "delalloc",
5875                                              btrfs_ino(inode), to_free, 0);
5876        }
5877        if (delalloc_lock)
5878                mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5879        return ret;
5880}
5881
5882/**
5883 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5884 * @inode: the inode to release the reservation for
5885 * @num_bytes: the number of bytes we're releasing
5886 *
5887 * This will release the metadata reservation for an inode.  This can be called
5888 * once we complete IO for a given set of bytes to release their metadata
5889 * reservations.
5890 */
5891void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5892{
5893        struct btrfs_root *root = BTRFS_I(inode)->root;
5894        u64 to_free = 0;
5895        unsigned dropped;
5896
5897        num_bytes = ALIGN(num_bytes, root->sectorsize);
5898        spin_lock(&BTRFS_I(inode)->lock);
5899        dropped = drop_outstanding_extent(inode, num_bytes);
5900
5901        if (num_bytes)
5902                to_free = calc_csum_metadata_size(inode, num_bytes, 0);
5903        spin_unlock(&BTRFS_I(inode)->lock);
5904        if (dropped > 0)
5905                to_free += btrfs_calc_trans_metadata_size(root, dropped);
5906
5907        if (btrfs_test_is_dummy_root(root))
5908                return;
5909
5910        trace_btrfs_space_reservation(root->fs_info, "delalloc",
5911                                      btrfs_ino(inode), to_free, 0);
5912
5913        btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5914                                to_free);
5915}
5916
5917/**
5918 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5919 * delalloc
5920 * @inode: inode we're writing to
5921 * @start: start range we are writing to
5922 * @len: how long the range we are writing to
5923 *
5924 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5925 *
5926 * This will do the following things
5927 *
5928 * o reserve space in data space info for num bytes
5929 *   and reserve precious corresponding qgroup space
5930 *   (Done in check_data_free_space)
5931 *
5932 * o reserve space for metadata space, based on the number of outstanding
5933 *   extents and how much csums will be needed
5934 *   also reserve metadata space in a per root over-reserve method.
5935 * o add to the inodes->delalloc_bytes
5936 * o add it to the fs_info's delalloc inodes list.
5937 *   (Above 3 all done in delalloc_reserve_metadata)
5938 *
5939 * Return 0 for success
5940 * Return <0 for error(-ENOSPC or -EQUOT)
5941 */
5942int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
5943{
5944        int ret;
5945
5946        ret = btrfs_check_data_free_space(inode, start, len);
5947        if (ret < 0)
5948                return ret;
5949        ret = btrfs_delalloc_reserve_metadata(inode, len);
5950        if (ret < 0)
5951                btrfs_free_reserved_data_space(inode, start, len);
5952        return ret;
5953}
5954
5955/**
5956 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5957 * @inode: inode we're releasing space for
5958 * @start: start position of the space already reserved
5959 * @len: the len of the space already reserved
5960 *
5961 * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
5962 * called in the case that we don't need the metadata AND data reservations
5963 * anymore.  So if there is an error or we insert an inline extent.
5964 *
5965 * This function will release the metadata space that was not used and will
5966 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5967 * list if there are no delalloc bytes left.
5968 * Also it will handle the qgroup reserved space.
5969 */
5970void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
5971{
5972        btrfs_delalloc_release_metadata(inode, len);
5973        btrfs_free_reserved_data_space(inode, start, len);
5974}
5975
5976static int update_block_group(struct btrfs_trans_handle *trans,
5977                              struct btrfs_root *root, u64 bytenr,
5978                              u64 num_bytes, int alloc)
5979{
5980        struct btrfs_block_group_cache *cache = NULL;
5981        struct btrfs_fs_info *info = root->fs_info;
5982        u64 total = num_bytes;
5983        u64 old_val;
5984        u64 byte_in_group;
5985        int factor;
5986
5987        /* block accounting for super block */
5988        spin_lock(&info->delalloc_root_lock);
5989        old_val = btrfs_super_bytes_used(info->super_copy);
5990        if (alloc)
5991                old_val += num_bytes;
5992        else
5993                old_val -= num_bytes;
5994        btrfs_set_super_bytes_used(info->super_copy, old_val);
5995        spin_unlock(&info->delalloc_root_lock);
5996
5997        while (total) {
5998                cache = btrfs_lookup_block_group(info, bytenr);
5999                if (!cache)
6000                        return -ENOENT;
6001                if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6002                                    BTRFS_BLOCK_GROUP_RAID1 |
6003                                    BTRFS_BLOCK_GROUP_RAID10))
6004                        factor = 2;
6005                else
6006                        factor = 1;
6007                /*
6008                 * If this block group has free space cache written out, we
6009                 * need to make sure to load it if we are removing space.  This
6010                 * is because we need the unpinning stage to actually add the
6011                 * space back to the block group, otherwise we will leak space.
6012                 */
6013                if (!alloc && cache->cached == BTRFS_CACHE_NO)
6014                        cache_block_group(cache, 1);
6015
6016                byte_in_group = bytenr - cache->key.objectid;
6017                WARN_ON(byte_in_group > cache->key.offset);
6018
6019                spin_lock(&cache->space_info->lock);
6020                spin_lock(&cache->lock);
6021
6022                if (btrfs_test_opt(root, SPACE_CACHE) &&
6023                    cache->disk_cache_state < BTRFS_DC_CLEAR)
6024                        cache->disk_cache_state = BTRFS_DC_CLEAR;
6025
6026                old_val = btrfs_block_group_used(&cache->item);
6027                num_bytes = min(total, cache->key.offset - byte_in_group);
6028                if (alloc) {
6029                        old_val += num_bytes;
6030                        btrfs_set_block_group_used(&cache->item, old_val);
6031                        cache->reserved -= num_bytes;
6032                        cache->space_info->bytes_reserved -= num_bytes;
6033                        cache->space_info->bytes_used += num_bytes;
6034                        cache->space_info->disk_used += num_bytes * factor;
6035                        spin_unlock(&cache->lock);
6036                        spin_unlock(&cache->space_info->lock);
6037                } else {
6038                        old_val -= num_bytes;
6039                        btrfs_set_block_group_used(&cache->item, old_val);
6040                        cache->pinned += num_bytes;
6041                        cache->space_info->bytes_pinned += num_bytes;
6042                        cache->space_info->bytes_used -= num_bytes;
6043                        cache->space_info->disk_used -= num_bytes * factor;
6044                        spin_unlock(&cache->lock);
6045                        spin_unlock(&cache->space_info->lock);
6046
6047                        set_extent_dirty(info->pinned_extents,
6048                                         bytenr, bytenr + num_bytes - 1,
6049                                         GFP_NOFS | __GFP_NOFAIL);
6050                }
6051
6052                spin_lock(&trans->transaction->dirty_bgs_lock);
6053                if (list_empty(&cache->dirty_list)) {
6054                        list_add_tail(&cache->dirty_list,
6055                                      &trans->transaction->dirty_bgs);
6056                                trans->transaction->num_dirty_bgs++;
6057                        btrfs_get_block_group(cache);
6058                }
6059                spin_unlock(&trans->transaction->dirty_bgs_lock);
6060
6061                /*
6062                 * No longer have used bytes in this block group, queue it for
6063                 * deletion. We do this after adding the block group to the
6064                 * dirty list to avoid races between cleaner kthread and space
6065                 * cache writeout.
6066                 */
6067                if (!alloc && old_val == 0) {
6068                        spin_lock(&info->unused_bgs_lock);
6069                        if (list_empty(&cache->bg_list)) {
6070                                btrfs_get_block_group(cache);
6071                                list_add_tail(&cache->bg_list,
6072                                              &info->unused_bgs);
6073                        }
6074                        spin_unlock(&info->unused_bgs_lock);
6075                }
6076
6077                btrfs_put_block_group(cache);
6078                total -= num_bytes;
6079                bytenr += num_bytes;
6080        }
6081        return 0;
6082}
6083
6084static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6085{
6086        struct btrfs_block_group_cache *cache;
6087        u64 bytenr;
6088
6089        spin_lock(&root->fs_info->block_group_cache_lock);
6090        bytenr = root->fs_info->first_logical_byte;
6091        spin_unlock(&root->fs_info->block_group_cache_lock);
6092
6093        if (bytenr < (u64)-1)
6094                return bytenr;
6095
6096        cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6097        if (!cache)
6098                return 0;
6099
6100        bytenr = cache->key.objectid;
6101        btrfs_put_block_group(cache);
6102
6103        return bytenr;
6104}
6105
6106static int pin_down_extent(struct btrfs_root *root,
6107                           struct btrfs_block_group_cache *cache,
6108                           u64 bytenr, u64 num_bytes, int reserved)
6109{
6110        spin_lock(&cache->space_info->lock);
6111        spin_lock(&cache->lock);
6112        cache->pinned += num_bytes;
6113        cache->space_info->bytes_pinned += num_bytes;
6114        if (reserved) {
6115                cache->reserved -= num_bytes;
6116                cache->space_info->bytes_reserved -= num_bytes;
6117        }
6118        spin_unlock(&cache->lock);
6119        spin_unlock(&cache->space_info->lock);
6120
6121        set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6122                         bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6123        if (reserved)
6124                trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
6125        return 0;
6126}
6127
6128/*
6129 * this function must be called within transaction
6130 */
6131int btrfs_pin_extent(struct btrfs_root *root,
6132                     u64 bytenr, u64 num_bytes, int reserved)
6133{
6134        struct btrfs_block_group_cache *cache;
6135
6136        cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6137        BUG_ON(!cache); /* Logic error */
6138
6139        pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6140
6141        btrfs_put_block_group(cache);
6142        return 0;
6143}
6144
6145/*
6146 * this function must be called within transaction
6147 */
6148int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6149                                    u64 bytenr, u64 num_bytes)
6150{
6151        struct btrfs_block_group_cache *cache;
6152        int ret;
6153
6154        cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6155        if (!cache)
6156                return -EINVAL;
6157
6158        /*
6159         * pull in the free space cache (if any) so that our pin
6160         * removes the free space from the cache.  We have load_only set
6161         * to one because the slow code to read in the free extents does check
6162         * the pinned extents.
6163         */
6164        cache_block_group(cache, 1);
6165
6166        pin_down_extent(root, cache, bytenr, num_bytes, 0);
6167
6168        /* remove us from the free space cache (if we're there at all) */
6169        ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6170        btrfs_put_block_group(cache);
6171        return ret;
6172}
6173
6174static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6175{
6176        int ret;
6177        struct btrfs_block_group_cache *block_group;
6178        struct btrfs_caching_control *caching_ctl;
6179
6180        block_group = btrfs_lookup_block_group(root->fs_info, start);
6181        if (!block_group)
6182                return -EINVAL;
6183
6184        cache_block_group(block_group, 0);
6185        caching_ctl = get_caching_control(block_group);
6186
6187        if (!caching_ctl) {
6188                /* Logic error */
6189                BUG_ON(!block_group_cache_done(block_group));
6190                ret = btrfs_remove_free_space(block_group, start, num_bytes);
6191        } else {
6192                mutex_lock(&caching_ctl->mutex);
6193
6194                if (start >= caching_ctl->progress) {
6195                        ret = add_excluded_extent(root, start, num_bytes);
6196                } else if (start + num_bytes <= caching_ctl->progress) {
6197                        ret = btrfs_remove_free_space(block_group,
6198                                                      start, num_bytes);
6199                } else {
6200                        num_bytes = caching_ctl->progress - start;
6201                        ret = btrfs_remove_free_space(block_group,
6202                                                      start, num_bytes);
6203                        if (ret)
6204                                goto out_lock;
6205
6206                        num_bytes = (start + num_bytes) -
6207                                caching_ctl->progress;
6208                        start = caching_ctl->progress;
6209                        ret = add_excluded_extent(root, start, num_bytes);
6210                }
6211out_lock:
6212                mutex_unlock(&caching_ctl->mutex);
6213                put_caching_control(caching_ctl);
6214        }
6215        btrfs_put_block_group(block_group);
6216        return ret;
6217}
6218
6219int btrfs_exclude_logged_extents(struct btrfs_root *log,
6220                                 struct extent_buffer *eb)
6221{
6222        struct btrfs_file_extent_item *item;
6223        struct btrfs_key key;
6224        int found_type;
6225        int i;
6226
6227        if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6228                return 0;
6229
6230        for (i = 0; i < btrfs_header_nritems(eb); i++) {
6231                btrfs_item_key_to_cpu(eb, &key, i);
6232                if (key.type != BTRFS_EXTENT_DATA_KEY)
6233                        continue;
6234                item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6235                found_type = btrfs_file_extent_type(eb, item);
6236                if (found_type == BTRFS_FILE_EXTENT_INLINE)
6237                        continue;
6238                if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6239                        continue;
6240                key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6241                key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6242                __exclude_logged_extent(log, key.objectid, key.offset);
6243        }
6244
6245        return 0;
6246}
6247
6248static void
6249btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6250{
6251        atomic_inc(&bg->reservations);
6252}
6253
6254void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6255                                        const u64 start)
6256{
6257        struct btrfs_block_group_cache *bg;
6258
6259        bg = btrfs_lookup_block_group(fs_info, start);
6260        ASSERT(bg);
6261        if (atomic_dec_and_test(&bg->reservations))
6262                wake_up_atomic_t(&bg->reservations);
6263        btrfs_put_block_group(bg);
6264}
6265
6266static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6267{
6268        schedule();
6269        return 0;
6270}
6271
6272void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6273{
6274        struct btrfs_space_info *space_info = bg->space_info;
6275
6276        ASSERT(bg->ro);
6277
6278        if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6279                return;
6280
6281        /*
6282         * Our block group is read only but before we set it to read only,
6283         * some task might have had allocated an extent from it already, but it
6284         * has not yet created a respective ordered extent (and added it to a
6285         * root's list of ordered extents).
6286         * Therefore wait for any task currently allocating extents, since the
6287         * block group's reservations counter is incremented while a read lock
6288         * on the groups' semaphore is held and decremented after releasing
6289         * the read access on that semaphore and creating the ordered extent.
6290         */
6291        down_write(&space_info->groups_sem);
6292        up_write(&space_info->groups_sem);
6293
6294        wait_on_atomic_t(&bg->reservations,
6295                         btrfs_wait_bg_reservations_atomic_t,
6296                         TASK_UNINTERRUPTIBLE);
6297}
6298
6299/**
6300 * btrfs_update_reserved_bytes - update the block_group and space info counters
6301 * @cache:      The cache we are manipulating
6302 * @num_bytes:  The number of bytes in question
6303 * @reserve:    One of the reservation enums
6304 * @delalloc:   The blocks are allocated for the delalloc write
6305 *
6306 * This is called by the allocator when it reserves space, or by somebody who is
6307 * freeing space that was never actually used on disk.  For example if you
6308 * reserve some space for a new leaf in transaction A and before transaction A
6309 * commits you free that leaf, you call this with reserve set to 0 in order to
6310 * clear the reservation.
6311 *
6312 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6313 * ENOSPC accounting.  For data we handle the reservation through clearing the
6314 * delalloc bits in the io_tree.  We have to do this since we could end up
6315 * allocating less disk space for the amount of data we have reserved in the
6316 * case of compression.
6317 *
6318 * If this is a reservation and the block group has become read only we cannot
6319 * make the reservation and return -EAGAIN, otherwise this function always
6320 * succeeds.
6321 */
6322static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
6323                                       u64 num_bytes, int reserve, int delalloc)
6324{
6325        struct btrfs_space_info *space_info = cache->space_info;
6326        int ret = 0;
6327
6328        spin_lock(&space_info->lock);
6329        spin_lock(&cache->lock);
6330        if (reserve != RESERVE_FREE) {
6331                if (cache->ro) {
6332                        ret = -EAGAIN;
6333                } else {
6334                        cache->reserved += num_bytes;
6335                        space_info->bytes_reserved += num_bytes;
6336                        if (reserve == RESERVE_ALLOC) {
6337                                trace_btrfs_space_reservation(cache->fs_info,
6338                                                "space_info", space_info->flags,
6339                                                num_bytes, 0);
6340                                space_info->bytes_may_use -= num_bytes;
6341                        }
6342
6343                        if (delalloc)
6344                                cache->delalloc_bytes += num_bytes;
6345                }
6346        } else {
6347                if (cache->ro)
6348                        space_info->bytes_readonly += num_bytes;
6349                cache->reserved -= num_bytes;
6350                space_info->bytes_reserved -= num_bytes;
6351
6352                if (delalloc)
6353                        cache->delalloc_bytes -= num_bytes;
6354        }
6355        spin_unlock(&cache->lock);
6356        spin_unlock(&space_info->lock);
6357        return ret;
6358}
6359
6360void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6361                                struct btrfs_root *root)
6362{
6363        struct btrfs_fs_info *fs_info = root->fs_info;
6364        struct btrfs_caching_control *next;
6365        struct btrfs_caching_control *caching_ctl;
6366        struct btrfs_block_group_cache *cache;
6367
6368        down_write(&fs_info->commit_root_sem);
6369
6370        list_for_each_entry_safe(caching_ctl, next,
6371                                 &fs_info->caching_block_groups, list) {
6372                cache = caching_ctl->block_group;
6373                if (block_group_cache_done(cache)) {
6374                        cache->last_byte_to_unpin = (u64)-1;
6375                        list_del_init(&caching_ctl->list);
6376                        put_caching_control(caching_ctl);
6377                } else {
6378                        cache->last_byte_to_unpin = caching_ctl->progress;
6379                }
6380        }
6381
6382        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6383                fs_info->pinned_extents = &fs_info->freed_extents[1];
6384        else
6385                fs_info->pinned_extents = &fs_info->freed_extents[0];
6386
6387        up_write(&fs_info->commit_root_sem);
6388
6389        update_global_block_rsv(fs_info);
6390}
6391
6392/*
6393 * Returns the free cluster for the given space info and sets empty_cluster to
6394 * what it should be based on the mount options.
6395 */
6396static struct btrfs_free_cluster *
6397fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6398                   u64 *empty_cluster)
6399{
6400        struct btrfs_free_cluster *ret = NULL;
6401        bool ssd = btrfs_test_opt(root, SSD);
6402
6403        *empty_cluster = 0;
6404        if (btrfs_mixed_space_info(space_info))
6405                return ret;
6406
6407        if (ssd)
6408                *empty_cluster = SZ_2M;
6409        if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6410                ret = &root->fs_info->meta_alloc_cluster;
6411                if (!ssd)
6412                        *empty_cluster = SZ_64K;
6413        } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6414                ret = &root->fs_info->data_alloc_cluster;
6415        }
6416
6417        return ret;
6418}
6419
6420static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6421                              const bool return_free_space)
6422{
6423        struct btrfs_fs_info *fs_info = root->fs_info;
6424        struct btrfs_block_group_cache *cache = NULL;
6425        struct btrfs_space_info *space_info;
6426        struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6427        struct btrfs_free_cluster *cluster = NULL;
6428        u64 len;
6429        u64 total_unpinned = 0;
6430        u64 empty_cluster = 0;
6431        bool readonly;
6432
6433        while (start <= end) {
6434                readonly = false;
6435                if (!cache ||
6436                    start >= cache->key.objectid + cache->key.offset) {
6437                        if (cache)
6438                                btrfs_put_block_group(cache);
6439                        total_unpinned = 0;
6440                        cache = btrfs_lookup_block_group(fs_info, start);
6441                        BUG_ON(!cache); /* Logic error */
6442
6443                        cluster = fetch_cluster_info(root,
6444                                                     cache->space_info,
6445                                                     &empty_cluster);
6446                        empty_cluster <<= 1;
6447                }
6448
6449                len = cache->key.objectid + cache->key.offset - start;
6450                len = min(len, end + 1 - start);
6451
6452                if (start < cache->last_byte_to_unpin) {
6453                        len = min(len, cache->last_byte_to_unpin - start);
6454                        if (return_free_space)
6455                                btrfs_add_free_space(cache, start, len);
6456                }
6457
6458                start += len;
6459                total_unpinned += len;
6460                space_info = cache->space_info;
6461
6462                /*
6463                 * If this space cluster has been marked as fragmented and we've
6464                 * unpinned enough in this block group to potentially allow a
6465                 * cluster to be created inside of it go ahead and clear the
6466                 * fragmented check.
6467                 */
6468                if (cluster && cluster->fragmented &&
6469                    total_unpinned > empty_cluster) {
6470                        spin_lock(&cluster->lock);
6471                        cluster->fragmented = 0;
6472                        spin_unlock(&cluster->lock);
6473                }
6474
6475                spin_lock(&space_info->lock);
6476                spin_lock(&cache->lock);
6477                cache->pinned -= len;
6478                space_info->bytes_pinned -= len;
6479                space_info->max_extent_size = 0;
6480                percpu_counter_add(&space_info->total_bytes_pinned, -len);
6481                if (cache->ro) {
6482                        space_info->bytes_readonly += len;
6483                        readonly = true;
6484                }
6485                spin_unlock(&cache->lock);
6486                if (!readonly && global_rsv->space_info == space_info) {
6487                        spin_lock(&global_rsv->lock);
6488                        if (!global_rsv->full) {
6489                                len = min(len, global_rsv->size -
6490                                          global_rsv->reserved);
6491                                global_rsv->reserved += len;
6492                                space_info->bytes_may_use += len;
6493                                if (global_rsv->reserved >= global_rsv->size)
6494                                        global_rsv->full = 1;
6495                        }
6496                        spin_unlock(&global_rsv->lock);
6497                }
6498                spin_unlock(&space_info->lock);
6499        }
6500
6501        if (cache)
6502                btrfs_put_block_group(cache);
6503        return 0;
6504}
6505
6506int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6507                               struct btrfs_root *root)
6508{
6509        struct btrfs_fs_info *fs_info = root->fs_info;
6510        struct btrfs_block_group_cache *block_group, *tmp;
6511        struct list_head *deleted_bgs;
6512        struct extent_io_tree *unpin;
6513        u64 start;
6514        u64 end;
6515        int ret;
6516
6517        if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6518                unpin = &fs_info->freed_extents[1];
6519        else
6520                unpin = &fs_info->freed_extents[0];
6521
6522        while (!trans->aborted) {
6523                mutex_lock(&fs_info->unused_bg_unpin_mutex);
6524                ret = find_first_extent_bit(unpin, 0, &start, &end,
6525                                            EXTENT_DIRTY, NULL);
6526                if (ret) {
6527                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6528                        break;
6529                }
6530
6531                if (btrfs_test_opt(root, DISCARD))
6532                        ret = btrfs_discard_extent(root, start,
6533                                                   end + 1 - start, NULL);
6534
6535                clear_extent_dirty(unpin, start, end);
6536                unpin_extent_range(root, start, end, true);
6537                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6538                cond_resched();
6539        }
6540
6541        /*
6542         * Transaction is finished.  We don't need the lock anymore.  We
6543         * do need to clean up the block groups in case of a transaction
6544         * abort.
6545         */
6546        deleted_bgs = &trans->transaction->deleted_bgs;
6547        list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6548                u64 trimmed = 0;
6549
6550                ret = -EROFS;
6551                if (!trans->aborted)
6552                        ret = btrfs_discard_extent(root,
6553                                                   block_group->key.objectid,
6554                                                   block_group->key.offset,
6555                                                   &trimmed);
6556
6557                list_del_init(&block_group->bg_list);
6558                btrfs_put_block_group_trimming(block_group);
6559                btrfs_put_block_group(block_group);
6560
6561                if (ret) {
6562                        const char *errstr = btrfs_decode_error(ret);
6563                        btrfs_warn(fs_info,
6564                                   "Discard failed while removing blockgroup: errno=%d %s\n",
6565                                   ret, errstr);
6566                }
6567        }
6568
6569        return 0;
6570}
6571
6572static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6573                             u64 owner, u64 root_objectid)
6574{
6575        struct btrfs_space_info *space_info;
6576        u64 flags;
6577
6578        if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6579                if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6580                        flags = BTRFS_BLOCK_GROUP_SYSTEM;
6581                else
6582                        flags = BTRFS_BLOCK_GROUP_METADATA;
6583        } else {
6584                flags = BTRFS_BLOCK_GROUP_DATA;
6585        }
6586
6587        space_info = __find_space_info(fs_info, flags);
6588        BUG_ON(!space_info); /* Logic bug */
6589        percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6590}
6591
6592
6593static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6594                                struct btrfs_root *root,
6595                                struct btrfs_delayed_ref_node *node, u64 parent,
6596                                u64 root_objectid, u64 owner_objectid,
6597                                u64 owner_offset, int refs_to_drop,
6598                                struct btrfs_delayed_extent_op *extent_op)
6599{
6600        struct btrfs_key key;
6601        struct btrfs_path *path;
6602        struct btrfs_fs_info *info = root->fs_info;
6603        struct btrfs_root *extent_root = info->extent_root;
6604        struct extent_buffer *leaf;
6605        struct btrfs_extent_item *ei;
6606        struct btrfs_extent_inline_ref *iref;
6607        int ret;
6608        int is_data;
6609        int extent_slot = 0;
6610        int found_extent = 0;
6611        int num_to_del = 1;
6612        u32 item_size;
6613        u64 refs;
6614        u64 bytenr = node->bytenr;
6615        u64 num_bytes = node->num_bytes;
6616        int last_ref = 0;
6617        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6618                                                 SKINNY_METADATA);
6619
6620        path = btrfs_alloc_path();
6621        if (!path)
6622                return -ENOMEM;
6623
6624        path->reada = READA_FORWARD;
6625        path->leave_spinning = 1;
6626
6627        is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6628        BUG_ON(!is_data && refs_to_drop != 1);
6629
6630        if (is_data)
6631                skinny_metadata = 0;
6632
6633        ret = lookup_extent_backref(trans, extent_root, path, &iref,
6634                                    bytenr, num_bytes, parent,
6635                                    root_objectid, owner_objectid,
6636                                    owner_offset);
6637        if (ret == 0) {
6638                extent_slot = path->slots[0];
6639                while (extent_slot >= 0) {
6640                        btrfs_item_key_to_cpu(path->nodes[0], &key,
6641                                              extent_slot);
6642                        if (key.objectid != bytenr)
6643                                break;
6644                        if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6645                            key.offset == num_bytes) {
6646                                found_extent = 1;
6647                                break;
6648                        }
6649                        if (key.type == BTRFS_METADATA_ITEM_KEY &&
6650                            key.offset == owner_objectid) {
6651                                found_extent = 1;
6652                                break;
6653                        }
6654                        if (path->slots[0] - extent_slot > 5)
6655                                break;
6656                        extent_slot--;
6657                }
6658#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6659                item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6660                if (found_extent && item_size < sizeof(*ei))
6661                        found_extent = 0;
6662#endif
6663                if (!found_extent) {
6664                        BUG_ON(iref);
6665                        ret = remove_extent_backref(trans, extent_root, path,
6666                                                    NULL, refs_to_drop,
6667                                                    is_data, &last_ref);
6668                        if (ret) {
6669                                btrfs_abort_transaction(trans, extent_root, ret);
6670                                goto out;
6671                        }
6672                        btrfs_release_path(path);
6673                        path->leave_spinning = 1;
6674
6675                        key.objectid = bytenr;
6676                        key.type = BTRFS_EXTENT_ITEM_KEY;
6677                        key.offset = num_bytes;
6678
6679                        if (!is_data && skinny_metadata) {
6680                                key.type = BTRFS_METADATA_ITEM_KEY;
6681                                key.offset = owner_objectid;
6682                        }
6683
6684                        ret = btrfs_search_slot(trans, extent_root,
6685                                                &key, path, -1, 1);
6686                        if (ret > 0 && skinny_metadata && path->slots[0]) {
6687                                /*
6688                                 * Couldn't find our skinny metadata item,
6689                                 * see if we have ye olde extent item.
6690                                 */
6691                                path->slots[0]--;
6692                                btrfs_item_key_to_cpu(path->nodes[0], &key,
6693                                                      path->slots[0]);
6694                                if (key.objectid == bytenr &&
6695                                    key.type == BTRFS_EXTENT_ITEM_KEY &&
6696                                    key.offset == num_bytes)
6697                                        ret = 0;
6698                        }
6699
6700                        if (ret > 0 && skinny_metadata) {
6701                                skinny_metadata = false;
6702                                key.objectid = bytenr;
6703                                key.type = BTRFS_EXTENT_ITEM_KEY;
6704                                key.offset = num_bytes;
6705                                btrfs_release_path(path);
6706                                ret = btrfs_search_slot(trans, extent_root,
6707                                                        &key, path, -1, 1);
6708                        }
6709
6710                        if (ret) {
6711                                btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6712                                        ret, bytenr);
6713                                if (ret > 0)
6714                                        btrfs_print_leaf(extent_root,
6715                                                         path->nodes[0]);
6716                        }
6717                        if (ret < 0) {
6718                                btrfs_abort_transaction(trans, extent_root, ret);
6719                                goto out;
6720                        }
6721                        extent_slot = path->slots[0];
6722                }
6723        } else if (WARN_ON(ret == -ENOENT)) {
6724                btrfs_print_leaf(extent_root, path->nodes[0]);
6725                btrfs_err(info,
6726                        "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6727                        bytenr, parent, root_objectid, owner_objectid,
6728                        owner_offset);
6729                btrfs_abort_transaction(trans, extent_root, ret);
6730                goto out;
6731        } else {
6732                btrfs_abort_transaction(trans, extent_root, ret);
6733                goto out;
6734        }
6735
6736        leaf = path->nodes[0];
6737        item_size = btrfs_item_size_nr(leaf, extent_slot);
6738#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6739        if (item_size < sizeof(*ei)) {
6740                BUG_ON(found_extent || extent_slot != path->slots[0]);
6741                ret = convert_extent_item_v0(trans, extent_root, path,
6742                                             owner_objectid, 0);
6743                if (ret < 0) {
6744                        btrfs_abort_transaction(trans, extent_root, ret);
6745                        goto out;
6746                }
6747
6748                btrfs_release_path(path);
6749                path->leave_spinning = 1;
6750
6751                key.objectid = bytenr;
6752                key.type = BTRFS_EXTENT_ITEM_KEY;
6753                key.offset = num_bytes;
6754
6755                ret = btrfs_search_slot(trans, extent_root, &key, path,
6756                                        -1, 1);
6757                if (ret) {
6758                        btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6759                                ret, bytenr);
6760                        btrfs_print_leaf(extent_root, path->nodes[0]);
6761                }
6762                if (ret < 0) {
6763                        btrfs_abort_transaction(trans, extent_root, ret);
6764                        goto out;
6765                }
6766
6767                extent_slot = path->slots[0];
6768                leaf = path->nodes[0];
6769                item_size = btrfs_item_size_nr(leaf, extent_slot);
6770        }
6771#endif
6772        BUG_ON(item_size < sizeof(*ei));
6773        ei = btrfs_item_ptr(leaf, extent_slot,
6774                            struct btrfs_extent_item);
6775        if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6776            key.type == BTRFS_EXTENT_ITEM_KEY) {
6777                struct btrfs_tree_block_info *bi;
6778                BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6779                bi = (struct btrfs_tree_block_info *)(ei + 1);
6780                WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6781        }
6782
6783        refs = btrfs_extent_refs(leaf, ei);
6784        if (refs < refs_to_drop) {
6785                btrfs_err(info, "trying to drop %d refs but we only have %Lu "
6786                          "for bytenr %Lu", refs_to_drop, refs, bytenr);
6787                ret = -EINVAL;
6788                btrfs_abort_transaction(trans, extent_root, ret);
6789                goto out;
6790        }
6791        refs -= refs_to_drop;
6792
6793        if (refs > 0) {
6794                if (extent_op)
6795                        __run_delayed_extent_op(extent_op, leaf, ei);
6796                /*
6797                 * In the case of inline back ref, reference count will
6798                 * be updated by remove_extent_backref
6799                 */
6800                if (iref) {
6801                        BUG_ON(!found_extent);
6802                } else {
6803                        btrfs_set_extent_refs(leaf, ei, refs);
6804                        btrfs_mark_buffer_dirty(leaf);
6805                }
6806                if (found_extent) {
6807                        ret = remove_extent_backref(trans, extent_root, path,
6808                                                    iref, refs_to_drop,
6809                                                    is_data, &last_ref);
6810                        if (ret) {
6811                                btrfs_abort_transaction(trans, extent_root, ret);
6812                                goto out;
6813                        }
6814                }
6815                add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6816                                 root_objectid);
6817        } else {
6818                if (found_extent) {
6819                        BUG_ON(is_data && refs_to_drop !=
6820                               extent_data_ref_count(path, iref));
6821                        if (iref) {
6822                                BUG_ON(path->slots[0] != extent_slot);
6823                        } else {
6824                                BUG_ON(path->slots[0] != extent_slot + 1);
6825                                path->slots[0] = extent_slot;
6826                                num_to_del = 2;
6827                        }
6828                }
6829
6830                last_ref = 1;
6831                ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6832                                      num_to_del);
6833                if (ret) {
6834                        btrfs_abort_transaction(trans, extent_root, ret);
6835                        goto out;
6836                }
6837                btrfs_release_path(path);
6838
6839                if (is_data) {
6840                        ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
6841                        if (ret) {
6842                                btrfs_abort_transaction(trans, extent_root, ret);
6843                                goto out;
6844                        }
6845                }
6846
6847                ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
6848                                             num_bytes);
6849                if (ret) {
6850                        btrfs_abort_transaction(trans, extent_root, ret);
6851                        goto out;
6852                }
6853
6854                ret = update_block_group(trans, root, bytenr, num_bytes, 0);
6855                if (ret) {
6856                        btrfs_abort_transaction(trans, extent_root, ret);
6857                        goto out;
6858                }
6859        }
6860        btrfs_release_path(path);
6861
6862out:
6863        btrfs_free_path(path);
6864        return ret;
6865}
6866
6867/*
6868 * when we free an block, it is possible (and likely) that we free the last
6869 * delayed ref for that extent as well.  This searches the delayed ref tree for
6870 * a given extent, and if there are no other delayed refs to be processed, it
6871 * removes it from the tree.
6872 */
6873static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6874                                      struct btrfs_root *root, u64 bytenr)
6875{
6876        struct btrfs_delayed_ref_head *head;
6877        struct btrfs_delayed_ref_root *delayed_refs;
6878        int ret = 0;
6879
6880        delayed_refs = &trans->transaction->delayed_refs;
6881        spin_lock(&delayed_refs->lock);
6882        head = btrfs_find_delayed_ref_head(trans, bytenr);
6883        if (!head)
6884                goto out_delayed_unlock;
6885
6886        spin_lock(&head->lock);
6887        if (!list_empty(&head->ref_list))
6888                goto out;
6889
6890        if (head->extent_op) {
6891                if (!head->must_insert_reserved)
6892                        goto out;
6893                btrfs_free_delayed_extent_op(head->extent_op);
6894                head->extent_op = NULL;
6895        }
6896
6897        /*
6898         * waiting for the lock here would deadlock.  If someone else has it
6899         * locked they are already in the process of dropping it anyway
6900         */
6901        if (!mutex_trylock(&head->mutex))
6902                goto out;
6903
6904        /*
6905         * at this point we have a head with no other entries.  Go
6906         * ahead and process it.
6907         */
6908        head->node.in_tree = 0;
6909        rb_erase(&head->href_node, &delayed_refs->href_root);
6910
6911        atomic_dec(&delayed_refs->num_entries);
6912
6913        /*
6914         * we don't take a ref on the node because we're removing it from the
6915         * tree, so we just steal the ref the tree was holding.
6916         */
6917        delayed_refs->num_heads--;
6918        if (head->processing == 0)
6919                delayed_refs->num_heads_ready--;
6920        head->processing = 0;
6921        spin_unlock(&head->lock);
6922        spin_unlock(&delayed_refs->lock);
6923
6924        BUG_ON(head->extent_op);
6925        if (head->must_insert_reserved)
6926                ret = 1;
6927
6928        mutex_unlock(&head->mutex);
6929        btrfs_put_delayed_ref(&head->node);
6930        return ret;
6931out:
6932        spin_unlock(&head->lock);
6933
6934out_delayed_unlock:
6935        spin_unlock(&delayed_refs->lock);
6936        return 0;
6937}
6938
6939void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6940                           struct btrfs_root *root,
6941                           struct extent_buffer *buf,
6942                           u64 parent, int last_ref)
6943{
6944        int pin = 1;
6945        int ret;
6946
6947        if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6948                ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6949                                        buf->start, buf->len,
6950                                        parent, root->root_key.objectid,
6951                                        btrfs_header_level(buf),
6952                                        BTRFS_DROP_DELAYED_REF, NULL);
6953                BUG_ON(ret); /* -ENOMEM */
6954        }
6955
6956        if (!last_ref)
6957                return;
6958
6959        if (btrfs_header_generation(buf) == trans->transid) {
6960                struct btrfs_block_group_cache *cache;
6961
6962                if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6963                        ret = check_ref_cleanup(trans, root, buf->start);
6964                        if (!ret)
6965                                goto out;
6966                }
6967
6968                cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6969
6970                if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6971                        pin_down_extent(root, cache, buf->start, buf->len, 1);
6972                        btrfs_put_block_group(cache);
6973                        goto out;
6974                }
6975
6976                WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6977
6978                btrfs_add_free_space(cache, buf->start, buf->len);
6979                btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6980                btrfs_put_block_group(cache);
6981                trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
6982                pin = 0;
6983        }
6984out:
6985        if (pin)
6986                add_pinned_bytes(root->fs_info, buf->len,
6987                                 btrfs_header_level(buf),
6988                                 root->root_key.objectid);
6989
6990        /*
6991         * Deleting the buffer, clear the corrupt flag since it doesn't matter
6992         * anymore.
6993         */
6994        clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
6995}
6996
6997/* Can return -ENOMEM */
6998int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6999                      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7000                      u64 owner, u64 offset)
7001{
7002        int ret;
7003        struct btrfs_fs_info *fs_info = root->fs_info;
7004
7005        if (btrfs_test_is_dummy_root(root))
7006                return 0;
7007
7008        add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7009
7010        /*
7011         * tree log blocks never actually go into the extent allocation
7012         * tree, just update pinning info and exit early.
7013         */
7014        if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7015                WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7016                /* unlocks the pinned mutex */
7017                btrfs_pin_extent(root, bytenr, num_bytes, 1);
7018                ret = 0;
7019        } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7020                ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7021                                        num_bytes,
7022                                        parent, root_objectid, (int)owner,
7023                                        BTRFS_DROP_DELAYED_REF, NULL);
7024        } else {
7025                ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7026                                                num_bytes,
7027                                                parent, root_objectid, owner,
7028                                                offset, 0,
7029                                                BTRFS_DROP_DELAYED_REF, NULL);
7030        }
7031        return ret;
7032}
7033
7034/*
7035 * when we wait for progress in the block group caching, its because
7036 * our allocation attempt failed at least once.  So, we must sleep
7037 * and let some progress happen before we try again.
7038 *
7039 * This function will sleep at least once waiting for new free space to
7040 * show up, and then it will check the block group free space numbers
7041 * for our min num_bytes.  Another option is to have it go ahead
7042 * and look in the rbtree for a free extent of a given size, but this
7043 * is a good start.
7044 *
7045 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7046 * any of the information in this block group.
7047 */
7048static noinline void
7049wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7050                                u64 num_bytes)
7051{
7052        struct btrfs_caching_control *caching_ctl;
7053
7054        caching_ctl = get_caching_control(cache);
7055        if (!caching_ctl)
7056                return;
7057
7058        wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7059                   (cache->free_space_ctl->free_space >= num_bytes));
7060
7061        put_caching_control(caching_ctl);
7062}
7063
7064static noinline int
7065wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7066{
7067        struct btrfs_caching_control *caching_ctl;
7068        int ret = 0;
7069
7070        caching_ctl = get_caching_control(cache);
7071        if (!caching_ctl)
7072                return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7073
7074        wait_event(caching_ctl->wait, block_group_cache_done(cache));
7075        if (cache->cached == BTRFS_CACHE_ERROR)
7076                ret = -EIO;
7077        put_caching_control(caching_ctl);
7078        return ret;
7079}
7080
7081int __get_raid_index(u64 flags)
7082{
7083        if (flags & BTRFS_BLOCK_GROUP_RAID10)
7084                return BTRFS_RAID_RAID10;
7085        else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7086                return BTRFS_RAID_RAID1;
7087        else if (flags & BTRFS_BLOCK_GROUP_DUP)
7088                return BTRFS_RAID_DUP;
7089        else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7090                return BTRFS_RAID_RAID0;
7091        else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7092                return BTRFS_RAID_RAID5;
7093        else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7094                return BTRFS_RAID_RAID6;
7095
7096        return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7097}
7098
7099int get_block_group_index(struct btrfs_block_group_cache *cache)
7100{
7101        return __get_raid_index(cache->flags);
7102}
7103
7104static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7105        [BTRFS_RAID_RAID10]     = "raid10",
7106        [BTRFS_RAID_RAID1]      = "raid1",
7107        [BTRFS_RAID_DUP]        = "dup",
7108        [BTRFS_RAID_RAID0]      = "raid0",
7109        [BTRFS_RAID_SINGLE]     = "single",
7110        [BTRFS_RAID_RAID5]      = "raid5",
7111        [BTRFS_RAID_RAID6]      = "raid6",
7112};
7113
7114static const char *get_raid_name(enum btrfs_raid_types type)
7115{
7116        if (type >= BTRFS_NR_RAID_TYPES)
7117                return NULL;
7118
7119        return btrfs_raid_type_names[type];
7120}
7121
7122enum btrfs_loop_type {
7123        LOOP_CACHING_NOWAIT = 0,
7124        LOOP_CACHING_WAIT = 1,
7125        LOOP_ALLOC_CHUNK = 2,
7126        LOOP_NO_EMPTY_SIZE = 3,
7127};
7128
7129static inline void
7130btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7131                       int delalloc)
7132{
7133        if (delalloc)
7134                down_read(&cache->data_rwsem);
7135}
7136
7137static inline void
7138btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7139                       int delalloc)
7140{
7141        btrfs_get_block_group(cache);
7142        if (delalloc)
7143                down_read(&cache->data_rwsem);
7144}
7145
7146static struct btrfs_block_group_cache *
7147btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7148                   struct btrfs_free_cluster *cluster,
7149                   int delalloc)
7150{
7151        struct btrfs_block_group_cache *used_bg = NULL;
7152
7153        spin_lock(&cluster->refill_lock);
7154        while (1) {
7155                used_bg = cluster->block_group;
7156                if (!used_bg)
7157                        return NULL;
7158
7159                if (used_bg == block_group)
7160                        return used_bg;
7161
7162                btrfs_get_block_group(used_bg);
7163
7164                if (!delalloc)
7165                        return used_bg;
7166
7167                if (down_read_trylock(&used_bg->data_rwsem))
7168                        return used_bg;
7169
7170                spin_unlock(&cluster->refill_lock);
7171
7172                down_read(&used_bg->data_rwsem);
7173
7174                spin_lock(&cluster->refill_lock);
7175                if (used_bg == cluster->block_group)
7176                        return used_bg;
7177
7178                up_read(&used_bg->data_rwsem);
7179                btrfs_put_block_group(used_bg);
7180        }
7181}
7182
7183static inline void
7184btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7185                         int delalloc)
7186{
7187        if (delalloc)
7188                up_read(&cache->data_rwsem);
7189        btrfs_put_block_group(cache);
7190}
7191
7192/*
7193 * walks the btree of allocated extents and find a hole of a given size.
7194 * The key ins is changed to record the hole:
7195 * ins->objectid == start position
7196 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7197 * ins->offset == the size of the hole.
7198 * Any available blocks before search_start are skipped.
7199 *
7200 * If there is no suitable free space, we will record the max size of
7201 * the free space extent currently.
7202 */
7203static noinline int find_free_extent(struct btrfs_root *orig_root,
7204                                     u64 num_bytes, u64 empty_size,
7205                                     u64 hint_byte, struct btrfs_key *ins,
7206                                     u64 flags, int delalloc)
7207{
7208        int ret = 0;
7209        struct btrfs_root *root = orig_root->fs_info->extent_root;
7210        struct btrfs_free_cluster *last_ptr = NULL;
7211        struct btrfs_block_group_cache *block_group = NULL;
7212        u64 search_start = 0;
7213        u64 max_extent_size = 0;
7214        u64 empty_cluster = 0;
7215        struct btrfs_space_info *space_info;
7216        int loop = 0;
7217        int index = __get_raid_index(flags);
7218        int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
7219                RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
7220        bool failed_cluster_refill = false;
7221        bool failed_alloc = false;
7222        bool use_cluster = true;
7223        bool have_caching_bg = false;
7224        bool orig_have_caching_bg = false;
7225        bool full_search = false;
7226
7227        WARN_ON(num_bytes < root->sectorsize);
7228        ins->type = BTRFS_EXTENT_ITEM_KEY;
7229        ins->objectid = 0;
7230        ins->offset = 0;
7231
7232        trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7233
7234        space_info = __find_space_info(root->fs_info, flags);
7235        if (!space_info) {
7236                btrfs_err(root->fs_info, "No space info for %llu", flags);
7237                return -ENOSPC;
7238        }
7239
7240        /*
7241         * If our free space is heavily fragmented we may not be able to make
7242         * big contiguous allocations, so instead of doing the expensive search
7243         * for free space, simply return ENOSPC with our max_extent_size so we
7244         * can go ahead and search for a more manageable chunk.
7245         *
7246         * If our max_extent_size is large enough for our allocation simply
7247         * disable clustering since we will likely not be able to find enough
7248         * space to create a cluster and induce latency trying.
7249         */
7250        if (unlikely(space_info->max_extent_size)) {
7251                spin_lock(&space_info->lock);
7252                if (space_info->max_extent_size &&
7253                    num_bytes > space_info->max_extent_size) {
7254                        ins->offset = space_info->max_extent_size;
7255                        spin_unlock(&space_info->lock);
7256                        return -ENOSPC;
7257                } else if (space_info->max_extent_size) {
7258                        use_cluster = false;
7259                }
7260                spin_unlock(&space_info->lock);
7261        }
7262
7263        last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7264        if (last_ptr) {
7265                spin_lock(&last_ptr->lock);
7266                if (last_ptr->block_group)
7267                        hint_byte = last_ptr->window_start;
7268                if (last_ptr->fragmented) {
7269                        /*
7270                         * We still set window_start so we can keep track of the
7271                         * last place we found an allocation to try and save
7272                         * some time.
7273                         */
7274                        hint_byte = last_ptr->window_start;
7275                        use_cluster = false;
7276                }
7277                spin_unlock(&last_ptr->lock);
7278        }
7279
7280        search_start = max(search_start, first_logical_byte(root, 0));
7281        search_start = max(search_start, hint_byte);
7282        if (search_start == hint_byte) {
7283                block_group = btrfs_lookup_block_group(root->fs_info,
7284                                                       search_start);
7285                /*
7286                 * we don't want to use the block group if it doesn't match our
7287                 * allocation bits, or if its not cached.
7288                 *
7289                 * However if we are re-searching with an ideal block group
7290                 * picked out then we don't care that the block group is cached.
7291                 */
7292                if (block_group && block_group_bits(block_group, flags) &&
7293                    block_group->cached != BTRFS_CACHE_NO) {
7294                        down_read(&space_info->groups_sem);
7295                        if (list_empty(&block_group->list) ||
7296                            block_group->ro) {
7297                                /*
7298                                 * someone is removing this block group,
7299                                 * we can't jump into the have_block_group
7300                                 * target because our list pointers are not
7301                                 * valid
7302                                 */
7303                                btrfs_put_block_group(block_group);
7304                                up_read(&space_info->groups_sem);
7305                        } else {
7306                                index = get_block_group_index(block_group);
7307                                btrfs_lock_block_group(block_group, delalloc);
7308                                goto have_block_group;
7309                        }
7310                } else if (block_group) {
7311                        btrfs_put_block_group(block_group);
7312                }
7313        }
7314search:
7315        have_caching_bg = false;
7316        if (index == 0 || index == __get_raid_index(flags))
7317                full_search = true;
7318        down_read(&space_info->groups_sem);
7319        list_for_each_entry(block_group, &space_info->block_groups[index],
7320                            list) {
7321                u64 offset;
7322                int cached;
7323
7324                btrfs_grab_block_group(block_group, delalloc);
7325                search_start = block_group->key.objectid;
7326
7327                /*
7328                 * this can happen if we end up cycling through all the
7329                 * raid types, but we want to make sure we only allocate
7330                 * for the proper type.
7331                 */
7332                if (!block_group_bits(block_group, flags)) {
7333                    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7334                                BTRFS_BLOCK_GROUP_RAID1 |
7335                                BTRFS_BLOCK_GROUP_RAID5 |
7336                                BTRFS_BLOCK_GROUP_RAID6 |
7337                                BTRFS_BLOCK_GROUP_RAID10;
7338
7339                        /*
7340                         * if they asked for extra copies and this block group
7341                         * doesn't provide them, bail.  This does allow us to
7342                         * fill raid0 from raid1.
7343                         */
7344                        if ((flags & extra) && !(block_group->flags & extra))
7345                                goto loop;
7346                }
7347
7348have_block_group:
7349                cached = block_group_cache_done(block_group);
7350                if (unlikely(!cached)) {
7351                        have_caching_bg = true;
7352                        ret = cache_block_group(block_group, 0);
7353                        BUG_ON(ret < 0);
7354                        ret = 0;
7355                }
7356
7357                if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7358                        goto loop;
7359                if (unlikely(block_group->ro))
7360                        goto loop;
7361
7362                /*
7363                 * Ok we want to try and use the cluster allocator, so
7364                 * lets look there
7365                 */
7366                if (last_ptr && use_cluster) {
7367                        struct btrfs_block_group_cache *used_block_group;
7368                        unsigned long aligned_cluster;
7369                        /*
7370                         * the refill lock keeps out other
7371                         * people trying to start a new cluster
7372                         */
7373                        used_block_group = btrfs_lock_cluster(block_group,
7374                                                              last_ptr,
7375                                                              delalloc);
7376                        if (!used_block_group)
7377                                goto refill_cluster;
7378
7379                        if (used_block_group != block_group &&
7380                            (used_block_group->ro ||
7381                             !block_group_bits(used_block_group, flags)))
7382                                goto release_cluster;
7383
7384                        offset = btrfs_alloc_from_cluster(used_block_group,
7385                                                last_ptr,
7386                                                num_bytes,
7387                                                used_block_group->key.objectid,
7388                                                &max_extent_size);
7389                        if (offset) {
7390                                /* we have a block, we're done */
7391                                spin_unlock(&last_ptr->refill_lock);
7392                                trace_btrfs_reserve_extent_cluster(root,
7393                                                used_block_group,
7394                                                search_start, num_bytes);
7395                                if (used_block_group != block_group) {
7396                                        btrfs_release_block_group(block_group,
7397                                                                  delalloc);
7398                                        block_group = used_block_group;
7399                                }
7400                                goto checks;
7401                        }
7402
7403                        WARN_ON(last_ptr->block_group != used_block_group);
7404release_cluster:
7405                        /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7406                         * set up a new clusters, so lets just skip it
7407                         * and let the allocator find whatever block
7408                         * it can find.  If we reach this point, we
7409                         * will have tried the cluster allocator
7410                         * plenty of times and not have found
7411                         * anything, so we are likely way too
7412                         * fragmented for the clustering stuff to find
7413                         * anything.
7414                         *
7415                         * However, if the cluster is taken from the
7416                         * current block group, release the cluster
7417                         * first, so that we stand a better chance of
7418                         * succeeding in the unclustered
7419                         * allocation.  */
7420                        if (loop >= LOOP_NO_EMPTY_SIZE &&
7421                            used_block_group != block_group) {
7422                                spin_unlock(&last_ptr->refill_lock);
7423                                btrfs_release_block_group(used_block_group,
7424                                                          delalloc);
7425                                goto unclustered_alloc;
7426                        }
7427
7428                        /*
7429                         * this cluster didn't work out, free it and
7430                         * start over
7431                         */
7432                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
7433
7434                        if (used_block_group != block_group)
7435                                btrfs_release_block_group(used_block_group,
7436                                                          delalloc);
7437refill_cluster:
7438                        if (loop >= LOOP_NO_EMPTY_SIZE) {
7439                                spin_unlock(&last_ptr->refill_lock);
7440                                goto unclustered_alloc;
7441                        }
7442
7443                        aligned_cluster = max_t(unsigned long,
7444                                                empty_cluster + empty_size,
7445                                              block_group->full_stripe_len);
7446
7447                        /* allocate a cluster in this block group */
7448                        ret = btrfs_find_space_cluster(root, block_group,
7449                                                       last_ptr, search_start,
7450                                                       num_bytes,
7451                                                       aligned_cluster);
7452                        if (ret == 0) {
7453                                /*
7454                                 * now pull our allocation out of this
7455                                 * cluster
7456                                 */
7457                                offset = btrfs_alloc_from_cluster(block_group,
7458                                                        last_ptr,
7459                                                        num_bytes,
7460                                                        search_start,
7461                                                        &max_extent_size);
7462                                if (offset) {
7463                                        /* we found one, proceed */
7464                                        spin_unlock(&last_ptr->refill_lock);
7465                                        trace_btrfs_reserve_extent_cluster(root,
7466                                                block_group, search_start,
7467                                                num_bytes);
7468                                        goto checks;
7469                                }
7470                        } else if (!cached && loop > LOOP_CACHING_NOWAIT
7471                                   && !failed_cluster_refill) {
7472                                spin_unlock(&last_ptr->refill_lock);
7473
7474                                failed_cluster_refill = true;
7475                                wait_block_group_cache_progress(block_group,
7476                                       num_bytes + empty_cluster + empty_size);
7477                                goto have_block_group;
7478                        }
7479
7480                        /*
7481                         * at this point we either didn't find a cluster
7482                         * or we weren't able to allocate a block from our
7483                         * cluster.  Free the cluster we've been trying
7484                         * to use, and go to the next block group
7485                         */
7486                        btrfs_return_cluster_to_free_space(NULL, last_ptr);
7487                        spin_unlock(&last_ptr->refill_lock);
7488                        goto loop;
7489                }
7490
7491unclustered_alloc:
7492                /*
7493                 * We are doing an unclustered alloc, set the fragmented flag so
7494                 * we don't bother trying to setup a cluster again until we get
7495                 * more space.
7496                 */
7497                if (unlikely(last_ptr)) {
7498                        spin_lock(&last_ptr->lock);
7499                        last_ptr->fragmented = 1;
7500                        spin_unlock(&last_ptr->lock);
7501                }
7502                spin_lock(&block_group->free_space_ctl->tree_lock);
7503                if (cached &&
7504                    block_group->free_space_ctl->free_space <
7505                    num_bytes + empty_cluster + empty_size) {
7506                        if (block_group->free_space_ctl->free_space >
7507                            max_extent_size)
7508                                max_extent_size =
7509                                        block_group->free_space_ctl->free_space;
7510                        spin_unlock(&block_group->free_space_ctl->tree_lock);
7511                        goto loop;
7512                }
7513                spin_unlock(&block_group->free_space_ctl->tree_lock);
7514
7515                offset = btrfs_find_space_for_alloc(block_group, search_start,
7516                                                    num_bytes, empty_size,
7517                                                    &max_extent_size);
7518                /*
7519                 * If we didn't find a chunk, and we haven't failed on this
7520                 * block group before, and this block group is in the middle of
7521                 * caching and we are ok with waiting, then go ahead and wait
7522                 * for progress to be made, and set failed_alloc to true.
7523                 *
7524                 * If failed_alloc is true then we've already waited on this
7525                 * block group once and should move on to the next block group.
7526                 */
7527                if (!offset && !failed_alloc && !cached &&
7528                    loop > LOOP_CACHING_NOWAIT) {
7529                        wait_block_group_cache_progress(block_group,
7530                                                num_bytes + empty_size);
7531                        failed_alloc = true;
7532                        goto have_block_group;
7533                } else if (!offset) {
7534                        goto loop;
7535                }
7536checks:
7537                search_start = ALIGN(offset, root->stripesize);
7538
7539                /* move on to the next group */
7540                if (search_start + num_bytes >
7541                    block_group->key.objectid + block_group->key.offset) {
7542                        btrfs_add_free_space(block_group, offset, num_bytes);
7543                        goto loop;
7544                }
7545
7546                if (offset < search_start)
7547                        btrfs_add_free_space(block_group, offset,
7548                                             search_start - offset);
7549                BUG_ON(offset > search_start);
7550
7551                ret = btrfs_update_reserved_bytes(block_group, num_bytes,
7552                                                  alloc_type, delalloc);
7553                if (ret == -EAGAIN) {
7554                        btrfs_add_free_space(block_group, offset, num_bytes);
7555                        goto loop;
7556                }
7557                btrfs_inc_block_group_reservations(block_group);
7558
7559                /* we are all good, lets return */
7560                ins->objectid = search_start;
7561                ins->offset = num_bytes;
7562
7563                trace_btrfs_reserve_extent(orig_root, block_group,
7564                                           search_start, num_bytes);
7565                btrfs_release_block_group(block_group, delalloc);
7566                break;
7567loop:
7568                failed_cluster_refill = false;
7569                failed_alloc = false;
7570                BUG_ON(index != get_block_group_index(block_group));
7571                btrfs_release_block_group(block_group, delalloc);
7572        }
7573        up_read(&space_info->groups_sem);
7574
7575        if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7576                && !orig_have_caching_bg)
7577                orig_have_caching_bg = true;
7578
7579        if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7580                goto search;
7581
7582        if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7583                goto search;
7584
7585        /*
7586         * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7587         *                      caching kthreads as we move along
7588         * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7589         * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7590         * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7591         *                      again
7592         */
7593        if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7594                index = 0;
7595                if (loop == LOOP_CACHING_NOWAIT) {
7596                        /*
7597                         * We want to skip the LOOP_CACHING_WAIT step if we
7598                         * don't have any uncached bgs and we've already done a
7599                         * full search through.
7600                         */
7601                        if (orig_have_caching_bg || !full_search)
7602                                loop = LOOP_CACHING_WAIT;
7603                        else
7604                                loop = LOOP_ALLOC_CHUNK;
7605                } else {
7606                        loop++;
7607                }
7608
7609                if (loop == LOOP_ALLOC_CHUNK) {
7610                        struct btrfs_trans_handle *trans;
7611                        int exist = 0;
7612
7613                        trans = current->journal_info;
7614                        if (trans)
7615                                exist = 1;
7616                        else
7617                                trans = btrfs_join_transaction(root);
7618
7619                        if (IS_ERR(trans)) {
7620                                ret = PTR_ERR(trans);
7621                                goto out;
7622                        }
7623
7624                        ret = do_chunk_alloc(trans, root, flags,
7625                                             CHUNK_ALLOC_FORCE);
7626
7627                        /*
7628                         * If we can't allocate a new chunk we've already looped
7629                         * through at least once, move on to the NO_EMPTY_SIZE
7630                         * case.
7631                         */
7632                        if (ret == -ENOSPC)
7633                                loop = LOOP_NO_EMPTY_SIZE;
7634
7635                        /*
7636                         * Do not bail out on ENOSPC since we
7637                         * can do more things.
7638                         */
7639                        if (ret < 0 && ret != -ENOSPC)
7640                                btrfs_abort_transaction(trans,
7641                                                        root, ret);
7642                        else
7643                                ret = 0;
7644                        if (!exist)
7645                                btrfs_end_transaction(trans, root);
7646                        if (ret)
7647                                goto out;
7648                }
7649
7650                if (loop == LOOP_NO_EMPTY_SIZE) {
7651                        /*
7652                         * Don't loop again if we already have no empty_size and
7653                         * no empty_cluster.
7654                         */
7655                        if (empty_size == 0 &&
7656                            empty_cluster == 0) {
7657                                ret = -ENOSPC;
7658                                goto out;
7659                        }
7660                        empty_size = 0;
7661                        empty_cluster = 0;
7662                }
7663
7664                goto search;
7665        } else if (!ins->objectid) {
7666                ret = -ENOSPC;
7667        } else if (ins->objectid) {
7668                if (!use_cluster && last_ptr) {
7669                        spin_lock(&last_ptr->lock);
7670                        last_ptr->window_start = ins->objectid;
7671                        spin_unlock(&last_ptr->lock);
7672                }
7673                ret = 0;
7674        }
7675out:
7676        if (ret == -ENOSPC) {
7677                spin_lock(&space_info->lock);
7678                space_info->max_extent_size = max_extent_size;
7679                spin_unlock(&space_info->lock);
7680                ins->offset = max_extent_size;
7681        }
7682        return ret;
7683}
7684
7685static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7686                            int dump_block_groups)
7687{
7688        struct btrfs_block_group_cache *cache;
7689        int index = 0;
7690
7691        spin_lock(&info->lock);
7692        printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7693               info->flags,
7694               info->total_bytes - info->bytes_used - info->bytes_pinned -
7695               info->bytes_reserved - info->bytes_readonly,
7696               (info->full) ? "" : "not ");
7697        printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7698               "reserved=%llu, may_use=%llu, readonly=%llu\n",
7699               info->total_bytes, info->bytes_used, info->bytes_pinned,
7700               info->bytes_reserved, info->bytes_may_use,
7701               info->bytes_readonly);
7702        spin_unlock(&info->lock);
7703
7704        if (!dump_block_groups)
7705                return;
7706
7707        down_read(&info->groups_sem);
7708again:
7709        list_for_each_entry(cache, &info->block_groups[index], list) {
7710                spin_lock(&cache->lock);
7711                printk(KERN_INFO "BTRFS: "
7712                           "block group %llu has %llu bytes, "
7713                           "%llu used %llu pinned %llu reserved %s\n",
7714                       cache->key.objectid, cache->key.offset,
7715                       btrfs_block_group_used(&cache->item), cache->pinned,
7716                       cache->reserved, cache->ro ? "[readonly]" : "");
7717                btrfs_dump_free_space(cache, bytes);
7718                spin_unlock(&cache->lock);
7719        }
7720        if (++index < BTRFS_NR_RAID_TYPES)
7721                goto again;
7722        up_read(&info->groups_sem);
7723}
7724
7725int btrfs_reserve_extent(struct btrfs_root *root,
7726                         u64 num_bytes, u64 min_alloc_size,
7727                         u64 empty_size, u64 hint_byte,
7728                         struct btrfs_key *ins, int is_data, int delalloc)
7729{
7730        bool final_tried = num_bytes == min_alloc_size;
7731        u64 flags;
7732        int ret;
7733
7734        flags = btrfs_get_alloc_profile(root, is_data);
7735again:
7736        WARN_ON(num_bytes < root->sectorsize);
7737        ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
7738                               flags, delalloc);
7739        if (!ret && !is_data) {
7740                btrfs_dec_block_group_reservations(root->fs_info,
7741                                                   ins->objectid);
7742        } else if (ret == -ENOSPC) {
7743                if (!final_tried && ins->offset) {
7744                        num_bytes = min(num_bytes >> 1, ins->offset);
7745                        num_bytes = round_down(num_bytes, root->sectorsize);
7746                        num_bytes = max(num_bytes, min_alloc_size);
7747                        if (num_bytes == min_alloc_size)
7748                                final_tried = true;
7749                        goto again;
7750                } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7751                        struct btrfs_space_info *sinfo;
7752
7753                        sinfo = __find_space_info(root->fs_info, flags);
7754                        btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7755                                flags, num_bytes);
7756                        if (sinfo)
7757                                dump_space_info(sinfo, num_bytes, 1);
7758                }
7759        }
7760
7761        return ret;
7762}
7763
7764static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7765                                        u64 start, u64 len,
7766                                        int pin, int delalloc)
7767{
7768        struct btrfs_block_group_cache *cache;
7769        int ret = 0;
7770
7771        cache = btrfs_lookup_block_group(root->fs_info, start);
7772        if (!cache) {
7773                btrfs_err(root->fs_info, "Unable to find block group for %llu",
7774                        start);
7775                return -ENOSPC;
7776        }
7777
7778        if (pin)
7779                pin_down_extent(root, cache, start, len, 1);
7780        else {
7781                if (btrfs_test_opt(root, DISCARD))
7782                        ret = btrfs_discard_extent(root, start, len, NULL);
7783                btrfs_add_free_space(cache, start, len);
7784                btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
7785        }
7786
7787        btrfs_put_block_group(cache);
7788
7789        trace_btrfs_reserved_extent_free(root, start, len);
7790
7791        return ret;
7792}
7793
7794int btrfs_free_reserved_extent(struct btrfs_root *root,
7795                               u64 start, u64 len, int delalloc)
7796{
7797        return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
7798}
7799
7800int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7801                                       u64 start, u64 len)
7802{
7803        return __btrfs_free_reserved_extent(root, start, len, 1, 0);
7804}
7805
7806static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7807                                      struct btrfs_root *root,
7808                                      u64 parent, u64 root_objectid,
7809                                      u64 flags, u64 owner, u64 offset,
7810                                      struct btrfs_key *ins, int ref_mod)
7811{
7812        int ret;
7813        struct btrfs_fs_info *fs_info = root->fs_info;
7814        struct btrfs_extent_item *extent_item;
7815        struct btrfs_extent_inline_ref *iref;
7816        struct btrfs_path *path;
7817        struct extent_buffer *leaf;
7818        int type;
7819        u32 size;
7820
7821        if (parent > 0)
7822                type = BTRFS_SHARED_DATA_REF_KEY;
7823        else
7824                type = BTRFS_EXTENT_DATA_REF_KEY;
7825
7826        size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7827
7828        path = btrfs_alloc_path();
7829        if (!path)
7830                return -ENOMEM;
7831
7832        path->leave_spinning = 1;
7833        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7834                                      ins, size);
7835        if (ret) {
7836                btrfs_free_path(path);
7837                return ret;
7838        }
7839
7840        leaf = path->nodes[0];
7841        extent_item = btrfs_item_ptr(leaf, path->slots[0],
7842                                     struct btrfs_extent_item);
7843        btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7844        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7845        btrfs_set_extent_flags(leaf, extent_item,
7846                               flags | BTRFS_EXTENT_FLAG_DATA);
7847
7848        iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7849        btrfs_set_extent_inline_ref_type(leaf, iref, type);
7850        if (parent > 0) {
7851                struct btrfs_shared_data_ref *ref;
7852                ref = (struct btrfs_shared_data_ref *)(iref + 1);
7853                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7854                btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7855        } else {
7856                struct btrfs_extent_data_ref *ref;
7857                ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7858                btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7859                btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7860                btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7861                btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7862        }
7863
7864        btrfs_mark_buffer_dirty(path->nodes[0]);
7865        btrfs_free_path(path);
7866
7867        ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7868                                          ins->offset);
7869        if (ret)
7870                return ret;
7871
7872        ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
7873        if (ret) { /* -ENOENT, logic error */
7874                btrfs_err(fs_info, "update block group failed for %llu %llu",
7875                        ins->objectid, ins->offset);
7876                BUG();
7877        }
7878        trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
7879        return ret;
7880}
7881
7882static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7883                                     struct btrfs_root *root,
7884                                     u64 parent, u64 root_objectid,
7885                                     u64 flags, struct btrfs_disk_key *key,
7886                                     int level, struct btrfs_key *ins)
7887{
7888        int ret;
7889        struct btrfs_fs_info *fs_info = root->fs_info;
7890        struct btrfs_extent_item *extent_item;
7891        struct btrfs_tree_block_info *block_info;
7892        struct btrfs_extent_inline_ref *iref;
7893        struct btrfs_path *path;
7894        struct extent_buffer *leaf;
7895        u32 size = sizeof(*extent_item) + sizeof(*iref);
7896        u64 num_bytes = ins->offset;
7897        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7898                                                 SKINNY_METADATA);
7899
7900        if (!skinny_metadata)
7901                size += sizeof(*block_info);
7902
7903        path = btrfs_alloc_path();
7904        if (!path) {
7905                btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7906                                                   root->nodesize);
7907                return -ENOMEM;
7908        }
7909
7910        path->leave_spinning = 1;
7911        ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7912                                      ins, size);
7913        if (ret) {
7914                btrfs_free_path(path);
7915                btrfs_free_and_pin_reserved_extent(root, ins->objectid,
7916                                                   root->nodesize);
7917                return ret;
7918        }
7919
7920        leaf = path->nodes[0];
7921        extent_item = btrfs_item_ptr(leaf, path->slots[0],
7922                                     struct btrfs_extent_item);
7923        btrfs_set_extent_refs(leaf, extent_item, 1);
7924        btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7925        btrfs_set_extent_flags(leaf, extent_item,
7926                               flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
7927
7928        if (skinny_metadata) {
7929                iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7930                num_bytes = root->nodesize;
7931        } else {
7932                block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7933                btrfs_set_tree_block_key(leaf, block_info, key);
7934                btrfs_set_tree_block_level(leaf, block_info, level);
7935                iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7936        }
7937
7938        if (parent > 0) {
7939                BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7940                btrfs_set_extent_inline_ref_type(leaf, iref,
7941                                                 BTRFS_SHARED_BLOCK_REF_KEY);
7942                btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7943        } else {
7944                btrfs_set_extent_inline_ref_type(leaf, iref,
7945                                                 BTRFS_TREE_BLOCK_REF_KEY);
7946                btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7947        }
7948
7949        btrfs_mark_buffer_dirty(leaf);
7950        btrfs_free_path(path);
7951
7952        ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
7953                                          num_bytes);
7954        if (ret)
7955                return ret;
7956
7957        ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7958                                 1);
7959        if (ret) { /* -ENOENT, logic error */
7960                btrfs_err(fs_info, "update block group failed for %llu %llu",
7961                        ins->objectid, ins->offset);
7962                BUG();
7963        }
7964
7965        trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
7966        return ret;
7967}
7968
7969int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7970                                     struct btrfs_root *root,
7971                                     u64 root_objectid, u64 owner,
7972                                     u64 offset, u64 ram_bytes,
7973                                     struct btrfs_key *ins)
7974{
7975        int ret;
7976
7977        BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7978
7979        ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7980                                         ins->offset, 0,
7981                                         root_objectid, owner, offset,
7982                                         ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
7983                                         NULL);
7984        return ret;
7985}
7986
7987/*
7988 * this is used by the tree logging recovery code.  It records that
7989 * an extent has been allocated and makes sure to clear the free
7990 * space cache bits as well
7991 */
7992int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7993                                   struct btrfs_root *root,
7994                                   u64 root_objectid, u64 owner, u64 offset,
7995                                   struct btrfs_key *ins)
7996{
7997        int ret;
7998        struct btrfs_block_group_cache *block_group;
7999
8000        /*
8001         * Mixed block groups will exclude before processing the log so we only
8002         * need to do the exclude dance if this fs isn't mixed.
8003         */
8004        if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8005                ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8006                if (ret)
8007                        return ret;
8008        }
8009
8010        block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8011        if (!block_group)
8012                return -EINVAL;
8013
8014        ret = btrfs_update_reserved_bytes(block_group, ins->offset,
8015                                          RESERVE_ALLOC_NO_ACCOUNT, 0);
8016        BUG_ON(ret); /* logic error */
8017        ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8018                                         0, owner, offset, ins, 1);
8019        btrfs_put_block_group(block_group);
8020        return ret;
8021}
8022
8023static struct extent_buffer *
8024btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8025                      u64 bytenr, int level)
8026{
8027        struct extent_buffer *buf;
8028
8029        buf = btrfs_find_create_tree_block(root, bytenr);
8030        if (IS_ERR(buf))
8031                return buf;
8032
8033        btrfs_set_header_generation(buf, trans->transid);
8034        btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8035        btrfs_tree_lock(buf);
8036        clean_tree_block(trans, root->fs_info, buf);
8037        clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8038
8039        btrfs_set_lock_blocking(buf);
8040        set_extent_buffer_uptodate(buf);
8041
8042        if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8043                buf->log_index = root->log_transid % 2;
8044                /*
8045                 * we allow two log transactions at a time, use different
8046                 * EXENT bit to differentiate dirty pages.
8047                 */
8048                if (buf->log_index == 0)
8049                        set_extent_dirty(&root->dirty_log_pages, buf->start,
8050                                        buf->start + buf->len - 1, GFP_NOFS);
8051                else
8052                        set_extent_new(&root->dirty_log_pages, buf->start,
8053                                        buf->start + buf->len - 1);
8054        } else {
8055                buf->log_index = -1;
8056                set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8057                         buf->start + buf->len - 1, GFP_NOFS);
8058        }
8059        trans->dirty = true;
8060        /* this returns a buffer locked for blocking */
8061        return buf;
8062}
8063
8064static struct btrfs_block_rsv *
8065use_block_rsv(struct btrfs_trans_handle *trans,
8066              struct btrfs_root *root, u32 blocksize)
8067{
8068        struct btrfs_block_rsv *block_rsv;
8069        struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8070        int ret;
8071        bool global_updated = false;
8072
8073        block_rsv = get_block_rsv(trans, root);
8074
8075        if (unlikely(block_rsv->size == 0))
8076                goto try_reserve;
8077again:
8078        ret = block_rsv_use_bytes(block_rsv, blocksize);
8079        if (!ret)
8080                return block_rsv;
8081
8082        if (block_rsv->failfast)
8083                return ERR_PTR(ret);
8084
8085        if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8086                global_updated = true;
8087                update_global_block_rsv(root->fs_info);
8088                goto again;
8089        }
8090
8091        if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8092                static DEFINE_RATELIMIT_STATE(_rs,
8093                                DEFAULT_RATELIMIT_INTERVAL * 10,
8094                                /*DEFAULT_RATELIMIT_BURST*/ 1);
8095                if (__ratelimit(&_rs))
8096                        WARN(1, KERN_DEBUG
8097                                "BTRFS: block rsv returned %d\n", ret);
8098        }
8099try_reserve:
8100        ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8101                                     BTRFS_RESERVE_NO_FLUSH);
8102        if (!ret)
8103                return block_rsv;
8104        /*
8105         * If we couldn't reserve metadata bytes try and use some from
8106         * the global reserve if its space type is the same as the global
8107         * reservation.
8108         */
8109        if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8110            block_rsv->space_info == global_rsv->space_info) {
8111                ret = block_rsv_use_bytes(global_rsv, blocksize);
8112                if (!ret)
8113                        return global_rsv;
8114        }
8115        return ERR_PTR(ret);
8116}
8117
8118static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8119                            struct btrfs_block_rsv *block_rsv, u32 blocksize)
8120{
8121        block_rsv_add_bytes(block_rsv, blocksize, 0);
8122        block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8123}
8124
8125/*
8126 * finds a free extent and does all the dirty work required for allocation
8127 * returns the tree buffer or an ERR_PTR on error.
8128 */
8129struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8130                                        struct btrfs_root *root,
8131                                        u64 parent, u64 root_objectid,
8132                                        struct btrfs_disk_key *key, int level,
8133                                        u64 hint, u64 empty_size)
8134{
8135        struct btrfs_key ins;
8136        struct btrfs_block_rsv *block_rsv;
8137        struct extent_buffer *buf;
8138        struct btrfs_delayed_extent_op *extent_op;
8139        u64 flags = 0;
8140        int ret;
8141        u32 blocksize = root->nodesize;
8142        bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8143                                                 SKINNY_METADATA);
8144
8145        if (btrfs_test_is_dummy_root(root)) {
8146                buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8147                                            level);
8148                if (!IS_ERR(buf))
8149                        root->alloc_bytenr += blocksize;
8150                return buf;
8151        }
8152
8153        block_rsv = use_block_rsv(trans, root, blocksize);
8154        if (IS_ERR(block_rsv))
8155                return ERR_CAST(block_rsv);
8156
8157        ret = btrfs_reserve_extent(root, blocksize, blocksize,
8158                                   empty_size, hint, &ins, 0, 0);
8159        if (ret)
8160                goto out_unuse;
8161
8162        buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8163        if (IS_ERR(buf)) {
8164                ret = PTR_ERR(buf);
8165                goto out_free_reserved;
8166        }
8167
8168        if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8169                if (parent == 0)
8170                        parent = ins.objectid;
8171                flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8172        } else
8173                BUG_ON(parent > 0);
8174
8175        if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8176                extent_op = btrfs_alloc_delayed_extent_op();
8177                if (!extent_op) {
8178                        ret = -ENOMEM;
8179                        goto out_free_buf;
8180                }
8181                if (key)
8182                        memcpy(&extent_op->key, key, sizeof(extent_op->key));
8183                else
8184                        memset(&extent_op->key, 0, sizeof(extent_op->key));
8185                extent_op->flags_to_set = flags;
8186                extent_op->update_key = skinny_metadata ? false : true;
8187                extent_op->update_flags = true;
8188                extent_op->is_data = false;
8189                extent_op->level = level;
8190
8191                ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8192                                                 ins.objectid, ins.offset,
8193                                                 parent, root_objectid, level,
8194                                                 BTRFS_ADD_DELAYED_EXTENT,
8195                                                 extent_op);
8196                if (ret)
8197                        goto out_free_delayed;
8198        }
8199        return buf;
8200
8201out_free_delayed:
8202        btrfs_free_delayed_extent_op(extent_op);
8203out_free_buf:
8204        free_extent_buffer(buf);
8205out_free_reserved:
8206        btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8207out_unuse:
8208        unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8209        return ERR_PTR(ret);
8210}
8211
8212struct walk_control {
8213        u64 refs[BTRFS_MAX_LEVEL];
8214        u64 flags[BTRFS_MAX_LEVEL];
8215        struct btrfs_key update_progress;
8216        int stage;
8217        int level;
8218        int shared_level;
8219        int update_ref;
8220        int keep_locks;
8221        int reada_slot;
8222        int reada_count;
8223        int for_reloc;
8224};
8225
8226#define DROP_REFERENCE  1
8227#define UPDATE_BACKREF  2
8228
8229static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8230                                     struct btrfs_root *root,
8231                                     struct walk_control *wc,
8232                                     struct btrfs_path *path)
8233{
8234        u64 bytenr;
8235        u64 generation;
8236        u64 refs;
8237        u64 flags;
8238        u32 nritems;
8239        u32 blocksize;
8240        struct btrfs_key key;
8241        struct extent_buffer *eb;
8242        int ret;
8243        int slot;
8244        int nread = 0;
8245
8246        if (path->slots[wc->level] < wc->reada_slot) {
8247                wc->reada_count = wc->reada_count * 2 / 3;
8248                wc->reada_count = max(wc->reada_count, 2);
8249        } else {
8250                wc->reada_count = wc->reada_count * 3 / 2;
8251                wc->reada_count = min_t(int, wc->reada_count,
8252                                        BTRFS_NODEPTRS_PER_BLOCK(root));
8253        }
8254
8255        eb = path->nodes[wc->level];
8256        nritems = btrfs_header_nritems(eb);
8257        blocksize = root->nodesize;
8258
8259        for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8260                if (nread >= wc->reada_count)
8261                        break;
8262
8263                cond_resched();
8264                bytenr = btrfs_node_blockptr(eb, slot);
8265                generation = btrfs_node_ptr_generation(eb, slot);
8266
8267                if (slot == path->slots[wc->level])
8268                        goto reada;
8269
8270                if (wc->stage == UPDATE_BACKREF &&
8271                    generation <= root->root_key.offset)
8272                        continue;
8273
8274                /* We don't lock the tree block, it's OK to be racy here */
8275                ret = btrfs_lookup_extent_info(trans, root, bytenr,
8276                                               wc->level - 1, 1, &refs,
8277                                               &flags);
8278                /* We don't care about errors in readahead. */
8279                if (ret < 0)
8280                        continue;
8281                BUG_ON(refs == 0);
8282
8283                if (wc->stage == DROP_REFERENCE) {
8284                        if (refs == 1)
8285                                goto reada;
8286
8287                        if (wc->level == 1 &&
8288                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8289                                continue;
8290                        if (!wc->update_ref ||
8291                            generation <= root->root_key.offset)
8292                                continue;
8293                        btrfs_node_key_to_cpu(eb, &key, slot);
8294                        ret = btrfs_comp_cpu_keys(&key,
8295                                                  &wc->update_progress);
8296                        if (ret < 0)
8297                                continue;
8298                } else {
8299                        if (wc->level == 1 &&
8300                            (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8301                                continue;
8302                }
8303reada:
8304                readahead_tree_block(root, bytenr);
8305                nread++;
8306        }
8307        wc->reada_slot = slot;
8308}
8309
8310/*
8311 * These may not be seen by the usual inc/dec ref code so we have to
8312 * add them here.
8313 */
8314static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8315                                     struct btrfs_root *root, u64 bytenr,
8316                                     u64 num_bytes)
8317{
8318        struct btrfs_qgroup_extent_record *qrecord;
8319        struct btrfs_delayed_ref_root *delayed_refs;
8320
8321        qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8322        if (!qrecord)
8323                return -ENOMEM;
8324
8325        qrecord->bytenr = bytenr;
8326        qrecord->num_bytes = num_bytes;
8327        qrecord->old_roots = NULL;
8328
8329        delayed_refs = &trans->transaction->delayed_refs;
8330        spin_lock(&delayed_refs->lock);
8331        if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8332                kfree(qrecord);
8333        spin_unlock(&delayed_refs->lock);
8334
8335        return 0;
8336}
8337
8338static int account_leaf_items(struct btrfs_trans_handle *trans,
8339                              struct btrfs_root *root,
8340                              struct extent_buffer *eb)
8341{
8342        int nr = btrfs_header_nritems(eb);
8343        int i, extent_type, ret;
8344        struct btrfs_key key;
8345        struct btrfs_file_extent_item *fi;
8346        u64 bytenr, num_bytes;
8347
8348        /* We can be called directly from walk_up_proc() */
8349        if (!root->fs_info->quota_enabled)
8350                return 0;
8351
8352        for (i = 0; i < nr; i++) {
8353                btrfs_item_key_to_cpu(eb, &key, i);
8354
8355                if (key.type != BTRFS_EXTENT_DATA_KEY)
8356                        continue;
8357
8358                fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8359                /* filter out non qgroup-accountable extents  */
8360                extent_type = btrfs_file_extent_type(eb, fi);
8361
8362                if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8363                        continue;
8364
8365                bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8366                if (!bytenr)
8367                        continue;
8368
8369                num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8370
8371                ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8372                if (ret)
8373                        return ret;
8374        }
8375        return 0;
8376}
8377
8378/*
8379 * Walk up the tree from the bottom, freeing leaves and any interior
8380 * nodes which have had all slots visited. If a node (leaf or
8381 * interior) is freed, the node above it will have it's slot
8382 * incremented. The root node will never be freed.
8383 *
8384 * At the end of this function, we should have a path which has all
8385 * slots incremented to the next position for a search. If we need to
8386 * read a new node it will be NULL and the node above it will have the
8387 * correct slot selected for a later read.
8388 *
8389 * If we increment the root nodes slot counter past the number of
8390 * elements, 1 is returned to signal completion of the search.
8391 */
8392static int adjust_slots_upwards(struct btrfs_root *root,
8393                                struct btrfs_path *path, int root_level)
8394{
8395        int level = 0;
8396        int nr, slot;
8397        struct extent_buffer *eb;
8398
8399        if (root_level == 0)
8400                return 1;
8401
8402        while (level <= root_level) {
8403                eb = path->nodes[level];
8404                nr = btrfs_header_nritems(eb);
8405                path->slots[level]++;
8406                slot = path->slots[level];
8407                if (slot >= nr || level == 0) {
8408                        /*
8409                         * Don't free the root -  we will detect this
8410                         * condition after our loop and return a
8411                         * positive value for caller to stop walking the tree.
8412                         */
8413                        if (level != root_level) {
8414                                btrfs_tree_unlock_rw(eb, path->locks[level]);
8415                                path->locks[level] = 0;
8416
8417                                free_extent_buffer(eb);
8418                                path->nodes[level] = NULL;
8419                                path->slots[level] = 0;
8420                        }
8421                } else {
8422                        /*
8423                         * We have a valid slot to walk back down
8424                         * from. Stop here so caller can process these
8425                         * new nodes.
8426                         */
8427                        break;
8428                }
8429
8430                level++;
8431        }
8432
8433        eb = path->nodes[root_level];
8434        if (path->slots[root_level] >= btrfs_header_nritems(eb))
8435                return 1;
8436
8437        return 0;
8438}
8439
8440/*
8441 * root_eb is the subtree root and is locked before this function is called.
8442 */
8443static int account_shared_subtree(struct btrfs_trans_handle *trans,
8444                                  struct btrfs_root *root,
8445                                  struct extent_buffer *root_eb,
8446                                  u64 root_gen,
8447                                  int root_level)
8448{
8449        int ret = 0;
8450        int level;
8451        struct extent_buffer *eb = root_eb;
8452        struct btrfs_path *path = NULL;
8453
8454        BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8455        BUG_ON(root_eb == NULL);
8456
8457        if (!root->fs_info->quota_enabled)
8458                return 0;
8459
8460        if (!extent_buffer_uptodate(root_eb)) {
8461                ret = btrfs_read_buffer(root_eb, root_gen);
8462                if (ret)
8463                        goto out;
8464        }
8465
8466        if (root_level == 0) {
8467                ret = account_leaf_items(trans, root, root_eb);
8468                goto out;
8469        }
8470
8471        path = btrfs_alloc_path();
8472        if (!path)
8473                return -ENOMEM;
8474
8475        /*
8476         * Walk down the tree.  Missing extent blocks are filled in as
8477         * we go. Metadata is accounted every time we read a new
8478         * extent block.
8479         *
8480         * When we reach a leaf, we account for file extent items in it,
8481         * walk back up the tree (adjusting slot pointers as we go)
8482         * and restart the search process.
8483         */
8484        extent_buffer_get(root_eb); /* For path */
8485        path->nodes[root_level] = root_eb;
8486        path->slots[root_level] = 0;
8487        path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8488walk_down:
8489        level = root_level;
8490        while (level >= 0) {
8491                if (path->nodes[level] == NULL) {
8492                        int parent_slot;
8493                        u64 child_gen;
8494                        u64 child_bytenr;
8495
8496                        /* We need to get child blockptr/gen from
8497                         * parent before we can read it. */
8498                        eb = path->nodes[level + 1];
8499                        parent_slot = path->slots[level + 1];
8500                        child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8501                        child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8502
8503                        eb = read_tree_block(root, child_bytenr, child_gen);
8504                        if (IS_ERR(eb)) {
8505                                ret = PTR_ERR(eb);
8506                                goto out;
8507                        } else if (!extent_buffer_uptodate(eb)) {
8508                                free_extent_buffer(eb);
8509                                ret = -EIO;
8510                                goto out;
8511                        }
8512
8513                        path->nodes[level] = eb;
8514                        path->slots[level] = 0;
8515
8516                        btrfs_tree_read_lock(eb);
8517                        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8518                        path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8519
8520                        ret = record_one_subtree_extent(trans, root, child_bytenr,
8521                                                        root->nodesize);
8522                        if (ret)
8523                                goto out;
8524                }
8525
8526                if (level == 0) {
8527                        ret = account_leaf_items(trans, root, path->nodes[level]);
8528                        if (ret)
8529                                goto out;
8530
8531                        /* Nonzero return here means we completed our search */
8532                        ret = adjust_slots_upwards(root, path, root_level);
8533                        if (ret)
8534                                break;
8535
8536                        /* Restart search with new slots */
8537                        goto walk_down;
8538                }
8539
8540                level--;
8541        }
8542
8543        ret = 0;
8544out:
8545        btrfs_free_path(path);
8546
8547        return ret;
8548}
8549
8550/*
8551 * helper to process tree block while walking down the tree.
8552 *
8553 * when wc->stage == UPDATE_BACKREF, this function updates
8554 * back refs for pointers in the block.
8555 *
8556 * NOTE: return value 1 means we should stop walking down.
8557 */
8558static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8559                                   struct btrfs_root *root,
8560                                   struct btrfs_path *path,
8561                                   struct walk_control *wc, int lookup_info)
8562{
8563        int level = wc->level;
8564        struct extent_buffer *eb = path->nodes[level];
8565        u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8566        int ret;
8567
8568        if (wc->stage == UPDATE_BACKREF &&
8569            btrfs_header_owner(eb) != root->root_key.objectid)
8570                return 1;
8571
8572        /*
8573         * when reference count of tree block is 1, it won't increase
8574         * again. once full backref flag is set, we never clear it.
8575         */
8576        if (lookup_info &&
8577            ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8578             (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8579                BUG_ON(!path->locks[level]);
8580                ret = btrfs_lookup_extent_info(trans, root,
8581                                               eb->start, level, 1,
8582                                               &wc->refs[level],
8583                                               &wc->flags[level]);
8584                BUG_ON(ret == -ENOMEM);
8585                if (ret)
8586                        return ret;
8587                BUG_ON(wc->refs[level] == 0);
8588        }
8589
8590        if (wc->stage == DROP_REFERENCE) {
8591                if (wc->refs[level] > 1)
8592                        return 1;
8593
8594                if (path->locks[level] && !wc->keep_locks) {
8595                        btrfs_tree_unlock_rw(eb, path->locks[level]);
8596                        path->locks[level] = 0;
8597                }
8598                return 0;
8599        }
8600
8601        /* wc->stage == UPDATE_BACKREF */
8602        if (!(wc->flags[level] & flag)) {
8603                BUG_ON(!path->locks[level]);
8604                ret = btrfs_inc_ref(trans, root, eb, 1);
8605                BUG_ON(ret); /* -ENOMEM */
8606                ret = btrfs_dec_ref(trans, root, eb, 0);
8607                BUG_ON(ret); /* -ENOMEM */
8608                ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8609                                                  eb->len, flag,
8610                                                  btrfs_header_level(eb), 0);
8611                BUG_ON(ret); /* -ENOMEM */
8612                wc->flags[level] |= flag;
8613        }
8614
8615        /*
8616         * the block is shared by multiple trees, so it's not good to
8617         * keep the tree lock
8618         */
8619        if (path->locks[level] && level > 0) {
8620                btrfs_tree_unlock_rw(eb, path->locks[level]);
8621                path->locks[level] = 0;
8622        }
8623        return 0;
8624}
8625
8626/*
8627 * helper to process tree block pointer.
8628 *
8629 * when wc->stage == DROP_REFERENCE, this function checks
8630 * reference count of the block pointed to. if the block
8631 * is shared and we need update back refs for the subtree
8632 * rooted at the block, this function changes wc->stage to
8633 * UPDATE_BACKREF. if the block is shared and there is no
8634 * need to update back, this function drops the reference
8635 * to the block.
8636 *
8637 * NOTE: return value 1 means we should stop walking down.
8638 */
8639static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8640                                 struct btrfs_root *root,
8641                                 struct btrfs_path *path,
8642                                 struct walk_control *wc, int *lookup_info)
8643{
8644        u64 bytenr;
8645        u64 generation;
8646        u64 parent;
8647        u32 blocksize;
8648        struct btrfs_key key;
8649        struct extent_buffer *next;
8650        int level = wc->level;
8651        int reada = 0;
8652        int ret = 0;
8653        bool need_account = false;
8654
8655        generation = btrfs_node_ptr_generation(path->nodes[level],
8656                                               path->slots[level]);
8657        /*
8658         * if the lower level block was created before the snapshot
8659         * was created, we know there is no need to update back refs
8660         * for the subtree
8661         */
8662        if (wc->stage == UPDATE_BACKREF &&
8663            generation <= root->root_key.offset) {
8664                *lookup_info = 1;
8665                return 1;
8666        }
8667
8668        bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8669        blocksize = root->nodesize;
8670
8671        next = btrfs_find_tree_block(root->fs_info, bytenr);
8672        if (!next) {
8673                next = btrfs_find_create_tree_block(root, bytenr);
8674                if (IS_ERR(next))
8675                        return PTR_ERR(next);
8676
8677                btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8678                                               level - 1);
8679                reada = 1;
8680        }
8681        btrfs_tree_lock(next);
8682        btrfs_set_lock_blocking(next);
8683
8684        ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8685                                       &wc->refs[level - 1],
8686                                       &wc->flags[level - 1]);
8687        if (ret < 0) {
8688                btrfs_tree_unlock(next);
8689                return ret;
8690        }
8691
8692        if (unlikely(wc->refs[level - 1] == 0)) {
8693                btrfs_err(root->fs_info, "Missing references.");
8694                BUG();
8695        }
8696        *lookup_info = 0;
8697
8698        if (wc->stage == DROP_REFERENCE) {
8699                if (wc->refs[level - 1] > 1) {
8700                        need_account = true;
8701                        if (level == 1 &&
8702                            (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8703                                goto skip;
8704
8705                        if (!wc->update_ref ||
8706                            generation <= root->root_key.offset)
8707                                goto skip;
8708
8709                        btrfs_node_key_to_cpu(path->nodes[level], &key,
8710                                              path->slots[level]);
8711                        ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8712                        if (ret < 0)
8713                                goto skip;
8714
8715                        wc->stage = UPDATE_BACKREF;
8716                        wc->shared_level = level - 1;
8717                }
8718        } else {
8719                if (level == 1 &&
8720                    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8721                        goto skip;
8722        }
8723
8724        if (!btrfs_buffer_uptodate(next, generation, 0)) {
8725                btrfs_tree_unlock(next);
8726                free_extent_buffer(next);
8727                next = NULL;
8728                *lookup_info = 1;
8729        }
8730
8731        if (!next) {
8732                if (reada && level == 1)
8733                        reada_walk_down(trans, root, wc, path);
8734                next = read_tree_block(root, bytenr, generation);
8735                if (IS_ERR(next)) {
8736                        return PTR_ERR(next);
8737                } else if (!extent_buffer_uptodate(next)) {
8738                        free_extent_buffer(next);
8739                        return -EIO;
8740                }
8741                btrfs_tree_lock(next);
8742                btrfs_set_lock_blocking(next);
8743        }
8744
8745        level--;
8746        BUG_ON(level != btrfs_header_level(next));
8747        path->nodes[level] = next;
8748        path->slots[level] = 0;
8749        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8750        wc->level = level;
8751        if (wc->level == 1)
8752                wc->reada_slot = 0;
8753        return 0;
8754skip:
8755        wc->refs[level - 1] = 0;
8756        wc->flags[level - 1] = 0;
8757        if (wc->stage == DROP_REFERENCE) {
8758                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8759                        parent = path->nodes[level]->start;
8760                } else {
8761                        BUG_ON(root->root_key.objectid !=
8762                               btrfs_header_owner(path->nodes[level]));
8763                        parent = 0;
8764                }
8765
8766                if (need_account) {
8767                        ret = account_shared_subtree(trans, root, next,
8768                                                     generation, level - 1);
8769                        if (ret) {
8770                                btrfs_err_rl(root->fs_info,
8771                                        "Error "
8772                                        "%d accounting shared subtree. Quota "
8773                                        "is out of sync, rescan required.",
8774                                        ret);
8775                        }
8776                }
8777                ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8778                                root->root_key.objectid, level - 1, 0);
8779                BUG_ON(ret); /* -ENOMEM */
8780        }
8781        btrfs_tree_unlock(next);
8782        free_extent_buffer(next);
8783        *lookup_info = 1;
8784        return 1;
8785}
8786
8787/*
8788 * helper to process tree block while walking up the tree.
8789 *
8790 * when wc->stage == DROP_REFERENCE, this function drops
8791 * reference count on the block.
8792 *
8793 * when wc->stage == UPDATE_BACKREF, this function changes
8794 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8795 * to UPDATE_BACKREF previously while processing the block.
8796 *
8797 * NOTE: return value 1 means we should stop walking up.
8798 */
8799static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8800                                 struct btrfs_root *root,
8801                                 struct btrfs_path *path,
8802                                 struct walk_control *wc)
8803{
8804        int ret;
8805        int level = wc->level;
8806        struct extent_buffer *eb = path->nodes[level];
8807        u64 parent = 0;
8808
8809        if (wc->stage == UPDATE_BACKREF) {
8810                BUG_ON(wc->shared_level < level);
8811                if (level < wc->shared_level)
8812                        goto out;
8813
8814                ret = find_next_key(path, level + 1, &wc->update_progress);
8815                if (ret > 0)
8816                        wc->update_ref = 0;
8817
8818                wc->stage = DROP_REFERENCE;
8819                wc->shared_level = -1;
8820                path->slots[level] = 0;
8821
8822                /*
8823                 * check reference count again if the block isn't locked.
8824                 * we should start walking down the tree again if reference
8825                 * count is one.
8826                 */
8827                if (!path->locks[level]) {
8828                        BUG_ON(level == 0);
8829                        btrfs_tree_lock(eb);
8830                        btrfs_set_lock_blocking(eb);
8831                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8832
8833                        ret = btrfs_lookup_extent_info(trans, root,
8834                                                       eb->start, level, 1,
8835                                                       &wc->refs[level],
8836                                                       &wc->flags[level]);
8837                        if (ret < 0) {
8838                                btrfs_tree_unlock_rw(eb, path->locks[level]);
8839                                path->locks[level] = 0;
8840                                return ret;
8841                        }
8842                        BUG_ON(wc->refs[level] == 0);
8843                        if (wc->refs[level] == 1) {
8844                                btrfs_tree_unlock_rw(eb, path->locks[level]);
8845                                path->locks[level] = 0;
8846                                return 1;
8847                        }
8848                }
8849        }
8850
8851        /* wc->stage == DROP_REFERENCE */
8852        BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8853
8854        if (wc->refs[level] == 1) {
8855                if (level == 0) {
8856                        if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8857                                ret = btrfs_dec_ref(trans, root, eb, 1);
8858                        else
8859                                ret = btrfs_dec_ref(trans, root, eb, 0);
8860                        BUG_ON(ret); /* -ENOMEM */
8861                        ret = account_leaf_items(trans, root, eb);
8862                        if (ret) {
8863                                btrfs_err_rl(root->fs_info,
8864                                        "error "
8865                                        "%d accounting leaf items. Quota "
8866                                        "is out of sync, rescan required.",
8867                                        ret);
8868                        }
8869                }
8870                /* make block locked assertion in clean_tree_block happy */
8871                if (!path->locks[level] &&
8872                    btrfs_header_generation(eb) == trans->transid) {
8873                        btrfs_tree_lock(eb);
8874                        btrfs_set_lock_blocking(eb);
8875                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8876                }
8877                clean_tree_block(trans, root->fs_info, eb);
8878        }
8879
8880        if (eb == root->node) {
8881                if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8882                        parent = eb->start;
8883                else
8884                        BUG_ON(root->root_key.objectid !=
8885                               btrfs_header_owner(eb));
8886        } else {
8887                if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8888                        parent = path->nodes[level + 1]->start;
8889                else
8890                        BUG_ON(root->root_key.objectid !=
8891                               btrfs_header_owner(path->nodes[level + 1]));
8892        }
8893
8894        btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8895out:
8896        wc->refs[level] = 0;
8897        wc->flags[level] = 0;
8898        return 0;
8899}
8900
8901static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8902                                   struct btrfs_root *root,
8903                                   struct btrfs_path *path,
8904                                   struct walk_control *wc)
8905{
8906        int level = wc->level;
8907        int lookup_info = 1;
8908        int ret;
8909
8910        while (level >= 0) {
8911                ret = walk_down_proc(trans, root, path, wc, lookup_info);
8912                if (ret > 0)
8913                        break;
8914
8915                if (level == 0)
8916                        break;
8917
8918                if (path->slots[level] >=
8919                    btrfs_header_nritems(path->nodes[level]))
8920                        break;
8921
8922                ret = do_walk_down(trans, root, path, wc, &lookup_info);
8923                if (ret > 0) {
8924                        path->slots[level]++;
8925                        continue;
8926                } else if (ret < 0)
8927                        return ret;
8928                level = wc->level;
8929        }
8930        return 0;
8931}
8932
8933static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8934                                 struct btrfs_root *root,
8935                                 struct btrfs_path *path,
8936                                 struct walk_control *wc, int max_level)
8937{
8938        int level = wc->level;
8939        int ret;
8940
8941        path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8942        while (level < max_level && path->nodes[level]) {
8943                wc->level = level;
8944                if (path->slots[level] + 1 <
8945                    btrfs_header_nritems(path->nodes[level])) {
8946                        path->slots[level]++;
8947                        return 0;
8948                } else {
8949                        ret = walk_up_proc(trans, root, path, wc);
8950                        if (ret > 0)
8951                                return 0;
8952
8953                        if (path->locks[level]) {
8954                                btrfs_tree_unlock_rw(path->nodes[level],
8955                                                     path->locks[level]);
8956                                path->locks[level] = 0;
8957                        }
8958                        free_extent_buffer(path->nodes[level]);
8959                        path->nodes[level] = NULL;
8960                        level++;
8961                }
8962        }
8963        return 1;
8964}
8965
8966/*
8967 * drop a subvolume tree.
8968 *
8969 * this function traverses the tree freeing any blocks that only
8970 * referenced by the tree.
8971 *
8972 * when a shared tree block is found. this function decreases its
8973 * reference count by one. if update_ref is true, this function
8974 * also make sure backrefs for the shared block and all lower level
8975 * blocks are properly updated.
8976 *
8977 * If called with for_reloc == 0, may exit early with -EAGAIN
8978 */
8979int btrfs_drop_snapshot(struct btrfs_root *root,
8980                         struct btrfs_block_rsv *block_rsv, int update_ref,
8981                         int for_reloc)
8982{
8983        struct btrfs_path *path;
8984        struct btrfs_trans_handle *trans;
8985        struct btrfs_root *tree_root = root->fs_info->tree_root;
8986        struct btrfs_root_item *root_item = &root->root_item;
8987        struct walk_control *wc;
8988        struct btrfs_key key;
8989        int err = 0;
8990        int ret;
8991        int level;
8992        bool root_dropped = false;
8993
8994        btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8995
8996        path = btrfs_alloc_path();
8997        if (!path) {
8998                err = -ENOMEM;
8999                goto out;
9000        }
9001
9002        wc = kzalloc(sizeof(*wc), GFP_NOFS);
9003        if (!wc) {
9004                btrfs_free_path(path);
9005                err = -ENOMEM;
9006                goto out;
9007        }
9008
9009        trans = btrfs_start_transaction(tree_root, 0);
9010        if (IS_ERR(trans)) {
9011                err = PTR_ERR(trans);
9012                goto out_free;
9013        }
9014
9015        if (block_rsv)
9016                trans->block_rsv = block_rsv;
9017
9018        if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9019                level = btrfs_header_level(root->node);
9020                path->nodes[level] = btrfs_lock_root_node(root);
9021                btrfs_set_lock_blocking(path->nodes[level]);
9022                path->slots[level] = 0;
9023                path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9024                memset(&wc->update_progress, 0,
9025                       sizeof(wc->update_progress));
9026        } else {
9027                btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9028                memcpy(&wc->update_progress, &key,
9029                       sizeof(wc->update_progress));
9030
9031                level = root_item->drop_level;
9032                BUG_ON(level == 0);
9033                path->lowest_level = level;
9034                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9035                path->lowest_level = 0;
9036                if (ret < 0) {
9037                        err = ret;
9038                        goto out_end_trans;
9039                }
9040                WARN_ON(ret > 0);
9041
9042                /*
9043                 * unlock our path, this is safe because only this
9044                 * function is allowed to delete this snapshot
9045                 */
9046                btrfs_unlock_up_safe(path, 0);
9047
9048                level = btrfs_header_level(root->node);
9049                while (1) {
9050                        btrfs_tree_lock(path->nodes[level]);
9051                        btrfs_set_lock_blocking(path->nodes[level]);
9052                        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9053
9054                        ret = btrfs_lookup_extent_info(trans, root,
9055                                                path->nodes[level]->start,
9056                                                level, 1, &wc->refs[level],
9057                                                &wc->flags[level]);
9058                        if (ret < 0) {
9059                                err = ret;
9060                                goto out_end_trans;
9061                        }
9062                        BUG_ON(wc->refs[level] == 0);
9063
9064                        if (level == root_item->drop_level)
9065                                break;
9066
9067                        btrfs_tree_unlock(path->nodes[level]);
9068                        path->locks[level] = 0;
9069                        WARN_ON(wc->refs[level] != 1);
9070                        level--;
9071                }
9072        }
9073
9074        wc->level = level;
9075        wc->shared_level = -1;
9076        wc->stage = DROP_REFERENCE;
9077        wc->update_ref = update_ref;
9078        wc->keep_locks = 0;
9079        wc->for_reloc = for_reloc;
9080        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9081
9082        while (1) {
9083
9084                ret = walk_down_tree(trans, root, path, wc);
9085                if (ret < 0) {
9086                        err = ret;
9087                        break;
9088                }
9089
9090                ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9091                if (ret < 0) {
9092                        err = ret;
9093                        break;
9094                }
9095
9096                if (ret > 0) {
9097                        BUG_ON(wc->stage != DROP_REFERENCE);
9098                        break;
9099                }
9100
9101                if (wc->stage == DROP_REFERENCE) {
9102                        level = wc->level;
9103                        btrfs_node_key(path->nodes[level],
9104                                       &root_item->drop_progress,
9105                                       path->slots[level]);
9106                        root_item->drop_level = level;
9107                }
9108
9109                BUG_ON(wc->level == 0);
9110                if (btrfs_should_end_transaction(trans, tree_root) ||
9111                    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9112                        ret = btrfs_update_root(trans, tree_root,
9113                                                &root->root_key,
9114                                                root_item);
9115                        if (ret) {
9116                                btrfs_abort_transaction(trans, tree_root, ret);
9117                                err = ret;
9118                                goto out_end_trans;
9119                        }
9120
9121                        btrfs_end_transaction_throttle(trans, tree_root);
9122                        if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9123                                pr_debug("BTRFS: drop snapshot early exit\n");
9124                                err = -EAGAIN;
9125                                goto out_free;
9126                        }
9127
9128                        trans = btrfs_start_transaction(tree_root, 0);
9129                        if (IS_ERR(trans)) {
9130                                err = PTR_ERR(trans);
9131                                goto out_free;
9132                        }
9133                        if (block_rsv)
9134                                trans->block_rsv = block_rsv;
9135                }
9136        }
9137        btrfs_release_path(path);
9138        if (err)
9139                goto out_end_trans;
9140
9141        ret = btrfs_del_root(trans, tree_root, &root->root_key);
9142        if (ret) {
9143                btrfs_abort_transaction(trans, tree_root, ret);
9144                goto out_end_trans;
9145        }
9146
9147        if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9148                ret = btrfs_find_root(tree_root, &root->root_key, path,
9149                                      NULL, NULL);
9150                if (ret < 0) {
9151                        btrfs_abort_transaction(trans, tree_root, ret);
9152                        err = ret;
9153                        goto out_end_trans;
9154                } else if (ret > 0) {
9155                        /* if we fail to delete the orphan item this time
9156                         * around, it'll get picked up the next time.
9157                         *
9158                         * The most common failure here is just -ENOENT.
9159                         */
9160                        btrfs_del_orphan_item(trans, tree_root,
9161                                              root->root_key.objectid);
9162                }
9163        }
9164
9165        if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9166                btrfs_add_dropped_root(trans, root);
9167        } else {
9168                free_extent_buffer(root->node);
9169                free_extent_buffer(root->commit_root);
9170                btrfs_put_fs_root(root);
9171        }
9172        root_dropped = true;
9173out_end_trans:
9174        btrfs_end_transaction_throttle(trans, tree_root);
9175out_free:
9176        kfree(wc);
9177        btrfs_free_path(path);
9178out:
9179        /*
9180         * So if we need to stop dropping the snapshot for whatever reason we
9181         * need to make sure to add it back to the dead root list so that we
9182         * keep trying to do the work later.  This also cleans up roots if we
9183         * don't have it in the radix (like when we recover after a power fail
9184         * or unmount) so we don't leak memory.
9185         */
9186        if (!for_reloc && root_dropped == false)
9187                btrfs_add_dead_root(root);
9188        if (err && err != -EAGAIN)
9189                btrfs_handle_fs_error(root->fs_info, err, NULL);
9190        return err;
9191}
9192
9193/*
9194 * drop subtree rooted at tree block 'node'.
9195 *
9196 * NOTE: this function will unlock and release tree block 'node'
9197 * only used by relocation code
9198 */
9199int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9200                        struct btrfs_root *root,
9201                        struct extent_buffer *node,
9202                        struct extent_buffer *parent)
9203{
9204        struct btrfs_path *path;
9205        struct walk_control *wc;
9206        int level;
9207        int parent_level;
9208        int ret = 0;
9209        int wret;
9210
9211        BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9212
9213        path = btrfs_alloc_path();
9214        if (!path)
9215                return -ENOMEM;
9216
9217        wc = kzalloc(sizeof(*wc), GFP_NOFS);
9218        if (!wc) {
9219                btrfs_free_path(path);
9220                return -ENOMEM;
9221        }
9222
9223        btrfs_assert_tree_locked(parent);
9224        parent_level = btrfs_header_level(parent);
9225        extent_buffer_get(parent);
9226        path->nodes[parent_level] = parent;
9227        path->slots[parent_level] = btrfs_header_nritems(parent);
9228
9229        btrfs_assert_tree_locked(node);
9230        level = btrfs_header_level(node);
9231        path->nodes[level] = node;
9232        path->slots[level] = 0;
9233        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9234
9235        wc->refs[parent_level] = 1;
9236        wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9237        wc->level = level;
9238        wc->shared_level = -1;
9239        wc->stage = DROP_REFERENCE;
9240        wc->update_ref = 0;
9241        wc->keep_locks = 1;
9242        wc->for_reloc = 1;
9243        wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9244
9245        while (1) {
9246                wret = walk_down_tree(trans, root, path, wc);
9247                if (wret < 0) {
9248                        ret = wret;
9249                        break;
9250                }
9251
9252                wret = walk_up_tree(trans, root, path, wc, parent_level);
9253                if (wret < 0)
9254                        ret = wret;
9255                if (wret != 0)
9256                        break;
9257        }
9258
9259        kfree(wc);
9260        btrfs_free_path(path);
9261        return ret;
9262}
9263
9264static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9265{
9266        u64 num_devices;
9267        u64 stripped;
9268
9269        /*
9270         * if restripe for this chunk_type is on pick target profile and
9271         * return, otherwise do the usual balance
9272         */
9273        stripped = get_restripe_target(root->fs_info, flags);
9274        if (stripped)
9275                return extended_to_chunk(stripped);
9276
9277        num_devices = root->fs_info->fs_devices->rw_devices;
9278
9279        stripped = BTRFS_BLOCK_GROUP_RAID0 |
9280                BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9281                BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9282
9283        if (num_devices == 1) {
9284                stripped |= BTRFS_BLOCK_GROUP_DUP;
9285                stripped = flags & ~stripped;
9286
9287                /* turn raid0 into single device chunks */
9288                if (flags & BTRFS_BLOCK_GROUP_RAID0)
9289                        return stripped;
9290
9291                /* turn mirroring into duplication */
9292                if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9293                             BTRFS_BLOCK_GROUP_RAID10))
9294                        return stripped | BTRFS_BLOCK_GROUP_DUP;
9295        } else {
9296                /* they already had raid on here, just return */
9297                if (flags & stripped)
9298                        return flags;
9299
9300                stripped |= BTRFS_BLOCK_GROUP_DUP;
9301                stripped = flags & ~stripped;
9302
9303                /* switch duplicated blocks with raid1 */
9304                if (flags & BTRFS_BLOCK_GROUP_DUP)
9305                        return stripped | BTRFS_BLOCK_GROUP_RAID1;
9306
9307                /* this is drive concat, leave it alone */
9308        }
9309
9310        return flags;
9311}
9312
9313static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9314{
9315        struct btrfs_space_info *sinfo = cache->space_info;
9316        u64 num_bytes;
9317        u64 min_allocable_bytes;
9318        int ret = -ENOSPC;
9319
9320        /*
9321         * We need some metadata space and system metadata space for
9322         * allocating chunks in some corner cases until we force to set
9323         * it to be readonly.
9324         */
9325        if ((sinfo->flags &
9326             (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9327            !force)
9328                min_allocable_bytes = SZ_1M;
9329        else
9330                min_allocable_bytes = 0;
9331
9332        spin_lock(&sinfo->lock);
9333        spin_lock(&cache->lock);
9334
9335        if (cache->ro) {
9336                cache->ro++;
9337                ret = 0;
9338                goto out;
9339        }
9340
9341        num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9342                    cache->bytes_super - btrfs_block_group_used(&cache->item);
9343
9344        if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9345            sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9346            min_allocable_bytes <= sinfo->total_bytes) {
9347                sinfo->bytes_readonly += num_bytes;
9348                cache->ro++;
9349                list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9350                ret = 0;
9351        }
9352out:
9353        spin_unlock(&cache->lock);
9354        spin_unlock(&sinfo->lock);
9355        return ret;
9356}
9357
9358int btrfs_inc_block_group_ro(struct btrfs_root *root,
9359                             struct btrfs_block_group_cache *cache)
9360
9361{
9362        struct btrfs_trans_handle *trans;
9363        u64 alloc_flags;
9364        int ret;
9365
9366again:
9367        trans = btrfs_join_transaction(root);
9368        if (IS_ERR(trans))
9369                return PTR_ERR(trans);
9370
9371        /*
9372         * we're not allowed to set block groups readonly after the dirty
9373         * block groups cache has started writing.  If it already started,
9374         * back off and let this transaction commit
9375         */
9376        mutex_lock(&root->fs_info->ro_block_group_mutex);
9377        if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9378                u64 transid = trans->transid;
9379
9380                mutex_unlock(&root->fs_info->ro_block_group_mutex);
9381                btrfs_end_transaction(trans, root);
9382
9383                ret = btrfs_wait_for_commit(root, transid);
9384                if (ret)
9385                        return ret;
9386                goto again;
9387        }
9388
9389        /*
9390         * if we are changing raid levels, try to allocate a corresponding
9391         * block group with the new raid level.
9392         */
9393        alloc_flags = update_block_group_flags(root, cache->flags);
9394        if (alloc_flags != cache->flags) {
9395                ret = do_chunk_alloc(trans, root, alloc_flags,
9396                                     CHUNK_ALLOC_FORCE);
9397                /*
9398                 * ENOSPC is allowed here, we may have enough space
9399                 * already allocated at the new raid level to
9400                 * carry on
9401                 */
9402                if (ret == -ENOSPC)
9403                        ret = 0;
9404                if (ret < 0)
9405                        goto out;
9406        }
9407
9408        ret = inc_block_group_ro(cache, 0);
9409        if (!ret)
9410                goto out;
9411        alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9412        ret = do_chunk_alloc(trans, root, alloc_flags,
9413                             CHUNK_ALLOC_FORCE);
9414        if (ret < 0)
9415                goto out;
9416        ret = inc_block_group_ro(cache, 0);
9417out:
9418        if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9419                alloc_flags = update_block_group_flags(root, cache->flags);
9420                lock_chunks(root->fs_info->chunk_root);
9421                check_system_chunk(trans, root, alloc_flags);
9422                unlock_chunks(root->fs_info->chunk_root);
9423        }
9424        mutex_unlock(&root->fs_info->ro_block_group_mutex);
9425
9426        btrfs_end_transaction(trans, root);
9427        return ret;
9428}
9429
9430int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9431                            struct btrfs_root *root, u64 type)
9432{
9433        u64 alloc_flags = get_alloc_profile(root, type);
9434        return do_chunk_alloc(trans, root, alloc_flags,
9435                              CHUNK_ALLOC_FORCE);
9436}
9437
9438/*
9439 * helper to account the unused space of all the readonly block group in the
9440 * space_info. takes mirrors into account.
9441 */
9442u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9443{
9444        struct btrfs_block_group_cache *block_group;
9445        u64 free_bytes = 0;
9446        int factor;
9447
9448        /* It's df, we don't care if it's racy */
9449        if (list_empty(&sinfo->ro_bgs))
9450                return 0;
9451
9452        spin_lock(&sinfo->lock);
9453        list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9454                spin_lock(&block_group->lock);
9455
9456                if (!block_group->ro) {
9457                        spin_unlock(&block_group->lock);
9458                        continue;
9459                }
9460
9461                if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9462                                          BTRFS_BLOCK_GROUP_RAID10 |
9463                                          BTRFS_BLOCK_GROUP_DUP))
9464                        factor = 2;
9465                else
9466                        factor = 1;
9467
9468                free_bytes += (block_group->key.offset -
9469                               btrfs_block_group_used(&block_group->item)) *
9470                               factor;
9471
9472                spin_unlock(&block_group->lock);
9473        }
9474        spin_unlock(&sinfo->lock);
9475
9476        return free_bytes;
9477}
9478
9479void btrfs_dec_block_group_ro(struct btrfs_root *root,
9480                              struct btrfs_block_group_cache *cache)
9481{
9482        struct btrfs_space_info *sinfo = cache->space_info;
9483        u64 num_bytes;
9484
9485        BUG_ON(!cache->ro);
9486
9487        spin_lock(&sinfo->lock);
9488        spin_lock(&cache->lock);
9489        if (!--cache->ro) {
9490                num_bytes = cache->key.offset - cache->reserved -
9491                            cache->pinned - cache->bytes_super -
9492                            btrfs_block_group_used(&cache->item);
9493                sinfo->bytes_readonly -= num_bytes;
9494                list_del_init(&cache->ro_list);
9495        }
9496        spin_unlock(&cache->lock);
9497        spin_unlock(&sinfo->lock);
9498}
9499
9500/*
9501 * checks to see if its even possible to relocate this block group.
9502 *
9503 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9504 * ok to go ahead and try.
9505 */
9506int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9507{
9508        struct btrfs_block_group_cache *block_group;
9509        struct btrfs_space_info *space_info;
9510        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9511        struct btrfs_device *device;
9512        struct btrfs_trans_handle *trans;
9513        u64 min_free;
9514        u64 dev_min = 1;
9515        u64 dev_nr = 0;
9516        u64 target;
9517        int debug;
9518        int index;
9519        int full = 0;
9520        int ret = 0;
9521
9522        debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9523
9524        block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9525
9526        /* odd, couldn't find the block group, leave it alone */
9527        if (!block_group) {
9528                if (debug)
9529                        btrfs_warn(root->fs_info,
9530                                   "can't find block group for bytenr %llu",
9531                                   bytenr);
9532                return -1;
9533        }
9534
9535        min_free = btrfs_block_group_used(&block_group->item);
9536
9537        /* no bytes used, we're good */
9538        if (!min_free)
9539                goto out;
9540
9541        space_info = block_group->space_info;
9542        spin_lock(&space_info->lock);
9543
9544        full = space_info->full;
9545
9546        /*
9547         * if this is the last block group we have in this space, we can't
9548         * relocate it unless we're able to allocate a new chunk below.
9549         *
9550         * Otherwise, we need to make sure we have room in the space to handle
9551         * all of the extents from this block group.  If we can, we're good
9552         */
9553        if ((space_info->total_bytes != block_group->key.offset) &&
9554            (space_info->bytes_used + space_info->bytes_reserved +
9555             space_info->bytes_pinned + space_info->bytes_readonly +
9556             min_free < space_info->total_bytes)) {
9557                spin_unlock(&space_info->lock);
9558                goto out;
9559        }
9560        spin_unlock(&space_info->lock);
9561
9562        /*
9563         * ok we don't have enough space, but maybe we have free space on our
9564         * devices to allocate new chunks for relocation, so loop through our
9565         * alloc devices and guess if we have enough space.  if this block
9566         * group is going to be restriped, run checks against the target
9567         * profile instead of the current one.
9568         */
9569        ret = -1;
9570
9571        /*
9572         * index:
9573         *      0: raid10
9574         *      1: raid1
9575         *      2: dup
9576         *      3: raid0
9577         *      4: single
9578         */
9579        target = get_restripe_target(root->fs_info, block_group->flags);
9580        if (target) {
9581                index = __get_raid_index(extended_to_chunk(target));
9582        } else {
9583                /*
9584                 * this is just a balance, so if we were marked as full
9585                 * we know there is no space for a new chunk
9586                 */
9587                if (full) {
9588                        if (debug)
9589                                btrfs_warn(root->fs_info,
9590                                        "no space to alloc new chunk for block group %llu",
9591                                        block_group->key.objectid);
9592                        goto out;
9593                }
9594
9595                index = get_block_group_index(block_group);
9596        }
9597
9598        if (index == BTRFS_RAID_RAID10) {
9599                dev_min = 4;
9600                /* Divide by 2 */
9601                min_free >>= 1;
9602        } else if (index == BTRFS_RAID_RAID1) {
9603                dev_min = 2;
9604        } else if (index == BTRFS_RAID_DUP) {
9605                /* Multiply by 2 */
9606                min_free <<= 1;
9607        } else if (index == BTRFS_RAID_RAID0) {
9608                dev_min = fs_devices->rw_devices;
9609                min_free = div64_u64(min_free, dev_min);
9610        }
9611
9612        /* We need to do this so that we can look at pending chunks */
9613        trans = btrfs_join_transaction(root);
9614        if (IS_ERR(trans)) {
9615                ret = PTR_ERR(trans);
9616                goto out;
9617        }
9618
9619        mutex_lock(&root->fs_info->chunk_mutex);
9620        list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9621                u64 dev_offset;
9622
9623                /*
9624                 * check to make sure we can actually find a chunk with enough
9625                 * space to fit our block group in.
9626                 */
9627                if (device->total_bytes > device->bytes_used + min_free &&
9628                    !device->is_tgtdev_for_dev_replace) {
9629                        ret = find_free_dev_extent(trans, device, min_free,
9630                                                   &dev_offset, NULL);
9631                        if (!ret)
9632                                dev_nr++;
9633
9634                        if (dev_nr >= dev_min)
9635                                break;
9636
9637                        ret = -1;
9638                }
9639        }
9640        if (debug && ret == -1)
9641                btrfs_warn(root->fs_info,
9642                        "no space to allocate a new chunk for block group %llu",
9643                        block_group->key.objectid);
9644        mutex_unlock(&root->fs_info->chunk_mutex);
9645        btrfs_end_transaction(trans, root);
9646out:
9647        btrfs_put_block_group(block_group);
9648        return ret;
9649}
9650
9651static int find_first_block_group(struct btrfs_root *root,
9652                struct btrfs_path *path, struct btrfs_key *key)
9653{
9654        int ret = 0;
9655        struct btrfs_key found_key;
9656        struct extent_buffer *leaf;
9657        int slot;
9658
9659        ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9660        if (ret < 0)
9661                goto out;
9662
9663        while (1) {
9664                slot = path->slots[0];
9665                leaf = path->nodes[0];
9666                if (slot >= btrfs_header_nritems(leaf)) {
9667                        ret = btrfs_next_leaf(root, path);
9668                        if (ret == 0)
9669                                continue;
9670                        if (ret < 0)
9671                                goto out;
9672                        break;
9673                }
9674                btrfs_item_key_to_cpu(leaf, &found_key, slot);
9675
9676                if (found_key.objectid >= key->objectid &&
9677                    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9678                        ret = 0;
9679                        goto out;
9680                }
9681                path->slots[0]++;
9682        }
9683out:
9684        return ret;
9685}
9686
9687void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9688{
9689        struct btrfs_block_group_cache *block_group;
9690        u64 last = 0;
9691
9692        while (1) {
9693                struct inode *inode;
9694
9695                block_group = btrfs_lookup_first_block_group(info, last);
9696                while (block_group) {
9697                        spin_lock(&block_group->lock);
9698                        if (block_group->iref)
9699                                break;
9700                        spin_unlock(&block_group->lock);
9701                        block_group = next_block_group(info->tree_root,
9702                                                       block_group);
9703                }
9704                if (!block_group) {
9705                        if (last == 0)
9706                                break;
9707                        last = 0;
9708                        continue;
9709                }
9710
9711                inode = block_group->inode;
9712                block_group->iref = 0;
9713                block_group->inode = NULL;
9714                spin_unlock(&block_group->lock);
9715                iput(inode);
9716                last = block_group->key.objectid + block_group->key.offset;
9717                btrfs_put_block_group(block_group);
9718        }
9719}
9720
9721int btrfs_free_block_groups(struct btrfs_fs_info *info)
9722{
9723        struct btrfs_block_group_cache *block_group;
9724        struct btrfs_space_info *space_info;
9725        struct btrfs_caching_control *caching_ctl;
9726        struct rb_node *n;
9727
9728        down_write(&info->commit_root_sem);
9729        while (!list_empty(&info->caching_block_groups)) {
9730                caching_ctl = list_entry(info->caching_block_groups.next,
9731                                         struct btrfs_caching_control, list);
9732                list_del(&caching_ctl->list);
9733                put_caching_control(caching_ctl);
9734        }
9735        up_write(&info->commit_root_sem);
9736
9737        spin_lock(&info->unused_bgs_lock);
9738        while (!list_empty(&info->unused_bgs)) {
9739                block_group = list_first_entry(&info->unused_bgs,
9740                                               struct btrfs_block_group_cache,
9741                                               bg_list);
9742                list_del_init(&block_group->bg_list);
9743                btrfs_put_block_group(block_group);
9744        }
9745        spin_unlock(&info->unused_bgs_lock);
9746
9747        spin_lock(&info->block_group_cache_lock);
9748        while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9749                block_group = rb_entry(n, struct btrfs_block_group_cache,
9750                                       cache_node);
9751                rb_erase(&block_group->cache_node,
9752                         &info->block_group_cache_tree);
9753                RB_CLEAR_NODE(&block_group->cache_node);
9754                spin_unlock(&info->block_group_cache_lock);
9755
9756                down_write(&block_group->space_info->groups_sem);
9757                list_del(&block_group->list);
9758                up_write(&block_group->space_info->groups_sem);
9759
9760                if (block_group->cached == BTRFS_CACHE_STARTED)
9761                        wait_block_group_cache_done(block_group);
9762
9763                /*
9764                 * We haven't cached this block group, which means we could
9765                 * possibly have excluded extents on this block group.
9766                 */
9767                if (block_group->cached == BTRFS_CACHE_NO ||
9768                    block_group->cached == BTRFS_CACHE_ERROR)
9769                        free_excluded_extents(info->extent_root, block_group);
9770
9771                btrfs_remove_free_space_cache(block_group);
9772                btrfs_put_block_group(block_group);
9773
9774                spin_lock(&info->block_group_cache_lock);
9775        }
9776        spin_unlock(&info->block_group_cache_lock);
9777
9778        /* now that all the block groups are freed, go through and
9779         * free all the space_info structs.  This is only called during
9780         * the final stages of unmount, and so we know nobody is
9781         * using them.  We call synchronize_rcu() once before we start,
9782         * just to be on the safe side.
9783         */
9784        synchronize_rcu();
9785
9786        release_global_block_rsv(info);
9787
9788        while (!list_empty(&info->space_info)) {
9789                int i;
9790
9791                space_info = list_entry(info->space_info.next,
9792                                        struct btrfs_space_info,
9793                                        list);
9794                if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
9795                        if (WARN_ON(space_info->bytes_pinned > 0 ||
9796                            space_info->bytes_reserved > 0 ||
9797                            space_info->bytes_may_use > 0)) {
9798                                dump_space_info(space_info, 0, 0);
9799                        }
9800                }
9801                list_del(&space_info->list);
9802                for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9803                        struct kobject *kobj;
9804                        kobj = space_info->block_group_kobjs[i];
9805                        space_info->block_group_kobjs[i] = NULL;
9806                        if (kobj) {
9807                                kobject_del(kobj);
9808                                kobject_put(kobj);
9809                        }
9810                }
9811                kobject_del(&space_info->kobj);
9812                kobject_put(&space_info->kobj);
9813        }
9814        return 0;
9815}
9816
9817static void __link_block_group(struct btrfs_space_info *space_info,
9818                               struct btrfs_block_group_cache *cache)
9819{
9820        int index = get_block_group_index(cache);
9821        bool first = false;
9822
9823        down_write(&space_info->groups_sem);
9824        if (list_empty(&space_info->block_groups[index]))
9825                first = true;
9826        list_add_tail(&cache->list, &space_info->block_groups[index]);
9827        up_write(&space_info->groups_sem);
9828
9829        if (first) {
9830                struct raid_kobject *rkobj;
9831                int ret;
9832
9833                rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9834                if (!rkobj)
9835                        goto out_err;
9836                rkobj->raid_type = index;
9837                kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9838                ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9839                                  "%s", get_raid_name(index));
9840                if (ret) {
9841                        kobject_put(&rkobj->kobj);
9842                        goto out_err;
9843                }
9844                space_info->block_group_kobjs[index] = &rkobj->kobj;
9845        }
9846
9847        return;
9848out_err:
9849        pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9850}
9851
9852static struct btrfs_block_group_cache *
9853btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9854{
9855        struct btrfs_block_group_cache *cache;
9856
9857        cache = kzalloc(sizeof(*cache), GFP_NOFS);
9858        if (!cache)
9859                return NULL;
9860
9861        cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9862                                        GFP_NOFS);
9863        if (!cache->free_space_ctl) {
9864                kfree(cache);
9865                return NULL;
9866        }
9867
9868        cache->key.objectid = start;
9869        cache->key.offset = size;
9870        cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9871
9872        cache->sectorsize = root->sectorsize;
9873        cache->fs_info = root->fs_info;
9874        cache->full_stripe_len = btrfs_full_stripe_len(root,
9875                                               &root->fs_info->mapping_tree,
9876                                               start);
9877        set_free_space_tree_thresholds(cache);
9878
9879        atomic_set(&cache->count, 1);
9880        spin_lock_init(&cache->lock);
9881        init_rwsem(&cache->data_rwsem);
9882        INIT_LIST_HEAD(&cache->list);
9883        INIT_LIST_HEAD(&cache->cluster_list);
9884        INIT_LIST_HEAD(&cache->bg_list);
9885        INIT_LIST_HEAD(&cache->ro_list);
9886        INIT_LIST_HEAD(&cache->dirty_list);
9887        INIT_LIST_HEAD(&cache->io_list);
9888        btrfs_init_free_space_ctl(cache);
9889        atomic_set(&cache->trimming, 0);
9890        mutex_init(&cache->free_space_lock);
9891
9892        return cache;
9893}
9894
9895int btrfs_read_block_groups(struct btrfs_root *root)
9896{
9897        struct btrfs_path *path;
9898        int ret;
9899        struct btrfs_block_group_cache *cache;
9900        struct btrfs_fs_info *info = root->fs_info;
9901        struct btrfs_space_info *space_info;
9902        struct btrfs_key key;
9903        struct btrfs_key found_key;
9904        struct extent_buffer *leaf;
9905        int need_clear = 0;
9906        u64 cache_gen;
9907
9908        root = info->extent_root;
9909        key.objectid = 0;
9910        key.offset = 0;
9911        key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9912        path = btrfs_alloc_path();
9913        if (!path)
9914                return -ENOMEM;
9915        path->reada = READA_FORWARD;
9916
9917        cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
9918        if (btrfs_test_opt(root, SPACE_CACHE) &&
9919            btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
9920                need_clear = 1;
9921        if (btrfs_test_opt(root, CLEAR_CACHE))
9922                need_clear = 1;
9923
9924        while (1) {
9925                ret = find_first_block_group(root, path, &key);
9926                if (ret > 0)
9927                        break;
9928                if (ret != 0)
9929                        goto error;
9930
9931                leaf = path->nodes[0];
9932                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
9933
9934                cache = btrfs_create_block_group_cache(root, found_key.objectid,
9935                                                       found_key.offset);
9936                if (!cache) {
9937                        ret = -ENOMEM;
9938                        goto error;
9939                }
9940
9941                if (need_clear) {
9942                        /*
9943                         * When we mount with old space cache, we need to
9944                         * set BTRFS_DC_CLEAR and set dirty flag.
9945                         *
9946                         * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9947                         *    truncate the old free space cache inode and
9948                         *    setup a new one.
9949                         * b) Setting 'dirty flag' makes sure that we flush
9950                         *    the new space cache info onto disk.
9951                         */
9952                        if (btrfs_test_opt(root, SPACE_CACHE))
9953                                cache->disk_cache_state = BTRFS_DC_CLEAR;
9954                }
9955
9956                read_extent_buffer(leaf, &cache->item,
9957                                   btrfs_item_ptr_offset(leaf, path->slots[0]),
9958                                   sizeof(cache->item));
9959                cache->flags = btrfs_block_group_flags(&cache->item);
9960
9961                key.objectid = found_key.objectid + found_key.offset;
9962                btrfs_release_path(path);
9963
9964                /*
9965                 * We need to exclude the super stripes now so that the space
9966                 * info has super bytes accounted for, otherwise we'll think
9967                 * we have more space than we actually do.
9968                 */
9969                ret = exclude_super_stripes(root, cache);
9970                if (ret) {
9971                        /*
9972                         * We may have excluded something, so call this just in
9973                         * case.
9974                         */
9975                        free_excluded_extents(root, cache);
9976                        btrfs_put_block_group(cache);
9977                        goto error;
9978                }
9979
9980                /*
9981                 * check for two cases, either we are full, and therefore
9982                 * don't need to bother with the caching work since we won't
9983                 * find any space, or we are empty, and we can just add all
9984                 * the space in and be done with it.  This saves us _alot_ of
9985                 * time, particularly in the full case.
9986                 */
9987                if (found_key.offset == btrfs_block_group_used(&cache->item)) {
9988                        cache->last_byte_to_unpin = (u64)-1;
9989                        cache->cached = BTRFS_CACHE_FINISHED;
9990                        free_excluded_extents(root, cache);
9991                } else if (btrfs_block_group_used(&cache->item) == 0) {
9992                        cache->last_byte_to_unpin = (u64)-1;
9993                        cache->cached = BTRFS_CACHE_FINISHED;
9994                        add_new_free_space(cache, root->fs_info,
9995                                           found_key.objectid,
9996                                           found_key.objectid +
9997                                           found_key.offset);
9998                        free_excluded_extents(root, cache);
9999                }
10000
10001                ret = btrfs_add_block_group_cache(root->fs_info, cache);
10002                if (ret) {
10003                        btrfs_remove_free_space_cache(cache);
10004                        btrfs_put_block_group(cache);
10005                        goto error;
10006                }
10007
10008                ret = update_space_info(info, cache->flags, found_key.offset,
10009                                        btrfs_block_group_used(&cache->item),
10010                                        &space_info);
10011                if (ret) {
10012                        btrfs_remove_free_space_cache(cache);
10013                        spin_lock(&info->block_group_cache_lock);
10014                        rb_erase(&cache->cache_node,
10015                                 &info->block_group_cache_tree);
10016                        RB_CLEAR_NODE(&cache->cache_node);
10017                        spin_unlock(&info->block_group_cache_lock);
10018                        btrfs_put_block_group(cache);
10019                        goto error;
10020                }
10021
10022                cache->space_info = space_info;
10023                spin_lock(&cache->space_info->lock);
10024                cache->space_info->bytes_readonly += cache->bytes_super;
10025                spin_unlock(&cache->space_info->lock);
10026
10027                __link_block_group(space_info, cache);
10028
10029                set_avail_alloc_bits(root->fs_info, cache->flags);
10030                if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10031                        inc_block_group_ro(cache, 1);
10032                } else if (btrfs_block_group_used(&cache->item) == 0) {
10033                        spin_lock(&info->unused_bgs_lock);
10034                        /* Should always be true but just in case. */
10035                        if (list_empty(&cache->bg_list)) {
10036                                btrfs_get_block_group(cache);
10037                                list_add_tail(&cache->bg_list,
10038                                              &info->unused_bgs);
10039                        }
10040                        spin_unlock(&info->unused_bgs_lock);
10041                }
10042        }
10043
10044        list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10045                if (!(get_alloc_profile(root, space_info->flags) &
10046                      (BTRFS_BLOCK_GROUP_RAID10 |
10047                       BTRFS_BLOCK_GROUP_RAID1 |
10048                       BTRFS_BLOCK_GROUP_RAID5 |
10049                       BTRFS_BLOCK_GROUP_RAID6 |
10050                       BTRFS_BLOCK_GROUP_DUP)))
10051                        continue;
10052                /*
10053                 * avoid allocating from un-mirrored block group if there are
10054                 * mirrored block groups.
10055                 */
10056                list_for_each_entry(cache,
10057                                &space_info->block_groups[BTRFS_RAID_RAID0],
10058                                list)
10059                        inc_block_group_ro(cache, 1);
10060                list_for_each_entry(cache,
10061                                &space_info->block_groups[BTRFS_RAID_SINGLE],
10062                                list)
10063                        inc_block_group_ro(cache, 1);
10064        }
10065
10066        init_global_block_rsv(info);
10067        ret = 0;
10068error:
10069        btrfs_free_path(path);
10070        return ret;
10071}
10072
10073void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10074                                       struct btrfs_root *root)
10075{
10076        struct btrfs_block_group_cache *block_group, *tmp;
10077        struct btrfs_root *extent_root = root->fs_info->extent_root;
10078        struct btrfs_block_group_item item;
10079        struct btrfs_key key;
10080        int ret = 0;
10081        bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10082
10083        trans->can_flush_pending_bgs = false;
10084        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10085                if (ret)
10086                        goto next;
10087
10088                spin_lock(&block_group->lock);
10089                memcpy(&item, &block_group->item, sizeof(item));
10090                memcpy(&key, &block_group->key, sizeof(key));
10091                spin_unlock(&block_group->lock);
10092
10093                ret = btrfs_insert_item(trans, extent_root, &key, &item,
10094                                        sizeof(item));
10095                if (ret)
10096                        btrfs_abort_transaction(trans, extent_root, ret);
10097                ret = btrfs_finish_chunk_alloc(trans, extent_root,
10098                                               key.objectid, key.offset);
10099                if (ret)
10100                        btrfs_abort_transaction(trans, extent_root, ret);
10101                add_block_group_free_space(trans, root->fs_info, block_group);
10102                /* already aborted the transaction if it failed. */
10103next:
10104                list_del_init(&block_group->bg_list);
10105        }
10106        trans->can_flush_pending_bgs = can_flush_pending_bgs;
10107}
10108
10109int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10110                           struct btrfs_root *root, u64 bytes_used,
10111                           u64 type, u64 chunk_objectid, u64 chunk_offset,
10112                           u64 size)
10113{
10114        int ret;
10115        struct btrfs_root *extent_root;
10116        struct btrfs_block_group_cache *cache;
10117
10118        extent_root = root->fs_info->extent_root;
10119
10120        btrfs_set_log_full_commit(root->fs_info, trans);
10121
10122        cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10123        if (!cache)
10124                return -ENOMEM;
10125
10126        btrfs_set_block_group_used(&cache->item, bytes_used);
10127        btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10128        btrfs_set_block_group_flags(&cache->item, type);
10129
10130        cache->flags = type;
10131        cache->last_byte_to_unpin = (u64)-1;
10132        cache->cached = BTRFS_CACHE_FINISHED;
10133        cache->needs_free_space = 1;
10134        ret = exclude_super_stripes(root, cache);
10135        if (ret) {
10136                /*
10137                 * We may have excluded something, so call this just in
10138                 * case.
10139                 */
10140                free_excluded_extents(root, cache);
10141                btrfs_put_block_group(cache);
10142                return ret;
10143        }
10144
10145        add_new_free_space(cache, root->fs_info, chunk_offset,
10146                           chunk_offset + size);
10147
10148        free_excluded_extents(root, cache);
10149
10150#ifdef CONFIG_BTRFS_DEBUG
10151        if (btrfs_should_fragment_free_space(root, cache)) {
10152                u64 new_bytes_used = size - bytes_used;
10153
10154                bytes_used += new_bytes_used >> 1;
10155                fragment_free_space(root, cache);
10156        }
10157#endif
10158        /*
10159         * Call to ensure the corresponding space_info object is created and
10160         * assigned to our block group, but don't update its counters just yet.
10161         * We want our bg to be added to the rbtree with its ->space_info set.
10162         */
10163        ret = update_space_info(root->fs_info, cache->flags, 0, 0,
10164                                &cache->space_info);
10165        if (ret) {
10166                btrfs_remove_free_space_cache(cache);
10167                btrfs_put_block_group(cache);
10168                return ret;
10169        }
10170
10171        ret = btrfs_add_block_group_cache(root->fs_info, cache);
10172        if (ret) {
10173                btrfs_remove_free_space_cache(cache);
10174                btrfs_put_block_group(cache);
10175                return ret;
10176        }
10177
10178        /*
10179         * Now that our block group has its ->space_info set and is inserted in
10180         * the rbtree, update the space info's counters.
10181         */
10182        ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10183                                &cache->space_info);
10184        if (ret) {
10185                btrfs_remove_free_space_cache(cache);
10186                spin_lock(&root->fs_info->block_group_cache_lock);
10187                rb_erase(&cache->cache_node,
10188                         &root->fs_info->block_group_cache_tree);
10189                RB_CLEAR_NODE(&cache->cache_node);
10190                spin_unlock(&root->fs_info->block_group_cache_lock);
10191                btrfs_put_block_group(cache);
10192                return ret;
10193        }
10194        update_global_block_rsv(root->fs_info);
10195
10196        spin_lock(&cache->space_info->lock);
10197        cache->space_info->bytes_readonly += cache->bytes_super;
10198        spin_unlock(&cache->space_info->lock);
10199
10200        __link_block_group(cache->space_info, cache);
10201
10202        list_add_tail(&cache->bg_list, &trans->new_bgs);
10203
10204        set_avail_alloc_bits(extent_root->fs_info, type);
10205
10206        return 0;
10207}
10208
10209static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10210{
10211        u64 extra_flags = chunk_to_extended(flags) &
10212                                BTRFS_EXTENDED_PROFILE_MASK;
10213
10214        write_seqlock(&fs_info->profiles_lock);
10215        if (flags & BTRFS_BLOCK_GROUP_DATA)
10216                fs_info->avail_data_alloc_bits &= ~extra_flags;
10217        if (flags & BTRFS_BLOCK_GROUP_METADATA)
10218                fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10219        if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10220                fs_info->avail_system_alloc_bits &= ~extra_flags;
10221        write_sequnlock(&fs_info->profiles_lock);
10222}
10223
10224int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10225                             struct btrfs_root *root, u64 group_start,
10226                             struct extent_map *em)
10227{
10228        struct btrfs_path *path;
10229        struct btrfs_block_group_cache *block_group;
10230        struct btrfs_free_cluster *cluster;
10231        struct btrfs_root *tree_root = root->fs_info->tree_root;
10232        struct btrfs_key key;
10233        struct inode *inode;
10234        struct kobject *kobj = NULL;
10235        int ret;
10236        int index;
10237        int factor;
10238        struct btrfs_caching_control *caching_ctl = NULL;
10239        bool remove_em;
10240
10241        root = root->fs_info->extent_root;
10242
10243        block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10244        BUG_ON(!block_group);
10245        BUG_ON(!block_group->ro);
10246
10247        /*
10248         * Free the reserved super bytes from this block group before
10249         * remove it.
10250         */
10251        free_excluded_extents(root, block_group);
10252
10253        memcpy(&key, &block_group->key, sizeof(key));
10254        index = get_block_group_index(block_group);
10255        if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10256                                  BTRFS_BLOCK_GROUP_RAID1 |
10257                                  BTRFS_BLOCK_GROUP_RAID10))
10258                factor = 2;
10259        else
10260                factor = 1;
10261
10262        /* make sure this block group isn't part of an allocation cluster */
10263        cluster = &root->fs_info->data_alloc_cluster;
10264        spin_lock(&cluster->refill_lock);
10265        btrfs_return_cluster_to_free_space(block_group, cluster);
10266        spin_unlock(&cluster->refill_lock);
10267
10268        /*
10269         * make sure this block group isn't part of a metadata
10270         * allocation cluster
10271         */
10272        cluster = &root->fs_info->meta_alloc_cluster;
10273        spin_lock(&cluster->refill_lock);
10274        btrfs_return_cluster_to_free_space(block_group, cluster);
10275        spin_unlock(&cluster->refill_lock);
10276
10277        path = btrfs_alloc_path();
10278        if (!path) {
10279                ret = -ENOMEM;
10280                goto out;
10281        }
10282
10283        /*
10284         * get the inode first so any iput calls done for the io_list
10285         * aren't the final iput (no unlinks allowed now)
10286         */
10287        inode = lookup_free_space_inode(tree_root, block_group, path);
10288
10289        mutex_lock(&trans->transaction->cache_write_mutex);
10290        /*
10291         * make sure our free spache cache IO is done before remove the
10292         * free space inode
10293         */
10294        spin_lock(&trans->transaction->dirty_bgs_lock);
10295        if (!list_empty(&block_group->io_list)) {
10296                list_del_init(&block_group->io_list);
10297
10298                WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10299
10300                spin_unlock(&trans->transaction->dirty_bgs_lock);
10301                btrfs_wait_cache_io(root, trans, block_group,
10302                                    &block_group->io_ctl, path,
10303                                    block_group->key.objectid);
10304                btrfs_put_block_group(block_group);
10305                spin_lock(&trans->transaction->dirty_bgs_lock);
10306        }
10307
10308        if (!list_empty(&block_group->dirty_list)) {
10309                list_del_init(&block_group->dirty_list);
10310                btrfs_put_block_group(block_group);
10311        }
10312        spin_unlock(&trans->transaction->dirty_bgs_lock);
10313        mutex_unlock(&trans->transaction->cache_write_mutex);
10314
10315        if (!IS_ERR(inode)) {
10316                ret = btrfs_orphan_add(trans, inode);
10317                if (ret) {
10318                        btrfs_add_delayed_iput(inode);
10319                        goto out;
10320                }
10321                clear_nlink(inode);
10322                /* One for the block groups ref */
10323                spin_lock(&block_group->lock);
10324                if (block_group->iref) {
10325                        block_group->iref = 0;
10326                        block_group->inode = NULL;
10327                        spin_unlock(&block_group->lock);
10328                        iput(inode);
10329                } else {
10330                        spin_unlock(&block_group->lock);
10331                }
10332                /* One for our lookup ref */
10333                btrfs_add_delayed_iput(inode);
10334        }
10335
10336        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10337        key.offset = block_group->key.objectid;
10338        key.type = 0;
10339
10340        ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10341        if (ret < 0)
10342                goto out;
10343        if (ret > 0)
10344                btrfs_release_path(path);
10345        if (ret == 0) {
10346                ret = btrfs_del_item(trans, tree_root, path);
10347                if (ret)
10348                        goto out;
10349                btrfs_release_path(path);
10350        }
10351
10352        spin_lock(&root->fs_info->block_group_cache_lock);
10353        rb_erase(&block_group->cache_node,
10354                 &root->fs_info->block_group_cache_tree);
10355        RB_CLEAR_NODE(&block_group->cache_node);
10356
10357        if (root->fs_info->first_logical_byte == block_group->key.objectid)
10358                root->fs_info->first_logical_byte = (u64)-1;
10359        spin_unlock(&root->fs_info->block_group_cache_lock);
10360
10361        down_write(&block_group->space_info->groups_sem);
10362        /*
10363         * we must use list_del_init so people can check to see if they
10364         * are still on the list after taking the semaphore
10365         */
10366        list_del_init(&block_group->list);
10367        if (list_empty(&block_group->space_info->block_groups[index])) {
10368                kobj = block_group->space_info->block_group_kobjs[index];
10369                block_group->space_info->block_group_kobjs[index] = NULL;
10370                clear_avail_alloc_bits(root->fs_info, block_group->flags);
10371        }
10372        up_write(&block_group->space_info->groups_sem);
10373        if (kobj) {
10374                kobject_del(kobj);
10375                kobject_put(kobj);
10376        }
10377
10378        if (block_group->has_caching_ctl)
10379                caching_ctl = get_caching_control(block_group);
10380        if (block_group->cached == BTRFS_CACHE_STARTED)
10381                wait_block_group_cache_done(block_group);
10382        if (block_group->has_caching_ctl) {
10383                down_write(&root->fs_info->commit_root_sem);
10384                if (!caching_ctl) {
10385                        struct btrfs_caching_control *ctl;
10386
10387                        list_for_each_entry(ctl,
10388                                    &root->fs_info->caching_block_groups, list)
10389                                if (ctl->block_group == block_group) {
10390                                        caching_ctl = ctl;
10391                                        atomic_inc(&caching_ctl->count);
10392                                        break;
10393                                }
10394                }
10395                if (caching_ctl)
10396                        list_del_init(&caching_ctl->list);
10397                up_write(&root->fs_info->commit_root_sem);
10398                if (caching_ctl) {
10399                        /* Once for the caching bgs list and once for us. */
10400                        put_caching_control(caching_ctl);
10401                        put_caching_control(caching_ctl);
10402                }
10403        }
10404
10405        spin_lock(&trans->transaction->dirty_bgs_lock);
10406        if (!list_empty(&block_group->dirty_list)) {
10407                WARN_ON(1);
10408        }
10409        if (!list_empty(&block_group->io_list)) {
10410                WARN_ON(1);
10411        }
10412        spin_unlock(&trans->transaction->dirty_bgs_lock);
10413        btrfs_remove_free_space_cache(block_group);
10414
10415        spin_lock(&block_group->space_info->lock);
10416        list_del_init(&block_group->ro_list);
10417
10418        if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10419                WARN_ON(block_group->space_info->total_bytes
10420                        < block_group->key.offset);
10421                WARN_ON(block_group->space_info->bytes_readonly
10422                        < block_group->key.offset);
10423                WARN_ON(block_group->space_info->disk_total
10424                        < block_group->key.offset * factor);
10425        }
10426        block_group->space_info->total_bytes -= block_group->key.offset;
10427        block_group->space_info->bytes_readonly -= block_group->key.offset;
10428        block_group->space_info->disk_total -= block_group->key.offset * factor;
10429
10430        spin_unlock(&block_group->space_info->lock);
10431
10432        memcpy(&key, &block_group->key, sizeof(key));
10433
10434        lock_chunks(root);
10435        if (!list_empty(&em->list)) {
10436                /* We're in the transaction->pending_chunks list. */
10437                free_extent_map(em);
10438        }
10439        spin_lock(&block_group->lock);
10440        block_group->removed = 1;
10441        /*
10442         * At this point trimming can't start on this block group, because we
10443         * removed the block group from the tree fs_info->block_group_cache_tree
10444         * so no one can't find it anymore and even if someone already got this
10445         * block group before we removed it from the rbtree, they have already
10446         * incremented block_group->trimming - if they didn't, they won't find
10447         * any free space entries because we already removed them all when we
10448         * called btrfs_remove_free_space_cache().
10449         *
10450         * And we must not remove the extent map from the fs_info->mapping_tree
10451         * to prevent the same logical address range and physical device space
10452         * ranges from being reused for a new block group. This is because our
10453         * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10454         * completely transactionless, so while it is trimming a range the
10455         * currently running transaction might finish and a new one start,
10456         * allowing for new block groups to be created that can reuse the same
10457         * physical device locations unless we take this special care.
10458         *
10459         * There may also be an implicit trim operation if the file system
10460         * is mounted with -odiscard. The same protections must remain
10461         * in place until the extents have been discarded completely when
10462         * the transaction commit has completed.
10463         */
10464        remove_em = (atomic_read(&block_group->trimming) == 0);
10465        /*
10466         * Make sure a trimmer task always sees the em in the pinned_chunks list
10467         * if it sees block_group->removed == 1 (needs to lock block_group->lock
10468         * before checking block_group->removed).
10469         */
10470        if (!remove_em) {
10471                /*
10472                 * Our em might be in trans->transaction->pending_chunks which
10473                 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10474                 * and so is the fs_info->pinned_chunks list.
10475                 *
10476                 * So at this point we must be holding the chunk_mutex to avoid
10477                 * any races with chunk allocation (more specifically at
10478                 * volumes.c:contains_pending_extent()), to ensure it always
10479                 * sees the em, either in the pending_chunks list or in the
10480                 * pinned_chunks list.
10481                 */
10482                list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10483        }
10484        spin_unlock(&block_group->lock);
10485
10486        if (remove_em) {
10487                struct extent_map_tree *em_tree;
10488
10489                em_tree = &root->fs_info->mapping_tree.map_tree;
10490                write_lock(&em_tree->lock);
10491                /*
10492                 * The em might be in the pending_chunks list, so make sure the
10493                 * chunk mutex is locked, since remove_extent_mapping() will
10494                 * delete us from that list.
10495                 */
10496                remove_extent_mapping(em_tree, em);
10497                write_unlock(&em_tree->lock);
10498                /* once for the tree */
10499                free_extent_map(em);
10500        }
10501
10502        unlock_chunks(root);
10503
10504        ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10505        if (ret)
10506                goto out;
10507
10508        btrfs_put_block_group(block_group);
10509        btrfs_put_block_group(block_group);
10510
10511        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10512        if (ret > 0)
10513                ret = -EIO;
10514        if (ret < 0)
10515                goto out;
10516
10517        ret = btrfs_del_item(trans, root, path);
10518out:
10519        btrfs_free_path(path);
10520        return ret;
10521}
10522
10523struct btrfs_trans_handle *
10524btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10525                                     const u64 chunk_offset)
10526{
10527        struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10528        struct extent_map *em;
10529        struct map_lookup *map;
10530        unsigned int num_items;
10531
10532        read_lock(&em_tree->lock);
10533        em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10534        read_unlock(&em_tree->lock);
10535        ASSERT(em && em->start == chunk_offset);
10536
10537        /*
10538         * We need to reserve 3 + N units from the metadata space info in order
10539         * to remove a block group (done at btrfs_remove_chunk() and at
10540         * btrfs_remove_block_group()), which are used for:
10541         *
10542         * 1 unit for adding the free space inode's orphan (located in the tree
10543         * of tree roots).
10544         * 1 unit for deleting the block group item (located in the extent
10545         * tree).
10546         * 1 unit for deleting the free space item (located in tree of tree
10547         * roots).
10548         * N units for deleting N device extent items corresponding to each
10549         * stripe (located in the device tree).
10550         *
10551         * In order to remove a block group we also need to reserve units in the
10552         * system space info in order to update the chunk tree (update one or
10553         * more device items and remove one chunk item), but this is done at
10554         * btrfs_remove_chunk() through a call to check_system_chunk().
10555         */
10556        map = em->map_lookup;
10557        num_items = 3 + map->num_stripes;
10558        free_extent_map(em);
10559
10560        return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10561                                                           num_items, 1);
10562}
10563
10564/*
10565 * Process the unused_bgs list and remove any that don't have any allocated
10566 * space inside of them.
10567 */
10568void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10569{
10570        struct btrfs_block_group_cache *block_group;
10571        struct btrfs_space_info *space_info;
10572        struct btrfs_root *root = fs_info->extent_root;
10573        struct btrfs_trans_handle *trans;
10574        int ret = 0;
10575
10576        if (!fs_info->open)
10577                return;
10578
10579        spin_lock(&fs_info->unused_bgs_lock);
10580        while (!list_empty(&fs_info->unused_bgs)) {
10581                u64 start, end;
10582                int trimming;
10583
10584                block_group = list_first_entry(&fs_info->unused_bgs,
10585                                               struct btrfs_block_group_cache,
10586                                               bg_list);
10587                list_del_init(&block_group->bg_list);
10588
10589                space_info = block_group->space_info;
10590
10591                if (ret || btrfs_mixed_space_info(space_info)) {
10592                        btrfs_put_block_group(block_group);
10593                        continue;
10594                }
10595                spin_unlock(&fs_info->unused_bgs_lock);
10596
10597                mutex_lock(&fs_info->delete_unused_bgs_mutex);
10598
10599                /* Don't want to race with allocators so take the groups_sem */
10600                down_write(&space_info->groups_sem);
10601                spin_lock(&block_group->lock);
10602                if (block_group->reserved ||
10603                    btrfs_block_group_used(&block_group->item) ||
10604                    block_group->ro ||
10605                    list_is_singular(&block_group->list)) {
10606                        /*
10607                         * We want to bail if we made new allocations or have
10608                         * outstanding allocations in this block group.  We do
10609                         * the ro check in case balance is currently acting on
10610                         * this block group.
10611                         */
10612                        spin_unlock(&block_group->lock);
10613                        up_write(&space_info->groups_sem);
10614                        goto next;
10615                }
10616                spin_unlock(&block_group->lock);
10617
10618                /* We don't want to force the issue, only flip if it's ok. */
10619                ret = inc_block_group_ro(block_group, 0);
10620                up_write(&space_info->groups_sem);
10621                if (ret < 0) {
10622                        ret = 0;
10623                        goto next;
10624                }
10625
10626                /*
10627                 * Want to do this before we do anything else so we can recover
10628                 * properly if we fail to join the transaction.
10629                 */
10630                trans = btrfs_start_trans_remove_block_group(fs_info,
10631                                                     block_group->key.objectid);
10632                if (IS_ERR(trans)) {
10633                        btrfs_dec_block_group_ro(root, block_group);
10634                        ret = PTR_ERR(trans);
10635                        goto next;
10636                }
10637
10638                /*
10639                 * We could have pending pinned extents for this block group,
10640                 * just delete them, we don't care about them anymore.
10641                 */
10642                start = block_group->key.objectid;
10643                end = start + block_group->key.offset - 1;
10644                /*
10645                 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10646                 * btrfs_finish_extent_commit(). If we are at transaction N,
10647                 * another task might be running finish_extent_commit() for the
10648                 * previous transaction N - 1, and have seen a range belonging
10649                 * to the block group in freed_extents[] before we were able to
10650                 * clear the whole block group range from freed_extents[]. This
10651                 * means that task can lookup for the block group after we
10652                 * unpinned it from freed_extents[] and removed it, leading to
10653                 * a BUG_ON() at btrfs_unpin_extent_range().
10654                 */
10655                mutex_lock(&fs_info->unused_bg_unpin_mutex);
10656                ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10657                                  EXTENT_DIRTY);
10658                if (ret) {
10659                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10660                        btrfs_dec_block_group_ro(root, block_group);
10661                        goto end_trans;
10662                }
10663                ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10664                                  EXTENT_DIRTY);
10665                if (ret) {
10666                        mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10667                        btrfs_dec_block_group_ro(root, block_group);
10668                        goto end_trans;
10669                }
10670                mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10671
10672                /* Reset pinned so btrfs_put_block_group doesn't complain */
10673                spin_lock(&space_info->lock);
10674                spin_lock(&block_group->lock);
10675
10676                space_info->bytes_pinned -= block_group->pinned;
10677                space_info->bytes_readonly += block_group->pinned;
10678                percpu_counter_add(&space_info->total_bytes_pinned,
10679                                   -block_group->pinned);
10680                block_group->pinned = 0;
10681
10682                spin_unlock(&block_group->lock);
10683                spin_unlock(&space_info->lock);
10684
10685                /* DISCARD can flip during remount */
10686                trimming = btrfs_test_opt(root, DISCARD);
10687
10688                /* Implicit trim during transaction commit. */
10689                if (trimming)
10690                        btrfs_get_block_group_trimming(block_group);
10691
10692                /*
10693                 * Btrfs_remove_chunk will abort the transaction if things go
10694                 * horribly wrong.
10695                 */
10696                ret = btrfs_remove_chunk(trans, root,
10697                                         block_group->key.objectid);
10698
10699                if (ret) {
10700                        if (trimming)
10701                                btrfs_put_block_group_trimming(block_group);
10702                        goto end_trans;
10703                }
10704
10705                /*
10706                 * If we're not mounted with -odiscard, we can just forget
10707                 * about this block group. Otherwise we'll need to wait
10708                 * until transaction commit to do the actual discard.
10709                 */
10710                if (trimming) {
10711                        spin_lock(&fs_info->unused_bgs_lock);
10712                        /*
10713                         * A concurrent scrub might have added us to the list
10714                         * fs_info->unused_bgs, so use a list_move operation
10715                         * to add the block group to the deleted_bgs list.
10716                         */
10717                        list_move(&block_group->bg_list,
10718                                  &trans->transaction->deleted_bgs);
10719                        spin_unlock(&fs_info->unused_bgs_lock);
10720                        btrfs_get_block_group(block_group);
10721                }
10722end_trans:
10723                btrfs_end_transaction(trans, root);
10724next:
10725                mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10726                btrfs_put_block_group(block_group);
10727                spin_lock(&fs_info->unused_bgs_lock);
10728        }
10729        spin_unlock(&fs_info->unused_bgs_lock);
10730}
10731
10732int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10733{
10734        struct btrfs_space_info *space_info;
10735        struct btrfs_super_block *disk_super;
10736        u64 features;
10737        u64 flags;
10738        int mixed = 0;
10739        int ret;
10740
10741        disk_super = fs_info->super_copy;
10742        if (!btrfs_super_root(disk_super))
10743                return -EINVAL;
10744
10745        features = btrfs_super_incompat_flags(disk_super);
10746        if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10747                mixed = 1;
10748
10749        flags = BTRFS_BLOCK_GROUP_SYSTEM;
10750        ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10751        if (ret)
10752                goto out;
10753
10754        if (mixed) {
10755                flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10756                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10757        } else {
10758                flags = BTRFS_BLOCK_GROUP_METADATA;
10759                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10760                if (ret)
10761                        goto out;
10762
10763                flags = BTRFS_BLOCK_GROUP_DATA;
10764                ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10765        }
10766out:
10767        return ret;
10768}
10769
10770int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10771{
10772        return unpin_extent_range(root, start, end, false);
10773}
10774
10775/*
10776 * It used to be that old block groups would be left around forever.
10777 * Iterating over them would be enough to trim unused space.  Since we
10778 * now automatically remove them, we also need to iterate over unallocated
10779 * space.
10780 *
10781 * We don't want a transaction for this since the discard may take a
10782 * substantial amount of time.  We don't require that a transaction be
10783 * running, but we do need to take a running transaction into account
10784 * to ensure that we're not discarding chunks that were released in
10785 * the current transaction.
10786 *
10787 * Holding the chunks lock will prevent other threads from allocating
10788 * or releasing chunks, but it won't prevent a running transaction
10789 * from committing and releasing the memory that the pending chunks
10790 * list head uses.  For that, we need to take a reference to the
10791 * transaction.
10792 */
10793static int btrfs_trim_free_extents(struct btrfs_device *device,
10794                                   u64 minlen, u64 *trimmed)
10795{
10796        u64 start = 0, len = 0;
10797        int ret;
10798
10799        *trimmed = 0;
10800
10801        /* Not writeable = nothing to do. */
10802        if (!device->writeable)
10803                return 0;
10804
10805        /* No free space = nothing to do. */
10806        if (device->total_bytes <= device->bytes_used)
10807                return 0;
10808
10809        ret = 0;
10810
10811        while (1) {
10812                struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10813                struct btrfs_transaction *trans;
10814                u64 bytes;
10815
10816                ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10817                if (ret)
10818                        return ret;
10819
10820                down_read(&fs_info->commit_root_sem);
10821
10822                spin_lock(&fs_info->trans_lock);
10823                trans = fs_info->running_transaction;
10824                if (trans)
10825                        atomic_inc(&trans->use_count);
10826                spin_unlock(&fs_info->trans_lock);
10827
10828                ret = find_free_dev_extent_start(trans, device, minlen, start,
10829                                                 &start, &len);
10830                if (trans)
10831                        btrfs_put_transaction(trans);
10832
10833                if (ret) {
10834                        up_read(&fs_info->commit_root_sem);
10835                        mutex_unlock(&fs_info->chunk_mutex);
10836                        if (ret == -ENOSPC)
10837                                ret = 0;
10838                        break;
10839                }
10840
10841                ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10842                up_read(&fs_info->commit_root_sem);
10843                mutex_unlock(&fs_info->chunk_mutex);
10844
10845                if (ret)
10846                        break;
10847
10848                start += len;
10849                *trimmed += bytes;
10850
10851                if (fatal_signal_pending(current)) {
10852                        ret = -ERESTARTSYS;
10853                        break;
10854                }
10855
10856                cond_resched();
10857        }
10858
10859        return ret;
10860}
10861
10862int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10863{
10864        struct btrfs_fs_info *fs_info = root->fs_info;
10865        struct btrfs_block_group_cache *cache = NULL;
10866        struct btrfs_device *device;
10867        struct list_head *devices;
10868        u64 group_trimmed;
10869        u64 start;
10870        u64 end;
10871        u64 trimmed = 0;
10872        u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10873        int ret = 0;
10874
10875        /*
10876         * try to trim all FS space, our block group may start from non-zero.
10877         */
10878        if (range->len == total_bytes)
10879                cache = btrfs_lookup_first_block_group(fs_info, range->start);
10880        else
10881                cache = btrfs_lookup_block_group(fs_info, range->start);
10882
10883        while (cache) {
10884                if (cache->key.objectid >= (range->start + range->len)) {
10885                        btrfs_put_block_group(cache);
10886                        break;
10887                }
10888
10889                start = max(range->start, cache->key.objectid);
10890                end = min(range->start + range->len,
10891                                cache->key.objectid + cache->key.offset);
10892
10893                if (end - start >= range->minlen) {
10894                        if (!block_group_cache_done(cache)) {
10895                                ret = cache_block_group(cache, 0);
10896                                if (ret) {
10897                                        btrfs_put_block_group(cache);
10898                                        break;
10899                                }
10900                                ret = wait_block_group_cache_done(cache);
10901                                if (ret) {
10902                                        btrfs_put_block_group(cache);
10903                                        break;
10904                                }
10905                        }
10906                        ret = btrfs_trim_block_group(cache,
10907                                                     &group_trimmed,
10908                                                     start,
10909                                                     end,
10910                                                     range->minlen);
10911
10912                        trimmed += group_trimmed;
10913                        if (ret) {
10914                                btrfs_put_block_group(cache);
10915                                break;
10916                        }
10917                }
10918
10919                cache = next_block_group(fs_info->tree_root, cache);
10920        }
10921
10922        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10923        devices = &root->fs_info->fs_devices->alloc_list;
10924        list_for_each_entry(device, devices, dev_alloc_list) {
10925                ret = btrfs_trim_free_extents(device, range->minlen,
10926                                              &group_trimmed);
10927                if (ret)
10928                        break;
10929
10930                trimmed += group_trimmed;
10931        }
10932        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10933
10934        range->len = trimmed;
10935        return ret;
10936}
10937
10938/*
10939 * btrfs_{start,end}_write_no_snapshoting() are similar to
10940 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10941 * data into the page cache through nocow before the subvolume is snapshoted,
10942 * but flush the data into disk after the snapshot creation, or to prevent
10943 * operations while snapshoting is ongoing and that cause the snapshot to be
10944 * inconsistent (writes followed by expanding truncates for example).
10945 */
10946void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
10947{
10948        percpu_counter_dec(&root->subv_writers->counter);
10949        /*
10950         * Make sure counter is updated before we wake up waiters.
10951         */
10952        smp_mb();
10953        if (waitqueue_active(&root->subv_writers->wait))
10954                wake_up(&root->subv_writers->wait);
10955}
10956
10957int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
10958{
10959        if (atomic_read(&root->will_be_snapshoted))
10960                return 0;
10961
10962        percpu_counter_inc(&root->subv_writers->counter);
10963        /*
10964         * Make sure counter is updated before we check for snapshot creation.
10965         */
10966        smp_mb();
10967        if (atomic_read(&root->will_be_snapshoted)) {
10968                btrfs_end_write_no_snapshoting(root);
10969                return 0;
10970        }
10971        return 1;
10972}
10973
10974static int wait_snapshoting_atomic_t(atomic_t *a)
10975{
10976        schedule();
10977        return 0;
10978}
10979
10980void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10981{
10982        while (true) {
10983                int ret;
10984
10985                ret = btrfs_start_write_no_snapshoting(root);
10986                if (ret)
10987                        break;
10988                wait_on_atomic_t(&root->will_be_snapshoted,
10989                                 wait_snapshoting_atomic_t,
10990                                 TASK_UNINTERRUPTIBLE);
10991        }
10992}
10993