linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
  14#include "extent_io.h"
  15#include "extent_map.h"
  16#include "ctree.h"
  17#include "btrfs_inode.h"
  18#include "volumes.h"
  19#include "check-integrity.h"
  20#include "locking.h"
  21#include "rcu-string.h"
  22#include "backref.h"
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26static struct bio_set *btrfs_bioset;
  27
  28static inline bool extent_state_in_tree(const struct extent_state *state)
  29{
  30        return !RB_EMPTY_NODE(&state->rb_node);
  31}
  32
  33#ifdef CONFIG_BTRFS_DEBUG
  34static LIST_HEAD(buffers);
  35static LIST_HEAD(states);
  36
  37static DEFINE_SPINLOCK(leak_lock);
  38
  39static inline
  40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  41{
  42        unsigned long flags;
  43
  44        spin_lock_irqsave(&leak_lock, flags);
  45        list_add(new, head);
  46        spin_unlock_irqrestore(&leak_lock, flags);
  47}
  48
  49static inline
  50void btrfs_leak_debug_del(struct list_head *entry)
  51{
  52        unsigned long flags;
  53
  54        spin_lock_irqsave(&leak_lock, flags);
  55        list_del(entry);
  56        spin_unlock_irqrestore(&leak_lock, flags);
  57}
  58
  59static inline
  60void btrfs_leak_debug_check(void)
  61{
  62        struct extent_state *state;
  63        struct extent_buffer *eb;
  64
  65        while (!list_empty(&states)) {
  66                state = list_entry(states.next, struct extent_state, leak_list);
  67                pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  68                       state->start, state->end, state->state,
  69                       extent_state_in_tree(state),
  70                       atomic_read(&state->refs));
  71                list_del(&state->leak_list);
  72                kmem_cache_free(extent_state_cache, state);
  73        }
  74
  75        while (!list_empty(&buffers)) {
  76                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  77                printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
  78                       "refs %d\n",
  79                       eb->start, eb->len, atomic_read(&eb->refs));
  80                list_del(&eb->leak_list);
  81                kmem_cache_free(extent_buffer_cache, eb);
  82        }
  83}
  84
  85#define btrfs_debug_check_extent_io_range(tree, start, end)             \
  86        __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
  87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
  88                struct extent_io_tree *tree, u64 start, u64 end)
  89{
  90        struct inode *inode;
  91        u64 isize;
  92
  93        if (!tree->mapping)
  94                return;
  95
  96        inode = tree->mapping->host;
  97        isize = i_size_read(inode);
  98        if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
  99                btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 100                    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 101                                caller, btrfs_ino(inode), isize, start, end);
 102        }
 103}
 104#else
 105#define btrfs_leak_debug_add(new, head) do {} while (0)
 106#define btrfs_leak_debug_del(entry)     do {} while (0)
 107#define btrfs_leak_debug_check()        do {} while (0)
 108#define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
 109#endif
 110
 111#define BUFFER_LRU_MAX 64
 112
 113struct tree_entry {
 114        u64 start;
 115        u64 end;
 116        struct rb_node rb_node;
 117};
 118
 119struct extent_page_data {
 120        struct bio *bio;
 121        struct extent_io_tree *tree;
 122        get_extent_t *get_extent;
 123        unsigned long bio_flags;
 124
 125        /* tells writepage not to lock the state bits for this range
 126         * it still does the unlocking
 127         */
 128        unsigned int extent_locked:1;
 129
 130        /* tells the submit_bio code to use a WRITE_SYNC */
 131        unsigned int sync_io:1;
 132};
 133
 134static void add_extent_changeset(struct extent_state *state, unsigned bits,
 135                                 struct extent_changeset *changeset,
 136                                 int set)
 137{
 138        int ret;
 139
 140        if (!changeset)
 141                return;
 142        if (set && (state->state & bits) == bits)
 143                return;
 144        if (!set && (state->state & bits) == 0)
 145                return;
 146        changeset->bytes_changed += state->end - state->start + 1;
 147        ret = ulist_add(changeset->range_changed, state->start, state->end,
 148                        GFP_ATOMIC);
 149        /* ENOMEM */
 150        BUG_ON(ret < 0);
 151}
 152
 153static noinline void flush_write_bio(void *data);
 154static inline struct btrfs_fs_info *
 155tree_fs_info(struct extent_io_tree *tree)
 156{
 157        if (!tree->mapping)
 158                return NULL;
 159        return btrfs_sb(tree->mapping->host->i_sb);
 160}
 161
 162int __init extent_io_init(void)
 163{
 164        extent_state_cache = kmem_cache_create("btrfs_extent_state",
 165                        sizeof(struct extent_state), 0,
 166                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 167        if (!extent_state_cache)
 168                return -ENOMEM;
 169
 170        extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 171                        sizeof(struct extent_buffer), 0,
 172                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 173        if (!extent_buffer_cache)
 174                goto free_state_cache;
 175
 176        btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 177                                     offsetof(struct btrfs_io_bio, bio));
 178        if (!btrfs_bioset)
 179                goto free_buffer_cache;
 180
 181        if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
 182                goto free_bioset;
 183
 184        return 0;
 185
 186free_bioset:
 187        bioset_free(btrfs_bioset);
 188        btrfs_bioset = NULL;
 189
 190free_buffer_cache:
 191        kmem_cache_destroy(extent_buffer_cache);
 192        extent_buffer_cache = NULL;
 193
 194free_state_cache:
 195        kmem_cache_destroy(extent_state_cache);
 196        extent_state_cache = NULL;
 197        return -ENOMEM;
 198}
 199
 200void extent_io_exit(void)
 201{
 202        btrfs_leak_debug_check();
 203
 204        /*
 205         * Make sure all delayed rcu free are flushed before we
 206         * destroy caches.
 207         */
 208        rcu_barrier();
 209        kmem_cache_destroy(extent_state_cache);
 210        kmem_cache_destroy(extent_buffer_cache);
 211        if (btrfs_bioset)
 212                bioset_free(btrfs_bioset);
 213}
 214
 215void extent_io_tree_init(struct extent_io_tree *tree,
 216                         struct address_space *mapping)
 217{
 218        tree->state = RB_ROOT;
 219        tree->ops = NULL;
 220        tree->dirty_bytes = 0;
 221        spin_lock_init(&tree->lock);
 222        tree->mapping = mapping;
 223}
 224
 225static struct extent_state *alloc_extent_state(gfp_t mask)
 226{
 227        struct extent_state *state;
 228
 229        state = kmem_cache_alloc(extent_state_cache, mask);
 230        if (!state)
 231                return state;
 232        state->state = 0;
 233        state->failrec = NULL;
 234        RB_CLEAR_NODE(&state->rb_node);
 235        btrfs_leak_debug_add(&state->leak_list, &states);
 236        atomic_set(&state->refs, 1);
 237        init_waitqueue_head(&state->wq);
 238        trace_alloc_extent_state(state, mask, _RET_IP_);
 239        return state;
 240}
 241
 242void free_extent_state(struct extent_state *state)
 243{
 244        if (!state)
 245                return;
 246        if (atomic_dec_and_test(&state->refs)) {
 247                WARN_ON(extent_state_in_tree(state));
 248                btrfs_leak_debug_del(&state->leak_list);
 249                trace_free_extent_state(state, _RET_IP_);
 250                kmem_cache_free(extent_state_cache, state);
 251        }
 252}
 253
 254static struct rb_node *tree_insert(struct rb_root *root,
 255                                   struct rb_node *search_start,
 256                                   u64 offset,
 257                                   struct rb_node *node,
 258                                   struct rb_node ***p_in,
 259                                   struct rb_node **parent_in)
 260{
 261        struct rb_node **p;
 262        struct rb_node *parent = NULL;
 263        struct tree_entry *entry;
 264
 265        if (p_in && parent_in) {
 266                p = *p_in;
 267                parent = *parent_in;
 268                goto do_insert;
 269        }
 270
 271        p = search_start ? &search_start : &root->rb_node;
 272        while (*p) {
 273                parent = *p;
 274                entry = rb_entry(parent, struct tree_entry, rb_node);
 275
 276                if (offset < entry->start)
 277                        p = &(*p)->rb_left;
 278                else if (offset > entry->end)
 279                        p = &(*p)->rb_right;
 280                else
 281                        return parent;
 282        }
 283
 284do_insert:
 285        rb_link_node(node, parent, p);
 286        rb_insert_color(node, root);
 287        return NULL;
 288}
 289
 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 291                                      struct rb_node **prev_ret,
 292                                      struct rb_node **next_ret,
 293                                      struct rb_node ***p_ret,
 294                                      struct rb_node **parent_ret)
 295{
 296        struct rb_root *root = &tree->state;
 297        struct rb_node **n = &root->rb_node;
 298        struct rb_node *prev = NULL;
 299        struct rb_node *orig_prev = NULL;
 300        struct tree_entry *entry;
 301        struct tree_entry *prev_entry = NULL;
 302
 303        while (*n) {
 304                prev = *n;
 305                entry = rb_entry(prev, struct tree_entry, rb_node);
 306                prev_entry = entry;
 307
 308                if (offset < entry->start)
 309                        n = &(*n)->rb_left;
 310                else if (offset > entry->end)
 311                        n = &(*n)->rb_right;
 312                else
 313                        return *n;
 314        }
 315
 316        if (p_ret)
 317                *p_ret = n;
 318        if (parent_ret)
 319                *parent_ret = prev;
 320
 321        if (prev_ret) {
 322                orig_prev = prev;
 323                while (prev && offset > prev_entry->end) {
 324                        prev = rb_next(prev);
 325                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 326                }
 327                *prev_ret = prev;
 328                prev = orig_prev;
 329        }
 330
 331        if (next_ret) {
 332                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 333                while (prev && offset < prev_entry->start) {
 334                        prev = rb_prev(prev);
 335                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 336                }
 337                *next_ret = prev;
 338        }
 339        return NULL;
 340}
 341
 342static inline struct rb_node *
 343tree_search_for_insert(struct extent_io_tree *tree,
 344                       u64 offset,
 345                       struct rb_node ***p_ret,
 346                       struct rb_node **parent_ret)
 347{
 348        struct rb_node *prev = NULL;
 349        struct rb_node *ret;
 350
 351        ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
 352        if (!ret)
 353                return prev;
 354        return ret;
 355}
 356
 357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 358                                          u64 offset)
 359{
 360        return tree_search_for_insert(tree, offset, NULL, NULL);
 361}
 362
 363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 364                     struct extent_state *other)
 365{
 366        if (tree->ops && tree->ops->merge_extent_hook)
 367                tree->ops->merge_extent_hook(tree->mapping->host, new,
 368                                             other);
 369}
 370
 371/*
 372 * utility function to look for merge candidates inside a given range.
 373 * Any extents with matching state are merged together into a single
 374 * extent in the tree.  Extents with EXTENT_IO in their state field
 375 * are not merged because the end_io handlers need to be able to do
 376 * operations on them without sleeping (or doing allocations/splits).
 377 *
 378 * This should be called with the tree lock held.
 379 */
 380static void merge_state(struct extent_io_tree *tree,
 381                        struct extent_state *state)
 382{
 383        struct extent_state *other;
 384        struct rb_node *other_node;
 385
 386        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 387                return;
 388
 389        other_node = rb_prev(&state->rb_node);
 390        if (other_node) {
 391                other = rb_entry(other_node, struct extent_state, rb_node);
 392                if (other->end == state->start - 1 &&
 393                    other->state == state->state) {
 394                        merge_cb(tree, state, other);
 395                        state->start = other->start;
 396                        rb_erase(&other->rb_node, &tree->state);
 397                        RB_CLEAR_NODE(&other->rb_node);
 398                        free_extent_state(other);
 399                }
 400        }
 401        other_node = rb_next(&state->rb_node);
 402        if (other_node) {
 403                other = rb_entry(other_node, struct extent_state, rb_node);
 404                if (other->start == state->end + 1 &&
 405                    other->state == state->state) {
 406                        merge_cb(tree, state, other);
 407                        state->end = other->end;
 408                        rb_erase(&other->rb_node, &tree->state);
 409                        RB_CLEAR_NODE(&other->rb_node);
 410                        free_extent_state(other);
 411                }
 412        }
 413}
 414
 415static void set_state_cb(struct extent_io_tree *tree,
 416                         struct extent_state *state, unsigned *bits)
 417{
 418        if (tree->ops && tree->ops->set_bit_hook)
 419                tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 420}
 421
 422static void clear_state_cb(struct extent_io_tree *tree,
 423                           struct extent_state *state, unsigned *bits)
 424{
 425        if (tree->ops && tree->ops->clear_bit_hook)
 426                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 427}
 428
 429static void set_state_bits(struct extent_io_tree *tree,
 430                           struct extent_state *state, unsigned *bits,
 431                           struct extent_changeset *changeset);
 432
 433/*
 434 * insert an extent_state struct into the tree.  'bits' are set on the
 435 * struct before it is inserted.
 436 *
 437 * This may return -EEXIST if the extent is already there, in which case the
 438 * state struct is freed.
 439 *
 440 * The tree lock is not taken internally.  This is a utility function and
 441 * probably isn't what you want to call (see set/clear_extent_bit).
 442 */
 443static int insert_state(struct extent_io_tree *tree,
 444                        struct extent_state *state, u64 start, u64 end,
 445                        struct rb_node ***p,
 446                        struct rb_node **parent,
 447                        unsigned *bits, struct extent_changeset *changeset)
 448{
 449        struct rb_node *node;
 450
 451        if (end < start)
 452                WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
 453                       end, start);
 454        state->start = start;
 455        state->end = end;
 456
 457        set_state_bits(tree, state, bits, changeset);
 458
 459        node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 460        if (node) {
 461                struct extent_state *found;
 462                found = rb_entry(node, struct extent_state, rb_node);
 463                printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
 464                       "%llu %llu\n",
 465                       found->start, found->end, start, end);
 466                return -EEXIST;
 467        }
 468        merge_state(tree, state);
 469        return 0;
 470}
 471
 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 473                     u64 split)
 474{
 475        if (tree->ops && tree->ops->split_extent_hook)
 476                tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 477}
 478
 479/*
 480 * split a given extent state struct in two, inserting the preallocated
 481 * struct 'prealloc' as the newly created second half.  'split' indicates an
 482 * offset inside 'orig' where it should be split.
 483 *
 484 * Before calling,
 485 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 486 * are two extent state structs in the tree:
 487 * prealloc: [orig->start, split - 1]
 488 * orig: [ split, orig->end ]
 489 *
 490 * The tree locks are not taken by this function. They need to be held
 491 * by the caller.
 492 */
 493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 494                       struct extent_state *prealloc, u64 split)
 495{
 496        struct rb_node *node;
 497
 498        split_cb(tree, orig, split);
 499
 500        prealloc->start = orig->start;
 501        prealloc->end = split - 1;
 502        prealloc->state = orig->state;
 503        orig->start = split;
 504
 505        node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 506                           &prealloc->rb_node, NULL, NULL);
 507        if (node) {
 508                free_extent_state(prealloc);
 509                return -EEXIST;
 510        }
 511        return 0;
 512}
 513
 514static struct extent_state *next_state(struct extent_state *state)
 515{
 516        struct rb_node *next = rb_next(&state->rb_node);
 517        if (next)
 518                return rb_entry(next, struct extent_state, rb_node);
 519        else
 520                return NULL;
 521}
 522
 523/*
 524 * utility function to clear some bits in an extent state struct.
 525 * it will optionally wake up any one waiting on this state (wake == 1).
 526 *
 527 * If no bits are set on the state struct after clearing things, the
 528 * struct is freed and removed from the tree
 529 */
 530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 531                                            struct extent_state *state,
 532                                            unsigned *bits, int wake,
 533                                            struct extent_changeset *changeset)
 534{
 535        struct extent_state *next;
 536        unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
 537
 538        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 539                u64 range = state->end - state->start + 1;
 540                WARN_ON(range > tree->dirty_bytes);
 541                tree->dirty_bytes -= range;
 542        }
 543        clear_state_cb(tree, state, bits);
 544        add_extent_changeset(state, bits_to_clear, changeset, 0);
 545        state->state &= ~bits_to_clear;
 546        if (wake)
 547                wake_up(&state->wq);
 548        if (state->state == 0) {
 549                next = next_state(state);
 550                if (extent_state_in_tree(state)) {
 551                        rb_erase(&state->rb_node, &tree->state);
 552                        RB_CLEAR_NODE(&state->rb_node);
 553                        free_extent_state(state);
 554                } else {
 555                        WARN_ON(1);
 556                }
 557        } else {
 558                merge_state(tree, state);
 559                next = next_state(state);
 560        }
 561        return next;
 562}
 563
 564static struct extent_state *
 565alloc_extent_state_atomic(struct extent_state *prealloc)
 566{
 567        if (!prealloc)
 568                prealloc = alloc_extent_state(GFP_ATOMIC);
 569
 570        return prealloc;
 571}
 572
 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 574{
 575        btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 576                    "Extent tree was modified by another "
 577                    "thread while locked.");
 578}
 579
 580/*
 581 * clear some bits on a range in the tree.  This may require splitting
 582 * or inserting elements in the tree, so the gfp mask is used to
 583 * indicate which allocations or sleeping are allowed.
 584 *
 585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 586 * the given range from the tree regardless of state (ie for truncate).
 587 *
 588 * the range [start, end] is inclusive.
 589 *
 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
 591 */
 592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 593                              unsigned bits, int wake, int delete,
 594                              struct extent_state **cached_state,
 595                              gfp_t mask, struct extent_changeset *changeset)
 596{
 597        struct extent_state *state;
 598        struct extent_state *cached;
 599        struct extent_state *prealloc = NULL;
 600        struct rb_node *node;
 601        u64 last_end;
 602        int err;
 603        int clear = 0;
 604
 605        btrfs_debug_check_extent_io_range(tree, start, end);
 606
 607        if (bits & EXTENT_DELALLOC)
 608                bits |= EXTENT_NORESERVE;
 609
 610        if (delete)
 611                bits |= ~EXTENT_CTLBITS;
 612        bits |= EXTENT_FIRST_DELALLOC;
 613
 614        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 615                clear = 1;
 616again:
 617        if (!prealloc && gfpflags_allow_blocking(mask)) {
 618                /*
 619                 * Don't care for allocation failure here because we might end
 620                 * up not needing the pre-allocated extent state at all, which
 621                 * is the case if we only have in the tree extent states that
 622                 * cover our input range and don't cover too any other range.
 623                 * If we end up needing a new extent state we allocate it later.
 624                 */
 625                prealloc = alloc_extent_state(mask);
 626        }
 627
 628        spin_lock(&tree->lock);
 629        if (cached_state) {
 630                cached = *cached_state;
 631
 632                if (clear) {
 633                        *cached_state = NULL;
 634                        cached_state = NULL;
 635                }
 636
 637                if (cached && extent_state_in_tree(cached) &&
 638                    cached->start <= start && cached->end > start) {
 639                        if (clear)
 640                                atomic_dec(&cached->refs);
 641                        state = cached;
 642                        goto hit_next;
 643                }
 644                if (clear)
 645                        free_extent_state(cached);
 646        }
 647        /*
 648         * this search will find the extents that end after
 649         * our range starts
 650         */
 651        node = tree_search(tree, start);
 652        if (!node)
 653                goto out;
 654        state = rb_entry(node, struct extent_state, rb_node);
 655hit_next:
 656        if (state->start > end)
 657                goto out;
 658        WARN_ON(state->end < start);
 659        last_end = state->end;
 660
 661        /* the state doesn't have the wanted bits, go ahead */
 662        if (!(state->state & bits)) {
 663                state = next_state(state);
 664                goto next;
 665        }
 666
 667        /*
 668         *     | ---- desired range ---- |
 669         *  | state | or
 670         *  | ------------- state -------------- |
 671         *
 672         * We need to split the extent we found, and may flip
 673         * bits on second half.
 674         *
 675         * If the extent we found extends past our range, we
 676         * just split and search again.  It'll get split again
 677         * the next time though.
 678         *
 679         * If the extent we found is inside our range, we clear
 680         * the desired bit on it.
 681         */
 682
 683        if (state->start < start) {
 684                prealloc = alloc_extent_state_atomic(prealloc);
 685                BUG_ON(!prealloc);
 686                err = split_state(tree, state, prealloc, start);
 687                if (err)
 688                        extent_io_tree_panic(tree, err);
 689
 690                prealloc = NULL;
 691                if (err)
 692                        goto out;
 693                if (state->end <= end) {
 694                        state = clear_state_bit(tree, state, &bits, wake,
 695                                                changeset);
 696                        goto next;
 697                }
 698                goto search_again;
 699        }
 700        /*
 701         * | ---- desired range ---- |
 702         *                        | state |
 703         * We need to split the extent, and clear the bit
 704         * on the first half
 705         */
 706        if (state->start <= end && state->end > end) {
 707                prealloc = alloc_extent_state_atomic(prealloc);
 708                BUG_ON(!prealloc);
 709                err = split_state(tree, state, prealloc, end + 1);
 710                if (err)
 711                        extent_io_tree_panic(tree, err);
 712
 713                if (wake)
 714                        wake_up(&state->wq);
 715
 716                clear_state_bit(tree, prealloc, &bits, wake, changeset);
 717
 718                prealloc = NULL;
 719                goto out;
 720        }
 721
 722        state = clear_state_bit(tree, state, &bits, wake, changeset);
 723next:
 724        if (last_end == (u64)-1)
 725                goto out;
 726        start = last_end + 1;
 727        if (start <= end && state && !need_resched())
 728                goto hit_next;
 729
 730search_again:
 731        if (start > end)
 732                goto out;
 733        spin_unlock(&tree->lock);
 734        if (gfpflags_allow_blocking(mask))
 735                cond_resched();
 736        goto again;
 737
 738out:
 739        spin_unlock(&tree->lock);
 740        if (prealloc)
 741                free_extent_state(prealloc);
 742
 743        return 0;
 744
 745}
 746
 747static void wait_on_state(struct extent_io_tree *tree,
 748                          struct extent_state *state)
 749                __releases(tree->lock)
 750                __acquires(tree->lock)
 751{
 752        DEFINE_WAIT(wait);
 753        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 754        spin_unlock(&tree->lock);
 755        schedule();
 756        spin_lock(&tree->lock);
 757        finish_wait(&state->wq, &wait);
 758}
 759
 760/*
 761 * waits for one or more bits to clear on a range in the state tree.
 762 * The range [start, end] is inclusive.
 763 * The tree lock is taken by this function
 764 */
 765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 766                            unsigned long bits)
 767{
 768        struct extent_state *state;
 769        struct rb_node *node;
 770
 771        btrfs_debug_check_extent_io_range(tree, start, end);
 772
 773        spin_lock(&tree->lock);
 774again:
 775        while (1) {
 776                /*
 777                 * this search will find all the extents that end after
 778                 * our range starts
 779                 */
 780                node = tree_search(tree, start);
 781process_node:
 782                if (!node)
 783                        break;
 784
 785                state = rb_entry(node, struct extent_state, rb_node);
 786
 787                if (state->start > end)
 788                        goto out;
 789
 790                if (state->state & bits) {
 791                        start = state->start;
 792                        atomic_inc(&state->refs);
 793                        wait_on_state(tree, state);
 794                        free_extent_state(state);
 795                        goto again;
 796                }
 797                start = state->end + 1;
 798
 799                if (start > end)
 800                        break;
 801
 802                if (!cond_resched_lock(&tree->lock)) {
 803                        node = rb_next(node);
 804                        goto process_node;
 805                }
 806        }
 807out:
 808        spin_unlock(&tree->lock);
 809}
 810
 811static void set_state_bits(struct extent_io_tree *tree,
 812                           struct extent_state *state,
 813                           unsigned *bits, struct extent_changeset *changeset)
 814{
 815        unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
 816
 817        set_state_cb(tree, state, bits);
 818        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 819                u64 range = state->end - state->start + 1;
 820                tree->dirty_bytes += range;
 821        }
 822        add_extent_changeset(state, bits_to_set, changeset, 1);
 823        state->state |= bits_to_set;
 824}
 825
 826static void cache_state_if_flags(struct extent_state *state,
 827                                 struct extent_state **cached_ptr,
 828                                 unsigned flags)
 829{
 830        if (cached_ptr && !(*cached_ptr)) {
 831                if (!flags || (state->state & flags)) {
 832                        *cached_ptr = state;
 833                        atomic_inc(&state->refs);
 834                }
 835        }
 836}
 837
 838static void cache_state(struct extent_state *state,
 839                        struct extent_state **cached_ptr)
 840{
 841        return cache_state_if_flags(state, cached_ptr,
 842                                    EXTENT_IOBITS | EXTENT_BOUNDARY);
 843}
 844
 845/*
 846 * set some bits on a range in the tree.  This may require allocations or
 847 * sleeping, so the gfp mask is used to indicate what is allowed.
 848 *
 849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 850 * part of the range already has the desired bits set.  The start of the
 851 * existing range is returned in failed_start in this case.
 852 *
 853 * [start, end] is inclusive This takes the tree lock.
 854 */
 855
 856static int __must_check
 857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 858                 unsigned bits, unsigned exclusive_bits,
 859                 u64 *failed_start, struct extent_state **cached_state,
 860                 gfp_t mask, struct extent_changeset *changeset)
 861{
 862        struct extent_state *state;
 863        struct extent_state *prealloc = NULL;
 864        struct rb_node *node;
 865        struct rb_node **p;
 866        struct rb_node *parent;
 867        int err = 0;
 868        u64 last_start;
 869        u64 last_end;
 870
 871        btrfs_debug_check_extent_io_range(tree, start, end);
 872
 873        bits |= EXTENT_FIRST_DELALLOC;
 874again:
 875        if (!prealloc && gfpflags_allow_blocking(mask)) {
 876                /*
 877                 * Don't care for allocation failure here because we might end
 878                 * up not needing the pre-allocated extent state at all, which
 879                 * is the case if we only have in the tree extent states that
 880                 * cover our input range and don't cover too any other range.
 881                 * If we end up needing a new extent state we allocate it later.
 882                 */
 883                prealloc = alloc_extent_state(mask);
 884        }
 885
 886        spin_lock(&tree->lock);
 887        if (cached_state && *cached_state) {
 888                state = *cached_state;
 889                if (state->start <= start && state->end > start &&
 890                    extent_state_in_tree(state)) {
 891                        node = &state->rb_node;
 892                        goto hit_next;
 893                }
 894        }
 895        /*
 896         * this search will find all the extents that end after
 897         * our range starts.
 898         */
 899        node = tree_search_for_insert(tree, start, &p, &parent);
 900        if (!node) {
 901                prealloc = alloc_extent_state_atomic(prealloc);
 902                BUG_ON(!prealloc);
 903                err = insert_state(tree, prealloc, start, end,
 904                                   &p, &parent, &bits, changeset);
 905                if (err)
 906                        extent_io_tree_panic(tree, err);
 907
 908                cache_state(prealloc, cached_state);
 909                prealloc = NULL;
 910                goto out;
 911        }
 912        state = rb_entry(node, struct extent_state, rb_node);
 913hit_next:
 914        last_start = state->start;
 915        last_end = state->end;
 916
 917        /*
 918         * | ---- desired range ---- |
 919         * | state |
 920         *
 921         * Just lock what we found and keep going
 922         */
 923        if (state->start == start && state->end <= end) {
 924                if (state->state & exclusive_bits) {
 925                        *failed_start = state->start;
 926                        err = -EEXIST;
 927                        goto out;
 928                }
 929
 930                set_state_bits(tree, state, &bits, changeset);
 931                cache_state(state, cached_state);
 932                merge_state(tree, state);
 933                if (last_end == (u64)-1)
 934                        goto out;
 935                start = last_end + 1;
 936                state = next_state(state);
 937                if (start < end && state && state->start == start &&
 938                    !need_resched())
 939                        goto hit_next;
 940                goto search_again;
 941        }
 942
 943        /*
 944         *     | ---- desired range ---- |
 945         * | state |
 946         *   or
 947         * | ------------- state -------------- |
 948         *
 949         * We need to split the extent we found, and may flip bits on
 950         * second half.
 951         *
 952         * If the extent we found extends past our
 953         * range, we just split and search again.  It'll get split
 954         * again the next time though.
 955         *
 956         * If the extent we found is inside our range, we set the
 957         * desired bit on it.
 958         */
 959        if (state->start < start) {
 960                if (state->state & exclusive_bits) {
 961                        *failed_start = start;
 962                        err = -EEXIST;
 963                        goto out;
 964                }
 965
 966                prealloc = alloc_extent_state_atomic(prealloc);
 967                BUG_ON(!prealloc);
 968                err = split_state(tree, state, prealloc, start);
 969                if (err)
 970                        extent_io_tree_panic(tree, err);
 971
 972                prealloc = NULL;
 973                if (err)
 974                        goto out;
 975                if (state->end <= end) {
 976                        set_state_bits(tree, state, &bits, changeset);
 977                        cache_state(state, cached_state);
 978                        merge_state(tree, state);
 979                        if (last_end == (u64)-1)
 980                                goto out;
 981                        start = last_end + 1;
 982                        state = next_state(state);
 983                        if (start < end && state && state->start == start &&
 984                            !need_resched())
 985                                goto hit_next;
 986                }
 987                goto search_again;
 988        }
 989        /*
 990         * | ---- desired range ---- |
 991         *     | state | or               | state |
 992         *
 993         * There's a hole, we need to insert something in it and
 994         * ignore the extent we found.
 995         */
 996        if (state->start > start) {
 997                u64 this_end;
 998                if (end < last_start)
 999                        this_end = end;
1000                else
1001                        this_end = last_start - 1;
1002
1003                prealloc = alloc_extent_state_atomic(prealloc);
1004                BUG_ON(!prealloc);
1005
1006                /*
1007                 * Avoid to free 'prealloc' if it can be merged with
1008                 * the later extent.
1009                 */
1010                err = insert_state(tree, prealloc, start, this_end,
1011                                   NULL, NULL, &bits, changeset);
1012                if (err)
1013                        extent_io_tree_panic(tree, err);
1014
1015                cache_state(prealloc, cached_state);
1016                prealloc = NULL;
1017                start = this_end + 1;
1018                goto search_again;
1019        }
1020        /*
1021         * | ---- desired range ---- |
1022         *                        | state |
1023         * We need to split the extent, and set the bit
1024         * on the first half
1025         */
1026        if (state->start <= end && state->end > end) {
1027                if (state->state & exclusive_bits) {
1028                        *failed_start = start;
1029                        err = -EEXIST;
1030                        goto out;
1031                }
1032
1033                prealloc = alloc_extent_state_atomic(prealloc);
1034                BUG_ON(!prealloc);
1035                err = split_state(tree, state, prealloc, end + 1);
1036                if (err)
1037                        extent_io_tree_panic(tree, err);
1038
1039                set_state_bits(tree, prealloc, &bits, changeset);
1040                cache_state(prealloc, cached_state);
1041                merge_state(tree, prealloc);
1042                prealloc = NULL;
1043                goto out;
1044        }
1045
1046search_again:
1047        if (start > end)
1048                goto out;
1049        spin_unlock(&tree->lock);
1050        if (gfpflags_allow_blocking(mask))
1051                cond_resched();
1052        goto again;
1053
1054out:
1055        spin_unlock(&tree->lock);
1056        if (prealloc)
1057                free_extent_state(prealloc);
1058
1059        return err;
1060
1061}
1062
1063int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1064                   unsigned bits, u64 * failed_start,
1065                   struct extent_state **cached_state, gfp_t mask)
1066{
1067        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1068                                cached_state, mask, NULL);
1069}
1070
1071
1072/**
1073 * convert_extent_bit - convert all bits in a given range from one bit to
1074 *                      another
1075 * @tree:       the io tree to search
1076 * @start:      the start offset in bytes
1077 * @end:        the end offset in bytes (inclusive)
1078 * @bits:       the bits to set in this range
1079 * @clear_bits: the bits to clear in this range
1080 * @cached_state:       state that we're going to cache
1081 *
1082 * This will go through and set bits for the given range.  If any states exist
1083 * already in this range they are set with the given bit and cleared of the
1084 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1085 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1086 * boundary bits like LOCK.
1087 *
1088 * All allocations are done with GFP_NOFS.
1089 */
1090int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1091                       unsigned bits, unsigned clear_bits,
1092                       struct extent_state **cached_state)
1093{
1094        struct extent_state *state;
1095        struct extent_state *prealloc = NULL;
1096        struct rb_node *node;
1097        struct rb_node **p;
1098        struct rb_node *parent;
1099        int err = 0;
1100        u64 last_start;
1101        u64 last_end;
1102        bool first_iteration = true;
1103
1104        btrfs_debug_check_extent_io_range(tree, start, end);
1105
1106again:
1107        if (!prealloc) {
1108                /*
1109                 * Best effort, don't worry if extent state allocation fails
1110                 * here for the first iteration. We might have a cached state
1111                 * that matches exactly the target range, in which case no
1112                 * extent state allocations are needed. We'll only know this
1113                 * after locking the tree.
1114                 */
1115                prealloc = alloc_extent_state(GFP_NOFS);
1116                if (!prealloc && !first_iteration)
1117                        return -ENOMEM;
1118        }
1119
1120        spin_lock(&tree->lock);
1121        if (cached_state && *cached_state) {
1122                state = *cached_state;
1123                if (state->start <= start && state->end > start &&
1124                    extent_state_in_tree(state)) {
1125                        node = &state->rb_node;
1126                        goto hit_next;
1127                }
1128        }
1129
1130        /*
1131         * this search will find all the extents that end after
1132         * our range starts.
1133         */
1134        node = tree_search_for_insert(tree, start, &p, &parent);
1135        if (!node) {
1136                prealloc = alloc_extent_state_atomic(prealloc);
1137                if (!prealloc) {
1138                        err = -ENOMEM;
1139                        goto out;
1140                }
1141                err = insert_state(tree, prealloc, start, end,
1142                                   &p, &parent, &bits, NULL);
1143                if (err)
1144                        extent_io_tree_panic(tree, err);
1145                cache_state(prealloc, cached_state);
1146                prealloc = NULL;
1147                goto out;
1148        }
1149        state = rb_entry(node, struct extent_state, rb_node);
1150hit_next:
1151        last_start = state->start;
1152        last_end = state->end;
1153
1154        /*
1155         * | ---- desired range ---- |
1156         * | state |
1157         *
1158         * Just lock what we found and keep going
1159         */
1160        if (state->start == start && state->end <= end) {
1161                set_state_bits(tree, state, &bits, NULL);
1162                cache_state(state, cached_state);
1163                state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1164                if (last_end == (u64)-1)
1165                        goto out;
1166                start = last_end + 1;
1167                if (start < end && state && state->start == start &&
1168                    !need_resched())
1169                        goto hit_next;
1170                goto search_again;
1171        }
1172
1173        /*
1174         *     | ---- desired range ---- |
1175         * | state |
1176         *   or
1177         * | ------------- state -------------- |
1178         *
1179         * We need to split the extent we found, and may flip bits on
1180         * second half.
1181         *
1182         * If the extent we found extends past our
1183         * range, we just split and search again.  It'll get split
1184         * again the next time though.
1185         *
1186         * If the extent we found is inside our range, we set the
1187         * desired bit on it.
1188         */
1189        if (state->start < start) {
1190                prealloc = alloc_extent_state_atomic(prealloc);
1191                if (!prealloc) {
1192                        err = -ENOMEM;
1193                        goto out;
1194                }
1195                err = split_state(tree, state, prealloc, start);
1196                if (err)
1197                        extent_io_tree_panic(tree, err);
1198                prealloc = NULL;
1199                if (err)
1200                        goto out;
1201                if (state->end <= end) {
1202                        set_state_bits(tree, state, &bits, NULL);
1203                        cache_state(state, cached_state);
1204                        state = clear_state_bit(tree, state, &clear_bits, 0,
1205                                                NULL);
1206                        if (last_end == (u64)-1)
1207                                goto out;
1208                        start = last_end + 1;
1209                        if (start < end && state && state->start == start &&
1210                            !need_resched())
1211                                goto hit_next;
1212                }
1213                goto search_again;
1214        }
1215        /*
1216         * | ---- desired range ---- |
1217         *     | state | or               | state |
1218         *
1219         * There's a hole, we need to insert something in it and
1220         * ignore the extent we found.
1221         */
1222        if (state->start > start) {
1223                u64 this_end;
1224                if (end < last_start)
1225                        this_end = end;
1226                else
1227                        this_end = last_start - 1;
1228
1229                prealloc = alloc_extent_state_atomic(prealloc);
1230                if (!prealloc) {
1231                        err = -ENOMEM;
1232                        goto out;
1233                }
1234
1235                /*
1236                 * Avoid to free 'prealloc' if it can be merged with
1237                 * the later extent.
1238                 */
1239                err = insert_state(tree, prealloc, start, this_end,
1240                                   NULL, NULL, &bits, NULL);
1241                if (err)
1242                        extent_io_tree_panic(tree, err);
1243                cache_state(prealloc, cached_state);
1244                prealloc = NULL;
1245                start = this_end + 1;
1246                goto search_again;
1247        }
1248        /*
1249         * | ---- desired range ---- |
1250         *                        | state |
1251         * We need to split the extent, and set the bit
1252         * on the first half
1253         */
1254        if (state->start <= end && state->end > end) {
1255                prealloc = alloc_extent_state_atomic(prealloc);
1256                if (!prealloc) {
1257                        err = -ENOMEM;
1258                        goto out;
1259                }
1260
1261                err = split_state(tree, state, prealloc, end + 1);
1262                if (err)
1263                        extent_io_tree_panic(tree, err);
1264
1265                set_state_bits(tree, prealloc, &bits, NULL);
1266                cache_state(prealloc, cached_state);
1267                clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1268                prealloc = NULL;
1269                goto out;
1270        }
1271
1272search_again:
1273        if (start > end)
1274                goto out;
1275        spin_unlock(&tree->lock);
1276        cond_resched();
1277        first_iteration = false;
1278        goto again;
1279
1280out:
1281        spin_unlock(&tree->lock);
1282        if (prealloc)
1283                free_extent_state(prealloc);
1284
1285        return err;
1286}
1287
1288/* wrappers around set/clear extent bit */
1289int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1290                           unsigned bits, struct extent_changeset *changeset)
1291{
1292        /*
1293         * We don't support EXTENT_LOCKED yet, as current changeset will
1294         * record any bits changed, so for EXTENT_LOCKED case, it will
1295         * either fail with -EEXIST or changeset will record the whole
1296         * range.
1297         */
1298        BUG_ON(bits & EXTENT_LOCKED);
1299
1300        return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1301                                changeset);
1302}
1303
1304int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305                     unsigned bits, int wake, int delete,
1306                     struct extent_state **cached, gfp_t mask)
1307{
1308        return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309                                  cached, mask, NULL);
1310}
1311
1312int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313                unsigned bits, struct extent_changeset *changeset)
1314{
1315        /*
1316         * Don't support EXTENT_LOCKED case, same reason as
1317         * set_record_extent_bits().
1318         */
1319        BUG_ON(bits & EXTENT_LOCKED);
1320
1321        return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1322                                  changeset);
1323}
1324
1325/*
1326 * either insert or lock state struct between start and end use mask to tell
1327 * us if waiting is desired.
1328 */
1329int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1330                     struct extent_state **cached_state)
1331{
1332        int err;
1333        u64 failed_start;
1334
1335        while (1) {
1336                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1337                                       EXTENT_LOCKED, &failed_start,
1338                                       cached_state, GFP_NOFS, NULL);
1339                if (err == -EEXIST) {
1340                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341                        start = failed_start;
1342                } else
1343                        break;
1344                WARN_ON(start > end);
1345        }
1346        return err;
1347}
1348
1349int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1350{
1351        int err;
1352        u64 failed_start;
1353
1354        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1355                               &failed_start, NULL, GFP_NOFS, NULL);
1356        if (err == -EEXIST) {
1357                if (failed_start > start)
1358                        clear_extent_bit(tree, start, failed_start - 1,
1359                                         EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1360                return 0;
1361        }
1362        return 1;
1363}
1364
1365void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1366{
1367        unsigned long index = start >> PAGE_SHIFT;
1368        unsigned long end_index = end >> PAGE_SHIFT;
1369        struct page *page;
1370
1371        while (index <= end_index) {
1372                page = find_get_page(inode->i_mapping, index);
1373                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374                clear_page_dirty_for_io(page);
1375                put_page(page);
1376                index++;
1377        }
1378}
1379
1380void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1381{
1382        unsigned long index = start >> PAGE_SHIFT;
1383        unsigned long end_index = end >> PAGE_SHIFT;
1384        struct page *page;
1385
1386        while (index <= end_index) {
1387                page = find_get_page(inode->i_mapping, index);
1388                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1389                __set_page_dirty_nobuffers(page);
1390                account_page_redirty(page);
1391                put_page(page);
1392                index++;
1393        }
1394}
1395
1396/*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
1399static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400{
1401        unsigned long index = start >> PAGE_SHIFT;
1402        unsigned long end_index = end >> PAGE_SHIFT;
1403        struct page *page;
1404
1405        while (index <= end_index) {
1406                page = find_get_page(tree->mapping, index);
1407                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408                set_page_writeback(page);
1409                put_page(page);
1410                index++;
1411        }
1412}
1413
1414/* find the first state struct with 'bits' set after 'start', and
1415 * return it.  tree->lock must be held.  NULL will returned if
1416 * nothing was found after 'start'
1417 */
1418static struct extent_state *
1419find_first_extent_bit_state(struct extent_io_tree *tree,
1420                            u64 start, unsigned bits)
1421{
1422        struct rb_node *node;
1423        struct extent_state *state;
1424
1425        /*
1426         * this search will find all the extents that end after
1427         * our range starts.
1428         */
1429        node = tree_search(tree, start);
1430        if (!node)
1431                goto out;
1432
1433        while (1) {
1434                state = rb_entry(node, struct extent_state, rb_node);
1435                if (state->end >= start && (state->state & bits))
1436                        return state;
1437
1438                node = rb_next(node);
1439                if (!node)
1440                        break;
1441        }
1442out:
1443        return NULL;
1444}
1445
1446/*
1447 * find the first offset in the io tree with 'bits' set. zero is
1448 * returned if we find something, and *start_ret and *end_ret are
1449 * set to reflect the state struct that was found.
1450 *
1451 * If nothing was found, 1 is returned. If found something, return 0.
1452 */
1453int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1454                          u64 *start_ret, u64 *end_ret, unsigned bits,
1455                          struct extent_state **cached_state)
1456{
1457        struct extent_state *state;
1458        struct rb_node *n;
1459        int ret = 1;
1460
1461        spin_lock(&tree->lock);
1462        if (cached_state && *cached_state) {
1463                state = *cached_state;
1464                if (state->end == start - 1 && extent_state_in_tree(state)) {
1465                        n = rb_next(&state->rb_node);
1466                        while (n) {
1467                                state = rb_entry(n, struct extent_state,
1468                                                 rb_node);
1469                                if (state->state & bits)
1470                                        goto got_it;
1471                                n = rb_next(n);
1472                        }
1473                        free_extent_state(*cached_state);
1474                        *cached_state = NULL;
1475                        goto out;
1476                }
1477                free_extent_state(*cached_state);
1478                *cached_state = NULL;
1479        }
1480
1481        state = find_first_extent_bit_state(tree, start, bits);
1482got_it:
1483        if (state) {
1484                cache_state_if_flags(state, cached_state, 0);
1485                *start_ret = state->start;
1486                *end_ret = state->end;
1487                ret = 0;
1488        }
1489out:
1490        spin_unlock(&tree->lock);
1491        return ret;
1492}
1493
1494/*
1495 * find a contiguous range of bytes in the file marked as delalloc, not
1496 * more than 'max_bytes'.  start and end are used to return the range,
1497 *
1498 * 1 is returned if we find something, 0 if nothing was in the tree
1499 */
1500static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1501                                        u64 *start, u64 *end, u64 max_bytes,
1502                                        struct extent_state **cached_state)
1503{
1504        struct rb_node *node;
1505        struct extent_state *state;
1506        u64 cur_start = *start;
1507        u64 found = 0;
1508        u64 total_bytes = 0;
1509
1510        spin_lock(&tree->lock);
1511
1512        /*
1513         * this search will find all the extents that end after
1514         * our range starts.
1515         */
1516        node = tree_search(tree, cur_start);
1517        if (!node) {
1518                if (!found)
1519                        *end = (u64)-1;
1520                goto out;
1521        }
1522
1523        while (1) {
1524                state = rb_entry(node, struct extent_state, rb_node);
1525                if (found && (state->start != cur_start ||
1526                              (state->state & EXTENT_BOUNDARY))) {
1527                        goto out;
1528                }
1529                if (!(state->state & EXTENT_DELALLOC)) {
1530                        if (!found)
1531                                *end = state->end;
1532                        goto out;
1533                }
1534                if (!found) {
1535                        *start = state->start;
1536                        *cached_state = state;
1537                        atomic_inc(&state->refs);
1538                }
1539                found++;
1540                *end = state->end;
1541                cur_start = state->end + 1;
1542                node = rb_next(node);
1543                total_bytes += state->end - state->start + 1;
1544                if (total_bytes >= max_bytes)
1545                        break;
1546                if (!node)
1547                        break;
1548        }
1549out:
1550        spin_unlock(&tree->lock);
1551        return found;
1552}
1553
1554static noinline void __unlock_for_delalloc(struct inode *inode,
1555                                           struct page *locked_page,
1556                                           u64 start, u64 end)
1557{
1558        int ret;
1559        struct page *pages[16];
1560        unsigned long index = start >> PAGE_SHIFT;
1561        unsigned long end_index = end >> PAGE_SHIFT;
1562        unsigned long nr_pages = end_index - index + 1;
1563        int i;
1564
1565        if (index == locked_page->index && end_index == index)
1566                return;
1567
1568        while (nr_pages > 0) {
1569                ret = find_get_pages_contig(inode->i_mapping, index,
1570                                     min_t(unsigned long, nr_pages,
1571                                     ARRAY_SIZE(pages)), pages);
1572                for (i = 0; i < ret; i++) {
1573                        if (pages[i] != locked_page)
1574                                unlock_page(pages[i]);
1575                        put_page(pages[i]);
1576                }
1577                nr_pages -= ret;
1578                index += ret;
1579                cond_resched();
1580        }
1581}
1582
1583static noinline int lock_delalloc_pages(struct inode *inode,
1584                                        struct page *locked_page,
1585                                        u64 delalloc_start,
1586                                        u64 delalloc_end)
1587{
1588        unsigned long index = delalloc_start >> PAGE_SHIFT;
1589        unsigned long start_index = index;
1590        unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1591        unsigned long pages_locked = 0;
1592        struct page *pages[16];
1593        unsigned long nrpages;
1594        int ret;
1595        int i;
1596
1597        /* the caller is responsible for locking the start index */
1598        if (index == locked_page->index && index == end_index)
1599                return 0;
1600
1601        /* skip the page at the start index */
1602        nrpages = end_index - index + 1;
1603        while (nrpages > 0) {
1604                ret = find_get_pages_contig(inode->i_mapping, index,
1605                                     min_t(unsigned long,
1606                                     nrpages, ARRAY_SIZE(pages)), pages);
1607                if (ret == 0) {
1608                        ret = -EAGAIN;
1609                        goto done;
1610                }
1611                /* now we have an array of pages, lock them all */
1612                for (i = 0; i < ret; i++) {
1613                        /*
1614                         * the caller is taking responsibility for
1615                         * locked_page
1616                         */
1617                        if (pages[i] != locked_page) {
1618                                lock_page(pages[i]);
1619                                if (!PageDirty(pages[i]) ||
1620                                    pages[i]->mapping != inode->i_mapping) {
1621                                        ret = -EAGAIN;
1622                                        unlock_page(pages[i]);
1623                                        put_page(pages[i]);
1624                                        goto done;
1625                                }
1626                        }
1627                        put_page(pages[i]);
1628                        pages_locked++;
1629                }
1630                nrpages -= ret;
1631                index += ret;
1632                cond_resched();
1633        }
1634        ret = 0;
1635done:
1636        if (ret && pages_locked) {
1637                __unlock_for_delalloc(inode, locked_page,
1638                              delalloc_start,
1639                              ((u64)(start_index + pages_locked - 1)) <<
1640                              PAGE_SHIFT);
1641        }
1642        return ret;
1643}
1644
1645/*
1646 * find a contiguous range of bytes in the file marked as delalloc, not
1647 * more than 'max_bytes'.  start and end are used to return the range,
1648 *
1649 * 1 is returned if we find something, 0 if nothing was in the tree
1650 */
1651STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652                                    struct extent_io_tree *tree,
1653                                    struct page *locked_page, u64 *start,
1654                                    u64 *end, u64 max_bytes)
1655{
1656        u64 delalloc_start;
1657        u64 delalloc_end;
1658        u64 found;
1659        struct extent_state *cached_state = NULL;
1660        int ret;
1661        int loops = 0;
1662
1663again:
1664        /* step one, find a bunch of delalloc bytes starting at start */
1665        delalloc_start = *start;
1666        delalloc_end = 0;
1667        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1668                                    max_bytes, &cached_state);
1669        if (!found || delalloc_end <= *start) {
1670                *start = delalloc_start;
1671                *end = delalloc_end;
1672                free_extent_state(cached_state);
1673                return 0;
1674        }
1675
1676        /*
1677         * start comes from the offset of locked_page.  We have to lock
1678         * pages in order, so we can't process delalloc bytes before
1679         * locked_page
1680         */
1681        if (delalloc_start < *start)
1682                delalloc_start = *start;
1683
1684        /*
1685         * make sure to limit the number of pages we try to lock down
1686         */
1687        if (delalloc_end + 1 - delalloc_start > max_bytes)
1688                delalloc_end = delalloc_start + max_bytes - 1;
1689
1690        /* step two, lock all the pages after the page that has start */
1691        ret = lock_delalloc_pages(inode, locked_page,
1692                                  delalloc_start, delalloc_end);
1693        if (ret == -EAGAIN) {
1694                /* some of the pages are gone, lets avoid looping by
1695                 * shortening the size of the delalloc range we're searching
1696                 */
1697                free_extent_state(cached_state);
1698                cached_state = NULL;
1699                if (!loops) {
1700                        max_bytes = PAGE_SIZE;
1701                        loops = 1;
1702                        goto again;
1703                } else {
1704                        found = 0;
1705                        goto out_failed;
1706                }
1707        }
1708        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1709
1710        /* step three, lock the state bits for the whole range */
1711        lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1712
1713        /* then test to make sure it is all still delalloc */
1714        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1715                             EXTENT_DELALLOC, 1, cached_state);
1716        if (!ret) {
1717                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718                                     &cached_state, GFP_NOFS);
1719                __unlock_for_delalloc(inode, locked_page,
1720                              delalloc_start, delalloc_end);
1721                cond_resched();
1722                goto again;
1723        }
1724        free_extent_state(cached_state);
1725        *start = delalloc_start;
1726        *end = delalloc_end;
1727out_failed:
1728        return found;
1729}
1730
1731void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1732                                 struct page *locked_page,
1733                                 unsigned clear_bits,
1734                                 unsigned long page_ops)
1735{
1736        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1737        int ret;
1738        struct page *pages[16];
1739        unsigned long index = start >> PAGE_SHIFT;
1740        unsigned long end_index = end >> PAGE_SHIFT;
1741        unsigned long nr_pages = end_index - index + 1;
1742        int i;
1743
1744        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1745        if (page_ops == 0)
1746                return;
1747
1748        if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749                mapping_set_error(inode->i_mapping, -EIO);
1750
1751        while (nr_pages > 0) {
1752                ret = find_get_pages_contig(inode->i_mapping, index,
1753                                     min_t(unsigned long,
1754                                     nr_pages, ARRAY_SIZE(pages)), pages);
1755                for (i = 0; i < ret; i++) {
1756
1757                        if (page_ops & PAGE_SET_PRIVATE2)
1758                                SetPagePrivate2(pages[i]);
1759
1760                        if (pages[i] == locked_page) {
1761                                put_page(pages[i]);
1762                                continue;
1763                        }
1764                        if (page_ops & PAGE_CLEAR_DIRTY)
1765                                clear_page_dirty_for_io(pages[i]);
1766                        if (page_ops & PAGE_SET_WRITEBACK)
1767                                set_page_writeback(pages[i]);
1768                        if (page_ops & PAGE_SET_ERROR)
1769                                SetPageError(pages[i]);
1770                        if (page_ops & PAGE_END_WRITEBACK)
1771                                end_page_writeback(pages[i]);
1772                        if (page_ops & PAGE_UNLOCK)
1773                                unlock_page(pages[i]);
1774                        put_page(pages[i]);
1775                }
1776                nr_pages -= ret;
1777                index += ret;
1778                cond_resched();
1779        }
1780}
1781
1782/*
1783 * count the number of bytes in the tree that have a given bit(s)
1784 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1785 * cached.  The total number found is returned.
1786 */
1787u64 count_range_bits(struct extent_io_tree *tree,
1788                     u64 *start, u64 search_end, u64 max_bytes,
1789                     unsigned bits, int contig)
1790{
1791        struct rb_node *node;
1792        struct extent_state *state;
1793        u64 cur_start = *start;
1794        u64 total_bytes = 0;
1795        u64 last = 0;
1796        int found = 0;
1797
1798        if (WARN_ON(search_end <= cur_start))
1799                return 0;
1800
1801        spin_lock(&tree->lock);
1802        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803                total_bytes = tree->dirty_bytes;
1804                goto out;
1805        }
1806        /*
1807         * this search will find all the extents that end after
1808         * our range starts.
1809         */
1810        node = tree_search(tree, cur_start);
1811        if (!node)
1812                goto out;
1813
1814        while (1) {
1815                state = rb_entry(node, struct extent_state, rb_node);
1816                if (state->start > search_end)
1817                        break;
1818                if (contig && found && state->start > last + 1)
1819                        break;
1820                if (state->end >= cur_start && (state->state & bits) == bits) {
1821                        total_bytes += min(search_end, state->end) + 1 -
1822                                       max(cur_start, state->start);
1823                        if (total_bytes >= max_bytes)
1824                                break;
1825                        if (!found) {
1826                                *start = max(cur_start, state->start);
1827                                found = 1;
1828                        }
1829                        last = state->end;
1830                } else if (contig && found) {
1831                        break;
1832                }
1833                node = rb_next(node);
1834                if (!node)
1835                        break;
1836        }
1837out:
1838        spin_unlock(&tree->lock);
1839        return total_bytes;
1840}
1841
1842/*
1843 * set the private field for a given byte offset in the tree.  If there isn't
1844 * an extent_state there already, this does nothing.
1845 */
1846static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1847                struct io_failure_record *failrec)
1848{
1849        struct rb_node *node;
1850        struct extent_state *state;
1851        int ret = 0;
1852
1853        spin_lock(&tree->lock);
1854        /*
1855         * this search will find all the extents that end after
1856         * our range starts.
1857         */
1858        node = tree_search(tree, start);
1859        if (!node) {
1860                ret = -ENOENT;
1861                goto out;
1862        }
1863        state = rb_entry(node, struct extent_state, rb_node);
1864        if (state->start != start) {
1865                ret = -ENOENT;
1866                goto out;
1867        }
1868        state->failrec = failrec;
1869out:
1870        spin_unlock(&tree->lock);
1871        return ret;
1872}
1873
1874static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1875                struct io_failure_record **failrec)
1876{
1877        struct rb_node *node;
1878        struct extent_state *state;
1879        int ret = 0;
1880
1881        spin_lock(&tree->lock);
1882        /*
1883         * this search will find all the extents that end after
1884         * our range starts.
1885         */
1886        node = tree_search(tree, start);
1887        if (!node) {
1888                ret = -ENOENT;
1889                goto out;
1890        }
1891        state = rb_entry(node, struct extent_state, rb_node);
1892        if (state->start != start) {
1893                ret = -ENOENT;
1894                goto out;
1895        }
1896        *failrec = state->failrec;
1897out:
1898        spin_unlock(&tree->lock);
1899        return ret;
1900}
1901
1902/*
1903 * searches a range in the state tree for a given mask.
1904 * If 'filled' == 1, this returns 1 only if every extent in the tree
1905 * has the bits set.  Otherwise, 1 is returned if any bit in the
1906 * range is found set.
1907 */
1908int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1909                   unsigned bits, int filled, struct extent_state *cached)
1910{
1911        struct extent_state *state = NULL;
1912        struct rb_node *node;
1913        int bitset = 0;
1914
1915        spin_lock(&tree->lock);
1916        if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1917            cached->end > start)
1918                node = &cached->rb_node;
1919        else
1920                node = tree_search(tree, start);
1921        while (node && start <= end) {
1922                state = rb_entry(node, struct extent_state, rb_node);
1923
1924                if (filled && state->start > start) {
1925                        bitset = 0;
1926                        break;
1927                }
1928
1929                if (state->start > end)
1930                        break;
1931
1932                if (state->state & bits) {
1933                        bitset = 1;
1934                        if (!filled)
1935                                break;
1936                } else if (filled) {
1937                        bitset = 0;
1938                        break;
1939                }
1940
1941                if (state->end == (u64)-1)
1942                        break;
1943
1944                start = state->end + 1;
1945                if (start > end)
1946                        break;
1947                node = rb_next(node);
1948                if (!node) {
1949                        if (filled)
1950                                bitset = 0;
1951                        break;
1952                }
1953        }
1954        spin_unlock(&tree->lock);
1955        return bitset;
1956}
1957
1958/*
1959 * helper function to set a given page up to date if all the
1960 * extents in the tree for that page are up to date
1961 */
1962static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1963{
1964        u64 start = page_offset(page);
1965        u64 end = start + PAGE_SIZE - 1;
1966        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1967                SetPageUptodate(page);
1968}
1969
1970int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1971{
1972        int ret;
1973        int err = 0;
1974        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
1976        set_state_failrec(failure_tree, rec->start, NULL);
1977        ret = clear_extent_bits(failure_tree, rec->start,
1978                                rec->start + rec->len - 1,
1979                                EXTENT_LOCKED | EXTENT_DIRTY);
1980        if (ret)
1981                err = ret;
1982
1983        ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984                                rec->start + rec->len - 1,
1985                                EXTENT_DAMAGED);
1986        if (ret && !err)
1987                err = ret;
1988
1989        kfree(rec);
1990        return err;
1991}
1992
1993/*
1994 * this bypasses the standard btrfs submit functions deliberately, as
1995 * the standard behavior is to write all copies in a raid setup. here we only
1996 * want to write the one bad copy. so we do the mapping for ourselves and issue
1997 * submit_bio directly.
1998 * to avoid any synchronization issues, wait for the data after writing, which
1999 * actually prevents the read that triggered the error from finishing.
2000 * currently, there can be no more than two copies of every data bit. thus,
2001 * exactly one rewrite is required.
2002 */
2003int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004                      struct page *page, unsigned int pg_offset, int mirror_num)
2005{
2006        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2007        struct bio *bio;
2008        struct btrfs_device *dev;
2009        u64 map_length = 0;
2010        u64 sector;
2011        struct btrfs_bio *bbio = NULL;
2012        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2013        int ret;
2014
2015        ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2016        BUG_ON(!mirror_num);
2017
2018        /* we can't repair anything in raid56 yet */
2019        if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020                return 0;
2021
2022        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2023        if (!bio)
2024                return -EIO;
2025        bio->bi_iter.bi_size = 0;
2026        map_length = length;
2027
2028        /*
2029         * Avoid races with device replace and make sure our bbio has devices
2030         * associated to its stripes that don't go away while we are doing the
2031         * read repair operation.
2032         */
2033        btrfs_bio_counter_inc_blocked(fs_info);
2034        ret = btrfs_map_block(fs_info, WRITE, logical,
2035                              &map_length, &bbio, mirror_num);
2036        if (ret) {
2037                btrfs_bio_counter_dec(fs_info);
2038                bio_put(bio);
2039                return -EIO;
2040        }
2041        BUG_ON(mirror_num != bbio->mirror_num);
2042        sector = bbio->stripes[mirror_num-1].physical >> 9;
2043        bio->bi_iter.bi_sector = sector;
2044        dev = bbio->stripes[mirror_num-1].dev;
2045        btrfs_put_bbio(bbio);
2046        if (!dev || !dev->bdev || !dev->writeable) {
2047                btrfs_bio_counter_dec(fs_info);
2048                bio_put(bio);
2049                return -EIO;
2050        }
2051        bio->bi_bdev = dev->bdev;
2052        bio_add_page(bio, page, length, pg_offset);
2053
2054        if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2055                /* try to remap that extent elsewhere? */
2056                btrfs_bio_counter_dec(fs_info);
2057                bio_put(bio);
2058                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2059                return -EIO;
2060        }
2061
2062        btrfs_info_rl_in_rcu(fs_info,
2063                "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2064                                  btrfs_ino(inode), start,
2065                                  rcu_str_deref(dev->name), sector);
2066        btrfs_bio_counter_dec(fs_info);
2067        bio_put(bio);
2068        return 0;
2069}
2070
2071int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2072                         int mirror_num)
2073{
2074        u64 start = eb->start;
2075        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2076        int ret = 0;
2077
2078        if (root->fs_info->sb->s_flags & MS_RDONLY)
2079                return -EROFS;
2080
2081        for (i = 0; i < num_pages; i++) {
2082                struct page *p = eb->pages[i];
2083
2084                ret = repair_io_failure(root->fs_info->btree_inode, start,
2085                                        PAGE_SIZE, start, p,
2086                                        start - page_offset(p), mirror_num);
2087                if (ret)
2088                        break;
2089                start += PAGE_SIZE;
2090        }
2091
2092        return ret;
2093}
2094
2095/*
2096 * each time an IO finishes, we do a fast check in the IO failure tree
2097 * to see if we need to process or clean up an io_failure_record
2098 */
2099int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2100                     unsigned int pg_offset)
2101{
2102        u64 private;
2103        struct io_failure_record *failrec;
2104        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2105        struct extent_state *state;
2106        int num_copies;
2107        int ret;
2108
2109        private = 0;
2110        ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2111                                (u64)-1, 1, EXTENT_DIRTY, 0);
2112        if (!ret)
2113                return 0;
2114
2115        ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2116                        &failrec);
2117        if (ret)
2118                return 0;
2119
2120        BUG_ON(!failrec->this_mirror);
2121
2122        if (failrec->in_validation) {
2123                /* there was no real error, just free the record */
2124                pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2125                         failrec->start);
2126                goto out;
2127        }
2128        if (fs_info->sb->s_flags & MS_RDONLY)
2129                goto out;
2130
2131        spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132        state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133                                            failrec->start,
2134                                            EXTENT_LOCKED);
2135        spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
2137        if (state && state->start <= failrec->start &&
2138            state->end >= failrec->start + failrec->len - 1) {
2139                num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140                                              failrec->len);
2141                if (num_copies > 1)  {
2142                        repair_io_failure(inode, start, failrec->len,
2143                                          failrec->logical, page,
2144                                          pg_offset, failrec->failed_mirror);
2145                }
2146        }
2147
2148out:
2149        free_io_failure(inode, failrec);
2150
2151        return 0;
2152}
2153
2154/*
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
2159 */
2160void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161{
2162        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163        struct io_failure_record *failrec;
2164        struct extent_state *state, *next;
2165
2166        if (RB_EMPTY_ROOT(&failure_tree->state))
2167                return;
2168
2169        spin_lock(&failure_tree->lock);
2170        state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171        while (state) {
2172                if (state->start > end)
2173                        break;
2174
2175                ASSERT(state->end <= end);
2176
2177                next = next_state(state);
2178
2179                failrec = state->failrec;
2180                free_extent_state(state);
2181                kfree(failrec);
2182
2183                state = next;
2184        }
2185        spin_unlock(&failure_tree->lock);
2186}
2187
2188int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189                struct io_failure_record **failrec_ret)
2190{
2191        struct io_failure_record *failrec;
2192        struct extent_map *em;
2193        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2194        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2195        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2196        int ret;
2197        u64 logical;
2198
2199        ret = get_state_failrec(failure_tree, start, &failrec);
2200        if (ret) {
2201                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2202                if (!failrec)
2203                        return -ENOMEM;
2204
2205                failrec->start = start;
2206                failrec->len = end - start + 1;
2207                failrec->this_mirror = 0;
2208                failrec->bio_flags = 0;
2209                failrec->in_validation = 0;
2210
2211                read_lock(&em_tree->lock);
2212                em = lookup_extent_mapping(em_tree, start, failrec->len);
2213                if (!em) {
2214                        read_unlock(&em_tree->lock);
2215                        kfree(failrec);
2216                        return -EIO;
2217                }
2218
2219                if (em->start > start || em->start + em->len <= start) {
2220                        free_extent_map(em);
2221                        em = NULL;
2222                }
2223                read_unlock(&em_tree->lock);
2224                if (!em) {
2225                        kfree(failrec);
2226                        return -EIO;
2227                }
2228
2229                logical = start - em->start;
2230                logical = em->block_start + logical;
2231                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2232                        logical = em->block_start;
2233                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2234                        extent_set_compress_type(&failrec->bio_flags,
2235                                                 em->compress_type);
2236                }
2237
2238                pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2239                         logical, start, failrec->len);
2240
2241                failrec->logical = logical;
2242                free_extent_map(em);
2243
2244                /* set the bits in the private failure tree */
2245                ret = set_extent_bits(failure_tree, start, end,
2246                                        EXTENT_LOCKED | EXTENT_DIRTY);
2247                if (ret >= 0)
2248                        ret = set_state_failrec(failure_tree, start, failrec);
2249                /* set the bits in the inode's tree */
2250                if (ret >= 0)
2251                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2252                if (ret < 0) {
2253                        kfree(failrec);
2254                        return ret;
2255                }
2256        } else {
2257                pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2258                         failrec->logical, failrec->start, failrec->len,
2259                         failrec->in_validation);
2260                /*
2261                 * when data can be on disk more than twice, add to failrec here
2262                 * (e.g. with a list for failed_mirror) to make
2263                 * clean_io_failure() clean all those errors at once.
2264                 */
2265        }
2266
2267        *failrec_ret = failrec;
2268
2269        return 0;
2270}
2271
2272int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2273                           struct io_failure_record *failrec, int failed_mirror)
2274{
2275        int num_copies;
2276
2277        num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2278                                      failrec->logical, failrec->len);
2279        if (num_copies == 1) {
2280                /*
2281                 * we only have a single copy of the data, so don't bother with
2282                 * all the retry and error correction code that follows. no
2283                 * matter what the error is, it is very likely to persist.
2284                 */
2285                pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2286                         num_copies, failrec->this_mirror, failed_mirror);
2287                return 0;
2288        }
2289
2290        /*
2291         * there are two premises:
2292         *      a) deliver good data to the caller
2293         *      b) correct the bad sectors on disk
2294         */
2295        if (failed_bio->bi_vcnt > 1) {
2296                /*
2297                 * to fulfill b), we need to know the exact failing sectors, as
2298                 * we don't want to rewrite any more than the failed ones. thus,
2299                 * we need separate read requests for the failed bio
2300                 *
2301                 * if the following BUG_ON triggers, our validation request got
2302                 * merged. we need separate requests for our algorithm to work.
2303                 */
2304                BUG_ON(failrec->in_validation);
2305                failrec->in_validation = 1;
2306                failrec->this_mirror = failed_mirror;
2307        } else {
2308                /*
2309                 * we're ready to fulfill a) and b) alongside. get a good copy
2310                 * of the failed sector and if we succeed, we have setup
2311                 * everything for repair_io_failure to do the rest for us.
2312                 */
2313                if (failrec->in_validation) {
2314                        BUG_ON(failrec->this_mirror != failed_mirror);
2315                        failrec->in_validation = 0;
2316                        failrec->this_mirror = 0;
2317                }
2318                failrec->failed_mirror = failed_mirror;
2319                failrec->this_mirror++;
2320                if (failrec->this_mirror == failed_mirror)
2321                        failrec->this_mirror++;
2322        }
2323
2324        if (failrec->this_mirror > num_copies) {
2325                pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2326                         num_copies, failrec->this_mirror, failed_mirror);
2327                return 0;
2328        }
2329
2330        return 1;
2331}
2332
2333
2334struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2335                                    struct io_failure_record *failrec,
2336                                    struct page *page, int pg_offset, int icsum,
2337                                    bio_end_io_t *endio_func, void *data)
2338{
2339        struct bio *bio;
2340        struct btrfs_io_bio *btrfs_failed_bio;
2341        struct btrfs_io_bio *btrfs_bio;
2342
2343        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2344        if (!bio)
2345                return NULL;
2346
2347        bio->bi_end_io = endio_func;
2348        bio->bi_iter.bi_sector = failrec->logical >> 9;
2349        bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2350        bio->bi_iter.bi_size = 0;
2351        bio->bi_private = data;
2352
2353        btrfs_failed_bio = btrfs_io_bio(failed_bio);
2354        if (btrfs_failed_bio->csum) {
2355                struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2356                u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2357
2358                btrfs_bio = btrfs_io_bio(bio);
2359                btrfs_bio->csum = btrfs_bio->csum_inline;
2360                icsum *= csum_size;
2361                memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2362                       csum_size);
2363        }
2364
2365        bio_add_page(bio, page, failrec->len, pg_offset);
2366
2367        return bio;
2368}
2369
2370/*
2371 * this is a generic handler for readpage errors (default
2372 * readpage_io_failed_hook). if other copies exist, read those and write back
2373 * good data to the failed position. does not investigate in remapping the
2374 * failed extent elsewhere, hoping the device will be smart enough to do this as
2375 * needed
2376 */
2377
2378static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2379                              struct page *page, u64 start, u64 end,
2380                              int failed_mirror)
2381{
2382        struct io_failure_record *failrec;
2383        struct inode *inode = page->mapping->host;
2384        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2385        struct bio *bio;
2386        int read_mode;
2387        int ret;
2388
2389        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2390
2391        ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2392        if (ret)
2393                return ret;
2394
2395        ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2396        if (!ret) {
2397                free_io_failure(inode, failrec);
2398                return -EIO;
2399        }
2400
2401        if (failed_bio->bi_vcnt > 1)
2402                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2403        else
2404                read_mode = READ_SYNC;
2405
2406        phy_offset >>= inode->i_sb->s_blocksize_bits;
2407        bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2408                                      start - page_offset(page),
2409                                      (int)phy_offset, failed_bio->bi_end_io,
2410                                      NULL);
2411        if (!bio) {
2412                free_io_failure(inode, failrec);
2413                return -EIO;
2414        }
2415
2416        pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2417                 read_mode, failrec->this_mirror, failrec->in_validation);
2418
2419        ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2420                                         failrec->this_mirror,
2421                                         failrec->bio_flags, 0);
2422        if (ret) {
2423                free_io_failure(inode, failrec);
2424                bio_put(bio);
2425        }
2426
2427        return ret;
2428}
2429
2430/* lots and lots of room for performance fixes in the end_bio funcs */
2431
2432void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2433{
2434        int uptodate = (err == 0);
2435        struct extent_io_tree *tree;
2436        int ret = 0;
2437
2438        tree = &BTRFS_I(page->mapping->host)->io_tree;
2439
2440        if (tree->ops && tree->ops->writepage_end_io_hook) {
2441                ret = tree->ops->writepage_end_io_hook(page, start,
2442                                               end, NULL, uptodate);
2443                if (ret)
2444                        uptodate = 0;
2445        }
2446
2447        if (!uptodate) {
2448                ClearPageUptodate(page);
2449                SetPageError(page);
2450                ret = ret < 0 ? ret : -EIO;
2451                mapping_set_error(page->mapping, ret);
2452        }
2453}
2454
2455/*
2456 * after a writepage IO is done, we need to:
2457 * clear the uptodate bits on error
2458 * clear the writeback bits in the extent tree for this IO
2459 * end_page_writeback if the page has no more pending IO
2460 *
2461 * Scheduling is not allowed, so the extent state tree is expected
2462 * to have one and only one object corresponding to this IO.
2463 */
2464static void end_bio_extent_writepage(struct bio *bio)
2465{
2466        struct bio_vec *bvec;
2467        u64 start;
2468        u64 end;
2469        int i;
2470
2471        bio_for_each_segment_all(bvec, bio, i) {
2472                struct page *page = bvec->bv_page;
2473
2474                /* We always issue full-page reads, but if some block
2475                 * in a page fails to read, blk_update_request() will
2476                 * advance bv_offset and adjust bv_len to compensate.
2477                 * Print a warning for nonzero offsets, and an error
2478                 * if they don't add up to a full page.  */
2479                if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2480                        if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2481                                btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2482                                   "partial page write in btrfs with offset %u and length %u",
2483                                        bvec->bv_offset, bvec->bv_len);
2484                        else
2485                                btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2486                                   "incomplete page write in btrfs with offset %u and "
2487                                   "length %u",
2488                                        bvec->bv_offset, bvec->bv_len);
2489                }
2490
2491                start = page_offset(page);
2492                end = start + bvec->bv_offset + bvec->bv_len - 1;
2493
2494                end_extent_writepage(page, bio->bi_error, start, end);
2495                end_page_writeback(page);
2496        }
2497
2498        bio_put(bio);
2499}
2500
2501static void
2502endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2503                              int uptodate)
2504{
2505        struct extent_state *cached = NULL;
2506        u64 end = start + len - 1;
2507
2508        if (uptodate && tree->track_uptodate)
2509                set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2510        unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2511}
2512
2513/*
2514 * after a readpage IO is done, we need to:
2515 * clear the uptodate bits on error
2516 * set the uptodate bits if things worked
2517 * set the page up to date if all extents in the tree are uptodate
2518 * clear the lock bit in the extent tree
2519 * unlock the page if there are no other extents locked for it
2520 *
2521 * Scheduling is not allowed, so the extent state tree is expected
2522 * to have one and only one object corresponding to this IO.
2523 */
2524static void end_bio_extent_readpage(struct bio *bio)
2525{
2526        struct bio_vec *bvec;
2527        int uptodate = !bio->bi_error;
2528        struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2529        struct extent_io_tree *tree;
2530        u64 offset = 0;
2531        u64 start;
2532        u64 end;
2533        u64 len;
2534        u64 extent_start = 0;
2535        u64 extent_len = 0;
2536        int mirror;
2537        int ret;
2538        int i;
2539
2540        bio_for_each_segment_all(bvec, bio, i) {
2541                struct page *page = bvec->bv_page;
2542                struct inode *inode = page->mapping->host;
2543
2544                pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2545                         "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2546                         bio->bi_error, io_bio->mirror_num);
2547                tree = &BTRFS_I(inode)->io_tree;
2548
2549                /* We always issue full-page reads, but if some block
2550                 * in a page fails to read, blk_update_request() will
2551                 * advance bv_offset and adjust bv_len to compensate.
2552                 * Print a warning for nonzero offsets, and an error
2553                 * if they don't add up to a full page.  */
2554                if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2555                        if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2556                                btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2557                                   "partial page read in btrfs with offset %u and length %u",
2558                                        bvec->bv_offset, bvec->bv_len);
2559                        else
2560                                btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2561                                   "incomplete page read in btrfs with offset %u and "
2562                                   "length %u",
2563                                        bvec->bv_offset, bvec->bv_len);
2564                }
2565
2566                start = page_offset(page);
2567                end = start + bvec->bv_offset + bvec->bv_len - 1;
2568                len = bvec->bv_len;
2569
2570                mirror = io_bio->mirror_num;
2571                if (likely(uptodate && tree->ops &&
2572                           tree->ops->readpage_end_io_hook)) {
2573                        ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2574                                                              page, start, end,
2575                                                              mirror);
2576                        if (ret)
2577                                uptodate = 0;
2578                        else
2579                                clean_io_failure(inode, start, page, 0);
2580                }
2581
2582                if (likely(uptodate))
2583                        goto readpage_ok;
2584
2585                if (tree->ops && tree->ops->readpage_io_failed_hook) {
2586                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2587                        if (!ret && !bio->bi_error)
2588                                uptodate = 1;
2589                } else {
2590                        /*
2591                         * The generic bio_readpage_error handles errors the
2592                         * following way: If possible, new read requests are
2593                         * created and submitted and will end up in
2594                         * end_bio_extent_readpage as well (if we're lucky, not
2595                         * in the !uptodate case). In that case it returns 0 and
2596                         * we just go on with the next page in our bio. If it
2597                         * can't handle the error it will return -EIO and we
2598                         * remain responsible for that page.
2599                         */
2600                        ret = bio_readpage_error(bio, offset, page, start, end,
2601                                                 mirror);
2602                        if (ret == 0) {
2603                                uptodate = !bio->bi_error;
2604                                offset += len;
2605                                continue;
2606                        }
2607                }
2608readpage_ok:
2609                if (likely(uptodate)) {
2610                        loff_t i_size = i_size_read(inode);
2611                        pgoff_t end_index = i_size >> PAGE_SHIFT;
2612                        unsigned off;
2613
2614                        /* Zero out the end if this page straddles i_size */
2615                        off = i_size & (PAGE_SIZE-1);
2616                        if (page->index == end_index && off)
2617                                zero_user_segment(page, off, PAGE_SIZE);
2618                        SetPageUptodate(page);
2619                } else {
2620                        ClearPageUptodate(page);
2621                        SetPageError(page);
2622                }
2623                unlock_page(page);
2624                offset += len;
2625
2626                if (unlikely(!uptodate)) {
2627                        if (extent_len) {
2628                                endio_readpage_release_extent(tree,
2629                                                              extent_start,
2630                                                              extent_len, 1);
2631                                extent_start = 0;
2632                                extent_len = 0;
2633                        }
2634                        endio_readpage_release_extent(tree, start,
2635                                                      end - start + 1, 0);
2636                } else if (!extent_len) {
2637                        extent_start = start;
2638                        extent_len = end + 1 - start;
2639                } else if (extent_start + extent_len == start) {
2640                        extent_len += end + 1 - start;
2641                } else {
2642                        endio_readpage_release_extent(tree, extent_start,
2643                                                      extent_len, uptodate);
2644                        extent_start = start;
2645                        extent_len = end + 1 - start;
2646                }
2647        }
2648
2649        if (extent_len)
2650                endio_readpage_release_extent(tree, extent_start, extent_len,
2651                                              uptodate);
2652        if (io_bio->end_io)
2653                io_bio->end_io(io_bio, bio->bi_error);
2654        bio_put(bio);
2655}
2656
2657/*
2658 * this allocates from the btrfs_bioset.  We're returning a bio right now
2659 * but you can call btrfs_io_bio for the appropriate container_of magic
2660 */
2661struct bio *
2662btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2663                gfp_t gfp_flags)
2664{
2665        struct btrfs_io_bio *btrfs_bio;
2666        struct bio *bio;
2667
2668        bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2669
2670        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2671                while (!bio && (nr_vecs /= 2)) {
2672                        bio = bio_alloc_bioset(gfp_flags,
2673                                               nr_vecs, btrfs_bioset);
2674                }
2675        }
2676
2677        if (bio) {
2678                bio->bi_bdev = bdev;
2679                bio->bi_iter.bi_sector = first_sector;
2680                btrfs_bio = btrfs_io_bio(bio);
2681                btrfs_bio->csum = NULL;
2682                btrfs_bio->csum_allocated = NULL;
2683                btrfs_bio->end_io = NULL;
2684        }
2685        return bio;
2686}
2687
2688struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2689{
2690        struct btrfs_io_bio *btrfs_bio;
2691        struct bio *new;
2692
2693        new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2694        if (new) {
2695                btrfs_bio = btrfs_io_bio(new);
2696                btrfs_bio->csum = NULL;
2697                btrfs_bio->csum_allocated = NULL;
2698                btrfs_bio->end_io = NULL;
2699
2700#ifdef CONFIG_BLK_CGROUP
2701                /* FIXME, put this into bio_clone_bioset */
2702                if (bio->bi_css)
2703                        bio_associate_blkcg(new, bio->bi_css);
2704#endif
2705        }
2706        return new;
2707}
2708
2709/* this also allocates from the btrfs_bioset */
2710struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2711{
2712        struct btrfs_io_bio *btrfs_bio;
2713        struct bio *bio;
2714
2715        bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2716        if (bio) {
2717                btrfs_bio = btrfs_io_bio(bio);
2718                btrfs_bio->csum = NULL;
2719                btrfs_bio->csum_allocated = NULL;
2720                btrfs_bio->end_io = NULL;
2721        }
2722        return bio;
2723}
2724
2725
2726static int __must_check submit_one_bio(int rw, struct bio *bio,
2727                                       int mirror_num, unsigned long bio_flags)
2728{
2729        int ret = 0;
2730        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2731        struct page *page = bvec->bv_page;
2732        struct extent_io_tree *tree = bio->bi_private;
2733        u64 start;
2734
2735        start = page_offset(page) + bvec->bv_offset;
2736
2737        bio->bi_private = NULL;
2738
2739        bio_get(bio);
2740
2741        if (tree->ops && tree->ops->submit_bio_hook)
2742                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2743                                           mirror_num, bio_flags, start);
2744        else
2745                btrfsic_submit_bio(rw, bio);
2746
2747        bio_put(bio);
2748        return ret;
2749}
2750
2751static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2752                     unsigned long offset, size_t size, struct bio *bio,
2753                     unsigned long bio_flags)
2754{
2755        int ret = 0;
2756        if (tree->ops && tree->ops->merge_bio_hook)
2757                ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2758                                                bio_flags);
2759        BUG_ON(ret < 0);
2760        return ret;
2761
2762}
2763
2764static int submit_extent_page(int rw, struct extent_io_tree *tree,
2765                              struct writeback_control *wbc,
2766                              struct page *page, sector_t sector,
2767                              size_t size, unsigned long offset,
2768                              struct block_device *bdev,
2769                              struct bio **bio_ret,
2770                              unsigned long max_pages,
2771                              bio_end_io_t end_io_func,
2772                              int mirror_num,
2773                              unsigned long prev_bio_flags,
2774                              unsigned long bio_flags,
2775                              bool force_bio_submit)
2776{
2777        int ret = 0;
2778        struct bio *bio;
2779        int contig = 0;
2780        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2781        size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782
2783        if (bio_ret && *bio_ret) {
2784                bio = *bio_ret;
2785                if (old_compressed)
2786                        contig = bio->bi_iter.bi_sector == sector;
2787                else
2788                        contig = bio_end_sector(bio) == sector;
2789
2790                if (prev_bio_flags != bio_flags || !contig ||
2791                    force_bio_submit ||
2792                    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2793                    bio_add_page(bio, page, page_size, offset) < page_size) {
2794                        ret = submit_one_bio(rw, bio, mirror_num,
2795                                             prev_bio_flags);
2796                        if (ret < 0) {
2797                                *bio_ret = NULL;
2798                                return ret;
2799                        }
2800                        bio = NULL;
2801                } else {
2802                        if (wbc)
2803                                wbc_account_io(wbc, page, page_size);
2804                        return 0;
2805                }
2806        }
2807
2808        bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2809                        GFP_NOFS | __GFP_HIGH);
2810        if (!bio)
2811                return -ENOMEM;
2812
2813        bio_add_page(bio, page, page_size, offset);
2814        bio->bi_end_io = end_io_func;
2815        bio->bi_private = tree;
2816        if (wbc) {
2817                wbc_init_bio(wbc, bio);
2818                wbc_account_io(wbc, page, page_size);
2819        }
2820
2821        if (bio_ret)
2822                *bio_ret = bio;
2823        else
2824                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2825
2826        return ret;
2827}
2828
2829static void attach_extent_buffer_page(struct extent_buffer *eb,
2830                                      struct page *page)
2831{
2832        if (!PagePrivate(page)) {
2833                SetPagePrivate(page);
2834                get_page(page);
2835                set_page_private(page, (unsigned long)eb);
2836        } else {
2837                WARN_ON(page->private != (unsigned long)eb);
2838        }
2839}
2840
2841void set_page_extent_mapped(struct page *page)
2842{
2843        if (!PagePrivate(page)) {
2844                SetPagePrivate(page);
2845                get_page(page);
2846                set_page_private(page, EXTENT_PAGE_PRIVATE);
2847        }
2848}
2849
2850static struct extent_map *
2851__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2852                 u64 start, u64 len, get_extent_t *get_extent,
2853                 struct extent_map **em_cached)
2854{
2855        struct extent_map *em;
2856
2857        if (em_cached && *em_cached) {
2858                em = *em_cached;
2859                if (extent_map_in_tree(em) && start >= em->start &&
2860                    start < extent_map_end(em)) {
2861                        atomic_inc(&em->refs);
2862                        return em;
2863                }
2864
2865                free_extent_map(em);
2866                *em_cached = NULL;
2867        }
2868
2869        em = get_extent(inode, page, pg_offset, start, len, 0);
2870        if (em_cached && !IS_ERR_OR_NULL(em)) {
2871                BUG_ON(*em_cached);
2872                atomic_inc(&em->refs);
2873                *em_cached = em;
2874        }
2875        return em;
2876}
2877/*
2878 * basic readpage implementation.  Locked extent state structs are inserted
2879 * into the tree that are removed when the IO is done (by the end_io
2880 * handlers)
2881 * XXX JDM: This needs looking at to ensure proper page locking
2882 */
2883static int __do_readpage(struct extent_io_tree *tree,
2884                         struct page *page,
2885                         get_extent_t *get_extent,
2886                         struct extent_map **em_cached,
2887                         struct bio **bio, int mirror_num,
2888                         unsigned long *bio_flags, int rw,
2889                         u64 *prev_em_start)
2890{
2891        struct inode *inode = page->mapping->host;
2892        u64 start = page_offset(page);
2893        u64 page_end = start + PAGE_SIZE - 1;
2894        u64 end;
2895        u64 cur = start;
2896        u64 extent_offset;
2897        u64 last_byte = i_size_read(inode);
2898        u64 block_start;
2899        u64 cur_end;
2900        sector_t sector;
2901        struct extent_map *em;
2902        struct block_device *bdev;
2903        int ret;
2904        int nr = 0;
2905        size_t pg_offset = 0;
2906        size_t iosize;
2907        size_t disk_io_size;
2908        size_t blocksize = inode->i_sb->s_blocksize;
2909        unsigned long this_bio_flag = 0;
2910
2911        set_page_extent_mapped(page);
2912
2913        end = page_end;
2914        if (!PageUptodate(page)) {
2915                if (cleancache_get_page(page) == 0) {
2916                        BUG_ON(blocksize != PAGE_SIZE);
2917                        unlock_extent(tree, start, end);
2918                        goto out;
2919                }
2920        }
2921
2922        if (page->index == last_byte >> PAGE_SHIFT) {
2923                char *userpage;
2924                size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2925
2926                if (zero_offset) {
2927                        iosize = PAGE_SIZE - zero_offset;
2928                        userpage = kmap_atomic(page);
2929                        memset(userpage + zero_offset, 0, iosize);
2930                        flush_dcache_page(page);
2931                        kunmap_atomic(userpage);
2932                }
2933        }
2934        while (cur <= end) {
2935                unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2936                bool force_bio_submit = false;
2937
2938                if (cur >= last_byte) {
2939                        char *userpage;
2940                        struct extent_state *cached = NULL;
2941
2942                        iosize = PAGE_SIZE - pg_offset;
2943                        userpage = kmap_atomic(page);
2944                        memset(userpage + pg_offset, 0, iosize);
2945                        flush_dcache_page(page);
2946                        kunmap_atomic(userpage);
2947                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2948                                            &cached, GFP_NOFS);
2949                        unlock_extent_cached(tree, cur,
2950                                             cur + iosize - 1,
2951                                             &cached, GFP_NOFS);
2952                        break;
2953                }
2954                em = __get_extent_map(inode, page, pg_offset, cur,
2955                                      end - cur + 1, get_extent, em_cached);
2956                if (IS_ERR_OR_NULL(em)) {
2957                        SetPageError(page);
2958                        unlock_extent(tree, cur, end);
2959                        break;
2960                }
2961                extent_offset = cur - em->start;
2962                BUG_ON(extent_map_end(em) <= cur);
2963                BUG_ON(end < cur);
2964
2965                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966                        this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967                        extent_set_compress_type(&this_bio_flag,
2968                                                 em->compress_type);
2969                }
2970
2971                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972                cur_end = min(extent_map_end(em) - 1, end);
2973                iosize = ALIGN(iosize, blocksize);
2974                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975                        disk_io_size = em->block_len;
2976                        sector = em->block_start >> 9;
2977                } else {
2978                        sector = (em->block_start + extent_offset) >> 9;
2979                        disk_io_size = iosize;
2980                }
2981                bdev = em->bdev;
2982                block_start = em->block_start;
2983                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984                        block_start = EXTENT_MAP_HOLE;
2985
2986                /*
2987                 * If we have a file range that points to a compressed extent
2988                 * and it's followed by a consecutive file range that points to
2989                 * to the same compressed extent (possibly with a different
2990                 * offset and/or length, so it either points to the whole extent
2991                 * or only part of it), we must make sure we do not submit a
2992                 * single bio to populate the pages for the 2 ranges because
2993                 * this makes the compressed extent read zero out the pages
2994                 * belonging to the 2nd range. Imagine the following scenario:
2995                 *
2996                 *  File layout
2997                 *  [0 - 8K]                     [8K - 24K]
2998                 *    |                               |
2999                 *    |                               |
3000                 * points to extent X,         points to extent X,
3001                 * offset 4K, length of 8K     offset 0, length 16K
3002                 *
3003                 * [extent X, compressed length = 4K uncompressed length = 16K]
3004                 *
3005                 * If the bio to read the compressed extent covers both ranges,
3006                 * it will decompress extent X into the pages belonging to the
3007                 * first range and then it will stop, zeroing out the remaining
3008                 * pages that belong to the other range that points to extent X.
3009                 * So here we make sure we submit 2 bios, one for the first
3010                 * range and another one for the third range. Both will target
3011                 * the same physical extent from disk, but we can't currently
3012                 * make the compressed bio endio callback populate the pages
3013                 * for both ranges because each compressed bio is tightly
3014                 * coupled with a single extent map, and each range can have
3015                 * an extent map with a different offset value relative to the
3016                 * uncompressed data of our extent and different lengths. This
3017                 * is a corner case so we prioritize correctness over
3018                 * non-optimal behavior (submitting 2 bios for the same extent).
3019                 */
3020                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021                    prev_em_start && *prev_em_start != (u64)-1 &&
3022                    *prev_em_start != em->orig_start)
3023                        force_bio_submit = true;
3024
3025                if (prev_em_start)
3026                        *prev_em_start = em->orig_start;
3027
3028                free_extent_map(em);
3029                em = NULL;
3030
3031                /* we've found a hole, just zero and go on */
3032                if (block_start == EXTENT_MAP_HOLE) {
3033                        char *userpage;
3034                        struct extent_state *cached = NULL;
3035
3036                        userpage = kmap_atomic(page);
3037                        memset(userpage + pg_offset, 0, iosize);
3038                        flush_dcache_page(page);
3039                        kunmap_atomic(userpage);
3040
3041                        set_extent_uptodate(tree, cur, cur + iosize - 1,
3042                                            &cached, GFP_NOFS);
3043                        unlock_extent_cached(tree, cur,
3044                                             cur + iosize - 1,
3045                                             &cached, GFP_NOFS);
3046                        cur = cur + iosize;
3047                        pg_offset += iosize;
3048                        continue;
3049                }
3050                /* the get_extent function already copied into the page */
3051                if (test_range_bit(tree, cur, cur_end,
3052                                   EXTENT_UPTODATE, 1, NULL)) {
3053                        check_page_uptodate(tree, page);
3054                        unlock_extent(tree, cur, cur + iosize - 1);
3055                        cur = cur + iosize;
3056                        pg_offset += iosize;
3057                        continue;
3058                }
3059                /* we have an inline extent but it didn't get marked up
3060                 * to date.  Error out
3061                 */
3062                if (block_start == EXTENT_MAP_INLINE) {
3063                        SetPageError(page);
3064                        unlock_extent(tree, cur, cur + iosize - 1);
3065                        cur = cur + iosize;
3066                        pg_offset += iosize;
3067                        continue;
3068                }
3069
3070                pnr -= page->index;
3071                ret = submit_extent_page(rw, tree, NULL, page,
3072                                         sector, disk_io_size, pg_offset,
3073                                         bdev, bio, pnr,
3074                                         end_bio_extent_readpage, mirror_num,
3075                                         *bio_flags,
3076                                         this_bio_flag,
3077                                         force_bio_submit);
3078                if (!ret) {
3079                        nr++;
3080                        *bio_flags = this_bio_flag;
3081                } else {
3082                        SetPageError(page);
3083                        unlock_extent(tree, cur, cur + iosize - 1);
3084                }
3085                cur = cur + iosize;
3086                pg_offset += iosize;
3087        }
3088out:
3089        if (!nr) {
3090                if (!PageError(page))
3091                        SetPageUptodate(page);
3092                unlock_page(page);
3093        }
3094        return 0;
3095}
3096
3097static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098                                             struct page *pages[], int nr_pages,
3099                                             u64 start, u64 end,
3100                                             get_extent_t *get_extent,
3101                                             struct extent_map **em_cached,
3102                                             struct bio **bio, int mirror_num,
3103                                             unsigned long *bio_flags, int rw,
3104                                             u64 *prev_em_start)
3105{
3106        struct inode *inode;
3107        struct btrfs_ordered_extent *ordered;
3108        int index;
3109
3110        inode = pages[0]->mapping->host;
3111        while (1) {
3112                lock_extent(tree, start, end);
3113                ordered = btrfs_lookup_ordered_range(inode, start,
3114                                                     end - start + 1);
3115                if (!ordered)
3116                        break;
3117                unlock_extent(tree, start, end);
3118                btrfs_start_ordered_extent(inode, ordered, 1);
3119                btrfs_put_ordered_extent(ordered);
3120        }
3121
3122        for (index = 0; index < nr_pages; index++) {
3123                __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3124                              mirror_num, bio_flags, rw, prev_em_start);
3125                put_page(pages[index]);
3126        }
3127}
3128
3129static void __extent_readpages(struct extent_io_tree *tree,
3130                               struct page *pages[],
3131                               int nr_pages, get_extent_t *get_extent,
3132                               struct extent_map **em_cached,
3133                               struct bio **bio, int mirror_num,
3134                               unsigned long *bio_flags, int rw,
3135                               u64 *prev_em_start)
3136{
3137        u64 start = 0;
3138        u64 end = 0;
3139        u64 page_start;
3140        int index;
3141        int first_index = 0;
3142
3143        for (index = 0; index < nr_pages; index++) {
3144                page_start = page_offset(pages[index]);
3145                if (!end) {
3146                        start = page_start;
3147                        end = start + PAGE_SIZE - 1;
3148                        first_index = index;
3149                } else if (end + 1 == page_start) {
3150                        end += PAGE_SIZE;
3151                } else {
3152                        __do_contiguous_readpages(tree, &pages[first_index],
3153                                                  index - first_index, start,
3154                                                  end, get_extent, em_cached,
3155                                                  bio, mirror_num, bio_flags,
3156                                                  rw, prev_em_start);
3157                        start = page_start;
3158                        end = start + PAGE_SIZE - 1;
3159                        first_index = index;
3160                }
3161        }
3162
3163        if (end)
3164                __do_contiguous_readpages(tree, &pages[first_index],
3165                                          index - first_index, start,
3166                                          end, get_extent, em_cached, bio,
3167                                          mirror_num, bio_flags, rw,
3168                                          prev_em_start);
3169}
3170
3171static int __extent_read_full_page(struct extent_io_tree *tree,
3172                                   struct page *page,
3173                                   get_extent_t *get_extent,
3174                                   struct bio **bio, int mirror_num,
3175                                   unsigned long *bio_flags, int rw)
3176{
3177        struct inode *inode = page->mapping->host;
3178        struct btrfs_ordered_extent *ordered;
3179        u64 start = page_offset(page);
3180        u64 end = start + PAGE_SIZE - 1;
3181        int ret;
3182
3183        while (1) {
3184                lock_extent(tree, start, end);
3185                ordered = btrfs_lookup_ordered_range(inode, start,
3186                                                PAGE_SIZE);
3187                if (!ordered)
3188                        break;
3189                unlock_extent(tree, start, end);
3190                btrfs_start_ordered_extent(inode, ordered, 1);
3191                btrfs_put_ordered_extent(ordered);
3192        }
3193
3194        ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3195                            bio_flags, rw, NULL);
3196        return ret;
3197}
3198
3199int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3200                            get_extent_t *get_extent, int mirror_num)
3201{
3202        struct bio *bio = NULL;
3203        unsigned long bio_flags = 0;
3204        int ret;
3205
3206        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3207                                      &bio_flags, READ);
3208        if (bio)
3209                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3210        return ret;
3211}
3212
3213static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214                              unsigned long nr_written)
3215{
3216        wbc->nr_to_write -= nr_written;
3217}
3218
3219/*
3220 * helper for __extent_writepage, doing all of the delayed allocation setup.
3221 *
3222 * This returns 1 if our fill_delalloc function did all the work required
3223 * to write the page (copy into inline extent).  In this case the IO has
3224 * been started and the page is already unlocked.
3225 *
3226 * This returns 0 if all went well (page still locked)
3227 * This returns < 0 if there were errors (page still locked)
3228 */
3229static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230                              struct page *page, struct writeback_control *wbc,
3231                              struct extent_page_data *epd,
3232                              u64 delalloc_start,
3233                              unsigned long *nr_written)
3234{
3235        struct extent_io_tree *tree = epd->tree;
3236        u64 page_end = delalloc_start + PAGE_SIZE - 1;
3237        u64 nr_delalloc;
3238        u64 delalloc_to_write = 0;
3239        u64 delalloc_end = 0;
3240        int ret;
3241        int page_started = 0;
3242
3243        if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244                return 0;
3245
3246        while (delalloc_end < page_end) {
3247                nr_delalloc = find_lock_delalloc_range(inode, tree,
3248                                               page,
3249                                               &delalloc_start,
3250                                               &delalloc_end,
3251                                               BTRFS_MAX_EXTENT_SIZE);
3252                if (nr_delalloc == 0) {
3253                        delalloc_start = delalloc_end + 1;
3254                        continue;
3255                }
3256                ret = tree->ops->fill_delalloc(inode, page,
3257                                               delalloc_start,
3258                                               delalloc_end,
3259                                               &page_started,
3260                                               nr_written);
3261                /* File system has been set read-only */
3262                if (ret) {
3263                        SetPageError(page);
3264                        /* fill_delalloc should be return < 0 for error
3265                         * but just in case, we use > 0 here meaning the
3266                         * IO is started, so we don't want to return > 0
3267                         * unless things are going well.
3268                         */
3269                        ret = ret < 0 ? ret : -EIO;
3270                        goto done;
3271                }
3272                /*
3273                 * delalloc_end is already one less than the total length, so
3274                 * we don't subtract one from PAGE_SIZE
3275                 */
3276                delalloc_to_write += (delalloc_end - delalloc_start +
3277                                      PAGE_SIZE) >> PAGE_SHIFT;
3278                delalloc_start = delalloc_end + 1;
3279        }
3280        if (wbc->nr_to_write < delalloc_to_write) {
3281                int thresh = 8192;
3282
3283                if (delalloc_to_write < thresh * 2)
3284                        thresh = delalloc_to_write;
3285                wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286                                         thresh);
3287        }
3288
3289        /* did the fill delalloc function already unlock and start
3290         * the IO?
3291         */
3292        if (page_started) {
3293                /*
3294                 * we've unlocked the page, so we can't update
3295                 * the mapping's writeback index, just update
3296                 * nr_to_write.
3297                 */
3298                wbc->nr_to_write -= *nr_written;
3299                return 1;
3300        }
3301
3302        ret = 0;
3303
3304done:
3305        return ret;
3306}
3307
3308/*
3309 * helper for __extent_writepage.  This calls the writepage start hooks,
3310 * and does the loop to map the page into extents and bios.
3311 *
3312 * We return 1 if the IO is started and the page is unlocked,
3313 * 0 if all went well (page still locked)
3314 * < 0 if there were errors (page still locked)
3315 */
3316static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317                                 struct page *page,
3318                                 struct writeback_control *wbc,
3319                                 struct extent_page_data *epd,
3320                                 loff_t i_size,
3321                                 unsigned long nr_written,
3322                                 int write_flags, int *nr_ret)
3323{
3324        struct extent_io_tree *tree = epd->tree;
3325        u64 start = page_offset(page);
3326        u64 page_end = start + PAGE_SIZE - 1;
3327        u64 end;
3328        u64 cur = start;
3329        u64 extent_offset;
3330        u64 block_start;
3331        u64 iosize;
3332        sector_t sector;
3333        struct extent_state *cached_state = NULL;
3334        struct extent_map *em;
3335        struct block_device *bdev;
3336        size_t pg_offset = 0;
3337        size_t blocksize;
3338        int ret = 0;
3339        int nr = 0;
3340        bool compressed;
3341
3342        if (tree->ops && tree->ops->writepage_start_hook) {
3343                ret = tree->ops->writepage_start_hook(page, start,
3344                                                      page_end);
3345                if (ret) {
3346                        /* Fixup worker will requeue */
3347                        if (ret == -EBUSY)
3348                                wbc->pages_skipped++;
3349                        else
3350                                redirty_page_for_writepage(wbc, page);
3351
3352                        update_nr_written(page, wbc, nr_written);
3353                        unlock_page(page);
3354                        ret = 1;
3355                        goto done_unlocked;
3356                }
3357        }
3358
3359        /*
3360         * we don't want to touch the inode after unlocking the page,
3361         * so we update the mapping writeback index now
3362         */
3363        update_nr_written(page, wbc, nr_written + 1);
3364
3365        end = page_end;
3366        if (i_size <= start) {
3367                if (tree->ops && tree->ops->writepage_end_io_hook)
3368                        tree->ops->writepage_end_io_hook(page, start,
3369                                                         page_end, NULL, 1);
3370                goto done;
3371        }
3372
3373        blocksize = inode->i_sb->s_blocksize;
3374
3375        while (cur <= end) {
3376                u64 em_end;
3377                unsigned long max_nr;
3378
3379                if (cur >= i_size) {
3380                        if (tree->ops && tree->ops->writepage_end_io_hook)
3381                                tree->ops->writepage_end_io_hook(page, cur,
3382                                                         page_end, NULL, 1);
3383                        break;
3384                }
3385                em = epd->get_extent(inode, page, pg_offset, cur,
3386                                     end - cur + 1, 1);
3387                if (IS_ERR_OR_NULL(em)) {
3388                        SetPageError(page);
3389                        ret = PTR_ERR_OR_ZERO(em);
3390                        break;
3391                }
3392
3393                extent_offset = cur - em->start;
3394                em_end = extent_map_end(em);
3395                BUG_ON(em_end <= cur);
3396                BUG_ON(end < cur);
3397                iosize = min(em_end - cur, end - cur + 1);
3398                iosize = ALIGN(iosize, blocksize);
3399                sector = (em->block_start + extent_offset) >> 9;
3400                bdev = em->bdev;
3401                block_start = em->block_start;
3402                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3403                free_extent_map(em);
3404                em = NULL;
3405
3406                /*
3407                 * compressed and inline extents are written through other
3408                 * paths in the FS
3409                 */
3410                if (compressed || block_start == EXTENT_MAP_HOLE ||
3411                    block_start == EXTENT_MAP_INLINE) {
3412                        /*
3413                         * end_io notification does not happen here for
3414                         * compressed extents
3415                         */
3416                        if (!compressed && tree->ops &&
3417                            tree->ops->writepage_end_io_hook)
3418                                tree->ops->writepage_end_io_hook(page, cur,
3419                                                         cur + iosize - 1,
3420                                                         NULL, 1);
3421                        else if (compressed) {
3422                                /* we don't want to end_page_writeback on
3423                                 * a compressed extent.  this happens
3424                                 * elsewhere
3425                                 */
3426                                nr++;
3427                        }
3428
3429                        cur += iosize;
3430                        pg_offset += iosize;
3431                        continue;
3432                }
3433
3434                max_nr = (i_size >> PAGE_SHIFT) + 1;
3435
3436                set_range_writeback(tree, cur, cur + iosize - 1);
3437                if (!PageWriteback(page)) {
3438                        btrfs_err(BTRFS_I(inode)->root->fs_info,
3439                                   "page %lu not writeback, cur %llu end %llu",
3440                               page->index, cur, end);
3441                }
3442
3443                ret = submit_extent_page(write_flags, tree, wbc, page,
3444                                         sector, iosize, pg_offset,
3445                                         bdev, &epd->bio, max_nr,
3446                                         end_bio_extent_writepage,
3447                                         0, 0, 0, false);
3448                if (ret)
3449                        SetPageError(page);
3450
3451                cur = cur + iosize;
3452                pg_offset += iosize;
3453                nr++;
3454        }
3455done:
3456        *nr_ret = nr;
3457
3458done_unlocked:
3459
3460        /* drop our reference on any cached states */
3461        free_extent_state(cached_state);
3462        return ret;
3463}
3464
3465/*
3466 * the writepage semantics are similar to regular writepage.  extent
3467 * records are inserted to lock ranges in the tree, and as dirty areas
3468 * are found, they are marked writeback.  Then the lock bits are removed
3469 * and the end_io handler clears the writeback ranges
3470 */
3471static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472                              void *data)
3473{
3474        struct inode *inode = page->mapping->host;
3475        struct extent_page_data *epd = data;
3476        u64 start = page_offset(page);
3477        u64 page_end = start + PAGE_SIZE - 1;
3478        int ret;
3479        int nr = 0;
3480        size_t pg_offset = 0;
3481        loff_t i_size = i_size_read(inode);
3482        unsigned long end_index = i_size >> PAGE_SHIFT;
3483        int write_flags;
3484        unsigned long nr_written = 0;
3485
3486        if (wbc->sync_mode == WB_SYNC_ALL)
3487                write_flags = WRITE_SYNC;
3488        else
3489                write_flags = WRITE;
3490
3491        trace___extent_writepage(page, inode, wbc);
3492
3493        WARN_ON(!PageLocked(page));
3494
3495        ClearPageError(page);
3496
3497        pg_offset = i_size & (PAGE_SIZE - 1);
3498        if (page->index > end_index ||
3499           (page->index == end_index && !pg_offset)) {
3500                page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3501                unlock_page(page);
3502                return 0;
3503        }
3504
3505        if (page->index == end_index) {
3506                char *userpage;
3507
3508                userpage = kmap_atomic(page);
3509                memset(userpage + pg_offset, 0,
3510                       PAGE_SIZE - pg_offset);
3511                kunmap_atomic(userpage);
3512                flush_dcache_page(page);
3513        }
3514
3515        pg_offset = 0;
3516
3517        set_page_extent_mapped(page);
3518
3519        ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3520        if (ret == 1)
3521                goto done_unlocked;
3522        if (ret)
3523                goto done;
3524
3525        ret = __extent_writepage_io(inode, page, wbc, epd,
3526                                    i_size, nr_written, write_flags, &nr);
3527        if (ret == 1)
3528                goto done_unlocked;
3529
3530done:
3531        if (nr == 0) {
3532                /* make sure the mapping tag for page dirty gets cleared */
3533                set_page_writeback(page);
3534                end_page_writeback(page);
3535        }
3536        if (PageError(page)) {
3537                ret = ret < 0 ? ret : -EIO;
3538                end_extent_writepage(page, ret, start, page_end);
3539        }
3540        unlock_page(page);
3541        return ret;
3542
3543done_unlocked:
3544        return 0;
3545}
3546
3547void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3548{
3549        wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3550                       TASK_UNINTERRUPTIBLE);
3551}
3552
3553static noinline_for_stack int
3554lock_extent_buffer_for_io(struct extent_buffer *eb,
3555                          struct btrfs_fs_info *fs_info,
3556                          struct extent_page_data *epd)
3557{
3558        unsigned long i, num_pages;
3559        int flush = 0;
3560        int ret = 0;
3561
3562        if (!btrfs_try_tree_write_lock(eb)) {
3563                flush = 1;
3564                flush_write_bio(epd);
3565                btrfs_tree_lock(eb);
3566        }
3567
3568        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3569                btrfs_tree_unlock(eb);
3570                if (!epd->sync_io)
3571                        return 0;
3572                if (!flush) {
3573                        flush_write_bio(epd);
3574                        flush = 1;
3575                }
3576                while (1) {
3577                        wait_on_extent_buffer_writeback(eb);
3578                        btrfs_tree_lock(eb);
3579                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3580                                break;
3581                        btrfs_tree_unlock(eb);
3582                }
3583        }
3584
3585        /*
3586         * We need to do this to prevent races in people who check if the eb is
3587         * under IO since we can end up having no IO bits set for a short period
3588         * of time.
3589         */
3590        spin_lock(&eb->refs_lock);
3591        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3592                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3593                spin_unlock(&eb->refs_lock);
3594                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3595                __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3596                                     -eb->len,
3597                                     fs_info->dirty_metadata_batch);
3598                ret = 1;
3599        } else {
3600                spin_unlock(&eb->refs_lock);
3601        }
3602
3603        btrfs_tree_unlock(eb);
3604
3605        if (!ret)
3606                return ret;
3607
3608        num_pages = num_extent_pages(eb->start, eb->len);
3609        for (i = 0; i < num_pages; i++) {
3610                struct page *p = eb->pages[i];
3611
3612                if (!trylock_page(p)) {
3613                        if (!flush) {
3614                                flush_write_bio(epd);
3615                                flush = 1;
3616                        }
3617                        lock_page(p);
3618                }
3619        }
3620
3621        return ret;
3622}
3623
3624static void end_extent_buffer_writeback(struct extent_buffer *eb)
3625{
3626        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3627        smp_mb__after_atomic();
3628        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3629}
3630
3631static void set_btree_ioerr(struct page *page)
3632{
3633        struct extent_buffer *eb = (struct extent_buffer *)page->private;
3634        struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3635
3636        SetPageError(page);
3637        if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3638                return;
3639
3640        /*
3641         * If writeback for a btree extent that doesn't belong to a log tree
3642         * failed, increment the counter transaction->eb_write_errors.
3643         * We do this because while the transaction is running and before it's
3644         * committing (when we call filemap_fdata[write|wait]_range against
3645         * the btree inode), we might have
3646         * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3647         * returns an error or an error happens during writeback, when we're
3648         * committing the transaction we wouldn't know about it, since the pages
3649         * can be no longer dirty nor marked anymore for writeback (if a
3650         * subsequent modification to the extent buffer didn't happen before the
3651         * transaction commit), which makes filemap_fdata[write|wait]_range not
3652         * able to find the pages tagged with SetPageError at transaction
3653         * commit time. So if this happens we must abort the transaction,
3654         * otherwise we commit a super block with btree roots that point to
3655         * btree nodes/leafs whose content on disk is invalid - either garbage
3656         * or the content of some node/leaf from a past generation that got
3657         * cowed or deleted and is no longer valid.
3658         *
3659         * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3660         * not be enough - we need to distinguish between log tree extents vs
3661         * non-log tree extents, and the next filemap_fdatawait_range() call
3662         * will catch and clear such errors in the mapping - and that call might
3663         * be from a log sync and not from a transaction commit. Also, checking
3664         * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3665         * not done and would not be reliable - the eb might have been released
3666         * from memory and reading it back again means that flag would not be
3667         * set (since it's a runtime flag, not persisted on disk).
3668         *
3669         * Using the flags below in the btree inode also makes us achieve the
3670         * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3671         * writeback for all dirty pages and before filemap_fdatawait_range()
3672         * is called, the writeback for all dirty pages had already finished
3673         * with errors - because we were not using AS_EIO/AS_ENOSPC,
3674         * filemap_fdatawait_range() would return success, as it could not know
3675         * that writeback errors happened (the pages were no longer tagged for
3676         * writeback).
3677         */
3678        switch (eb->log_index) {
3679        case -1:
3680                set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3681                break;
3682        case 0:
3683                set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3684                break;
3685        case 1:
3686                set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3687                break;
3688        default:
3689                BUG(); /* unexpected, logic error */
3690        }
3691}
3692
3693static void end_bio_extent_buffer_writepage(struct bio *bio)
3694{
3695        struct bio_vec *bvec;
3696        struct extent_buffer *eb;
3697        int i, done;
3698
3699        bio_for_each_segment_all(bvec, bio, i) {
3700                struct page *page = bvec->bv_page;
3701
3702                eb = (struct extent_buffer *)page->private;
3703                BUG_ON(!eb);
3704                done = atomic_dec_and_test(&eb->io_pages);
3705
3706                if (bio->bi_error ||
3707                    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3708                        ClearPageUptodate(page);
3709                        set_btree_ioerr(page);
3710                }
3711
3712                end_page_writeback(page);
3713
3714                if (!done)
3715                        continue;
3716
3717                end_extent_buffer_writeback(eb);
3718        }
3719
3720        bio_put(bio);
3721}
3722
3723static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3724                        struct btrfs_fs_info *fs_info,
3725                        struct writeback_control *wbc,
3726                        struct extent_page_data *epd)
3727{
3728        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3729        struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3730        u64 offset = eb->start;
3731        unsigned long i, num_pages;
3732        unsigned long bio_flags = 0;
3733        int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3734        int ret = 0;
3735
3736        clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3737        num_pages = num_extent_pages(eb->start, eb->len);
3738        atomic_set(&eb->io_pages, num_pages);
3739        if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3740                bio_flags = EXTENT_BIO_TREE_LOG;
3741
3742        for (i = 0; i < num_pages; i++) {
3743                struct page *p = eb->pages[i];
3744
3745                clear_page_dirty_for_io(p);
3746                set_page_writeback(p);
3747                ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3748                                         PAGE_SIZE, 0, bdev, &epd->bio,
3749                                         -1, end_bio_extent_buffer_writepage,
3750                                         0, epd->bio_flags, bio_flags, false);
3751                epd->bio_flags = bio_flags;
3752                if (ret) {
3753                        set_btree_ioerr(p);
3754                        end_page_writeback(p);
3755                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756                                end_extent_buffer_writeback(eb);
3757                        ret = -EIO;
3758                        break;
3759                }
3760                offset += PAGE_SIZE;
3761                update_nr_written(p, wbc, 1);
3762                unlock_page(p);
3763        }
3764
3765        if (unlikely(ret)) {
3766                for (; i < num_pages; i++) {
3767                        struct page *p = eb->pages[i];
3768                        clear_page_dirty_for_io(p);
3769                        unlock_page(p);
3770                }
3771        }
3772
3773        return ret;
3774}
3775
3776int btree_write_cache_pages(struct address_space *mapping,
3777                                   struct writeback_control *wbc)
3778{
3779        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781        struct extent_buffer *eb, *prev_eb = NULL;
3782        struct extent_page_data epd = {
3783                .bio = NULL,
3784                .tree = tree,
3785                .extent_locked = 0,
3786                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3787                .bio_flags = 0,
3788        };
3789        int ret = 0;
3790        int done = 0;
3791        int nr_to_write_done = 0;
3792        struct pagevec pvec;
3793        int nr_pages;
3794        pgoff_t index;
3795        pgoff_t end;            /* Inclusive */
3796        int scanned = 0;
3797        int tag;
3798
3799        pagevec_init(&pvec, 0);
3800        if (wbc->range_cyclic) {
3801                index = mapping->writeback_index; /* Start from prev offset */
3802                end = -1;
3803        } else {
3804                index = wbc->range_start >> PAGE_SHIFT;
3805                end = wbc->range_end >> PAGE_SHIFT;
3806                scanned = 1;
3807        }
3808        if (wbc->sync_mode == WB_SYNC_ALL)
3809                tag = PAGECACHE_TAG_TOWRITE;
3810        else
3811                tag = PAGECACHE_TAG_DIRTY;
3812retry:
3813        if (wbc->sync_mode == WB_SYNC_ALL)
3814                tag_pages_for_writeback(mapping, index, end);
3815        while (!done && !nr_to_write_done && (index <= end) &&
3816               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3817                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3818                unsigned i;
3819
3820                scanned = 1;
3821                for (i = 0; i < nr_pages; i++) {
3822                        struct page *page = pvec.pages[i];
3823
3824                        if (!PagePrivate(page))
3825                                continue;
3826
3827                        if (!wbc->range_cyclic && page->index > end) {
3828                                done = 1;
3829                                break;
3830                        }
3831
3832                        spin_lock(&mapping->private_lock);
3833                        if (!PagePrivate(page)) {
3834                                spin_unlock(&mapping->private_lock);
3835                                continue;
3836                        }
3837
3838                        eb = (struct extent_buffer *)page->private;
3839
3840                        /*
3841                         * Shouldn't happen and normally this would be a BUG_ON
3842                         * but no sense in crashing the users box for something
3843                         * we can survive anyway.
3844                         */
3845                        if (WARN_ON(!eb)) {
3846                                spin_unlock(&mapping->private_lock);
3847                                continue;
3848                        }
3849
3850                        if (eb == prev_eb) {
3851                                spin_unlock(&mapping->private_lock);
3852                                continue;
3853                        }
3854
3855                        ret = atomic_inc_not_zero(&eb->refs);
3856                        spin_unlock(&mapping->private_lock);
3857                        if (!ret)
3858                                continue;
3859
3860                        prev_eb = eb;
3861                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3862                        if (!ret) {
3863                                free_extent_buffer(eb);
3864                                continue;
3865                        }
3866
3867                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3868                        if (ret) {
3869                                done = 1;
3870                                free_extent_buffer(eb);
3871                                break;
3872                        }
3873                        free_extent_buffer(eb);
3874
3875                        /*
3876                         * the filesystem may choose to bump up nr_to_write.
3877                         * We have to make sure to honor the new nr_to_write
3878                         * at any time
3879                         */
3880                        nr_to_write_done = wbc->nr_to_write <= 0;
3881                }
3882                pagevec_release(&pvec);
3883                cond_resched();
3884        }
3885        if (!scanned && !done) {
3886                /*
3887                 * We hit the last page and there is more work to be done: wrap
3888                 * back to the start of the file
3889                 */
3890                scanned = 1;
3891                index = 0;
3892                goto retry;
3893        }
3894        flush_write_bio(&epd);
3895        return ret;
3896}
3897
3898/**
3899 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3900 * @mapping: address space structure to write
3901 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3902 * @writepage: function called for each page
3903 * @data: data passed to writepage function
3904 *
3905 * If a page is already under I/O, write_cache_pages() skips it, even
3906 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3907 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3908 * and msync() need to guarantee that all the data which was dirty at the time
3909 * the call was made get new I/O started against them.  If wbc->sync_mode is
3910 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3911 * existing IO to complete.
3912 */
3913static int extent_write_cache_pages(struct extent_io_tree *tree,
3914                             struct address_space *mapping,
3915                             struct writeback_control *wbc,
3916                             writepage_t writepage, void *data,
3917                             void (*flush_fn)(void *))
3918{
3919        struct inode *inode = mapping->host;
3920        int ret = 0;
3921        int done = 0;
3922        int nr_to_write_done = 0;
3923        struct pagevec pvec;
3924        int nr_pages;
3925        pgoff_t index;
3926        pgoff_t end;            /* Inclusive */
3927        pgoff_t done_index;
3928        int range_whole = 0;
3929        int scanned = 0;
3930        int tag;
3931
3932        /*
3933         * We have to hold onto the inode so that ordered extents can do their
3934         * work when the IO finishes.  The alternative to this is failing to add
3935         * an ordered extent if the igrab() fails there and that is a huge pain
3936         * to deal with, so instead just hold onto the inode throughout the
3937         * writepages operation.  If it fails here we are freeing up the inode
3938         * anyway and we'd rather not waste our time writing out stuff that is
3939         * going to be truncated anyway.
3940         */
3941        if (!igrab(inode))
3942                return 0;
3943
3944        pagevec_init(&pvec, 0);
3945        if (wbc->range_cyclic) {
3946                index = mapping->writeback_index; /* Start from prev offset */
3947                end = -1;
3948        } else {
3949                index = wbc->range_start >> PAGE_SHIFT;
3950                end = wbc->range_end >> PAGE_SHIFT;
3951                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3952                        range_whole = 1;
3953                scanned = 1;
3954        }
3955        if (wbc->sync_mode == WB_SYNC_ALL)
3956                tag = PAGECACHE_TAG_TOWRITE;
3957        else
3958                tag = PAGECACHE_TAG_DIRTY;
3959retry:
3960        if (wbc->sync_mode == WB_SYNC_ALL)
3961                tag_pages_for_writeback(mapping, index, end);
3962        done_index = index;
3963        while (!done && !nr_to_write_done && (index <= end) &&
3964               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3965                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3966                unsigned i;
3967
3968                scanned = 1;
3969                for (i = 0; i < nr_pages; i++) {
3970                        struct page *page = pvec.pages[i];
3971
3972                        done_index = page->index;
3973                        /*
3974                         * At this point we hold neither mapping->tree_lock nor
3975                         * lock on the page itself: the page may be truncated or
3976                         * invalidated (changing page->mapping to NULL), or even
3977                         * swizzled back from swapper_space to tmpfs file
3978                         * mapping
3979                         */
3980                        if (!trylock_page(page)) {
3981                                flush_fn(data);
3982                                lock_page(page);
3983                        }
3984
3985                        if (unlikely(page->mapping != mapping)) {
3986                                unlock_page(page);
3987                                continue;
3988                        }
3989
3990                        if (!wbc->range_cyclic && page->index > end) {
3991                                done = 1;
3992                                unlock_page(page);
3993                                continue;
3994                        }
3995
3996                        if (wbc->sync_mode != WB_SYNC_NONE) {
3997                                if (PageWriteback(page))
3998                                        flush_fn(data);
3999                                wait_on_page_writeback(page);
4000                        }
4001
4002                        if (PageWriteback(page) ||
4003                            !clear_page_dirty_for_io(page)) {
4004                                unlock_page(page);
4005                                continue;
4006                        }
4007
4008                        ret = (*writepage)(page, wbc, data);
4009
4010                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4011                                unlock_page(page);
4012                                ret = 0;
4013                        }
4014                        if (ret < 0) {
4015                                /*
4016                                 * done_index is set past this page,
4017                                 * so media errors will not choke
4018                                 * background writeout for the entire
4019                                 * file. This has consequences for
4020                                 * range_cyclic semantics (ie. it may
4021                                 * not be suitable for data integrity
4022                                 * writeout).
4023                                 */
4024                                done_index = page->index + 1;
4025                                done = 1;
4026                                break;
4027                        }
4028
4029                        /*
4030                         * the filesystem may choose to bump up nr_to_write.
4031                         * We have to make sure to honor the new nr_to_write
4032                         * at any time
4033                         */
4034                        nr_to_write_done = wbc->nr_to_write <= 0;
4035                }
4036                pagevec_release(&pvec);
4037                cond_resched();
4038        }
4039        if (!scanned && !done) {
4040                /*
4041                 * We hit the last page and there is more work to be done: wrap
4042                 * back to the start of the file
4043                 */
4044                scanned = 1;
4045                index = 0;
4046                goto retry;
4047        }
4048
4049        if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4050                mapping->writeback_index = done_index;
4051
4052        btrfs_add_delayed_iput(inode);
4053        return ret;
4054}
4055
4056static void flush_epd_write_bio(struct extent_page_data *epd)
4057{
4058        if (epd->bio) {
4059                int rw = WRITE;
4060                int ret;
4061
4062                if (epd->sync_io)
4063                        rw = WRITE_SYNC;
4064
4065                ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4066                BUG_ON(ret < 0); /* -ENOMEM */
4067                epd->bio = NULL;
4068        }
4069}
4070
4071static noinline void flush_write_bio(void *data)
4072{
4073        struct extent_page_data *epd = data;
4074        flush_epd_write_bio(epd);
4075}
4076
4077int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4078                          get_extent_t *get_extent,
4079                          struct writeback_control *wbc)
4080{
4081        int ret;
4082        struct extent_page_data epd = {
4083                .bio = NULL,
4084                .tree = tree,
4085                .get_extent = get_extent,
4086                .extent_locked = 0,
4087                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4088                .bio_flags = 0,
4089        };
4090
4091        ret = __extent_writepage(page, wbc, &epd);
4092
4093        flush_epd_write_bio(&epd);
4094        return ret;
4095}
4096
4097int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4098                              u64 start, u64 end, get_extent_t *get_extent,
4099                              int mode)
4100{
4101        int ret = 0;
4102        struct address_space *mapping = inode->i_mapping;
4103        struct page *page;
4104        unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4105                PAGE_SHIFT;
4106
4107        struct extent_page_data epd = {
4108                .bio = NULL,
4109                .tree = tree,
4110                .get_extent = get_extent,
4111                .extent_locked = 1,
4112                .sync_io = mode == WB_SYNC_ALL,
4113                .bio_flags = 0,
4114        };
4115        struct writeback_control wbc_writepages = {
4116                .sync_mode      = mode,
4117                .nr_to_write    = nr_pages * 2,
4118                .range_start    = start,
4119                .range_end      = end + 1,
4120        };
4121
4122        while (start <= end) {
4123                page = find_get_page(mapping, start >> PAGE_SHIFT);
4124                if (clear_page_dirty_for_io(page))
4125                        ret = __extent_writepage(page, &wbc_writepages, &epd);
4126                else {
4127                        if (tree->ops && tree->ops->writepage_end_io_hook)
4128                                tree->ops->writepage_end_io_hook(page, start,
4129                                                 start + PAGE_SIZE - 1,
4130                                                 NULL, 1);
4131                        unlock_page(page);
4132                }
4133                put_page(page);
4134                start += PAGE_SIZE;
4135        }
4136
4137        flush_epd_write_bio(&epd);
4138        return ret;
4139}
4140
4141int extent_writepages(struct extent_io_tree *tree,
4142                      struct address_space *mapping,
4143                      get_extent_t *get_extent,
4144                      struct writeback_control *wbc)
4145{
4146        int ret = 0;
4147        struct extent_page_data epd = {
4148                .bio = NULL,
4149                .tree = tree,
4150                .get_extent = get_extent,
4151                .extent_locked = 0,
4152                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4153                .bio_flags = 0,
4154        };
4155
4156        ret = extent_write_cache_pages(tree, mapping, wbc,
4157                                       __extent_writepage, &epd,
4158                                       flush_write_bio);
4159        flush_epd_write_bio(&epd);
4160        return ret;
4161}
4162
4163int extent_readpages(struct extent_io_tree *tree,
4164                     struct address_space *mapping,
4165                     struct list_head *pages, unsigned nr_pages,
4166                     get_extent_t get_extent)
4167{
4168        struct bio *bio = NULL;
4169        unsigned page_idx;
4170        unsigned long bio_flags = 0;
4171        struct page *pagepool[16];
4172        struct page *page;
4173        struct extent_map *em_cached = NULL;
4174        int nr = 0;
4175        u64 prev_em_start = (u64)-1;
4176
4177        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4178                page = list_entry(pages->prev, struct page, lru);
4179
4180                prefetchw(&page->flags);
4181                list_del(&page->lru);
4182                if (add_to_page_cache_lru(page, mapping,
4183                                        page->index, GFP_NOFS)) {
4184                        put_page(page);
4185                        continue;
4186                }
4187
4188                pagepool[nr++] = page;
4189                if (nr < ARRAY_SIZE(pagepool))
4190                        continue;
4191                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4192                                   &bio, 0, &bio_flags, READ, &prev_em_start);
4193                nr = 0;
4194        }
4195        if (nr)
4196                __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4197                                   &bio, 0, &bio_flags, READ, &prev_em_start);
4198
4199        if (em_cached)
4200                free_extent_map(em_cached);
4201
4202        BUG_ON(!list_empty(pages));
4203        if (bio)
4204                return submit_one_bio(READ, bio, 0, bio_flags);
4205        return 0;
4206}
4207
4208/*
4209 * basic invalidatepage code, this waits on any locked or writeback
4210 * ranges corresponding to the page, and then deletes any extent state
4211 * records from the tree
4212 */
4213int extent_invalidatepage(struct extent_io_tree *tree,
4214                          struct page *page, unsigned long offset)
4215{
4216        struct extent_state *cached_state = NULL;
4217        u64 start = page_offset(page);
4218        u64 end = start + PAGE_SIZE - 1;
4219        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4220
4221        start += ALIGN(offset, blocksize);
4222        if (start > end)
4223                return 0;
4224
4225        lock_extent_bits(tree, start, end, &cached_state);
4226        wait_on_page_writeback(page);
4227        clear_extent_bit(tree, start, end,
4228                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4229                         EXTENT_DO_ACCOUNTING,
4230                         1, 1, &cached_state, GFP_NOFS);
4231        return 0;
4232}
4233
4234/*
4235 * a helper for releasepage, this tests for areas of the page that
4236 * are locked or under IO and drops the related state bits if it is safe
4237 * to drop the page.
4238 */
4239static int try_release_extent_state(struct extent_map_tree *map,
4240                                    struct extent_io_tree *tree,
4241                                    struct page *page, gfp_t mask)
4242{
4243        u64 start = page_offset(page);
4244        u64 end = start + PAGE_SIZE - 1;
4245        int ret = 1;
4246
4247        if (test_range_bit(tree, start, end,
4248                           EXTENT_IOBITS, 0, NULL))
4249                ret = 0;
4250        else {
4251                if ((mask & GFP_NOFS) == GFP_NOFS)
4252                        mask = GFP_NOFS;
4253                /*
4254                 * at this point we can safely clear everything except the
4255                 * locked bit and the nodatasum bit
4256                 */
4257                ret = clear_extent_bit(tree, start, end,
4258                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4259                                 0, 0, NULL, mask);
4260
4261                /* if clear_extent_bit failed for enomem reasons,
4262                 * we can't allow the release to continue.
4263                 */
4264                if (ret < 0)
4265                        ret = 0;
4266                else
4267                        ret = 1;
4268        }
4269        return ret;
4270}
4271
4272/*
4273 * a helper for releasepage.  As long as there are no locked extents
4274 * in the range corresponding to the page, both state records and extent
4275 * map records are removed
4276 */
4277int try_release_extent_mapping(struct extent_map_tree *map,
4278                               struct extent_io_tree *tree, struct page *page,
4279                               gfp_t mask)
4280{
4281        struct extent_map *em;
4282        u64 start = page_offset(page);
4283        u64 end = start + PAGE_SIZE - 1;
4284
4285        if (gfpflags_allow_blocking(mask) &&
4286            page->mapping->host->i_size > SZ_16M) {
4287                u64 len;
4288                while (start <= end) {
4289                        len = end - start + 1;
4290                        write_lock(&map->lock);
4291                        em = lookup_extent_mapping(map, start, len);
4292                        if (!em) {
4293                                write_unlock(&map->lock);
4294                                break;
4295                        }
4296                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4297                            em->start != start) {
4298                                write_unlock(&map->lock);
4299                                free_extent_map(em);
4300                                break;
4301                        }
4302                        if (!test_range_bit(tree, em->start,
4303                                            extent_map_end(em) - 1,
4304                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
4305                                            0, NULL)) {
4306                                remove_extent_mapping(map, em);
4307                                /* once for the rb tree */
4308                                free_extent_map(em);
4309                        }
4310                        start = extent_map_end(em);
4311                        write_unlock(&map->lock);
4312
4313                        /* once for us */
4314                        free_extent_map(em);
4315                }
4316        }
4317        return try_release_extent_state(map, tree, page, mask);
4318}
4319
4320/*
4321 * helper function for fiemap, which doesn't want to see any holes.
4322 * This maps until we find something past 'last'
4323 */
4324static struct extent_map *get_extent_skip_holes(struct inode *inode,
4325                                                u64 offset,
4326                                                u64 last,
4327                                                get_extent_t *get_extent)
4328{
4329        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4330        struct extent_map *em;
4331        u64 len;
4332
4333        if (offset >= last)
4334                return NULL;
4335
4336        while (1) {
4337                len = last - offset;
4338                if (len == 0)
4339                        break;
4340                len = ALIGN(len, sectorsize);
4341                em = get_extent(inode, NULL, 0, offset, len, 0);
4342                if (IS_ERR_OR_NULL(em))
4343                        return em;
4344
4345                /* if this isn't a hole return it */
4346                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4347                    em->block_start != EXTENT_MAP_HOLE) {
4348                        return em;
4349                }
4350
4351                /* this is a hole, advance to the next extent */
4352                offset = extent_map_end(em);
4353                free_extent_map(em);
4354                if (offset >= last)
4355                        break;
4356        }
4357        return NULL;
4358}
4359
4360int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4361                __u64 start, __u64 len, get_extent_t *get_extent)
4362{
4363        int ret = 0;
4364        u64 off = start;
4365        u64 max = start + len;
4366        u32 flags = 0;
4367        u32 found_type;
4368        u64 last;
4369        u64 last_for_get_extent = 0;
4370        u64 disko = 0;
4371        u64 isize = i_size_read(inode);
4372        struct btrfs_key found_key;
4373        struct extent_map *em = NULL;
4374        struct extent_state *cached_state = NULL;
4375        struct btrfs_path *path;
4376        struct btrfs_root *root = BTRFS_I(inode)->root;
4377        int end = 0;
4378        u64 em_start = 0;
4379        u64 em_len = 0;
4380        u64 em_end = 0;
4381
4382        if (len == 0)
4383                return -EINVAL;
4384
4385        path = btrfs_alloc_path();
4386        if (!path)
4387                return -ENOMEM;
4388        path->leave_spinning = 1;
4389
4390        start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4391        len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4392
4393        /*
4394         * lookup the last file extent.  We're not using i_size here
4395         * because there might be preallocation past i_size
4396         */
4397        ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4398                                       0);
4399        if (ret < 0) {
4400                btrfs_free_path(path);
4401                return ret;
4402        } else {
4403                WARN_ON(!ret);
4404                if (ret == 1)
4405                        ret = 0;
4406        }
4407
4408        path->slots[0]--;
4409        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4410        found_type = found_key.type;
4411
4412        /* No extents, but there might be delalloc bits */
4413        if (found_key.objectid != btrfs_ino(inode) ||
4414            found_type != BTRFS_EXTENT_DATA_KEY) {
4415                /* have to trust i_size as the end */
4416                last = (u64)-1;
4417                last_for_get_extent = isize;
4418        } else {
4419                /*
4420                 * remember the start of the last extent.  There are a
4421                 * bunch of different factors that go into the length of the
4422                 * extent, so its much less complex to remember where it started
4423                 */
4424                last = found_key.offset;
4425                last_for_get_extent = last + 1;
4426        }
4427        btrfs_release_path(path);
4428
4429        /*
4430         * we might have some extents allocated but more delalloc past those
4431         * extents.  so, we trust isize unless the start of the last extent is
4432         * beyond isize
4433         */
4434        if (last < isize) {
4435                last = (u64)-1;
4436                last_for_get_extent = isize;
4437        }
4438
4439        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4440                         &cached_state);
4441
4442        em = get_extent_skip_holes(inode, start, last_for_get_extent,
4443                                   get_extent);
4444        if (!em)
4445                goto out;
4446        if (IS_ERR(em)) {
4447                ret = PTR_ERR(em);
4448                goto out;
4449        }
4450
4451        while (!end) {
4452                u64 offset_in_extent = 0;
4453
4454                /* break if the extent we found is outside the range */
4455                if (em->start >= max || extent_map_end(em) < off)
4456                        break;
4457
4458                /*
4459                 * get_extent may return an extent that starts before our
4460                 * requested range.  We have to make sure the ranges
4461                 * we return to fiemap always move forward and don't
4462                 * overlap, so adjust the offsets here
4463                 */
4464                em_start = max(em->start, off);
4465
4466                /*
4467                 * record the offset from the start of the extent
4468                 * for adjusting the disk offset below.  Only do this if the
4469                 * extent isn't compressed since our in ram offset may be past
4470                 * what we have actually allocated on disk.
4471                 */
4472                if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4473                        offset_in_extent = em_start - em->start;
4474                em_end = extent_map_end(em);
4475                em_len = em_end - em_start;
4476                disko = 0;
4477                flags = 0;
4478
4479                /*
4480                 * bump off for our next call to get_extent
4481                 */
4482                off = extent_map_end(em);
4483                if (off >= max)
4484                        end = 1;
4485
4486                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4487                        end = 1;
4488                        flags |= FIEMAP_EXTENT_LAST;
4489                } else if (em->block_start == EXTENT_MAP_INLINE) {
4490                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
4491                                  FIEMAP_EXTENT_NOT_ALIGNED);
4492                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4493                        flags |= (FIEMAP_EXTENT_DELALLOC |
4494                                  FIEMAP_EXTENT_UNKNOWN);
4495                } else if (fieinfo->fi_extents_max) {
4496                        u64 bytenr = em->block_start -
4497                                (em->start - em->orig_start);
4498
4499                        disko = em->block_start + offset_in_extent;
4500
4501                        /*
4502                         * As btrfs supports shared space, this information
4503                         * can be exported to userspace tools via
4504                         * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4505                         * then we're just getting a count and we can skip the
4506                         * lookup stuff.
4507                         */
4508                        ret = btrfs_check_shared(NULL, root->fs_info,
4509                                                 root->objectid,
4510                                                 btrfs_ino(inode), bytenr);
4511                        if (ret < 0)
4512                                goto out_free;
4513                        if (ret)
4514                                flags |= FIEMAP_EXTENT_SHARED;
4515                        ret = 0;
4516                }
4517                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4518                        flags |= FIEMAP_EXTENT_ENCODED;
4519                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4520                        flags |= FIEMAP_EXTENT_UNWRITTEN;
4521
4522                free_extent_map(em);
4523                em = NULL;
4524                if ((em_start >= last) || em_len == (u64)-1 ||
4525                   (last == (u64)-1 && isize <= em_end)) {
4526                        flags |= FIEMAP_EXTENT_LAST;
4527                        end = 1;
4528                }
4529
4530                /* now scan forward to see if this is really the last extent. */
4531                em = get_extent_skip_holes(inode, off, last_for_get_extent,
4532                                           get_extent);
4533                if (IS_ERR(em)) {
4534                        ret = PTR_ERR(em);
4535                        goto out;
4536                }
4537                if (!em) {
4538                        flags |= FIEMAP_EXTENT_LAST;
4539                        end = 1;
4540                }
4541                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4542                                              em_len, flags);
4543                if (ret) {
4544                        if (ret == 1)
4545                                ret = 0;
4546                        goto out_free;
4547                }
4548        }
4549out_free:
4550        free_extent_map(em);
4551out:
4552        btrfs_free_path(path);
4553        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4554                             &cached_state, GFP_NOFS);
4555        return ret;
4556}
4557
4558static void __free_extent_buffer(struct extent_buffer *eb)
4559{
4560        btrfs_leak_debug_del(&eb->leak_list);
4561        kmem_cache_free(extent_buffer_cache, eb);
4562}
4563
4564int extent_buffer_under_io(struct extent_buffer *eb)
4565{
4566        return (atomic_read(&eb->io_pages) ||
4567                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4568                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4569}
4570
4571/*
4572 * Helper for releasing extent buffer page.
4573 */
4574static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4575{
4576        unsigned long index;
4577        struct page *page;
4578        int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4579
4580        BUG_ON(extent_buffer_under_io(eb));
4581
4582        index = num_extent_pages(eb->start, eb->len);
4583        if (index == 0)
4584                return;
4585
4586        do {
4587                index--;
4588                page = eb->pages[index];
4589                if (!page)
4590                        continue;
4591                if (mapped)
4592                        spin_lock(&page->mapping->private_lock);
4593                /*
4594                 * We do this since we'll remove the pages after we've
4595                 * removed the eb from the radix tree, so we could race
4596                 * and have this page now attached to the new eb.  So
4597                 * only clear page_private if it's still connected to
4598                 * this eb.
4599                 */
4600                if (PagePrivate(page) &&
4601                    page->private == (unsigned long)eb) {
4602                        BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4603                        BUG_ON(PageDirty(page));
4604                        BUG_ON(PageWriteback(page));
4605                        /*
4606                         * We need to make sure we haven't be attached
4607                         * to a new eb.
4608                         */
4609                        ClearPagePrivate(page);
4610                        set_page_private(page, 0);
4611                        /* One for the page private */
4612                        put_page(page);
4613                }
4614
4615                if (mapped)
4616                        spin_unlock(&page->mapping->private_lock);
4617
4618                /* One for when we allocated the page */
4619                put_page(page);
4620        } while (index != 0);
4621}
4622
4623/*
4624 * Helper for releasing the extent buffer.
4625 */
4626static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4627{
4628        btrfs_release_extent_buffer_page(eb);
4629        __free_extent_buffer(eb);
4630}
4631
4632static struct extent_buffer *
4633__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4634                      unsigned long len)
4635{
4636        struct extent_buffer *eb = NULL;
4637
4638        eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4639        eb->start = start;
4640        eb->len = len;
4641        eb->fs_info = fs_info;
4642        eb->bflags = 0;
4643        rwlock_init(&eb->lock);
4644        atomic_set(&eb->write_locks, 0);
4645        atomic_set(&eb->read_locks, 0);
4646        atomic_set(&eb->blocking_readers, 0);
4647        atomic_set(&eb->blocking_writers, 0);
4648        atomic_set(&eb->spinning_readers, 0);
4649        atomic_set(&eb->spinning_writers, 0);
4650        eb->lock_nested = 0;
4651        init_waitqueue_head(&eb->write_lock_wq);
4652        init_waitqueue_head(&eb->read_lock_wq);
4653
4654        btrfs_leak_debug_add(&eb->leak_list, &buffers);
4655
4656        spin_lock_init(&eb->refs_lock);
4657        atomic_set(&eb->refs, 1);
4658        atomic_set(&eb->io_pages, 0);
4659
4660        /*
4661         * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4662         */
4663        BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4664                > MAX_INLINE_EXTENT_BUFFER_SIZE);
4665        BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4666
4667        return eb;
4668}
4669
4670struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4671{
4672        unsigned long i;
4673        struct page *p;
4674        struct extent_buffer *new;
4675        unsigned long num_pages = num_extent_pages(src->start, src->len);
4676
4677        new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4678        if (new == NULL)
4679                return NULL;
4680
4681        for (i = 0; i < num_pages; i++) {
4682                p = alloc_page(GFP_NOFS);
4683                if (!p) {
4684                        btrfs_release_extent_buffer(new);
4685                        return NULL;
4686                }
4687                attach_extent_buffer_page(new, p);
4688                WARN_ON(PageDirty(p));
4689                SetPageUptodate(p);
4690                new->pages[i] = p;
4691        }
4692
4693        copy_extent_buffer(new, src, 0, 0, src->len);
4694        set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4695        set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4696
4697        return new;
4698}
4699
4700struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4701                                                  u64 start, unsigned long len)
4702{
4703        struct extent_buffer *eb;
4704        unsigned long num_pages;
4705        unsigned long i;
4706
4707        num_pages = num_extent_pages(start, len);
4708
4709        eb = __alloc_extent_buffer(fs_info, start, len);
4710        if (!eb)
4711                return NULL;
4712
4713        for (i = 0; i < num_pages; i++) {
4714                eb->pages[i] = alloc_page(GFP_NOFS);
4715                if (!eb->pages[i])
4716                        goto err;
4717        }
4718        set_extent_buffer_uptodate(eb);
4719        btrfs_set_header_nritems(eb, 0);
4720        set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4721
4722        return eb;
4723err:
4724        for (; i > 0; i--)
4725                __free_page(eb->pages[i - 1]);
4726        __free_extent_buffer(eb);
4727        return NULL;
4728}
4729
4730struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4731                                                u64 start, u32 nodesize)
4732{
4733        unsigned long len;
4734
4735        if (!fs_info) {
4736                /*
4737                 * Called only from tests that don't always have a fs_info
4738                 * available
4739                 */
4740                len = nodesize;
4741        } else {
4742                len = fs_info->tree_root->nodesize;
4743        }
4744
4745        return __alloc_dummy_extent_buffer(fs_info, start, len);
4746}
4747
4748static void check_buffer_tree_ref(struct extent_buffer *eb)
4749{
4750        int refs;
4751        /* the ref bit is tricky.  We have to make sure it is set
4752         * if we have the buffer dirty.   Otherwise the
4753         * code to free a buffer can end up dropping a dirty
4754         * page
4755         *
4756         * Once the ref bit is set, it won't go away while the
4757         * buffer is dirty or in writeback, and it also won't
4758         * go away while we have the reference count on the
4759         * eb bumped.
4760         *
4761         * We can't just set the ref bit without bumping the
4762         * ref on the eb because free_extent_buffer might
4763         * see the ref bit and try to clear it.  If this happens
4764         * free_extent_buffer might end up dropping our original
4765         * ref by mistake and freeing the page before we are able
4766         * to add one more ref.
4767         *
4768         * So bump the ref count first, then set the bit.  If someone
4769         * beat us to it, drop the ref we added.
4770         */
4771        refs = atomic_read(&eb->refs);
4772        if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4773                return;
4774
4775        spin_lock(&eb->refs_lock);
4776        if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4777                atomic_inc(&eb->refs);
4778        spin_unlock(&eb->refs_lock);
4779}
4780
4781static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4782                struct page *accessed)
4783{
4784        unsigned long num_pages, i;
4785
4786        check_buffer_tree_ref(eb);
4787
4788        num_pages = num_extent_pages(eb->start, eb->len);
4789        for (i = 0; i < num_pages; i++) {
4790                struct page *p = eb->pages[i];
4791
4792                if (p != accessed)
4793                        mark_page_accessed(p);
4794        }
4795}
4796
4797struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4798                                         u64 start)
4799{
4800        struct extent_buffer *eb;
4801
4802        rcu_read_lock();
4803        eb = radix_tree_lookup(&fs_info->buffer_radix,
4804                               start >> PAGE_SHIFT);
4805        if (eb && atomic_inc_not_zero(&eb->refs)) {
4806                rcu_read_unlock();
4807                /*
4808                 * Lock our eb's refs_lock to avoid races with
4809                 * free_extent_buffer. When we get our eb it might be flagged
4810                 * with EXTENT_BUFFER_STALE and another task running
4811                 * free_extent_buffer might have seen that flag set,
4812                 * eb->refs == 2, that the buffer isn't under IO (dirty and
4813                 * writeback flags not set) and it's still in the tree (flag
4814                 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4815                 * of decrementing the extent buffer's reference count twice.
4816                 * So here we could race and increment the eb's reference count,
4817                 * clear its stale flag, mark it as dirty and drop our reference
4818                 * before the other task finishes executing free_extent_buffer,
4819                 * which would later result in an attempt to free an extent
4820                 * buffer that is dirty.
4821                 */
4822                if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4823                        spin_lock(&eb->refs_lock);
4824                        spin_unlock(&eb->refs_lock);
4825                }
4826                mark_extent_buffer_accessed(eb, NULL);
4827                return eb;
4828        }
4829        rcu_read_unlock();
4830
4831        return NULL;
4832}
4833
4834#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4835struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4836                                        u64 start, u32 nodesize)
4837{
4838        struct extent_buffer *eb, *exists = NULL;
4839        int ret;
4840
4841        eb = find_extent_buffer(fs_info, start);
4842        if (eb)
4843                return eb;
4844        eb = alloc_dummy_extent_buffer(fs_info, start, nodesize);
4845        if (!eb)
4846                return NULL;
4847        eb->fs_info = fs_info;
4848again:
4849        ret = radix_tree_preload(GFP_NOFS);
4850        if (ret)
4851                goto free_eb;
4852        spin_lock(&fs_info->buffer_lock);
4853        ret = radix_tree_insert(&fs_info->buffer_radix,
4854                                start >> PAGE_SHIFT, eb);
4855        spin_unlock(&fs_info->buffer_lock);
4856        radix_tree_preload_end();
4857        if (ret == -EEXIST) {
4858                exists = find_extent_buffer(fs_info, start);
4859                if (exists)
4860                        goto free_eb;
4861                else
4862                        goto again;
4863        }
4864        check_buffer_tree_ref(eb);
4865        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4866
4867        /*
4868         * We will free dummy extent buffer's if they come into
4869         * free_extent_buffer with a ref count of 2, but if we are using this we
4870         * want the buffers to stay in memory until we're done with them, so
4871         * bump the ref count again.
4872         */
4873        atomic_inc(&eb->refs);
4874        return eb;
4875free_eb:
4876        btrfs_release_extent_buffer(eb);
4877        return exists;
4878}
4879#endif
4880
4881struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4882                                          u64 start)
4883{
4884        unsigned long len = fs_info->tree_root->nodesize;
4885        unsigned long num_pages = num_extent_pages(start, len);
4886        unsigned long i;
4887        unsigned long index = start >> PAGE_SHIFT;
4888        struct extent_buffer *eb;
4889        struct extent_buffer *exists = NULL;
4890        struct page *p;
4891        struct address_space *mapping = fs_info->btree_inode->i_mapping;
4892        int uptodate = 1;
4893        int ret;
4894
4895        if (!IS_ALIGNED(start, fs_info->tree_root->sectorsize)) {
4896                btrfs_err(fs_info, "bad tree block start %llu", start);
4897                return ERR_PTR(-EINVAL);
4898        }
4899
4900        eb = find_extent_buffer(fs_info, start);
4901        if (eb)
4902                return eb;
4903
4904        eb = __alloc_extent_buffer(fs_info, start, len);
4905        if (!eb)
4906                return ERR_PTR(-ENOMEM);
4907
4908        for (i = 0; i < num_pages; i++, index++) {
4909                p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4910                if (!p) {
4911                        exists = ERR_PTR(-ENOMEM);
4912                        goto free_eb;
4913                }
4914
4915                spin_lock(&mapping->private_lock);
4916                if (PagePrivate(p)) {
4917                        /*
4918                         * We could have already allocated an eb for this page
4919                         * and attached one so lets see if we can get a ref on
4920                         * the existing eb, and if we can we know it's good and
4921                         * we can just return that one, else we know we can just
4922                         * overwrite page->private.
4923                         */
4924                        exists = (struct extent_buffer *)p->private;
4925                        if (atomic_inc_not_zero(&exists->refs)) {
4926                                spin_unlock(&mapping->private_lock);
4927                                unlock_page(p);
4928                                put_page(p);
4929                                mark_extent_buffer_accessed(exists, p);
4930                                goto free_eb;
4931                        }
4932                        exists = NULL;
4933
4934                        /*
4935                         * Do this so attach doesn't complain and we need to
4936                         * drop the ref the old guy had.
4937                         */
4938                        ClearPagePrivate(p);
4939                        WARN_ON(PageDirty(p));
4940                        put_page(p);
4941                }
4942                attach_extent_buffer_page(eb, p);
4943                spin_unlock(&mapping->private_lock);
4944                WARN_ON(PageDirty(p));
4945                eb->pages[i] = p;
4946                if (!PageUptodate(p))
4947                        uptodate = 0;
4948
4949                /*
4950                 * see below about how we avoid a nasty race with release page
4951                 * and why we unlock later
4952                 */
4953        }
4954        if (uptodate)
4955                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4956again:
4957        ret = radix_tree_preload(GFP_NOFS);
4958        if (ret) {
4959                exists = ERR_PTR(ret);
4960                goto free_eb;
4961        }
4962
4963        spin_lock(&fs_info->buffer_lock);
4964        ret = radix_tree_insert(&fs_info->buffer_radix,
4965                                start >> PAGE_SHIFT, eb);
4966        spin_unlock(&fs_info->buffer_lock);
4967        radix_tree_preload_end();
4968        if (ret == -EEXIST) {
4969                exists = find_extent_buffer(fs_info, start);
4970                if (exists)
4971                        goto free_eb;
4972                else
4973                        goto again;
4974        }
4975        /* add one reference for the tree */
4976        check_buffer_tree_ref(eb);
4977        set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4978
4979        /*
4980         * there is a race where release page may have
4981         * tried to find this extent buffer in the radix
4982         * but failed.  It will tell the VM it is safe to
4983         * reclaim the, and it will clear the page private bit.
4984         * We must make sure to set the page private bit properly
4985         * after the extent buffer is in the radix tree so
4986         * it doesn't get lost
4987         */
4988        SetPageChecked(eb->pages[0]);
4989        for (i = 1; i < num_pages; i++) {
4990                p = eb->pages[i];
4991                ClearPageChecked(p);
4992                unlock_page(p);
4993        }
4994        unlock_page(eb->pages[0]);
4995        return eb;
4996
4997free_eb:
4998        WARN_ON(!atomic_dec_and_test(&eb->refs));
4999        for (i = 0; i < num_pages; i++) {
5000                if (eb->pages[i])
5001                        unlock_page(eb->pages[i]);
5002        }
5003
5004        btrfs_release_extent_buffer(eb);
5005        return exists;
5006}
5007
5008static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5009{
5010        struct extent_buffer *eb =
5011                        container_of(head, struct extent_buffer, rcu_head);
5012
5013        __free_extent_buffer(eb);
5014}
5015
5016/* Expects to have eb->eb_lock already held */
5017static int release_extent_buffer(struct extent_buffer *eb)
5018{
5019        WARN_ON(atomic_read(&eb->refs) == 0);
5020        if (atomic_dec_and_test(&eb->refs)) {
5021                if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5022                        struct btrfs_fs_info *fs_info = eb->fs_info;
5023
5024                        spin_unlock(&eb->refs_lock);
5025
5026                        spin_lock(&fs_info->buffer_lock);
5027                        radix_tree_delete(&fs_info->buffer_radix,
5028                                          eb->start >> PAGE_SHIFT);
5029                        spin_unlock(&fs_info->buffer_lock);
5030                } else {
5031                        spin_unlock(&eb->refs_lock);
5032                }
5033
5034                /* Should be safe to release our pages at this point */
5035                btrfs_release_extent_buffer_page(eb);
5036#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5037                if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5038                        __free_extent_buffer(eb);
5039                        return 1;
5040                }
5041#endif
5042                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5043                return 1;
5044        }
5045        spin_unlock(&eb->refs_lock);
5046
5047        return 0;
5048}
5049
5050void free_extent_buffer(struct extent_buffer *eb)
5051{
5052        int refs;
5053        int old;
5054        if (!eb)
5055                return;
5056
5057        while (1) {
5058                refs = atomic_read(&eb->refs);
5059                if (refs <= 3)
5060                        break;
5061                old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5062                if (old == refs)
5063                        return;
5064        }
5065
5066        spin_lock(&eb->refs_lock);
5067        if (atomic_read(&eb->refs) == 2 &&
5068            test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5069                atomic_dec(&eb->refs);
5070
5071        if (atomic_read(&eb->refs) == 2 &&
5072            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5073            !extent_buffer_under_io(eb) &&
5074            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5075                atomic_dec(&eb->refs);
5076
5077        /*
5078         * I know this is terrible, but it's temporary until we stop tracking
5079         * the uptodate bits and such for the extent buffers.
5080         */
5081        release_extent_buffer(eb);
5082}
5083
5084void free_extent_buffer_stale(struct extent_buffer *eb)
5085{
5086        if (!eb)
5087                return;
5088
5089        spin_lock(&eb->refs_lock);
5090        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5091
5092        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5093            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094                atomic_dec(&eb->refs);
5095        release_extent_buffer(eb);
5096}
5097
5098void clear_extent_buffer_dirty(struct extent_buffer *eb)
5099{
5100        unsigned long i;
5101        unsigned long num_pages;
5102        struct page *page;
5103
5104        num_pages = num_extent_pages(eb->start, eb->len);
5105
5106        for (i = 0; i < num_pages; i++) {
5107                page = eb->pages[i];
5108                if (!PageDirty(page))
5109                        continue;
5110
5111                lock_page(page);
5112                WARN_ON(!PagePrivate(page));
5113
5114                clear_page_dirty_for_io(page);
5115                spin_lock_irq(&page->mapping->tree_lock);
5116                if (!PageDirty(page)) {
5117                        radix_tree_tag_clear(&page->mapping->page_tree,
5118                                                page_index(page),
5119                                                PAGECACHE_TAG_DIRTY);
5120                }
5121                spin_unlock_irq(&page->mapping->tree_lock);
5122                ClearPageError(page);
5123                unlock_page(page);
5124        }
5125        WARN_ON(atomic_read(&eb->refs) == 0);
5126}
5127
5128int set_extent_buffer_dirty(struct extent_buffer *eb)
5129{
5130        unsigned long i;
5131        unsigned long num_pages;
5132        int was_dirty = 0;
5133
5134        check_buffer_tree_ref(eb);
5135
5136        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5137
5138        num_pages = num_extent_pages(eb->start, eb->len);
5139        WARN_ON(atomic_read(&eb->refs) == 0);
5140        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5141
5142        for (i = 0; i < num_pages; i++)
5143                set_page_dirty(eb->pages[i]);
5144        return was_dirty;
5145}
5146
5147void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5148{
5149        unsigned long i;
5150        struct page *page;
5151        unsigned long num_pages;
5152
5153        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5154        num_pages = num_extent_pages(eb->start, eb->len);
5155        for (i = 0; i < num_pages; i++) {
5156                page = eb->pages[i];
5157                if (page)
5158                        ClearPageUptodate(page);
5159        }
5160}
5161
5162void set_extent_buffer_uptodate(struct extent_buffer *eb)
5163{
5164        unsigned long i;
5165        struct page *page;
5166        unsigned long num_pages;
5167
5168        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5169        num_pages = num_extent_pages(eb->start, eb->len);
5170        for (i = 0; i < num_pages; i++) {
5171                page = eb->pages[i];
5172                SetPageUptodate(page);
5173        }
5174}
5175
5176int extent_buffer_uptodate(struct extent_buffer *eb)
5177{
5178        return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5179}
5180
5181int read_extent_buffer_pages(struct extent_io_tree *tree,
5182                             struct extent_buffer *eb, u64 start, int wait,
5183                             get_extent_t *get_extent, int mirror_num)
5184{
5185        unsigned long i;
5186        unsigned long start_i;
5187        struct page *page;
5188        int err;
5189        int ret = 0;
5190        int locked_pages = 0;
5191        int all_uptodate = 1;
5192        unsigned long num_pages;
5193        unsigned long num_reads = 0;
5194        struct bio *bio = NULL;
5195        unsigned long bio_flags = 0;
5196
5197        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5198                return 0;
5199
5200        if (start) {
5201                WARN_ON(start < eb->start);
5202                start_i = (start >> PAGE_SHIFT) -
5203                        (eb->start >> PAGE_SHIFT);
5204        } else {
5205                start_i = 0;
5206        }
5207
5208        num_pages = num_extent_pages(eb->start, eb->len);
5209        for (i = start_i; i < num_pages; i++) {
5210                page = eb->pages[i];
5211                if (wait == WAIT_NONE) {
5212                        if (!trylock_page(page))
5213                                goto unlock_exit;
5214                } else {
5215                        lock_page(page);
5216                }
5217                locked_pages++;
5218                if (!PageUptodate(page)) {
5219                        num_reads++;
5220                        all_uptodate = 0;
5221                }
5222        }
5223        if (all_uptodate) {
5224                if (start_i == 0)
5225                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5226                goto unlock_exit;
5227        }
5228
5229        clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5230        eb->read_mirror = 0;
5231        atomic_set(&eb->io_pages, num_reads);
5232        for (i = start_i; i < num_pages; i++) {
5233                page = eb->pages[i];
5234                if (!PageUptodate(page)) {
5235                        ClearPageError(page);
5236                        err = __extent_read_full_page(tree, page,
5237                                                      get_extent, &bio,
5238                                                      mirror_num, &bio_flags,
5239                                                      READ | REQ_META);
5240                        if (err)
5241                                ret = err;
5242                } else {
5243                        unlock_page(page);
5244                }
5245        }
5246
5247        if (bio) {
5248                err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5249                                     bio_flags);
5250                if (err)
5251                        return err;
5252        }
5253
5254        if (ret || wait != WAIT_COMPLETE)
5255                return ret;
5256
5257        for (i = start_i; i < num_pages; i++) {
5258                page = eb->pages[i];
5259                wait_on_page_locked(page);
5260                if (!PageUptodate(page))
5261                        ret = -EIO;
5262        }
5263
5264        return ret;
5265
5266unlock_exit:
5267        i = start_i;
5268        while (locked_pages > 0) {
5269                page = eb->pages[i];
5270                i++;
5271                unlock_page(page);
5272                locked_pages--;
5273        }
5274        return ret;
5275}
5276
5277void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5278                        unsigned long start,
5279                        unsigned long len)
5280{
5281        size_t cur;
5282        size_t offset;
5283        struct page *page;
5284        char *kaddr;
5285        char *dst = (char *)dstv;
5286        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5287        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5288
5289        WARN_ON(start > eb->len);
5290        WARN_ON(start + len > eb->start + eb->len);
5291
5292        offset = (start_offset + start) & (PAGE_SIZE - 1);
5293
5294        while (len > 0) {
5295                page = eb->pages[i];
5296
5297                cur = min(len, (PAGE_SIZE - offset));
5298                kaddr = page_address(page);
5299                memcpy(dst, kaddr + offset, cur);
5300
5301                dst += cur;
5302                len -= cur;
5303                offset = 0;
5304                i++;
5305        }
5306}
5307
5308int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5309                        unsigned long start,
5310                        unsigned long len)
5311{
5312        size_t cur;
5313        size_t offset;
5314        struct page *page;
5315        char *kaddr;
5316        char __user *dst = (char __user *)dstv;
5317        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5318        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5319        int ret = 0;
5320
5321        WARN_ON(start > eb->len);
5322        WARN_ON(start + len > eb->start + eb->len);
5323
5324        offset = (start_offset + start) & (PAGE_SIZE - 1);
5325
5326        while (len > 0) {
5327                page = eb->pages[i];
5328
5329                cur = min(len, (PAGE_SIZE - offset));
5330                kaddr = page_address(page);
5331                if (copy_to_user(dst, kaddr + offset, cur)) {
5332                        ret = -EFAULT;
5333                        break;
5334                }
5335
5336                dst += cur;
5337                len -= cur;
5338                offset = 0;
5339                i++;
5340        }
5341
5342        return ret;
5343}
5344
5345/*
5346 * return 0 if the item is found within a page.
5347 * return 1 if the item spans two pages.
5348 * return -EINVAL otherwise.
5349 */
5350int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5351                               unsigned long min_len, char **map,
5352                               unsigned long *map_start,
5353                               unsigned long *map_len)
5354{
5355        size_t offset = start & (PAGE_SIZE - 1);
5356        char *kaddr;
5357        struct page *p;
5358        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5359        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5360        unsigned long end_i = (start_offset + start + min_len - 1) >>
5361                PAGE_SHIFT;
5362
5363        if (i != end_i)
5364                return 1;
5365
5366        if (i == 0) {
5367                offset = start_offset;
5368                *map_start = 0;
5369        } else {
5370                offset = 0;
5371                *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5372        }
5373
5374        if (start + min_len > eb->len) {
5375                WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5376                       "wanted %lu %lu\n",
5377                       eb->start, eb->len, start, min_len);
5378                return -EINVAL;
5379        }
5380
5381        p = eb->pages[i];
5382        kaddr = page_address(p);
5383        *map = kaddr + offset;
5384        *map_len = PAGE_SIZE - offset;
5385        return 0;
5386}
5387
5388int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5389                          unsigned long start,
5390                          unsigned long len)
5391{
5392        size_t cur;
5393        size_t offset;
5394        struct page *page;
5395        char *kaddr;
5396        char *ptr = (char *)ptrv;
5397        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5398        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5399        int ret = 0;
5400
5401        WARN_ON(start > eb->len);
5402        WARN_ON(start + len > eb->start + eb->len);
5403
5404        offset = (start_offset + start) & (PAGE_SIZE - 1);
5405
5406        while (len > 0) {
5407                page = eb->pages[i];
5408
5409                cur = min(len, (PAGE_SIZE - offset));
5410
5411                kaddr = page_address(page);
5412                ret = memcmp(ptr, kaddr + offset, cur);
5413                if (ret)
5414                        break;
5415
5416                ptr += cur;
5417                len -= cur;
5418                offset = 0;
5419                i++;
5420        }
5421        return ret;
5422}
5423
5424void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5425                         unsigned long start, unsigned long len)
5426{
5427        size_t cur;
5428        size_t offset;
5429        struct page *page;
5430        char *kaddr;
5431        char *src = (char *)srcv;
5432        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5433        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5434
5435        WARN_ON(start > eb->len);
5436        WARN_ON(start + len > eb->start + eb->len);
5437
5438        offset = (start_offset + start) & (PAGE_SIZE - 1);
5439
5440        while (len > 0) {
5441                page = eb->pages[i];
5442                WARN_ON(!PageUptodate(page));
5443
5444                cur = min(len, PAGE_SIZE - offset);
5445                kaddr = page_address(page);
5446                memcpy(kaddr + offset, src, cur);
5447
5448                src += cur;
5449                len -= cur;
5450                offset = 0;
5451                i++;
5452        }
5453}
5454
5455void memset_extent_buffer(struct extent_buffer *eb, char c,
5456                          unsigned long start, unsigned long len)
5457{
5458        size_t cur;
5459        size_t offset;
5460        struct page *page;
5461        char *kaddr;
5462        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5463        unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5464
5465        WARN_ON(start > eb->len);
5466        WARN_ON(start + len > eb->start + eb->len);
5467
5468        offset = (start_offset + start) & (PAGE_SIZE - 1);
5469
5470        while (len > 0) {
5471                page = eb->pages[i];
5472                WARN_ON(!PageUptodate(page));
5473
5474                cur = min(len, PAGE_SIZE - offset);
5475                kaddr = page_address(page);
5476                memset(kaddr + offset, c, cur);
5477
5478                len -= cur;
5479                offset = 0;
5480                i++;
5481        }
5482}
5483
5484void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5485                        unsigned long dst_offset, unsigned long src_offset,
5486                        unsigned long len)
5487{
5488        u64 dst_len = dst->len;
5489        size_t cur;
5490        size_t offset;
5491        struct page *page;
5492        char *kaddr;
5493        size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5494        unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5495
5496        WARN_ON(src->len != dst_len);
5497
5498        offset = (start_offset + dst_offset) &
5499                (PAGE_SIZE - 1);
5500
5501        while (len > 0) {
5502                page = dst->pages[i];
5503                WARN_ON(!PageUptodate(page));
5504
5505                cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5506
5507                kaddr = page_address(page);
5508                read_extent_buffer(src, kaddr + offset, src_offset, cur);
5509
5510                src_offset += cur;
5511                len -= cur;
5512                offset = 0;
5513                i++;
5514        }
5515}
5516
5517/*
5518 * The extent buffer bitmap operations are done with byte granularity because
5519 * bitmap items are not guaranteed to be aligned to a word and therefore a
5520 * single word in a bitmap may straddle two pages in the extent buffer.
5521 */
5522#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5523#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5524#define BITMAP_FIRST_BYTE_MASK(start) \
5525        ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5526#define BITMAP_LAST_BYTE_MASK(nbits) \
5527        (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5528
5529/*
5530 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5531 * given bit number
5532 * @eb: the extent buffer
5533 * @start: offset of the bitmap item in the extent buffer
5534 * @nr: bit number
5535 * @page_index: return index of the page in the extent buffer that contains the
5536 * given bit number
5537 * @page_offset: return offset into the page given by page_index
5538 *
5539 * This helper hides the ugliness of finding the byte in an extent buffer which
5540 * contains a given bit.
5541 */
5542static inline void eb_bitmap_offset(struct extent_buffer *eb,
5543                                    unsigned long start, unsigned long nr,
5544                                    unsigned long *page_index,
5545                                    size_t *page_offset)
5546{
5547        size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5548        size_t byte_offset = BIT_BYTE(nr);
5549        size_t offset;
5550
5551        /*
5552         * The byte we want is the offset of the extent buffer + the offset of
5553         * the bitmap item in the extent buffer + the offset of the byte in the
5554         * bitmap item.
5555         */
5556        offset = start_offset + start + byte_offset;
5557
5558        *page_index = offset >> PAGE_SHIFT;
5559        *page_offset = offset & (PAGE_SIZE - 1);
5560}
5561
5562/**
5563 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5564 * @eb: the extent buffer
5565 * @start: offset of the bitmap item in the extent buffer
5566 * @nr: bit number to test
5567 */
5568int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5569                           unsigned long nr)
5570{
5571        char *kaddr;
5572        struct page *page;
5573        unsigned long i;
5574        size_t offset;
5575
5576        eb_bitmap_offset(eb, start, nr, &i, &offset);
5577        page = eb->pages[i];
5578        WARN_ON(!PageUptodate(page));
5579        kaddr = page_address(page);
5580        return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5581}
5582
5583/**
5584 * extent_buffer_bitmap_set - set an area of a bitmap
5585 * @eb: the extent buffer
5586 * @start: offset of the bitmap item in the extent buffer
5587 * @pos: bit number of the first bit
5588 * @len: number of bits to set
5589 */
5590void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5591                              unsigned long pos, unsigned long len)
5592{
5593        char *kaddr;
5594        struct page *page;
5595        unsigned long i;
5596        size_t offset;
5597        const unsigned int size = pos + len;
5598        int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5599        unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5600
5601        eb_bitmap_offset(eb, start, pos, &i, &offset);
5602        page = eb->pages[i];
5603        WARN_ON(!PageUptodate(page));
5604        kaddr = page_address(page);
5605
5606        while (len >= bits_to_set) {
5607                kaddr[offset] |= mask_to_set;
5608                len -= bits_to_set;
5609                bits_to_set = BITS_PER_BYTE;
5610                mask_to_set = ~0U;
5611                if (++offset >= PAGE_SIZE && len > 0) {
5612                        offset = 0;
5613                        page = eb->pages[++i];
5614                        WARN_ON(!PageUptodate(page));
5615                        kaddr = page_address(page);
5616                }
5617        }
5618        if (len) {
5619                mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5620                kaddr[offset] |= mask_to_set;
5621        }
5622}
5623
5624
5625/**
5626 * extent_buffer_bitmap_clear - clear an area of a bitmap
5627 * @eb: the extent buffer
5628 * @start: offset of the bitmap item in the extent buffer
5629 * @pos: bit number of the first bit
5630 * @len: number of bits to clear
5631 */
5632void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5633                                unsigned long pos, unsigned long len)
5634{
5635        char *kaddr;
5636        struct page *page;
5637        unsigned long i;
5638        size_t offset;
5639        const unsigned int size = pos + len;
5640        int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5641        unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5642
5643        eb_bitmap_offset(eb, start, pos, &i, &offset);
5644        page = eb->pages[i];
5645        WARN_ON(!PageUptodate(page));
5646        kaddr = page_address(page);
5647
5648        while (len >= bits_to_clear) {
5649                kaddr[offset] &= ~mask_to_clear;
5650                len -= bits_to_clear;
5651                bits_to_clear = BITS_PER_BYTE;
5652                mask_to_clear = ~0U;
5653                if (++offset >= PAGE_SIZE && len > 0) {
5654                        offset = 0;
5655                        page = eb->pages[++i];
5656                        WARN_ON(!PageUptodate(page));
5657                        kaddr = page_address(page);
5658                }
5659        }
5660        if (len) {
5661                mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5662                kaddr[offset] &= ~mask_to_clear;
5663        }
5664}
5665
5666static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5667{
5668        unsigned long distance = (src > dst) ? src - dst : dst - src;
5669        return distance < len;
5670}
5671
5672static void copy_pages(struct page *dst_page, struct page *src_page,
5673                       unsigned long dst_off, unsigned long src_off,
5674                       unsigned long len)
5675{
5676        char *dst_kaddr = page_address(dst_page);
5677        char *src_kaddr;
5678        int must_memmove = 0;
5679
5680        if (dst_page != src_page) {
5681                src_kaddr = page_address(src_page);
5682        } else {
5683                src_kaddr = dst_kaddr;
5684                if (areas_overlap(src_off, dst_off, len))
5685                        must_memmove = 1;
5686        }
5687
5688        if (must_memmove)
5689                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5690        else
5691                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5692}
5693
5694void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5695                           unsigned long src_offset, unsigned long len)
5696{
5697        size_t cur;
5698        size_t dst_off_in_page;
5699        size_t src_off_in_page;
5700        size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5701        unsigned long dst_i;
5702        unsigned long src_i;
5703
5704        if (src_offset + len > dst->len) {
5705                btrfs_err(dst->fs_info,
5706                        "memmove bogus src_offset %lu move "
5707                       "len %lu dst len %lu", src_offset, len, dst->len);
5708                BUG_ON(1);
5709        }
5710        if (dst_offset + len > dst->len) {
5711                btrfs_err(dst->fs_info,
5712                        "memmove bogus dst_offset %lu move "
5713                       "len %lu dst len %lu", dst_offset, len, dst->len);
5714                BUG_ON(1);
5715        }
5716
5717        while (len > 0) {
5718                dst_off_in_page = (start_offset + dst_offset) &
5719                        (PAGE_SIZE - 1);
5720                src_off_in_page = (start_offset + src_offset) &
5721                        (PAGE_SIZE - 1);
5722
5723                dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5724                src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5725
5726                cur = min(len, (unsigned long)(PAGE_SIZE -
5727                                               src_off_in_page));
5728                cur = min_t(unsigned long, cur,
5729                        (unsigned long)(PAGE_SIZE - dst_off_in_page));
5730
5731                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5732                           dst_off_in_page, src_off_in_page, cur);
5733
5734                src_offset += cur;
5735                dst_offset += cur;
5736                len -= cur;
5737        }
5738}
5739
5740void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5741                           unsigned long src_offset, unsigned long len)
5742{
5743        size_t cur;
5744        size_t dst_off_in_page;
5745        size_t src_off_in_page;
5746        unsigned long dst_end = dst_offset + len - 1;
5747        unsigned long src_end = src_offset + len - 1;
5748        size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5749        unsigned long dst_i;
5750        unsigned long src_i;
5751
5752        if (src_offset + len > dst->len) {
5753                btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5754                       "len %lu len %lu", src_offset, len, dst->len);
5755                BUG_ON(1);
5756        }
5757        if (dst_offset + len > dst->len) {
5758                btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5759                       "len %lu len %lu", dst_offset, len, dst->len);
5760                BUG_ON(1);
5761        }
5762        if (dst_offset < src_offset) {
5763                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5764                return;
5765        }
5766        while (len > 0) {
5767                dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5768                src_i = (start_offset + src_end) >> PAGE_SHIFT;
5769
5770                dst_off_in_page = (start_offset + dst_end) &
5771                        (PAGE_SIZE - 1);
5772                src_off_in_page = (start_offset + src_end) &
5773                        (PAGE_SIZE - 1);
5774
5775                cur = min_t(unsigned long, len, src_off_in_page + 1);
5776                cur = min(cur, dst_off_in_page + 1);
5777                copy_pages(dst->pages[dst_i], dst->pages[src_i],
5778                           dst_off_in_page - cur + 1,
5779                           src_off_in_page - cur + 1, cur);
5780
5781                dst_end -= cur;
5782                src_end -= cur;
5783                len -= cur;
5784        }
5785}
5786
5787int try_release_extent_buffer(struct page *page)
5788{
5789        struct extent_buffer *eb;
5790
5791        /*
5792         * We need to make sure nobody is attaching this page to an eb right
5793         * now.
5794         */
5795        spin_lock(&page->mapping->private_lock);
5796        if (!PagePrivate(page)) {
5797                spin_unlock(&page->mapping->private_lock);
5798                return 1;
5799        }
5800
5801        eb = (struct extent_buffer *)page->private;
5802        BUG_ON(!eb);
5803
5804        /*
5805         * This is a little awful but should be ok, we need to make sure that
5806         * the eb doesn't disappear out from under us while we're looking at
5807         * this page.
5808         */
5809        spin_lock(&eb->refs_lock);
5810        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5811                spin_unlock(&eb->refs_lock);
5812                spin_unlock(&page->mapping->private_lock);
5813                return 0;
5814        }
5815        spin_unlock(&page->mapping->private_lock);
5816
5817        /*
5818         * If tree ref isn't set then we know the ref on this eb is a real ref,
5819         * so just return, this page will likely be freed soon anyway.
5820         */
5821        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5822                spin_unlock(&eb->refs_lock);
5823                return 0;
5824        }
5825
5826        return release_extent_buffer(eb);
5827}
5828