linux/fs/crypto/crypto.c
<<
>>
Prefs
   1/*
   2 * This contains encryption functions for per-file encryption.
   3 *
   4 * Copyright (C) 2015, Google, Inc.
   5 * Copyright (C) 2015, Motorola Mobility
   6 *
   7 * Written by Michael Halcrow, 2014.
   8 *
   9 * Filename encryption additions
  10 *      Uday Savagaonkar, 2014
  11 * Encryption policy handling additions
  12 *      Ildar Muslukhov, 2014
  13 * Add fscrypt_pullback_bio_page()
  14 *      Jaegeuk Kim, 2015.
  15 *
  16 * This has not yet undergone a rigorous security audit.
  17 *
  18 * The usage of AES-XTS should conform to recommendations in NIST
  19 * Special Publication 800-38E and IEEE P1619/D16.
  20 */
  21
  22#include <linux/pagemap.h>
  23#include <linux/mempool.h>
  24#include <linux/module.h>
  25#include <linux/scatterlist.h>
  26#include <linux/ratelimit.h>
  27#include <linux/bio.h>
  28#include <linux/dcache.h>
  29#include <linux/namei.h>
  30#include <linux/fscrypto.h>
  31#include <linux/ecryptfs.h>
  32
  33static unsigned int num_prealloc_crypto_pages = 32;
  34static unsigned int num_prealloc_crypto_ctxs = 128;
  35
  36module_param(num_prealloc_crypto_pages, uint, 0444);
  37MODULE_PARM_DESC(num_prealloc_crypto_pages,
  38                "Number of crypto pages to preallocate");
  39module_param(num_prealloc_crypto_ctxs, uint, 0444);
  40MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
  41                "Number of crypto contexts to preallocate");
  42
  43static mempool_t *fscrypt_bounce_page_pool = NULL;
  44
  45static LIST_HEAD(fscrypt_free_ctxs);
  46static DEFINE_SPINLOCK(fscrypt_ctx_lock);
  47
  48static struct workqueue_struct *fscrypt_read_workqueue;
  49static DEFINE_MUTEX(fscrypt_init_mutex);
  50
  51static struct kmem_cache *fscrypt_ctx_cachep;
  52struct kmem_cache *fscrypt_info_cachep;
  53
  54/**
  55 * fscrypt_release_ctx() - Releases an encryption context
  56 * @ctx: The encryption context to release.
  57 *
  58 * If the encryption context was allocated from the pre-allocated pool, returns
  59 * it to that pool. Else, frees it.
  60 *
  61 * If there's a bounce page in the context, this frees that.
  62 */
  63void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
  64{
  65        unsigned long flags;
  66
  67        if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
  68                mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
  69                ctx->w.bounce_page = NULL;
  70        }
  71        ctx->w.control_page = NULL;
  72        if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
  73                kmem_cache_free(fscrypt_ctx_cachep, ctx);
  74        } else {
  75                spin_lock_irqsave(&fscrypt_ctx_lock, flags);
  76                list_add(&ctx->free_list, &fscrypt_free_ctxs);
  77                spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
  78        }
  79}
  80EXPORT_SYMBOL(fscrypt_release_ctx);
  81
  82/**
  83 * fscrypt_get_ctx() - Gets an encryption context
  84 * @inode:       The inode for which we are doing the crypto
  85 * @gfp_flags:   The gfp flag for memory allocation
  86 *
  87 * Allocates and initializes an encryption context.
  88 *
  89 * Return: An allocated and initialized encryption context on success; error
  90 * value or NULL otherwise.
  91 */
  92struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
  93{
  94        struct fscrypt_ctx *ctx = NULL;
  95        struct fscrypt_info *ci = inode->i_crypt_info;
  96        unsigned long flags;
  97
  98        if (ci == NULL)
  99                return ERR_PTR(-ENOKEY);
 100
 101        /*
 102         * We first try getting the ctx from a free list because in
 103         * the common case the ctx will have an allocated and
 104         * initialized crypto tfm, so it's probably a worthwhile
 105         * optimization. For the bounce page, we first try getting it
 106         * from the kernel allocator because that's just about as fast
 107         * as getting it from a list and because a cache of free pages
 108         * should generally be a "last resort" option for a filesystem
 109         * to be able to do its job.
 110         */
 111        spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 112        ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
 113                                        struct fscrypt_ctx, free_list);
 114        if (ctx)
 115                list_del(&ctx->free_list);
 116        spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 117        if (!ctx) {
 118                ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
 119                if (!ctx)
 120                        return ERR_PTR(-ENOMEM);
 121                ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
 122        } else {
 123                ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
 124        }
 125        ctx->flags &= ~FS_WRITE_PATH_FL;
 126        return ctx;
 127}
 128EXPORT_SYMBOL(fscrypt_get_ctx);
 129
 130/**
 131 * fscrypt_complete() - The completion callback for page encryption
 132 * @req: The asynchronous encryption request context
 133 * @res: The result of the encryption operation
 134 */
 135static void fscrypt_complete(struct crypto_async_request *req, int res)
 136{
 137        struct fscrypt_completion_result *ecr = req->data;
 138
 139        if (res == -EINPROGRESS)
 140                return;
 141        ecr->res = res;
 142        complete(&ecr->completion);
 143}
 144
 145typedef enum {
 146        FS_DECRYPT = 0,
 147        FS_ENCRYPT,
 148} fscrypt_direction_t;
 149
 150static int do_page_crypto(struct inode *inode,
 151                        fscrypt_direction_t rw, pgoff_t index,
 152                        struct page *src_page, struct page *dest_page,
 153                        gfp_t gfp_flags)
 154{
 155        u8 xts_tweak[FS_XTS_TWEAK_SIZE];
 156        struct skcipher_request *req = NULL;
 157        DECLARE_FS_COMPLETION_RESULT(ecr);
 158        struct scatterlist dst, src;
 159        struct fscrypt_info *ci = inode->i_crypt_info;
 160        struct crypto_skcipher *tfm = ci->ci_ctfm;
 161        int res = 0;
 162
 163        req = skcipher_request_alloc(tfm, gfp_flags);
 164        if (!req) {
 165                printk_ratelimited(KERN_ERR
 166                                "%s: crypto_request_alloc() failed\n",
 167                                __func__);
 168                return -ENOMEM;
 169        }
 170
 171        skcipher_request_set_callback(
 172                req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 173                fscrypt_complete, &ecr);
 174
 175        BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
 176        memcpy(xts_tweak, &index, sizeof(index));
 177        memset(&xts_tweak[sizeof(index)], 0,
 178                        FS_XTS_TWEAK_SIZE - sizeof(index));
 179
 180        sg_init_table(&dst, 1);
 181        sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
 182        sg_init_table(&src, 1);
 183        sg_set_page(&src, src_page, PAGE_SIZE, 0);
 184        skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
 185                                        xts_tweak);
 186        if (rw == FS_DECRYPT)
 187                res = crypto_skcipher_decrypt(req);
 188        else
 189                res = crypto_skcipher_encrypt(req);
 190        if (res == -EINPROGRESS || res == -EBUSY) {
 191                BUG_ON(req->base.data != &ecr);
 192                wait_for_completion(&ecr.completion);
 193                res = ecr.res;
 194        }
 195        skcipher_request_free(req);
 196        if (res) {
 197                printk_ratelimited(KERN_ERR
 198                        "%s: crypto_skcipher_encrypt() returned %d\n",
 199                        __func__, res);
 200                return res;
 201        }
 202        return 0;
 203}
 204
 205static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
 206{
 207        ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
 208        if (ctx->w.bounce_page == NULL)
 209                return ERR_PTR(-ENOMEM);
 210        ctx->flags |= FS_WRITE_PATH_FL;
 211        return ctx->w.bounce_page;
 212}
 213
 214/**
 215 * fscypt_encrypt_page() - Encrypts a page
 216 * @inode:          The inode for which the encryption should take place
 217 * @plaintext_page: The page to encrypt. Must be locked.
 218 * @gfp_flags:      The gfp flag for memory allocation
 219 *
 220 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
 221 * encryption context.
 222 *
 223 * Called on the page write path.  The caller must call
 224 * fscrypt_restore_control_page() on the returned ciphertext page to
 225 * release the bounce buffer and the encryption context.
 226 *
 227 * Return: An allocated page with the encrypted content on success. Else, an
 228 * error value or NULL.
 229 */
 230struct page *fscrypt_encrypt_page(struct inode *inode,
 231                                struct page *plaintext_page, gfp_t gfp_flags)
 232{
 233        struct fscrypt_ctx *ctx;
 234        struct page *ciphertext_page = NULL;
 235        int err;
 236
 237        BUG_ON(!PageLocked(plaintext_page));
 238
 239        ctx = fscrypt_get_ctx(inode, gfp_flags);
 240        if (IS_ERR(ctx))
 241                return (struct page *)ctx;
 242
 243        /* The encryption operation will require a bounce page. */
 244        ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
 245        if (IS_ERR(ciphertext_page))
 246                goto errout;
 247
 248        ctx->w.control_page = plaintext_page;
 249        err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
 250                                        plaintext_page, ciphertext_page,
 251                                        gfp_flags);
 252        if (err) {
 253                ciphertext_page = ERR_PTR(err);
 254                goto errout;
 255        }
 256        SetPagePrivate(ciphertext_page);
 257        set_page_private(ciphertext_page, (unsigned long)ctx);
 258        lock_page(ciphertext_page);
 259        return ciphertext_page;
 260
 261errout:
 262        fscrypt_release_ctx(ctx);
 263        return ciphertext_page;
 264}
 265EXPORT_SYMBOL(fscrypt_encrypt_page);
 266
 267/**
 268 * f2crypt_decrypt_page() - Decrypts a page in-place
 269 * @page: The page to decrypt. Must be locked.
 270 *
 271 * Decrypts page in-place using the ctx encryption context.
 272 *
 273 * Called from the read completion callback.
 274 *
 275 * Return: Zero on success, non-zero otherwise.
 276 */
 277int fscrypt_decrypt_page(struct page *page)
 278{
 279        BUG_ON(!PageLocked(page));
 280
 281        return do_page_crypto(page->mapping->host,
 282                        FS_DECRYPT, page->index, page, page, GFP_NOFS);
 283}
 284EXPORT_SYMBOL(fscrypt_decrypt_page);
 285
 286int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
 287                                sector_t pblk, unsigned int len)
 288{
 289        struct fscrypt_ctx *ctx;
 290        struct page *ciphertext_page = NULL;
 291        struct bio *bio;
 292        int ret, err = 0;
 293
 294        BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
 295
 296        ctx = fscrypt_get_ctx(inode, GFP_NOFS);
 297        if (IS_ERR(ctx))
 298                return PTR_ERR(ctx);
 299
 300        ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
 301        if (IS_ERR(ciphertext_page)) {
 302                err = PTR_ERR(ciphertext_page);
 303                goto errout;
 304        }
 305
 306        while (len--) {
 307                err = do_page_crypto(inode, FS_ENCRYPT, lblk,
 308                                        ZERO_PAGE(0), ciphertext_page,
 309                                        GFP_NOFS);
 310                if (err)
 311                        goto errout;
 312
 313                bio = bio_alloc(GFP_NOWAIT, 1);
 314                if (!bio) {
 315                        err = -ENOMEM;
 316                        goto errout;
 317                }
 318                bio->bi_bdev = inode->i_sb->s_bdev;
 319                bio->bi_iter.bi_sector =
 320                        pblk << (inode->i_sb->s_blocksize_bits - 9);
 321                ret = bio_add_page(bio, ciphertext_page,
 322                                        inode->i_sb->s_blocksize, 0);
 323                if (ret != inode->i_sb->s_blocksize) {
 324                        /* should never happen! */
 325                        WARN_ON(1);
 326                        bio_put(bio);
 327                        err = -EIO;
 328                        goto errout;
 329                }
 330                err = submit_bio_wait(WRITE, bio);
 331                if ((err == 0) && bio->bi_error)
 332                        err = -EIO;
 333                bio_put(bio);
 334                if (err)
 335                        goto errout;
 336                lblk++;
 337                pblk++;
 338        }
 339        err = 0;
 340errout:
 341        fscrypt_release_ctx(ctx);
 342        return err;
 343}
 344EXPORT_SYMBOL(fscrypt_zeroout_range);
 345
 346/*
 347 * Validate dentries for encrypted directories to make sure we aren't
 348 * potentially caching stale data after a key has been added or
 349 * removed.
 350 */
 351static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
 352{
 353        struct dentry *dir;
 354        struct fscrypt_info *ci;
 355        int dir_has_key, cached_with_key;
 356
 357        if (flags & LOOKUP_RCU)
 358                return -ECHILD;
 359
 360        dir = dget_parent(dentry);
 361        if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
 362                dput(dir);
 363                return 0;
 364        }
 365
 366        ci = d_inode(dir)->i_crypt_info;
 367        if (ci && ci->ci_keyring_key &&
 368            (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
 369                                          (1 << KEY_FLAG_REVOKED) |
 370                                          (1 << KEY_FLAG_DEAD))))
 371                ci = NULL;
 372
 373        /* this should eventually be an flag in d_flags */
 374        spin_lock(&dentry->d_lock);
 375        cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
 376        spin_unlock(&dentry->d_lock);
 377        dir_has_key = (ci != NULL);
 378        dput(dir);
 379
 380        /*
 381         * If the dentry was cached without the key, and it is a
 382         * negative dentry, it might be a valid name.  We can't check
 383         * if the key has since been made available due to locking
 384         * reasons, so we fail the validation so ext4_lookup() can do
 385         * this check.
 386         *
 387         * We also fail the validation if the dentry was created with
 388         * the key present, but we no longer have the key, or vice versa.
 389         */
 390        if ((!cached_with_key && d_is_negative(dentry)) ||
 391                        (!cached_with_key && dir_has_key) ||
 392                        (cached_with_key && !dir_has_key))
 393                return 0;
 394        return 1;
 395}
 396
 397const struct dentry_operations fscrypt_d_ops = {
 398        .d_revalidate = fscrypt_d_revalidate,
 399};
 400EXPORT_SYMBOL(fscrypt_d_ops);
 401
 402/*
 403 * Call fscrypt_decrypt_page on every single page, reusing the encryption
 404 * context.
 405 */
 406static void completion_pages(struct work_struct *work)
 407{
 408        struct fscrypt_ctx *ctx =
 409                container_of(work, struct fscrypt_ctx, r.work);
 410        struct bio *bio = ctx->r.bio;
 411        struct bio_vec *bv;
 412        int i;
 413
 414        bio_for_each_segment_all(bv, bio, i) {
 415                struct page *page = bv->bv_page;
 416                int ret = fscrypt_decrypt_page(page);
 417
 418                if (ret) {
 419                        WARN_ON_ONCE(1);
 420                        SetPageError(page);
 421                } else {
 422                        SetPageUptodate(page);
 423                }
 424                unlock_page(page);
 425        }
 426        fscrypt_release_ctx(ctx);
 427        bio_put(bio);
 428}
 429
 430void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
 431{
 432        INIT_WORK(&ctx->r.work, completion_pages);
 433        ctx->r.bio = bio;
 434        queue_work(fscrypt_read_workqueue, &ctx->r.work);
 435}
 436EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
 437
 438void fscrypt_pullback_bio_page(struct page **page, bool restore)
 439{
 440        struct fscrypt_ctx *ctx;
 441        struct page *bounce_page;
 442
 443        /* The bounce data pages are unmapped. */
 444        if ((*page)->mapping)
 445                return;
 446
 447        /* The bounce data page is unmapped. */
 448        bounce_page = *page;
 449        ctx = (struct fscrypt_ctx *)page_private(bounce_page);
 450
 451        /* restore control page */
 452        *page = ctx->w.control_page;
 453
 454        if (restore)
 455                fscrypt_restore_control_page(bounce_page);
 456}
 457EXPORT_SYMBOL(fscrypt_pullback_bio_page);
 458
 459void fscrypt_restore_control_page(struct page *page)
 460{
 461        struct fscrypt_ctx *ctx;
 462
 463        ctx = (struct fscrypt_ctx *)page_private(page);
 464        set_page_private(page, (unsigned long)NULL);
 465        ClearPagePrivate(page);
 466        unlock_page(page);
 467        fscrypt_release_ctx(ctx);
 468}
 469EXPORT_SYMBOL(fscrypt_restore_control_page);
 470
 471static void fscrypt_destroy(void)
 472{
 473        struct fscrypt_ctx *pos, *n;
 474
 475        list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
 476                kmem_cache_free(fscrypt_ctx_cachep, pos);
 477        INIT_LIST_HEAD(&fscrypt_free_ctxs);
 478        mempool_destroy(fscrypt_bounce_page_pool);
 479        fscrypt_bounce_page_pool = NULL;
 480}
 481
 482/**
 483 * fscrypt_initialize() - allocate major buffers for fs encryption.
 484 *
 485 * We only call this when we start accessing encrypted files, since it
 486 * results in memory getting allocated that wouldn't otherwise be used.
 487 *
 488 * Return: Zero on success, non-zero otherwise.
 489 */
 490int fscrypt_initialize(void)
 491{
 492        int i, res = -ENOMEM;
 493
 494        if (fscrypt_bounce_page_pool)
 495                return 0;
 496
 497        mutex_lock(&fscrypt_init_mutex);
 498        if (fscrypt_bounce_page_pool)
 499                goto already_initialized;
 500
 501        for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
 502                struct fscrypt_ctx *ctx;
 503
 504                ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
 505                if (!ctx)
 506                        goto fail;
 507                list_add(&ctx->free_list, &fscrypt_free_ctxs);
 508        }
 509
 510        fscrypt_bounce_page_pool =
 511                mempool_create_page_pool(num_prealloc_crypto_pages, 0);
 512        if (!fscrypt_bounce_page_pool)
 513                goto fail;
 514
 515already_initialized:
 516        mutex_unlock(&fscrypt_init_mutex);
 517        return 0;
 518fail:
 519        fscrypt_destroy();
 520        mutex_unlock(&fscrypt_init_mutex);
 521        return res;
 522}
 523EXPORT_SYMBOL(fscrypt_initialize);
 524
 525/**
 526 * fscrypt_init() - Set up for fs encryption.
 527 */
 528static int __init fscrypt_init(void)
 529{
 530        fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
 531                                                        WQ_HIGHPRI, 0);
 532        if (!fscrypt_read_workqueue)
 533                goto fail;
 534
 535        fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
 536        if (!fscrypt_ctx_cachep)
 537                goto fail_free_queue;
 538
 539        fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
 540        if (!fscrypt_info_cachep)
 541                goto fail_free_ctx;
 542
 543        return 0;
 544
 545fail_free_ctx:
 546        kmem_cache_destroy(fscrypt_ctx_cachep);
 547fail_free_queue:
 548        destroy_workqueue(fscrypt_read_workqueue);
 549fail:
 550        return -ENOMEM;
 551}
 552module_init(fscrypt_init)
 553
 554/**
 555 * fscrypt_exit() - Shutdown the fs encryption system
 556 */
 557static void __exit fscrypt_exit(void)
 558{
 559        fscrypt_destroy();
 560
 561        if (fscrypt_read_workqueue)
 562                destroy_workqueue(fscrypt_read_workqueue);
 563        kmem_cache_destroy(fscrypt_ctx_cachep);
 564        kmem_cache_destroy(fscrypt_info_cachep);
 565}
 566module_exit(fscrypt_exit);
 567
 568MODULE_LICENSE("GPL");
 569