linux/fs/ext4/crypto.c
<<
>>
Prefs
   1/*
   2 * linux/fs/ext4/crypto.c
   3 *
   4 * Copyright (C) 2015, Google, Inc.
   5 *
   6 * This contains encryption functions for ext4
   7 *
   8 * Written by Michael Halcrow, 2014.
   9 *
  10 * Filename encryption additions
  11 *      Uday Savagaonkar, 2014
  12 * Encryption policy handling additions
  13 *      Ildar Muslukhov, 2014
  14 *
  15 * This has not yet undergone a rigorous security audit.
  16 *
  17 * The usage of AES-XTS should conform to recommendations in NIST
  18 * Special Publication 800-38E and IEEE P1619/D16.
  19 */
  20
  21#include <crypto/skcipher.h>
  22#include <keys/user-type.h>
  23#include <keys/encrypted-type.h>
  24#include <linux/ecryptfs.h>
  25#include <linux/gfp.h>
  26#include <linux/kernel.h>
  27#include <linux/key.h>
  28#include <linux/list.h>
  29#include <linux/mempool.h>
  30#include <linux/module.h>
  31#include <linux/mutex.h>
  32#include <linux/random.h>
  33#include <linux/scatterlist.h>
  34#include <linux/spinlock_types.h>
  35#include <linux/namei.h>
  36
  37#include "ext4_extents.h"
  38#include "xattr.h"
  39
  40/* Encryption added and removed here! (L: */
  41
  42static unsigned int num_prealloc_crypto_pages = 32;
  43static unsigned int num_prealloc_crypto_ctxs = 128;
  44
  45module_param(num_prealloc_crypto_pages, uint, 0444);
  46MODULE_PARM_DESC(num_prealloc_crypto_pages,
  47                 "Number of crypto pages to preallocate");
  48module_param(num_prealloc_crypto_ctxs, uint, 0444);
  49MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
  50                 "Number of crypto contexts to preallocate");
  51
  52static mempool_t *ext4_bounce_page_pool;
  53
  54static LIST_HEAD(ext4_free_crypto_ctxs);
  55static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
  56
  57static struct kmem_cache *ext4_crypto_ctx_cachep;
  58struct kmem_cache *ext4_crypt_info_cachep;
  59
  60/**
  61 * ext4_release_crypto_ctx() - Releases an encryption context
  62 * @ctx: The encryption context to release.
  63 *
  64 * If the encryption context was allocated from the pre-allocated pool, returns
  65 * it to that pool. Else, frees it.
  66 *
  67 * If there's a bounce page in the context, this frees that.
  68 */
  69void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
  70{
  71        unsigned long flags;
  72
  73        if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
  74                mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
  75        ctx->w.bounce_page = NULL;
  76        ctx->w.control_page = NULL;
  77        if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
  78                kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
  79        } else {
  80                spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
  81                list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
  82                spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
  83        }
  84}
  85
  86/**
  87 * ext4_get_crypto_ctx() - Gets an encryption context
  88 * @inode:       The inode for which we are doing the crypto
  89 *
  90 * Allocates and initializes an encryption context.
  91 *
  92 * Return: An allocated and initialized encryption context on success; error
  93 * value or NULL otherwise.
  94 */
  95struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode,
  96                                            gfp_t gfp_flags)
  97{
  98        struct ext4_crypto_ctx *ctx = NULL;
  99        int res = 0;
 100        unsigned long flags;
 101        struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
 102
 103        if (ci == NULL)
 104                return ERR_PTR(-ENOKEY);
 105
 106        /*
 107         * We first try getting the ctx from a free list because in
 108         * the common case the ctx will have an allocated and
 109         * initialized crypto tfm, so it's probably a worthwhile
 110         * optimization. For the bounce page, we first try getting it
 111         * from the kernel allocator because that's just about as fast
 112         * as getting it from a list and because a cache of free pages
 113         * should generally be a "last resort" option for a filesystem
 114         * to be able to do its job.
 115         */
 116        spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
 117        ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
 118                                       struct ext4_crypto_ctx, free_list);
 119        if (ctx)
 120                list_del(&ctx->free_list);
 121        spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
 122        if (!ctx) {
 123                ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, gfp_flags);
 124                if (!ctx) {
 125                        res = -ENOMEM;
 126                        goto out;
 127                }
 128                ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
 129        } else {
 130                ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
 131        }
 132        ctx->flags &= ~EXT4_WRITE_PATH_FL;
 133
 134out:
 135        if (res) {
 136                if (!IS_ERR_OR_NULL(ctx))
 137                        ext4_release_crypto_ctx(ctx);
 138                ctx = ERR_PTR(res);
 139        }
 140        return ctx;
 141}
 142
 143struct workqueue_struct *ext4_read_workqueue;
 144static DEFINE_MUTEX(crypto_init);
 145
 146/**
 147 * ext4_exit_crypto() - Shutdown the ext4 encryption system
 148 */
 149void ext4_exit_crypto(void)
 150{
 151        struct ext4_crypto_ctx *pos, *n;
 152
 153        list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
 154                kmem_cache_free(ext4_crypto_ctx_cachep, pos);
 155        INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
 156        if (ext4_bounce_page_pool)
 157                mempool_destroy(ext4_bounce_page_pool);
 158        ext4_bounce_page_pool = NULL;
 159        if (ext4_read_workqueue)
 160                destroy_workqueue(ext4_read_workqueue);
 161        ext4_read_workqueue = NULL;
 162        if (ext4_crypto_ctx_cachep)
 163                kmem_cache_destroy(ext4_crypto_ctx_cachep);
 164        ext4_crypto_ctx_cachep = NULL;
 165        if (ext4_crypt_info_cachep)
 166                kmem_cache_destroy(ext4_crypt_info_cachep);
 167        ext4_crypt_info_cachep = NULL;
 168}
 169
 170/**
 171 * ext4_init_crypto() - Set up for ext4 encryption.
 172 *
 173 * We only call this when we start accessing encrypted files, since it
 174 * results in memory getting allocated that wouldn't otherwise be used.
 175 *
 176 * Return: Zero on success, non-zero otherwise.
 177 */
 178int ext4_init_crypto(void)
 179{
 180        int i, res = -ENOMEM;
 181
 182        mutex_lock(&crypto_init);
 183        if (ext4_read_workqueue)
 184                goto already_initialized;
 185        ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
 186        if (!ext4_read_workqueue)
 187                goto fail;
 188
 189        ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
 190                                            SLAB_RECLAIM_ACCOUNT);
 191        if (!ext4_crypto_ctx_cachep)
 192                goto fail;
 193
 194        ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
 195                                            SLAB_RECLAIM_ACCOUNT);
 196        if (!ext4_crypt_info_cachep)
 197                goto fail;
 198
 199        for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
 200                struct ext4_crypto_ctx *ctx;
 201
 202                ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
 203                if (!ctx) {
 204                        res = -ENOMEM;
 205                        goto fail;
 206                }
 207                list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
 208        }
 209
 210        ext4_bounce_page_pool =
 211                mempool_create_page_pool(num_prealloc_crypto_pages, 0);
 212        if (!ext4_bounce_page_pool) {
 213                res = -ENOMEM;
 214                goto fail;
 215        }
 216already_initialized:
 217        mutex_unlock(&crypto_init);
 218        return 0;
 219fail:
 220        ext4_exit_crypto();
 221        mutex_unlock(&crypto_init);
 222        return res;
 223}
 224
 225void ext4_restore_control_page(struct page *data_page)
 226{
 227        struct ext4_crypto_ctx *ctx =
 228                (struct ext4_crypto_ctx *)page_private(data_page);
 229
 230        set_page_private(data_page, (unsigned long)NULL);
 231        ClearPagePrivate(data_page);
 232        unlock_page(data_page);
 233        ext4_release_crypto_ctx(ctx);
 234}
 235
 236/**
 237 * ext4_crypt_complete() - The completion callback for page encryption
 238 * @req: The asynchronous encryption request context
 239 * @res: The result of the encryption operation
 240 */
 241static void ext4_crypt_complete(struct crypto_async_request *req, int res)
 242{
 243        struct ext4_completion_result *ecr = req->data;
 244
 245        if (res == -EINPROGRESS)
 246                return;
 247        ecr->res = res;
 248        complete(&ecr->completion);
 249}
 250
 251typedef enum {
 252        EXT4_DECRYPT = 0,
 253        EXT4_ENCRYPT,
 254} ext4_direction_t;
 255
 256static int ext4_page_crypto(struct inode *inode,
 257                            ext4_direction_t rw,
 258                            pgoff_t index,
 259                            struct page *src_page,
 260                            struct page *dest_page,
 261                            gfp_t gfp_flags)
 262
 263{
 264        u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
 265        struct skcipher_request *req = NULL;
 266        DECLARE_EXT4_COMPLETION_RESULT(ecr);
 267        struct scatterlist dst, src;
 268        struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
 269        struct crypto_skcipher *tfm = ci->ci_ctfm;
 270        int res = 0;
 271
 272        req = skcipher_request_alloc(tfm, gfp_flags);
 273        if (!req) {
 274                printk_ratelimited(KERN_ERR
 275                                   "%s: crypto_request_alloc() failed\n",
 276                                   __func__);
 277                return -ENOMEM;
 278        }
 279        skcipher_request_set_callback(
 280                req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 281                ext4_crypt_complete, &ecr);
 282
 283        BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
 284        memcpy(xts_tweak, &index, sizeof(index));
 285        memset(&xts_tweak[sizeof(index)], 0,
 286               EXT4_XTS_TWEAK_SIZE - sizeof(index));
 287
 288        sg_init_table(&dst, 1);
 289        sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
 290        sg_init_table(&src, 1);
 291        sg_set_page(&src, src_page, PAGE_SIZE, 0);
 292        skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
 293                                   xts_tweak);
 294        if (rw == EXT4_DECRYPT)
 295                res = crypto_skcipher_decrypt(req);
 296        else
 297                res = crypto_skcipher_encrypt(req);
 298        if (res == -EINPROGRESS || res == -EBUSY) {
 299                wait_for_completion(&ecr.completion);
 300                res = ecr.res;
 301        }
 302        skcipher_request_free(req);
 303        if (res) {
 304                printk_ratelimited(
 305                        KERN_ERR
 306                        "%s: crypto_skcipher_encrypt() returned %d\n",
 307                        __func__, res);
 308                return res;
 309        }
 310        return 0;
 311}
 312
 313static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx,
 314                                      gfp_t gfp_flags)
 315{
 316        ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, gfp_flags);
 317        if (ctx->w.bounce_page == NULL)
 318                return ERR_PTR(-ENOMEM);
 319        ctx->flags |= EXT4_WRITE_PATH_FL;
 320        return ctx->w.bounce_page;
 321}
 322
 323/**
 324 * ext4_encrypt() - Encrypts a page
 325 * @inode:          The inode for which the encryption should take place
 326 * @plaintext_page: The page to encrypt. Must be locked.
 327 *
 328 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
 329 * encryption context.
 330 *
 331 * Called on the page write path.  The caller must call
 332 * ext4_restore_control_page() on the returned ciphertext page to
 333 * release the bounce buffer and the encryption context.
 334 *
 335 * Return: An allocated page with the encrypted content on success. Else, an
 336 * error value or NULL.
 337 */
 338struct page *ext4_encrypt(struct inode *inode,
 339                          struct page *plaintext_page,
 340                          gfp_t gfp_flags)
 341{
 342        struct ext4_crypto_ctx *ctx;
 343        struct page *ciphertext_page = NULL;
 344        int err;
 345
 346        BUG_ON(!PageLocked(plaintext_page));
 347
 348        ctx = ext4_get_crypto_ctx(inode, gfp_flags);
 349        if (IS_ERR(ctx))
 350                return (struct page *) ctx;
 351
 352        /* The encryption operation will require a bounce page. */
 353        ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
 354        if (IS_ERR(ciphertext_page))
 355                goto errout;
 356        ctx->w.control_page = plaintext_page;
 357        err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index,
 358                               plaintext_page, ciphertext_page, gfp_flags);
 359        if (err) {
 360                ciphertext_page = ERR_PTR(err);
 361        errout:
 362                ext4_release_crypto_ctx(ctx);
 363                return ciphertext_page;
 364        }
 365        SetPagePrivate(ciphertext_page);
 366        set_page_private(ciphertext_page, (unsigned long)ctx);
 367        lock_page(ciphertext_page);
 368        return ciphertext_page;
 369}
 370
 371/**
 372 * ext4_decrypt() - Decrypts a page in-place
 373 * @ctx:  The encryption context.
 374 * @page: The page to decrypt. Must be locked.
 375 *
 376 * Decrypts page in-place using the ctx encryption context.
 377 *
 378 * Called from the read completion callback.
 379 *
 380 * Return: Zero on success, non-zero otherwise.
 381 */
 382int ext4_decrypt(struct page *page)
 383{
 384        BUG_ON(!PageLocked(page));
 385
 386        return ext4_page_crypto(page->mapping->host, EXT4_DECRYPT,
 387                                page->index, page, page, GFP_NOFS);
 388}
 389
 390int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk,
 391                           ext4_fsblk_t pblk, ext4_lblk_t len)
 392{
 393        struct ext4_crypto_ctx  *ctx;
 394        struct page             *ciphertext_page = NULL;
 395        struct bio              *bio;
 396        int                     ret, err = 0;
 397
 398#if 0
 399        ext4_msg(inode->i_sb, KERN_CRIT,
 400                 "ext4_encrypted_zeroout ino %lu lblk %u len %u",
 401                 (unsigned long) inode->i_ino, lblk, len);
 402#endif
 403
 404        BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
 405
 406        ctx = ext4_get_crypto_ctx(inode, GFP_NOFS);
 407        if (IS_ERR(ctx))
 408                return PTR_ERR(ctx);
 409
 410        ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
 411        if (IS_ERR(ciphertext_page)) {
 412                err = PTR_ERR(ciphertext_page);
 413                goto errout;
 414        }
 415
 416        while (len--) {
 417                err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk,
 418                                       ZERO_PAGE(0), ciphertext_page,
 419                                       GFP_NOFS);
 420                if (err)
 421                        goto errout;
 422
 423                bio = bio_alloc(GFP_NOWAIT, 1);
 424                if (!bio) {
 425                        err = -ENOMEM;
 426                        goto errout;
 427                }
 428                bio->bi_bdev = inode->i_sb->s_bdev;
 429                bio->bi_iter.bi_sector =
 430                        pblk << (inode->i_sb->s_blocksize_bits - 9);
 431                ret = bio_add_page(bio, ciphertext_page,
 432                                   inode->i_sb->s_blocksize, 0);
 433                if (ret != inode->i_sb->s_blocksize) {
 434                        /* should never happen! */
 435                        ext4_msg(inode->i_sb, KERN_ERR,
 436                                 "bio_add_page failed: %d", ret);
 437                        WARN_ON(1);
 438                        bio_put(bio);
 439                        err = -EIO;
 440                        goto errout;
 441                }
 442                err = submit_bio_wait(WRITE, bio);
 443                if ((err == 0) && bio->bi_error)
 444                        err = -EIO;
 445                bio_put(bio);
 446                if (err)
 447                        goto errout;
 448                lblk++; pblk++;
 449        }
 450        err = 0;
 451errout:
 452        ext4_release_crypto_ctx(ctx);
 453        return err;
 454}
 455
 456bool ext4_valid_contents_enc_mode(uint32_t mode)
 457{
 458        return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
 459}
 460
 461/**
 462 * ext4_validate_encryption_key_size() - Validate the encryption key size
 463 * @mode: The key mode.
 464 * @size: The key size to validate.
 465 *
 466 * Return: The validated key size for @mode. Zero if invalid.
 467 */
 468uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
 469{
 470        if (size == ext4_encryption_key_size(mode))
 471                return size;
 472        return 0;
 473}
 474
 475/*
 476 * Validate dentries for encrypted directories to make sure we aren't
 477 * potentially caching stale data after a key has been added or
 478 * removed.
 479 */
 480static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags)
 481{
 482        struct dentry *dir;
 483        struct ext4_crypt_info *ci;
 484        int dir_has_key, cached_with_key;
 485
 486        if (flags & LOOKUP_RCU)
 487                return -ECHILD;
 488
 489        dir = dget_parent(dentry);
 490        if (!ext4_encrypted_inode(d_inode(dir))) {
 491                dput(dir);
 492                return 0;
 493        }
 494        ci = EXT4_I(d_inode(dir))->i_crypt_info;
 495        if (ci && ci->ci_keyring_key &&
 496            (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
 497                                          (1 << KEY_FLAG_REVOKED) |
 498                                          (1 << KEY_FLAG_DEAD))))
 499                ci = NULL;
 500
 501        /* this should eventually be an flag in d_flags */
 502        cached_with_key = dentry->d_fsdata != NULL;
 503        dir_has_key = (ci != NULL);
 504        dput(dir);
 505
 506        /*
 507         * If the dentry was cached without the key, and it is a
 508         * negative dentry, it might be a valid name.  We can't check
 509         * if the key has since been made available due to locking
 510         * reasons, so we fail the validation so ext4_lookup() can do
 511         * this check.
 512         *
 513         * We also fail the validation if the dentry was created with
 514         * the key present, but we no longer have the key, or vice versa.
 515         */
 516        if ((!cached_with_key && d_is_negative(dentry)) ||
 517            (!cached_with_key && dir_has_key) ||
 518            (cached_with_key && !dir_has_key)) {
 519#if 0                           /* Revalidation debug */
 520                char buf[80];
 521                char *cp = simple_dname(dentry, buf, sizeof(buf));
 522
 523                if (IS_ERR(cp))
 524                        cp = (char *) "???";
 525                pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata,
 526                       cached_with_key, d_is_negative(dentry),
 527                       dir_has_key);
 528#endif
 529                return 0;
 530        }
 531        return 1;
 532}
 533
 534const struct dentry_operations ext4_encrypted_d_ops = {
 535        .d_revalidate = ext4_d_revalidate,
 536};
 537