linux/fs/nfs/dir.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996  Added silly rename for unlink   --okir
   9 * 28 Sep 1996  Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/time.h>
  22#include <linux/errno.h>
  23#include <linux/stat.h>
  24#include <linux/fcntl.h>
  25#include <linux/string.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/mm.h>
  29#include <linux/sunrpc/clnt.h>
  30#include <linux/nfs_fs.h>
  31#include <linux/nfs_mount.h>
  32#include <linux/pagemap.h>
  33#include <linux/pagevec.h>
  34#include <linux/namei.h>
  35#include <linux/mount.h>
  36#include <linux/swap.h>
  37#include <linux/sched.h>
  38#include <linux/kmemleak.h>
  39#include <linux/xattr.h>
  40
  41#include "delegation.h"
  42#include "iostat.h"
  43#include "internal.h"
  44#include "fscache.h"
  45
  46#include "nfstrace.h"
  47
  48/* #define NFS_DEBUG_VERBOSE 1 */
  49
  50static int nfs_opendir(struct inode *, struct file *);
  51static int nfs_closedir(struct inode *, struct file *);
  52static int nfs_readdir(struct file *, struct dir_context *);
  53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
  54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  55static void nfs_readdir_clear_array(struct page*);
  56
  57const struct file_operations nfs_dir_operations = {
  58        .llseek         = nfs_llseek_dir,
  59        .read           = generic_read_dir,
  60        .iterate_shared = nfs_readdir,
  61        .open           = nfs_opendir,
  62        .release        = nfs_closedir,
  63        .fsync          = nfs_fsync_dir,
  64};
  65
  66const struct address_space_operations nfs_dir_aops = {
  67        .freepage = nfs_readdir_clear_array,
  68};
  69
  70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
  71{
  72        struct nfs_inode *nfsi = NFS_I(dir);
  73        struct nfs_open_dir_context *ctx;
  74        ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
  75        if (ctx != NULL) {
  76                ctx->duped = 0;
  77                ctx->attr_gencount = nfsi->attr_gencount;
  78                ctx->dir_cookie = 0;
  79                ctx->dup_cookie = 0;
  80                ctx->cred = get_rpccred(cred);
  81                spin_lock(&dir->i_lock);
  82                list_add(&ctx->list, &nfsi->open_files);
  83                spin_unlock(&dir->i_lock);
  84                return ctx;
  85        }
  86        return  ERR_PTR(-ENOMEM);
  87}
  88
  89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
  90{
  91        spin_lock(&dir->i_lock);
  92        list_del(&ctx->list);
  93        spin_unlock(&dir->i_lock);
  94        put_rpccred(ctx->cred);
  95        kfree(ctx);
  96}
  97
  98/*
  99 * Open file
 100 */
 101static int
 102nfs_opendir(struct inode *inode, struct file *filp)
 103{
 104        int res = 0;
 105        struct nfs_open_dir_context *ctx;
 106        struct rpc_cred *cred;
 107
 108        dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
 109
 110        nfs_inc_stats(inode, NFSIOS_VFSOPEN);
 111
 112        cred = rpc_lookup_cred();
 113        if (IS_ERR(cred))
 114                return PTR_ERR(cred);
 115        ctx = alloc_nfs_open_dir_context(inode, cred);
 116        if (IS_ERR(ctx)) {
 117                res = PTR_ERR(ctx);
 118                goto out;
 119        }
 120        filp->private_data = ctx;
 121        if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
 122                /* This is a mountpoint, so d_revalidate will never
 123                 * have been called, so we need to refresh the
 124                 * inode (for close-open consistency) ourselves.
 125                 */
 126                __nfs_revalidate_inode(NFS_SERVER(inode), inode);
 127        }
 128out:
 129        put_rpccred(cred);
 130        return res;
 131}
 132
 133static int
 134nfs_closedir(struct inode *inode, struct file *filp)
 135{
 136        put_nfs_open_dir_context(file_inode(filp), filp->private_data);
 137        return 0;
 138}
 139
 140struct nfs_cache_array_entry {
 141        u64 cookie;
 142        u64 ino;
 143        struct qstr string;
 144        unsigned char d_type;
 145};
 146
 147struct nfs_cache_array {
 148        atomic_t refcount;
 149        int size;
 150        int eof_index;
 151        u64 last_cookie;
 152        struct nfs_cache_array_entry array[0];
 153};
 154
 155typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
 156typedef struct {
 157        struct file     *file;
 158        struct page     *page;
 159        struct dir_context *ctx;
 160        unsigned long   page_index;
 161        u64             *dir_cookie;
 162        u64             last_cookie;
 163        loff_t          current_index;
 164        decode_dirent_t decode;
 165
 166        unsigned long   timestamp;
 167        unsigned long   gencount;
 168        unsigned int    cache_entry_index;
 169        unsigned int    plus:1;
 170        unsigned int    eof:1;
 171} nfs_readdir_descriptor_t;
 172
 173/*
 174 * The caller is responsible for calling nfs_readdir_release_array(page)
 175 */
 176static
 177struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
 178{
 179        void *ptr;
 180        if (page == NULL)
 181                return ERR_PTR(-EIO);
 182        ptr = kmap(page);
 183        if (ptr == NULL)
 184                return ERR_PTR(-ENOMEM);
 185        return ptr;
 186}
 187
 188static
 189void nfs_readdir_release_array(struct page *page)
 190{
 191        kunmap(page);
 192}
 193
 194/*
 195 * we are freeing strings created by nfs_add_to_readdir_array()
 196 */
 197static
 198void nfs_readdir_clear_array(struct page *page)
 199{
 200        struct nfs_cache_array *array;
 201        int i;
 202
 203        array = kmap_atomic(page);
 204        if (atomic_dec_and_test(&array->refcount))
 205                for (i = 0; i < array->size; i++)
 206                        kfree(array->array[i].string.name);
 207        kunmap_atomic(array);
 208}
 209
 210static bool grab_page(struct page *page)
 211{
 212        struct nfs_cache_array *array = kmap_atomic(page);
 213        bool res = atomic_inc_not_zero(&array->refcount);
 214        kunmap_atomic(array);
 215        return res;
 216}
 217
 218/*
 219 * the caller is responsible for freeing qstr.name
 220 * when called by nfs_readdir_add_to_array, the strings will be freed in
 221 * nfs_clear_readdir_array()
 222 */
 223static
 224int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
 225{
 226        string->len = len;
 227        string->name = kmemdup(name, len, GFP_KERNEL);
 228        if (string->name == NULL)
 229                return -ENOMEM;
 230        /*
 231         * Avoid a kmemleak false positive. The pointer to the name is stored
 232         * in a page cache page which kmemleak does not scan.
 233         */
 234        kmemleak_not_leak(string->name);
 235        string->hash = full_name_hash(name, len);
 236        return 0;
 237}
 238
 239static
 240int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
 241{
 242        struct nfs_cache_array *array = nfs_readdir_get_array(page);
 243        struct nfs_cache_array_entry *cache_entry;
 244        int ret;
 245
 246        if (IS_ERR(array))
 247                return PTR_ERR(array);
 248
 249        cache_entry = &array->array[array->size];
 250
 251        /* Check that this entry lies within the page bounds */
 252        ret = -ENOSPC;
 253        if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
 254                goto out;
 255
 256        cache_entry->cookie = entry->prev_cookie;
 257        cache_entry->ino = entry->ino;
 258        cache_entry->d_type = entry->d_type;
 259        ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
 260        if (ret)
 261                goto out;
 262        array->last_cookie = entry->cookie;
 263        array->size++;
 264        if (entry->eof != 0)
 265                array->eof_index = array->size;
 266out:
 267        nfs_readdir_release_array(page);
 268        return ret;
 269}
 270
 271static
 272int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 273{
 274        loff_t diff = desc->ctx->pos - desc->current_index;
 275        unsigned int index;
 276
 277        if (diff < 0)
 278                goto out_eof;
 279        if (diff >= array->size) {
 280                if (array->eof_index >= 0)
 281                        goto out_eof;
 282                return -EAGAIN;
 283        }
 284
 285        index = (unsigned int)diff;
 286        *desc->dir_cookie = array->array[index].cookie;
 287        desc->cache_entry_index = index;
 288        return 0;
 289out_eof:
 290        desc->eof = 1;
 291        return -EBADCOOKIE;
 292}
 293
 294static bool
 295nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
 296{
 297        if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
 298                return false;
 299        smp_rmb();
 300        return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
 301}
 302
 303static
 304int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
 305{
 306        int i;
 307        loff_t new_pos;
 308        int status = -EAGAIN;
 309
 310        for (i = 0; i < array->size; i++) {
 311                if (array->array[i].cookie == *desc->dir_cookie) {
 312                        struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
 313                        struct nfs_open_dir_context *ctx = desc->file->private_data;
 314
 315                        new_pos = desc->current_index + i;
 316                        if (ctx->attr_gencount != nfsi->attr_gencount ||
 317                            !nfs_readdir_inode_mapping_valid(nfsi)) {
 318                                ctx->duped = 0;
 319                                ctx->attr_gencount = nfsi->attr_gencount;
 320                        } else if (new_pos < desc->ctx->pos) {
 321                                if (ctx->duped > 0
 322                                    && ctx->dup_cookie == *desc->dir_cookie) {
 323                                        if (printk_ratelimit()) {
 324                                                pr_notice("NFS: directory %pD2 contains a readdir loop."
 325                                                                "Please contact your server vendor.  "
 326                                                                "The file: %.*s has duplicate cookie %llu\n",
 327                                                                desc->file, array->array[i].string.len,
 328                                                                array->array[i].string.name, *desc->dir_cookie);
 329                                        }
 330                                        status = -ELOOP;
 331                                        goto out;
 332                                }
 333                                ctx->dup_cookie = *desc->dir_cookie;
 334                                ctx->duped = -1;
 335                        }
 336                        desc->ctx->pos = new_pos;
 337                        desc->cache_entry_index = i;
 338                        return 0;
 339                }
 340        }
 341        if (array->eof_index >= 0) {
 342                status = -EBADCOOKIE;
 343                if (*desc->dir_cookie == array->last_cookie)
 344                        desc->eof = 1;
 345        }
 346out:
 347        return status;
 348}
 349
 350static
 351int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
 352{
 353        struct nfs_cache_array *array;
 354        int status;
 355
 356        array = nfs_readdir_get_array(desc->page);
 357        if (IS_ERR(array)) {
 358                status = PTR_ERR(array);
 359                goto out;
 360        }
 361
 362        if (*desc->dir_cookie == 0)
 363                status = nfs_readdir_search_for_pos(array, desc);
 364        else
 365                status = nfs_readdir_search_for_cookie(array, desc);
 366
 367        if (status == -EAGAIN) {
 368                desc->last_cookie = array->last_cookie;
 369                desc->current_index += array->size;
 370                desc->page_index++;
 371        }
 372        nfs_readdir_release_array(desc->page);
 373out:
 374        return status;
 375}
 376
 377/* Fill a page with xdr information before transferring to the cache page */
 378static
 379int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
 380                        struct nfs_entry *entry, struct file *file, struct inode *inode)
 381{
 382        struct nfs_open_dir_context *ctx = file->private_data;
 383        struct rpc_cred *cred = ctx->cred;
 384        unsigned long   timestamp, gencount;
 385        int             error;
 386
 387 again:
 388        timestamp = jiffies;
 389        gencount = nfs_inc_attr_generation_counter();
 390        error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
 391                                          NFS_SERVER(inode)->dtsize, desc->plus);
 392        if (error < 0) {
 393                /* We requested READDIRPLUS, but the server doesn't grok it */
 394                if (error == -ENOTSUPP && desc->plus) {
 395                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 396                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 397                        desc->plus = 0;
 398                        goto again;
 399                }
 400                goto error;
 401        }
 402        desc->timestamp = timestamp;
 403        desc->gencount = gencount;
 404error:
 405        return error;
 406}
 407
 408static int xdr_decode(nfs_readdir_descriptor_t *desc,
 409                      struct nfs_entry *entry, struct xdr_stream *xdr)
 410{
 411        int error;
 412
 413        error = desc->decode(xdr, entry, desc->plus);
 414        if (error)
 415                return error;
 416        entry->fattr->time_start = desc->timestamp;
 417        entry->fattr->gencount = desc->gencount;
 418        return 0;
 419}
 420
 421/* Match file and dirent using either filehandle or fileid
 422 * Note: caller is responsible for checking the fsid
 423 */
 424static
 425int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
 426{
 427        struct inode *inode;
 428        struct nfs_inode *nfsi;
 429
 430        if (d_really_is_negative(dentry))
 431                return 0;
 432
 433        inode = d_inode(dentry);
 434        if (is_bad_inode(inode) || NFS_STALE(inode))
 435                return 0;
 436
 437        nfsi = NFS_I(inode);
 438        if (entry->fattr->fileid == nfsi->fileid)
 439                return 1;
 440        if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
 441                return 1;
 442        return 0;
 443}
 444
 445static
 446bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
 447{
 448        if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
 449                return false;
 450        if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
 451                return true;
 452        if (ctx->pos == 0)
 453                return true;
 454        return false;
 455}
 456
 457/*
 458 * This function is called by the lookup code to request the use of
 459 * readdirplus to accelerate any future lookups in the same
 460 * directory.
 461 */
 462static
 463void nfs_advise_use_readdirplus(struct inode *dir)
 464{
 465        set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
 466}
 467
 468/*
 469 * This function is mainly for use by nfs_getattr().
 470 *
 471 * If this is an 'ls -l', we want to force use of readdirplus.
 472 * Do this by checking if there is an active file descriptor
 473 * and calling nfs_advise_use_readdirplus, then forcing a
 474 * cache flush.
 475 */
 476void nfs_force_use_readdirplus(struct inode *dir)
 477{
 478        if (!list_empty(&NFS_I(dir)->open_files)) {
 479                nfs_advise_use_readdirplus(dir);
 480                nfs_zap_mapping(dir, dir->i_mapping);
 481        }
 482}
 483
 484static
 485void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
 486{
 487        struct qstr filename = QSTR_INIT(entry->name, entry->len);
 488        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
 489        struct dentry *dentry;
 490        struct dentry *alias;
 491        struct inode *dir = d_inode(parent);
 492        struct inode *inode;
 493        int status;
 494
 495        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
 496                return;
 497        if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
 498                return;
 499        if (filename.name[0] == '.') {
 500                if (filename.len == 1)
 501                        return;
 502                if (filename.len == 2 && filename.name[1] == '.')
 503                        return;
 504        }
 505        filename.hash = full_name_hash(filename.name, filename.len);
 506
 507        dentry = d_lookup(parent, &filename);
 508again:
 509        if (!dentry) {
 510                dentry = d_alloc_parallel(parent, &filename, &wq);
 511                if (IS_ERR(dentry))
 512                        return;
 513        }
 514        if (!d_in_lookup(dentry)) {
 515                /* Is there a mountpoint here? If so, just exit */
 516                if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
 517                                        &entry->fattr->fsid))
 518                        goto out;
 519                if (nfs_same_file(dentry, entry)) {
 520                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 521                        status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
 522                        if (!status)
 523                                nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
 524                        goto out;
 525                } else {
 526                        d_invalidate(dentry);
 527                        dput(dentry);
 528                        dentry = NULL;
 529                        goto again;
 530                }
 531        }
 532
 533        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
 534        alias = d_splice_alias(inode, dentry);
 535        d_lookup_done(dentry);
 536        if (alias) {
 537                if (IS_ERR(alias))
 538                        goto out;
 539                dput(dentry);
 540                dentry = alias;
 541        }
 542        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 543out:
 544        dput(dentry);
 545}
 546
 547/* Perform conversion from xdr to cache array */
 548static
 549int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
 550                                struct page **xdr_pages, struct page *page, unsigned int buflen)
 551{
 552        struct xdr_stream stream;
 553        struct xdr_buf buf;
 554        struct page *scratch;
 555        struct nfs_cache_array *array;
 556        unsigned int count = 0;
 557        int status;
 558
 559        scratch = alloc_page(GFP_KERNEL);
 560        if (scratch == NULL)
 561                return -ENOMEM;
 562
 563        if (buflen == 0)
 564                goto out_nopages;
 565
 566        xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
 567        xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
 568
 569        do {
 570                status = xdr_decode(desc, entry, &stream);
 571                if (status != 0) {
 572                        if (status == -EAGAIN)
 573                                status = 0;
 574                        break;
 575                }
 576
 577                count++;
 578
 579                if (desc->plus != 0)
 580                        nfs_prime_dcache(file_dentry(desc->file), entry);
 581
 582                status = nfs_readdir_add_to_array(entry, page);
 583                if (status != 0)
 584                        break;
 585        } while (!entry->eof);
 586
 587out_nopages:
 588        if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
 589                array = nfs_readdir_get_array(page);
 590                if (!IS_ERR(array)) {
 591                        array->eof_index = array->size;
 592                        status = 0;
 593                        nfs_readdir_release_array(page);
 594                } else
 595                        status = PTR_ERR(array);
 596        }
 597
 598        put_page(scratch);
 599        return status;
 600}
 601
 602static
 603void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
 604{
 605        unsigned int i;
 606        for (i = 0; i < npages; i++)
 607                put_page(pages[i]);
 608}
 609
 610/*
 611 * nfs_readdir_large_page will allocate pages that must be freed with a call
 612 * to nfs_readdir_free_pagearray
 613 */
 614static
 615int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
 616{
 617        unsigned int i;
 618
 619        for (i = 0; i < npages; i++) {
 620                struct page *page = alloc_page(GFP_KERNEL);
 621                if (page == NULL)
 622                        goto out_freepages;
 623                pages[i] = page;
 624        }
 625        return 0;
 626
 627out_freepages:
 628        nfs_readdir_free_pages(pages, i);
 629        return -ENOMEM;
 630}
 631
 632static
 633int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
 634{
 635        struct page *pages[NFS_MAX_READDIR_PAGES];
 636        struct nfs_entry entry;
 637        struct file     *file = desc->file;
 638        struct nfs_cache_array *array;
 639        int status = -ENOMEM;
 640        unsigned int array_size = ARRAY_SIZE(pages);
 641
 642        entry.prev_cookie = 0;
 643        entry.cookie = desc->last_cookie;
 644        entry.eof = 0;
 645        entry.fh = nfs_alloc_fhandle();
 646        entry.fattr = nfs_alloc_fattr();
 647        entry.server = NFS_SERVER(inode);
 648        if (entry.fh == NULL || entry.fattr == NULL)
 649                goto out;
 650
 651        entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
 652        if (IS_ERR(entry.label)) {
 653                status = PTR_ERR(entry.label);
 654                goto out;
 655        }
 656
 657        array = nfs_readdir_get_array(page);
 658        if (IS_ERR(array)) {
 659                status = PTR_ERR(array);
 660                goto out_label_free;
 661        }
 662        memset(array, 0, sizeof(struct nfs_cache_array));
 663        atomic_set(&array->refcount, 1);
 664        array->eof_index = -1;
 665
 666        status = nfs_readdir_alloc_pages(pages, array_size);
 667        if (status < 0)
 668                goto out_release_array;
 669        do {
 670                unsigned int pglen;
 671                status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
 672
 673                if (status < 0)
 674                        break;
 675                pglen = status;
 676                status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
 677                if (status < 0) {
 678                        if (status == -ENOSPC)
 679                                status = 0;
 680                        break;
 681                }
 682        } while (array->eof_index < 0);
 683
 684        nfs_readdir_free_pages(pages, array_size);
 685out_release_array:
 686        nfs_readdir_release_array(page);
 687out_label_free:
 688        nfs4_label_free(entry.label);
 689out:
 690        nfs_free_fattr(entry.fattr);
 691        nfs_free_fhandle(entry.fh);
 692        return status;
 693}
 694
 695/*
 696 * Now we cache directories properly, by converting xdr information
 697 * to an array that can be used for lookups later.  This results in
 698 * fewer cache pages, since we can store more information on each page.
 699 * We only need to convert from xdr once so future lookups are much simpler
 700 */
 701static
 702int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
 703{
 704        struct inode    *inode = file_inode(desc->file);
 705        int ret;
 706
 707        ret = nfs_readdir_xdr_to_array(desc, page, inode);
 708        if (ret < 0)
 709                goto error;
 710        SetPageUptodate(page);
 711
 712        if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
 713                /* Should never happen */
 714                nfs_zap_mapping(inode, inode->i_mapping);
 715        }
 716        unlock_page(page);
 717        return 0;
 718 error:
 719        unlock_page(page);
 720        return ret;
 721}
 722
 723static
 724void cache_page_release(nfs_readdir_descriptor_t *desc)
 725{
 726        nfs_readdir_clear_array(desc->page);
 727        put_page(desc->page);
 728        desc->page = NULL;
 729}
 730
 731static
 732struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
 733{
 734        struct page *page;
 735
 736        for (;;) {
 737                page = read_cache_page(file_inode(desc->file)->i_mapping,
 738                        desc->page_index, (filler_t *)nfs_readdir_filler, desc);
 739                if (IS_ERR(page) || grab_page(page))
 740                        break;
 741                put_page(page);
 742        }
 743        return page;
 744}
 745
 746/*
 747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
 748 */
 749static
 750int find_cache_page(nfs_readdir_descriptor_t *desc)
 751{
 752        int res;
 753
 754        desc->page = get_cache_page(desc);
 755        if (IS_ERR(desc->page))
 756                return PTR_ERR(desc->page);
 757
 758        res = nfs_readdir_search_array(desc);
 759        if (res != 0)
 760                cache_page_release(desc);
 761        return res;
 762}
 763
 764/* Search for desc->dir_cookie from the beginning of the page cache */
 765static inline
 766int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 767{
 768        int res;
 769
 770        if (desc->page_index == 0) {
 771                desc->current_index = 0;
 772                desc->last_cookie = 0;
 773        }
 774        do {
 775                res = find_cache_page(desc);
 776        } while (res == -EAGAIN);
 777        return res;
 778}
 779
 780/*
 781 * Once we've found the start of the dirent within a page: fill 'er up...
 782 */
 783static 
 784int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
 785{
 786        struct file     *file = desc->file;
 787        int i = 0;
 788        int res = 0;
 789        struct nfs_cache_array *array = NULL;
 790        struct nfs_open_dir_context *ctx = file->private_data;
 791
 792        array = nfs_readdir_get_array(desc->page);
 793        if (IS_ERR(array)) {
 794                res = PTR_ERR(array);
 795                goto out;
 796        }
 797
 798        for (i = desc->cache_entry_index; i < array->size; i++) {
 799                struct nfs_cache_array_entry *ent;
 800
 801                ent = &array->array[i];
 802                if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
 803                    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
 804                        desc->eof = 1;
 805                        break;
 806                }
 807                desc->ctx->pos++;
 808                if (i < (array->size-1))
 809                        *desc->dir_cookie = array->array[i+1].cookie;
 810                else
 811                        *desc->dir_cookie = array->last_cookie;
 812                if (ctx->duped != 0)
 813                        ctx->duped = 1;
 814        }
 815        if (array->eof_index >= 0)
 816                desc->eof = 1;
 817
 818        nfs_readdir_release_array(desc->page);
 819out:
 820        cache_page_release(desc);
 821        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 822                        (unsigned long long)*desc->dir_cookie, res);
 823        return res;
 824}
 825
 826/*
 827 * If we cannot find a cookie in our cache, we suspect that this is
 828 * because it points to a deleted file, so we ask the server to return
 829 * whatever it thinks is the next entry. We then feed this to filldir.
 830 * If all goes well, we should then be able to find our way round the
 831 * cache on the next call to readdir_search_pagecache();
 832 *
 833 * NOTE: we cannot add the anonymous page to the pagecache because
 834 *       the data it contains might not be page aligned. Besides,
 835 *       we should already have a complete representation of the
 836 *       directory in the page cache by the time we get here.
 837 */
 838static inline
 839int uncached_readdir(nfs_readdir_descriptor_t *desc)
 840{
 841        struct page     *page = NULL;
 842        int             status;
 843        struct inode *inode = file_inode(desc->file);
 844        struct nfs_open_dir_context *ctx = desc->file->private_data;
 845
 846        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 847                        (unsigned long long)*desc->dir_cookie);
 848
 849        page = alloc_page(GFP_HIGHUSER);
 850        if (!page) {
 851                status = -ENOMEM;
 852                goto out;
 853        }
 854
 855        desc->page_index = 0;
 856        desc->last_cookie = *desc->dir_cookie;
 857        desc->page = page;
 858        ctx->duped = 0;
 859
 860        status = nfs_readdir_xdr_to_array(desc, page, inode);
 861        if (status < 0)
 862                goto out_release;
 863
 864        status = nfs_do_filldir(desc);
 865
 866 out:
 867        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 868                        __func__, status);
 869        return status;
 870 out_release:
 871        cache_page_release(desc);
 872        goto out;
 873}
 874
 875static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
 876{
 877        struct nfs_inode *nfsi = NFS_I(dir);
 878
 879        if (nfs_attribute_cache_expired(dir))
 880                return true;
 881        if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
 882                return true;
 883        return false;
 884}
 885
 886/* The file offset position represents the dirent entry number.  A
 887   last cookie cache takes care of the common case of reading the
 888   whole directory.
 889 */
 890static int nfs_readdir(struct file *file, struct dir_context *ctx)
 891{
 892        struct dentry   *dentry = file_dentry(file);
 893        struct inode    *inode = d_inode(dentry);
 894        nfs_readdir_descriptor_t my_desc,
 895                        *desc = &my_desc;
 896        struct nfs_open_dir_context *dir_ctx = file->private_data;
 897        int res = 0;
 898
 899        dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
 900                        file, (long long)ctx->pos);
 901        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 902
 903        /*
 904         * ctx->pos points to the dirent entry number.
 905         * *desc->dir_cookie has the cookie for the next entry. We have
 906         * to either find the entry with the appropriate number or
 907         * revalidate the cookie.
 908         */
 909        memset(desc, 0, sizeof(*desc));
 910
 911        desc->file = file;
 912        desc->ctx = ctx;
 913        desc->dir_cookie = &dir_ctx->dir_cookie;
 914        desc->decode = NFS_PROTO(inode)->decode_dirent;
 915        desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
 916
 917        if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
 918                res = nfs_revalidate_mapping(inode, file->f_mapping);
 919        if (res < 0)
 920                goto out;
 921
 922        do {
 923                res = readdir_search_pagecache(desc);
 924
 925                if (res == -EBADCOOKIE) {
 926                        res = 0;
 927                        /* This means either end of directory */
 928                        if (*desc->dir_cookie && desc->eof == 0) {
 929                                /* Or that the server has 'lost' a cookie */
 930                                res = uncached_readdir(desc);
 931                                if (res == 0)
 932                                        continue;
 933                        }
 934                        break;
 935                }
 936                if (res == -ETOOSMALL && desc->plus) {
 937                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
 938                        nfs_zap_caches(inode);
 939                        desc->page_index = 0;
 940                        desc->plus = 0;
 941                        desc->eof = 0;
 942                        continue;
 943                }
 944                if (res < 0)
 945                        break;
 946
 947                res = nfs_do_filldir(desc);
 948                if (res < 0)
 949                        break;
 950        } while (!desc->eof);
 951out:
 952        if (res > 0)
 953                res = 0;
 954        dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
 955        return res;
 956}
 957
 958static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
 959{
 960        struct nfs_open_dir_context *dir_ctx = filp->private_data;
 961
 962        dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
 963                        filp, offset, whence);
 964
 965        switch (whence) {
 966                case 1:
 967                        offset += filp->f_pos;
 968                case 0:
 969                        if (offset >= 0)
 970                                break;
 971                default:
 972                        return -EINVAL;
 973        }
 974        if (offset != filp->f_pos) {
 975                filp->f_pos = offset;
 976                dir_ctx->dir_cookie = 0;
 977                dir_ctx->duped = 0;
 978        }
 979        return offset;
 980}
 981
 982/*
 983 * All directory operations under NFS are synchronous, so fsync()
 984 * is a dummy operation.
 985 */
 986static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
 987                         int datasync)
 988{
 989        struct inode *inode = file_inode(filp);
 990
 991        dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
 992
 993        inode_lock(inode);
 994        nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
 995        inode_unlock(inode);
 996        return 0;
 997}
 998
 999/**
1000 * nfs_force_lookup_revalidate - Mark the directory as having changed
1001 * @dir - pointer to directory inode
1002 *
1003 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1004 * full lookup on all child dentries of 'dir' whenever a change occurs
1005 * on the server that might have invalidated our dcache.
1006 *
1007 * The caller should be holding dir->i_lock
1008 */
1009void nfs_force_lookup_revalidate(struct inode *dir)
1010{
1011        NFS_I(dir)->cache_change_attribute++;
1012}
1013EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1014
1015/*
1016 * A check for whether or not the parent directory has changed.
1017 * In the case it has, we assume that the dentries are untrustworthy
1018 * and may need to be looked up again.
1019 * If rcu_walk prevents us from performing a full check, return 0.
1020 */
1021static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1022                              int rcu_walk)
1023{
1024        int ret;
1025
1026        if (IS_ROOT(dentry))
1027                return 1;
1028        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1029                return 0;
1030        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1031                return 0;
1032        /* Revalidate nfsi->cache_change_attribute before we declare a match */
1033        if (rcu_walk)
1034                ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1035        else
1036                ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1037        if (ret < 0)
1038                return 0;
1039        if (!nfs_verify_change_attribute(dir, dentry->d_time))
1040                return 0;
1041        return 1;
1042}
1043
1044/*
1045 * Use intent information to check whether or not we're going to do
1046 * an O_EXCL create using this path component.
1047 */
1048static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1049{
1050        if (NFS_PROTO(dir)->version == 2)
1051                return 0;
1052        return flags & LOOKUP_EXCL;
1053}
1054
1055/*
1056 * Inode and filehandle revalidation for lookups.
1057 *
1058 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1059 * or if the intent information indicates that we're about to open this
1060 * particular file and the "nocto" mount flag is not set.
1061 *
1062 */
1063static
1064int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1065{
1066        struct nfs_server *server = NFS_SERVER(inode);
1067        int ret;
1068
1069        if (IS_AUTOMOUNT(inode))
1070                return 0;
1071        /* VFS wants an on-the-wire revalidation */
1072        if (flags & LOOKUP_REVAL)
1073                goto out_force;
1074        /* This is an open(2) */
1075        if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1076            (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1077                goto out_force;
1078out:
1079        return (inode->i_nlink == 0) ? -ENOENT : 0;
1080out_force:
1081        if (flags & LOOKUP_RCU)
1082                return -ECHILD;
1083        ret = __nfs_revalidate_inode(server, inode);
1084        if (ret != 0)
1085                return ret;
1086        goto out;
1087}
1088
1089/*
1090 * We judge how long we want to trust negative
1091 * dentries by looking at the parent inode mtime.
1092 *
1093 * If parent mtime has changed, we revalidate, else we wait for a
1094 * period corresponding to the parent's attribute cache timeout value.
1095 *
1096 * If LOOKUP_RCU prevents us from performing a full check, return 1
1097 * suggesting a reval is needed.
1098 */
1099static inline
1100int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1101                       unsigned int flags)
1102{
1103        /* Don't revalidate a negative dentry if we're creating a new file */
1104        if (flags & LOOKUP_CREATE)
1105                return 0;
1106        if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1107                return 1;
1108        return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1109}
1110
1111/*
1112 * This is called every time the dcache has a lookup hit,
1113 * and we should check whether we can really trust that
1114 * lookup.
1115 *
1116 * NOTE! The hit can be a negative hit too, don't assume
1117 * we have an inode!
1118 *
1119 * If the parent directory is seen to have changed, we throw out the
1120 * cached dentry and do a new lookup.
1121 */
1122static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1123{
1124        struct inode *dir;
1125        struct inode *inode;
1126        struct dentry *parent;
1127        struct nfs_fh *fhandle = NULL;
1128        struct nfs_fattr *fattr = NULL;
1129        struct nfs4_label *label = NULL;
1130        int error;
1131
1132        if (flags & LOOKUP_RCU) {
1133                parent = ACCESS_ONCE(dentry->d_parent);
1134                dir = d_inode_rcu(parent);
1135                if (!dir)
1136                        return -ECHILD;
1137        } else {
1138                parent = dget_parent(dentry);
1139                dir = d_inode(parent);
1140        }
1141        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1142        inode = d_inode(dentry);
1143
1144        if (!inode) {
1145                if (nfs_neg_need_reval(dir, dentry, flags)) {
1146                        if (flags & LOOKUP_RCU)
1147                                return -ECHILD;
1148                        goto out_bad;
1149                }
1150                goto out_valid_noent;
1151        }
1152
1153        if (is_bad_inode(inode)) {
1154                if (flags & LOOKUP_RCU)
1155                        return -ECHILD;
1156                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1157                                __func__, dentry);
1158                goto out_bad;
1159        }
1160
1161        if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1162                goto out_set_verifier;
1163
1164        /* Force a full look up iff the parent directory has changed */
1165        if (!nfs_is_exclusive_create(dir, flags) &&
1166            nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1167
1168                if (nfs_lookup_verify_inode(inode, flags)) {
1169                        if (flags & LOOKUP_RCU)
1170                                return -ECHILD;
1171                        goto out_zap_parent;
1172                }
1173                goto out_valid;
1174        }
1175
1176        if (flags & LOOKUP_RCU)
1177                return -ECHILD;
1178
1179        if (NFS_STALE(inode))
1180                goto out_bad;
1181
1182        error = -ENOMEM;
1183        fhandle = nfs_alloc_fhandle();
1184        fattr = nfs_alloc_fattr();
1185        if (fhandle == NULL || fattr == NULL)
1186                goto out_error;
1187
1188        label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1189        if (IS_ERR(label))
1190                goto out_error;
1191
1192        trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1193        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1194        trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1195        if (error)
1196                goto out_bad;
1197        if (nfs_compare_fh(NFS_FH(inode), fhandle))
1198                goto out_bad;
1199        if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1200                goto out_bad;
1201
1202        nfs_setsecurity(inode, fattr, label);
1203
1204        nfs_free_fattr(fattr);
1205        nfs_free_fhandle(fhandle);
1206        nfs4_label_free(label);
1207
1208out_set_verifier:
1209        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1210 out_valid:
1211        /* Success: notify readdir to use READDIRPLUS */
1212        nfs_advise_use_readdirplus(dir);
1213 out_valid_noent:
1214        if (flags & LOOKUP_RCU) {
1215                if (parent != ACCESS_ONCE(dentry->d_parent))
1216                        return -ECHILD;
1217        } else
1218                dput(parent);
1219        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1220                        __func__, dentry);
1221        return 1;
1222out_zap_parent:
1223        nfs_zap_caches(dir);
1224 out_bad:
1225        WARN_ON(flags & LOOKUP_RCU);
1226        nfs_free_fattr(fattr);
1227        nfs_free_fhandle(fhandle);
1228        nfs4_label_free(label);
1229        nfs_mark_for_revalidate(dir);
1230        if (inode && S_ISDIR(inode->i_mode)) {
1231                /* Purge readdir caches. */
1232                nfs_zap_caches(inode);
1233                /*
1234                 * We can't d_drop the root of a disconnected tree:
1235                 * its d_hash is on the s_anon list and d_drop() would hide
1236                 * it from shrink_dcache_for_unmount(), leading to busy
1237                 * inodes on unmount and further oopses.
1238                 */
1239                if (IS_ROOT(dentry))
1240                        goto out_valid;
1241        }
1242        dput(parent);
1243        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1244                        __func__, dentry);
1245        return 0;
1246out_error:
1247        WARN_ON(flags & LOOKUP_RCU);
1248        nfs_free_fattr(fattr);
1249        nfs_free_fhandle(fhandle);
1250        nfs4_label_free(label);
1251        dput(parent);
1252        dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1253                        __func__, dentry, error);
1254        return error;
1255}
1256
1257/*
1258 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1259 * when we don't really care about the dentry name. This is called when a
1260 * pathwalk ends on a dentry that was not found via a normal lookup in the
1261 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1262 *
1263 * In this situation, we just want to verify that the inode itself is OK
1264 * since the dentry might have changed on the server.
1265 */
1266static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1267{
1268        int error;
1269        struct inode *inode = d_inode(dentry);
1270
1271        /*
1272         * I believe we can only get a negative dentry here in the case of a
1273         * procfs-style symlink. Just assume it's correct for now, but we may
1274         * eventually need to do something more here.
1275         */
1276        if (!inode) {
1277                dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1278                                __func__, dentry);
1279                return 1;
1280        }
1281
1282        if (is_bad_inode(inode)) {
1283                dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1284                                __func__, dentry);
1285                return 0;
1286        }
1287
1288        error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1289        dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1290                        __func__, inode->i_ino, error ? "invalid" : "valid");
1291        return !error;
1292}
1293
1294/*
1295 * This is called from dput() when d_count is going to 0.
1296 */
1297static int nfs_dentry_delete(const struct dentry *dentry)
1298{
1299        dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1300                dentry, dentry->d_flags);
1301
1302        /* Unhash any dentry with a stale inode */
1303        if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1304                return 1;
1305
1306        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1307                /* Unhash it, so that ->d_iput() would be called */
1308                return 1;
1309        }
1310        if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1311                /* Unhash it, so that ancestors of killed async unlink
1312                 * files will be cleaned up during umount */
1313                return 1;
1314        }
1315        return 0;
1316
1317}
1318
1319/* Ensure that we revalidate inode->i_nlink */
1320static void nfs_drop_nlink(struct inode *inode)
1321{
1322        spin_lock(&inode->i_lock);
1323        /* drop the inode if we're reasonably sure this is the last link */
1324        if (inode->i_nlink == 1)
1325                clear_nlink(inode);
1326        NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1327        spin_unlock(&inode->i_lock);
1328}
1329
1330/*
1331 * Called when the dentry loses inode.
1332 * We use it to clean up silly-renamed files.
1333 */
1334static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1335{
1336        if (S_ISDIR(inode->i_mode))
1337                /* drop any readdir cache as it could easily be old */
1338                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1339
1340        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1341                nfs_complete_unlink(dentry, inode);
1342                nfs_drop_nlink(inode);
1343        }
1344        iput(inode);
1345}
1346
1347static void nfs_d_release(struct dentry *dentry)
1348{
1349        /* free cached devname value, if it survived that far */
1350        if (unlikely(dentry->d_fsdata)) {
1351                if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1352                        WARN_ON(1);
1353                else
1354                        kfree(dentry->d_fsdata);
1355        }
1356}
1357
1358const struct dentry_operations nfs_dentry_operations = {
1359        .d_revalidate   = nfs_lookup_revalidate,
1360        .d_weak_revalidate      = nfs_weak_revalidate,
1361        .d_delete       = nfs_dentry_delete,
1362        .d_iput         = nfs_dentry_iput,
1363        .d_automount    = nfs_d_automount,
1364        .d_release      = nfs_d_release,
1365};
1366EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1367
1368struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1369{
1370        struct dentry *res;
1371        struct inode *inode = NULL;
1372        struct nfs_fh *fhandle = NULL;
1373        struct nfs_fattr *fattr = NULL;
1374        struct nfs4_label *label = NULL;
1375        int error;
1376
1377        dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1378        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1379
1380        if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1381                return ERR_PTR(-ENAMETOOLONG);
1382
1383        /*
1384         * If we're doing an exclusive create, optimize away the lookup
1385         * but don't hash the dentry.
1386         */
1387        if (nfs_is_exclusive_create(dir, flags))
1388                return NULL;
1389
1390        res = ERR_PTR(-ENOMEM);
1391        fhandle = nfs_alloc_fhandle();
1392        fattr = nfs_alloc_fattr();
1393        if (fhandle == NULL || fattr == NULL)
1394                goto out;
1395
1396        label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1397        if (IS_ERR(label))
1398                goto out;
1399
1400        /* Protect against concurrent sillydeletes */
1401        trace_nfs_lookup_enter(dir, dentry, flags);
1402        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1403        if (error == -ENOENT)
1404                goto no_entry;
1405        if (error < 0) {
1406                res = ERR_PTR(error);
1407                goto out_unblock_sillyrename;
1408        }
1409        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1410        res = ERR_CAST(inode);
1411        if (IS_ERR(res))
1412                goto out_unblock_sillyrename;
1413
1414        /* Success: notify readdir to use READDIRPLUS */
1415        nfs_advise_use_readdirplus(dir);
1416
1417no_entry:
1418        res = d_splice_alias(inode, dentry);
1419        if (res != NULL) {
1420                if (IS_ERR(res))
1421                        goto out_unblock_sillyrename;
1422                dentry = res;
1423        }
1424        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1425out_unblock_sillyrename:
1426        trace_nfs_lookup_exit(dir, dentry, flags, error);
1427        nfs4_label_free(label);
1428out:
1429        nfs_free_fattr(fattr);
1430        nfs_free_fhandle(fhandle);
1431        return res;
1432}
1433EXPORT_SYMBOL_GPL(nfs_lookup);
1434
1435#if IS_ENABLED(CONFIG_NFS_V4)
1436static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1437
1438const struct dentry_operations nfs4_dentry_operations = {
1439        .d_revalidate   = nfs4_lookup_revalidate,
1440        .d_delete       = nfs_dentry_delete,
1441        .d_iput         = nfs_dentry_iput,
1442        .d_automount    = nfs_d_automount,
1443        .d_release      = nfs_d_release,
1444};
1445EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1446
1447static fmode_t flags_to_mode(int flags)
1448{
1449        fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1450        if ((flags & O_ACCMODE) != O_WRONLY)
1451                res |= FMODE_READ;
1452        if ((flags & O_ACCMODE) != O_RDONLY)
1453                res |= FMODE_WRITE;
1454        return res;
1455}
1456
1457static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1458{
1459        return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1460}
1461
1462static int do_open(struct inode *inode, struct file *filp)
1463{
1464        nfs_fscache_open_file(inode, filp);
1465        return 0;
1466}
1467
1468static int nfs_finish_open(struct nfs_open_context *ctx,
1469                           struct dentry *dentry,
1470                           struct file *file, unsigned open_flags,
1471                           int *opened)
1472{
1473        int err;
1474
1475        err = finish_open(file, dentry, do_open, opened);
1476        if (err)
1477                goto out;
1478        nfs_file_set_open_context(file, ctx);
1479
1480out:
1481        return err;
1482}
1483
1484int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1485                    struct file *file, unsigned open_flags,
1486                    umode_t mode, int *opened)
1487{
1488        DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1489        struct nfs_open_context *ctx;
1490        struct dentry *res;
1491        struct iattr attr = { .ia_valid = ATTR_OPEN };
1492        struct inode *inode;
1493        unsigned int lookup_flags = 0;
1494        bool switched = false;
1495        int err;
1496
1497        /* Expect a negative dentry */
1498        BUG_ON(d_inode(dentry));
1499
1500        dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1501                        dir->i_sb->s_id, dir->i_ino, dentry);
1502
1503        err = nfs_check_flags(open_flags);
1504        if (err)
1505                return err;
1506
1507        /* NFS only supports OPEN on regular files */
1508        if ((open_flags & O_DIRECTORY)) {
1509                if (!d_in_lookup(dentry)) {
1510                        /*
1511                         * Hashed negative dentry with O_DIRECTORY: dentry was
1512                         * revalidated and is fine, no need to perform lookup
1513                         * again
1514                         */
1515                        return -ENOENT;
1516                }
1517                lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1518                goto no_open;
1519        }
1520
1521        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1522                return -ENAMETOOLONG;
1523
1524        if (open_flags & O_CREAT) {
1525                attr.ia_valid |= ATTR_MODE;
1526                attr.ia_mode = mode & ~current_umask();
1527        }
1528        if (open_flags & O_TRUNC) {
1529                attr.ia_valid |= ATTR_SIZE;
1530                attr.ia_size = 0;
1531        }
1532
1533        if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1534                d_drop(dentry);
1535                switched = true;
1536                dentry = d_alloc_parallel(dentry->d_parent,
1537                                          &dentry->d_name, &wq);
1538                if (IS_ERR(dentry))
1539                        return PTR_ERR(dentry);
1540                if (unlikely(!d_in_lookup(dentry)))
1541                        return finish_no_open(file, dentry);
1542        }
1543
1544        ctx = create_nfs_open_context(dentry, open_flags);
1545        err = PTR_ERR(ctx);
1546        if (IS_ERR(ctx))
1547                goto out;
1548
1549        trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1550        inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1551        if (IS_ERR(inode)) {
1552                err = PTR_ERR(inode);
1553                trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1554                put_nfs_open_context(ctx);
1555                d_drop(dentry);
1556                switch (err) {
1557                case -ENOENT:
1558                        d_add(dentry, NULL);
1559                        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1560                        break;
1561                case -EISDIR:
1562                case -ENOTDIR:
1563                        goto no_open;
1564                case -ELOOP:
1565                        if (!(open_flags & O_NOFOLLOW))
1566                                goto no_open;
1567                        break;
1568                        /* case -EINVAL: */
1569                default:
1570                        break;
1571                }
1572                goto out;
1573        }
1574
1575        err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1576        trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1577        put_nfs_open_context(ctx);
1578out:
1579        if (unlikely(switched)) {
1580                d_lookup_done(dentry);
1581                dput(dentry);
1582        }
1583        return err;
1584
1585no_open:
1586        res = nfs_lookup(dir, dentry, lookup_flags);
1587        if (switched) {
1588                d_lookup_done(dentry);
1589                if (!res)
1590                        res = dentry;
1591                else
1592                        dput(dentry);
1593        }
1594        if (IS_ERR(res))
1595                return PTR_ERR(res);
1596        return finish_no_open(file, res);
1597}
1598EXPORT_SYMBOL_GPL(nfs_atomic_open);
1599
1600static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1601{
1602        struct inode *inode;
1603        int ret = 0;
1604
1605        if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1606                goto no_open;
1607        if (d_mountpoint(dentry))
1608                goto no_open;
1609        if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1610                goto no_open;
1611
1612        inode = d_inode(dentry);
1613
1614        /* We can't create new files in nfs_open_revalidate(), so we
1615         * optimize away revalidation of negative dentries.
1616         */
1617        if (inode == NULL) {
1618                struct dentry *parent;
1619                struct inode *dir;
1620
1621                if (flags & LOOKUP_RCU) {
1622                        parent = ACCESS_ONCE(dentry->d_parent);
1623                        dir = d_inode_rcu(parent);
1624                        if (!dir)
1625                                return -ECHILD;
1626                } else {
1627                        parent = dget_parent(dentry);
1628                        dir = d_inode(parent);
1629                }
1630                if (!nfs_neg_need_reval(dir, dentry, flags))
1631                        ret = 1;
1632                else if (flags & LOOKUP_RCU)
1633                        ret = -ECHILD;
1634                if (!(flags & LOOKUP_RCU))
1635                        dput(parent);
1636                else if (parent != ACCESS_ONCE(dentry->d_parent))
1637                        return -ECHILD;
1638                goto out;
1639        }
1640
1641        /* NFS only supports OPEN on regular files */
1642        if (!S_ISREG(inode->i_mode))
1643                goto no_open;
1644        /* We cannot do exclusive creation on a positive dentry */
1645        if (flags & LOOKUP_EXCL)
1646                goto no_open;
1647
1648        /* Let f_op->open() actually open (and revalidate) the file */
1649        ret = 1;
1650
1651out:
1652        return ret;
1653
1654no_open:
1655        return nfs_lookup_revalidate(dentry, flags);
1656}
1657
1658#endif /* CONFIG_NFSV4 */
1659
1660/*
1661 * Code common to create, mkdir, and mknod.
1662 */
1663int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1664                                struct nfs_fattr *fattr,
1665                                struct nfs4_label *label)
1666{
1667        struct dentry *parent = dget_parent(dentry);
1668        struct inode *dir = d_inode(parent);
1669        struct inode *inode;
1670        int error = -EACCES;
1671
1672        d_drop(dentry);
1673
1674        /* We may have been initialized further down */
1675        if (d_really_is_positive(dentry))
1676                goto out;
1677        if (fhandle->size == 0) {
1678                error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1679                if (error)
1680                        goto out_error;
1681        }
1682        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1683        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1684                struct nfs_server *server = NFS_SB(dentry->d_sb);
1685                error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1686                if (error < 0)
1687                        goto out_error;
1688        }
1689        inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1690        error = PTR_ERR(inode);
1691        if (IS_ERR(inode))
1692                goto out_error;
1693        d_add(dentry, inode);
1694out:
1695        dput(parent);
1696        return 0;
1697out_error:
1698        nfs_mark_for_revalidate(dir);
1699        dput(parent);
1700        return error;
1701}
1702EXPORT_SYMBOL_GPL(nfs_instantiate);
1703
1704/*
1705 * Following a failed create operation, we drop the dentry rather
1706 * than retain a negative dentry. This avoids a problem in the event
1707 * that the operation succeeded on the server, but an error in the
1708 * reply path made it appear to have failed.
1709 */
1710int nfs_create(struct inode *dir, struct dentry *dentry,
1711                umode_t mode, bool excl)
1712{
1713        struct iattr attr;
1714        int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1715        int error;
1716
1717        dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1718                        dir->i_sb->s_id, dir->i_ino, dentry);
1719
1720        attr.ia_mode = mode;
1721        attr.ia_valid = ATTR_MODE;
1722
1723        trace_nfs_create_enter(dir, dentry, open_flags);
1724        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1725        trace_nfs_create_exit(dir, dentry, open_flags, error);
1726        if (error != 0)
1727                goto out_err;
1728        return 0;
1729out_err:
1730        d_drop(dentry);
1731        return error;
1732}
1733EXPORT_SYMBOL_GPL(nfs_create);
1734
1735/*
1736 * See comments for nfs_proc_create regarding failed operations.
1737 */
1738int
1739nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1740{
1741        struct iattr attr;
1742        int status;
1743
1744        dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1745                        dir->i_sb->s_id, dir->i_ino, dentry);
1746
1747        attr.ia_mode = mode;
1748        attr.ia_valid = ATTR_MODE;
1749
1750        trace_nfs_mknod_enter(dir, dentry);
1751        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1752        trace_nfs_mknod_exit(dir, dentry, status);
1753        if (status != 0)
1754                goto out_err;
1755        return 0;
1756out_err:
1757        d_drop(dentry);
1758        return status;
1759}
1760EXPORT_SYMBOL_GPL(nfs_mknod);
1761
1762/*
1763 * See comments for nfs_proc_create regarding failed operations.
1764 */
1765int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1766{
1767        struct iattr attr;
1768        int error;
1769
1770        dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1771                        dir->i_sb->s_id, dir->i_ino, dentry);
1772
1773        attr.ia_valid = ATTR_MODE;
1774        attr.ia_mode = mode | S_IFDIR;
1775
1776        trace_nfs_mkdir_enter(dir, dentry);
1777        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1778        trace_nfs_mkdir_exit(dir, dentry, error);
1779        if (error != 0)
1780                goto out_err;
1781        return 0;
1782out_err:
1783        d_drop(dentry);
1784        return error;
1785}
1786EXPORT_SYMBOL_GPL(nfs_mkdir);
1787
1788static void nfs_dentry_handle_enoent(struct dentry *dentry)
1789{
1790        if (simple_positive(dentry))
1791                d_delete(dentry);
1792}
1793
1794int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1795{
1796        int error;
1797
1798        dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1799                        dir->i_sb->s_id, dir->i_ino, dentry);
1800
1801        trace_nfs_rmdir_enter(dir, dentry);
1802        if (d_really_is_positive(dentry)) {
1803                down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1804                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1805                /* Ensure the VFS deletes this inode */
1806                switch (error) {
1807                case 0:
1808                        clear_nlink(d_inode(dentry));
1809                        break;
1810                case -ENOENT:
1811                        nfs_dentry_handle_enoent(dentry);
1812                }
1813                up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1814        } else
1815                error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1816        trace_nfs_rmdir_exit(dir, dentry, error);
1817
1818        return error;
1819}
1820EXPORT_SYMBOL_GPL(nfs_rmdir);
1821
1822/*
1823 * Remove a file after making sure there are no pending writes,
1824 * and after checking that the file has only one user. 
1825 *
1826 * We invalidate the attribute cache and free the inode prior to the operation
1827 * to avoid possible races if the server reuses the inode.
1828 */
1829static int nfs_safe_remove(struct dentry *dentry)
1830{
1831        struct inode *dir = d_inode(dentry->d_parent);
1832        struct inode *inode = d_inode(dentry);
1833        int error = -EBUSY;
1834                
1835        dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1836
1837        /* If the dentry was sillyrenamed, we simply call d_delete() */
1838        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1839                error = 0;
1840                goto out;
1841        }
1842
1843        trace_nfs_remove_enter(dir, dentry);
1844        if (inode != NULL) {
1845                NFS_PROTO(inode)->return_delegation(inode);
1846                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1847                if (error == 0)
1848                        nfs_drop_nlink(inode);
1849        } else
1850                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1851        if (error == -ENOENT)
1852                nfs_dentry_handle_enoent(dentry);
1853        trace_nfs_remove_exit(dir, dentry, error);
1854out:
1855        return error;
1856}
1857
1858/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1859 *  belongs to an active ".nfs..." file and we return -EBUSY.
1860 *
1861 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1862 */
1863int nfs_unlink(struct inode *dir, struct dentry *dentry)
1864{
1865        int error;
1866        int need_rehash = 0;
1867
1868        dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1869                dir->i_ino, dentry);
1870
1871        trace_nfs_unlink_enter(dir, dentry);
1872        spin_lock(&dentry->d_lock);
1873        if (d_count(dentry) > 1) {
1874                spin_unlock(&dentry->d_lock);
1875                /* Start asynchronous writeout of the inode */
1876                write_inode_now(d_inode(dentry), 0);
1877                error = nfs_sillyrename(dir, dentry);
1878                goto out;
1879        }
1880        if (!d_unhashed(dentry)) {
1881                __d_drop(dentry);
1882                need_rehash = 1;
1883        }
1884        spin_unlock(&dentry->d_lock);
1885        error = nfs_safe_remove(dentry);
1886        if (!error || error == -ENOENT) {
1887                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1888        } else if (need_rehash)
1889                d_rehash(dentry);
1890out:
1891        trace_nfs_unlink_exit(dir, dentry, error);
1892        return error;
1893}
1894EXPORT_SYMBOL_GPL(nfs_unlink);
1895
1896/*
1897 * To create a symbolic link, most file systems instantiate a new inode,
1898 * add a page to it containing the path, then write it out to the disk
1899 * using prepare_write/commit_write.
1900 *
1901 * Unfortunately the NFS client can't create the in-core inode first
1902 * because it needs a file handle to create an in-core inode (see
1903 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1904 * symlink request has completed on the server.
1905 *
1906 * So instead we allocate a raw page, copy the symname into it, then do
1907 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1908 * now have a new file handle and can instantiate an in-core NFS inode
1909 * and move the raw page into its mapping.
1910 */
1911int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1912{
1913        struct page *page;
1914        char *kaddr;
1915        struct iattr attr;
1916        unsigned int pathlen = strlen(symname);
1917        int error;
1918
1919        dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1920                dir->i_ino, dentry, symname);
1921
1922        if (pathlen > PAGE_SIZE)
1923                return -ENAMETOOLONG;
1924
1925        attr.ia_mode = S_IFLNK | S_IRWXUGO;
1926        attr.ia_valid = ATTR_MODE;
1927
1928        page = alloc_page(GFP_USER);
1929        if (!page)
1930                return -ENOMEM;
1931
1932        kaddr = page_address(page);
1933        memcpy(kaddr, symname, pathlen);
1934        if (pathlen < PAGE_SIZE)
1935                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1936
1937        trace_nfs_symlink_enter(dir, dentry);
1938        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1939        trace_nfs_symlink_exit(dir, dentry, error);
1940        if (error != 0) {
1941                dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1942                        dir->i_sb->s_id, dir->i_ino,
1943                        dentry, symname, error);
1944                d_drop(dentry);
1945                __free_page(page);
1946                return error;
1947        }
1948
1949        /*
1950         * No big deal if we can't add this page to the page cache here.
1951         * READLINK will get the missing page from the server if needed.
1952         */
1953        if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1954                                                        GFP_KERNEL)) {
1955                SetPageUptodate(page);
1956                unlock_page(page);
1957                /*
1958                 * add_to_page_cache_lru() grabs an extra page refcount.
1959                 * Drop it here to avoid leaking this page later.
1960                 */
1961                put_page(page);
1962        } else
1963                __free_page(page);
1964
1965        return 0;
1966}
1967EXPORT_SYMBOL_GPL(nfs_symlink);
1968
1969int
1970nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1971{
1972        struct inode *inode = d_inode(old_dentry);
1973        int error;
1974
1975        dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1976                old_dentry, dentry);
1977
1978        trace_nfs_link_enter(inode, dir, dentry);
1979        NFS_PROTO(inode)->return_delegation(inode);
1980
1981        d_drop(dentry);
1982        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1983        if (error == 0) {
1984                ihold(inode);
1985                d_add(dentry, inode);
1986        }
1987        trace_nfs_link_exit(inode, dir, dentry, error);
1988        return error;
1989}
1990EXPORT_SYMBOL_GPL(nfs_link);
1991
1992/*
1993 * RENAME
1994 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1995 * different file handle for the same inode after a rename (e.g. when
1996 * moving to a different directory). A fail-safe method to do so would
1997 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1998 * rename the old file using the sillyrename stuff. This way, the original
1999 * file in old_dir will go away when the last process iput()s the inode.
2000 *
2001 * FIXED.
2002 * 
2003 * It actually works quite well. One needs to have the possibility for
2004 * at least one ".nfs..." file in each directory the file ever gets
2005 * moved or linked to which happens automagically with the new
2006 * implementation that only depends on the dcache stuff instead of
2007 * using the inode layer
2008 *
2009 * Unfortunately, things are a little more complicated than indicated
2010 * above. For a cross-directory move, we want to make sure we can get
2011 * rid of the old inode after the operation.  This means there must be
2012 * no pending writes (if it's a file), and the use count must be 1.
2013 * If these conditions are met, we can drop the dentries before doing
2014 * the rename.
2015 */
2016int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2017                      struct inode *new_dir, struct dentry *new_dentry)
2018{
2019        struct inode *old_inode = d_inode(old_dentry);
2020        struct inode *new_inode = d_inode(new_dentry);
2021        struct dentry *dentry = NULL, *rehash = NULL;
2022        struct rpc_task *task;
2023        int error = -EBUSY;
2024
2025        dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2026                 old_dentry, new_dentry,
2027                 d_count(new_dentry));
2028
2029        trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2030        /*
2031         * For non-directories, check whether the target is busy and if so,
2032         * make a copy of the dentry and then do a silly-rename. If the
2033         * silly-rename succeeds, the copied dentry is hashed and becomes
2034         * the new target.
2035         */
2036        if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2037                /*
2038                 * To prevent any new references to the target during the
2039                 * rename, we unhash the dentry in advance.
2040                 */
2041                if (!d_unhashed(new_dentry)) {
2042                        d_drop(new_dentry);
2043                        rehash = new_dentry;
2044                }
2045
2046                if (d_count(new_dentry) > 2) {
2047                        int err;
2048
2049                        /* copy the target dentry's name */
2050                        dentry = d_alloc(new_dentry->d_parent,
2051                                         &new_dentry->d_name);
2052                        if (!dentry)
2053                                goto out;
2054
2055                        /* silly-rename the existing target ... */
2056                        err = nfs_sillyrename(new_dir, new_dentry);
2057                        if (err)
2058                                goto out;
2059
2060                        new_dentry = dentry;
2061                        rehash = NULL;
2062                        new_inode = NULL;
2063                }
2064        }
2065
2066        NFS_PROTO(old_inode)->return_delegation(old_inode);
2067        if (new_inode != NULL)
2068                NFS_PROTO(new_inode)->return_delegation(new_inode);
2069
2070        task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2071        if (IS_ERR(task)) {
2072                error = PTR_ERR(task);
2073                goto out;
2074        }
2075
2076        error = rpc_wait_for_completion_task(task);
2077        if (error == 0)
2078                error = task->tk_status;
2079        rpc_put_task(task);
2080        nfs_mark_for_revalidate(old_inode);
2081out:
2082        if (rehash)
2083                d_rehash(rehash);
2084        trace_nfs_rename_exit(old_dir, old_dentry,
2085                        new_dir, new_dentry, error);
2086        if (!error) {
2087                if (new_inode != NULL)
2088                        nfs_drop_nlink(new_inode);
2089                d_move(old_dentry, new_dentry);
2090                nfs_set_verifier(new_dentry,
2091                                        nfs_save_change_attribute(new_dir));
2092        } else if (error == -ENOENT)
2093                nfs_dentry_handle_enoent(old_dentry);
2094
2095        /* new dentry created? */
2096        if (dentry)
2097                dput(dentry);
2098        return error;
2099}
2100EXPORT_SYMBOL_GPL(nfs_rename);
2101
2102static DEFINE_SPINLOCK(nfs_access_lru_lock);
2103static LIST_HEAD(nfs_access_lru_list);
2104static atomic_long_t nfs_access_nr_entries;
2105
2106static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2107module_param(nfs_access_max_cachesize, ulong, 0644);
2108MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2109
2110static void nfs_access_free_entry(struct nfs_access_entry *entry)
2111{
2112        put_rpccred(entry->cred);
2113        kfree_rcu(entry, rcu_head);
2114        smp_mb__before_atomic();
2115        atomic_long_dec(&nfs_access_nr_entries);
2116        smp_mb__after_atomic();
2117}
2118
2119static void nfs_access_free_list(struct list_head *head)
2120{
2121        struct nfs_access_entry *cache;
2122
2123        while (!list_empty(head)) {
2124                cache = list_entry(head->next, struct nfs_access_entry, lru);
2125                list_del(&cache->lru);
2126                nfs_access_free_entry(cache);
2127        }
2128}
2129
2130static unsigned long
2131nfs_do_access_cache_scan(unsigned int nr_to_scan)
2132{
2133        LIST_HEAD(head);
2134        struct nfs_inode *nfsi, *next;
2135        struct nfs_access_entry *cache;
2136        long freed = 0;
2137
2138        spin_lock(&nfs_access_lru_lock);
2139        list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2140                struct inode *inode;
2141
2142                if (nr_to_scan-- == 0)
2143                        break;
2144                inode = &nfsi->vfs_inode;
2145                spin_lock(&inode->i_lock);
2146                if (list_empty(&nfsi->access_cache_entry_lru))
2147                        goto remove_lru_entry;
2148                cache = list_entry(nfsi->access_cache_entry_lru.next,
2149                                struct nfs_access_entry, lru);
2150                list_move(&cache->lru, &head);
2151                rb_erase(&cache->rb_node, &nfsi->access_cache);
2152                freed++;
2153                if (!list_empty(&nfsi->access_cache_entry_lru))
2154                        list_move_tail(&nfsi->access_cache_inode_lru,
2155                                        &nfs_access_lru_list);
2156                else {
2157remove_lru_entry:
2158                        list_del_init(&nfsi->access_cache_inode_lru);
2159                        smp_mb__before_atomic();
2160                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2161                        smp_mb__after_atomic();
2162                }
2163                spin_unlock(&inode->i_lock);
2164        }
2165        spin_unlock(&nfs_access_lru_lock);
2166        nfs_access_free_list(&head);
2167        return freed;
2168}
2169
2170unsigned long
2171nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2172{
2173        int nr_to_scan = sc->nr_to_scan;
2174        gfp_t gfp_mask = sc->gfp_mask;
2175
2176        if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2177                return SHRINK_STOP;
2178        return nfs_do_access_cache_scan(nr_to_scan);
2179}
2180
2181
2182unsigned long
2183nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2184{
2185        return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2186}
2187
2188static void
2189nfs_access_cache_enforce_limit(void)
2190{
2191        long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2192        unsigned long diff;
2193        unsigned int nr_to_scan;
2194
2195        if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2196                return;
2197        nr_to_scan = 100;
2198        diff = nr_entries - nfs_access_max_cachesize;
2199        if (diff < nr_to_scan)
2200                nr_to_scan = diff;
2201        nfs_do_access_cache_scan(nr_to_scan);
2202}
2203
2204static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2205{
2206        struct rb_root *root_node = &nfsi->access_cache;
2207        struct rb_node *n;
2208        struct nfs_access_entry *entry;
2209
2210        /* Unhook entries from the cache */
2211        while ((n = rb_first(root_node)) != NULL) {
2212                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2213                rb_erase(n, root_node);
2214                list_move(&entry->lru, head);
2215        }
2216        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2217}
2218
2219void nfs_access_zap_cache(struct inode *inode)
2220{
2221        LIST_HEAD(head);
2222
2223        if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2224                return;
2225        /* Remove from global LRU init */
2226        spin_lock(&nfs_access_lru_lock);
2227        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2228                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2229
2230        spin_lock(&inode->i_lock);
2231        __nfs_access_zap_cache(NFS_I(inode), &head);
2232        spin_unlock(&inode->i_lock);
2233        spin_unlock(&nfs_access_lru_lock);
2234        nfs_access_free_list(&head);
2235}
2236EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2237
2238static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2239{
2240        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2241        struct nfs_access_entry *entry;
2242
2243        while (n != NULL) {
2244                entry = rb_entry(n, struct nfs_access_entry, rb_node);
2245
2246                if (cred < entry->cred)
2247                        n = n->rb_left;
2248                else if (cred > entry->cred)
2249                        n = n->rb_right;
2250                else
2251                        return entry;
2252        }
2253        return NULL;
2254}
2255
2256static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2257{
2258        struct nfs_inode *nfsi = NFS_I(inode);
2259        struct nfs_access_entry *cache;
2260        int err = -ENOENT;
2261
2262        spin_lock(&inode->i_lock);
2263        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2264                goto out_zap;
2265        cache = nfs_access_search_rbtree(inode, cred);
2266        if (cache == NULL)
2267                goto out;
2268        if (!nfs_have_delegated_attributes(inode) &&
2269            !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2270                goto out_stale;
2271        res->jiffies = cache->jiffies;
2272        res->cred = cache->cred;
2273        res->mask = cache->mask;
2274        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2275        err = 0;
2276out:
2277        spin_unlock(&inode->i_lock);
2278        return err;
2279out_stale:
2280        rb_erase(&cache->rb_node, &nfsi->access_cache);
2281        list_del(&cache->lru);
2282        spin_unlock(&inode->i_lock);
2283        nfs_access_free_entry(cache);
2284        return -ENOENT;
2285out_zap:
2286        spin_unlock(&inode->i_lock);
2287        nfs_access_zap_cache(inode);
2288        return -ENOENT;
2289}
2290
2291static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2292{
2293        /* Only check the most recently returned cache entry,
2294         * but do it without locking.
2295         */
2296        struct nfs_inode *nfsi = NFS_I(inode);
2297        struct nfs_access_entry *cache;
2298        int err = -ECHILD;
2299        struct list_head *lh;
2300
2301        rcu_read_lock();
2302        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2303                goto out;
2304        lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2305        cache = list_entry(lh, struct nfs_access_entry, lru);
2306        if (lh == &nfsi->access_cache_entry_lru ||
2307            cred != cache->cred)
2308                cache = NULL;
2309        if (cache == NULL)
2310                goto out;
2311        if (!nfs_have_delegated_attributes(inode) &&
2312            !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2313                goto out;
2314        res->jiffies = cache->jiffies;
2315        res->cred = cache->cred;
2316        res->mask = cache->mask;
2317        err = 0;
2318out:
2319        rcu_read_unlock();
2320        return err;
2321}
2322
2323static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2324{
2325        struct nfs_inode *nfsi = NFS_I(inode);
2326        struct rb_root *root_node = &nfsi->access_cache;
2327        struct rb_node **p = &root_node->rb_node;
2328        struct rb_node *parent = NULL;
2329        struct nfs_access_entry *entry;
2330
2331        spin_lock(&inode->i_lock);
2332        while (*p != NULL) {
2333                parent = *p;
2334                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2335
2336                if (set->cred < entry->cred)
2337                        p = &parent->rb_left;
2338                else if (set->cred > entry->cred)
2339                        p = &parent->rb_right;
2340                else
2341                        goto found;
2342        }
2343        rb_link_node(&set->rb_node, parent, p);
2344        rb_insert_color(&set->rb_node, root_node);
2345        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2346        spin_unlock(&inode->i_lock);
2347        return;
2348found:
2349        rb_replace_node(parent, &set->rb_node, root_node);
2350        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2351        list_del(&entry->lru);
2352        spin_unlock(&inode->i_lock);
2353        nfs_access_free_entry(entry);
2354}
2355
2356void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2357{
2358        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2359        if (cache == NULL)
2360                return;
2361        RB_CLEAR_NODE(&cache->rb_node);
2362        cache->jiffies = set->jiffies;
2363        cache->cred = get_rpccred(set->cred);
2364        cache->mask = set->mask;
2365
2366        /* The above field assignments must be visible
2367         * before this item appears on the lru.  We cannot easily
2368         * use rcu_assign_pointer, so just force the memory barrier.
2369         */
2370        smp_wmb();
2371        nfs_access_add_rbtree(inode, cache);
2372
2373        /* Update accounting */
2374        smp_mb__before_atomic();
2375        atomic_long_inc(&nfs_access_nr_entries);
2376        smp_mb__after_atomic();
2377
2378        /* Add inode to global LRU list */
2379        if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2380                spin_lock(&nfs_access_lru_lock);
2381                if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2382                        list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2383                                        &nfs_access_lru_list);
2384                spin_unlock(&nfs_access_lru_lock);
2385        }
2386        nfs_access_cache_enforce_limit();
2387}
2388EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2389
2390void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2391{
2392        entry->mask = 0;
2393        if (access_result & NFS4_ACCESS_READ)
2394                entry->mask |= MAY_READ;
2395        if (access_result &
2396            (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2397                entry->mask |= MAY_WRITE;
2398        if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2399                entry->mask |= MAY_EXEC;
2400}
2401EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2402
2403static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2404{
2405        struct nfs_access_entry cache;
2406        int status;
2407
2408        trace_nfs_access_enter(inode);
2409
2410        status = nfs_access_get_cached_rcu(inode, cred, &cache);
2411        if (status != 0)
2412                status = nfs_access_get_cached(inode, cred, &cache);
2413        if (status == 0)
2414                goto out_cached;
2415
2416        status = -ECHILD;
2417        if (mask & MAY_NOT_BLOCK)
2418                goto out;
2419
2420        /* Be clever: ask server to check for all possible rights */
2421        cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2422        cache.cred = cred;
2423        cache.jiffies = jiffies;
2424        status = NFS_PROTO(inode)->access(inode, &cache);
2425        if (status != 0) {
2426                if (status == -ESTALE) {
2427                        nfs_zap_caches(inode);
2428                        if (!S_ISDIR(inode->i_mode))
2429                                set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2430                }
2431                goto out;
2432        }
2433        nfs_access_add_cache(inode, &cache);
2434out_cached:
2435        if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2436                status = -EACCES;
2437out:
2438        trace_nfs_access_exit(inode, status);
2439        return status;
2440}
2441
2442static int nfs_open_permission_mask(int openflags)
2443{
2444        int mask = 0;
2445
2446        if (openflags & __FMODE_EXEC) {
2447                /* ONLY check exec rights */
2448                mask = MAY_EXEC;
2449        } else {
2450                if ((openflags & O_ACCMODE) != O_WRONLY)
2451                        mask |= MAY_READ;
2452                if ((openflags & O_ACCMODE) != O_RDONLY)
2453                        mask |= MAY_WRITE;
2454        }
2455
2456        return mask;
2457}
2458
2459int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2460{
2461        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2462}
2463EXPORT_SYMBOL_GPL(nfs_may_open);
2464
2465static int nfs_execute_ok(struct inode *inode, int mask)
2466{
2467        struct nfs_server *server = NFS_SERVER(inode);
2468        int ret;
2469
2470        if (mask & MAY_NOT_BLOCK)
2471                ret = nfs_revalidate_inode_rcu(server, inode);
2472        else
2473                ret = nfs_revalidate_inode(server, inode);
2474        if (ret == 0 && !execute_ok(inode))
2475                ret = -EACCES;
2476        return ret;
2477}
2478
2479int nfs_permission(struct inode *inode, int mask)
2480{
2481        struct rpc_cred *cred;
2482        int res = 0;
2483
2484        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2485
2486        if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2487                goto out;
2488        /* Is this sys_access() ? */
2489        if (mask & (MAY_ACCESS | MAY_CHDIR))
2490                goto force_lookup;
2491
2492        switch (inode->i_mode & S_IFMT) {
2493                case S_IFLNK:
2494                        goto out;
2495                case S_IFREG:
2496                        if ((mask & MAY_OPEN) &&
2497                           nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2498                                return 0;
2499                        break;
2500                case S_IFDIR:
2501                        /*
2502                         * Optimize away all write operations, since the server
2503                         * will check permissions when we perform the op.
2504                         */
2505                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2506                                goto out;
2507        }
2508
2509force_lookup:
2510        if (!NFS_PROTO(inode)->access)
2511                goto out_notsup;
2512
2513        /* Always try fast lookups first */
2514        rcu_read_lock();
2515        cred = rpc_lookup_cred_nonblock();
2516        if (!IS_ERR(cred))
2517                res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2518        else
2519                res = PTR_ERR(cred);
2520        rcu_read_unlock();
2521        if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2522                /* Fast lookup failed, try the slow way */
2523                cred = rpc_lookup_cred();
2524                if (!IS_ERR(cred)) {
2525                        res = nfs_do_access(inode, cred, mask);
2526                        put_rpccred(cred);
2527                } else
2528                        res = PTR_ERR(cred);
2529        }
2530out:
2531        if (!res && (mask & MAY_EXEC))
2532                res = nfs_execute_ok(inode, mask);
2533
2534        dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2535                inode->i_sb->s_id, inode->i_ino, mask, res);
2536        return res;
2537out_notsup:
2538        if (mask & MAY_NOT_BLOCK)
2539                return -ECHILD;
2540
2541        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2542        if (res == 0)
2543                res = generic_permission(inode, mask);
2544        goto out;
2545}
2546EXPORT_SYMBOL_GPL(nfs_permission);
2547
2548/*
2549 * Local variables:
2550 *  version-control: t
2551 *  kept-new-versions: 5
2552 * End:
2553 */
2554