linux/fs/xfs/xfs_inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_shared.h"
  23#include "xfs_format.h"
  24#include "xfs_log_format.h"
  25#include "xfs_trans_resv.h"
  26#include "xfs_sb.h"
  27#include "xfs_mount.h"
  28#include "xfs_inode.h"
  29#include "xfs_da_format.h"
  30#include "xfs_da_btree.h"
  31#include "xfs_dir2.h"
  32#include "xfs_attr_sf.h"
  33#include "xfs_attr.h"
  34#include "xfs_trans_space.h"
  35#include "xfs_trans.h"
  36#include "xfs_buf_item.h"
  37#include "xfs_inode_item.h"
  38#include "xfs_ialloc.h"
  39#include "xfs_bmap.h"
  40#include "xfs_bmap_util.h"
  41#include "xfs_error.h"
  42#include "xfs_quota.h"
  43#include "xfs_filestream.h"
  44#include "xfs_cksum.h"
  45#include "xfs_trace.h"
  46#include "xfs_icache.h"
  47#include "xfs_symlink.h"
  48#include "xfs_trans_priv.h"
  49#include "xfs_log.h"
  50#include "xfs_bmap_btree.h"
  51
  52kmem_zone_t *xfs_inode_zone;
  53
  54/*
  55 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  56 * freed from a file in a single transaction.
  57 */
  58#define XFS_ITRUNC_MAX_EXTENTS  2
  59
  60STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  61STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  62STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  63
  64/*
  65 * helper function to extract extent size hint from inode
  66 */
  67xfs_extlen_t
  68xfs_get_extsz_hint(
  69        struct xfs_inode        *ip)
  70{
  71        if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  72                return ip->i_d.di_extsize;
  73        if (XFS_IS_REALTIME_INODE(ip))
  74                return ip->i_mount->m_sb.sb_rextsize;
  75        return 0;
  76}
  77
  78/*
  79 * These two are wrapper routines around the xfs_ilock() routine used to
  80 * centralize some grungy code.  They are used in places that wish to lock the
  81 * inode solely for reading the extents.  The reason these places can't just
  82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  83 * bringing in of the extents from disk for a file in b-tree format.  If the
  84 * inode is in b-tree format, then we need to lock the inode exclusively until
  85 * the extents are read in.  Locking it exclusively all the time would limit
  86 * our parallelism unnecessarily, though.  What we do instead is check to see
  87 * if the extents have been read in yet, and only lock the inode exclusively
  88 * if they have not.
  89 *
  90 * The functions return a value which should be given to the corresponding
  91 * xfs_iunlock() call.
  92 */
  93uint
  94xfs_ilock_data_map_shared(
  95        struct xfs_inode        *ip)
  96{
  97        uint                    lock_mode = XFS_ILOCK_SHARED;
  98
  99        if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 100            (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 101                lock_mode = XFS_ILOCK_EXCL;
 102        xfs_ilock(ip, lock_mode);
 103        return lock_mode;
 104}
 105
 106uint
 107xfs_ilock_attr_map_shared(
 108        struct xfs_inode        *ip)
 109{
 110        uint                    lock_mode = XFS_ILOCK_SHARED;
 111
 112        if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 113            (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 114                lock_mode = XFS_ILOCK_EXCL;
 115        xfs_ilock(ip, lock_mode);
 116        return lock_mode;
 117}
 118
 119/*
 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
 121 * the i_lock.  This routine allows various combinations of the locks to be
 122 * obtained.
 123 *
 124 * The 3 locks should always be ordered so that the IO lock is obtained first,
 125 * the mmap lock second and the ilock last in order to prevent deadlock.
 126 *
 127 * Basic locking order:
 128 *
 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
 130 *
 131 * mmap_sem locking order:
 132 *
 133 * i_iolock -> page lock -> mmap_sem
 134 * mmap_sem -> i_mmap_lock -> page_lock
 135 *
 136 * The difference in mmap_sem locking order mean that we cannot hold the
 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 139 * in get_user_pages() to map the user pages into the kernel address space for
 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
 141 * page faults already hold the mmap_sem.
 142 *
 143 * Hence to serialise fully against both syscall and mmap based IO, we need to
 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
 145 * taken in places where we need to invalidate the page cache in a race
 146 * free manner (e.g. truncate, hole punch and other extent manipulation
 147 * functions).
 148 */
 149void
 150xfs_ilock(
 151        xfs_inode_t             *ip,
 152        uint                    lock_flags)
 153{
 154        trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 155
 156        /*
 157         * You can't set both SHARED and EXCL for the same lock,
 158         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 159         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 160         */
 161        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 162               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 163        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 164               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 165        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 166               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 167        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 168
 169        if (lock_flags & XFS_IOLOCK_EXCL)
 170                mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 171        else if (lock_flags & XFS_IOLOCK_SHARED)
 172                mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 173
 174        if (lock_flags & XFS_MMAPLOCK_EXCL)
 175                mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 176        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 177                mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 178
 179        if (lock_flags & XFS_ILOCK_EXCL)
 180                mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 181        else if (lock_flags & XFS_ILOCK_SHARED)
 182                mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 183}
 184
 185/*
 186 * This is just like xfs_ilock(), except that the caller
 187 * is guaranteed not to sleep.  It returns 1 if it gets
 188 * the requested locks and 0 otherwise.  If the IO lock is
 189 * obtained but the inode lock cannot be, then the IO lock
 190 * is dropped before returning.
 191 *
 192 * ip -- the inode being locked
 193 * lock_flags -- this parameter indicates the inode's locks to be
 194 *       to be locked.  See the comment for xfs_ilock() for a list
 195 *       of valid values.
 196 */
 197int
 198xfs_ilock_nowait(
 199        xfs_inode_t             *ip,
 200        uint                    lock_flags)
 201{
 202        trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 203
 204        /*
 205         * You can't set both SHARED and EXCL for the same lock,
 206         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 207         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 208         */
 209        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 210               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 211        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 212               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 213        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 214               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 215        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 216
 217        if (lock_flags & XFS_IOLOCK_EXCL) {
 218                if (!mrtryupdate(&ip->i_iolock))
 219                        goto out;
 220        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 221                if (!mrtryaccess(&ip->i_iolock))
 222                        goto out;
 223        }
 224
 225        if (lock_flags & XFS_MMAPLOCK_EXCL) {
 226                if (!mrtryupdate(&ip->i_mmaplock))
 227                        goto out_undo_iolock;
 228        } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 229                if (!mrtryaccess(&ip->i_mmaplock))
 230                        goto out_undo_iolock;
 231        }
 232
 233        if (lock_flags & XFS_ILOCK_EXCL) {
 234                if (!mrtryupdate(&ip->i_lock))
 235                        goto out_undo_mmaplock;
 236        } else if (lock_flags & XFS_ILOCK_SHARED) {
 237                if (!mrtryaccess(&ip->i_lock))
 238                        goto out_undo_mmaplock;
 239        }
 240        return 1;
 241
 242out_undo_mmaplock:
 243        if (lock_flags & XFS_MMAPLOCK_EXCL)
 244                mrunlock_excl(&ip->i_mmaplock);
 245        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 246                mrunlock_shared(&ip->i_mmaplock);
 247out_undo_iolock:
 248        if (lock_flags & XFS_IOLOCK_EXCL)
 249                mrunlock_excl(&ip->i_iolock);
 250        else if (lock_flags & XFS_IOLOCK_SHARED)
 251                mrunlock_shared(&ip->i_iolock);
 252out:
 253        return 0;
 254}
 255
 256/*
 257 * xfs_iunlock() is used to drop the inode locks acquired with
 258 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 260 * that we know which locks to drop.
 261 *
 262 * ip -- the inode being unlocked
 263 * lock_flags -- this parameter indicates the inode's locks to be
 264 *       to be unlocked.  See the comment for xfs_ilock() for a list
 265 *       of valid values for this parameter.
 266 *
 267 */
 268void
 269xfs_iunlock(
 270        xfs_inode_t             *ip,
 271        uint                    lock_flags)
 272{
 273        /*
 274         * You can't set both SHARED and EXCL for the same lock,
 275         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 276         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 277         */
 278        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 279               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 280        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 281               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 282        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 283               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 284        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 285        ASSERT(lock_flags != 0);
 286
 287        if (lock_flags & XFS_IOLOCK_EXCL)
 288                mrunlock_excl(&ip->i_iolock);
 289        else if (lock_flags & XFS_IOLOCK_SHARED)
 290                mrunlock_shared(&ip->i_iolock);
 291
 292        if (lock_flags & XFS_MMAPLOCK_EXCL)
 293                mrunlock_excl(&ip->i_mmaplock);
 294        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 295                mrunlock_shared(&ip->i_mmaplock);
 296
 297        if (lock_flags & XFS_ILOCK_EXCL)
 298                mrunlock_excl(&ip->i_lock);
 299        else if (lock_flags & XFS_ILOCK_SHARED)
 300                mrunlock_shared(&ip->i_lock);
 301
 302        trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 303}
 304
 305/*
 306 * give up write locks.  the i/o lock cannot be held nested
 307 * if it is being demoted.
 308 */
 309void
 310xfs_ilock_demote(
 311        xfs_inode_t             *ip,
 312        uint                    lock_flags)
 313{
 314        ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 315        ASSERT((lock_flags &
 316                ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 317
 318        if (lock_flags & XFS_ILOCK_EXCL)
 319                mrdemote(&ip->i_lock);
 320        if (lock_flags & XFS_MMAPLOCK_EXCL)
 321                mrdemote(&ip->i_mmaplock);
 322        if (lock_flags & XFS_IOLOCK_EXCL)
 323                mrdemote(&ip->i_iolock);
 324
 325        trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 326}
 327
 328#if defined(DEBUG) || defined(XFS_WARN)
 329int
 330xfs_isilocked(
 331        xfs_inode_t             *ip,
 332        uint                    lock_flags)
 333{
 334        if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 335                if (!(lock_flags & XFS_ILOCK_SHARED))
 336                        return !!ip->i_lock.mr_writer;
 337                return rwsem_is_locked(&ip->i_lock.mr_lock);
 338        }
 339
 340        if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 341                if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 342                        return !!ip->i_mmaplock.mr_writer;
 343                return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 344        }
 345
 346        if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 347                if (!(lock_flags & XFS_IOLOCK_SHARED))
 348                        return !!ip->i_iolock.mr_writer;
 349                return rwsem_is_locked(&ip->i_iolock.mr_lock);
 350        }
 351
 352        ASSERT(0);
 353        return 0;
 354}
 355#endif
 356
 357#ifdef DEBUG
 358int xfs_locked_n;
 359int xfs_small_retries;
 360int xfs_middle_retries;
 361int xfs_lots_retries;
 362int xfs_lock_delays;
 363#endif
 364
 365/*
 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 369 * errors and warnings.
 370 */
 371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 372static bool
 373xfs_lockdep_subclass_ok(
 374        int subclass)
 375{
 376        return subclass < MAX_LOCKDEP_SUBCLASSES;
 377}
 378#else
 379#define xfs_lockdep_subclass_ok(subclass)       (true)
 380#endif
 381
 382/*
 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 384 * value. This can be called for any type of inode lock combination, including
 385 * parent locking. Care must be taken to ensure we don't overrun the subclass
 386 * storage fields in the class mask we build.
 387 */
 388static inline int
 389xfs_lock_inumorder(int lock_mode, int subclass)
 390{
 391        int     class = 0;
 392
 393        ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 394                              XFS_ILOCK_RTSUM)));
 395        ASSERT(xfs_lockdep_subclass_ok(subclass));
 396
 397        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 398                ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 399                ASSERT(xfs_lockdep_subclass_ok(subclass +
 400                                                XFS_IOLOCK_PARENT_VAL));
 401                class += subclass << XFS_IOLOCK_SHIFT;
 402                if (lock_mode & XFS_IOLOCK_PARENT)
 403                        class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
 404        }
 405
 406        if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 407                ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 408                class += subclass << XFS_MMAPLOCK_SHIFT;
 409        }
 410
 411        if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 412                ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 413                class += subclass << XFS_ILOCK_SHIFT;
 414        }
 415
 416        return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 417}
 418
 419/*
 420 * The following routine will lock n inodes in exclusive mode.  We assume the
 421 * caller calls us with the inodes in i_ino order.
 422 *
 423 * We need to detect deadlock where an inode that we lock is in the AIL and we
 424 * start waiting for another inode that is locked by a thread in a long running
 425 * transaction (such as truncate). This can result in deadlock since the long
 426 * running trans might need to wait for the inode we just locked in order to
 427 * push the tail and free space in the log.
 428 *
 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 431 * lock more than one at a time, lockdep will report false positives saying we
 432 * have violated locking orders.
 433 */
 434void
 435xfs_lock_inodes(
 436        xfs_inode_t     **ips,
 437        int             inodes,
 438        uint            lock_mode)
 439{
 440        int             attempts = 0, i, j, try_lock;
 441        xfs_log_item_t  *lp;
 442
 443        /*
 444         * Currently supports between 2 and 5 inodes with exclusive locking.  We
 445         * support an arbitrary depth of locking here, but absolute limits on
 446         * inodes depend on the the type of locking and the limits placed by
 447         * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 448         * the asserts.
 449         */
 450        ASSERT(ips && inodes >= 2 && inodes <= 5);
 451        ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 452                            XFS_ILOCK_EXCL));
 453        ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 454                              XFS_ILOCK_SHARED)));
 455        ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
 456                inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
 457        ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 458                inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 459        ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 460                inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 461
 462        if (lock_mode & XFS_IOLOCK_EXCL) {
 463                ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 464        } else if (lock_mode & XFS_MMAPLOCK_EXCL)
 465                ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 466
 467        try_lock = 0;
 468        i = 0;
 469again:
 470        for (; i < inodes; i++) {
 471                ASSERT(ips[i]);
 472
 473                if (i && (ips[i] == ips[i - 1]))        /* Already locked */
 474                        continue;
 475
 476                /*
 477                 * If try_lock is not set yet, make sure all locked inodes are
 478                 * not in the AIL.  If any are, set try_lock to be used later.
 479                 */
 480                if (!try_lock) {
 481                        for (j = (i - 1); j >= 0 && !try_lock; j--) {
 482                                lp = (xfs_log_item_t *)ips[j]->i_itemp;
 483                                if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 484                                        try_lock++;
 485                        }
 486                }
 487
 488                /*
 489                 * If any of the previous locks we have locked is in the AIL,
 490                 * we must TRY to get the second and subsequent locks. If
 491                 * we can't get any, we must release all we have
 492                 * and try again.
 493                 */
 494                if (!try_lock) {
 495                        xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 496                        continue;
 497                }
 498
 499                /* try_lock means we have an inode locked that is in the AIL. */
 500                ASSERT(i != 0);
 501                if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 502                        continue;
 503
 504                /*
 505                 * Unlock all previous guys and try again.  xfs_iunlock will try
 506                 * to push the tail if the inode is in the AIL.
 507                 */
 508                attempts++;
 509                for (j = i - 1; j >= 0; j--) {
 510                        /*
 511                         * Check to see if we've already unlocked this one.  Not
 512                         * the first one going back, and the inode ptr is the
 513                         * same.
 514                         */
 515                        if (j != (i - 1) && ips[j] == ips[j + 1])
 516                                continue;
 517
 518                        xfs_iunlock(ips[j], lock_mode);
 519                }
 520
 521                if ((attempts % 5) == 0) {
 522                        delay(1); /* Don't just spin the CPU */
 523#ifdef DEBUG
 524                        xfs_lock_delays++;
 525#endif
 526                }
 527                i = 0;
 528                try_lock = 0;
 529                goto again;
 530        }
 531
 532#ifdef DEBUG
 533        if (attempts) {
 534                if (attempts < 5) xfs_small_retries++;
 535                else if (attempts < 100) xfs_middle_retries++;
 536                else xfs_lots_retries++;
 537        } else {
 538                xfs_locked_n++;
 539        }
 540#endif
 541}
 542
 543/*
 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 546 * lock more than one at a time, lockdep will report false positives saying we
 547 * have violated locking orders.
 548 */
 549void
 550xfs_lock_two_inodes(
 551        xfs_inode_t             *ip0,
 552        xfs_inode_t             *ip1,
 553        uint                    lock_mode)
 554{
 555        xfs_inode_t             *temp;
 556        int                     attempts = 0;
 557        xfs_log_item_t          *lp;
 558
 559        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 560                ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 561                ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562        } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
 563                ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564
 565        ASSERT(ip0->i_ino != ip1->i_ino);
 566
 567        if (ip0->i_ino > ip1->i_ino) {
 568                temp = ip0;
 569                ip0 = ip1;
 570                ip1 = temp;
 571        }
 572
 573 again:
 574        xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 575
 576        /*
 577         * If the first lock we have locked is in the AIL, we must TRY to get
 578         * the second lock. If we can't get it, we must release the first one
 579         * and try again.
 580         */
 581        lp = (xfs_log_item_t *)ip0->i_itemp;
 582        if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 583                if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 584                        xfs_iunlock(ip0, lock_mode);
 585                        if ((++attempts % 5) == 0)
 586                                delay(1); /* Don't just spin the CPU */
 587                        goto again;
 588                }
 589        } else {
 590                xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 591        }
 592}
 593
 594
 595void
 596__xfs_iflock(
 597        struct xfs_inode        *ip)
 598{
 599        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 600        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 601
 602        do {
 603                prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 604                if (xfs_isiflocked(ip))
 605                        io_schedule();
 606        } while (!xfs_iflock_nowait(ip));
 607
 608        finish_wait(wq, &wait.wait);
 609}
 610
 611STATIC uint
 612_xfs_dic2xflags(
 613        __uint16_t              di_flags,
 614        uint64_t                di_flags2,
 615        bool                    has_attr)
 616{
 617        uint                    flags = 0;
 618
 619        if (di_flags & XFS_DIFLAG_ANY) {
 620                if (di_flags & XFS_DIFLAG_REALTIME)
 621                        flags |= FS_XFLAG_REALTIME;
 622                if (di_flags & XFS_DIFLAG_PREALLOC)
 623                        flags |= FS_XFLAG_PREALLOC;
 624                if (di_flags & XFS_DIFLAG_IMMUTABLE)
 625                        flags |= FS_XFLAG_IMMUTABLE;
 626                if (di_flags & XFS_DIFLAG_APPEND)
 627                        flags |= FS_XFLAG_APPEND;
 628                if (di_flags & XFS_DIFLAG_SYNC)
 629                        flags |= FS_XFLAG_SYNC;
 630                if (di_flags & XFS_DIFLAG_NOATIME)
 631                        flags |= FS_XFLAG_NOATIME;
 632                if (di_flags & XFS_DIFLAG_NODUMP)
 633                        flags |= FS_XFLAG_NODUMP;
 634                if (di_flags & XFS_DIFLAG_RTINHERIT)
 635                        flags |= FS_XFLAG_RTINHERIT;
 636                if (di_flags & XFS_DIFLAG_PROJINHERIT)
 637                        flags |= FS_XFLAG_PROJINHERIT;
 638                if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 639                        flags |= FS_XFLAG_NOSYMLINKS;
 640                if (di_flags & XFS_DIFLAG_EXTSIZE)
 641                        flags |= FS_XFLAG_EXTSIZE;
 642                if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 643                        flags |= FS_XFLAG_EXTSZINHERIT;
 644                if (di_flags & XFS_DIFLAG_NODEFRAG)
 645                        flags |= FS_XFLAG_NODEFRAG;
 646                if (di_flags & XFS_DIFLAG_FILESTREAM)
 647                        flags |= FS_XFLAG_FILESTREAM;
 648        }
 649
 650        if (di_flags2 & XFS_DIFLAG2_ANY) {
 651                if (di_flags2 & XFS_DIFLAG2_DAX)
 652                        flags |= FS_XFLAG_DAX;
 653        }
 654
 655        if (has_attr)
 656                flags |= FS_XFLAG_HASATTR;
 657
 658        return flags;
 659}
 660
 661uint
 662xfs_ip2xflags(
 663        struct xfs_inode        *ip)
 664{
 665        struct xfs_icdinode     *dic = &ip->i_d;
 666
 667        return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 668}
 669
 670uint
 671xfs_dic2xflags(
 672        struct xfs_dinode       *dip)
 673{
 674        return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
 675                                be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
 676}
 677
 678/*
 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 681 * ci_name->name will point to a the actual name (caller must free) or
 682 * will be set to NULL if an exact match is found.
 683 */
 684int
 685xfs_lookup(
 686        xfs_inode_t             *dp,
 687        struct xfs_name         *name,
 688        xfs_inode_t             **ipp,
 689        struct xfs_name         *ci_name)
 690{
 691        xfs_ino_t               inum;
 692        int                     error;
 693
 694        trace_xfs_lookup(dp, name);
 695
 696        if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 697                return -EIO;
 698
 699        xfs_ilock(dp, XFS_IOLOCK_SHARED);
 700        error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 701        if (error)
 702                goto out_unlock;
 703
 704        error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 705        if (error)
 706                goto out_free_name;
 707
 708        xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 709        return 0;
 710
 711out_free_name:
 712        if (ci_name)
 713                kmem_free(ci_name->name);
 714out_unlock:
 715        xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 716        *ipp = NULL;
 717        return error;
 718}
 719
 720/*
 721 * Allocate an inode on disk and return a copy of its in-core version.
 722 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 723 * appropriately within the inode.  The uid and gid for the inode are
 724 * set according to the contents of the given cred structure.
 725 *
 726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 727 * has a free inode available, call xfs_iget() to obtain the in-core
 728 * version of the allocated inode.  Finally, fill in the inode and
 729 * log its initial contents.  In this case, ialloc_context would be
 730 * set to NULL.
 731 *
 732 * If xfs_dialloc() does not have an available inode, it will replenish
 733 * its supply by doing an allocation. Since we can only do one
 734 * allocation within a transaction without deadlocks, we must commit
 735 * the current transaction before returning the inode itself.
 736 * In this case, therefore, we will set ialloc_context and return.
 737 * The caller should then commit the current transaction, start a new
 738 * transaction, and call xfs_ialloc() again to actually get the inode.
 739 *
 740 * To ensure that some other process does not grab the inode that
 741 * was allocated during the first call to xfs_ialloc(), this routine
 742 * also returns the [locked] bp pointing to the head of the freelist
 743 * as ialloc_context.  The caller should hold this buffer across
 744 * the commit and pass it back into this routine on the second call.
 745 *
 746 * If we are allocating quota inodes, we do not have a parent inode
 747 * to attach to or associate with (i.e. pip == NULL) because they
 748 * are not linked into the directory structure - they are attached
 749 * directly to the superblock - and so have no parent.
 750 */
 751int
 752xfs_ialloc(
 753        xfs_trans_t     *tp,
 754        xfs_inode_t     *pip,
 755        umode_t         mode,
 756        xfs_nlink_t     nlink,
 757        xfs_dev_t       rdev,
 758        prid_t          prid,
 759        int             okalloc,
 760        xfs_buf_t       **ialloc_context,
 761        xfs_inode_t     **ipp)
 762{
 763        struct xfs_mount *mp = tp->t_mountp;
 764        xfs_ino_t       ino;
 765        xfs_inode_t     *ip;
 766        uint            flags;
 767        int             error;
 768        struct timespec tv;
 769        struct inode    *inode;
 770
 771        /*
 772         * Call the space management code to pick
 773         * the on-disk inode to be allocated.
 774         */
 775        error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 776                            ialloc_context, &ino);
 777        if (error)
 778                return error;
 779        if (*ialloc_context || ino == NULLFSINO) {
 780                *ipp = NULL;
 781                return 0;
 782        }
 783        ASSERT(*ialloc_context == NULL);
 784
 785        /*
 786         * Get the in-core inode with the lock held exclusively.
 787         * This is because we're setting fields here we need
 788         * to prevent others from looking at until we're done.
 789         */
 790        error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 791                         XFS_ILOCK_EXCL, &ip);
 792        if (error)
 793                return error;
 794        ASSERT(ip != NULL);
 795        inode = VFS_I(ip);
 796
 797        /*
 798         * We always convert v1 inodes to v2 now - we only support filesystems
 799         * with >= v2 inode capability, so there is no reason for ever leaving
 800         * an inode in v1 format.
 801         */
 802        if (ip->i_d.di_version == 1)
 803                ip->i_d.di_version = 2;
 804
 805        inode->i_mode = mode;
 806        set_nlink(inode, nlink);
 807        ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 808        ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 809        xfs_set_projid(ip, prid);
 810
 811        if (pip && XFS_INHERIT_GID(pip)) {
 812                ip->i_d.di_gid = pip->i_d.di_gid;
 813                if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 814                        inode->i_mode |= S_ISGID;
 815        }
 816
 817        /*
 818         * If the group ID of the new file does not match the effective group
 819         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 820         * (and only if the irix_sgid_inherit compatibility variable is set).
 821         */
 822        if ((irix_sgid_inherit) &&
 823            (inode->i_mode & S_ISGID) &&
 824            (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 825                inode->i_mode &= ~S_ISGID;
 826
 827        ip->i_d.di_size = 0;
 828        ip->i_d.di_nextents = 0;
 829        ASSERT(ip->i_d.di_nblocks == 0);
 830
 831        tv = current_fs_time(mp->m_super);
 832        inode->i_mtime = tv;
 833        inode->i_atime = tv;
 834        inode->i_ctime = tv;
 835
 836        ip->i_d.di_extsize = 0;
 837        ip->i_d.di_dmevmask = 0;
 838        ip->i_d.di_dmstate = 0;
 839        ip->i_d.di_flags = 0;
 840
 841        if (ip->i_d.di_version == 3) {
 842                inode->i_version = 1;
 843                ip->i_d.di_flags2 = 0;
 844                ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
 845                ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
 846        }
 847
 848
 849        flags = XFS_ILOG_CORE;
 850        switch (mode & S_IFMT) {
 851        case S_IFIFO:
 852        case S_IFCHR:
 853        case S_IFBLK:
 854        case S_IFSOCK:
 855                ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 856                ip->i_df.if_u2.if_rdev = rdev;
 857                ip->i_df.if_flags = 0;
 858                flags |= XFS_ILOG_DEV;
 859                break;
 860        case S_IFREG:
 861        case S_IFDIR:
 862                if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 863                        uint64_t        di_flags2 = 0;
 864                        uint            di_flags = 0;
 865
 866                        if (S_ISDIR(mode)) {
 867                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 868                                        di_flags |= XFS_DIFLAG_RTINHERIT;
 869                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 870                                        di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 871                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 872                                }
 873                                if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 874                                        di_flags |= XFS_DIFLAG_PROJINHERIT;
 875                        } else if (S_ISREG(mode)) {
 876                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 877                                        di_flags |= XFS_DIFLAG_REALTIME;
 878                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 879                                        di_flags |= XFS_DIFLAG_EXTSIZE;
 880                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 881                                }
 882                        }
 883                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 884                            xfs_inherit_noatime)
 885                                di_flags |= XFS_DIFLAG_NOATIME;
 886                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 887                            xfs_inherit_nodump)
 888                                di_flags |= XFS_DIFLAG_NODUMP;
 889                        if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 890                            xfs_inherit_sync)
 891                                di_flags |= XFS_DIFLAG_SYNC;
 892                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 893                            xfs_inherit_nosymlinks)
 894                                di_flags |= XFS_DIFLAG_NOSYMLINKS;
 895                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 896                            xfs_inherit_nodefrag)
 897                                di_flags |= XFS_DIFLAG_NODEFRAG;
 898                        if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 899                                di_flags |= XFS_DIFLAG_FILESTREAM;
 900                        if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 901                                di_flags2 |= XFS_DIFLAG2_DAX;
 902
 903                        ip->i_d.di_flags |= di_flags;
 904                        ip->i_d.di_flags2 |= di_flags2;
 905                }
 906                /* FALLTHROUGH */
 907        case S_IFLNK:
 908                ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 909                ip->i_df.if_flags = XFS_IFEXTENTS;
 910                ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 911                ip->i_df.if_u1.if_extents = NULL;
 912                break;
 913        default:
 914                ASSERT(0);
 915        }
 916        /*
 917         * Attribute fork settings for new inode.
 918         */
 919        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 920        ip->i_d.di_anextents = 0;
 921
 922        /*
 923         * Log the new values stuffed into the inode.
 924         */
 925        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 926        xfs_trans_log_inode(tp, ip, flags);
 927
 928        /* now that we have an i_mode we can setup the inode structure */
 929        xfs_setup_inode(ip);
 930
 931        *ipp = ip;
 932        return 0;
 933}
 934
 935/*
 936 * Allocates a new inode from disk and return a pointer to the
 937 * incore copy. This routine will internally commit the current
 938 * transaction and allocate a new one if the Space Manager needed
 939 * to do an allocation to replenish the inode free-list.
 940 *
 941 * This routine is designed to be called from xfs_create and
 942 * xfs_create_dir.
 943 *
 944 */
 945int
 946xfs_dir_ialloc(
 947        xfs_trans_t     **tpp,          /* input: current transaction;
 948                                           output: may be a new transaction. */
 949        xfs_inode_t     *dp,            /* directory within whose allocate
 950                                           the inode. */
 951        umode_t         mode,
 952        xfs_nlink_t     nlink,
 953        xfs_dev_t       rdev,
 954        prid_t          prid,           /* project id */
 955        int             okalloc,        /* ok to allocate new space */
 956        xfs_inode_t     **ipp,          /* pointer to inode; it will be
 957                                           locked. */
 958        int             *committed)
 959
 960{
 961        xfs_trans_t     *tp;
 962        xfs_inode_t     *ip;
 963        xfs_buf_t       *ialloc_context = NULL;
 964        int             code;
 965        void            *dqinfo;
 966        uint            tflags;
 967
 968        tp = *tpp;
 969        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 970
 971        /*
 972         * xfs_ialloc will return a pointer to an incore inode if
 973         * the Space Manager has an available inode on the free
 974         * list. Otherwise, it will do an allocation and replenish
 975         * the freelist.  Since we can only do one allocation per
 976         * transaction without deadlocks, we will need to commit the
 977         * current transaction and start a new one.  We will then
 978         * need to call xfs_ialloc again to get the inode.
 979         *
 980         * If xfs_ialloc did an allocation to replenish the freelist,
 981         * it returns the bp containing the head of the freelist as
 982         * ialloc_context. We will hold a lock on it across the
 983         * transaction commit so that no other process can steal
 984         * the inode(s) that we've just allocated.
 985         */
 986        code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 987                          &ialloc_context, &ip);
 988
 989        /*
 990         * Return an error if we were unable to allocate a new inode.
 991         * This should only happen if we run out of space on disk or
 992         * encounter a disk error.
 993         */
 994        if (code) {
 995                *ipp = NULL;
 996                return code;
 997        }
 998        if (!ialloc_context && !ip) {
 999                *ipp = NULL;
1000                return -ENOSPC;
1001        }
1002
1003        /*
1004         * If the AGI buffer is non-NULL, then we were unable to get an
1005         * inode in one operation.  We need to commit the current
1006         * transaction and call xfs_ialloc() again.  It is guaranteed
1007         * to succeed the second time.
1008         */
1009        if (ialloc_context) {
1010                /*
1011                 * Normally, xfs_trans_commit releases all the locks.
1012                 * We call bhold to hang on to the ialloc_context across
1013                 * the commit.  Holding this buffer prevents any other
1014                 * processes from doing any allocations in this
1015                 * allocation group.
1016                 */
1017                xfs_trans_bhold(tp, ialloc_context);
1018
1019                /*
1020                 * We want the quota changes to be associated with the next
1021                 * transaction, NOT this one. So, detach the dqinfo from this
1022                 * and attach it to the next transaction.
1023                 */
1024                dqinfo = NULL;
1025                tflags = 0;
1026                if (tp->t_dqinfo) {
1027                        dqinfo = (void *)tp->t_dqinfo;
1028                        tp->t_dqinfo = NULL;
1029                        tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030                        tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1031                }
1032
1033                code = xfs_trans_roll(&tp, NULL);
1034                if (committed != NULL)
1035                        *committed = 1;
1036
1037                /*
1038                 * Re-attach the quota info that we detached from prev trx.
1039                 */
1040                if (dqinfo) {
1041                        tp->t_dqinfo = dqinfo;
1042                        tp->t_flags |= tflags;
1043                }
1044
1045                if (code) {
1046                        xfs_buf_relse(ialloc_context);
1047                        *tpp = tp;
1048                        *ipp = NULL;
1049                        return code;
1050                }
1051                xfs_trans_bjoin(tp, ialloc_context);
1052
1053                /*
1054                 * Call ialloc again. Since we've locked out all
1055                 * other allocations in this allocation group,
1056                 * this call should always succeed.
1057                 */
1058                code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059                                  okalloc, &ialloc_context, &ip);
1060
1061                /*
1062                 * If we get an error at this point, return to the caller
1063                 * so that the current transaction can be aborted.
1064                 */
1065                if (code) {
1066                        *tpp = tp;
1067                        *ipp = NULL;
1068                        return code;
1069                }
1070                ASSERT(!ialloc_context && ip);
1071
1072        } else {
1073                if (committed != NULL)
1074                        *committed = 0;
1075        }
1076
1077        *ipp = ip;
1078        *tpp = tp;
1079
1080        return 0;
1081}
1082
1083/*
1084 * Decrement the link count on an inode & log the change.  If this causes the
1085 * link count to go to zero, move the inode to AGI unlinked list so that it can
1086 * be freed when the last active reference goes away via xfs_inactive().
1087 */
1088int                             /* error */
1089xfs_droplink(
1090        xfs_trans_t *tp,
1091        xfs_inode_t *ip)
1092{
1093        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1094
1095        drop_nlink(VFS_I(ip));
1096        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097
1098        if (VFS_I(ip)->i_nlink)
1099                return 0;
1100
1101        return xfs_iunlink(tp, ip);
1102}
1103
1104/*
1105 * Increment the link count on an inode & log the change.
1106 */
1107int
1108xfs_bumplink(
1109        xfs_trans_t *tp,
1110        xfs_inode_t *ip)
1111{
1112        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1113
1114        ASSERT(ip->i_d.di_version > 1);
1115        inc_nlink(VFS_I(ip));
1116        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117        return 0;
1118}
1119
1120int
1121xfs_create(
1122        xfs_inode_t             *dp,
1123        struct xfs_name         *name,
1124        umode_t                 mode,
1125        xfs_dev_t               rdev,
1126        xfs_inode_t             **ipp)
1127{
1128        int                     is_dir = S_ISDIR(mode);
1129        struct xfs_mount        *mp = dp->i_mount;
1130        struct xfs_inode        *ip = NULL;
1131        struct xfs_trans        *tp = NULL;
1132        int                     error;
1133        xfs_bmap_free_t         free_list;
1134        xfs_fsblock_t           first_block;
1135        bool                    unlock_dp_on_error = false;
1136        prid_t                  prid;
1137        struct xfs_dquot        *udqp = NULL;
1138        struct xfs_dquot        *gdqp = NULL;
1139        struct xfs_dquot        *pdqp = NULL;
1140        struct xfs_trans_res    *tres;
1141        uint                    resblks;
1142
1143        trace_xfs_create(dp, name);
1144
1145        if (XFS_FORCED_SHUTDOWN(mp))
1146                return -EIO;
1147
1148        prid = xfs_get_initial_prid(dp);
1149
1150        /*
1151         * Make sure that we have allocated dquot(s) on disk.
1152         */
1153        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154                                        xfs_kgid_to_gid(current_fsgid()), prid,
1155                                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156                                        &udqp, &gdqp, &pdqp);
1157        if (error)
1158                return error;
1159
1160        if (is_dir) {
1161                rdev = 0;
1162                resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163                tres = &M_RES(mp)->tr_mkdir;
1164        } else {
1165                resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1166                tres = &M_RES(mp)->tr_create;
1167        }
1168
1169        /*
1170         * Initially assume that the file does not exist and
1171         * reserve the resources for that case.  If that is not
1172         * the case we'll drop the one we have and get a more
1173         * appropriate transaction later.
1174         */
1175        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1176        if (error == -ENOSPC) {
1177                /* flush outstanding delalloc blocks and retry */
1178                xfs_flush_inodes(mp);
1179                error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1180        }
1181        if (error == -ENOSPC) {
1182                /* No space at all so try a "no-allocation" reservation */
1183                resblks = 0;
1184                error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1185        }
1186        if (error)
1187                goto out_release_inode;
1188
1189        xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1190                      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1191        unlock_dp_on_error = true;
1192
1193        xfs_bmap_init(&free_list, &first_block);
1194
1195        /*
1196         * Reserve disk quota and the inode.
1197         */
1198        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1199                                                pdqp, resblks, 1, 0);
1200        if (error)
1201                goto out_trans_cancel;
1202
1203        if (!resblks) {
1204                error = xfs_dir_canenter(tp, dp, name);
1205                if (error)
1206                        goto out_trans_cancel;
1207        }
1208
1209        /*
1210         * A newly created regular or special file just has one directory
1211         * entry pointing to them, but a directory also the "." entry
1212         * pointing to itself.
1213         */
1214        error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1215                               prid, resblks > 0, &ip, NULL);
1216        if (error)
1217                goto out_trans_cancel;
1218
1219        /*
1220         * Now we join the directory inode to the transaction.  We do not do it
1221         * earlier because xfs_dir_ialloc might commit the previous transaction
1222         * (and release all the locks).  An error from here on will result in
1223         * the transaction cancel unlocking dp so don't do it explicitly in the
1224         * error path.
1225         */
1226        xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1227        unlock_dp_on_error = false;
1228
1229        error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1230                                        &first_block, &free_list, resblks ?
1231                                        resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1232        if (error) {
1233                ASSERT(error != -ENOSPC);
1234                goto out_trans_cancel;
1235        }
1236        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1237        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1238
1239        if (is_dir) {
1240                error = xfs_dir_init(tp, ip, dp);
1241                if (error)
1242                        goto out_bmap_cancel;
1243
1244                error = xfs_bumplink(tp, dp);
1245                if (error)
1246                        goto out_bmap_cancel;
1247        }
1248
1249        /*
1250         * If this is a synchronous mount, make sure that the
1251         * create transaction goes to disk before returning to
1252         * the user.
1253         */
1254        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1255                xfs_trans_set_sync(tp);
1256
1257        /*
1258         * Attach the dquot(s) to the inodes and modify them incore.
1259         * These ids of the inode couldn't have changed since the new
1260         * inode has been locked ever since it was created.
1261         */
1262        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1263
1264        error = xfs_bmap_finish(&tp, &free_list, NULL);
1265        if (error)
1266                goto out_bmap_cancel;
1267
1268        error = xfs_trans_commit(tp);
1269        if (error)
1270                goto out_release_inode;
1271
1272        xfs_qm_dqrele(udqp);
1273        xfs_qm_dqrele(gdqp);
1274        xfs_qm_dqrele(pdqp);
1275
1276        *ipp = ip;
1277        return 0;
1278
1279 out_bmap_cancel:
1280        xfs_bmap_cancel(&free_list);
1281 out_trans_cancel:
1282        xfs_trans_cancel(tp);
1283 out_release_inode:
1284        /*
1285         * Wait until after the current transaction is aborted to finish the
1286         * setup of the inode and release the inode.  This prevents recursive
1287         * transactions and deadlocks from xfs_inactive.
1288         */
1289        if (ip) {
1290                xfs_finish_inode_setup(ip);
1291                IRELE(ip);
1292        }
1293
1294        xfs_qm_dqrele(udqp);
1295        xfs_qm_dqrele(gdqp);
1296        xfs_qm_dqrele(pdqp);
1297
1298        if (unlock_dp_on_error)
1299                xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1300        return error;
1301}
1302
1303int
1304xfs_create_tmpfile(
1305        struct xfs_inode        *dp,
1306        struct dentry           *dentry,
1307        umode_t                 mode,
1308        struct xfs_inode        **ipp)
1309{
1310        struct xfs_mount        *mp = dp->i_mount;
1311        struct xfs_inode        *ip = NULL;
1312        struct xfs_trans        *tp = NULL;
1313        int                     error;
1314        prid_t                  prid;
1315        struct xfs_dquot        *udqp = NULL;
1316        struct xfs_dquot        *gdqp = NULL;
1317        struct xfs_dquot        *pdqp = NULL;
1318        struct xfs_trans_res    *tres;
1319        uint                    resblks;
1320
1321        if (XFS_FORCED_SHUTDOWN(mp))
1322                return -EIO;
1323
1324        prid = xfs_get_initial_prid(dp);
1325
1326        /*
1327         * Make sure that we have allocated dquot(s) on disk.
1328         */
1329        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1330                                xfs_kgid_to_gid(current_fsgid()), prid,
1331                                XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1332                                &udqp, &gdqp, &pdqp);
1333        if (error)
1334                return error;
1335
1336        resblks = XFS_IALLOC_SPACE_RES(mp);
1337        tres = &M_RES(mp)->tr_create_tmpfile;
1338
1339        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1340        if (error == -ENOSPC) {
1341                /* No space at all so try a "no-allocation" reservation */
1342                resblks = 0;
1343                error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1344        }
1345        if (error)
1346                goto out_release_inode;
1347
1348        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1349                                                pdqp, resblks, 1, 0);
1350        if (error)
1351                goto out_trans_cancel;
1352
1353        error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1354                                prid, resblks > 0, &ip, NULL);
1355        if (error)
1356                goto out_trans_cancel;
1357
1358        if (mp->m_flags & XFS_MOUNT_WSYNC)
1359                xfs_trans_set_sync(tp);
1360
1361        /*
1362         * Attach the dquot(s) to the inodes and modify them incore.
1363         * These ids of the inode couldn't have changed since the new
1364         * inode has been locked ever since it was created.
1365         */
1366        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1367
1368        error = xfs_iunlink(tp, ip);
1369        if (error)
1370                goto out_trans_cancel;
1371
1372        error = xfs_trans_commit(tp);
1373        if (error)
1374                goto out_release_inode;
1375
1376        xfs_qm_dqrele(udqp);
1377        xfs_qm_dqrele(gdqp);
1378        xfs_qm_dqrele(pdqp);
1379
1380        *ipp = ip;
1381        return 0;
1382
1383 out_trans_cancel:
1384        xfs_trans_cancel(tp);
1385 out_release_inode:
1386        /*
1387         * Wait until after the current transaction is aborted to finish the
1388         * setup of the inode and release the inode.  This prevents recursive
1389         * transactions and deadlocks from xfs_inactive.
1390         */
1391        if (ip) {
1392                xfs_finish_inode_setup(ip);
1393                IRELE(ip);
1394        }
1395
1396        xfs_qm_dqrele(udqp);
1397        xfs_qm_dqrele(gdqp);
1398        xfs_qm_dqrele(pdqp);
1399
1400        return error;
1401}
1402
1403int
1404xfs_link(
1405        xfs_inode_t             *tdp,
1406        xfs_inode_t             *sip,
1407        struct xfs_name         *target_name)
1408{
1409        xfs_mount_t             *mp = tdp->i_mount;
1410        xfs_trans_t             *tp;
1411        int                     error;
1412        xfs_bmap_free_t         free_list;
1413        xfs_fsblock_t           first_block;
1414        int                     resblks;
1415
1416        trace_xfs_link(tdp, target_name);
1417
1418        ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1419
1420        if (XFS_FORCED_SHUTDOWN(mp))
1421                return -EIO;
1422
1423        error = xfs_qm_dqattach(sip, 0);
1424        if (error)
1425                goto std_return;
1426
1427        error = xfs_qm_dqattach(tdp, 0);
1428        if (error)
1429                goto std_return;
1430
1431        resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1432        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1433        if (error == -ENOSPC) {
1434                resblks = 0;
1435                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1436        }
1437        if (error)
1438                goto std_return;
1439
1440        xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1441        xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1442
1443        xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1444        xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1445
1446        /*
1447         * If we are using project inheritance, we only allow hard link
1448         * creation in our tree when the project IDs are the same; else
1449         * the tree quota mechanism could be circumvented.
1450         */
1451        if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1452                     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1453                error = -EXDEV;
1454                goto error_return;
1455        }
1456
1457        if (!resblks) {
1458                error = xfs_dir_canenter(tp, tdp, target_name);
1459                if (error)
1460                        goto error_return;
1461        }
1462
1463        xfs_bmap_init(&free_list, &first_block);
1464
1465        /*
1466         * Handle initial link state of O_TMPFILE inode
1467         */
1468        if (VFS_I(sip)->i_nlink == 0) {
1469                error = xfs_iunlink_remove(tp, sip);
1470                if (error)
1471                        goto error_return;
1472        }
1473
1474        error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1475                                        &first_block, &free_list, resblks);
1476        if (error)
1477                goto error_return;
1478        xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1479        xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1480
1481        error = xfs_bumplink(tp, sip);
1482        if (error)
1483                goto error_return;
1484
1485        /*
1486         * If this is a synchronous mount, make sure that the
1487         * link transaction goes to disk before returning to
1488         * the user.
1489         */
1490        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1491                xfs_trans_set_sync(tp);
1492
1493        error = xfs_bmap_finish(&tp, &free_list, NULL);
1494        if (error) {
1495                xfs_bmap_cancel(&free_list);
1496                goto error_return;
1497        }
1498
1499        return xfs_trans_commit(tp);
1500
1501 error_return:
1502        xfs_trans_cancel(tp);
1503 std_return:
1504        return error;
1505}
1506
1507/*
1508 * Free up the underlying blocks past new_size.  The new size must be smaller
1509 * than the current size.  This routine can be used both for the attribute and
1510 * data fork, and does not modify the inode size, which is left to the caller.
1511 *
1512 * The transaction passed to this routine must have made a permanent log
1513 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1514 * given transaction and start new ones, so make sure everything involved in
1515 * the transaction is tidy before calling here.  Some transaction will be
1516 * returned to the caller to be committed.  The incoming transaction must
1517 * already include the inode, and both inode locks must be held exclusively.
1518 * The inode must also be "held" within the transaction.  On return the inode
1519 * will be "held" within the returned transaction.  This routine does NOT
1520 * require any disk space to be reserved for it within the transaction.
1521 *
1522 * If we get an error, we must return with the inode locked and linked into the
1523 * current transaction. This keeps things simple for the higher level code,
1524 * because it always knows that the inode is locked and held in the transaction
1525 * that returns to it whether errors occur or not.  We don't mark the inode
1526 * dirty on error so that transactions can be easily aborted if possible.
1527 */
1528int
1529xfs_itruncate_extents(
1530        struct xfs_trans        **tpp,
1531        struct xfs_inode        *ip,
1532        int                     whichfork,
1533        xfs_fsize_t             new_size)
1534{
1535        struct xfs_mount        *mp = ip->i_mount;
1536        struct xfs_trans        *tp = *tpp;
1537        xfs_bmap_free_t         free_list;
1538        xfs_fsblock_t           first_block;
1539        xfs_fileoff_t           first_unmap_block;
1540        xfs_fileoff_t           last_block;
1541        xfs_filblks_t           unmap_len;
1542        int                     error = 0;
1543        int                     done = 0;
1544
1545        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1546        ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1547               xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1548        ASSERT(new_size <= XFS_ISIZE(ip));
1549        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1550        ASSERT(ip->i_itemp != NULL);
1551        ASSERT(ip->i_itemp->ili_lock_flags == 0);
1552        ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1553
1554        trace_xfs_itruncate_extents_start(ip, new_size);
1555
1556        /*
1557         * Since it is possible for space to become allocated beyond
1558         * the end of the file (in a crash where the space is allocated
1559         * but the inode size is not yet updated), simply remove any
1560         * blocks which show up between the new EOF and the maximum
1561         * possible file size.  If the first block to be removed is
1562         * beyond the maximum file size (ie it is the same as last_block),
1563         * then there is nothing to do.
1564         */
1565        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1566        last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1567        if (first_unmap_block == last_block)
1568                return 0;
1569
1570        ASSERT(first_unmap_block < last_block);
1571        unmap_len = last_block - first_unmap_block + 1;
1572        while (!done) {
1573                xfs_bmap_init(&free_list, &first_block);
1574                error = xfs_bunmapi(tp, ip,
1575                                    first_unmap_block, unmap_len,
1576                                    xfs_bmapi_aflag(whichfork),
1577                                    XFS_ITRUNC_MAX_EXTENTS,
1578                                    &first_block, &free_list,
1579                                    &done);
1580                if (error)
1581                        goto out_bmap_cancel;
1582
1583                /*
1584                 * Duplicate the transaction that has the permanent
1585                 * reservation and commit the old transaction.
1586                 */
1587                error = xfs_bmap_finish(&tp, &free_list, ip);
1588                if (error)
1589                        goto out_bmap_cancel;
1590
1591                error = xfs_trans_roll(&tp, ip);
1592                if (error)
1593                        goto out;
1594        }
1595
1596        /*
1597         * Always re-log the inode so that our permanent transaction can keep
1598         * on rolling it forward in the log.
1599         */
1600        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1601
1602        trace_xfs_itruncate_extents_end(ip, new_size);
1603
1604out:
1605        *tpp = tp;
1606        return error;
1607out_bmap_cancel:
1608        /*
1609         * If the bunmapi call encounters an error, return to the caller where
1610         * the transaction can be properly aborted.  We just need to make sure
1611         * we're not holding any resources that we were not when we came in.
1612         */
1613        xfs_bmap_cancel(&free_list);
1614        goto out;
1615}
1616
1617int
1618xfs_release(
1619        xfs_inode_t     *ip)
1620{
1621        xfs_mount_t     *mp = ip->i_mount;
1622        int             error;
1623
1624        if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1625                return 0;
1626
1627        /* If this is a read-only mount, don't do this (would generate I/O) */
1628        if (mp->m_flags & XFS_MOUNT_RDONLY)
1629                return 0;
1630
1631        if (!XFS_FORCED_SHUTDOWN(mp)) {
1632                int truncated;
1633
1634                /*
1635                 * If we previously truncated this file and removed old data
1636                 * in the process, we want to initiate "early" writeout on
1637                 * the last close.  This is an attempt to combat the notorious
1638                 * NULL files problem which is particularly noticeable from a
1639                 * truncate down, buffered (re-)write (delalloc), followed by
1640                 * a crash.  What we are effectively doing here is
1641                 * significantly reducing the time window where we'd otherwise
1642                 * be exposed to that problem.
1643                 */
1644                truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1645                if (truncated) {
1646                        xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1647                        if (ip->i_delayed_blks > 0) {
1648                                error = filemap_flush(VFS_I(ip)->i_mapping);
1649                                if (error)
1650                                        return error;
1651                        }
1652                }
1653        }
1654
1655        if (VFS_I(ip)->i_nlink == 0)
1656                return 0;
1657
1658        if (xfs_can_free_eofblocks(ip, false)) {
1659
1660                /*
1661                 * If we can't get the iolock just skip truncating the blocks
1662                 * past EOF because we could deadlock with the mmap_sem
1663                 * otherwise.  We'll get another chance to drop them once the
1664                 * last reference to the inode is dropped, so we'll never leak
1665                 * blocks permanently.
1666                 *
1667                 * Further, check if the inode is being opened, written and
1668                 * closed frequently and we have delayed allocation blocks
1669                 * outstanding (e.g. streaming writes from the NFS server),
1670                 * truncating the blocks past EOF will cause fragmentation to
1671                 * occur.
1672                 *
1673                 * In this case don't do the truncation, either, but we have to
1674                 * be careful how we detect this case. Blocks beyond EOF show
1675                 * up as i_delayed_blks even when the inode is clean, so we
1676                 * need to truncate them away first before checking for a dirty
1677                 * release. Hence on the first dirty close we will still remove
1678                 * the speculative allocation, but after that we will leave it
1679                 * in place.
1680                 */
1681                if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1682                        return 0;
1683
1684                error = xfs_free_eofblocks(mp, ip, true);
1685                if (error && error != -EAGAIN)
1686                        return error;
1687
1688                /* delalloc blocks after truncation means it really is dirty */
1689                if (ip->i_delayed_blks)
1690                        xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1691        }
1692        return 0;
1693}
1694
1695/*
1696 * xfs_inactive_truncate
1697 *
1698 * Called to perform a truncate when an inode becomes unlinked.
1699 */
1700STATIC int
1701xfs_inactive_truncate(
1702        struct xfs_inode *ip)
1703{
1704        struct xfs_mount        *mp = ip->i_mount;
1705        struct xfs_trans        *tp;
1706        int                     error;
1707
1708        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1709        if (error) {
1710                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1711                return error;
1712        }
1713
1714        xfs_ilock(ip, XFS_ILOCK_EXCL);
1715        xfs_trans_ijoin(tp, ip, 0);
1716
1717        /*
1718         * Log the inode size first to prevent stale data exposure in the event
1719         * of a system crash before the truncate completes. See the related
1720         * comment in xfs_setattr_size() for details.
1721         */
1722        ip->i_d.di_size = 0;
1723        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1724
1725        error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1726        if (error)
1727                goto error_trans_cancel;
1728
1729        ASSERT(ip->i_d.di_nextents == 0);
1730
1731        error = xfs_trans_commit(tp);
1732        if (error)
1733                goto error_unlock;
1734
1735        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1736        return 0;
1737
1738error_trans_cancel:
1739        xfs_trans_cancel(tp);
1740error_unlock:
1741        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1742        return error;
1743}
1744
1745/*
1746 * xfs_inactive_ifree()
1747 *
1748 * Perform the inode free when an inode is unlinked.
1749 */
1750STATIC int
1751xfs_inactive_ifree(
1752        struct xfs_inode *ip)
1753{
1754        xfs_bmap_free_t         free_list;
1755        xfs_fsblock_t           first_block;
1756        struct xfs_mount        *mp = ip->i_mount;
1757        struct xfs_trans        *tp;
1758        int                     error;
1759
1760        /*
1761         * The ifree transaction might need to allocate blocks for record
1762         * insertion to the finobt. We don't want to fail here at ENOSPC, so
1763         * allow ifree to dip into the reserved block pool if necessary.
1764         *
1765         * Freeing large sets of inodes generally means freeing inode chunks,
1766         * directory and file data blocks, so this should be relatively safe.
1767         * Only under severe circumstances should it be possible to free enough
1768         * inodes to exhaust the reserve block pool via finobt expansion while
1769         * at the same time not creating free space in the filesystem.
1770         *
1771         * Send a warning if the reservation does happen to fail, as the inode
1772         * now remains allocated and sits on the unlinked list until the fs is
1773         * repaired.
1774         */
1775        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1776                        XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
1777        if (error) {
1778                if (error == -ENOSPC) {
1779                        xfs_warn_ratelimited(mp,
1780                        "Failed to remove inode(s) from unlinked list. "
1781                        "Please free space, unmount and run xfs_repair.");
1782                } else {
1783                        ASSERT(XFS_FORCED_SHUTDOWN(mp));
1784                }
1785                return error;
1786        }
1787
1788        xfs_ilock(ip, XFS_ILOCK_EXCL);
1789        xfs_trans_ijoin(tp, ip, 0);
1790
1791        xfs_bmap_init(&free_list, &first_block);
1792        error = xfs_ifree(tp, ip, &free_list);
1793        if (error) {
1794                /*
1795                 * If we fail to free the inode, shut down.  The cancel
1796                 * might do that, we need to make sure.  Otherwise the
1797                 * inode might be lost for a long time or forever.
1798                 */
1799                if (!XFS_FORCED_SHUTDOWN(mp)) {
1800                        xfs_notice(mp, "%s: xfs_ifree returned error %d",
1801                                __func__, error);
1802                        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1803                }
1804                xfs_trans_cancel(tp);
1805                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1806                return error;
1807        }
1808
1809        /*
1810         * Credit the quota account(s). The inode is gone.
1811         */
1812        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1813
1814        /*
1815         * Just ignore errors at this point.  There is nothing we can do except
1816         * to try to keep going. Make sure it's not a silent error.
1817         */
1818        error = xfs_bmap_finish(&tp, &free_list, NULL);
1819        if (error) {
1820                xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1821                        __func__, error);
1822                xfs_bmap_cancel(&free_list);
1823        }
1824        error = xfs_trans_commit(tp);
1825        if (error)
1826                xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1827                        __func__, error);
1828
1829        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1830        return 0;
1831}
1832
1833/*
1834 * xfs_inactive
1835 *
1836 * This is called when the vnode reference count for the vnode
1837 * goes to zero.  If the file has been unlinked, then it must
1838 * now be truncated.  Also, we clear all of the read-ahead state
1839 * kept for the inode here since the file is now closed.
1840 */
1841void
1842xfs_inactive(
1843        xfs_inode_t     *ip)
1844{
1845        struct xfs_mount        *mp;
1846        int                     error;
1847        int                     truncate = 0;
1848
1849        /*
1850         * If the inode is already free, then there can be nothing
1851         * to clean up here.
1852         */
1853        if (VFS_I(ip)->i_mode == 0) {
1854                ASSERT(ip->i_df.if_real_bytes == 0);
1855                ASSERT(ip->i_df.if_broot_bytes == 0);
1856                return;
1857        }
1858
1859        mp = ip->i_mount;
1860
1861        /* If this is a read-only mount, don't do this (would generate I/O) */
1862        if (mp->m_flags & XFS_MOUNT_RDONLY)
1863                return;
1864
1865        if (VFS_I(ip)->i_nlink != 0) {
1866                /*
1867                 * force is true because we are evicting an inode from the
1868                 * cache. Post-eof blocks must be freed, lest we end up with
1869                 * broken free space accounting.
1870                 */
1871                if (xfs_can_free_eofblocks(ip, true))
1872                        xfs_free_eofblocks(mp, ip, false);
1873
1874                return;
1875        }
1876
1877        if (S_ISREG(VFS_I(ip)->i_mode) &&
1878            (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1879             ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1880                truncate = 1;
1881
1882        error = xfs_qm_dqattach(ip, 0);
1883        if (error)
1884                return;
1885
1886        if (S_ISLNK(VFS_I(ip)->i_mode))
1887                error = xfs_inactive_symlink(ip);
1888        else if (truncate)
1889                error = xfs_inactive_truncate(ip);
1890        if (error)
1891                return;
1892
1893        /*
1894         * If there are attributes associated with the file then blow them away
1895         * now.  The code calls a routine that recursively deconstructs the
1896         * attribute fork. If also blows away the in-core attribute fork.
1897         */
1898        if (XFS_IFORK_Q(ip)) {
1899                error = xfs_attr_inactive(ip);
1900                if (error)
1901                        return;
1902        }
1903
1904        ASSERT(!ip->i_afp);
1905        ASSERT(ip->i_d.di_anextents == 0);
1906        ASSERT(ip->i_d.di_forkoff == 0);
1907
1908        /*
1909         * Free the inode.
1910         */
1911        error = xfs_inactive_ifree(ip);
1912        if (error)
1913                return;
1914
1915        /*
1916         * Release the dquots held by inode, if any.
1917         */
1918        xfs_qm_dqdetach(ip);
1919}
1920
1921/*
1922 * This is called when the inode's link count goes to 0 or we are creating a
1923 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1924 * set to true as the link count is dropped to zero by the VFS after we've
1925 * created the file successfully, so we have to add it to the unlinked list
1926 * while the link count is non-zero.
1927 *
1928 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1929 * list when the inode is freed.
1930 */
1931STATIC int
1932xfs_iunlink(
1933        struct xfs_trans *tp,
1934        struct xfs_inode *ip)
1935{
1936        xfs_mount_t     *mp = tp->t_mountp;
1937        xfs_agi_t       *agi;
1938        xfs_dinode_t    *dip;
1939        xfs_buf_t       *agibp;
1940        xfs_buf_t       *ibp;
1941        xfs_agino_t     agino;
1942        short           bucket_index;
1943        int             offset;
1944        int             error;
1945
1946        ASSERT(VFS_I(ip)->i_mode != 0);
1947
1948        /*
1949         * Get the agi buffer first.  It ensures lock ordering
1950         * on the list.
1951         */
1952        error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1953        if (error)
1954                return error;
1955        agi = XFS_BUF_TO_AGI(agibp);
1956
1957        /*
1958         * Get the index into the agi hash table for the
1959         * list this inode will go on.
1960         */
1961        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1962        ASSERT(agino != 0);
1963        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1964        ASSERT(agi->agi_unlinked[bucket_index]);
1965        ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1966
1967        if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1968                /*
1969                 * There is already another inode in the bucket we need
1970                 * to add ourselves to.  Add us at the front of the list.
1971                 * Here we put the head pointer into our next pointer,
1972                 * and then we fall through to point the head at us.
1973                 */
1974                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1975                                       0, 0);
1976                if (error)
1977                        return error;
1978
1979                ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1980                dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1981                offset = ip->i_imap.im_boffset +
1982                        offsetof(xfs_dinode_t, di_next_unlinked);
1983
1984                /* need to recalc the inode CRC if appropriate */
1985                xfs_dinode_calc_crc(mp, dip);
1986
1987                xfs_trans_inode_buf(tp, ibp);
1988                xfs_trans_log_buf(tp, ibp, offset,
1989                                  (offset + sizeof(xfs_agino_t) - 1));
1990                xfs_inobp_check(mp, ibp);
1991        }
1992
1993        /*
1994         * Point the bucket head pointer at the inode being inserted.
1995         */
1996        ASSERT(agino != 0);
1997        agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1998        offset = offsetof(xfs_agi_t, agi_unlinked) +
1999                (sizeof(xfs_agino_t) * bucket_index);
2000        xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2001        xfs_trans_log_buf(tp, agibp, offset,
2002                          (offset + sizeof(xfs_agino_t) - 1));
2003        return 0;
2004}
2005
2006/*
2007 * Pull the on-disk inode from the AGI unlinked list.
2008 */
2009STATIC int
2010xfs_iunlink_remove(
2011        xfs_trans_t     *tp,
2012        xfs_inode_t     *ip)
2013{
2014        xfs_ino_t       next_ino;
2015        xfs_mount_t     *mp;
2016        xfs_agi_t       *agi;
2017        xfs_dinode_t    *dip;
2018        xfs_buf_t       *agibp;
2019        xfs_buf_t       *ibp;
2020        xfs_agnumber_t  agno;
2021        xfs_agino_t     agino;
2022        xfs_agino_t     next_agino;
2023        xfs_buf_t       *last_ibp;
2024        xfs_dinode_t    *last_dip = NULL;
2025        short           bucket_index;
2026        int             offset, last_offset = 0;
2027        int             error;
2028
2029        mp = tp->t_mountp;
2030        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2031
2032        /*
2033         * Get the agi buffer first.  It ensures lock ordering
2034         * on the list.
2035         */
2036        error = xfs_read_agi(mp, tp, agno, &agibp);
2037        if (error)
2038                return error;
2039
2040        agi = XFS_BUF_TO_AGI(agibp);
2041
2042        /*
2043         * Get the index into the agi hash table for the
2044         * list this inode will go on.
2045         */
2046        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2047        ASSERT(agino != 0);
2048        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2049        ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2050        ASSERT(agi->agi_unlinked[bucket_index]);
2051
2052        if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2053                /*
2054                 * We're at the head of the list.  Get the inode's on-disk
2055                 * buffer to see if there is anyone after us on the list.
2056                 * Only modify our next pointer if it is not already NULLAGINO.
2057                 * This saves us the overhead of dealing with the buffer when
2058                 * there is no need to change it.
2059                 */
2060                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2061                                       0, 0);
2062                if (error) {
2063                        xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2064                                __func__, error);
2065                        return error;
2066                }
2067                next_agino = be32_to_cpu(dip->di_next_unlinked);
2068                ASSERT(next_agino != 0);
2069                if (next_agino != NULLAGINO) {
2070                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2071                        offset = ip->i_imap.im_boffset +
2072                                offsetof(xfs_dinode_t, di_next_unlinked);
2073
2074                        /* need to recalc the inode CRC if appropriate */
2075                        xfs_dinode_calc_crc(mp, dip);
2076
2077                        xfs_trans_inode_buf(tp, ibp);
2078                        xfs_trans_log_buf(tp, ibp, offset,
2079                                          (offset + sizeof(xfs_agino_t) - 1));
2080                        xfs_inobp_check(mp, ibp);
2081                } else {
2082                        xfs_trans_brelse(tp, ibp);
2083                }
2084                /*
2085                 * Point the bucket head pointer at the next inode.
2086                 */
2087                ASSERT(next_agino != 0);
2088                ASSERT(next_agino != agino);
2089                agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2090                offset = offsetof(xfs_agi_t, agi_unlinked) +
2091                        (sizeof(xfs_agino_t) * bucket_index);
2092                xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2093                xfs_trans_log_buf(tp, agibp, offset,
2094                                  (offset + sizeof(xfs_agino_t) - 1));
2095        } else {
2096                /*
2097                 * We need to search the list for the inode being freed.
2098                 */
2099                next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2100                last_ibp = NULL;
2101                while (next_agino != agino) {
2102                        struct xfs_imap imap;
2103
2104                        if (last_ibp)
2105                                xfs_trans_brelse(tp, last_ibp);
2106
2107                        imap.im_blkno = 0;
2108                        next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2109
2110                        error = xfs_imap(mp, tp, next_ino, &imap, 0);
2111                        if (error) {
2112                                xfs_warn(mp,
2113        "%s: xfs_imap returned error %d.",
2114                                         __func__, error);
2115                                return error;
2116                        }
2117
2118                        error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2119                                               &last_ibp, 0, 0);
2120                        if (error) {
2121                                xfs_warn(mp,
2122        "%s: xfs_imap_to_bp returned error %d.",
2123                                        __func__, error);
2124                                return error;
2125                        }
2126
2127                        last_offset = imap.im_boffset;
2128                        next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2129                        ASSERT(next_agino != NULLAGINO);
2130                        ASSERT(next_agino != 0);
2131                }
2132
2133                /*
2134                 * Now last_ibp points to the buffer previous to us on the
2135                 * unlinked list.  Pull us from the list.
2136                 */
2137                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2138                                       0, 0);
2139                if (error) {
2140                        xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2141                                __func__, error);
2142                        return error;
2143                }
2144                next_agino = be32_to_cpu(dip->di_next_unlinked);
2145                ASSERT(next_agino != 0);
2146                ASSERT(next_agino != agino);
2147                if (next_agino != NULLAGINO) {
2148                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2149                        offset = ip->i_imap.im_boffset +
2150                                offsetof(xfs_dinode_t, di_next_unlinked);
2151
2152                        /* need to recalc the inode CRC if appropriate */
2153                        xfs_dinode_calc_crc(mp, dip);
2154
2155                        xfs_trans_inode_buf(tp, ibp);
2156                        xfs_trans_log_buf(tp, ibp, offset,
2157                                          (offset + sizeof(xfs_agino_t) - 1));
2158                        xfs_inobp_check(mp, ibp);
2159                } else {
2160                        xfs_trans_brelse(tp, ibp);
2161                }
2162                /*
2163                 * Point the previous inode on the list to the next inode.
2164                 */
2165                last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2166                ASSERT(next_agino != 0);
2167                offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2168
2169                /* need to recalc the inode CRC if appropriate */
2170                xfs_dinode_calc_crc(mp, last_dip);
2171
2172                xfs_trans_inode_buf(tp, last_ibp);
2173                xfs_trans_log_buf(tp, last_ibp, offset,
2174                                  (offset + sizeof(xfs_agino_t) - 1));
2175                xfs_inobp_check(mp, last_ibp);
2176        }
2177        return 0;
2178}
2179
2180/*
2181 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2182 * inodes that are in memory - they all must be marked stale and attached to
2183 * the cluster buffer.
2184 */
2185STATIC int
2186xfs_ifree_cluster(
2187        xfs_inode_t             *free_ip,
2188        xfs_trans_t             *tp,
2189        struct xfs_icluster     *xic)
2190{
2191        xfs_mount_t             *mp = free_ip->i_mount;
2192        int                     blks_per_cluster;
2193        int                     inodes_per_cluster;
2194        int                     nbufs;
2195        int                     i, j;
2196        int                     ioffset;
2197        xfs_daddr_t             blkno;
2198        xfs_buf_t               *bp;
2199        xfs_inode_t             *ip;
2200        xfs_inode_log_item_t    *iip;
2201        xfs_log_item_t          *lip;
2202        struct xfs_perag        *pag;
2203        xfs_ino_t               inum;
2204
2205        inum = xic->first_ino;
2206        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2207        blks_per_cluster = xfs_icluster_size_fsb(mp);
2208        inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2209        nbufs = mp->m_ialloc_blks / blks_per_cluster;
2210
2211        for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2212                /*
2213                 * The allocation bitmap tells us which inodes of the chunk were
2214                 * physically allocated. Skip the cluster if an inode falls into
2215                 * a sparse region.
2216                 */
2217                ioffset = inum - xic->first_ino;
2218                if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2219                        ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2220                        continue;
2221                }
2222
2223                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2224                                         XFS_INO_TO_AGBNO(mp, inum));
2225
2226                /*
2227                 * We obtain and lock the backing buffer first in the process
2228                 * here, as we have to ensure that any dirty inode that we
2229                 * can't get the flush lock on is attached to the buffer.
2230                 * If we scan the in-memory inodes first, then buffer IO can
2231                 * complete before we get a lock on it, and hence we may fail
2232                 * to mark all the active inodes on the buffer stale.
2233                 */
2234                bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2235                                        mp->m_bsize * blks_per_cluster,
2236                                        XBF_UNMAPPED);
2237
2238                if (!bp)
2239                        return -ENOMEM;
2240
2241                /*
2242                 * This buffer may not have been correctly initialised as we
2243                 * didn't read it from disk. That's not important because we are
2244                 * only using to mark the buffer as stale in the log, and to
2245                 * attach stale cached inodes on it. That means it will never be
2246                 * dispatched for IO. If it is, we want to know about it, and we
2247                 * want it to fail. We can acheive this by adding a write
2248                 * verifier to the buffer.
2249                 */
2250                 bp->b_ops = &xfs_inode_buf_ops;
2251
2252                /*
2253                 * Walk the inodes already attached to the buffer and mark them
2254                 * stale. These will all have the flush locks held, so an
2255                 * in-memory inode walk can't lock them. By marking them all
2256                 * stale first, we will not attempt to lock them in the loop
2257                 * below as the XFS_ISTALE flag will be set.
2258                 */
2259                lip = bp->b_fspriv;
2260                while (lip) {
2261                        if (lip->li_type == XFS_LI_INODE) {
2262                                iip = (xfs_inode_log_item_t *)lip;
2263                                ASSERT(iip->ili_logged == 1);
2264                                lip->li_cb = xfs_istale_done;
2265                                xfs_trans_ail_copy_lsn(mp->m_ail,
2266                                                        &iip->ili_flush_lsn,
2267                                                        &iip->ili_item.li_lsn);
2268                                xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2269                        }
2270                        lip = lip->li_bio_list;
2271                }
2272
2273
2274                /*
2275                 * For each inode in memory attempt to add it to the inode
2276                 * buffer and set it up for being staled on buffer IO
2277                 * completion.  This is safe as we've locked out tail pushing
2278                 * and flushing by locking the buffer.
2279                 *
2280                 * We have already marked every inode that was part of a
2281                 * transaction stale above, which means there is no point in
2282                 * even trying to lock them.
2283                 */
2284                for (i = 0; i < inodes_per_cluster; i++) {
2285retry:
2286                        rcu_read_lock();
2287                        ip = radix_tree_lookup(&pag->pag_ici_root,
2288                                        XFS_INO_TO_AGINO(mp, (inum + i)));
2289
2290                        /* Inode not in memory, nothing to do */
2291                        if (!ip) {
2292                                rcu_read_unlock();
2293                                continue;
2294                        }
2295
2296                        /*
2297                         * because this is an RCU protected lookup, we could
2298                         * find a recently freed or even reallocated inode
2299                         * during the lookup. We need to check under the
2300                         * i_flags_lock for a valid inode here. Skip it if it
2301                         * is not valid, the wrong inode or stale.
2302                         */
2303                        spin_lock(&ip->i_flags_lock);
2304                        if (ip->i_ino != inum + i ||
2305                            __xfs_iflags_test(ip, XFS_ISTALE)) {
2306                                spin_unlock(&ip->i_flags_lock);
2307                                rcu_read_unlock();
2308                                continue;
2309                        }
2310                        spin_unlock(&ip->i_flags_lock);
2311
2312                        /*
2313                         * Don't try to lock/unlock the current inode, but we
2314                         * _cannot_ skip the other inodes that we did not find
2315                         * in the list attached to the buffer and are not
2316                         * already marked stale. If we can't lock it, back off
2317                         * and retry.
2318                         */
2319                        if (ip != free_ip &&
2320                            !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2321                                rcu_read_unlock();
2322                                delay(1);
2323                                goto retry;
2324                        }
2325                        rcu_read_unlock();
2326
2327                        xfs_iflock(ip);
2328                        xfs_iflags_set(ip, XFS_ISTALE);
2329
2330                        /*
2331                         * we don't need to attach clean inodes or those only
2332                         * with unlogged changes (which we throw away, anyway).
2333                         */
2334                        iip = ip->i_itemp;
2335                        if (!iip || xfs_inode_clean(ip)) {
2336                                ASSERT(ip != free_ip);
2337                                xfs_ifunlock(ip);
2338                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2339                                continue;
2340                        }
2341
2342                        iip->ili_last_fields = iip->ili_fields;
2343                        iip->ili_fields = 0;
2344                        iip->ili_fsync_fields = 0;
2345                        iip->ili_logged = 1;
2346                        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2347                                                &iip->ili_item.li_lsn);
2348
2349                        xfs_buf_attach_iodone(bp, xfs_istale_done,
2350                                                  &iip->ili_item);
2351
2352                        if (ip != free_ip)
2353                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2354                }
2355
2356                xfs_trans_stale_inode_buf(tp, bp);
2357                xfs_trans_binval(tp, bp);
2358        }
2359
2360        xfs_perag_put(pag);
2361        return 0;
2362}
2363
2364/*
2365 * This is called to return an inode to the inode free list.
2366 * The inode should already be truncated to 0 length and have
2367 * no pages associated with it.  This routine also assumes that
2368 * the inode is already a part of the transaction.
2369 *
2370 * The on-disk copy of the inode will have been added to the list
2371 * of unlinked inodes in the AGI. We need to remove the inode from
2372 * that list atomically with respect to freeing it here.
2373 */
2374int
2375xfs_ifree(
2376        xfs_trans_t     *tp,
2377        xfs_inode_t     *ip,
2378        xfs_bmap_free_t *flist)
2379{
2380        int                     error;
2381        struct xfs_icluster     xic = { 0 };
2382
2383        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2384        ASSERT(VFS_I(ip)->i_nlink == 0);
2385        ASSERT(ip->i_d.di_nextents == 0);
2386        ASSERT(ip->i_d.di_anextents == 0);
2387        ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2388        ASSERT(ip->i_d.di_nblocks == 0);
2389
2390        /*
2391         * Pull the on-disk inode from the AGI unlinked list.
2392         */
2393        error = xfs_iunlink_remove(tp, ip);
2394        if (error)
2395                return error;
2396
2397        error = xfs_difree(tp, ip->i_ino, flist, &xic);
2398        if (error)
2399                return error;
2400
2401        VFS_I(ip)->i_mode = 0;          /* mark incore inode as free */
2402        ip->i_d.di_flags = 0;
2403        ip->i_d.di_dmevmask = 0;
2404        ip->i_d.di_forkoff = 0;         /* mark the attr fork not in use */
2405        ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2406        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2407        /*
2408         * Bump the generation count so no one will be confused
2409         * by reincarnations of this inode.
2410         */
2411        VFS_I(ip)->i_generation++;
2412        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2413
2414        if (xic.deleted)
2415                error = xfs_ifree_cluster(ip, tp, &xic);
2416
2417        return error;
2418}
2419
2420/*
2421 * This is called to unpin an inode.  The caller must have the inode locked
2422 * in at least shared mode so that the buffer cannot be subsequently pinned
2423 * once someone is waiting for it to be unpinned.
2424 */
2425static void
2426xfs_iunpin(
2427        struct xfs_inode        *ip)
2428{
2429        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2430
2431        trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2432
2433        /* Give the log a push to start the unpinning I/O */
2434        xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2435
2436}
2437
2438static void
2439__xfs_iunpin_wait(
2440        struct xfs_inode        *ip)
2441{
2442        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2443        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2444
2445        xfs_iunpin(ip);
2446
2447        do {
2448                prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2449                if (xfs_ipincount(ip))
2450                        io_schedule();
2451        } while (xfs_ipincount(ip));
2452        finish_wait(wq, &wait.wait);
2453}
2454
2455void
2456xfs_iunpin_wait(
2457        struct xfs_inode        *ip)
2458{
2459        if (xfs_ipincount(ip))
2460                __xfs_iunpin_wait(ip);
2461}
2462
2463/*
2464 * Removing an inode from the namespace involves removing the directory entry
2465 * and dropping the link count on the inode. Removing the directory entry can
2466 * result in locking an AGF (directory blocks were freed) and removing a link
2467 * count can result in placing the inode on an unlinked list which results in
2468 * locking an AGI.
2469 *
2470 * The big problem here is that we have an ordering constraint on AGF and AGI
2471 * locking - inode allocation locks the AGI, then can allocate a new extent for
2472 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2473 * removes the inode from the unlinked list, requiring that we lock the AGI
2474 * first, and then freeing the inode can result in an inode chunk being freed
2475 * and hence freeing disk space requiring that we lock an AGF.
2476 *
2477 * Hence the ordering that is imposed by other parts of the code is AGI before
2478 * AGF. This means we cannot remove the directory entry before we drop the inode
2479 * reference count and put it on the unlinked list as this results in a lock
2480 * order of AGF then AGI, and this can deadlock against inode allocation and
2481 * freeing. Therefore we must drop the link counts before we remove the
2482 * directory entry.
2483 *
2484 * This is still safe from a transactional point of view - it is not until we
2485 * get to xfs_bmap_finish() that we have the possibility of multiple
2486 * transactions in this operation. Hence as long as we remove the directory
2487 * entry and drop the link count in the first transaction of the remove
2488 * operation, there are no transactional constraints on the ordering here.
2489 */
2490int
2491xfs_remove(
2492        xfs_inode_t             *dp,
2493        struct xfs_name         *name,
2494        xfs_inode_t             *ip)
2495{
2496        xfs_mount_t             *mp = dp->i_mount;
2497        xfs_trans_t             *tp = NULL;
2498        int                     is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2499        int                     error = 0;
2500        xfs_bmap_free_t         free_list;
2501        xfs_fsblock_t           first_block;
2502        uint                    resblks;
2503
2504        trace_xfs_remove(dp, name);
2505
2506        if (XFS_FORCED_SHUTDOWN(mp))
2507                return -EIO;
2508
2509        error = xfs_qm_dqattach(dp, 0);
2510        if (error)
2511                goto std_return;
2512
2513        error = xfs_qm_dqattach(ip, 0);
2514        if (error)
2515                goto std_return;
2516
2517        /*
2518         * We try to get the real space reservation first,
2519         * allowing for directory btree deletion(s) implying
2520         * possible bmap insert(s).  If we can't get the space
2521         * reservation then we use 0 instead, and avoid the bmap
2522         * btree insert(s) in the directory code by, if the bmap
2523         * insert tries to happen, instead trimming the LAST
2524         * block from the directory.
2525         */
2526        resblks = XFS_REMOVE_SPACE_RES(mp);
2527        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2528        if (error == -ENOSPC) {
2529                resblks = 0;
2530                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2531                                &tp);
2532        }
2533        if (error) {
2534                ASSERT(error != -ENOSPC);
2535                goto std_return;
2536        }
2537
2538        xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2539        xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2540
2541        xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2542        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2543
2544        /*
2545         * If we're removing a directory perform some additional validation.
2546         */
2547        if (is_dir) {
2548                ASSERT(VFS_I(ip)->i_nlink >= 2);
2549                if (VFS_I(ip)->i_nlink != 2) {
2550                        error = -ENOTEMPTY;
2551                        goto out_trans_cancel;
2552                }
2553                if (!xfs_dir_isempty(ip)) {
2554                        error = -ENOTEMPTY;
2555                        goto out_trans_cancel;
2556                }
2557
2558                /* Drop the link from ip's "..".  */
2559                error = xfs_droplink(tp, dp);
2560                if (error)
2561                        goto out_trans_cancel;
2562
2563                /* Drop the "." link from ip to self.  */
2564                error = xfs_droplink(tp, ip);
2565                if (error)
2566                        goto out_trans_cancel;
2567        } else {
2568                /*
2569                 * When removing a non-directory we need to log the parent
2570                 * inode here.  For a directory this is done implicitly
2571                 * by the xfs_droplink call for the ".." entry.
2572                 */
2573                xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2574        }
2575        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2576
2577        /* Drop the link from dp to ip. */
2578        error = xfs_droplink(tp, ip);
2579        if (error)
2580                goto out_trans_cancel;
2581
2582        xfs_bmap_init(&free_list, &first_block);
2583        error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2584                                        &first_block, &free_list, resblks);
2585        if (error) {
2586                ASSERT(error != -ENOENT);
2587                goto out_bmap_cancel;
2588        }
2589
2590        /*
2591         * If this is a synchronous mount, make sure that the
2592         * remove transaction goes to disk before returning to
2593         * the user.
2594         */
2595        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2596                xfs_trans_set_sync(tp);
2597
2598        error = xfs_bmap_finish(&tp, &free_list, NULL);
2599        if (error)
2600                goto out_bmap_cancel;
2601
2602        error = xfs_trans_commit(tp);
2603        if (error)
2604                goto std_return;
2605
2606        if (is_dir && xfs_inode_is_filestream(ip))
2607                xfs_filestream_deassociate(ip);
2608
2609        return 0;
2610
2611 out_bmap_cancel:
2612        xfs_bmap_cancel(&free_list);
2613 out_trans_cancel:
2614        xfs_trans_cancel(tp);
2615 std_return:
2616        return error;
2617}
2618
2619/*
2620 * Enter all inodes for a rename transaction into a sorted array.
2621 */
2622#define __XFS_SORT_INODES       5
2623STATIC void
2624xfs_sort_for_rename(
2625        struct xfs_inode        *dp1,   /* in: old (source) directory inode */
2626        struct xfs_inode        *dp2,   /* in: new (target) directory inode */
2627        struct xfs_inode        *ip1,   /* in: inode of old entry */
2628        struct xfs_inode        *ip2,   /* in: inode of new entry */
2629        struct xfs_inode        *wip,   /* in: whiteout inode */
2630        struct xfs_inode        **i_tab,/* out: sorted array of inodes */
2631        int                     *num_inodes)  /* in/out: inodes in array */
2632{
2633        int                     i, j;
2634
2635        ASSERT(*num_inodes == __XFS_SORT_INODES);
2636        memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2637
2638        /*
2639         * i_tab contains a list of pointers to inodes.  We initialize
2640         * the table here & we'll sort it.  We will then use it to
2641         * order the acquisition of the inode locks.
2642         *
2643         * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2644         */
2645        i = 0;
2646        i_tab[i++] = dp1;
2647        i_tab[i++] = dp2;
2648        i_tab[i++] = ip1;
2649        if (ip2)
2650                i_tab[i++] = ip2;
2651        if (wip)
2652                i_tab[i++] = wip;
2653        *num_inodes = i;
2654
2655        /*
2656         * Sort the elements via bubble sort.  (Remember, there are at
2657         * most 5 elements to sort, so this is adequate.)
2658         */
2659        for (i = 0; i < *num_inodes; i++) {
2660                for (j = 1; j < *num_inodes; j++) {
2661                        if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2662                                struct xfs_inode *temp = i_tab[j];
2663                                i_tab[j] = i_tab[j-1];
2664                                i_tab[j-1] = temp;
2665                        }
2666                }
2667        }
2668}
2669
2670static int
2671xfs_finish_rename(
2672        struct xfs_trans        *tp,
2673        struct xfs_bmap_free    *free_list)
2674{
2675        int                     error;
2676
2677        /*
2678         * If this is a synchronous mount, make sure that the rename transaction
2679         * goes to disk before returning to the user.
2680         */
2681        if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2682                xfs_trans_set_sync(tp);
2683
2684        error = xfs_bmap_finish(&tp, free_list, NULL);
2685        if (error) {
2686                xfs_bmap_cancel(free_list);
2687                xfs_trans_cancel(tp);
2688                return error;
2689        }
2690
2691        return xfs_trans_commit(tp);
2692}
2693
2694/*
2695 * xfs_cross_rename()
2696 *
2697 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2698 */
2699STATIC int
2700xfs_cross_rename(
2701        struct xfs_trans        *tp,
2702        struct xfs_inode        *dp1,
2703        struct xfs_name         *name1,
2704        struct xfs_inode        *ip1,
2705        struct xfs_inode        *dp2,
2706        struct xfs_name         *name2,
2707        struct xfs_inode        *ip2,
2708        struct xfs_bmap_free    *free_list,
2709        xfs_fsblock_t           *first_block,
2710        int                     spaceres)
2711{
2712        int             error = 0;
2713        int             ip1_flags = 0;
2714        int             ip2_flags = 0;
2715        int             dp2_flags = 0;
2716
2717        /* Swap inode number for dirent in first parent */
2718        error = xfs_dir_replace(tp, dp1, name1,
2719                                ip2->i_ino,
2720                                first_block, free_list, spaceres);
2721        if (error)
2722                goto out_trans_abort;
2723
2724        /* Swap inode number for dirent in second parent */
2725        error = xfs_dir_replace(tp, dp2, name2,
2726                                ip1->i_ino,
2727                                first_block, free_list, spaceres);
2728        if (error)
2729                goto out_trans_abort;
2730
2731        /*
2732         * If we're renaming one or more directories across different parents,
2733         * update the respective ".." entries (and link counts) to match the new
2734         * parents.
2735         */
2736        if (dp1 != dp2) {
2737                dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2738
2739                if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2740                        error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2741                                                dp1->i_ino, first_block,
2742                                                free_list, spaceres);
2743                        if (error)
2744                                goto out_trans_abort;
2745
2746                        /* transfer ip2 ".." reference to dp1 */
2747                        if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2748                                error = xfs_droplink(tp, dp2);
2749                                if (error)
2750                                        goto out_trans_abort;
2751                                error = xfs_bumplink(tp, dp1);
2752                                if (error)
2753                                        goto out_trans_abort;
2754                        }
2755
2756                        /*
2757                         * Although ip1 isn't changed here, userspace needs
2758                         * to be warned about the change, so that applications
2759                         * relying on it (like backup ones), will properly
2760                         * notify the change
2761                         */
2762                        ip1_flags |= XFS_ICHGTIME_CHG;
2763                        ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2764                }
2765
2766                if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2767                        error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2768                                                dp2->i_ino, first_block,
2769                                                free_list, spaceres);
2770                        if (error)
2771                                goto out_trans_abort;
2772
2773                        /* transfer ip1 ".." reference to dp2 */
2774                        if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2775                                error = xfs_droplink(tp, dp1);
2776                                if (error)
2777                                        goto out_trans_abort;
2778                                error = xfs_bumplink(tp, dp2);
2779                                if (error)
2780                                        goto out_trans_abort;
2781                        }
2782
2783                        /*
2784                         * Although ip2 isn't changed here, userspace needs
2785                         * to be warned about the change, so that applications
2786                         * relying on it (like backup ones), will properly
2787                         * notify the change
2788                         */
2789                        ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2790                        ip2_flags |= XFS_ICHGTIME_CHG;
2791                }
2792        }
2793
2794        if (ip1_flags) {
2795                xfs_trans_ichgtime(tp, ip1, ip1_flags);
2796                xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2797        }
2798        if (ip2_flags) {
2799                xfs_trans_ichgtime(tp, ip2, ip2_flags);
2800                xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2801        }
2802        if (dp2_flags) {
2803                xfs_trans_ichgtime(tp, dp2, dp2_flags);
2804                xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2805        }
2806        xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2807        xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2808        return xfs_finish_rename(tp, free_list);
2809
2810out_trans_abort:
2811        xfs_bmap_cancel(free_list);
2812        xfs_trans_cancel(tp);
2813        return error;
2814}
2815
2816/*
2817 * xfs_rename_alloc_whiteout()
2818 *
2819 * Return a referenced, unlinked, unlocked inode that that can be used as a
2820 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2821 * crash between allocating the inode and linking it into the rename transaction
2822 * recovery will free the inode and we won't leak it.
2823 */
2824static int
2825xfs_rename_alloc_whiteout(
2826        struct xfs_inode        *dp,
2827        struct xfs_inode        **wip)
2828{
2829        struct xfs_inode        *tmpfile;
2830        int                     error;
2831
2832        error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2833        if (error)
2834                return error;
2835
2836        /*
2837         * Prepare the tmpfile inode as if it were created through the VFS.
2838         * Otherwise, the link increment paths will complain about nlink 0->1.
2839         * Drop the link count as done by d_tmpfile(), complete the inode setup
2840         * and flag it as linkable.
2841         */
2842        drop_nlink(VFS_I(tmpfile));
2843        xfs_setup_iops(tmpfile);
2844        xfs_finish_inode_setup(tmpfile);
2845        VFS_I(tmpfile)->i_state |= I_LINKABLE;
2846
2847        *wip = tmpfile;
2848        return 0;
2849}
2850
2851/*
2852 * xfs_rename
2853 */
2854int
2855xfs_rename(
2856        struct xfs_inode        *src_dp,
2857        struct xfs_name         *src_name,
2858        struct xfs_inode        *src_ip,
2859        struct xfs_inode        *target_dp,
2860        struct xfs_name         *target_name,
2861        struct xfs_inode        *target_ip,
2862        unsigned int            flags)
2863{
2864        struct xfs_mount        *mp = src_dp->i_mount;
2865        struct xfs_trans        *tp;
2866        struct xfs_bmap_free    free_list;
2867        xfs_fsblock_t           first_block;
2868        struct xfs_inode        *wip = NULL;            /* whiteout inode */
2869        struct xfs_inode        *inodes[__XFS_SORT_INODES];
2870        int                     num_inodes = __XFS_SORT_INODES;
2871        bool                    new_parent = (src_dp != target_dp);
2872        bool                    src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2873        int                     spaceres;
2874        int                     error;
2875
2876        trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2877
2878        if ((flags & RENAME_EXCHANGE) && !target_ip)
2879                return -EINVAL;
2880
2881        /*
2882         * If we are doing a whiteout operation, allocate the whiteout inode
2883         * we will be placing at the target and ensure the type is set
2884         * appropriately.
2885         */
2886        if (flags & RENAME_WHITEOUT) {
2887                ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2888                error = xfs_rename_alloc_whiteout(target_dp, &wip);
2889                if (error)
2890                        return error;
2891
2892                /* setup target dirent info as whiteout */
2893                src_name->type = XFS_DIR3_FT_CHRDEV;
2894        }
2895
2896        xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2897                                inodes, &num_inodes);
2898
2899        spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2900        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2901        if (error == -ENOSPC) {
2902                spaceres = 0;
2903                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2904                                &tp);
2905        }
2906        if (error)
2907                goto out_release_wip;
2908
2909        /*
2910         * Attach the dquots to the inodes
2911         */
2912        error = xfs_qm_vop_rename_dqattach(inodes);
2913        if (error)
2914                goto out_trans_cancel;
2915
2916        /*
2917         * Lock all the participating inodes. Depending upon whether
2918         * the target_name exists in the target directory, and
2919         * whether the target directory is the same as the source
2920         * directory, we can lock from 2 to 4 inodes.
2921         */
2922        if (!new_parent)
2923                xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2924        else
2925                xfs_lock_two_inodes(src_dp, target_dp,
2926                                    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2927
2928        xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2929
2930        /*
2931         * Join all the inodes to the transaction. From this point on,
2932         * we can rely on either trans_commit or trans_cancel to unlock
2933         * them.
2934         */
2935        xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2936        if (new_parent)
2937                xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2938        xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2939        if (target_ip)
2940                xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2941        if (wip)
2942                xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2943
2944        /*
2945         * If we are using project inheritance, we only allow renames
2946         * into our tree when the project IDs are the same; else the
2947         * tree quota mechanism would be circumvented.
2948         */
2949        if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2950                     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2951                error = -EXDEV;
2952                goto out_trans_cancel;
2953        }
2954
2955        xfs_bmap_init(&free_list, &first_block);
2956
2957        /* RENAME_EXCHANGE is unique from here on. */
2958        if (flags & RENAME_EXCHANGE)
2959                return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2960                                        target_dp, target_name, target_ip,
2961                                        &free_list, &first_block, spaceres);
2962
2963        /*
2964         * Set up the target.
2965         */
2966        if (target_ip == NULL) {
2967                /*
2968                 * If there's no space reservation, check the entry will
2969                 * fit before actually inserting it.
2970                 */
2971                if (!spaceres) {
2972                        error = xfs_dir_canenter(tp, target_dp, target_name);
2973                        if (error)
2974                                goto out_trans_cancel;
2975                }
2976                /*
2977                 * If target does not exist and the rename crosses
2978                 * directories, adjust the target directory link count
2979                 * to account for the ".." reference from the new entry.
2980                 */
2981                error = xfs_dir_createname(tp, target_dp, target_name,
2982                                                src_ip->i_ino, &first_block,
2983                                                &free_list, spaceres);
2984                if (error)
2985                        goto out_bmap_cancel;
2986
2987                xfs_trans_ichgtime(tp, target_dp,
2988                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2989
2990                if (new_parent && src_is_directory) {
2991                        error = xfs_bumplink(tp, target_dp);
2992                        if (error)
2993                                goto out_bmap_cancel;
2994                }
2995        } else { /* target_ip != NULL */
2996                /*
2997                 * If target exists and it's a directory, check that both
2998                 * target and source are directories and that target can be
2999                 * destroyed, or that neither is a directory.
3000                 */
3001                if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3002                        /*
3003                         * Make sure target dir is empty.
3004                         */
3005                        if (!(xfs_dir_isempty(target_ip)) ||
3006                            (VFS_I(target_ip)->i_nlink > 2)) {
3007                                error = -EEXIST;
3008                                goto out_trans_cancel;
3009                        }
3010                }
3011
3012                /*
3013                 * Link the source inode under the target name.
3014                 * If the source inode is a directory and we are moving
3015                 * it across directories, its ".." entry will be
3016                 * inconsistent until we replace that down below.
3017                 *
3018                 * In case there is already an entry with the same
3019                 * name at the destination directory, remove it first.
3020                 */
3021                error = xfs_dir_replace(tp, target_dp, target_name,
3022                                        src_ip->i_ino,
3023                                        &first_block, &free_list, spaceres);
3024                if (error)
3025                        goto out_bmap_cancel;
3026
3027                xfs_trans_ichgtime(tp, target_dp,
3028                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3029
3030                /*
3031                 * Decrement the link count on the target since the target
3032                 * dir no longer points to it.
3033                 */
3034                error = xfs_droplink(tp, target_ip);
3035                if (error)
3036                        goto out_bmap_cancel;
3037
3038                if (src_is_directory) {
3039                        /*
3040                         * Drop the link from the old "." entry.
3041                         */
3042                        error = xfs_droplink(tp, target_ip);
3043                        if (error)
3044                                goto out_bmap_cancel;
3045                }
3046        } /* target_ip != NULL */
3047
3048        /*
3049         * Remove the source.
3050         */
3051        if (new_parent && src_is_directory) {
3052                /*
3053                 * Rewrite the ".." entry to point to the new
3054                 * directory.
3055                 */
3056                error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3057                                        target_dp->i_ino,
3058                                        &first_block, &free_list, spaceres);
3059                ASSERT(error != -EEXIST);
3060                if (error)
3061                        goto out_bmap_cancel;
3062        }
3063
3064        /*
3065         * We always want to hit the ctime on the source inode.
3066         *
3067         * This isn't strictly required by the standards since the source
3068         * inode isn't really being changed, but old unix file systems did
3069         * it and some incremental backup programs won't work without it.
3070         */
3071        xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3072        xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3073
3074        /*
3075         * Adjust the link count on src_dp.  This is necessary when
3076         * renaming a directory, either within one parent when
3077         * the target existed, or across two parent directories.
3078         */
3079        if (src_is_directory && (new_parent || target_ip != NULL)) {
3080
3081                /*
3082                 * Decrement link count on src_directory since the
3083                 * entry that's moved no longer points to it.
3084                 */
3085                error = xfs_droplink(tp, src_dp);
3086                if (error)
3087                        goto out_bmap_cancel;
3088        }
3089
3090        /*
3091         * For whiteouts, we only need to update the source dirent with the
3092         * inode number of the whiteout inode rather than removing it
3093         * altogether.
3094         */
3095        if (wip) {
3096                error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3097                                        &first_block, &free_list, spaceres);
3098        } else
3099                error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3100                                           &first_block, &free_list, spaceres);
3101        if (error)
3102                goto out_bmap_cancel;
3103
3104        /*
3105         * For whiteouts, we need to bump the link count on the whiteout inode.
3106         * This means that failures all the way up to this point leave the inode
3107         * on the unlinked list and so cleanup is a simple matter of dropping
3108         * the remaining reference to it. If we fail here after bumping the link
3109         * count, we're shutting down the filesystem so we'll never see the
3110         * intermediate state on disk.
3111         */
3112        if (wip) {
3113                ASSERT(VFS_I(wip)->i_nlink == 0);
3114                error = xfs_bumplink(tp, wip);
3115                if (error)
3116                        goto out_bmap_cancel;
3117                error = xfs_iunlink_remove(tp, wip);
3118                if (error)
3119                        goto out_bmap_cancel;
3120                xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3121
3122                /*
3123                 * Now we have a real link, clear the "I'm a tmpfile" state
3124                 * flag from the inode so it doesn't accidentally get misused in
3125                 * future.
3126                 */
3127                VFS_I(wip)->i_state &= ~I_LINKABLE;
3128        }
3129
3130        xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3131        xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3132        if (new_parent)
3133                xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3134
3135        error = xfs_finish_rename(tp, &free_list);
3136        if (wip)
3137                IRELE(wip);
3138        return error;
3139
3140out_bmap_cancel:
3141        xfs_bmap_cancel(&free_list);
3142out_trans_cancel:
3143        xfs_trans_cancel(tp);
3144out_release_wip:
3145        if (wip)
3146                IRELE(wip);
3147        return error;
3148}
3149
3150STATIC int
3151xfs_iflush_cluster(
3152        struct xfs_inode        *ip,
3153        struct xfs_buf          *bp)
3154{
3155        struct xfs_mount        *mp = ip->i_mount;
3156        struct xfs_perag        *pag;
3157        unsigned long           first_index, mask;
3158        unsigned long           inodes_per_cluster;
3159        int                     cilist_size;
3160        struct xfs_inode        **cilist;
3161        struct xfs_inode        *cip;
3162        int                     nr_found;
3163        int                     clcount = 0;
3164        int                     bufwasdelwri;
3165        int                     i;
3166
3167        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3168
3169        inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3170        cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3171        cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3172        if (!cilist)
3173                goto out_put;
3174
3175        mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3176        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3177        rcu_read_lock();
3178        /* really need a gang lookup range call here */
3179        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3180                                        first_index, inodes_per_cluster);
3181        if (nr_found == 0)
3182                goto out_free;
3183
3184        for (i = 0; i < nr_found; i++) {
3185                cip = cilist[i];
3186                if (cip == ip)
3187                        continue;
3188
3189                /*
3190                 * because this is an RCU protected lookup, we could find a
3191                 * recently freed or even reallocated inode during the lookup.
3192                 * We need to check under the i_flags_lock for a valid inode
3193                 * here. Skip it if it is not valid or the wrong inode.
3194                 */
3195                spin_lock(&cip->i_flags_lock);
3196                if (!cip->i_ino ||
3197                    __xfs_iflags_test(cip, XFS_ISTALE)) {
3198                        spin_unlock(&cip->i_flags_lock);
3199                        continue;
3200                }
3201
3202                /*
3203                 * Once we fall off the end of the cluster, no point checking
3204                 * any more inodes in the list because they will also all be
3205                 * outside the cluster.
3206                 */
3207                if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3208                        spin_unlock(&cip->i_flags_lock);
3209                        break;
3210                }
3211                spin_unlock(&cip->i_flags_lock);
3212
3213                /*
3214                 * Do an un-protected check to see if the inode is dirty and
3215                 * is a candidate for flushing.  These checks will be repeated
3216                 * later after the appropriate locks are acquired.
3217                 */
3218                if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3219                        continue;
3220
3221                /*
3222                 * Try to get locks.  If any are unavailable or it is pinned,
3223                 * then this inode cannot be flushed and is skipped.
3224                 */
3225
3226                if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3227                        continue;
3228                if (!xfs_iflock_nowait(cip)) {
3229                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3230                        continue;
3231                }
3232                if (xfs_ipincount(cip)) {
3233                        xfs_ifunlock(cip);
3234                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3235                        continue;
3236                }
3237
3238
3239                /*
3240                 * Check the inode number again, just to be certain we are not
3241                 * racing with freeing in xfs_reclaim_inode(). See the comments
3242                 * in that function for more information as to why the initial
3243                 * check is not sufficient.
3244                 */
3245                if (!cip->i_ino) {
3246                        xfs_ifunlock(cip);
3247                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3248                        continue;
3249                }
3250
3251                /*
3252                 * arriving here means that this inode can be flushed.  First
3253                 * re-check that it's dirty before flushing.
3254                 */
3255                if (!xfs_inode_clean(cip)) {
3256                        int     error;
3257                        error = xfs_iflush_int(cip, bp);
3258                        if (error) {
3259                                xfs_iunlock(cip, XFS_ILOCK_SHARED);
3260                                goto cluster_corrupt_out;
3261                        }
3262                        clcount++;
3263                } else {
3264                        xfs_ifunlock(cip);
3265                }
3266                xfs_iunlock(cip, XFS_ILOCK_SHARED);
3267        }
3268
3269        if (clcount) {
3270                XFS_STATS_INC(mp, xs_icluster_flushcnt);
3271                XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3272        }
3273
3274out_free:
3275        rcu_read_unlock();
3276        kmem_free(cilist);
3277out_put:
3278        xfs_perag_put(pag);
3279        return 0;
3280
3281
3282cluster_corrupt_out:
3283        /*
3284         * Corruption detected in the clustering loop.  Invalidate the
3285         * inode buffer and shut down the filesystem.
3286         */
3287        rcu_read_unlock();
3288        /*
3289         * Clean up the buffer.  If it was delwri, just release it --
3290         * brelse can handle it with no problems.  If not, shut down the
3291         * filesystem before releasing the buffer.
3292         */
3293        bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3294        if (bufwasdelwri)
3295                xfs_buf_relse(bp);
3296
3297        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3298
3299        if (!bufwasdelwri) {
3300                /*
3301                 * Just like incore_relse: if we have b_iodone functions,
3302                 * mark the buffer as an error and call them.  Otherwise
3303                 * mark it as stale and brelse.
3304                 */
3305                if (bp->b_iodone) {
3306                        bp->b_flags &= ~XBF_DONE;
3307                        xfs_buf_stale(bp);
3308                        xfs_buf_ioerror(bp, -EIO);
3309                        xfs_buf_ioend(bp);
3310                } else {
3311                        xfs_buf_stale(bp);
3312                        xfs_buf_relse(bp);
3313                }
3314        }
3315
3316        /*
3317         * Unlocks the flush lock
3318         */
3319        xfs_iflush_abort(cip, false);
3320        kmem_free(cilist);
3321        xfs_perag_put(pag);
3322        return -EFSCORRUPTED;
3323}
3324
3325/*
3326 * Flush dirty inode metadata into the backing buffer.
3327 *
3328 * The caller must have the inode lock and the inode flush lock held.  The
3329 * inode lock will still be held upon return to the caller, and the inode
3330 * flush lock will be released after the inode has reached the disk.
3331 *
3332 * The caller must write out the buffer returned in *bpp and release it.
3333 */
3334int
3335xfs_iflush(
3336        struct xfs_inode        *ip,
3337        struct xfs_buf          **bpp)
3338{
3339        struct xfs_mount        *mp = ip->i_mount;
3340        struct xfs_buf          *bp = NULL;
3341        struct xfs_dinode       *dip;
3342        int                     error;
3343
3344        XFS_STATS_INC(mp, xs_iflush_count);
3345
3346        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3347        ASSERT(xfs_isiflocked(ip));
3348        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3349               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3350
3351        *bpp = NULL;
3352
3353        xfs_iunpin_wait(ip);
3354
3355        /*
3356         * For stale inodes we cannot rely on the backing buffer remaining
3357         * stale in cache for the remaining life of the stale inode and so
3358         * xfs_imap_to_bp() below may give us a buffer that no longer contains
3359         * inodes below. We have to check this after ensuring the inode is
3360         * unpinned so that it is safe to reclaim the stale inode after the
3361         * flush call.
3362         */
3363        if (xfs_iflags_test(ip, XFS_ISTALE)) {
3364                xfs_ifunlock(ip);
3365                return 0;
3366        }
3367
3368        /*
3369         * This may have been unpinned because the filesystem is shutting
3370         * down forcibly. If that's the case we must not write this inode
3371         * to disk, because the log record didn't make it to disk.
3372         *
3373         * We also have to remove the log item from the AIL in this case,
3374         * as we wait for an empty AIL as part of the unmount process.
3375         */
3376        if (XFS_FORCED_SHUTDOWN(mp)) {
3377                error = -EIO;
3378                goto abort_out;
3379        }
3380
3381        /*
3382         * Get the buffer containing the on-disk inode. We are doing a try-lock
3383         * operation here, so we may get  an EAGAIN error. In that case, we
3384         * simply want to return with the inode still dirty.
3385         *
3386         * If we get any other error, we effectively have a corruption situation
3387         * and we cannot flush the inode, so we treat it the same as failing
3388         * xfs_iflush_int().
3389         */
3390        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3391                               0);
3392        if (error == -EAGAIN) {
3393                xfs_ifunlock(ip);
3394                return error;
3395        }
3396        if (error)
3397                goto corrupt_out;
3398
3399        /*
3400         * First flush out the inode that xfs_iflush was called with.
3401         */
3402        error = xfs_iflush_int(ip, bp);
3403        if (error)
3404                goto corrupt_out;
3405
3406        /*
3407         * If the buffer is pinned then push on the log now so we won't
3408         * get stuck waiting in the write for too long.
3409         */
3410        if (xfs_buf_ispinned(bp))
3411                xfs_log_force(mp, 0);
3412
3413        /*
3414         * inode clustering:
3415         * see if other inodes can be gathered into this write
3416         */
3417        error = xfs_iflush_cluster(ip, bp);
3418        if (error)
3419                goto cluster_corrupt_out;
3420
3421        *bpp = bp;
3422        return 0;
3423
3424corrupt_out:
3425        if (bp)
3426                xfs_buf_relse(bp);
3427        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3428cluster_corrupt_out:
3429        error = -EFSCORRUPTED;
3430abort_out:
3431        /*
3432         * Unlocks the flush lock
3433         */
3434        xfs_iflush_abort(ip, false);
3435        return error;
3436}
3437
3438STATIC int
3439xfs_iflush_int(
3440        struct xfs_inode        *ip,
3441        struct xfs_buf          *bp)
3442{
3443        struct xfs_inode_log_item *iip = ip->i_itemp;
3444        struct xfs_dinode       *dip;
3445        struct xfs_mount        *mp = ip->i_mount;
3446
3447        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3448        ASSERT(xfs_isiflocked(ip));
3449        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3450               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3451        ASSERT(iip != NULL && iip->ili_fields != 0);
3452        ASSERT(ip->i_d.di_version > 1);
3453
3454        /* set *dip = inode's place in the buffer */
3455        dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3456
3457        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3458                               mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3459                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3460                        "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3461                        __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3462                goto corrupt_out;
3463        }
3464        if (S_ISREG(VFS_I(ip)->i_mode)) {
3465                if (XFS_TEST_ERROR(
3466                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3467                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3468                    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3469                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3470                                "%s: Bad regular inode %Lu, ptr 0x%p",
3471                                __func__, ip->i_ino, ip);
3472                        goto corrupt_out;
3473                }
3474        } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3475                if (XFS_TEST_ERROR(
3476                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3477                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3478                    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3479                    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3480                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481                                "%s: Bad directory inode %Lu, ptr 0x%p",
3482                                __func__, ip->i_ino, ip);
3483                        goto corrupt_out;
3484                }
3485        }
3486        if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3487                                ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3488                                XFS_RANDOM_IFLUSH_5)) {
3489                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3490                        "%s: detected corrupt incore inode %Lu, "
3491                        "total extents = %d, nblocks = %Ld, ptr 0x%p",
3492                        __func__, ip->i_ino,
3493                        ip->i_d.di_nextents + ip->i_d.di_anextents,
3494                        ip->i_d.di_nblocks, ip);
3495                goto corrupt_out;
3496        }
3497        if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3498                                mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3499                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3500                        "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3501                        __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3502                goto corrupt_out;
3503        }
3504
3505        /*
3506         * Inode item log recovery for v2 inodes are dependent on the
3507         * di_flushiter count for correct sequencing. We bump the flush
3508         * iteration count so we can detect flushes which postdate a log record
3509         * during recovery. This is redundant as we now log every change and
3510         * hence this can't happen but we need to still do it to ensure
3511         * backwards compatibility with old kernels that predate logging all
3512         * inode changes.
3513         */
3514        if (ip->i_d.di_version < 3)
3515                ip->i_d.di_flushiter++;
3516
3517        /*
3518         * Copy the dirty parts of the inode into the on-disk inode.  We always
3519         * copy out the core of the inode, because if the inode is dirty at all
3520         * the core must be.
3521         */
3522        xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3523
3524        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3525        if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3526                ip->i_d.di_flushiter = 0;
3527
3528        xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3529        if (XFS_IFORK_Q(ip))
3530                xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3531        xfs_inobp_check(mp, bp);
3532
3533        /*
3534         * We've recorded everything logged in the inode, so we'd like to clear
3535         * the ili_fields bits so we don't log and flush things unnecessarily.
3536         * However, we can't stop logging all this information until the data
3537         * we've copied into the disk buffer is written to disk.  If we did we
3538         * might overwrite the copy of the inode in the log with all the data
3539         * after re-logging only part of it, and in the face of a crash we
3540         * wouldn't have all the data we need to recover.
3541         *
3542         * What we do is move the bits to the ili_last_fields field.  When
3543         * logging the inode, these bits are moved back to the ili_fields field.
3544         * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3545         * know that the information those bits represent is permanently on
3546         * disk.  As long as the flush completes before the inode is logged
3547         * again, then both ili_fields and ili_last_fields will be cleared.
3548         *
3549         * We can play with the ili_fields bits here, because the inode lock
3550         * must be held exclusively in order to set bits there and the flush
3551         * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3552         * done routine can tell whether or not to look in the AIL.  Also, store
3553         * the current LSN of the inode so that we can tell whether the item has
3554         * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3555         * need the AIL lock, because it is a 64 bit value that cannot be read
3556         * atomically.
3557         */
3558        iip->ili_last_fields = iip->ili_fields;
3559        iip->ili_fields = 0;
3560        iip->ili_fsync_fields = 0;
3561        iip->ili_logged = 1;
3562
3563        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3564                                &iip->ili_item.li_lsn);
3565
3566        /*
3567         * Attach the function xfs_iflush_done to the inode's
3568         * buffer.  This will remove the inode from the AIL
3569         * and unlock the inode's flush lock when the inode is
3570         * completely written to disk.
3571         */
3572        xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3573
3574        /* generate the checksum. */
3575        xfs_dinode_calc_crc(mp, dip);
3576
3577        ASSERT(bp->b_fspriv != NULL);
3578        ASSERT(bp->b_iodone != NULL);
3579        return 0;
3580
3581corrupt_out:
3582        return -EFSCORRUPTED;
3583}
3584