linux/fs/xfs/xfs_log.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_mount.h"
  25#include "xfs_error.h"
  26#include "xfs_trans.h"
  27#include "xfs_trans_priv.h"
  28#include "xfs_log.h"
  29#include "xfs_log_priv.h"
  30#include "xfs_log_recover.h"
  31#include "xfs_inode.h"
  32#include "xfs_trace.h"
  33#include "xfs_fsops.h"
  34#include "xfs_cksum.h"
  35#include "xfs_sysfs.h"
  36#include "xfs_sb.h"
  37
  38kmem_zone_t     *xfs_log_ticket_zone;
  39
  40/* Local miscellaneous function prototypes */
  41STATIC int
  42xlog_commit_record(
  43        struct xlog             *log,
  44        struct xlog_ticket      *ticket,
  45        struct xlog_in_core     **iclog,
  46        xfs_lsn_t               *commitlsnp);
  47
  48STATIC struct xlog *
  49xlog_alloc_log(
  50        struct xfs_mount        *mp,
  51        struct xfs_buftarg      *log_target,
  52        xfs_daddr_t             blk_offset,
  53        int                     num_bblks);
  54STATIC int
  55xlog_space_left(
  56        struct xlog             *log,
  57        atomic64_t              *head);
  58STATIC int
  59xlog_sync(
  60        struct xlog             *log,
  61        struct xlog_in_core     *iclog);
  62STATIC void
  63xlog_dealloc_log(
  64        struct xlog             *log);
  65
  66/* local state machine functions */
  67STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
  68STATIC void
  69xlog_state_do_callback(
  70        struct xlog             *log,
  71        int                     aborted,
  72        struct xlog_in_core     *iclog);
  73STATIC int
  74xlog_state_get_iclog_space(
  75        struct xlog             *log,
  76        int                     len,
  77        struct xlog_in_core     **iclog,
  78        struct xlog_ticket      *ticket,
  79        int                     *continued_write,
  80        int                     *logoffsetp);
  81STATIC int
  82xlog_state_release_iclog(
  83        struct xlog             *log,
  84        struct xlog_in_core     *iclog);
  85STATIC void
  86xlog_state_switch_iclogs(
  87        struct xlog             *log,
  88        struct xlog_in_core     *iclog,
  89        int                     eventual_size);
  90STATIC void
  91xlog_state_want_sync(
  92        struct xlog             *log,
  93        struct xlog_in_core     *iclog);
  94
  95STATIC void
  96xlog_grant_push_ail(
  97        struct xlog             *log,
  98        int                     need_bytes);
  99STATIC void
 100xlog_regrant_reserve_log_space(
 101        struct xlog             *log,
 102        struct xlog_ticket      *ticket);
 103STATIC void
 104xlog_ungrant_log_space(
 105        struct xlog             *log,
 106        struct xlog_ticket      *ticket);
 107
 108#if defined(DEBUG)
 109STATIC void
 110xlog_verify_dest_ptr(
 111        struct xlog             *log,
 112        void                    *ptr);
 113STATIC void
 114xlog_verify_grant_tail(
 115        struct xlog *log);
 116STATIC void
 117xlog_verify_iclog(
 118        struct xlog             *log,
 119        struct xlog_in_core     *iclog,
 120        int                     count,
 121        bool                    syncing);
 122STATIC void
 123xlog_verify_tail_lsn(
 124        struct xlog             *log,
 125        struct xlog_in_core     *iclog,
 126        xfs_lsn_t               tail_lsn);
 127#else
 128#define xlog_verify_dest_ptr(a,b)
 129#define xlog_verify_grant_tail(a)
 130#define xlog_verify_iclog(a,b,c,d)
 131#define xlog_verify_tail_lsn(a,b,c)
 132#endif
 133
 134STATIC int
 135xlog_iclogs_empty(
 136        struct xlog             *log);
 137
 138static void
 139xlog_grant_sub_space(
 140        struct xlog             *log,
 141        atomic64_t              *head,
 142        int                     bytes)
 143{
 144        int64_t head_val = atomic64_read(head);
 145        int64_t new, old;
 146
 147        do {
 148                int     cycle, space;
 149
 150                xlog_crack_grant_head_val(head_val, &cycle, &space);
 151
 152                space -= bytes;
 153                if (space < 0) {
 154                        space += log->l_logsize;
 155                        cycle--;
 156                }
 157
 158                old = head_val;
 159                new = xlog_assign_grant_head_val(cycle, space);
 160                head_val = atomic64_cmpxchg(head, old, new);
 161        } while (head_val != old);
 162}
 163
 164static void
 165xlog_grant_add_space(
 166        struct xlog             *log,
 167        atomic64_t              *head,
 168        int                     bytes)
 169{
 170        int64_t head_val = atomic64_read(head);
 171        int64_t new, old;
 172
 173        do {
 174                int             tmp;
 175                int             cycle, space;
 176
 177                xlog_crack_grant_head_val(head_val, &cycle, &space);
 178
 179                tmp = log->l_logsize - space;
 180                if (tmp > bytes)
 181                        space += bytes;
 182                else {
 183                        space = bytes - tmp;
 184                        cycle++;
 185                }
 186
 187                old = head_val;
 188                new = xlog_assign_grant_head_val(cycle, space);
 189                head_val = atomic64_cmpxchg(head, old, new);
 190        } while (head_val != old);
 191}
 192
 193STATIC void
 194xlog_grant_head_init(
 195        struct xlog_grant_head  *head)
 196{
 197        xlog_assign_grant_head(&head->grant, 1, 0);
 198        INIT_LIST_HEAD(&head->waiters);
 199        spin_lock_init(&head->lock);
 200}
 201
 202STATIC void
 203xlog_grant_head_wake_all(
 204        struct xlog_grant_head  *head)
 205{
 206        struct xlog_ticket      *tic;
 207
 208        spin_lock(&head->lock);
 209        list_for_each_entry(tic, &head->waiters, t_queue)
 210                wake_up_process(tic->t_task);
 211        spin_unlock(&head->lock);
 212}
 213
 214static inline int
 215xlog_ticket_reservation(
 216        struct xlog             *log,
 217        struct xlog_grant_head  *head,
 218        struct xlog_ticket      *tic)
 219{
 220        if (head == &log->l_write_head) {
 221                ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
 222                return tic->t_unit_res;
 223        } else {
 224                if (tic->t_flags & XLOG_TIC_PERM_RESERV)
 225                        return tic->t_unit_res * tic->t_cnt;
 226                else
 227                        return tic->t_unit_res;
 228        }
 229}
 230
 231STATIC bool
 232xlog_grant_head_wake(
 233        struct xlog             *log,
 234        struct xlog_grant_head  *head,
 235        int                     *free_bytes)
 236{
 237        struct xlog_ticket      *tic;
 238        int                     need_bytes;
 239
 240        list_for_each_entry(tic, &head->waiters, t_queue) {
 241                need_bytes = xlog_ticket_reservation(log, head, tic);
 242                if (*free_bytes < need_bytes)
 243                        return false;
 244
 245                *free_bytes -= need_bytes;
 246                trace_xfs_log_grant_wake_up(log, tic);
 247                wake_up_process(tic->t_task);
 248        }
 249
 250        return true;
 251}
 252
 253STATIC int
 254xlog_grant_head_wait(
 255        struct xlog             *log,
 256        struct xlog_grant_head  *head,
 257        struct xlog_ticket      *tic,
 258        int                     need_bytes) __releases(&head->lock)
 259                                            __acquires(&head->lock)
 260{
 261        list_add_tail(&tic->t_queue, &head->waiters);
 262
 263        do {
 264                if (XLOG_FORCED_SHUTDOWN(log))
 265                        goto shutdown;
 266                xlog_grant_push_ail(log, need_bytes);
 267
 268                __set_current_state(TASK_UNINTERRUPTIBLE);
 269                spin_unlock(&head->lock);
 270
 271                XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
 272
 273                trace_xfs_log_grant_sleep(log, tic);
 274                schedule();
 275                trace_xfs_log_grant_wake(log, tic);
 276
 277                spin_lock(&head->lock);
 278                if (XLOG_FORCED_SHUTDOWN(log))
 279                        goto shutdown;
 280        } while (xlog_space_left(log, &head->grant) < need_bytes);
 281
 282        list_del_init(&tic->t_queue);
 283        return 0;
 284shutdown:
 285        list_del_init(&tic->t_queue);
 286        return -EIO;
 287}
 288
 289/*
 290 * Atomically get the log space required for a log ticket.
 291 *
 292 * Once a ticket gets put onto head->waiters, it will only return after the
 293 * needed reservation is satisfied.
 294 *
 295 * This function is structured so that it has a lock free fast path. This is
 296 * necessary because every new transaction reservation will come through this
 297 * path. Hence any lock will be globally hot if we take it unconditionally on
 298 * every pass.
 299 *
 300 * As tickets are only ever moved on and off head->waiters under head->lock, we
 301 * only need to take that lock if we are going to add the ticket to the queue
 302 * and sleep. We can avoid taking the lock if the ticket was never added to
 303 * head->waiters because the t_queue list head will be empty and we hold the
 304 * only reference to it so it can safely be checked unlocked.
 305 */
 306STATIC int
 307xlog_grant_head_check(
 308        struct xlog             *log,
 309        struct xlog_grant_head  *head,
 310        struct xlog_ticket      *tic,
 311        int                     *need_bytes)
 312{
 313        int                     free_bytes;
 314        int                     error = 0;
 315
 316        ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
 317
 318        /*
 319         * If there are other waiters on the queue then give them a chance at
 320         * logspace before us.  Wake up the first waiters, if we do not wake
 321         * up all the waiters then go to sleep waiting for more free space,
 322         * otherwise try to get some space for this transaction.
 323         */
 324        *need_bytes = xlog_ticket_reservation(log, head, tic);
 325        free_bytes = xlog_space_left(log, &head->grant);
 326        if (!list_empty_careful(&head->waiters)) {
 327                spin_lock(&head->lock);
 328                if (!xlog_grant_head_wake(log, head, &free_bytes) ||
 329                    free_bytes < *need_bytes) {
 330                        error = xlog_grant_head_wait(log, head, tic,
 331                                                     *need_bytes);
 332                }
 333                spin_unlock(&head->lock);
 334        } else if (free_bytes < *need_bytes) {
 335                spin_lock(&head->lock);
 336                error = xlog_grant_head_wait(log, head, tic, *need_bytes);
 337                spin_unlock(&head->lock);
 338        }
 339
 340        return error;
 341}
 342
 343static void
 344xlog_tic_reset_res(xlog_ticket_t *tic)
 345{
 346        tic->t_res_num = 0;
 347        tic->t_res_arr_sum = 0;
 348        tic->t_res_num_ophdrs = 0;
 349}
 350
 351static void
 352xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
 353{
 354        if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
 355                /* add to overflow and start again */
 356                tic->t_res_o_flow += tic->t_res_arr_sum;
 357                tic->t_res_num = 0;
 358                tic->t_res_arr_sum = 0;
 359        }
 360
 361        tic->t_res_arr[tic->t_res_num].r_len = len;
 362        tic->t_res_arr[tic->t_res_num].r_type = type;
 363        tic->t_res_arr_sum += len;
 364        tic->t_res_num++;
 365}
 366
 367/*
 368 * Replenish the byte reservation required by moving the grant write head.
 369 */
 370int
 371xfs_log_regrant(
 372        struct xfs_mount        *mp,
 373        struct xlog_ticket      *tic)
 374{
 375        struct xlog             *log = mp->m_log;
 376        int                     need_bytes;
 377        int                     error = 0;
 378
 379        if (XLOG_FORCED_SHUTDOWN(log))
 380                return -EIO;
 381
 382        XFS_STATS_INC(mp, xs_try_logspace);
 383
 384        /*
 385         * This is a new transaction on the ticket, so we need to change the
 386         * transaction ID so that the next transaction has a different TID in
 387         * the log. Just add one to the existing tid so that we can see chains
 388         * of rolling transactions in the log easily.
 389         */
 390        tic->t_tid++;
 391
 392        xlog_grant_push_ail(log, tic->t_unit_res);
 393
 394        tic->t_curr_res = tic->t_unit_res;
 395        xlog_tic_reset_res(tic);
 396
 397        if (tic->t_cnt > 0)
 398                return 0;
 399
 400        trace_xfs_log_regrant(log, tic);
 401
 402        error = xlog_grant_head_check(log, &log->l_write_head, tic,
 403                                      &need_bytes);
 404        if (error)
 405                goto out_error;
 406
 407        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 408        trace_xfs_log_regrant_exit(log, tic);
 409        xlog_verify_grant_tail(log);
 410        return 0;
 411
 412out_error:
 413        /*
 414         * If we are failing, make sure the ticket doesn't have any current
 415         * reservations.  We don't want to add this back when the ticket/
 416         * transaction gets cancelled.
 417         */
 418        tic->t_curr_res = 0;
 419        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 420        return error;
 421}
 422
 423/*
 424 * Reserve log space and return a ticket corresponding the reservation.
 425 *
 426 * Each reservation is going to reserve extra space for a log record header.
 427 * When writes happen to the on-disk log, we don't subtract the length of the
 428 * log record header from any reservation.  By wasting space in each
 429 * reservation, we prevent over allocation problems.
 430 */
 431int
 432xfs_log_reserve(
 433        struct xfs_mount        *mp,
 434        int                     unit_bytes,
 435        int                     cnt,
 436        struct xlog_ticket      **ticp,
 437        __uint8_t               client,
 438        bool                    permanent)
 439{
 440        struct xlog             *log = mp->m_log;
 441        struct xlog_ticket      *tic;
 442        int                     need_bytes;
 443        int                     error = 0;
 444
 445        ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
 446
 447        if (XLOG_FORCED_SHUTDOWN(log))
 448                return -EIO;
 449
 450        XFS_STATS_INC(mp, xs_try_logspace);
 451
 452        ASSERT(*ticp == NULL);
 453        tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
 454                                KM_SLEEP | KM_MAYFAIL);
 455        if (!tic)
 456                return -ENOMEM;
 457
 458        *ticp = tic;
 459
 460        xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
 461                                            : tic->t_unit_res);
 462
 463        trace_xfs_log_reserve(log, tic);
 464
 465        error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
 466                                      &need_bytes);
 467        if (error)
 468                goto out_error;
 469
 470        xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
 471        xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
 472        trace_xfs_log_reserve_exit(log, tic);
 473        xlog_verify_grant_tail(log);
 474        return 0;
 475
 476out_error:
 477        /*
 478         * If we are failing, make sure the ticket doesn't have any current
 479         * reservations.  We don't want to add this back when the ticket/
 480         * transaction gets cancelled.
 481         */
 482        tic->t_curr_res = 0;
 483        tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
 484        return error;
 485}
 486
 487
 488/*
 489 * NOTES:
 490 *
 491 *      1. currblock field gets updated at startup and after in-core logs
 492 *              marked as with WANT_SYNC.
 493 */
 494
 495/*
 496 * This routine is called when a user of a log manager ticket is done with
 497 * the reservation.  If the ticket was ever used, then a commit record for
 498 * the associated transaction is written out as a log operation header with
 499 * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
 500 * a given ticket.  If the ticket was one with a permanent reservation, then
 501 * a few operations are done differently.  Permanent reservation tickets by
 502 * default don't release the reservation.  They just commit the current
 503 * transaction with the belief that the reservation is still needed.  A flag
 504 * must be passed in before permanent reservations are actually released.
 505 * When these type of tickets are not released, they need to be set into
 506 * the inited state again.  By doing this, a start record will be written
 507 * out when the next write occurs.
 508 */
 509xfs_lsn_t
 510xfs_log_done(
 511        struct xfs_mount        *mp,
 512        struct xlog_ticket      *ticket,
 513        struct xlog_in_core     **iclog,
 514        bool                    regrant)
 515{
 516        struct xlog             *log = mp->m_log;
 517        xfs_lsn_t               lsn = 0;
 518
 519        if (XLOG_FORCED_SHUTDOWN(log) ||
 520            /*
 521             * If nothing was ever written, don't write out commit record.
 522             * If we get an error, just continue and give back the log ticket.
 523             */
 524            (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
 525             (xlog_commit_record(log, ticket, iclog, &lsn)))) {
 526                lsn = (xfs_lsn_t) -1;
 527                regrant = false;
 528        }
 529
 530
 531        if (!regrant) {
 532                trace_xfs_log_done_nonperm(log, ticket);
 533
 534                /*
 535                 * Release ticket if not permanent reservation or a specific
 536                 * request has been made to release a permanent reservation.
 537                 */
 538                xlog_ungrant_log_space(log, ticket);
 539        } else {
 540                trace_xfs_log_done_perm(log, ticket);
 541
 542                xlog_regrant_reserve_log_space(log, ticket);
 543                /* If this ticket was a permanent reservation and we aren't
 544                 * trying to release it, reset the inited flags; so next time
 545                 * we write, a start record will be written out.
 546                 */
 547                ticket->t_flags |= XLOG_TIC_INITED;
 548        }
 549
 550        xfs_log_ticket_put(ticket);
 551        return lsn;
 552}
 553
 554/*
 555 * Attaches a new iclog I/O completion callback routine during
 556 * transaction commit.  If the log is in error state, a non-zero
 557 * return code is handed back and the caller is responsible for
 558 * executing the callback at an appropriate time.
 559 */
 560int
 561xfs_log_notify(
 562        struct xfs_mount        *mp,
 563        struct xlog_in_core     *iclog,
 564        xfs_log_callback_t      *cb)
 565{
 566        int     abortflg;
 567
 568        spin_lock(&iclog->ic_callback_lock);
 569        abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
 570        if (!abortflg) {
 571                ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
 572                              (iclog->ic_state == XLOG_STATE_WANT_SYNC));
 573                cb->cb_next = NULL;
 574                *(iclog->ic_callback_tail) = cb;
 575                iclog->ic_callback_tail = &(cb->cb_next);
 576        }
 577        spin_unlock(&iclog->ic_callback_lock);
 578        return abortflg;
 579}
 580
 581int
 582xfs_log_release_iclog(
 583        struct xfs_mount        *mp,
 584        struct xlog_in_core     *iclog)
 585{
 586        if (xlog_state_release_iclog(mp->m_log, iclog)) {
 587                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
 588                return -EIO;
 589        }
 590
 591        return 0;
 592}
 593
 594/*
 595 * Mount a log filesystem
 596 *
 597 * mp           - ubiquitous xfs mount point structure
 598 * log_target   - buftarg of on-disk log device
 599 * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
 600 * num_bblocks  - Number of BBSIZE blocks in on-disk log
 601 *
 602 * Return error or zero.
 603 */
 604int
 605xfs_log_mount(
 606        xfs_mount_t     *mp,
 607        xfs_buftarg_t   *log_target,
 608        xfs_daddr_t     blk_offset,
 609        int             num_bblks)
 610{
 611        int             error = 0;
 612        int             min_logfsbs;
 613
 614        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 615                xfs_notice(mp, "Mounting V%d Filesystem",
 616                           XFS_SB_VERSION_NUM(&mp->m_sb));
 617        } else {
 618                xfs_notice(mp,
 619"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
 620                           XFS_SB_VERSION_NUM(&mp->m_sb));
 621                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 622        }
 623
 624        mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
 625        if (IS_ERR(mp->m_log)) {
 626                error = PTR_ERR(mp->m_log);
 627                goto out;
 628        }
 629
 630        /*
 631         * Validate the given log space and drop a critical message via syslog
 632         * if the log size is too small that would lead to some unexpected
 633         * situations in transaction log space reservation stage.
 634         *
 635         * Note: we can't just reject the mount if the validation fails.  This
 636         * would mean that people would have to downgrade their kernel just to
 637         * remedy the situation as there is no way to grow the log (short of
 638         * black magic surgery with xfs_db).
 639         *
 640         * We can, however, reject mounts for CRC format filesystems, as the
 641         * mkfs binary being used to make the filesystem should never create a
 642         * filesystem with a log that is too small.
 643         */
 644        min_logfsbs = xfs_log_calc_minimum_size(mp);
 645
 646        if (mp->m_sb.sb_logblocks < min_logfsbs) {
 647                xfs_warn(mp,
 648                "Log size %d blocks too small, minimum size is %d blocks",
 649                         mp->m_sb.sb_logblocks, min_logfsbs);
 650                error = -EINVAL;
 651        } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
 652                xfs_warn(mp,
 653                "Log size %d blocks too large, maximum size is %lld blocks",
 654                         mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
 655                error = -EINVAL;
 656        } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
 657                xfs_warn(mp,
 658                "log size %lld bytes too large, maximum size is %lld bytes",
 659                         XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
 660                         XFS_MAX_LOG_BYTES);
 661                error = -EINVAL;
 662        }
 663        if (error) {
 664                if (xfs_sb_version_hascrc(&mp->m_sb)) {
 665                        xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
 666                        ASSERT(0);
 667                        goto out_free_log;
 668                }
 669                xfs_crit(mp, "Log size out of supported range.");
 670                xfs_crit(mp,
 671"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
 672        }
 673
 674        /*
 675         * Initialize the AIL now we have a log.
 676         */
 677        error = xfs_trans_ail_init(mp);
 678        if (error) {
 679                xfs_warn(mp, "AIL initialisation failed: error %d", error);
 680                goto out_free_log;
 681        }
 682        mp->m_log->l_ailp = mp->m_ail;
 683
 684        /*
 685         * skip log recovery on a norecovery mount.  pretend it all
 686         * just worked.
 687         */
 688        if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
 689                int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
 690
 691                if (readonly)
 692                        mp->m_flags &= ~XFS_MOUNT_RDONLY;
 693
 694                error = xlog_recover(mp->m_log);
 695
 696                if (readonly)
 697                        mp->m_flags |= XFS_MOUNT_RDONLY;
 698                if (error) {
 699                        xfs_warn(mp, "log mount/recovery failed: error %d",
 700                                error);
 701                        xlog_recover_cancel(mp->m_log);
 702                        goto out_destroy_ail;
 703                }
 704        }
 705
 706        error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
 707                               "log");
 708        if (error)
 709                goto out_destroy_ail;
 710
 711        /* Normal transactions can now occur */
 712        mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
 713
 714        /*
 715         * Now the log has been fully initialised and we know were our
 716         * space grant counters are, we can initialise the permanent ticket
 717         * needed for delayed logging to work.
 718         */
 719        xlog_cil_init_post_recovery(mp->m_log);
 720
 721        return 0;
 722
 723out_destroy_ail:
 724        xfs_trans_ail_destroy(mp);
 725out_free_log:
 726        xlog_dealloc_log(mp->m_log);
 727out:
 728        return error;
 729}
 730
 731/*
 732 * Finish the recovery of the file system.  This is separate from the
 733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
 734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
 735 * here.
 736 *
 737 * If we finish recovery successfully, start the background log work. If we are
 738 * not doing recovery, then we have a RO filesystem and we don't need to start
 739 * it.
 740 */
 741int
 742xfs_log_mount_finish(
 743        struct xfs_mount        *mp)
 744{
 745        int     error = 0;
 746
 747        if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
 748                ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
 749                return 0;
 750        }
 751
 752        error = xlog_recover_finish(mp->m_log);
 753        if (!error)
 754                xfs_log_work_queue(mp);
 755
 756        return error;
 757}
 758
 759/*
 760 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
 761 * the log.
 762 */
 763int
 764xfs_log_mount_cancel(
 765        struct xfs_mount        *mp)
 766{
 767        int                     error;
 768
 769        error = xlog_recover_cancel(mp->m_log);
 770        xfs_log_unmount(mp);
 771
 772        return error;
 773}
 774
 775/*
 776 * Final log writes as part of unmount.
 777 *
 778 * Mark the filesystem clean as unmount happens.  Note that during relocation
 779 * this routine needs to be executed as part of source-bag while the
 780 * deallocation must not be done until source-end.
 781 */
 782
 783/*
 784 * Unmount record used to have a string "Unmount filesystem--" in the
 785 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
 786 * We just write the magic number now since that particular field isn't
 787 * currently architecture converted and "Unmount" is a bit foo.
 788 * As far as I know, there weren't any dependencies on the old behaviour.
 789 */
 790
 791int
 792xfs_log_unmount_write(xfs_mount_t *mp)
 793{
 794        struct xlog      *log = mp->m_log;
 795        xlog_in_core_t   *iclog;
 796#ifdef DEBUG
 797        xlog_in_core_t   *first_iclog;
 798#endif
 799        xlog_ticket_t   *tic = NULL;
 800        xfs_lsn_t        lsn;
 801        int              error;
 802
 803        /*
 804         * Don't write out unmount record on read-only mounts.
 805         * Or, if we are doing a forced umount (typically because of IO errors).
 806         */
 807        if (mp->m_flags & XFS_MOUNT_RDONLY)
 808                return 0;
 809
 810        error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
 811        ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
 812
 813#ifdef DEBUG
 814        first_iclog = iclog = log->l_iclog;
 815        do {
 816                if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
 817                        ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
 818                        ASSERT(iclog->ic_offset == 0);
 819                }
 820                iclog = iclog->ic_next;
 821        } while (iclog != first_iclog);
 822#endif
 823        if (! (XLOG_FORCED_SHUTDOWN(log))) {
 824                error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
 825                if (!error) {
 826                        /* the data section must be 32 bit size aligned */
 827                        struct {
 828                            __uint16_t magic;
 829                            __uint16_t pad1;
 830                            __uint32_t pad2; /* may as well make it 64 bits */
 831                        } magic = {
 832                                .magic = XLOG_UNMOUNT_TYPE,
 833                        };
 834                        struct xfs_log_iovec reg = {
 835                                .i_addr = &magic,
 836                                .i_len = sizeof(magic),
 837                                .i_type = XLOG_REG_TYPE_UNMOUNT,
 838                        };
 839                        struct xfs_log_vec vec = {
 840                                .lv_niovecs = 1,
 841                                .lv_iovecp = &reg,
 842                        };
 843
 844                        /* remove inited flag, and account for space used */
 845                        tic->t_flags = 0;
 846                        tic->t_curr_res -= sizeof(magic);
 847                        error = xlog_write(log, &vec, tic, &lsn,
 848                                           NULL, XLOG_UNMOUNT_TRANS);
 849                        /*
 850                         * At this point, we're umounting anyway,
 851                         * so there's no point in transitioning log state
 852                         * to IOERROR. Just continue...
 853                         */
 854                }
 855
 856                if (error)
 857                        xfs_alert(mp, "%s: unmount record failed", __func__);
 858
 859
 860                spin_lock(&log->l_icloglock);
 861                iclog = log->l_iclog;
 862                atomic_inc(&iclog->ic_refcnt);
 863                xlog_state_want_sync(log, iclog);
 864                spin_unlock(&log->l_icloglock);
 865                error = xlog_state_release_iclog(log, iclog);
 866
 867                spin_lock(&log->l_icloglock);
 868                if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
 869                      iclog->ic_state == XLOG_STATE_DIRTY)) {
 870                        if (!XLOG_FORCED_SHUTDOWN(log)) {
 871                                xlog_wait(&iclog->ic_force_wait,
 872                                                        &log->l_icloglock);
 873                        } else {
 874                                spin_unlock(&log->l_icloglock);
 875                        }
 876                } else {
 877                        spin_unlock(&log->l_icloglock);
 878                }
 879                if (tic) {
 880                        trace_xfs_log_umount_write(log, tic);
 881                        xlog_ungrant_log_space(log, tic);
 882                        xfs_log_ticket_put(tic);
 883                }
 884        } else {
 885                /*
 886                 * We're already in forced_shutdown mode, couldn't
 887                 * even attempt to write out the unmount transaction.
 888                 *
 889                 * Go through the motions of sync'ing and releasing
 890                 * the iclog, even though no I/O will actually happen,
 891                 * we need to wait for other log I/Os that may already
 892                 * be in progress.  Do this as a separate section of
 893                 * code so we'll know if we ever get stuck here that
 894                 * we're in this odd situation of trying to unmount
 895                 * a file system that went into forced_shutdown as
 896                 * the result of an unmount..
 897                 */
 898                spin_lock(&log->l_icloglock);
 899                iclog = log->l_iclog;
 900                atomic_inc(&iclog->ic_refcnt);
 901
 902                xlog_state_want_sync(log, iclog);
 903                spin_unlock(&log->l_icloglock);
 904                error =  xlog_state_release_iclog(log, iclog);
 905
 906                spin_lock(&log->l_icloglock);
 907
 908                if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
 909                        || iclog->ic_state == XLOG_STATE_DIRTY
 910                        || iclog->ic_state == XLOG_STATE_IOERROR) ) {
 911
 912                                xlog_wait(&iclog->ic_force_wait,
 913                                                        &log->l_icloglock);
 914                } else {
 915                        spin_unlock(&log->l_icloglock);
 916                }
 917        }
 918
 919        return error;
 920}       /* xfs_log_unmount_write */
 921
 922/*
 923 * Empty the log for unmount/freeze.
 924 *
 925 * To do this, we first need to shut down the background log work so it is not
 926 * trying to cover the log as we clean up. We then need to unpin all objects in
 927 * the log so we can then flush them out. Once they have completed their IO and
 928 * run the callbacks removing themselves from the AIL, we can write the unmount
 929 * record.
 930 */
 931void
 932xfs_log_quiesce(
 933        struct xfs_mount        *mp)
 934{
 935        cancel_delayed_work_sync(&mp->m_log->l_work);
 936        xfs_log_force(mp, XFS_LOG_SYNC);
 937
 938        /*
 939         * The superblock buffer is uncached and while xfs_ail_push_all_sync()
 940         * will push it, xfs_wait_buftarg() will not wait for it. Further,
 941         * xfs_buf_iowait() cannot be used because it was pushed with the
 942         * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
 943         * the IO to complete.
 944         */
 945        xfs_ail_push_all_sync(mp->m_ail);
 946        xfs_wait_buftarg(mp->m_ddev_targp);
 947        xfs_buf_lock(mp->m_sb_bp);
 948        xfs_buf_unlock(mp->m_sb_bp);
 949
 950        xfs_log_unmount_write(mp);
 951}
 952
 953/*
 954 * Shut down and release the AIL and Log.
 955 *
 956 * During unmount, we need to ensure we flush all the dirty metadata objects
 957 * from the AIL so that the log is empty before we write the unmount record to
 958 * the log. Once this is done, we can tear down the AIL and the log.
 959 */
 960void
 961xfs_log_unmount(
 962        struct xfs_mount        *mp)
 963{
 964        xfs_log_quiesce(mp);
 965
 966        xfs_trans_ail_destroy(mp);
 967
 968        xfs_sysfs_del(&mp->m_log->l_kobj);
 969
 970        xlog_dealloc_log(mp->m_log);
 971}
 972
 973void
 974xfs_log_item_init(
 975        struct xfs_mount        *mp,
 976        struct xfs_log_item     *item,
 977        int                     type,
 978        const struct xfs_item_ops *ops)
 979{
 980        item->li_mountp = mp;
 981        item->li_ailp = mp->m_ail;
 982        item->li_type = type;
 983        item->li_ops = ops;
 984        item->li_lv = NULL;
 985
 986        INIT_LIST_HEAD(&item->li_ail);
 987        INIT_LIST_HEAD(&item->li_cil);
 988}
 989
 990/*
 991 * Wake up processes waiting for log space after we have moved the log tail.
 992 */
 993void
 994xfs_log_space_wake(
 995        struct xfs_mount        *mp)
 996{
 997        struct xlog             *log = mp->m_log;
 998        int                     free_bytes;
 999
1000        if (XLOG_FORCED_SHUTDOWN(log))
1001                return;
1002
1003        if (!list_empty_careful(&log->l_write_head.waiters)) {
1004                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1005
1006                spin_lock(&log->l_write_head.lock);
1007                free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1008                xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1009                spin_unlock(&log->l_write_head.lock);
1010        }
1011
1012        if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1013                ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1014
1015                spin_lock(&log->l_reserve_head.lock);
1016                free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1017                xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1018                spin_unlock(&log->l_reserve_head.lock);
1019        }
1020}
1021
1022/*
1023 * Determine if we have a transaction that has gone to disk that needs to be
1024 * covered. To begin the transition to the idle state firstly the log needs to
1025 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1026 * we start attempting to cover the log.
1027 *
1028 * Only if we are then in a state where covering is needed, the caller is
1029 * informed that dummy transactions are required to move the log into the idle
1030 * state.
1031 *
1032 * If there are any items in the AIl or CIL, then we do not want to attempt to
1033 * cover the log as we may be in a situation where there isn't log space
1034 * available to run a dummy transaction and this can lead to deadlocks when the
1035 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1036 * there's no point in running a dummy transaction at this point because we
1037 * can't start trying to idle the log until both the CIL and AIL are empty.
1038 */
1039int
1040xfs_log_need_covered(xfs_mount_t *mp)
1041{
1042        struct xlog     *log = mp->m_log;
1043        int             needed = 0;
1044
1045        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1046                return 0;
1047
1048        if (!xlog_cil_empty(log))
1049                return 0;
1050
1051        spin_lock(&log->l_icloglock);
1052        switch (log->l_covered_state) {
1053        case XLOG_STATE_COVER_DONE:
1054        case XLOG_STATE_COVER_DONE2:
1055        case XLOG_STATE_COVER_IDLE:
1056                break;
1057        case XLOG_STATE_COVER_NEED:
1058        case XLOG_STATE_COVER_NEED2:
1059                if (xfs_ail_min_lsn(log->l_ailp))
1060                        break;
1061                if (!xlog_iclogs_empty(log))
1062                        break;
1063
1064                needed = 1;
1065                if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1066                        log->l_covered_state = XLOG_STATE_COVER_DONE;
1067                else
1068                        log->l_covered_state = XLOG_STATE_COVER_DONE2;
1069                break;
1070        default:
1071                needed = 1;
1072                break;
1073        }
1074        spin_unlock(&log->l_icloglock);
1075        return needed;
1076}
1077
1078/*
1079 * We may be holding the log iclog lock upon entering this routine.
1080 */
1081xfs_lsn_t
1082xlog_assign_tail_lsn_locked(
1083        struct xfs_mount        *mp)
1084{
1085        struct xlog             *log = mp->m_log;
1086        struct xfs_log_item     *lip;
1087        xfs_lsn_t               tail_lsn;
1088
1089        assert_spin_locked(&mp->m_ail->xa_lock);
1090
1091        /*
1092         * To make sure we always have a valid LSN for the log tail we keep
1093         * track of the last LSN which was committed in log->l_last_sync_lsn,
1094         * and use that when the AIL was empty.
1095         */
1096        lip = xfs_ail_min(mp->m_ail);
1097        if (lip)
1098                tail_lsn = lip->li_lsn;
1099        else
1100                tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1101        trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1102        atomic64_set(&log->l_tail_lsn, tail_lsn);
1103        return tail_lsn;
1104}
1105
1106xfs_lsn_t
1107xlog_assign_tail_lsn(
1108        struct xfs_mount        *mp)
1109{
1110        xfs_lsn_t               tail_lsn;
1111
1112        spin_lock(&mp->m_ail->xa_lock);
1113        tail_lsn = xlog_assign_tail_lsn_locked(mp);
1114        spin_unlock(&mp->m_ail->xa_lock);
1115
1116        return tail_lsn;
1117}
1118
1119/*
1120 * Return the space in the log between the tail and the head.  The head
1121 * is passed in the cycle/bytes formal parms.  In the special case where
1122 * the reserve head has wrapped passed the tail, this calculation is no
1123 * longer valid.  In this case, just return 0 which means there is no space
1124 * in the log.  This works for all places where this function is called
1125 * with the reserve head.  Of course, if the write head were to ever
1126 * wrap the tail, we should blow up.  Rather than catch this case here,
1127 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1128 *
1129 * This code also handles the case where the reservation head is behind
1130 * the tail.  The details of this case are described below, but the end
1131 * result is that we return the size of the log as the amount of space left.
1132 */
1133STATIC int
1134xlog_space_left(
1135        struct xlog     *log,
1136        atomic64_t      *head)
1137{
1138        int             free_bytes;
1139        int             tail_bytes;
1140        int             tail_cycle;
1141        int             head_cycle;
1142        int             head_bytes;
1143
1144        xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1145        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1146        tail_bytes = BBTOB(tail_bytes);
1147        if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1148                free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1149        else if (tail_cycle + 1 < head_cycle)
1150                return 0;
1151        else if (tail_cycle < head_cycle) {
1152                ASSERT(tail_cycle == (head_cycle - 1));
1153                free_bytes = tail_bytes - head_bytes;
1154        } else {
1155                /*
1156                 * The reservation head is behind the tail.
1157                 * In this case we just want to return the size of the
1158                 * log as the amount of space left.
1159                 */
1160                xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1161                xfs_alert(log->l_mp,
1162                          "  tail_cycle = %d, tail_bytes = %d",
1163                          tail_cycle, tail_bytes);
1164                xfs_alert(log->l_mp,
1165                          "  GH   cycle = %d, GH   bytes = %d",
1166                          head_cycle, head_bytes);
1167                ASSERT(0);
1168                free_bytes = log->l_logsize;
1169        }
1170        return free_bytes;
1171}
1172
1173
1174/*
1175 * Log function which is called when an io completes.
1176 *
1177 * The log manager needs its own routine, in order to control what
1178 * happens with the buffer after the write completes.
1179 */
1180void
1181xlog_iodone(xfs_buf_t *bp)
1182{
1183        struct xlog_in_core     *iclog = bp->b_fspriv;
1184        struct xlog             *l = iclog->ic_log;
1185        int                     aborted = 0;
1186
1187        /*
1188         * Race to shutdown the filesystem if we see an error or the iclog is in
1189         * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1190         * CRC errors into log recovery.
1191         */
1192        if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1193                           XFS_RANDOM_IODONE_IOERR) ||
1194            iclog->ic_state & XLOG_STATE_IOABORT) {
1195                if (iclog->ic_state & XLOG_STATE_IOABORT)
1196                        iclog->ic_state &= ~XLOG_STATE_IOABORT;
1197
1198                xfs_buf_ioerror_alert(bp, __func__);
1199                xfs_buf_stale(bp);
1200                xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1201                /*
1202                 * This flag will be propagated to the trans-committed
1203                 * callback routines to let them know that the log-commit
1204                 * didn't succeed.
1205                 */
1206                aborted = XFS_LI_ABORTED;
1207        } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1208                aborted = XFS_LI_ABORTED;
1209        }
1210
1211        /* log I/O is always issued ASYNC */
1212        ASSERT(bp->b_flags & XBF_ASYNC);
1213        xlog_state_done_syncing(iclog, aborted);
1214
1215        /*
1216         * drop the buffer lock now that we are done. Nothing references
1217         * the buffer after this, so an unmount waiting on this lock can now
1218         * tear it down safely. As such, it is unsafe to reference the buffer
1219         * (bp) after the unlock as we could race with it being freed.
1220         */
1221        xfs_buf_unlock(bp);
1222}
1223
1224/*
1225 * Return size of each in-core log record buffer.
1226 *
1227 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1228 *
1229 * If the filesystem blocksize is too large, we may need to choose a
1230 * larger size since the directory code currently logs entire blocks.
1231 */
1232
1233STATIC void
1234xlog_get_iclog_buffer_size(
1235        struct xfs_mount        *mp,
1236        struct xlog             *log)
1237{
1238        int size;
1239        int xhdrs;
1240
1241        if (mp->m_logbufs <= 0)
1242                log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1243        else
1244                log->l_iclog_bufs = mp->m_logbufs;
1245
1246        /*
1247         * Buffer size passed in from mount system call.
1248         */
1249        if (mp->m_logbsize > 0) {
1250                size = log->l_iclog_size = mp->m_logbsize;
1251                log->l_iclog_size_log = 0;
1252                while (size != 1) {
1253                        log->l_iclog_size_log++;
1254                        size >>= 1;
1255                }
1256
1257                if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1258                        /* # headers = size / 32k
1259                         * one header holds cycles from 32k of data
1260                         */
1261
1262                        xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1263                        if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1264                                xhdrs++;
1265                        log->l_iclog_hsize = xhdrs << BBSHIFT;
1266                        log->l_iclog_heads = xhdrs;
1267                } else {
1268                        ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1269                        log->l_iclog_hsize = BBSIZE;
1270                        log->l_iclog_heads = 1;
1271                }
1272                goto done;
1273        }
1274
1275        /* All machines use 32kB buffers by default. */
1276        log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1277        log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1278
1279        /* the default log size is 16k or 32k which is one header sector */
1280        log->l_iclog_hsize = BBSIZE;
1281        log->l_iclog_heads = 1;
1282
1283done:
1284        /* are we being asked to make the sizes selected above visible? */
1285        if (mp->m_logbufs == 0)
1286                mp->m_logbufs = log->l_iclog_bufs;
1287        if (mp->m_logbsize == 0)
1288                mp->m_logbsize = log->l_iclog_size;
1289}       /* xlog_get_iclog_buffer_size */
1290
1291
1292void
1293xfs_log_work_queue(
1294        struct xfs_mount        *mp)
1295{
1296        queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1297                                msecs_to_jiffies(xfs_syncd_centisecs * 10));
1298}
1299
1300/*
1301 * Every sync period we need to unpin all items in the AIL and push them to
1302 * disk. If there is nothing dirty, then we might need to cover the log to
1303 * indicate that the filesystem is idle.
1304 */
1305void
1306xfs_log_worker(
1307        struct work_struct      *work)
1308{
1309        struct xlog             *log = container_of(to_delayed_work(work),
1310                                                struct xlog, l_work);
1311        struct xfs_mount        *mp = log->l_mp;
1312
1313        /* dgc: errors ignored - not fatal and nowhere to report them */
1314        if (xfs_log_need_covered(mp)) {
1315                /*
1316                 * Dump a transaction into the log that contains no real change.
1317                 * This is needed to stamp the current tail LSN into the log
1318                 * during the covering operation.
1319                 *
1320                 * We cannot use an inode here for this - that will push dirty
1321                 * state back up into the VFS and then periodic inode flushing
1322                 * will prevent log covering from making progress. Hence we
1323                 * synchronously log the superblock instead to ensure the
1324                 * superblock is immediately unpinned and can be written back.
1325                 */
1326                xfs_sync_sb(mp, true);
1327        } else
1328                xfs_log_force(mp, 0);
1329
1330        /* start pushing all the metadata that is currently dirty */
1331        xfs_ail_push_all(mp->m_ail);
1332
1333        /* queue us up again */
1334        xfs_log_work_queue(mp);
1335}
1336
1337/*
1338 * This routine initializes some of the log structure for a given mount point.
1339 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1340 * some other stuff may be filled in too.
1341 */
1342STATIC struct xlog *
1343xlog_alloc_log(
1344        struct xfs_mount        *mp,
1345        struct xfs_buftarg      *log_target,
1346        xfs_daddr_t             blk_offset,
1347        int                     num_bblks)
1348{
1349        struct xlog             *log;
1350        xlog_rec_header_t       *head;
1351        xlog_in_core_t          **iclogp;
1352        xlog_in_core_t          *iclog, *prev_iclog=NULL;
1353        xfs_buf_t               *bp;
1354        int                     i;
1355        int                     error = -ENOMEM;
1356        uint                    log2_size = 0;
1357
1358        log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1359        if (!log) {
1360                xfs_warn(mp, "Log allocation failed: No memory!");
1361                goto out;
1362        }
1363
1364        log->l_mp          = mp;
1365        log->l_targ        = log_target;
1366        log->l_logsize     = BBTOB(num_bblks);
1367        log->l_logBBstart  = blk_offset;
1368        log->l_logBBsize   = num_bblks;
1369        log->l_covered_state = XLOG_STATE_COVER_IDLE;
1370        log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1371        INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1372
1373        log->l_prev_block  = -1;
1374        /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1375        xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1376        xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1377        log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1378
1379        xlog_grant_head_init(&log->l_reserve_head);
1380        xlog_grant_head_init(&log->l_write_head);
1381
1382        error = -EFSCORRUPTED;
1383        if (xfs_sb_version_hassector(&mp->m_sb)) {
1384                log2_size = mp->m_sb.sb_logsectlog;
1385                if (log2_size < BBSHIFT) {
1386                        xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1387                                log2_size, BBSHIFT);
1388                        goto out_free_log;
1389                }
1390
1391                log2_size -= BBSHIFT;
1392                if (log2_size > mp->m_sectbb_log) {
1393                        xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1394                                log2_size, mp->m_sectbb_log);
1395                        goto out_free_log;
1396                }
1397
1398                /* for larger sector sizes, must have v2 or external log */
1399                if (log2_size && log->l_logBBstart > 0 &&
1400                            !xfs_sb_version_haslogv2(&mp->m_sb)) {
1401                        xfs_warn(mp,
1402                "log sector size (0x%x) invalid for configuration.",
1403                                log2_size);
1404                        goto out_free_log;
1405                }
1406        }
1407        log->l_sectBBsize = 1 << log2_size;
1408
1409        xlog_get_iclog_buffer_size(mp, log);
1410
1411        /*
1412         * Use a NULL block for the extra log buffer used during splits so that
1413         * it will trigger errors if we ever try to do IO on it without first
1414         * having set it up properly.
1415         */
1416        error = -ENOMEM;
1417        bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1418                           BTOBB(log->l_iclog_size), 0);
1419        if (!bp)
1420                goto out_free_log;
1421
1422        /*
1423         * The iclogbuf buffer locks are held over IO but we are not going to do
1424         * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1425         * when appropriately.
1426         */
1427        ASSERT(xfs_buf_islocked(bp));
1428        xfs_buf_unlock(bp);
1429
1430        /* use high priority wq for log I/O completion */
1431        bp->b_ioend_wq = mp->m_log_workqueue;
1432        bp->b_iodone = xlog_iodone;
1433        log->l_xbuf = bp;
1434
1435        spin_lock_init(&log->l_icloglock);
1436        init_waitqueue_head(&log->l_flush_wait);
1437
1438        iclogp = &log->l_iclog;
1439        /*
1440         * The amount of memory to allocate for the iclog structure is
1441         * rather funky due to the way the structure is defined.  It is
1442         * done this way so that we can use different sizes for machines
1443         * with different amounts of memory.  See the definition of
1444         * xlog_in_core_t in xfs_log_priv.h for details.
1445         */
1446        ASSERT(log->l_iclog_size >= 4096);
1447        for (i=0; i < log->l_iclog_bufs; i++) {
1448                *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1449                if (!*iclogp)
1450                        goto out_free_iclog;
1451
1452                iclog = *iclogp;
1453                iclog->ic_prev = prev_iclog;
1454                prev_iclog = iclog;
1455
1456                bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1457                                                BTOBB(log->l_iclog_size), 0);
1458                if (!bp)
1459                        goto out_free_iclog;
1460
1461                ASSERT(xfs_buf_islocked(bp));
1462                xfs_buf_unlock(bp);
1463
1464                /* use high priority wq for log I/O completion */
1465                bp->b_ioend_wq = mp->m_log_workqueue;
1466                bp->b_iodone = xlog_iodone;
1467                iclog->ic_bp = bp;
1468                iclog->ic_data = bp->b_addr;
1469#ifdef DEBUG
1470                log->l_iclog_bak[i] = &iclog->ic_header;
1471#endif
1472                head = &iclog->ic_header;
1473                memset(head, 0, sizeof(xlog_rec_header_t));
1474                head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1475                head->h_version = cpu_to_be32(
1476                        xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1477                head->h_size = cpu_to_be32(log->l_iclog_size);
1478                /* new fields */
1479                head->h_fmt = cpu_to_be32(XLOG_FMT);
1480                memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1481
1482                iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1483                iclog->ic_state = XLOG_STATE_ACTIVE;
1484                iclog->ic_log = log;
1485                atomic_set(&iclog->ic_refcnt, 0);
1486                spin_lock_init(&iclog->ic_callback_lock);
1487                iclog->ic_callback_tail = &(iclog->ic_callback);
1488                iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1489
1490                init_waitqueue_head(&iclog->ic_force_wait);
1491                init_waitqueue_head(&iclog->ic_write_wait);
1492
1493                iclogp = &iclog->ic_next;
1494        }
1495        *iclogp = log->l_iclog;                 /* complete ring */
1496        log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1497
1498        error = xlog_cil_init(log);
1499        if (error)
1500                goto out_free_iclog;
1501        return log;
1502
1503out_free_iclog:
1504        for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1505                prev_iclog = iclog->ic_next;
1506                if (iclog->ic_bp)
1507                        xfs_buf_free(iclog->ic_bp);
1508                kmem_free(iclog);
1509        }
1510        spinlock_destroy(&log->l_icloglock);
1511        xfs_buf_free(log->l_xbuf);
1512out_free_log:
1513        kmem_free(log);
1514out:
1515        return ERR_PTR(error);
1516}       /* xlog_alloc_log */
1517
1518
1519/*
1520 * Write out the commit record of a transaction associated with the given
1521 * ticket.  Return the lsn of the commit record.
1522 */
1523STATIC int
1524xlog_commit_record(
1525        struct xlog             *log,
1526        struct xlog_ticket      *ticket,
1527        struct xlog_in_core     **iclog,
1528        xfs_lsn_t               *commitlsnp)
1529{
1530        struct xfs_mount *mp = log->l_mp;
1531        int     error;
1532        struct xfs_log_iovec reg = {
1533                .i_addr = NULL,
1534                .i_len = 0,
1535                .i_type = XLOG_REG_TYPE_COMMIT,
1536        };
1537        struct xfs_log_vec vec = {
1538                .lv_niovecs = 1,
1539                .lv_iovecp = &reg,
1540        };
1541
1542        ASSERT_ALWAYS(iclog);
1543        error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1544                                        XLOG_COMMIT_TRANS);
1545        if (error)
1546                xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1547        return error;
1548}
1549
1550/*
1551 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1552 * log space.  This code pushes on the lsn which would supposedly free up
1553 * the 25% which we want to leave free.  We may need to adopt a policy which
1554 * pushes on an lsn which is further along in the log once we reach the high
1555 * water mark.  In this manner, we would be creating a low water mark.
1556 */
1557STATIC void
1558xlog_grant_push_ail(
1559        struct xlog     *log,
1560        int             need_bytes)
1561{
1562        xfs_lsn_t       threshold_lsn = 0;
1563        xfs_lsn_t       last_sync_lsn;
1564        int             free_blocks;
1565        int             free_bytes;
1566        int             threshold_block;
1567        int             threshold_cycle;
1568        int             free_threshold;
1569
1570        ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1571
1572        free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1573        free_blocks = BTOBBT(free_bytes);
1574
1575        /*
1576         * Set the threshold for the minimum number of free blocks in the
1577         * log to the maximum of what the caller needs, one quarter of the
1578         * log, and 256 blocks.
1579         */
1580        free_threshold = BTOBB(need_bytes);
1581        free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1582        free_threshold = MAX(free_threshold, 256);
1583        if (free_blocks >= free_threshold)
1584                return;
1585
1586        xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1587                                                &threshold_block);
1588        threshold_block += free_threshold;
1589        if (threshold_block >= log->l_logBBsize) {
1590                threshold_block -= log->l_logBBsize;
1591                threshold_cycle += 1;
1592        }
1593        threshold_lsn = xlog_assign_lsn(threshold_cycle,
1594                                        threshold_block);
1595        /*
1596         * Don't pass in an lsn greater than the lsn of the last
1597         * log record known to be on disk. Use a snapshot of the last sync lsn
1598         * so that it doesn't change between the compare and the set.
1599         */
1600        last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1601        if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1602                threshold_lsn = last_sync_lsn;
1603
1604        /*
1605         * Get the transaction layer to kick the dirty buffers out to
1606         * disk asynchronously. No point in trying to do this if
1607         * the filesystem is shutting down.
1608         */
1609        if (!XLOG_FORCED_SHUTDOWN(log))
1610                xfs_ail_push(log->l_ailp, threshold_lsn);
1611}
1612
1613/*
1614 * Stamp cycle number in every block
1615 */
1616STATIC void
1617xlog_pack_data(
1618        struct xlog             *log,
1619        struct xlog_in_core     *iclog,
1620        int                     roundoff)
1621{
1622        int                     i, j, k;
1623        int                     size = iclog->ic_offset + roundoff;
1624        __be32                  cycle_lsn;
1625        char                    *dp;
1626
1627        cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1628
1629        dp = iclog->ic_datap;
1630        for (i = 0; i < BTOBB(size); i++) {
1631                if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1632                        break;
1633                iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1634                *(__be32 *)dp = cycle_lsn;
1635                dp += BBSIZE;
1636        }
1637
1638        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1639                xlog_in_core_2_t *xhdr = iclog->ic_data;
1640
1641                for ( ; i < BTOBB(size); i++) {
1642                        j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1643                        k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1644                        xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1645                        *(__be32 *)dp = cycle_lsn;
1646                        dp += BBSIZE;
1647                }
1648
1649                for (i = 1; i < log->l_iclog_heads; i++)
1650                        xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1651        }
1652}
1653
1654/*
1655 * Calculate the checksum for a log buffer.
1656 *
1657 * This is a little more complicated than it should be because the various
1658 * headers and the actual data are non-contiguous.
1659 */
1660__le32
1661xlog_cksum(
1662        struct xlog             *log,
1663        struct xlog_rec_header  *rhead,
1664        char                    *dp,
1665        int                     size)
1666{
1667        __uint32_t              crc;
1668
1669        /* first generate the crc for the record header ... */
1670        crc = xfs_start_cksum((char *)rhead,
1671                              sizeof(struct xlog_rec_header),
1672                              offsetof(struct xlog_rec_header, h_crc));
1673
1674        /* ... then for additional cycle data for v2 logs ... */
1675        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1676                union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1677                int             i;
1678                int             xheads;
1679
1680                xheads = size / XLOG_HEADER_CYCLE_SIZE;
1681                if (size % XLOG_HEADER_CYCLE_SIZE)
1682                        xheads++;
1683
1684                for (i = 1; i < xheads; i++) {
1685                        crc = crc32c(crc, &xhdr[i].hic_xheader,
1686                                     sizeof(struct xlog_rec_ext_header));
1687                }
1688        }
1689
1690        /* ... and finally for the payload */
1691        crc = crc32c(crc, dp, size);
1692
1693        return xfs_end_cksum(crc);
1694}
1695
1696/*
1697 * The bdstrat callback function for log bufs. This gives us a central
1698 * place to trap bufs in case we get hit by a log I/O error and need to
1699 * shutdown. Actually, in practice, even when we didn't get a log error,
1700 * we transition the iclogs to IOERROR state *after* flushing all existing
1701 * iclogs to disk. This is because we don't want anymore new transactions to be
1702 * started or completed afterwards.
1703 *
1704 * We lock the iclogbufs here so that we can serialise against IO completion
1705 * during unmount. We might be processing a shutdown triggered during unmount,
1706 * and that can occur asynchronously to the unmount thread, and hence we need to
1707 * ensure that completes before tearing down the iclogbufs. Hence we need to
1708 * hold the buffer lock across the log IO to acheive that.
1709 */
1710STATIC int
1711xlog_bdstrat(
1712        struct xfs_buf          *bp)
1713{
1714        struct xlog_in_core     *iclog = bp->b_fspriv;
1715
1716        xfs_buf_lock(bp);
1717        if (iclog->ic_state & XLOG_STATE_IOERROR) {
1718                xfs_buf_ioerror(bp, -EIO);
1719                xfs_buf_stale(bp);
1720                xfs_buf_ioend(bp);
1721                /*
1722                 * It would seem logical to return EIO here, but we rely on
1723                 * the log state machine to propagate I/O errors instead of
1724                 * doing it here. Similarly, IO completion will unlock the
1725                 * buffer, so we don't do it here.
1726                 */
1727                return 0;
1728        }
1729
1730        xfs_buf_submit(bp);
1731        return 0;
1732}
1733
1734/*
1735 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1736 * fashion.  Previously, we should have moved the current iclog
1737 * ptr in the log to point to the next available iclog.  This allows further
1738 * write to continue while this code syncs out an iclog ready to go.
1739 * Before an in-core log can be written out, the data section must be scanned
1740 * to save away the 1st word of each BBSIZE block into the header.  We replace
1741 * it with the current cycle count.  Each BBSIZE block is tagged with the
1742 * cycle count because there in an implicit assumption that drives will
1743 * guarantee that entire 512 byte blocks get written at once.  In other words,
1744 * we can't have part of a 512 byte block written and part not written.  By
1745 * tagging each block, we will know which blocks are valid when recovering
1746 * after an unclean shutdown.
1747 *
1748 * This routine is single threaded on the iclog.  No other thread can be in
1749 * this routine with the same iclog.  Changing contents of iclog can there-
1750 * fore be done without grabbing the state machine lock.  Updating the global
1751 * log will require grabbing the lock though.
1752 *
1753 * The entire log manager uses a logical block numbering scheme.  Only
1754 * log_sync (and then only bwrite()) know about the fact that the log may
1755 * not start with block zero on a given device.  The log block start offset
1756 * is added immediately before calling bwrite().
1757 */
1758
1759STATIC int
1760xlog_sync(
1761        struct xlog             *log,
1762        struct xlog_in_core     *iclog)
1763{
1764        xfs_buf_t       *bp;
1765        int             i;
1766        uint            count;          /* byte count of bwrite */
1767        uint            count_init;     /* initial count before roundup */
1768        int             roundoff;       /* roundoff to BB or stripe */
1769        int             split = 0;      /* split write into two regions */
1770        int             error;
1771        int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1772        int             size;
1773
1774        XFS_STATS_INC(log->l_mp, xs_log_writes);
1775        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1776
1777        /* Add for LR header */
1778        count_init = log->l_iclog_hsize + iclog->ic_offset;
1779
1780        /* Round out the log write size */
1781        if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1782                /* we have a v2 stripe unit to use */
1783                count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1784        } else {
1785                count = BBTOB(BTOBB(count_init));
1786        }
1787        roundoff = count - count_init;
1788        ASSERT(roundoff >= 0);
1789        ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1790                roundoff < log->l_mp->m_sb.sb_logsunit)
1791                || 
1792                (log->l_mp->m_sb.sb_logsunit <= 1 && 
1793                 roundoff < BBTOB(1)));
1794
1795        /* move grant heads by roundoff in sync */
1796        xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1797        xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1798
1799        /* put cycle number in every block */
1800        xlog_pack_data(log, iclog, roundoff); 
1801
1802        /* real byte length */
1803        size = iclog->ic_offset;
1804        if (v2)
1805                size += roundoff;
1806        iclog->ic_header.h_len = cpu_to_be32(size);
1807
1808        bp = iclog->ic_bp;
1809        XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1810
1811        XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1812
1813        /* Do we need to split this write into 2 parts? */
1814        if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1815                char            *dptr;
1816
1817                split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1818                count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1819                iclog->ic_bwritecnt = 2;
1820
1821                /*
1822                 * Bump the cycle numbers at the start of each block in the
1823                 * part of the iclog that ends up in the buffer that gets
1824                 * written to the start of the log.
1825                 *
1826                 * Watch out for the header magic number case, though.
1827                 */
1828                dptr = (char *)&iclog->ic_header + count;
1829                for (i = 0; i < split; i += BBSIZE) {
1830                        __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1831                        if (++cycle == XLOG_HEADER_MAGIC_NUM)
1832                                cycle++;
1833                        *(__be32 *)dptr = cpu_to_be32(cycle);
1834
1835                        dptr += BBSIZE;
1836                }
1837        } else {
1838                iclog->ic_bwritecnt = 1;
1839        }
1840
1841        /* calculcate the checksum */
1842        iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1843                                            iclog->ic_datap, size);
1844#ifdef DEBUG
1845        /*
1846         * Intentionally corrupt the log record CRC based on the error injection
1847         * frequency, if defined. This facilitates testing log recovery in the
1848         * event of torn writes. Hence, set the IOABORT state to abort the log
1849         * write on I/O completion and shutdown the fs. The subsequent mount
1850         * detects the bad CRC and attempts to recover.
1851         */
1852        if (log->l_badcrc_factor &&
1853            (prandom_u32() % log->l_badcrc_factor == 0)) {
1854                iclog->ic_header.h_crc &= 0xAAAAAAAA;
1855                iclog->ic_state |= XLOG_STATE_IOABORT;
1856                xfs_warn(log->l_mp,
1857        "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1858                         be64_to_cpu(iclog->ic_header.h_lsn));
1859        }
1860#endif
1861
1862        bp->b_io_length = BTOBB(count);
1863        bp->b_fspriv = iclog;
1864        bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1865        bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1866
1867        if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1868                bp->b_flags |= XBF_FUA;
1869
1870                /*
1871                 * Flush the data device before flushing the log to make
1872                 * sure all meta data written back from the AIL actually made
1873                 * it to disk before stamping the new log tail LSN into the
1874                 * log buffer.  For an external log we need to issue the
1875                 * flush explicitly, and unfortunately synchronously here;
1876                 * for an internal log we can simply use the block layer
1877                 * state machine for preflushes.
1878                 */
1879                if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1880                        xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1881                else
1882                        bp->b_flags |= XBF_FLUSH;
1883        }
1884
1885        ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1886        ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1887
1888        xlog_verify_iclog(log, iclog, count, true);
1889
1890        /* account for log which doesn't start at block #0 */
1891        XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1892
1893        /*
1894         * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1895         * is shutting down.
1896         */
1897        error = xlog_bdstrat(bp);
1898        if (error) {
1899                xfs_buf_ioerror_alert(bp, "xlog_sync");
1900                return error;
1901        }
1902        if (split) {
1903                bp = iclog->ic_log->l_xbuf;
1904                XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1905                xfs_buf_associate_memory(bp,
1906                                (char *)&iclog->ic_header + count, split);
1907                bp->b_fspriv = iclog;
1908                bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1909                bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1910                if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1911                        bp->b_flags |= XBF_FUA;
1912
1913                ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1914                ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1915
1916                /* account for internal log which doesn't start at block #0 */
1917                XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1918                error = xlog_bdstrat(bp);
1919                if (error) {
1920                        xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1921                        return error;
1922                }
1923        }
1924        return 0;
1925}       /* xlog_sync */
1926
1927/*
1928 * Deallocate a log structure
1929 */
1930STATIC void
1931xlog_dealloc_log(
1932        struct xlog     *log)
1933{
1934        xlog_in_core_t  *iclog, *next_iclog;
1935        int             i;
1936
1937        xlog_cil_destroy(log);
1938
1939        /*
1940         * Cycle all the iclogbuf locks to make sure all log IO completion
1941         * is done before we tear down these buffers.
1942         */
1943        iclog = log->l_iclog;
1944        for (i = 0; i < log->l_iclog_bufs; i++) {
1945                xfs_buf_lock(iclog->ic_bp);
1946                xfs_buf_unlock(iclog->ic_bp);
1947                iclog = iclog->ic_next;
1948        }
1949
1950        /*
1951         * Always need to ensure that the extra buffer does not point to memory
1952         * owned by another log buffer before we free it. Also, cycle the lock
1953         * first to ensure we've completed IO on it.
1954         */
1955        xfs_buf_lock(log->l_xbuf);
1956        xfs_buf_unlock(log->l_xbuf);
1957        xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1958        xfs_buf_free(log->l_xbuf);
1959
1960        iclog = log->l_iclog;
1961        for (i = 0; i < log->l_iclog_bufs; i++) {
1962                xfs_buf_free(iclog->ic_bp);
1963                next_iclog = iclog->ic_next;
1964                kmem_free(iclog);
1965                iclog = next_iclog;
1966        }
1967        spinlock_destroy(&log->l_icloglock);
1968
1969        log->l_mp->m_log = NULL;
1970        kmem_free(log);
1971}       /* xlog_dealloc_log */
1972
1973/*
1974 * Update counters atomically now that memcpy is done.
1975 */
1976/* ARGSUSED */
1977static inline void
1978xlog_state_finish_copy(
1979        struct xlog             *log,
1980        struct xlog_in_core     *iclog,
1981        int                     record_cnt,
1982        int                     copy_bytes)
1983{
1984        spin_lock(&log->l_icloglock);
1985
1986        be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1987        iclog->ic_offset += copy_bytes;
1988
1989        spin_unlock(&log->l_icloglock);
1990}       /* xlog_state_finish_copy */
1991
1992
1993
1994
1995/*
1996 * print out info relating to regions written which consume
1997 * the reservation
1998 */
1999void
2000xlog_print_tic_res(
2001        struct xfs_mount        *mp,
2002        struct xlog_ticket      *ticket)
2003{
2004        uint i;
2005        uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2006
2007        /* match with XLOG_REG_TYPE_* in xfs_log.h */
2008#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2009        static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2010            REG_TYPE_STR(BFORMAT, "bformat"),
2011            REG_TYPE_STR(BCHUNK, "bchunk"),
2012            REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2013            REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2014            REG_TYPE_STR(IFORMAT, "iformat"),
2015            REG_TYPE_STR(ICORE, "icore"),
2016            REG_TYPE_STR(IEXT, "iext"),
2017            REG_TYPE_STR(IBROOT, "ibroot"),
2018            REG_TYPE_STR(ILOCAL, "ilocal"),
2019            REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2020            REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2021            REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2022            REG_TYPE_STR(QFORMAT, "qformat"),
2023            REG_TYPE_STR(DQUOT, "dquot"),
2024            REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2025            REG_TYPE_STR(LRHEADER, "LR header"),
2026            REG_TYPE_STR(UNMOUNT, "unmount"),
2027            REG_TYPE_STR(COMMIT, "commit"),
2028            REG_TYPE_STR(TRANSHDR, "trans header"),
2029            REG_TYPE_STR(ICREATE, "inode create")
2030        };
2031#undef REG_TYPE_STR
2032
2033        xfs_warn(mp, "xlog_write: reservation summary:");
2034        xfs_warn(mp, "  unit res    = %d bytes",
2035                 ticket->t_unit_res);
2036        xfs_warn(mp, "  current res = %d bytes",
2037                 ticket->t_curr_res);
2038        xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2039                 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2040        xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2041                 ticket->t_res_num_ophdrs, ophdr_spc);
2042        xfs_warn(mp, "  ophdr + reg = %u bytes",
2043                 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2044        xfs_warn(mp, "  num regions = %u",
2045                 ticket->t_res_num);
2046
2047        for (i = 0; i < ticket->t_res_num; i++) {
2048                uint r_type = ticket->t_res_arr[i].r_type;
2049                xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2050                            ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2051                            "bad-rtype" : res_type_str[r_type]),
2052                            ticket->t_res_arr[i].r_len);
2053        }
2054
2055        xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2056                "xlog_write: reservation ran out. Need to up reservation");
2057        xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2058}
2059
2060/*
2061 * Calculate the potential space needed by the log vector.  Each region gets
2062 * its own xlog_op_header_t and may need to be double word aligned.
2063 */
2064static int
2065xlog_write_calc_vec_length(
2066        struct xlog_ticket      *ticket,
2067        struct xfs_log_vec      *log_vector)
2068{
2069        struct xfs_log_vec      *lv;
2070        int                     headers = 0;
2071        int                     len = 0;
2072        int                     i;
2073
2074        /* acct for start rec of xact */
2075        if (ticket->t_flags & XLOG_TIC_INITED)
2076                headers++;
2077
2078        for (lv = log_vector; lv; lv = lv->lv_next) {
2079                /* we don't write ordered log vectors */
2080                if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2081                        continue;
2082
2083                headers += lv->lv_niovecs;
2084
2085                for (i = 0; i < lv->lv_niovecs; i++) {
2086                        struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2087
2088                        len += vecp->i_len;
2089                        xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2090                }
2091        }
2092
2093        ticket->t_res_num_ophdrs += headers;
2094        len += headers * sizeof(struct xlog_op_header);
2095
2096        return len;
2097}
2098
2099/*
2100 * If first write for transaction, insert start record  We can't be trying to
2101 * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2102 */
2103static int
2104xlog_write_start_rec(
2105        struct xlog_op_header   *ophdr,
2106        struct xlog_ticket      *ticket)
2107{
2108        if (!(ticket->t_flags & XLOG_TIC_INITED))
2109                return 0;
2110
2111        ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2112        ophdr->oh_clientid = ticket->t_clientid;
2113        ophdr->oh_len = 0;
2114        ophdr->oh_flags = XLOG_START_TRANS;
2115        ophdr->oh_res2 = 0;
2116
2117        ticket->t_flags &= ~XLOG_TIC_INITED;
2118
2119        return sizeof(struct xlog_op_header);
2120}
2121
2122static xlog_op_header_t *
2123xlog_write_setup_ophdr(
2124        struct xlog             *log,
2125        struct xlog_op_header   *ophdr,
2126        struct xlog_ticket      *ticket,
2127        uint                    flags)
2128{
2129        ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2130        ophdr->oh_clientid = ticket->t_clientid;
2131        ophdr->oh_res2 = 0;
2132
2133        /* are we copying a commit or unmount record? */
2134        ophdr->oh_flags = flags;
2135
2136        /*
2137         * We've seen logs corrupted with bad transaction client ids.  This
2138         * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2139         * and shut down the filesystem.
2140         */
2141        switch (ophdr->oh_clientid)  {
2142        case XFS_TRANSACTION:
2143        case XFS_VOLUME:
2144        case XFS_LOG:
2145                break;
2146        default:
2147                xfs_warn(log->l_mp,
2148                        "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2149                        ophdr->oh_clientid, ticket);
2150                return NULL;
2151        }
2152
2153        return ophdr;
2154}
2155
2156/*
2157 * Set up the parameters of the region copy into the log. This has
2158 * to handle region write split across multiple log buffers - this
2159 * state is kept external to this function so that this code can
2160 * be written in an obvious, self documenting manner.
2161 */
2162static int
2163xlog_write_setup_copy(
2164        struct xlog_ticket      *ticket,
2165        struct xlog_op_header   *ophdr,
2166        int                     space_available,
2167        int                     space_required,
2168        int                     *copy_off,
2169        int                     *copy_len,
2170        int                     *last_was_partial_copy,
2171        int                     *bytes_consumed)
2172{
2173        int                     still_to_copy;
2174
2175        still_to_copy = space_required - *bytes_consumed;
2176        *copy_off = *bytes_consumed;
2177
2178        if (still_to_copy <= space_available) {
2179                /* write of region completes here */
2180                *copy_len = still_to_copy;
2181                ophdr->oh_len = cpu_to_be32(*copy_len);
2182                if (*last_was_partial_copy)
2183                        ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2184                *last_was_partial_copy = 0;
2185                *bytes_consumed = 0;
2186                return 0;
2187        }
2188
2189        /* partial write of region, needs extra log op header reservation */
2190        *copy_len = space_available;
2191        ophdr->oh_len = cpu_to_be32(*copy_len);
2192        ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2193        if (*last_was_partial_copy)
2194                ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2195        *bytes_consumed += *copy_len;
2196        (*last_was_partial_copy)++;
2197
2198        /* account for new log op header */
2199        ticket->t_curr_res -= sizeof(struct xlog_op_header);
2200        ticket->t_res_num_ophdrs++;
2201
2202        return sizeof(struct xlog_op_header);
2203}
2204
2205static int
2206xlog_write_copy_finish(
2207        struct xlog             *log,
2208        struct xlog_in_core     *iclog,
2209        uint                    flags,
2210        int                     *record_cnt,
2211        int                     *data_cnt,
2212        int                     *partial_copy,
2213        int                     *partial_copy_len,
2214        int                     log_offset,
2215        struct xlog_in_core     **commit_iclog)
2216{
2217        if (*partial_copy) {
2218                /*
2219                 * This iclog has already been marked WANT_SYNC by
2220                 * xlog_state_get_iclog_space.
2221                 */
2222                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2223                *record_cnt = 0;
2224                *data_cnt = 0;
2225                return xlog_state_release_iclog(log, iclog);
2226        }
2227
2228        *partial_copy = 0;
2229        *partial_copy_len = 0;
2230
2231        if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2232                /* no more space in this iclog - push it. */
2233                xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2234                *record_cnt = 0;
2235                *data_cnt = 0;
2236
2237                spin_lock(&log->l_icloglock);
2238                xlog_state_want_sync(log, iclog);
2239                spin_unlock(&log->l_icloglock);
2240
2241                if (!commit_iclog)
2242                        return xlog_state_release_iclog(log, iclog);
2243                ASSERT(flags & XLOG_COMMIT_TRANS);
2244                *commit_iclog = iclog;
2245        }
2246
2247        return 0;
2248}
2249
2250/*
2251 * Write some region out to in-core log
2252 *
2253 * This will be called when writing externally provided regions or when
2254 * writing out a commit record for a given transaction.
2255 *
2256 * General algorithm:
2257 *      1. Find total length of this write.  This may include adding to the
2258 *              lengths passed in.
2259 *      2. Check whether we violate the tickets reservation.
2260 *      3. While writing to this iclog
2261 *          A. Reserve as much space in this iclog as can get
2262 *          B. If this is first write, save away start lsn
2263 *          C. While writing this region:
2264 *              1. If first write of transaction, write start record
2265 *              2. Write log operation header (header per region)
2266 *              3. Find out if we can fit entire region into this iclog
2267 *              4. Potentially, verify destination memcpy ptr
2268 *              5. Memcpy (partial) region
2269 *              6. If partial copy, release iclog; otherwise, continue
2270 *                      copying more regions into current iclog
2271 *      4. Mark want sync bit (in simulation mode)
2272 *      5. Release iclog for potential flush to on-disk log.
2273 *
2274 * ERRORS:
2275 * 1.   Panic if reservation is overrun.  This should never happen since
2276 *      reservation amounts are generated internal to the filesystem.
2277 * NOTES:
2278 * 1. Tickets are single threaded data structures.
2279 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2280 *      syncing routine.  When a single log_write region needs to span
2281 *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2282 *      on all log operation writes which don't contain the end of the
2283 *      region.  The XLOG_END_TRANS bit is used for the in-core log
2284 *      operation which contains the end of the continued log_write region.
2285 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2286 *      we don't really know exactly how much space will be used.  As a result,
2287 *      we don't update ic_offset until the end when we know exactly how many
2288 *      bytes have been written out.
2289 */
2290int
2291xlog_write(
2292        struct xlog             *log,
2293        struct xfs_log_vec      *log_vector,
2294        struct xlog_ticket      *ticket,
2295        xfs_lsn_t               *start_lsn,
2296        struct xlog_in_core     **commit_iclog,
2297        uint                    flags)
2298{
2299        struct xlog_in_core     *iclog = NULL;
2300        struct xfs_log_iovec    *vecp;
2301        struct xfs_log_vec      *lv;
2302        int                     len;
2303        int                     index;
2304        int                     partial_copy = 0;
2305        int                     partial_copy_len = 0;
2306        int                     contwr = 0;
2307        int                     record_cnt = 0;
2308        int                     data_cnt = 0;
2309        int                     error;
2310
2311        *start_lsn = 0;
2312
2313        len = xlog_write_calc_vec_length(ticket, log_vector);
2314
2315        /*
2316         * Region headers and bytes are already accounted for.
2317         * We only need to take into account start records and
2318         * split regions in this function.
2319         */
2320        if (ticket->t_flags & XLOG_TIC_INITED)
2321                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2322
2323        /*
2324         * Commit record headers need to be accounted for. These
2325         * come in as separate writes so are easy to detect.
2326         */
2327        if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2328                ticket->t_curr_res -= sizeof(xlog_op_header_t);
2329
2330        if (ticket->t_curr_res < 0)
2331                xlog_print_tic_res(log->l_mp, ticket);
2332
2333        index = 0;
2334        lv = log_vector;
2335        vecp = lv->lv_iovecp;
2336        while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2337                void            *ptr;
2338                int             log_offset;
2339
2340                error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2341                                                   &contwr, &log_offset);
2342                if (error)
2343                        return error;
2344
2345                ASSERT(log_offset <= iclog->ic_size - 1);
2346                ptr = iclog->ic_datap + log_offset;
2347
2348                /* start_lsn is the first lsn written to. That's all we need. */
2349                if (!*start_lsn)
2350                        *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2351
2352                /*
2353                 * This loop writes out as many regions as can fit in the amount
2354                 * of space which was allocated by xlog_state_get_iclog_space().
2355                 */
2356                while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2357                        struct xfs_log_iovec    *reg;
2358                        struct xlog_op_header   *ophdr;
2359                        int                     start_rec_copy;
2360                        int                     copy_len;
2361                        int                     copy_off;
2362                        bool                    ordered = false;
2363
2364                        /* ordered log vectors have no regions to write */
2365                        if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2366                                ASSERT(lv->lv_niovecs == 0);
2367                                ordered = true;
2368                                goto next_lv;
2369                        }
2370
2371                        reg = &vecp[index];
2372                        ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2373                        ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2374
2375                        start_rec_copy = xlog_write_start_rec(ptr, ticket);
2376                        if (start_rec_copy) {
2377                                record_cnt++;
2378                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2379                                                   start_rec_copy);
2380                        }
2381
2382                        ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2383                        if (!ophdr)
2384                                return -EIO;
2385
2386                        xlog_write_adv_cnt(&ptr, &len, &log_offset,
2387                                           sizeof(struct xlog_op_header));
2388
2389                        len += xlog_write_setup_copy(ticket, ophdr,
2390                                                     iclog->ic_size-log_offset,
2391                                                     reg->i_len,
2392                                                     &copy_off, &copy_len,
2393                                                     &partial_copy,
2394                                                     &partial_copy_len);
2395                        xlog_verify_dest_ptr(log, ptr);
2396
2397                        /*
2398                         * Copy region.
2399                         *
2400                         * Unmount records just log an opheader, so can have
2401                         * empty payloads with no data region to copy. Hence we
2402                         * only copy the payload if the vector says it has data
2403                         * to copy.
2404                         */
2405                        ASSERT(copy_len >= 0);
2406                        if (copy_len > 0) {
2407                                memcpy(ptr, reg->i_addr + copy_off, copy_len);
2408                                xlog_write_adv_cnt(&ptr, &len, &log_offset,
2409                                                   copy_len);
2410                        }
2411                        copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2412                        record_cnt++;
2413                        data_cnt += contwr ? copy_len : 0;
2414
2415                        error = xlog_write_copy_finish(log, iclog, flags,
2416                                                       &record_cnt, &data_cnt,
2417                                                       &partial_copy,
2418                                                       &partial_copy_len,
2419                                                       log_offset,
2420                                                       commit_iclog);
2421                        if (error)
2422                                return error;
2423
2424                        /*
2425                         * if we had a partial copy, we need to get more iclog
2426                         * space but we don't want to increment the region
2427                         * index because there is still more is this region to
2428                         * write.
2429                         *
2430                         * If we completed writing this region, and we flushed
2431                         * the iclog (indicated by resetting of the record
2432                         * count), then we also need to get more log space. If
2433                         * this was the last record, though, we are done and
2434                         * can just return.
2435                         */
2436                        if (partial_copy)
2437                                break;
2438
2439                        if (++index == lv->lv_niovecs) {
2440next_lv:
2441                                lv = lv->lv_next;
2442                                index = 0;
2443                                if (lv)
2444                                        vecp = lv->lv_iovecp;
2445                        }
2446                        if (record_cnt == 0 && ordered == false) {
2447                                if (!lv)
2448                                        return 0;
2449                                break;
2450                        }
2451                }
2452        }
2453
2454        ASSERT(len == 0);
2455
2456        xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2457        if (!commit_iclog)
2458                return xlog_state_release_iclog(log, iclog);
2459
2460        ASSERT(flags & XLOG_COMMIT_TRANS);
2461        *commit_iclog = iclog;
2462        return 0;
2463}
2464
2465
2466/*****************************************************************************
2467 *
2468 *              State Machine functions
2469 *
2470 *****************************************************************************
2471 */
2472
2473/* Clean iclogs starting from the head.  This ordering must be
2474 * maintained, so an iclog doesn't become ACTIVE beyond one that
2475 * is SYNCING.  This is also required to maintain the notion that we use
2476 * a ordered wait queue to hold off would be writers to the log when every
2477 * iclog is trying to sync to disk.
2478 *
2479 * State Change: DIRTY -> ACTIVE
2480 */
2481STATIC void
2482xlog_state_clean_log(
2483        struct xlog *log)
2484{
2485        xlog_in_core_t  *iclog;
2486        int changed = 0;
2487
2488        iclog = log->l_iclog;
2489        do {
2490                if (iclog->ic_state == XLOG_STATE_DIRTY) {
2491                        iclog->ic_state = XLOG_STATE_ACTIVE;
2492                        iclog->ic_offset       = 0;
2493                        ASSERT(iclog->ic_callback == NULL);
2494                        /*
2495                         * If the number of ops in this iclog indicate it just
2496                         * contains the dummy transaction, we can
2497                         * change state into IDLE (the second time around).
2498                         * Otherwise we should change the state into
2499                         * NEED a dummy.
2500                         * We don't need to cover the dummy.
2501                         */
2502                        if (!changed &&
2503                           (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2504                                        XLOG_COVER_OPS)) {
2505                                changed = 1;
2506                        } else {
2507                                /*
2508                                 * We have two dirty iclogs so start over
2509                                 * This could also be num of ops indicates
2510                                 * this is not the dummy going out.
2511                                 */
2512                                changed = 2;
2513                        }
2514                        iclog->ic_header.h_num_logops = 0;
2515                        memset(iclog->ic_header.h_cycle_data, 0,
2516                              sizeof(iclog->ic_header.h_cycle_data));
2517                        iclog->ic_header.h_lsn = 0;
2518                } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2519                        /* do nothing */;
2520                else
2521                        break;  /* stop cleaning */
2522                iclog = iclog->ic_next;
2523        } while (iclog != log->l_iclog);
2524
2525        /* log is locked when we are called */
2526        /*
2527         * Change state for the dummy log recording.
2528         * We usually go to NEED. But we go to NEED2 if the changed indicates
2529         * we are done writing the dummy record.
2530         * If we are done with the second dummy recored (DONE2), then
2531         * we go to IDLE.
2532         */
2533        if (changed) {
2534                switch (log->l_covered_state) {
2535                case XLOG_STATE_COVER_IDLE:
2536                case XLOG_STATE_COVER_NEED:
2537                case XLOG_STATE_COVER_NEED2:
2538                        log->l_covered_state = XLOG_STATE_COVER_NEED;
2539                        break;
2540
2541                case XLOG_STATE_COVER_DONE:
2542                        if (changed == 1)
2543                                log->l_covered_state = XLOG_STATE_COVER_NEED2;
2544                        else
2545                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2546                        break;
2547
2548                case XLOG_STATE_COVER_DONE2:
2549                        if (changed == 1)
2550                                log->l_covered_state = XLOG_STATE_COVER_IDLE;
2551                        else
2552                                log->l_covered_state = XLOG_STATE_COVER_NEED;
2553                        break;
2554
2555                default:
2556                        ASSERT(0);
2557                }
2558        }
2559}       /* xlog_state_clean_log */
2560
2561STATIC xfs_lsn_t
2562xlog_get_lowest_lsn(
2563        struct xlog     *log)
2564{
2565        xlog_in_core_t  *lsn_log;
2566        xfs_lsn_t       lowest_lsn, lsn;
2567
2568        lsn_log = log->l_iclog;
2569        lowest_lsn = 0;
2570        do {
2571            if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2572                lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2573                if ((lsn && !lowest_lsn) ||
2574                    (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2575                        lowest_lsn = lsn;
2576                }
2577            }
2578            lsn_log = lsn_log->ic_next;
2579        } while (lsn_log != log->l_iclog);
2580        return lowest_lsn;
2581}
2582
2583
2584STATIC void
2585xlog_state_do_callback(
2586        struct xlog             *log,
2587        int                     aborted,
2588        struct xlog_in_core     *ciclog)
2589{
2590        xlog_in_core_t     *iclog;
2591        xlog_in_core_t     *first_iclog;        /* used to know when we've
2592                                                 * processed all iclogs once */
2593        xfs_log_callback_t *cb, *cb_next;
2594        int                flushcnt = 0;
2595        xfs_lsn_t          lowest_lsn;
2596        int                ioerrors;    /* counter: iclogs with errors */
2597        int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2598        int                funcdidcallbacks; /* flag: function did callbacks */
2599        int                repeats;     /* for issuing console warnings if
2600                                         * looping too many times */
2601        int                wake = 0;
2602
2603        spin_lock(&log->l_icloglock);
2604        first_iclog = iclog = log->l_iclog;
2605        ioerrors = 0;
2606        funcdidcallbacks = 0;
2607        repeats = 0;
2608
2609        do {
2610                /*
2611                 * Scan all iclogs starting with the one pointed to by the
2612                 * log.  Reset this starting point each time the log is
2613                 * unlocked (during callbacks).
2614                 *
2615                 * Keep looping through iclogs until one full pass is made
2616                 * without running any callbacks.
2617                 */
2618                first_iclog = log->l_iclog;
2619                iclog = log->l_iclog;
2620                loopdidcallbacks = 0;
2621                repeats++;
2622
2623                do {
2624
2625                        /* skip all iclogs in the ACTIVE & DIRTY states */
2626                        if (iclog->ic_state &
2627                            (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2628                                iclog = iclog->ic_next;
2629                                continue;
2630                        }
2631
2632                        /*
2633                         * Between marking a filesystem SHUTDOWN and stopping
2634                         * the log, we do flush all iclogs to disk (if there
2635                         * wasn't a log I/O error). So, we do want things to
2636                         * go smoothly in case of just a SHUTDOWN  w/o a
2637                         * LOG_IO_ERROR.
2638                         */
2639                        if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2640                                /*
2641                                 * Can only perform callbacks in order.  Since
2642                                 * this iclog is not in the DONE_SYNC/
2643                                 * DO_CALLBACK state, we skip the rest and
2644                                 * just try to clean up.  If we set our iclog
2645                                 * to DO_CALLBACK, we will not process it when
2646                                 * we retry since a previous iclog is in the
2647                                 * CALLBACK and the state cannot change since
2648                                 * we are holding the l_icloglock.
2649                                 */
2650                                if (!(iclog->ic_state &
2651                                        (XLOG_STATE_DONE_SYNC |
2652                                                 XLOG_STATE_DO_CALLBACK))) {
2653                                        if (ciclog && (ciclog->ic_state ==
2654                                                        XLOG_STATE_DONE_SYNC)) {
2655                                                ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2656                                        }
2657                                        break;
2658                                }
2659                                /*
2660                                 * We now have an iclog that is in either the
2661                                 * DO_CALLBACK or DONE_SYNC states. The other
2662                                 * states (WANT_SYNC, SYNCING, or CALLBACK were
2663                                 * caught by the above if and are going to
2664                                 * clean (i.e. we aren't doing their callbacks)
2665                                 * see the above if.
2666                                 */
2667
2668                                /*
2669                                 * We will do one more check here to see if we
2670                                 * have chased our tail around.
2671                                 */
2672
2673                                lowest_lsn = xlog_get_lowest_lsn(log);
2674                                if (lowest_lsn &&
2675                                    XFS_LSN_CMP(lowest_lsn,
2676                                                be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2677                                        iclog = iclog->ic_next;
2678                                        continue; /* Leave this iclog for
2679                                                   * another thread */
2680                                }
2681
2682                                iclog->ic_state = XLOG_STATE_CALLBACK;
2683
2684
2685                                /*
2686                                 * Completion of a iclog IO does not imply that
2687                                 * a transaction has completed, as transactions
2688                                 * can be large enough to span many iclogs. We
2689                                 * cannot change the tail of the log half way
2690                                 * through a transaction as this may be the only
2691                                 * transaction in the log and moving th etail to
2692                                 * point to the middle of it will prevent
2693                                 * recovery from finding the start of the
2694                                 * transaction. Hence we should only update the
2695                                 * last_sync_lsn if this iclog contains
2696                                 * transaction completion callbacks on it.
2697                                 *
2698                                 * We have to do this before we drop the
2699                                 * icloglock to ensure we are the only one that
2700                                 * can update it.
2701                                 */
2702                                ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2703                                        be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2704                                if (iclog->ic_callback)
2705                                        atomic64_set(&log->l_last_sync_lsn,
2706                                                be64_to_cpu(iclog->ic_header.h_lsn));
2707
2708                        } else
2709                                ioerrors++;
2710
2711                        spin_unlock(&log->l_icloglock);
2712
2713                        /*
2714                         * Keep processing entries in the callback list until
2715                         * we come around and it is empty.  We need to
2716                         * atomically see that the list is empty and change the
2717                         * state to DIRTY so that we don't miss any more
2718                         * callbacks being added.
2719                         */
2720                        spin_lock(&iclog->ic_callback_lock);
2721                        cb = iclog->ic_callback;
2722                        while (cb) {
2723                                iclog->ic_callback_tail = &(iclog->ic_callback);
2724                                iclog->ic_callback = NULL;
2725                                spin_unlock(&iclog->ic_callback_lock);
2726
2727                                /* perform callbacks in the order given */
2728                                for (; cb; cb = cb_next) {
2729                                        cb_next = cb->cb_next;
2730                                        cb->cb_func(cb->cb_arg, aborted);
2731                                }
2732                                spin_lock(&iclog->ic_callback_lock);
2733                                cb = iclog->ic_callback;
2734                        }
2735
2736                        loopdidcallbacks++;
2737                        funcdidcallbacks++;
2738
2739                        spin_lock(&log->l_icloglock);
2740                        ASSERT(iclog->ic_callback == NULL);
2741                        spin_unlock(&iclog->ic_callback_lock);
2742                        if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2743                                iclog->ic_state = XLOG_STATE_DIRTY;
2744
2745                        /*
2746                         * Transition from DIRTY to ACTIVE if applicable.
2747                         * NOP if STATE_IOERROR.
2748                         */
2749                        xlog_state_clean_log(log);
2750
2751                        /* wake up threads waiting in xfs_log_force() */
2752                        wake_up_all(&iclog->ic_force_wait);
2753
2754                        iclog = iclog->ic_next;
2755                } while (first_iclog != iclog);
2756
2757                if (repeats > 5000) {
2758                        flushcnt += repeats;
2759                        repeats = 0;
2760                        xfs_warn(log->l_mp,
2761                                "%s: possible infinite loop (%d iterations)",
2762                                __func__, flushcnt);
2763                }
2764        } while (!ioerrors && loopdidcallbacks);
2765
2766#ifdef DEBUG
2767        /*
2768         * Make one last gasp attempt to see if iclogs are being left in limbo.
2769         * If the above loop finds an iclog earlier than the current iclog and
2770         * in one of the syncing states, the current iclog is put into
2771         * DO_CALLBACK and the callbacks are deferred to the completion of the
2772         * earlier iclog. Walk the iclogs in order and make sure that no iclog
2773         * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2774         * states.
2775         *
2776         * Note that SYNCING|IOABORT is a valid state so we cannot just check
2777         * for ic_state == SYNCING.
2778         */
2779        if (funcdidcallbacks) {
2780                first_iclog = iclog = log->l_iclog;
2781                do {
2782                        ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2783                        /*
2784                         * Terminate the loop if iclogs are found in states
2785                         * which will cause other threads to clean up iclogs.
2786                         *
2787                         * SYNCING - i/o completion will go through logs
2788                         * DONE_SYNC - interrupt thread should be waiting for
2789                         *              l_icloglock
2790                         * IOERROR - give up hope all ye who enter here
2791                         */
2792                        if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2793                            iclog->ic_state & XLOG_STATE_SYNCING ||
2794                            iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2795                            iclog->ic_state == XLOG_STATE_IOERROR )
2796                                break;
2797                        iclog = iclog->ic_next;
2798                } while (first_iclog != iclog);
2799        }
2800#endif
2801
2802        if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2803                wake = 1;
2804        spin_unlock(&log->l_icloglock);
2805
2806        if (wake)
2807                wake_up_all(&log->l_flush_wait);
2808}
2809
2810
2811/*
2812 * Finish transitioning this iclog to the dirty state.
2813 *
2814 * Make sure that we completely execute this routine only when this is
2815 * the last call to the iclog.  There is a good chance that iclog flushes,
2816 * when we reach the end of the physical log, get turned into 2 separate
2817 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2818 * routine.  By using the reference count bwritecnt, we guarantee that only
2819 * the second completion goes through.
2820 *
2821 * Callbacks could take time, so they are done outside the scope of the
2822 * global state machine log lock.
2823 */
2824STATIC void
2825xlog_state_done_syncing(
2826        xlog_in_core_t  *iclog,
2827        int             aborted)
2828{
2829        struct xlog        *log = iclog->ic_log;
2830
2831        spin_lock(&log->l_icloglock);
2832
2833        ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2834               iclog->ic_state == XLOG_STATE_IOERROR);
2835        ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2836        ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2837
2838
2839        /*
2840         * If we got an error, either on the first buffer, or in the case of
2841         * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2842         * and none should ever be attempted to be written to disk
2843         * again.
2844         */
2845        if (iclog->ic_state != XLOG_STATE_IOERROR) {
2846                if (--iclog->ic_bwritecnt == 1) {
2847                        spin_unlock(&log->l_icloglock);
2848                        return;
2849                }
2850                iclog->ic_state = XLOG_STATE_DONE_SYNC;
2851        }
2852
2853        /*
2854         * Someone could be sleeping prior to writing out the next
2855         * iclog buffer, we wake them all, one will get to do the
2856         * I/O, the others get to wait for the result.
2857         */
2858        wake_up_all(&iclog->ic_write_wait);
2859        spin_unlock(&log->l_icloglock);
2860        xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2861}       /* xlog_state_done_syncing */
2862
2863
2864/*
2865 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2866 * sleep.  We wait on the flush queue on the head iclog as that should be
2867 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2868 * we will wait here and all new writes will sleep until a sync completes.
2869 *
2870 * The in-core logs are used in a circular fashion. They are not used
2871 * out-of-order even when an iclog past the head is free.
2872 *
2873 * return:
2874 *      * log_offset where xlog_write() can start writing into the in-core
2875 *              log's data space.
2876 *      * in-core log pointer to which xlog_write() should write.
2877 *      * boolean indicating this is a continued write to an in-core log.
2878 *              If this is the last write, then the in-core log's offset field
2879 *              needs to be incremented, depending on the amount of data which
2880 *              is copied.
2881 */
2882STATIC int
2883xlog_state_get_iclog_space(
2884        struct xlog             *log,
2885        int                     len,
2886        struct xlog_in_core     **iclogp,
2887        struct xlog_ticket      *ticket,
2888        int                     *continued_write,
2889        int                     *logoffsetp)
2890{
2891        int               log_offset;
2892        xlog_rec_header_t *head;
2893        xlog_in_core_t    *iclog;
2894        int               error;
2895
2896restart:
2897        spin_lock(&log->l_icloglock);
2898        if (XLOG_FORCED_SHUTDOWN(log)) {
2899                spin_unlock(&log->l_icloglock);
2900                return -EIO;
2901        }
2902
2903        iclog = log->l_iclog;
2904        if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2905                XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2906
2907                /* Wait for log writes to have flushed */
2908                xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2909                goto restart;
2910        }
2911
2912        head = &iclog->ic_header;
2913
2914        atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2915        log_offset = iclog->ic_offset;
2916
2917        /* On the 1st write to an iclog, figure out lsn.  This works
2918         * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2919         * committing to.  If the offset is set, that's how many blocks
2920         * must be written.
2921         */
2922        if (log_offset == 0) {
2923                ticket->t_curr_res -= log->l_iclog_hsize;
2924                xlog_tic_add_region(ticket,
2925                                    log->l_iclog_hsize,
2926                                    XLOG_REG_TYPE_LRHEADER);
2927                head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2928                head->h_lsn = cpu_to_be64(
2929                        xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2930                ASSERT(log->l_curr_block >= 0);
2931        }
2932
2933        /* If there is enough room to write everything, then do it.  Otherwise,
2934         * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2935         * bit is on, so this will get flushed out.  Don't update ic_offset
2936         * until you know exactly how many bytes get copied.  Therefore, wait
2937         * until later to update ic_offset.
2938         *
2939         * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2940         * can fit into remaining data section.
2941         */
2942        if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2943                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2944
2945                /*
2946                 * If I'm the only one writing to this iclog, sync it to disk.
2947                 * We need to do an atomic compare and decrement here to avoid
2948                 * racing with concurrent atomic_dec_and_lock() calls in
2949                 * xlog_state_release_iclog() when there is more than one
2950                 * reference to the iclog.
2951                 */
2952                if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2953                        /* we are the only one */
2954                        spin_unlock(&log->l_icloglock);
2955                        error = xlog_state_release_iclog(log, iclog);
2956                        if (error)
2957                                return error;
2958                } else {
2959                        spin_unlock(&log->l_icloglock);
2960                }
2961                goto restart;
2962        }
2963
2964        /* Do we have enough room to write the full amount in the remainder
2965         * of this iclog?  Or must we continue a write on the next iclog and
2966         * mark this iclog as completely taken?  In the case where we switch
2967         * iclogs (to mark it taken), this particular iclog will release/sync
2968         * to disk in xlog_write().
2969         */
2970        if (len <= iclog->ic_size - iclog->ic_offset) {
2971                *continued_write = 0;
2972                iclog->ic_offset += len;
2973        } else {
2974                *continued_write = 1;
2975                xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2976        }
2977        *iclogp = iclog;
2978
2979        ASSERT(iclog->ic_offset <= iclog->ic_size);
2980        spin_unlock(&log->l_icloglock);
2981
2982        *logoffsetp = log_offset;
2983        return 0;
2984}       /* xlog_state_get_iclog_space */
2985
2986/* The first cnt-1 times through here we don't need to
2987 * move the grant write head because the permanent
2988 * reservation has reserved cnt times the unit amount.
2989 * Release part of current permanent unit reservation and
2990 * reset current reservation to be one units worth.  Also
2991 * move grant reservation head forward.
2992 */
2993STATIC void
2994xlog_regrant_reserve_log_space(
2995        struct xlog             *log,
2996        struct xlog_ticket      *ticket)
2997{
2998        trace_xfs_log_regrant_reserve_enter(log, ticket);
2999
3000        if (ticket->t_cnt > 0)
3001                ticket->t_cnt--;
3002
3003        xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3004                                        ticket->t_curr_res);
3005        xlog_grant_sub_space(log, &log->l_write_head.grant,
3006                                        ticket->t_curr_res);
3007        ticket->t_curr_res = ticket->t_unit_res;
3008        xlog_tic_reset_res(ticket);
3009
3010        trace_xfs_log_regrant_reserve_sub(log, ticket);
3011
3012        /* just return if we still have some of the pre-reserved space */
3013        if (ticket->t_cnt > 0)
3014                return;
3015
3016        xlog_grant_add_space(log, &log->l_reserve_head.grant,
3017                                        ticket->t_unit_res);
3018
3019        trace_xfs_log_regrant_reserve_exit(log, ticket);
3020
3021        ticket->t_curr_res = ticket->t_unit_res;
3022        xlog_tic_reset_res(ticket);
3023}       /* xlog_regrant_reserve_log_space */
3024
3025
3026/*
3027 * Give back the space left from a reservation.
3028 *
3029 * All the information we need to make a correct determination of space left
3030 * is present.  For non-permanent reservations, things are quite easy.  The
3031 * count should have been decremented to zero.  We only need to deal with the
3032 * space remaining in the current reservation part of the ticket.  If the
3033 * ticket contains a permanent reservation, there may be left over space which
3034 * needs to be released.  A count of N means that N-1 refills of the current
3035 * reservation can be done before we need to ask for more space.  The first
3036 * one goes to fill up the first current reservation.  Once we run out of
3037 * space, the count will stay at zero and the only space remaining will be
3038 * in the current reservation field.
3039 */
3040STATIC void
3041xlog_ungrant_log_space(
3042        struct xlog             *log,
3043        struct xlog_ticket      *ticket)
3044{
3045        int     bytes;
3046
3047        if (ticket->t_cnt > 0)
3048                ticket->t_cnt--;
3049
3050        trace_xfs_log_ungrant_enter(log, ticket);
3051        trace_xfs_log_ungrant_sub(log, ticket);
3052
3053        /*
3054         * If this is a permanent reservation ticket, we may be able to free
3055         * up more space based on the remaining count.
3056         */
3057        bytes = ticket->t_curr_res;
3058        if (ticket->t_cnt > 0) {
3059                ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3060                bytes += ticket->t_unit_res*ticket->t_cnt;
3061        }
3062
3063        xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3064        xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3065
3066        trace_xfs_log_ungrant_exit(log, ticket);
3067
3068        xfs_log_space_wake(log->l_mp);
3069}
3070
3071/*
3072 * Flush iclog to disk if this is the last reference to the given iclog and
3073 * the WANT_SYNC bit is set.
3074 *
3075 * When this function is entered, the iclog is not necessarily in the
3076 * WANT_SYNC state.  It may be sitting around waiting to get filled.
3077 *
3078 *
3079 */
3080STATIC int
3081xlog_state_release_iclog(
3082        struct xlog             *log,
3083        struct xlog_in_core     *iclog)
3084{
3085        int             sync = 0;       /* do we sync? */
3086
3087        if (iclog->ic_state & XLOG_STATE_IOERROR)
3088                return -EIO;
3089
3090        ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3091        if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3092                return 0;
3093
3094        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3095                spin_unlock(&log->l_icloglock);
3096                return -EIO;
3097        }
3098        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3099               iclog->ic_state == XLOG_STATE_WANT_SYNC);
3100
3101        if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3102                /* update tail before writing to iclog */
3103                xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3104                sync++;
3105                iclog->ic_state = XLOG_STATE_SYNCING;
3106                iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3107                xlog_verify_tail_lsn(log, iclog, tail_lsn);
3108                /* cycle incremented when incrementing curr_block */
3109        }
3110        spin_unlock(&log->l_icloglock);
3111
3112        /*
3113         * We let the log lock go, so it's possible that we hit a log I/O
3114         * error or some other SHUTDOWN condition that marks the iclog
3115         * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3116         * this iclog has consistent data, so we ignore IOERROR
3117         * flags after this point.
3118         */
3119        if (sync)
3120                return xlog_sync(log, iclog);
3121        return 0;
3122}       /* xlog_state_release_iclog */
3123
3124
3125/*
3126 * This routine will mark the current iclog in the ring as WANT_SYNC
3127 * and move the current iclog pointer to the next iclog in the ring.
3128 * When this routine is called from xlog_state_get_iclog_space(), the
3129 * exact size of the iclog has not yet been determined.  All we know is
3130 * that every data block.  We have run out of space in this log record.
3131 */
3132STATIC void
3133xlog_state_switch_iclogs(
3134        struct xlog             *log,
3135        struct xlog_in_core     *iclog,
3136        int                     eventual_size)
3137{
3138        ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3139        if (!eventual_size)
3140                eventual_size = iclog->ic_offset;
3141        iclog->ic_state = XLOG_STATE_WANT_SYNC;
3142        iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3143        log->l_prev_block = log->l_curr_block;
3144        log->l_prev_cycle = log->l_curr_cycle;
3145
3146        /* roll log?: ic_offset changed later */
3147        log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3148
3149        /* Round up to next log-sunit */
3150        if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3151            log->l_mp->m_sb.sb_logsunit > 1) {
3152                __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3153                log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3154        }
3155
3156        if (log->l_curr_block >= log->l_logBBsize) {
3157                /*
3158                 * Rewind the current block before the cycle is bumped to make
3159                 * sure that the combined LSN never transiently moves forward
3160                 * when the log wraps to the next cycle. This is to support the
3161                 * unlocked sample of these fields from xlog_valid_lsn(). Most
3162                 * other cases should acquire l_icloglock.
3163                 */
3164                log->l_curr_block -= log->l_logBBsize;
3165                ASSERT(log->l_curr_block >= 0);
3166                smp_wmb();
3167                log->l_curr_cycle++;
3168                if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3169                        log->l_curr_cycle++;
3170        }
3171        ASSERT(iclog == log->l_iclog);
3172        log->l_iclog = iclog->ic_next;
3173}       /* xlog_state_switch_iclogs */
3174
3175/*
3176 * Write out all data in the in-core log as of this exact moment in time.
3177 *
3178 * Data may be written to the in-core log during this call.  However,
3179 * we don't guarantee this data will be written out.  A change from past
3180 * implementation means this routine will *not* write out zero length LRs.
3181 *
3182 * Basically, we try and perform an intelligent scan of the in-core logs.
3183 * If we determine there is no flushable data, we just return.  There is no
3184 * flushable data if:
3185 *
3186 *      1. the current iclog is active and has no data; the previous iclog
3187 *              is in the active or dirty state.
3188 *      2. the current iclog is drity, and the previous iclog is in the
3189 *              active or dirty state.
3190 *
3191 * We may sleep if:
3192 *
3193 *      1. the current iclog is not in the active nor dirty state.
3194 *      2. the current iclog dirty, and the previous iclog is not in the
3195 *              active nor dirty state.
3196 *      3. the current iclog is active, and there is another thread writing
3197 *              to this particular iclog.
3198 *      4. a) the current iclog is active and has no other writers
3199 *         b) when we return from flushing out this iclog, it is still
3200 *              not in the active nor dirty state.
3201 */
3202int
3203_xfs_log_force(
3204        struct xfs_mount        *mp,
3205        uint                    flags,
3206        int                     *log_flushed)
3207{
3208        struct xlog             *log = mp->m_log;
3209        struct xlog_in_core     *iclog;
3210        xfs_lsn_t               lsn;
3211
3212        XFS_STATS_INC(mp, xs_log_force);
3213
3214        xlog_cil_force(log);
3215
3216        spin_lock(&log->l_icloglock);
3217
3218        iclog = log->l_iclog;
3219        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3220                spin_unlock(&log->l_icloglock);
3221                return -EIO;
3222        }
3223
3224        /* If the head iclog is not active nor dirty, we just attach
3225         * ourselves to the head and go to sleep.
3226         */
3227        if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3228            iclog->ic_state == XLOG_STATE_DIRTY) {
3229                /*
3230                 * If the head is dirty or (active and empty), then
3231                 * we need to look at the previous iclog.  If the previous
3232                 * iclog is active or dirty we are done.  There is nothing
3233                 * to sync out.  Otherwise, we attach ourselves to the
3234                 * previous iclog and go to sleep.
3235                 */
3236                if (iclog->ic_state == XLOG_STATE_DIRTY ||
3237                    (atomic_read(&iclog->ic_refcnt) == 0
3238                     && iclog->ic_offset == 0)) {
3239                        iclog = iclog->ic_prev;
3240                        if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3241                            iclog->ic_state == XLOG_STATE_DIRTY)
3242                                goto no_sleep;
3243                        else
3244                                goto maybe_sleep;
3245                } else {
3246                        if (atomic_read(&iclog->ic_refcnt) == 0) {
3247                                /* We are the only one with access to this
3248                                 * iclog.  Flush it out now.  There should
3249                                 * be a roundoff of zero to show that someone
3250                                 * has already taken care of the roundoff from
3251                                 * the previous sync.
3252                                 */
3253                                atomic_inc(&iclog->ic_refcnt);
3254                                lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3255                                xlog_state_switch_iclogs(log, iclog, 0);
3256                                spin_unlock(&log->l_icloglock);
3257
3258                                if (xlog_state_release_iclog(log, iclog))
3259                                        return -EIO;
3260
3261                                if (log_flushed)
3262                                        *log_flushed = 1;
3263                                spin_lock(&log->l_icloglock);
3264                                if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3265                                    iclog->ic_state != XLOG_STATE_DIRTY)
3266                                        goto maybe_sleep;
3267                                else
3268                                        goto no_sleep;
3269                        } else {
3270                                /* Someone else is writing to this iclog.
3271                                 * Use its call to flush out the data.  However,
3272                                 * the other thread may not force out this LR,
3273                                 * so we mark it WANT_SYNC.
3274                                 */
3275                                xlog_state_switch_iclogs(log, iclog, 0);
3276                                goto maybe_sleep;
3277                        }
3278                }
3279        }
3280
3281        /* By the time we come around again, the iclog could've been filled
3282         * which would give it another lsn.  If we have a new lsn, just
3283         * return because the relevant data has been flushed.
3284         */
3285maybe_sleep:
3286        if (flags & XFS_LOG_SYNC) {
3287                /*
3288                 * We must check if we're shutting down here, before
3289                 * we wait, while we're holding the l_icloglock.
3290                 * Then we check again after waking up, in case our
3291                 * sleep was disturbed by a bad news.
3292                 */
3293                if (iclog->ic_state & XLOG_STATE_IOERROR) {
3294                        spin_unlock(&log->l_icloglock);
3295                        return -EIO;
3296                }
3297                XFS_STATS_INC(mp, xs_log_force_sleep);
3298                xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3299                /*
3300                 * No need to grab the log lock here since we're
3301                 * only deciding whether or not to return EIO
3302                 * and the memory read should be atomic.
3303                 */
3304                if (iclog->ic_state & XLOG_STATE_IOERROR)
3305                        return -EIO;
3306                if (log_flushed)
3307                        *log_flushed = 1;
3308        } else {
3309
3310no_sleep:
3311                spin_unlock(&log->l_icloglock);
3312        }
3313        return 0;
3314}
3315
3316/*
3317 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3318 * about errors or whether the log was flushed or not. This is the normal
3319 * interface to use when trying to unpin items or move the log forward.
3320 */
3321void
3322xfs_log_force(
3323        xfs_mount_t     *mp,
3324        uint            flags)
3325{
3326        int     error;
3327
3328        trace_xfs_log_force(mp, 0, _RET_IP_);
3329        error = _xfs_log_force(mp, flags, NULL);
3330        if (error)
3331                xfs_warn(mp, "%s: error %d returned.", __func__, error);
3332}
3333
3334/*
3335 * Force the in-core log to disk for a specific LSN.
3336 *
3337 * Find in-core log with lsn.
3338 *      If it is in the DIRTY state, just return.
3339 *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3340 *              state and go to sleep or return.
3341 *      If it is in any other state, go to sleep or return.
3342 *
3343 * Synchronous forces are implemented with a signal variable. All callers
3344 * to force a given lsn to disk will wait on a the sv attached to the
3345 * specific in-core log.  When given in-core log finally completes its
3346 * write to disk, that thread will wake up all threads waiting on the
3347 * sv.
3348 */
3349int
3350_xfs_log_force_lsn(
3351        struct xfs_mount        *mp,
3352        xfs_lsn_t               lsn,
3353        uint                    flags,
3354        int                     *log_flushed)
3355{
3356        struct xlog             *log = mp->m_log;
3357        struct xlog_in_core     *iclog;
3358        int                     already_slept = 0;
3359
3360        ASSERT(lsn != 0);
3361
3362        XFS_STATS_INC(mp, xs_log_force);
3363
3364        lsn = xlog_cil_force_lsn(log, lsn);
3365        if (lsn == NULLCOMMITLSN)
3366                return 0;
3367
3368try_again:
3369        spin_lock(&log->l_icloglock);
3370        iclog = log->l_iclog;
3371        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3372                spin_unlock(&log->l_icloglock);
3373                return -EIO;
3374        }
3375
3376        do {
3377                if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3378                        iclog = iclog->ic_next;
3379                        continue;
3380                }
3381
3382                if (iclog->ic_state == XLOG_STATE_DIRTY) {
3383                        spin_unlock(&log->l_icloglock);
3384                        return 0;
3385                }
3386
3387                if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3388                        /*
3389                         * We sleep here if we haven't already slept (e.g.
3390                         * this is the first time we've looked at the correct
3391                         * iclog buf) and the buffer before us is going to
3392                         * be sync'ed. The reason for this is that if we
3393                         * are doing sync transactions here, by waiting for
3394                         * the previous I/O to complete, we can allow a few
3395                         * more transactions into this iclog before we close
3396                         * it down.
3397                         *
3398                         * Otherwise, we mark the buffer WANT_SYNC, and bump
3399                         * up the refcnt so we can release the log (which
3400                         * drops the ref count).  The state switch keeps new
3401                         * transaction commits from using this buffer.  When
3402                         * the current commits finish writing into the buffer,
3403                         * the refcount will drop to zero and the buffer will
3404                         * go out then.
3405                         */
3406                        if (!already_slept &&
3407                            (iclog->ic_prev->ic_state &
3408                             (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3409                                ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3410
3411                                XFS_STATS_INC(mp, xs_log_force_sleep);
3412
3413                                xlog_wait(&iclog->ic_prev->ic_write_wait,
3414                                                        &log->l_icloglock);
3415                                if (log_flushed)
3416                                        *log_flushed = 1;
3417                                already_slept = 1;
3418                                goto try_again;
3419                        }
3420                        atomic_inc(&iclog->ic_refcnt);
3421                        xlog_state_switch_iclogs(log, iclog, 0);
3422                        spin_unlock(&log->l_icloglock);
3423                        if (xlog_state_release_iclog(log, iclog))
3424                                return -EIO;
3425                        if (log_flushed)
3426                                *log_flushed = 1;
3427                        spin_lock(&log->l_icloglock);
3428                }
3429
3430                if ((flags & XFS_LOG_SYNC) && /* sleep */
3431                    !(iclog->ic_state &
3432                      (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3433                        /*
3434                         * Don't wait on completion if we know that we've
3435                         * gotten a log write error.
3436                         */
3437                        if (iclog->ic_state & XLOG_STATE_IOERROR) {
3438                                spin_unlock(&log->l_icloglock);
3439                                return -EIO;
3440                        }
3441                        XFS_STATS_INC(mp, xs_log_force_sleep);
3442                        xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3443                        /*
3444                         * No need to grab the log lock here since we're
3445                         * only deciding whether or not to return EIO
3446                         * and the memory read should be atomic.
3447                         */
3448                        if (iclog->ic_state & XLOG_STATE_IOERROR)
3449                                return -EIO;
3450
3451                        if (log_flushed)
3452                                *log_flushed = 1;
3453                } else {                /* just return */
3454                        spin_unlock(&log->l_icloglock);
3455                }
3456
3457                return 0;
3458        } while (iclog != log->l_iclog);
3459
3460        spin_unlock(&log->l_icloglock);
3461        return 0;
3462}
3463
3464/*
3465 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3466 * about errors or whether the log was flushed or not. This is the normal
3467 * interface to use when trying to unpin items or move the log forward.
3468 */
3469void
3470xfs_log_force_lsn(
3471        xfs_mount_t     *mp,
3472        xfs_lsn_t       lsn,
3473        uint            flags)
3474{
3475        int     error;
3476
3477        trace_xfs_log_force(mp, lsn, _RET_IP_);
3478        error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3479        if (error)
3480                xfs_warn(mp, "%s: error %d returned.", __func__, error);
3481}
3482
3483/*
3484 * Called when we want to mark the current iclog as being ready to sync to
3485 * disk.
3486 */
3487STATIC void
3488xlog_state_want_sync(
3489        struct xlog             *log,
3490        struct xlog_in_core     *iclog)
3491{
3492        assert_spin_locked(&log->l_icloglock);
3493
3494        if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3495                xlog_state_switch_iclogs(log, iclog, 0);
3496        } else {
3497                ASSERT(iclog->ic_state &
3498                        (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3499        }
3500}
3501
3502
3503/*****************************************************************************
3504 *
3505 *              TICKET functions
3506 *
3507 *****************************************************************************
3508 */
3509
3510/*
3511 * Free a used ticket when its refcount falls to zero.
3512 */
3513void
3514xfs_log_ticket_put(
3515        xlog_ticket_t   *ticket)
3516{
3517        ASSERT(atomic_read(&ticket->t_ref) > 0);
3518        if (atomic_dec_and_test(&ticket->t_ref))
3519                kmem_zone_free(xfs_log_ticket_zone, ticket);
3520}
3521
3522xlog_ticket_t *
3523xfs_log_ticket_get(
3524        xlog_ticket_t   *ticket)
3525{
3526        ASSERT(atomic_read(&ticket->t_ref) > 0);
3527        atomic_inc(&ticket->t_ref);
3528        return ticket;
3529}
3530
3531/*
3532 * Figure out the total log space unit (in bytes) that would be
3533 * required for a log ticket.
3534 */
3535int
3536xfs_log_calc_unit_res(
3537        struct xfs_mount        *mp,
3538        int                     unit_bytes)
3539{
3540        struct xlog             *log = mp->m_log;
3541        int                     iclog_space;
3542        uint                    num_headers;
3543
3544        /*
3545         * Permanent reservations have up to 'cnt'-1 active log operations
3546         * in the log.  A unit in this case is the amount of space for one
3547         * of these log operations.  Normal reservations have a cnt of 1
3548         * and their unit amount is the total amount of space required.
3549         *
3550         * The following lines of code account for non-transaction data
3551         * which occupy space in the on-disk log.
3552         *
3553         * Normal form of a transaction is:
3554         * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3555         * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3556         *
3557         * We need to account for all the leadup data and trailer data
3558         * around the transaction data.
3559         * And then we need to account for the worst case in terms of using
3560         * more space.
3561         * The worst case will happen if:
3562         * - the placement of the transaction happens to be such that the
3563         *   roundoff is at its maximum
3564         * - the transaction data is synced before the commit record is synced
3565         *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3566         *   Therefore the commit record is in its own Log Record.
3567         *   This can happen as the commit record is called with its
3568         *   own region to xlog_write().
3569         *   This then means that in the worst case, roundoff can happen for
3570         *   the commit-rec as well.
3571         *   The commit-rec is smaller than padding in this scenario and so it is
3572         *   not added separately.
3573         */
3574
3575        /* for trans header */
3576        unit_bytes += sizeof(xlog_op_header_t);
3577        unit_bytes += sizeof(xfs_trans_header_t);
3578
3579        /* for start-rec */
3580        unit_bytes += sizeof(xlog_op_header_t);
3581
3582        /*
3583         * for LR headers - the space for data in an iclog is the size minus
3584         * the space used for the headers. If we use the iclog size, then we
3585         * undercalculate the number of headers required.
3586         *
3587         * Furthermore - the addition of op headers for split-recs might
3588         * increase the space required enough to require more log and op
3589         * headers, so take that into account too.
3590         *
3591         * IMPORTANT: This reservation makes the assumption that if this
3592         * transaction is the first in an iclog and hence has the LR headers
3593         * accounted to it, then the remaining space in the iclog is
3594         * exclusively for this transaction.  i.e. if the transaction is larger
3595         * than the iclog, it will be the only thing in that iclog.
3596         * Fundamentally, this means we must pass the entire log vector to
3597         * xlog_write to guarantee this.
3598         */
3599        iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3600        num_headers = howmany(unit_bytes, iclog_space);
3601
3602        /* for split-recs - ophdrs added when data split over LRs */
3603        unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3604
3605        /* add extra header reservations if we overrun */
3606        while (!num_headers ||
3607               howmany(unit_bytes, iclog_space) > num_headers) {
3608                unit_bytes += sizeof(xlog_op_header_t);
3609                num_headers++;
3610        }
3611        unit_bytes += log->l_iclog_hsize * num_headers;
3612
3613        /* for commit-rec LR header - note: padding will subsume the ophdr */
3614        unit_bytes += log->l_iclog_hsize;
3615
3616        /* for roundoff padding for transaction data and one for commit record */
3617        if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3618                /* log su roundoff */
3619                unit_bytes += 2 * mp->m_sb.sb_logsunit;
3620        } else {
3621                /* BB roundoff */
3622                unit_bytes += 2 * BBSIZE;
3623        }
3624
3625        return unit_bytes;
3626}
3627
3628/*
3629 * Allocate and initialise a new log ticket.
3630 */
3631struct xlog_ticket *
3632xlog_ticket_alloc(
3633        struct xlog             *log,
3634        int                     unit_bytes,
3635        int                     cnt,
3636        char                    client,
3637        bool                    permanent,
3638        xfs_km_flags_t          alloc_flags)
3639{
3640        struct xlog_ticket      *tic;
3641        int                     unit_res;
3642
3643        tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3644        if (!tic)
3645                return NULL;
3646
3647        unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3648
3649        atomic_set(&tic->t_ref, 1);
3650        tic->t_task             = current;
3651        INIT_LIST_HEAD(&tic->t_queue);
3652        tic->t_unit_res         = unit_res;
3653        tic->t_curr_res         = unit_res;
3654        tic->t_cnt              = cnt;
3655        tic->t_ocnt             = cnt;
3656        tic->t_tid              = prandom_u32();
3657        tic->t_clientid         = client;
3658        tic->t_flags            = XLOG_TIC_INITED;
3659        if (permanent)
3660                tic->t_flags |= XLOG_TIC_PERM_RESERV;
3661
3662        xlog_tic_reset_res(tic);
3663
3664        return tic;
3665}
3666
3667
3668/******************************************************************************
3669 *
3670 *              Log debug routines
3671 *
3672 ******************************************************************************
3673 */
3674#if defined(DEBUG)
3675/*
3676 * Make sure that the destination ptr is within the valid data region of
3677 * one of the iclogs.  This uses backup pointers stored in a different
3678 * part of the log in case we trash the log structure.
3679 */
3680void
3681xlog_verify_dest_ptr(
3682        struct xlog     *log,
3683        void            *ptr)
3684{
3685        int i;
3686        int good_ptr = 0;
3687
3688        for (i = 0; i < log->l_iclog_bufs; i++) {
3689                if (ptr >= log->l_iclog_bak[i] &&
3690                    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3691                        good_ptr++;
3692        }
3693
3694        if (!good_ptr)
3695                xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3696}
3697
3698/*
3699 * Check to make sure the grant write head didn't just over lap the tail.  If
3700 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3701 * the cycles differ by exactly one and check the byte count.
3702 *
3703 * This check is run unlocked, so can give false positives. Rather than assert
3704 * on failures, use a warn-once flag and a panic tag to allow the admin to
3705 * determine if they want to panic the machine when such an error occurs. For
3706 * debug kernels this will have the same effect as using an assert but, unlinke
3707 * an assert, it can be turned off at runtime.
3708 */
3709STATIC void
3710xlog_verify_grant_tail(
3711        struct xlog     *log)
3712{
3713        int             tail_cycle, tail_blocks;
3714        int             cycle, space;
3715
3716        xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3717        xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3718        if (tail_cycle != cycle) {
3719                if (cycle - 1 != tail_cycle &&
3720                    !(log->l_flags & XLOG_TAIL_WARN)) {
3721                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3722                                "%s: cycle - 1 != tail_cycle", __func__);
3723                        log->l_flags |= XLOG_TAIL_WARN;
3724                }
3725
3726                if (space > BBTOB(tail_blocks) &&
3727                    !(log->l_flags & XLOG_TAIL_WARN)) {
3728                        xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3729                                "%s: space > BBTOB(tail_blocks)", __func__);
3730                        log->l_flags |= XLOG_TAIL_WARN;
3731                }
3732        }
3733}
3734
3735/* check if it will fit */
3736STATIC void
3737xlog_verify_tail_lsn(
3738        struct xlog             *log,
3739        struct xlog_in_core     *iclog,
3740        xfs_lsn_t               tail_lsn)
3741{
3742    int blocks;
3743
3744    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3745        blocks =
3746            log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3747        if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3748                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3749    } else {
3750        ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3751
3752        if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3753                xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3754
3755        blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3756        if (blocks < BTOBB(iclog->ic_offset) + 1)
3757                xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3758    }
3759}       /* xlog_verify_tail_lsn */
3760
3761/*
3762 * Perform a number of checks on the iclog before writing to disk.
3763 *
3764 * 1. Make sure the iclogs are still circular
3765 * 2. Make sure we have a good magic number
3766 * 3. Make sure we don't have magic numbers in the data
3767 * 4. Check fields of each log operation header for:
3768 *      A. Valid client identifier
3769 *      B. tid ptr value falls in valid ptr space (user space code)
3770 *      C. Length in log record header is correct according to the
3771 *              individual operation headers within record.
3772 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3773 *      log, check the preceding blocks of the physical log to make sure all
3774 *      the cycle numbers agree with the current cycle number.
3775 */
3776STATIC void
3777xlog_verify_iclog(
3778        struct xlog             *log,
3779        struct xlog_in_core     *iclog,
3780        int                     count,
3781        bool                    syncing)
3782{
3783        xlog_op_header_t        *ophead;
3784        xlog_in_core_t          *icptr;
3785        xlog_in_core_2_t        *xhdr;
3786        void                    *base_ptr, *ptr, *p;
3787        ptrdiff_t               field_offset;
3788        __uint8_t               clientid;
3789        int                     len, i, j, k, op_len;
3790        int                     idx;
3791
3792        /* check validity of iclog pointers */
3793        spin_lock(&log->l_icloglock);
3794        icptr = log->l_iclog;
3795        for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3796                ASSERT(icptr);
3797
3798        if (icptr != log->l_iclog)
3799                xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3800        spin_unlock(&log->l_icloglock);
3801
3802        /* check log magic numbers */
3803        if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3804                xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3805
3806        base_ptr = ptr = &iclog->ic_header;
3807        p = &iclog->ic_header;
3808        for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3809                if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3810                        xfs_emerg(log->l_mp, "%s: unexpected magic num",
3811                                __func__);
3812        }
3813
3814        /* check fields */
3815        len = be32_to_cpu(iclog->ic_header.h_num_logops);
3816        base_ptr = ptr = iclog->ic_datap;
3817        ophead = ptr;
3818        xhdr = iclog->ic_data;
3819        for (i = 0; i < len; i++) {
3820                ophead = ptr;
3821
3822                /* clientid is only 1 byte */
3823                p = &ophead->oh_clientid;
3824                field_offset = p - base_ptr;
3825                if (!syncing || (field_offset & 0x1ff)) {
3826                        clientid = ophead->oh_clientid;
3827                } else {
3828                        idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3829                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3830                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3831                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3832                                clientid = xlog_get_client_id(
3833                                        xhdr[j].hic_xheader.xh_cycle_data[k]);
3834                        } else {
3835                                clientid = xlog_get_client_id(
3836                                        iclog->ic_header.h_cycle_data[idx]);
3837                        }
3838                }
3839                if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3840                        xfs_warn(log->l_mp,
3841                                "%s: invalid clientid %d op 0x%p offset 0x%lx",
3842                                __func__, clientid, ophead,
3843                                (unsigned long)field_offset);
3844
3845                /* check length */
3846                p = &ophead->oh_len;
3847                field_offset = p - base_ptr;
3848                if (!syncing || (field_offset & 0x1ff)) {
3849                        op_len = be32_to_cpu(ophead->oh_len);
3850                } else {
3851                        idx = BTOBBT((uintptr_t)&ophead->oh_len -
3852                                    (uintptr_t)iclog->ic_datap);
3853                        if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3854                                j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3855                                k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3856                                op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3857                        } else {
3858                                op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3859                        }
3860                }
3861                ptr += sizeof(xlog_op_header_t) + op_len;
3862        }
3863}       /* xlog_verify_iclog */
3864#endif
3865
3866/*
3867 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3868 */
3869STATIC int
3870xlog_state_ioerror(
3871        struct xlog     *log)
3872{
3873        xlog_in_core_t  *iclog, *ic;
3874
3875        iclog = log->l_iclog;
3876        if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3877                /*
3878                 * Mark all the incore logs IOERROR.
3879                 * From now on, no log flushes will result.
3880                 */
3881                ic = iclog;
3882                do {
3883                        ic->ic_state = XLOG_STATE_IOERROR;
3884                        ic = ic->ic_next;
3885                } while (ic != iclog);
3886                return 0;
3887        }
3888        /*
3889         * Return non-zero, if state transition has already happened.
3890         */
3891        return 1;
3892}
3893
3894/*
3895 * This is called from xfs_force_shutdown, when we're forcibly
3896 * shutting down the filesystem, typically because of an IO error.
3897 * Our main objectives here are to make sure that:
3898 *      a. if !logerror, flush the logs to disk. Anything modified
3899 *         after this is ignored.
3900 *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3901 *         parties to find out, 'atomically'.
3902 *      c. those who're sleeping on log reservations, pinned objects and
3903 *          other resources get woken up, and be told the bad news.
3904 *      d. nothing new gets queued up after (b) and (c) are done.
3905 *
3906 * Note: for the !logerror case we need to flush the regions held in memory out
3907 * to disk first. This needs to be done before the log is marked as shutdown,
3908 * otherwise the iclog writes will fail.
3909 */
3910int
3911xfs_log_force_umount(
3912        struct xfs_mount        *mp,
3913        int                     logerror)
3914{
3915        struct xlog     *log;
3916        int             retval;
3917
3918        log = mp->m_log;
3919
3920        /*
3921         * If this happens during log recovery, don't worry about
3922         * locking; the log isn't open for business yet.
3923         */
3924        if (!log ||
3925            log->l_flags & XLOG_ACTIVE_RECOVERY) {
3926                mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3927                if (mp->m_sb_bp)
3928                        mp->m_sb_bp->b_flags |= XBF_DONE;
3929                return 0;
3930        }
3931
3932        /*
3933         * Somebody could've already done the hard work for us.
3934         * No need to get locks for this.
3935         */
3936        if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3937                ASSERT(XLOG_FORCED_SHUTDOWN(log));
3938                return 1;
3939        }
3940
3941        /*
3942         * Flush all the completed transactions to disk before marking the log
3943         * being shut down. We need to do it in this order to ensure that
3944         * completed operations are safely on disk before we shut down, and that
3945         * we don't have to issue any buffer IO after the shutdown flags are set
3946         * to guarantee this.
3947         */
3948        if (!logerror)
3949                _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3950
3951        /*
3952         * mark the filesystem and the as in a shutdown state and wake
3953         * everybody up to tell them the bad news.
3954         */
3955        spin_lock(&log->l_icloglock);
3956        mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3957        if (mp->m_sb_bp)
3958                mp->m_sb_bp->b_flags |= XBF_DONE;
3959
3960        /*
3961         * Mark the log and the iclogs with IO error flags to prevent any
3962         * further log IO from being issued or completed.
3963         */
3964        log->l_flags |= XLOG_IO_ERROR;
3965        retval = xlog_state_ioerror(log);
3966        spin_unlock(&log->l_icloglock);
3967
3968        /*
3969         * We don't want anybody waiting for log reservations after this. That
3970         * means we have to wake up everybody queued up on reserveq as well as
3971         * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3972         * we don't enqueue anything once the SHUTDOWN flag is set, and this
3973         * action is protected by the grant locks.
3974         */
3975        xlog_grant_head_wake_all(&log->l_reserve_head);
3976        xlog_grant_head_wake_all(&log->l_write_head);
3977
3978        /*
3979         * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3980         * as if the log writes were completed. The abort handling in the log
3981         * item committed callback functions will do this again under lock to
3982         * avoid races.
3983         */
3984        wake_up_all(&log->l_cilp->xc_commit_wait);
3985        xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3986
3987#ifdef XFSERRORDEBUG
3988        {
3989                xlog_in_core_t  *iclog;
3990
3991                spin_lock(&log->l_icloglock);
3992                iclog = log->l_iclog;
3993                do {
3994                        ASSERT(iclog->ic_callback == 0);
3995                        iclog = iclog->ic_next;
3996                } while (iclog != log->l_iclog);
3997                spin_unlock(&log->l_icloglock);
3998        }
3999#endif
4000        /* return non-zero if log IOERROR transition had already happened */
4001        return retval;
4002}
4003
4004STATIC int
4005xlog_iclogs_empty(
4006        struct xlog     *log)
4007{
4008        xlog_in_core_t  *iclog;
4009
4010        iclog = log->l_iclog;
4011        do {
4012                /* endianness does not matter here, zero is zero in
4013                 * any language.
4014                 */
4015                if (iclog->ic_header.h_num_logops)
4016                        return 0;
4017                iclog = iclog->ic_next;
4018        } while (iclog != log->l_iclog);
4019        return 1;
4020}
4021
4022/*
4023 * Verify that an LSN stamped into a piece of metadata is valid. This is
4024 * intended for use in read verifiers on v5 superblocks.
4025 */
4026bool
4027xfs_log_check_lsn(
4028        struct xfs_mount        *mp,
4029        xfs_lsn_t               lsn)
4030{
4031        struct xlog             *log = mp->m_log;
4032        bool                    valid;
4033
4034        /*
4035         * norecovery mode skips mount-time log processing and unconditionally
4036         * resets the in-core LSN. We can't validate in this mode, but
4037         * modifications are not allowed anyways so just return true.
4038         */
4039        if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4040                return true;
4041
4042        /*
4043         * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4044         * handled by recovery and thus safe to ignore here.
4045         */
4046        if (lsn == NULLCOMMITLSN)
4047                return true;
4048
4049        valid = xlog_valid_lsn(mp->m_log, lsn);
4050
4051        /* warn the user about what's gone wrong before verifier failure */
4052        if (!valid) {
4053                spin_lock(&log->l_icloglock);
4054                xfs_warn(mp,
4055"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4056"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4057                         CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4058                         log->l_curr_cycle, log->l_curr_block);
4059                spin_unlock(&log->l_icloglock);
4060        }
4061
4062        return valid;
4063}
4064