linux/include/linux/jiffies.h
<<
>>
Prefs
   1#ifndef _LINUX_JIFFIES_H
   2#define _LINUX_JIFFIES_H
   3
   4#include <linux/math64.h>
   5#include <linux/kernel.h>
   6#include <linux/types.h>
   7#include <linux/time.h>
   8#include <linux/timex.h>
   9#include <asm/param.h>                  /* for HZ */
  10#include <generated/timeconst.h>
  11
  12/*
  13 * The following defines establish the engineering parameters of the PLL
  14 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz
  15 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the
  16 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the
  17 * nearest power of two in order to avoid hardware multiply operations.
  18 */
  19#if HZ >= 12 && HZ < 24
  20# define SHIFT_HZ       4
  21#elif HZ >= 24 && HZ < 48
  22# define SHIFT_HZ       5
  23#elif HZ >= 48 && HZ < 96
  24# define SHIFT_HZ       6
  25#elif HZ >= 96 && HZ < 192
  26# define SHIFT_HZ       7
  27#elif HZ >= 192 && HZ < 384
  28# define SHIFT_HZ       8
  29#elif HZ >= 384 && HZ < 768
  30# define SHIFT_HZ       9
  31#elif HZ >= 768 && HZ < 1536
  32# define SHIFT_HZ       10
  33#elif HZ >= 1536 && HZ < 3072
  34# define SHIFT_HZ       11
  35#elif HZ >= 3072 && HZ < 6144
  36# define SHIFT_HZ       12
  37#elif HZ >= 6144 && HZ < 12288
  38# define SHIFT_HZ       13
  39#else
  40# error Invalid value of HZ.
  41#endif
  42
  43/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can
  44 * improve accuracy by shifting LSH bits, hence calculating:
  45 *     (NOM << LSH) / DEN
  46 * This however means trouble for large NOM, because (NOM << LSH) may no
  47 * longer fit in 32 bits. The following way of calculating this gives us
  48 * some slack, under the following conditions:
  49 *   - (NOM / DEN) fits in (32 - LSH) bits.
  50 *   - (NOM % DEN) fits in (32 - LSH) bits.
  51 */
  52#define SH_DIV(NOM,DEN,LSH) (   (((NOM) / (DEN)) << (LSH))              \
  53                             + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
  54
  55/* LATCH is used in the interval timer and ftape setup. */
  56#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ)   /* For divider */
  57
  58extern int register_refined_jiffies(long clock_tick_rate);
  59
  60/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */
  61#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ)
  62
  63/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */
  64#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ)
  65
  66/* some arch's have a small-data section that can be accessed register-relative
  67 * but that can only take up to, say, 4-byte variables. jiffies being part of
  68 * an 8-byte variable may not be correctly accessed unless we force the issue
  69 */
  70#define __jiffy_data  __attribute__((section(".data")))
  71
  72/*
  73 * The 64-bit value is not atomic - you MUST NOT read it
  74 * without sampling the sequence number in jiffies_lock.
  75 * get_jiffies_64() will do this for you as appropriate.
  76 */
  77extern u64 __jiffy_data jiffies_64;
  78extern unsigned long volatile __jiffy_data jiffies;
  79
  80#if (BITS_PER_LONG < 64)
  81u64 get_jiffies_64(void);
  82#else
  83static inline u64 get_jiffies_64(void)
  84{
  85        return (u64)jiffies;
  86}
  87#endif
  88
  89/*
  90 *      These inlines deal with timer wrapping correctly. You are 
  91 *      strongly encouraged to use them
  92 *      1. Because people otherwise forget
  93 *      2. Because if the timer wrap changes in future you won't have to
  94 *         alter your driver code.
  95 *
  96 * time_after(a,b) returns true if the time a is after time b.
  97 *
  98 * Do this with "<0" and ">=0" to only test the sign of the result. A
  99 * good compiler would generate better code (and a really good compiler
 100 * wouldn't care). Gcc is currently neither.
 101 */
 102#define time_after(a,b)         \
 103        (typecheck(unsigned long, a) && \
 104         typecheck(unsigned long, b) && \
 105         ((long)((b) - (a)) < 0))
 106#define time_before(a,b)        time_after(b,a)
 107
 108#define time_after_eq(a,b)      \
 109        (typecheck(unsigned long, a) && \
 110         typecheck(unsigned long, b) && \
 111         ((long)((a) - (b)) >= 0))
 112#define time_before_eq(a,b)     time_after_eq(b,a)
 113
 114/*
 115 * Calculate whether a is in the range of [b, c].
 116 */
 117#define time_in_range(a,b,c) \
 118        (time_after_eq(a,b) && \
 119         time_before_eq(a,c))
 120
 121/*
 122 * Calculate whether a is in the range of [b, c).
 123 */
 124#define time_in_range_open(a,b,c) \
 125        (time_after_eq(a,b) && \
 126         time_before(a,c))
 127
 128/* Same as above, but does so with platform independent 64bit types.
 129 * These must be used when utilizing jiffies_64 (i.e. return value of
 130 * get_jiffies_64() */
 131#define time_after64(a,b)       \
 132        (typecheck(__u64, a) && \
 133         typecheck(__u64, b) && \
 134         ((__s64)((b) - (a)) < 0))
 135#define time_before64(a,b)      time_after64(b,a)
 136
 137#define time_after_eq64(a,b)    \
 138        (typecheck(__u64, a) && \
 139         typecheck(__u64, b) && \
 140         ((__s64)((a) - (b)) >= 0))
 141#define time_before_eq64(a,b)   time_after_eq64(b,a)
 142
 143#define time_in_range64(a, b, c) \
 144        (time_after_eq64(a, b) && \
 145         time_before_eq64(a, c))
 146
 147/*
 148 * These four macros compare jiffies and 'a' for convenience.
 149 */
 150
 151/* time_is_before_jiffies(a) return true if a is before jiffies */
 152#define time_is_before_jiffies(a) time_after(jiffies, a)
 153
 154/* time_is_after_jiffies(a) return true if a is after jiffies */
 155#define time_is_after_jiffies(a) time_before(jiffies, a)
 156
 157/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/
 158#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a)
 159
 160/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/
 161#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a)
 162
 163/*
 164 * Have the 32 bit jiffies value wrap 5 minutes after boot
 165 * so jiffies wrap bugs show up earlier.
 166 */
 167#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ))
 168
 169/*
 170 * Change timeval to jiffies, trying to avoid the
 171 * most obvious overflows..
 172 *
 173 * And some not so obvious.
 174 *
 175 * Note that we don't want to return LONG_MAX, because
 176 * for various timeout reasons we often end up having
 177 * to wait "jiffies+1" in order to guarantee that we wait
 178 * at _least_ "jiffies" - so "jiffies+1" had better still
 179 * be positive.
 180 */
 181#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1)
 182
 183extern unsigned long preset_lpj;
 184
 185/*
 186 * We want to do realistic conversions of time so we need to use the same
 187 * values the update wall clock code uses as the jiffies size.  This value
 188 * is: TICK_NSEC (which is defined in timex.h).  This
 189 * is a constant and is in nanoseconds.  We will use scaled math
 190 * with a set of scales defined here as SEC_JIFFIE_SC,  USEC_JIFFIE_SC and
 191 * NSEC_JIFFIE_SC.  Note that these defines contain nothing but
 192 * constants and so are computed at compile time.  SHIFT_HZ (computed in
 193 * timex.h) adjusts the scaling for different HZ values.
 194
 195 * Scaled math???  What is that?
 196 *
 197 * Scaled math is a way to do integer math on values that would,
 198 * otherwise, either overflow, underflow, or cause undesired div
 199 * instructions to appear in the execution path.  In short, we "scale"
 200 * up the operands so they take more bits (more precision, less
 201 * underflow), do the desired operation and then "scale" the result back
 202 * by the same amount.  If we do the scaling by shifting we avoid the
 203 * costly mpy and the dastardly div instructions.
 204
 205 * Suppose, for example, we want to convert from seconds to jiffies
 206 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE.  The
 207 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We
 208 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we
 209 * might calculate at compile time, however, the result will only have
 210 * about 3-4 bits of precision (less for smaller values of HZ).
 211 *
 212 * So, we scale as follows:
 213 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE);
 214 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE;
 215 * Then we make SCALE a power of two so:
 216 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE;
 217 * Now we define:
 218 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE))
 219 * jiff = (sec * SEC_CONV) >> SCALE;
 220 *
 221 * Often the math we use will expand beyond 32-bits so we tell C how to
 222 * do this and pass the 64-bit result of the mpy through the ">> SCALE"
 223 * which should take the result back to 32-bits.  We want this expansion
 224 * to capture as much precision as possible.  At the same time we don't
 225 * want to overflow so we pick the SCALE to avoid this.  In this file,
 226 * that means using a different scale for each range of HZ values (as
 227 * defined in timex.h).
 228 *
 229 * For those who want to know, gcc will give a 64-bit result from a "*"
 230 * operator if the result is a long long AND at least one of the
 231 * operands is cast to long long (usually just prior to the "*" so as
 232 * not to confuse it into thinking it really has a 64-bit operand,
 233 * which, buy the way, it can do, but it takes more code and at least 2
 234 * mpys).
 235
 236 * We also need to be aware that one second in nanoseconds is only a
 237 * couple of bits away from overflowing a 32-bit word, so we MUST use
 238 * 64-bits to get the full range time in nanoseconds.
 239
 240 */
 241
 242/*
 243 * Here are the scales we will use.  One for seconds, nanoseconds and
 244 * microseconds.
 245 *
 246 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and
 247 * check if the sign bit is set.  If not, we bump the shift count by 1.
 248 * (Gets an extra bit of precision where we can use it.)
 249 * We know it is set for HZ = 1024 and HZ = 100 not for 1000.
 250 * Haven't tested others.
 251
 252 * Limits of cpp (for #if expressions) only long (no long long), but
 253 * then we only need the most signicant bit.
 254 */
 255
 256#define SEC_JIFFIE_SC (31 - SHIFT_HZ)
 257#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000)
 258#undef SEC_JIFFIE_SC
 259#define SEC_JIFFIE_SC (32 - SHIFT_HZ)
 260#endif
 261#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29)
 262#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\
 263                                TICK_NSEC -1) / (u64)TICK_NSEC))
 264
 265#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\
 266                                        TICK_NSEC -1) / (u64)TICK_NSEC))
 267/*
 268 * The maximum jiffie value is (MAX_INT >> 1).  Here we translate that
 269 * into seconds.  The 64-bit case will overflow if we are not careful,
 270 * so use the messy SH_DIV macro to do it.  Still all constants.
 271 */
 272#if BITS_PER_LONG < 64
 273# define MAX_SEC_IN_JIFFIES \
 274        (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC)
 275#else   /* take care of overflow on 64 bits machines */
 276# define MAX_SEC_IN_JIFFIES \
 277        (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1)
 278
 279#endif
 280
 281/*
 282 * Convert various time units to each other:
 283 */
 284extern unsigned int jiffies_to_msecs(const unsigned long j);
 285extern unsigned int jiffies_to_usecs(const unsigned long j);
 286
 287static inline u64 jiffies_to_nsecs(const unsigned long j)
 288{
 289        return (u64)jiffies_to_usecs(j) * NSEC_PER_USEC;
 290}
 291
 292extern unsigned long __msecs_to_jiffies(const unsigned int m);
 293#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 294/*
 295 * HZ is equal to or smaller than 1000, and 1000 is a nice round
 296 * multiple of HZ, divide with the factor between them, but round
 297 * upwards:
 298 */
 299static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 300{
 301        return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
 302}
 303#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 304/*
 305 * HZ is larger than 1000, and HZ is a nice round multiple of 1000 -
 306 * simply multiply with the factor between them.
 307 *
 308 * But first make sure the multiplication result cannot overflow:
 309 */
 310static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 311{
 312        if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 313                return MAX_JIFFY_OFFSET;
 314        return m * (HZ / MSEC_PER_SEC);
 315}
 316#else
 317/*
 318 * Generic case - multiply, round and divide. But first check that if
 319 * we are doing a net multiplication, that we wouldn't overflow:
 320 */
 321static inline unsigned long _msecs_to_jiffies(const unsigned int m)
 322{
 323        if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 324                return MAX_JIFFY_OFFSET;
 325
 326        return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) >> MSEC_TO_HZ_SHR32;
 327}
 328#endif
 329/**
 330 * msecs_to_jiffies: - convert milliseconds to jiffies
 331 * @m:  time in milliseconds
 332 *
 333 * conversion is done as follows:
 334 *
 335 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 336 *
 337 * - 'too large' values [that would result in larger than
 338 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 339 *
 340 * - all other values are converted to jiffies by either multiplying
 341 *   the input value by a factor or dividing it with a factor and
 342 *   handling any 32-bit overflows.
 343 *   for the details see __msecs_to_jiffies()
 344 *
 345 * msecs_to_jiffies() checks for the passed in value being a constant
 346 * via __builtin_constant_p() allowing gcc to eliminate most of the
 347 * code, __msecs_to_jiffies() is called if the value passed does not
 348 * allow constant folding and the actual conversion must be done at
 349 * runtime.
 350 * the HZ range specific helpers _msecs_to_jiffies() are called both
 351 * directly here and from __msecs_to_jiffies() in the case where
 352 * constant folding is not possible.
 353 */
 354static __always_inline unsigned long msecs_to_jiffies(const unsigned int m)
 355{
 356        if (__builtin_constant_p(m)) {
 357                if ((int)m < 0)
 358                        return MAX_JIFFY_OFFSET;
 359                return _msecs_to_jiffies(m);
 360        } else {
 361                return __msecs_to_jiffies(m);
 362        }
 363}
 364
 365extern unsigned long __usecs_to_jiffies(const unsigned int u);
 366#if !(USEC_PER_SEC % HZ)
 367static inline unsigned long _usecs_to_jiffies(const unsigned int u)
 368{
 369        return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
 370}
 371#else
 372static inline unsigned long _usecs_to_jiffies(const unsigned int u)
 373{
 374        return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
 375                >> USEC_TO_HZ_SHR32;
 376}
 377#endif
 378
 379/**
 380 * usecs_to_jiffies: - convert microseconds to jiffies
 381 * @u:  time in microseconds
 382 *
 383 * conversion is done as follows:
 384 *
 385 * - 'too large' values [that would result in larger than
 386 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 387 *
 388 * - all other values are converted to jiffies by either multiplying
 389 *   the input value by a factor or dividing it with a factor and
 390 *   handling any 32-bit overflows as for msecs_to_jiffies.
 391 *
 392 * usecs_to_jiffies() checks for the passed in value being a constant
 393 * via __builtin_constant_p() allowing gcc to eliminate most of the
 394 * code, __usecs_to_jiffies() is called if the value passed does not
 395 * allow constant folding and the actual conversion must be done at
 396 * runtime.
 397 * the HZ range specific helpers _usecs_to_jiffies() are called both
 398 * directly here and from __msecs_to_jiffies() in the case where
 399 * constant folding is not possible.
 400 */
 401static __always_inline unsigned long usecs_to_jiffies(const unsigned int u)
 402{
 403        if (__builtin_constant_p(u)) {
 404                if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 405                        return MAX_JIFFY_OFFSET;
 406                return _usecs_to_jiffies(u);
 407        } else {
 408                return __usecs_to_jiffies(u);
 409        }
 410}
 411
 412extern unsigned long timespec64_to_jiffies(const struct timespec64 *value);
 413extern void jiffies_to_timespec64(const unsigned long jiffies,
 414                                  struct timespec64 *value);
 415static inline unsigned long timespec_to_jiffies(const struct timespec *value)
 416{
 417        struct timespec64 ts = timespec_to_timespec64(*value);
 418
 419        return timespec64_to_jiffies(&ts);
 420}
 421
 422static inline void jiffies_to_timespec(const unsigned long jiffies,
 423                                       struct timespec *value)
 424{
 425        struct timespec64 ts;
 426
 427        jiffies_to_timespec64(jiffies, &ts);
 428        *value = timespec64_to_timespec(ts);
 429}
 430
 431extern unsigned long timeval_to_jiffies(const struct timeval *value);
 432extern void jiffies_to_timeval(const unsigned long jiffies,
 433                               struct timeval *value);
 434
 435extern clock_t jiffies_to_clock_t(unsigned long x);
 436static inline clock_t jiffies_delta_to_clock_t(long delta)
 437{
 438        return jiffies_to_clock_t(max(0L, delta));
 439}
 440
 441extern unsigned long clock_t_to_jiffies(unsigned long x);
 442extern u64 jiffies_64_to_clock_t(u64 x);
 443extern u64 nsec_to_clock_t(u64 x);
 444extern u64 nsecs_to_jiffies64(u64 n);
 445extern unsigned long nsecs_to_jiffies(u64 n);
 446
 447#define TIMESTAMP_SIZE  30
 448
 449#endif
 450