linux/include/linux/mmzone.h
<<
>>
Prefs
   1#ifndef _LINUX_MMZONE_H
   2#define _LINUX_MMZONE_H
   3
   4#ifndef __ASSEMBLY__
   5#ifndef __GENERATING_BOUNDS_H
   6
   7#include <linux/spinlock.h>
   8#include <linux/list.h>
   9#include <linux/wait.h>
  10#include <linux/bitops.h>
  11#include <linux/cache.h>
  12#include <linux/threads.h>
  13#include <linux/numa.h>
  14#include <linux/init.h>
  15#include <linux/seqlock.h>
  16#include <linux/nodemask.h>
  17#include <linux/pageblock-flags.h>
  18#include <linux/page-flags-layout.h>
  19#include <linux/atomic.h>
  20#include <asm/page.h>
  21
  22/* Free memory management - zoned buddy allocator.  */
  23#ifndef CONFIG_FORCE_MAX_ZONEORDER
  24#define MAX_ORDER 11
  25#else
  26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  27#endif
  28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  29
  30/*
  31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  32 * costly to service.  That is between allocation orders which should
  33 * coalesce naturally under reasonable reclaim pressure and those which
  34 * will not.
  35 */
  36#define PAGE_ALLOC_COSTLY_ORDER 3
  37
  38enum {
  39        MIGRATE_UNMOVABLE,
  40        MIGRATE_MOVABLE,
  41        MIGRATE_RECLAIMABLE,
  42        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  43        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  44#ifdef CONFIG_CMA
  45        /*
  46         * MIGRATE_CMA migration type is designed to mimic the way
  47         * ZONE_MOVABLE works.  Only movable pages can be allocated
  48         * from MIGRATE_CMA pageblocks and page allocator never
  49         * implicitly change migration type of MIGRATE_CMA pageblock.
  50         *
  51         * The way to use it is to change migratetype of a range of
  52         * pageblocks to MIGRATE_CMA which can be done by
  53         * __free_pageblock_cma() function.  What is important though
  54         * is that a range of pageblocks must be aligned to
  55         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  56         * a single pageblock.
  57         */
  58        MIGRATE_CMA,
  59#endif
  60#ifdef CONFIG_MEMORY_ISOLATION
  61        MIGRATE_ISOLATE,        /* can't allocate from here */
  62#endif
  63        MIGRATE_TYPES
  64};
  65
  66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  67extern char * const migratetype_names[MIGRATE_TYPES];
  68
  69#ifdef CONFIG_CMA
  70#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  71#else
  72#  define is_migrate_cma(migratetype) false
  73#endif
  74
  75#define for_each_migratetype_order(order, type) \
  76        for (order = 0; order < MAX_ORDER; order++) \
  77                for (type = 0; type < MIGRATE_TYPES; type++)
  78
  79extern int page_group_by_mobility_disabled;
  80
  81#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  82#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  83
  84#define get_pageblock_migratetype(page)                                 \
  85        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  86                        PB_migrate_end, MIGRATETYPE_MASK)
  87
  88struct free_area {
  89        struct list_head        free_list[MIGRATE_TYPES];
  90        unsigned long           nr_free;
  91};
  92
  93struct pglist_data;
  94
  95/*
  96 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  97 * So add a wild amount of padding here to ensure that they fall into separate
  98 * cachelines.  There are very few zone structures in the machine, so space
  99 * consumption is not a concern here.
 100 */
 101#if defined(CONFIG_SMP)
 102struct zone_padding {
 103        char x[0];
 104} ____cacheline_internodealigned_in_smp;
 105#define ZONE_PADDING(name)      struct zone_padding name;
 106#else
 107#define ZONE_PADDING(name)
 108#endif
 109
 110enum zone_stat_item {
 111        /* First 128 byte cacheline (assuming 64 bit words) */
 112        NR_FREE_PAGES,
 113        NR_ALLOC_BATCH,
 114        NR_LRU_BASE,
 115        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 116        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 117        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 118        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 119        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 120        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 121        NR_ANON_PAGES,  /* Mapped anonymous pages */
 122        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 123                           only modified from process context */
 124        NR_FILE_PAGES,
 125        NR_FILE_DIRTY,
 126        NR_WRITEBACK,
 127        NR_SLAB_RECLAIMABLE,
 128        NR_SLAB_UNRECLAIMABLE,
 129        NR_PAGETABLE,           /* used for pagetables */
 130        NR_KERNEL_STACK,
 131        /* Second 128 byte cacheline */
 132        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 133        NR_BOUNCE,
 134        NR_VMSCAN_WRITE,
 135        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 136        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 137        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 138        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 139        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 140        NR_DIRTIED,             /* page dirtyings since bootup */
 141        NR_WRITTEN,             /* page writings since bootup */
 142        NR_PAGES_SCANNED,       /* pages scanned since last reclaim */
 143#ifdef CONFIG_NUMA
 144        NUMA_HIT,               /* allocated in intended node */
 145        NUMA_MISS,              /* allocated in non intended node */
 146        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 147        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 148        NUMA_LOCAL,             /* allocation from local node */
 149        NUMA_OTHER,             /* allocation from other node */
 150#endif
 151        WORKINGSET_REFAULT,
 152        WORKINGSET_ACTIVATE,
 153        WORKINGSET_NODERECLAIM,
 154        NR_ANON_TRANSPARENT_HUGEPAGES,
 155        NR_FREE_CMA_PAGES,
 156        NR_VM_ZONE_STAT_ITEMS };
 157
 158/*
 159 * We do arithmetic on the LRU lists in various places in the code,
 160 * so it is important to keep the active lists LRU_ACTIVE higher in
 161 * the array than the corresponding inactive lists, and to keep
 162 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 163 *
 164 * This has to be kept in sync with the statistics in zone_stat_item
 165 * above and the descriptions in vmstat_text in mm/vmstat.c
 166 */
 167#define LRU_BASE 0
 168#define LRU_ACTIVE 1
 169#define LRU_FILE 2
 170
 171enum lru_list {
 172        LRU_INACTIVE_ANON = LRU_BASE,
 173        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 174        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 175        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 176        LRU_UNEVICTABLE,
 177        NR_LRU_LISTS
 178};
 179
 180#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 181
 182#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 183
 184static inline int is_file_lru(enum lru_list lru)
 185{
 186        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 187}
 188
 189static inline int is_active_lru(enum lru_list lru)
 190{
 191        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 192}
 193
 194struct zone_reclaim_stat {
 195        /*
 196         * The pageout code in vmscan.c keeps track of how many of the
 197         * mem/swap backed and file backed pages are referenced.
 198         * The higher the rotated/scanned ratio, the more valuable
 199         * that cache is.
 200         *
 201         * The anon LRU stats live in [0], file LRU stats in [1]
 202         */
 203        unsigned long           recent_rotated[2];
 204        unsigned long           recent_scanned[2];
 205};
 206
 207struct lruvec {
 208        struct list_head                lists[NR_LRU_LISTS];
 209        struct zone_reclaim_stat        reclaim_stat;
 210        /* Evictions & activations on the inactive file list */
 211        atomic_long_t                   inactive_age;
 212#ifdef CONFIG_MEMCG
 213        struct zone                     *zone;
 214#endif
 215};
 216
 217/* Mask used at gathering information at once (see memcontrol.c) */
 218#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 219#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 220#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 221
 222/* Isolate clean file */
 223#define ISOLATE_CLEAN           ((__force isolate_mode_t)0x1)
 224/* Isolate unmapped file */
 225#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 226/* Isolate for asynchronous migration */
 227#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 228/* Isolate unevictable pages */
 229#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 230
 231/* LRU Isolation modes. */
 232typedef unsigned __bitwise__ isolate_mode_t;
 233
 234enum zone_watermarks {
 235        WMARK_MIN,
 236        WMARK_LOW,
 237        WMARK_HIGH,
 238        NR_WMARK
 239};
 240
 241#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 242#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 243#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 244
 245struct per_cpu_pages {
 246        int count;              /* number of pages in the list */
 247        int high;               /* high watermark, emptying needed */
 248        int batch;              /* chunk size for buddy add/remove */
 249
 250        /* Lists of pages, one per migrate type stored on the pcp-lists */
 251        struct list_head lists[MIGRATE_PCPTYPES];
 252};
 253
 254struct per_cpu_pageset {
 255        struct per_cpu_pages pcp;
 256#ifdef CONFIG_NUMA
 257        s8 expire;
 258#endif
 259#ifdef CONFIG_SMP
 260        s8 stat_threshold;
 261        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 262#endif
 263};
 264
 265#endif /* !__GENERATING_BOUNDS.H */
 266
 267enum zone_type {
 268#ifdef CONFIG_ZONE_DMA
 269        /*
 270         * ZONE_DMA is used when there are devices that are not able
 271         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 272         * carve out the portion of memory that is needed for these devices.
 273         * The range is arch specific.
 274         *
 275         * Some examples
 276         *
 277         * Architecture         Limit
 278         * ---------------------------
 279         * parisc, ia64, sparc  <4G
 280         * s390                 <2G
 281         * arm                  Various
 282         * alpha                Unlimited or 0-16MB.
 283         *
 284         * i386, x86_64 and multiple other arches
 285         *                      <16M.
 286         */
 287        ZONE_DMA,
 288#endif
 289#ifdef CONFIG_ZONE_DMA32
 290        /*
 291         * x86_64 needs two ZONE_DMAs because it supports devices that are
 292         * only able to do DMA to the lower 16M but also 32 bit devices that
 293         * can only do DMA areas below 4G.
 294         */
 295        ZONE_DMA32,
 296#endif
 297        /*
 298         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 299         * performed on pages in ZONE_NORMAL if the DMA devices support
 300         * transfers to all addressable memory.
 301         */
 302        ZONE_NORMAL,
 303#ifdef CONFIG_HIGHMEM
 304        /*
 305         * A memory area that is only addressable by the kernel through
 306         * mapping portions into its own address space. This is for example
 307         * used by i386 to allow the kernel to address the memory beyond
 308         * 900MB. The kernel will set up special mappings (page
 309         * table entries on i386) for each page that the kernel needs to
 310         * access.
 311         */
 312        ZONE_HIGHMEM,
 313#endif
 314        ZONE_MOVABLE,
 315#ifdef CONFIG_ZONE_DEVICE
 316        ZONE_DEVICE,
 317#endif
 318        __MAX_NR_ZONES
 319
 320};
 321
 322#ifndef __GENERATING_BOUNDS_H
 323
 324struct zone {
 325        /* Read-mostly fields */
 326
 327        /* zone watermarks, access with *_wmark_pages(zone) macros */
 328        unsigned long watermark[NR_WMARK];
 329
 330        unsigned long nr_reserved_highatomic;
 331
 332        /*
 333         * We don't know if the memory that we're going to allocate will be
 334         * freeable or/and it will be released eventually, so to avoid totally
 335         * wasting several GB of ram we must reserve some of the lower zone
 336         * memory (otherwise we risk to run OOM on the lower zones despite
 337         * there being tons of freeable ram on the higher zones).  This array is
 338         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 339         * changes.
 340         */
 341        long lowmem_reserve[MAX_NR_ZONES];
 342
 343#ifdef CONFIG_NUMA
 344        int node;
 345#endif
 346
 347        /*
 348         * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
 349         * this zone's LRU.  Maintained by the pageout code.
 350         */
 351        unsigned int inactive_ratio;
 352
 353        struct pglist_data      *zone_pgdat;
 354        struct per_cpu_pageset __percpu *pageset;
 355
 356        /*
 357         * This is a per-zone reserve of pages that are not available
 358         * to userspace allocations.
 359         */
 360        unsigned long           totalreserve_pages;
 361
 362#ifndef CONFIG_SPARSEMEM
 363        /*
 364         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 365         * In SPARSEMEM, this map is stored in struct mem_section
 366         */
 367        unsigned long           *pageblock_flags;
 368#endif /* CONFIG_SPARSEMEM */
 369
 370#ifdef CONFIG_NUMA
 371        /*
 372         * zone reclaim becomes active if more unmapped pages exist.
 373         */
 374        unsigned long           min_unmapped_pages;
 375        unsigned long           min_slab_pages;
 376#endif /* CONFIG_NUMA */
 377
 378        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 379        unsigned long           zone_start_pfn;
 380
 381        /*
 382         * spanned_pages is the total pages spanned by the zone, including
 383         * holes, which is calculated as:
 384         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 385         *
 386         * present_pages is physical pages existing within the zone, which
 387         * is calculated as:
 388         *      present_pages = spanned_pages - absent_pages(pages in holes);
 389         *
 390         * managed_pages is present pages managed by the buddy system, which
 391         * is calculated as (reserved_pages includes pages allocated by the
 392         * bootmem allocator):
 393         *      managed_pages = present_pages - reserved_pages;
 394         *
 395         * So present_pages may be used by memory hotplug or memory power
 396         * management logic to figure out unmanaged pages by checking
 397         * (present_pages - managed_pages). And managed_pages should be used
 398         * by page allocator and vm scanner to calculate all kinds of watermarks
 399         * and thresholds.
 400         *
 401         * Locking rules:
 402         *
 403         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 404         * It is a seqlock because it has to be read outside of zone->lock,
 405         * and it is done in the main allocator path.  But, it is written
 406         * quite infrequently.
 407         *
 408         * The span_seq lock is declared along with zone->lock because it is
 409         * frequently read in proximity to zone->lock.  It's good to
 410         * give them a chance of being in the same cacheline.
 411         *
 412         * Write access to present_pages at runtime should be protected by
 413         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 414         * present_pages should get_online_mems() to get a stable value.
 415         *
 416         * Read access to managed_pages should be safe because it's unsigned
 417         * long. Write access to zone->managed_pages and totalram_pages are
 418         * protected by managed_page_count_lock at runtime. Idealy only
 419         * adjust_managed_page_count() should be used instead of directly
 420         * touching zone->managed_pages and totalram_pages.
 421         */
 422        unsigned long           managed_pages;
 423        unsigned long           spanned_pages;
 424        unsigned long           present_pages;
 425
 426        const char              *name;
 427
 428#ifdef CONFIG_MEMORY_ISOLATION
 429        /*
 430         * Number of isolated pageblock. It is used to solve incorrect
 431         * freepage counting problem due to racy retrieving migratetype
 432         * of pageblock. Protected by zone->lock.
 433         */
 434        unsigned long           nr_isolate_pageblock;
 435#endif
 436
 437#ifdef CONFIG_MEMORY_HOTPLUG
 438        /* see spanned/present_pages for more description */
 439        seqlock_t               span_seqlock;
 440#endif
 441
 442        /*
 443         * wait_table           -- the array holding the hash table
 444         * wait_table_hash_nr_entries   -- the size of the hash table array
 445         * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
 446         *
 447         * The purpose of all these is to keep track of the people
 448         * waiting for a page to become available and make them
 449         * runnable again when possible. The trouble is that this
 450         * consumes a lot of space, especially when so few things
 451         * wait on pages at a given time. So instead of using
 452         * per-page waitqueues, we use a waitqueue hash table.
 453         *
 454         * The bucket discipline is to sleep on the same queue when
 455         * colliding and wake all in that wait queue when removing.
 456         * When something wakes, it must check to be sure its page is
 457         * truly available, a la thundering herd. The cost of a
 458         * collision is great, but given the expected load of the
 459         * table, they should be so rare as to be outweighed by the
 460         * benefits from the saved space.
 461         *
 462         * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
 463         * primary users of these fields, and in mm/page_alloc.c
 464         * free_area_init_core() performs the initialization of them.
 465         */
 466        wait_queue_head_t       *wait_table;
 467        unsigned long           wait_table_hash_nr_entries;
 468        unsigned long           wait_table_bits;
 469
 470        ZONE_PADDING(_pad1_)
 471        /* free areas of different sizes */
 472        struct free_area        free_area[MAX_ORDER];
 473
 474        /* zone flags, see below */
 475        unsigned long           flags;
 476
 477        /* Write-intensive fields used from the page allocator */
 478        spinlock_t              lock;
 479
 480        ZONE_PADDING(_pad2_)
 481
 482        /* Write-intensive fields used by page reclaim */
 483
 484        /* Fields commonly accessed by the page reclaim scanner */
 485        spinlock_t              lru_lock;
 486        struct lruvec           lruvec;
 487
 488        /*
 489         * When free pages are below this point, additional steps are taken
 490         * when reading the number of free pages to avoid per-cpu counter
 491         * drift allowing watermarks to be breached
 492         */
 493        unsigned long percpu_drift_mark;
 494
 495#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 496        /* pfn where compaction free scanner should start */
 497        unsigned long           compact_cached_free_pfn;
 498        /* pfn where async and sync compaction migration scanner should start */
 499        unsigned long           compact_cached_migrate_pfn[2];
 500#endif
 501
 502#ifdef CONFIG_COMPACTION
 503        /*
 504         * On compaction failure, 1<<compact_defer_shift compactions
 505         * are skipped before trying again. The number attempted since
 506         * last failure is tracked with compact_considered.
 507         */
 508        unsigned int            compact_considered;
 509        unsigned int            compact_defer_shift;
 510        int                     compact_order_failed;
 511#endif
 512
 513#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 514        /* Set to true when the PG_migrate_skip bits should be cleared */
 515        bool                    compact_blockskip_flush;
 516#endif
 517
 518        bool                    contiguous;
 519
 520        ZONE_PADDING(_pad3_)
 521        /* Zone statistics */
 522        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 523} ____cacheline_internodealigned_in_smp;
 524
 525enum zone_flags {
 526        ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
 527        ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
 528        ZONE_CONGESTED,                 /* zone has many dirty pages backed by
 529                                         * a congested BDI
 530                                         */
 531        ZONE_DIRTY,                     /* reclaim scanning has recently found
 532                                         * many dirty file pages at the tail
 533                                         * of the LRU.
 534                                         */
 535        ZONE_WRITEBACK,                 /* reclaim scanning has recently found
 536                                         * many pages under writeback
 537                                         */
 538        ZONE_FAIR_DEPLETED,             /* fair zone policy batch depleted */
 539};
 540
 541static inline unsigned long zone_end_pfn(const struct zone *zone)
 542{
 543        return zone->zone_start_pfn + zone->spanned_pages;
 544}
 545
 546static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 547{
 548        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 549}
 550
 551static inline bool zone_is_initialized(struct zone *zone)
 552{
 553        return !!zone->wait_table;
 554}
 555
 556static inline bool zone_is_empty(struct zone *zone)
 557{
 558        return zone->spanned_pages == 0;
 559}
 560
 561/*
 562 * The "priority" of VM scanning is how much of the queues we will scan in one
 563 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 564 * queues ("queue_length >> 12") during an aging round.
 565 */
 566#define DEF_PRIORITY 12
 567
 568/* Maximum number of zones on a zonelist */
 569#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 570
 571enum {
 572        ZONELIST_FALLBACK,      /* zonelist with fallback */
 573#ifdef CONFIG_NUMA
 574        /*
 575         * The NUMA zonelists are doubled because we need zonelists that
 576         * restrict the allocations to a single node for __GFP_THISNODE.
 577         */
 578        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 579#endif
 580        MAX_ZONELISTS
 581};
 582
 583/*
 584 * This struct contains information about a zone in a zonelist. It is stored
 585 * here to avoid dereferences into large structures and lookups of tables
 586 */
 587struct zoneref {
 588        struct zone *zone;      /* Pointer to actual zone */
 589        int zone_idx;           /* zone_idx(zoneref->zone) */
 590};
 591
 592/*
 593 * One allocation request operates on a zonelist. A zonelist
 594 * is a list of zones, the first one is the 'goal' of the
 595 * allocation, the other zones are fallback zones, in decreasing
 596 * priority.
 597 *
 598 * To speed the reading of the zonelist, the zonerefs contain the zone index
 599 * of the entry being read. Helper functions to access information given
 600 * a struct zoneref are
 601 *
 602 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 603 * zonelist_zone_idx()  - Return the index of the zone for an entry
 604 * zonelist_node_idx()  - Return the index of the node for an entry
 605 */
 606struct zonelist {
 607        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 608};
 609
 610#ifndef CONFIG_DISCONTIGMEM
 611/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 612extern struct page *mem_map;
 613#endif
 614
 615/*
 616 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 617 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 618 * zone denotes.
 619 *
 620 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 621 * it's memory layout.
 622 *
 623 * Memory statistics and page replacement data structures are maintained on a
 624 * per-zone basis.
 625 */
 626struct bootmem_data;
 627typedef struct pglist_data {
 628        struct zone node_zones[MAX_NR_ZONES];
 629        struct zonelist node_zonelists[MAX_ZONELISTS];
 630        int nr_zones;
 631#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 632        struct page *node_mem_map;
 633#ifdef CONFIG_PAGE_EXTENSION
 634        struct page_ext *node_page_ext;
 635#endif
 636#endif
 637#ifndef CONFIG_NO_BOOTMEM
 638        struct bootmem_data *bdata;
 639#endif
 640#ifdef CONFIG_MEMORY_HOTPLUG
 641        /*
 642         * Must be held any time you expect node_start_pfn, node_present_pages
 643         * or node_spanned_pages stay constant.  Holding this will also
 644         * guarantee that any pfn_valid() stays that way.
 645         *
 646         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 647         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
 648         *
 649         * Nests above zone->lock and zone->span_seqlock
 650         */
 651        spinlock_t node_size_lock;
 652#endif
 653        unsigned long node_start_pfn;
 654        unsigned long node_present_pages; /* total number of physical pages */
 655        unsigned long node_spanned_pages; /* total size of physical page
 656                                             range, including holes */
 657        int node_id;
 658        wait_queue_head_t kswapd_wait;
 659        wait_queue_head_t pfmemalloc_wait;
 660        struct task_struct *kswapd;     /* Protected by
 661                                           mem_hotplug_begin/end() */
 662        int kswapd_max_order;
 663        enum zone_type classzone_idx;
 664#ifdef CONFIG_COMPACTION
 665        int kcompactd_max_order;
 666        enum zone_type kcompactd_classzone_idx;
 667        wait_queue_head_t kcompactd_wait;
 668        struct task_struct *kcompactd;
 669#endif
 670#ifdef CONFIG_NUMA_BALANCING
 671        /* Lock serializing the migrate rate limiting window */
 672        spinlock_t numabalancing_migrate_lock;
 673
 674        /* Rate limiting time interval */
 675        unsigned long numabalancing_migrate_next_window;
 676
 677        /* Number of pages migrated during the rate limiting time interval */
 678        unsigned long numabalancing_migrate_nr_pages;
 679#endif
 680
 681#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 682        /*
 683         * If memory initialisation on large machines is deferred then this
 684         * is the first PFN that needs to be initialised.
 685         */
 686        unsigned long first_deferred_pfn;
 687#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 688
 689#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 690        spinlock_t split_queue_lock;
 691        struct list_head split_queue;
 692        unsigned long split_queue_len;
 693#endif
 694} pg_data_t;
 695
 696#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 697#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 698#ifdef CONFIG_FLAT_NODE_MEM_MAP
 699#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 700#else
 701#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 702#endif
 703#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 704
 705#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 706#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 707
 708static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 709{
 710        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 711}
 712
 713static inline bool pgdat_is_empty(pg_data_t *pgdat)
 714{
 715        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 716}
 717
 718static inline int zone_id(const struct zone *zone)
 719{
 720        struct pglist_data *pgdat = zone->zone_pgdat;
 721
 722        return zone - pgdat->node_zones;
 723}
 724
 725#ifdef CONFIG_ZONE_DEVICE
 726static inline bool is_dev_zone(const struct zone *zone)
 727{
 728        return zone_id(zone) == ZONE_DEVICE;
 729}
 730#else
 731static inline bool is_dev_zone(const struct zone *zone)
 732{
 733        return false;
 734}
 735#endif
 736
 737#include <linux/memory_hotplug.h>
 738
 739extern struct mutex zonelists_mutex;
 740void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
 741void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
 742bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 743                         int classzone_idx, unsigned int alloc_flags,
 744                         long free_pages);
 745bool zone_watermark_ok(struct zone *z, unsigned int order,
 746                unsigned long mark, int classzone_idx,
 747                unsigned int alloc_flags);
 748bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 749                unsigned long mark, int classzone_idx);
 750enum memmap_context {
 751        MEMMAP_EARLY,
 752        MEMMAP_HOTPLUG,
 753};
 754extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 755                                     unsigned long size);
 756
 757extern void lruvec_init(struct lruvec *lruvec);
 758
 759static inline struct zone *lruvec_zone(struct lruvec *lruvec)
 760{
 761#ifdef CONFIG_MEMCG
 762        return lruvec->zone;
 763#else
 764        return container_of(lruvec, struct zone, lruvec);
 765#endif
 766}
 767
 768extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
 769
 770#ifdef CONFIG_HAVE_MEMORY_PRESENT
 771void memory_present(int nid, unsigned long start, unsigned long end);
 772#else
 773static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 774#endif
 775
 776#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 777int local_memory_node(int node_id);
 778#else
 779static inline int local_memory_node(int node_id) { return node_id; };
 780#endif
 781
 782#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 783unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 784#endif
 785
 786/*
 787 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 788 */
 789#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 790
 791static inline int populated_zone(struct zone *zone)
 792{
 793        return (!!zone->present_pages);
 794}
 795
 796extern int movable_zone;
 797
 798#ifdef CONFIG_HIGHMEM
 799static inline int zone_movable_is_highmem(void)
 800{
 801#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 802        return movable_zone == ZONE_HIGHMEM;
 803#else
 804        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 805#endif
 806}
 807#endif
 808
 809static inline int is_highmem_idx(enum zone_type idx)
 810{
 811#ifdef CONFIG_HIGHMEM
 812        return (idx == ZONE_HIGHMEM ||
 813                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 814#else
 815        return 0;
 816#endif
 817}
 818
 819/**
 820 * is_highmem - helper function to quickly check if a struct zone is a 
 821 *              highmem zone or not.  This is an attempt to keep references
 822 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 823 * @zone - pointer to struct zone variable
 824 */
 825static inline int is_highmem(struct zone *zone)
 826{
 827#ifdef CONFIG_HIGHMEM
 828        return is_highmem_idx(zone_idx(zone));
 829#else
 830        return 0;
 831#endif
 832}
 833
 834/* These two functions are used to setup the per zone pages min values */
 835struct ctl_table;
 836int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 837                                        void __user *, size_t *, loff_t *);
 838int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 839                                        void __user *, size_t *, loff_t *);
 840extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 841int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 842                                        void __user *, size_t *, loff_t *);
 843int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 844                                        void __user *, size_t *, loff_t *);
 845int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 846                        void __user *, size_t *, loff_t *);
 847int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 848                        void __user *, size_t *, loff_t *);
 849
 850extern int numa_zonelist_order_handler(struct ctl_table *, int,
 851                        void __user *, size_t *, loff_t *);
 852extern char numa_zonelist_order[];
 853#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
 854
 855#ifndef CONFIG_NEED_MULTIPLE_NODES
 856
 857extern struct pglist_data contig_page_data;
 858#define NODE_DATA(nid)          (&contig_page_data)
 859#define NODE_MEM_MAP(nid)       mem_map
 860
 861#else /* CONFIG_NEED_MULTIPLE_NODES */
 862
 863#include <asm/mmzone.h>
 864
 865#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 866
 867extern struct pglist_data *first_online_pgdat(void);
 868extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 869extern struct zone *next_zone(struct zone *zone);
 870
 871/**
 872 * for_each_online_pgdat - helper macro to iterate over all online nodes
 873 * @pgdat - pointer to a pg_data_t variable
 874 */
 875#define for_each_online_pgdat(pgdat)                    \
 876        for (pgdat = first_online_pgdat();              \
 877             pgdat;                                     \
 878             pgdat = next_online_pgdat(pgdat))
 879/**
 880 * for_each_zone - helper macro to iterate over all memory zones
 881 * @zone - pointer to struct zone variable
 882 *
 883 * The user only needs to declare the zone variable, for_each_zone
 884 * fills it in.
 885 */
 886#define for_each_zone(zone)                             \
 887        for (zone = (first_online_pgdat())->node_zones; \
 888             zone;                                      \
 889             zone = next_zone(zone))
 890
 891#define for_each_populated_zone(zone)                   \
 892        for (zone = (first_online_pgdat())->node_zones; \
 893             zone;                                      \
 894             zone = next_zone(zone))                    \
 895                if (!populated_zone(zone))              \
 896                        ; /* do nothing */              \
 897                else
 898
 899static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 900{
 901        return zoneref->zone;
 902}
 903
 904static inline int zonelist_zone_idx(struct zoneref *zoneref)
 905{
 906        return zoneref->zone_idx;
 907}
 908
 909static inline int zonelist_node_idx(struct zoneref *zoneref)
 910{
 911#ifdef CONFIG_NUMA
 912        /* zone_to_nid not available in this context */
 913        return zoneref->zone->node;
 914#else
 915        return 0;
 916#endif /* CONFIG_NUMA */
 917}
 918
 919struct zoneref *__next_zones_zonelist(struct zoneref *z,
 920                                        enum zone_type highest_zoneidx,
 921                                        nodemask_t *nodes);
 922
 923/**
 924 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 925 * @z - The cursor used as a starting point for the search
 926 * @highest_zoneidx - The zone index of the highest zone to return
 927 * @nodes - An optional nodemask to filter the zonelist with
 928 *
 929 * This function returns the next zone at or below a given zone index that is
 930 * within the allowed nodemask using a cursor as the starting point for the
 931 * search. The zoneref returned is a cursor that represents the current zone
 932 * being examined. It should be advanced by one before calling
 933 * next_zones_zonelist again.
 934 */
 935static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
 936                                        enum zone_type highest_zoneidx,
 937                                        nodemask_t *nodes)
 938{
 939        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
 940                return z;
 941        return __next_zones_zonelist(z, highest_zoneidx, nodes);
 942}
 943
 944/**
 945 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 946 * @zonelist - The zonelist to search for a suitable zone
 947 * @highest_zoneidx - The zone index of the highest zone to return
 948 * @nodes - An optional nodemask to filter the zonelist with
 949 * @zone - The first suitable zone found is returned via this parameter
 950 *
 951 * This function returns the first zone at or below a given zone index that is
 952 * within the allowed nodemask. The zoneref returned is a cursor that can be
 953 * used to iterate the zonelist with next_zones_zonelist by advancing it by
 954 * one before calling.
 955 */
 956static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
 957                                        enum zone_type highest_zoneidx,
 958                                        nodemask_t *nodes)
 959{
 960        return next_zones_zonelist(zonelist->_zonerefs,
 961                                                        highest_zoneidx, nodes);
 962}
 963
 964/**
 965 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
 966 * @zone - The current zone in the iterator
 967 * @z - The current pointer within zonelist->zones being iterated
 968 * @zlist - The zonelist being iterated
 969 * @highidx - The zone index of the highest zone to return
 970 * @nodemask - Nodemask allowed by the allocator
 971 *
 972 * This iterator iterates though all zones at or below a given zone index and
 973 * within a given nodemask
 974 */
 975#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
 976        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
 977                zone;                                                   \
 978                z = next_zones_zonelist(++z, highidx, nodemask),        \
 979                        zone = zonelist_zone(z))
 980
 981#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
 982        for (zone = z->zone;    \
 983                zone;                                                   \
 984                z = next_zones_zonelist(++z, highidx, nodemask),        \
 985                        zone = zonelist_zone(z))
 986
 987
 988/**
 989 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
 990 * @zone - The current zone in the iterator
 991 * @z - The current pointer within zonelist->zones being iterated
 992 * @zlist - The zonelist being iterated
 993 * @highidx - The zone index of the highest zone to return
 994 *
 995 * This iterator iterates though all zones at or below a given zone index.
 996 */
 997#define for_each_zone_zonelist(zone, z, zlist, highidx) \
 998        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
 999
1000#ifdef CONFIG_SPARSEMEM
1001#include <asm/sparsemem.h>
1002#endif
1003
1004#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1005        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1006static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1007{
1008        return 0;
1009}
1010#endif
1011
1012#ifdef CONFIG_FLATMEM
1013#define pfn_to_nid(pfn)         (0)
1014#endif
1015
1016#ifdef CONFIG_SPARSEMEM
1017
1018/*
1019 * SECTION_SHIFT                #bits space required to store a section #
1020 *
1021 * PA_SECTION_SHIFT             physical address to/from section number
1022 * PFN_SECTION_SHIFT            pfn to/from section number
1023 */
1024#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1025#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1026
1027#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1028
1029#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1030#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1031
1032#define SECTION_BLOCKFLAGS_BITS \
1033        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1034
1035#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1036#error Allocator MAX_ORDER exceeds SECTION_SIZE
1037#endif
1038
1039#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1040#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1041
1042#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1043#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1044
1045struct page;
1046struct page_ext;
1047struct mem_section {
1048        /*
1049         * This is, logically, a pointer to an array of struct
1050         * pages.  However, it is stored with some other magic.
1051         * (see sparse.c::sparse_init_one_section())
1052         *
1053         * Additionally during early boot we encode node id of
1054         * the location of the section here to guide allocation.
1055         * (see sparse.c::memory_present())
1056         *
1057         * Making it a UL at least makes someone do a cast
1058         * before using it wrong.
1059         */
1060        unsigned long section_mem_map;
1061
1062        /* See declaration of similar field in struct zone */
1063        unsigned long *pageblock_flags;
1064#ifdef CONFIG_PAGE_EXTENSION
1065        /*
1066         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1067         * section. (see page_ext.h about this.)
1068         */
1069        struct page_ext *page_ext;
1070        unsigned long pad;
1071#endif
1072        /*
1073         * WARNING: mem_section must be a power-of-2 in size for the
1074         * calculation and use of SECTION_ROOT_MASK to make sense.
1075         */
1076};
1077
1078#ifdef CONFIG_SPARSEMEM_EXTREME
1079#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1080#else
1081#define SECTIONS_PER_ROOT       1
1082#endif
1083
1084#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1085#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1086#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1087
1088#ifdef CONFIG_SPARSEMEM_EXTREME
1089extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1090#else
1091extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1092#endif
1093
1094static inline struct mem_section *__nr_to_section(unsigned long nr)
1095{
1096        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1097                return NULL;
1098        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1099}
1100extern int __section_nr(struct mem_section* ms);
1101extern unsigned long usemap_size(void);
1102
1103/*
1104 * We use the lower bits of the mem_map pointer to store
1105 * a little bit of information.  There should be at least
1106 * 3 bits here due to 32-bit alignment.
1107 */
1108#define SECTION_MARKED_PRESENT  (1UL<<0)
1109#define SECTION_HAS_MEM_MAP     (1UL<<1)
1110#define SECTION_MAP_LAST_BIT    (1UL<<2)
1111#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1112#define SECTION_NID_SHIFT       2
1113
1114static inline struct page *__section_mem_map_addr(struct mem_section *section)
1115{
1116        unsigned long map = section->section_mem_map;
1117        map &= SECTION_MAP_MASK;
1118        return (struct page *)map;
1119}
1120
1121static inline int present_section(struct mem_section *section)
1122{
1123        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1124}
1125
1126static inline int present_section_nr(unsigned long nr)
1127{
1128        return present_section(__nr_to_section(nr));
1129}
1130
1131static inline int valid_section(struct mem_section *section)
1132{
1133        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1134}
1135
1136static inline int valid_section_nr(unsigned long nr)
1137{
1138        return valid_section(__nr_to_section(nr));
1139}
1140
1141static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1142{
1143        return __nr_to_section(pfn_to_section_nr(pfn));
1144}
1145
1146#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1147static inline int pfn_valid(unsigned long pfn)
1148{
1149        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1150                return 0;
1151        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1152}
1153#endif
1154
1155static inline int pfn_present(unsigned long pfn)
1156{
1157        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1158                return 0;
1159        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1160}
1161
1162/*
1163 * These are _only_ used during initialisation, therefore they
1164 * can use __initdata ...  They could have names to indicate
1165 * this restriction.
1166 */
1167#ifdef CONFIG_NUMA
1168#define pfn_to_nid(pfn)                                                 \
1169({                                                                      \
1170        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1171        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1172})
1173#else
1174#define pfn_to_nid(pfn)         (0)
1175#endif
1176
1177#define early_pfn_valid(pfn)    pfn_valid(pfn)
1178void sparse_init(void);
1179#else
1180#define sparse_init()   do {} while (0)
1181#define sparse_index_init(_sec, _nid)  do {} while (0)
1182#endif /* CONFIG_SPARSEMEM */
1183
1184/*
1185 * During memory init memblocks map pfns to nids. The search is expensive and
1186 * this caches recent lookups. The implementation of __early_pfn_to_nid
1187 * may treat start/end as pfns or sections.
1188 */
1189struct mminit_pfnnid_cache {
1190        unsigned long last_start;
1191        unsigned long last_end;
1192        int last_nid;
1193};
1194
1195#ifndef early_pfn_valid
1196#define early_pfn_valid(pfn)    (1)
1197#endif
1198
1199void memory_present(int nid, unsigned long start, unsigned long end);
1200unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1201
1202/*
1203 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1204 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1205 * pfn_valid_within() should be used in this case; we optimise this away
1206 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1207 */
1208#ifdef CONFIG_HOLES_IN_ZONE
1209#define pfn_valid_within(pfn) pfn_valid(pfn)
1210#else
1211#define pfn_valid_within(pfn) (1)
1212#endif
1213
1214#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1215/*
1216 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1217 * associated with it or not. In FLATMEM, it is expected that holes always
1218 * have valid memmap as long as there is valid PFNs either side of the hole.
1219 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1220 * entire section.
1221 *
1222 * However, an ARM, and maybe other embedded architectures in the future
1223 * free memmap backing holes to save memory on the assumption the memmap is
1224 * never used. The page_zone linkages are then broken even though pfn_valid()
1225 * returns true. A walker of the full memmap must then do this additional
1226 * check to ensure the memmap they are looking at is sane by making sure
1227 * the zone and PFN linkages are still valid. This is expensive, but walkers
1228 * of the full memmap are extremely rare.
1229 */
1230bool memmap_valid_within(unsigned long pfn,
1231                                        struct page *page, struct zone *zone);
1232#else
1233static inline bool memmap_valid_within(unsigned long pfn,
1234                                        struct page *page, struct zone *zone)
1235{
1236        return true;
1237}
1238#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1239
1240#endif /* !__GENERATING_BOUNDS.H */
1241#endif /* !__ASSEMBLY__ */
1242#endif /* _LINUX_MMZONE_H */
1243