linux/include/linux/ptrace.h
<<
>>
Prefs
   1#ifndef _LINUX_PTRACE_H
   2#define _LINUX_PTRACE_H
   3
   4#include <linux/compiler.h>             /* For unlikely.  */
   5#include <linux/sched.h>                /* For struct task_struct.  */
   6#include <linux/err.h>                  /* for IS_ERR_VALUE */
   7#include <linux/bug.h>                  /* For BUG_ON.  */
   8#include <linux/pid_namespace.h>        /* For task_active_pid_ns.  */
   9#include <uapi/linux/ptrace.h>
  10
  11/*
  12 * Ptrace flags
  13 *
  14 * The owner ship rules for task->ptrace which holds the ptrace
  15 * flags is simple.  When a task is running it owns it's task->ptrace
  16 * flags.  When the a task is stopped the ptracer owns task->ptrace.
  17 */
  18
  19#define PT_SEIZED       0x00010000      /* SEIZE used, enable new behavior */
  20#define PT_PTRACED      0x00000001
  21#define PT_DTRACE       0x00000002      /* delayed trace (used on m68k, i386) */
  22#define PT_PTRACE_CAP   0x00000004      /* ptracer can follow suid-exec */
  23
  24#define PT_OPT_FLAG_SHIFT       3
  25/* PT_TRACE_* event enable flags */
  26#define PT_EVENT_FLAG(event)    (1 << (PT_OPT_FLAG_SHIFT + (event)))
  27#define PT_TRACESYSGOOD         PT_EVENT_FLAG(0)
  28#define PT_TRACE_FORK           PT_EVENT_FLAG(PTRACE_EVENT_FORK)
  29#define PT_TRACE_VFORK          PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
  30#define PT_TRACE_CLONE          PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
  31#define PT_TRACE_EXEC           PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
  32#define PT_TRACE_VFORK_DONE     PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
  33#define PT_TRACE_EXIT           PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
  34#define PT_TRACE_SECCOMP        PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
  35
  36#define PT_EXITKILL             (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
  37#define PT_SUSPEND_SECCOMP      (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
  38
  39/* single stepping state bits (used on ARM and PA-RISC) */
  40#define PT_SINGLESTEP_BIT       31
  41#define PT_SINGLESTEP           (1<<PT_SINGLESTEP_BIT)
  42#define PT_BLOCKSTEP_BIT        30
  43#define PT_BLOCKSTEP            (1<<PT_BLOCKSTEP_BIT)
  44
  45extern long arch_ptrace(struct task_struct *child, long request,
  46                        unsigned long addr, unsigned long data);
  47extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
  48extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
  49extern void ptrace_disable(struct task_struct *);
  50extern int ptrace_request(struct task_struct *child, long request,
  51                          unsigned long addr, unsigned long data);
  52extern void ptrace_notify(int exit_code);
  53extern void __ptrace_link(struct task_struct *child,
  54                          struct task_struct *new_parent);
  55extern void __ptrace_unlink(struct task_struct *child);
  56extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
  57#define PTRACE_MODE_READ        0x01
  58#define PTRACE_MODE_ATTACH      0x02
  59#define PTRACE_MODE_NOAUDIT     0x04
  60#define PTRACE_MODE_FSCREDS 0x08
  61#define PTRACE_MODE_REALCREDS 0x10
  62
  63/* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
  64#define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
  65#define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
  66#define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
  67#define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
  68
  69/**
  70 * ptrace_may_access - check whether the caller is permitted to access
  71 * a target task.
  72 * @task: target task
  73 * @mode: selects type of access and caller credentials
  74 *
  75 * Returns true on success, false on denial.
  76 *
  77 * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
  78 * be set in @mode to specify whether the access was requested through
  79 * a filesystem syscall (should use effective capabilities and fsuid
  80 * of the caller) or through an explicit syscall such as
  81 * process_vm_writev or ptrace (and should use the real credentials).
  82 */
  83extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
  84
  85static inline int ptrace_reparented(struct task_struct *child)
  86{
  87        return !same_thread_group(child->real_parent, child->parent);
  88}
  89
  90static inline void ptrace_unlink(struct task_struct *child)
  91{
  92        if (unlikely(child->ptrace))
  93                __ptrace_unlink(child);
  94}
  95
  96int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
  97                            unsigned long data);
  98int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
  99                            unsigned long data);
 100
 101/**
 102 * ptrace_parent - return the task that is tracing the given task
 103 * @task: task to consider
 104 *
 105 * Returns %NULL if no one is tracing @task, or the &struct task_struct
 106 * pointer to its tracer.
 107 *
 108 * Must called under rcu_read_lock().  The pointer returned might be kept
 109 * live only by RCU.  During exec, this may be called with task_lock() held
 110 * on @task, still held from when check_unsafe_exec() was called.
 111 */
 112static inline struct task_struct *ptrace_parent(struct task_struct *task)
 113{
 114        if (unlikely(task->ptrace))
 115                return rcu_dereference(task->parent);
 116        return NULL;
 117}
 118
 119/**
 120 * ptrace_event_enabled - test whether a ptrace event is enabled
 121 * @task: ptracee of interest
 122 * @event: %PTRACE_EVENT_* to test
 123 *
 124 * Test whether @event is enabled for ptracee @task.
 125 *
 126 * Returns %true if @event is enabled, %false otherwise.
 127 */
 128static inline bool ptrace_event_enabled(struct task_struct *task, int event)
 129{
 130        return task->ptrace & PT_EVENT_FLAG(event);
 131}
 132
 133/**
 134 * ptrace_event - possibly stop for a ptrace event notification
 135 * @event:      %PTRACE_EVENT_* value to report
 136 * @message:    value for %PTRACE_GETEVENTMSG to return
 137 *
 138 * Check whether @event is enabled and, if so, report @event and @message
 139 * to the ptrace parent.
 140 *
 141 * Called without locks.
 142 */
 143static inline void ptrace_event(int event, unsigned long message)
 144{
 145        if (unlikely(ptrace_event_enabled(current, event))) {
 146                current->ptrace_message = message;
 147                ptrace_notify((event << 8) | SIGTRAP);
 148        } else if (event == PTRACE_EVENT_EXEC) {
 149                /* legacy EXEC report via SIGTRAP */
 150                if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
 151                        send_sig(SIGTRAP, current, 0);
 152        }
 153}
 154
 155/**
 156 * ptrace_event_pid - possibly stop for a ptrace event notification
 157 * @event:      %PTRACE_EVENT_* value to report
 158 * @pid:        process identifier for %PTRACE_GETEVENTMSG to return
 159 *
 160 * Check whether @event is enabled and, if so, report @event and @pid
 161 * to the ptrace parent.  @pid is reported as the pid_t seen from the
 162 * the ptrace parent's pid namespace.
 163 *
 164 * Called without locks.
 165 */
 166static inline void ptrace_event_pid(int event, struct pid *pid)
 167{
 168        /*
 169         * FIXME: There's a potential race if a ptracer in a different pid
 170         * namespace than parent attaches between computing message below and
 171         * when we acquire tasklist_lock in ptrace_stop().  If this happens,
 172         * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
 173         */
 174        unsigned long message = 0;
 175        struct pid_namespace *ns;
 176
 177        rcu_read_lock();
 178        ns = task_active_pid_ns(rcu_dereference(current->parent));
 179        if (ns)
 180                message = pid_nr_ns(pid, ns);
 181        rcu_read_unlock();
 182
 183        ptrace_event(event, message);
 184}
 185
 186/**
 187 * ptrace_init_task - initialize ptrace state for a new child
 188 * @child:              new child task
 189 * @ptrace:             true if child should be ptrace'd by parent's tracer
 190 *
 191 * This is called immediately after adding @child to its parent's children
 192 * list.  @ptrace is false in the normal case, and true to ptrace @child.
 193 *
 194 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
 195 */
 196static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
 197{
 198        INIT_LIST_HEAD(&child->ptrace_entry);
 199        INIT_LIST_HEAD(&child->ptraced);
 200        child->jobctl = 0;
 201        child->ptrace = 0;
 202        child->parent = child->real_parent;
 203
 204        if (unlikely(ptrace) && current->ptrace) {
 205                child->ptrace = current->ptrace;
 206                __ptrace_link(child, current->parent);
 207
 208                if (child->ptrace & PT_SEIZED)
 209                        task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
 210                else
 211                        sigaddset(&child->pending.signal, SIGSTOP);
 212
 213                set_tsk_thread_flag(child, TIF_SIGPENDING);
 214        }
 215}
 216
 217/**
 218 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
 219 * @task:       task in %EXIT_DEAD state
 220 *
 221 * Called with write_lock(&tasklist_lock) held.
 222 */
 223static inline void ptrace_release_task(struct task_struct *task)
 224{
 225        BUG_ON(!list_empty(&task->ptraced));
 226        ptrace_unlink(task);
 227        BUG_ON(!list_empty(&task->ptrace_entry));
 228}
 229
 230#ifndef force_successful_syscall_return
 231/*
 232 * System call handlers that, upon successful completion, need to return a
 233 * negative value should call force_successful_syscall_return() right before
 234 * returning.  On architectures where the syscall convention provides for a
 235 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
 236 * others), this macro can be used to ensure that the error flag will not get
 237 * set.  On architectures which do not support a separate error flag, the macro
 238 * is a no-op and the spurious error condition needs to be filtered out by some
 239 * other means (e.g., in user-level, by passing an extra argument to the
 240 * syscall handler, or something along those lines).
 241 */
 242#define force_successful_syscall_return() do { } while (0)
 243#endif
 244
 245#ifndef is_syscall_success
 246/*
 247 * On most systems we can tell if a syscall is a success based on if the retval
 248 * is an error value.  On some systems like ia64 and powerpc they have different
 249 * indicators of success/failure and must define their own.
 250 */
 251#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
 252#endif
 253
 254/*
 255 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
 256 *
 257 * These do-nothing inlines are used when the arch does not
 258 * implement single-step.  The kerneldoc comments are here
 259 * to document the interface for all arch definitions.
 260 */
 261
 262#ifndef arch_has_single_step
 263/**
 264 * arch_has_single_step - does this CPU support user-mode single-step?
 265 *
 266 * If this is defined, then there must be function declarations or
 267 * inlines for user_enable_single_step() and user_disable_single_step().
 268 * arch_has_single_step() should evaluate to nonzero iff the machine
 269 * supports instruction single-step for user mode.
 270 * It can be a constant or it can test a CPU feature bit.
 271 */
 272#define arch_has_single_step()          (0)
 273
 274/**
 275 * user_enable_single_step - single-step in user-mode task
 276 * @task: either current or a task stopped in %TASK_TRACED
 277 *
 278 * This can only be called when arch_has_single_step() has returned nonzero.
 279 * Set @task so that when it returns to user mode, it will trap after the
 280 * next single instruction executes.  If arch_has_block_step() is defined,
 281 * this must clear the effects of user_enable_block_step() too.
 282 */
 283static inline void user_enable_single_step(struct task_struct *task)
 284{
 285        BUG();                  /* This can never be called.  */
 286}
 287
 288/**
 289 * user_disable_single_step - cancel user-mode single-step
 290 * @task: either current or a task stopped in %TASK_TRACED
 291 *
 292 * Clear @task of the effects of user_enable_single_step() and
 293 * user_enable_block_step().  This can be called whether or not either
 294 * of those was ever called on @task, and even if arch_has_single_step()
 295 * returned zero.
 296 */
 297static inline void user_disable_single_step(struct task_struct *task)
 298{
 299}
 300#else
 301extern void user_enable_single_step(struct task_struct *);
 302extern void user_disable_single_step(struct task_struct *);
 303#endif  /* arch_has_single_step */
 304
 305#ifndef arch_has_block_step
 306/**
 307 * arch_has_block_step - does this CPU support user-mode block-step?
 308 *
 309 * If this is defined, then there must be a function declaration or inline
 310 * for user_enable_block_step(), and arch_has_single_step() must be defined
 311 * too.  arch_has_block_step() should evaluate to nonzero iff the machine
 312 * supports step-until-branch for user mode.  It can be a constant or it
 313 * can test a CPU feature bit.
 314 */
 315#define arch_has_block_step()           (0)
 316
 317/**
 318 * user_enable_block_step - step until branch in user-mode task
 319 * @task: either current or a task stopped in %TASK_TRACED
 320 *
 321 * This can only be called when arch_has_block_step() has returned nonzero,
 322 * and will never be called when single-instruction stepping is being used.
 323 * Set @task so that when it returns to user mode, it will trap after the
 324 * next branch or trap taken.
 325 */
 326static inline void user_enable_block_step(struct task_struct *task)
 327{
 328        BUG();                  /* This can never be called.  */
 329}
 330#else
 331extern void user_enable_block_step(struct task_struct *);
 332#endif  /* arch_has_block_step */
 333
 334#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
 335extern void user_single_step_siginfo(struct task_struct *tsk,
 336                                struct pt_regs *regs, siginfo_t *info);
 337#else
 338static inline void user_single_step_siginfo(struct task_struct *tsk,
 339                                struct pt_regs *regs, siginfo_t *info)
 340{
 341        memset(info, 0, sizeof(*info));
 342        info->si_signo = SIGTRAP;
 343}
 344#endif
 345
 346#ifndef arch_ptrace_stop_needed
 347/**
 348 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
 349 * @code:       current->exit_code value ptrace will stop with
 350 * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
 351 *
 352 * This is called with the siglock held, to decide whether or not it's
 353 * necessary to release the siglock and call arch_ptrace_stop() with the
 354 * same @code and @info arguments.  It can be defined to a constant if
 355 * arch_ptrace_stop() is never required, or always is.  On machines where
 356 * this makes sense, it should be defined to a quick test to optimize out
 357 * calling arch_ptrace_stop() when it would be superfluous.  For example,
 358 * if the thread has not been back to user mode since the last stop, the
 359 * thread state might indicate that nothing needs to be done.
 360 *
 361 * This is guaranteed to be invoked once before a task stops for ptrace and
 362 * may include arch-specific operations necessary prior to a ptrace stop.
 363 */
 364#define arch_ptrace_stop_needed(code, info)     (0)
 365#endif
 366
 367#ifndef arch_ptrace_stop
 368/**
 369 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
 370 * @code:       current->exit_code value ptrace will stop with
 371 * @info:       siginfo_t pointer (or %NULL) for signal ptrace will stop with
 372 *
 373 * This is called with no locks held when arch_ptrace_stop_needed() has
 374 * just returned nonzero.  It is allowed to block, e.g. for user memory
 375 * access.  The arch can have machine-specific work to be done before
 376 * ptrace stops.  On ia64, register backing store gets written back to user
 377 * memory here.  Since this can be costly (requires dropping the siglock),
 378 * we only do it when the arch requires it for this particular stop, as
 379 * indicated by arch_ptrace_stop_needed().
 380 */
 381#define arch_ptrace_stop(code, info)            do { } while (0)
 382#endif
 383
 384#ifndef current_pt_regs
 385#define current_pt_regs() task_pt_regs(current)
 386#endif
 387
 388#ifndef ptrace_signal_deliver
 389#define ptrace_signal_deliver() ((void)0)
 390#endif
 391
 392/*
 393 * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
 394 * on *all* architectures; the only reason to have a per-arch definition
 395 * is optimisation.
 396 */
 397#ifndef signal_pt_regs
 398#define signal_pt_regs() task_pt_regs(current)
 399#endif
 400
 401#ifndef current_user_stack_pointer
 402#define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
 403#endif
 404
 405extern int task_current_syscall(struct task_struct *target, long *callno,
 406                                unsigned long args[6], unsigned int maxargs,
 407                                unsigned long *sp, unsigned long *pc);
 408
 409#endif
 410