linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/kmemcheck.h>
  19#include <linux/compiler.h>
  20#include <linux/time.h>
  21#include <linux/bug.h>
  22#include <linux/cache.h>
  23#include <linux/rbtree.h>
  24#include <linux/socket.h>
  25
  26#include <linux/atomic.h>
  27#include <asm/types.h>
  28#include <linux/spinlock.h>
  29#include <linux/net.h>
  30#include <linux/textsearch.h>
  31#include <net/checksum.h>
  32#include <linux/rcupdate.h>
  33#include <linux/hrtimer.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/netdev_features.h>
  36#include <linux/sched.h>
  37#include <net/flow_dissector.h>
  38#include <linux/splice.h>
  39#include <linux/in6.h>
  40#include <net/flow.h>
  41
  42/* The interface for checksum offload between the stack and networking drivers
  43 * is as follows...
  44 *
  45 * A. IP checksum related features
  46 *
  47 * Drivers advertise checksum offload capabilities in the features of a device.
  48 * From the stack's point of view these are capabilities offered by the driver,
  49 * a driver typically only advertises features that it is capable of offloading
  50 * to its device.
  51 *
  52 * The checksum related features are:
  53 *
  54 *      NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
  55 *                        IP (one's complement) checksum for any combination
  56 *                        of protocols or protocol layering. The checksum is
  57 *                        computed and set in a packet per the CHECKSUM_PARTIAL
  58 *                        interface (see below).
  59 *
  60 *      NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
  61 *                        TCP or UDP packets over IPv4. These are specifically
  62 *                        unencapsulated packets of the form IPv4|TCP or
  63 *                        IPv4|UDP where the Protocol field in the IPv4 header
  64 *                        is TCP or UDP. The IPv4 header may contain IP options
  65 *                        This feature cannot be set in features for a device
  66 *                        with NETIF_F_HW_CSUM also set. This feature is being
  67 *                        DEPRECATED (see below).
  68 *
  69 *      NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
  70 *                        TCP or UDP packets over IPv6. These are specifically
  71 *                        unencapsulated packets of the form IPv6|TCP or
  72 *                        IPv4|UDP where the Next Header field in the IPv6
  73 *                        header is either TCP or UDP. IPv6 extension headers
  74 *                        are not supported with this feature. This feature
  75 *                        cannot be set in features for a device with
  76 *                        NETIF_F_HW_CSUM also set. This feature is being
  77 *                        DEPRECATED (see below).
  78 *
  79 *      NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
  80 *                       This flag is used only used to disable the RX checksum
  81 *                       feature for a device. The stack will accept receive
  82 *                       checksum indication in packets received on a device
  83 *                       regardless of whether NETIF_F_RXCSUM is set.
  84 *
  85 * B. Checksumming of received packets by device. Indication of checksum
  86 *    verification is in set skb->ip_summed. Possible values are:
  87 *
  88 * CHECKSUM_NONE:
  89 *
  90 *   Device did not checksum this packet e.g. due to lack of capabilities.
  91 *   The packet contains full (though not verified) checksum in packet but
  92 *   not in skb->csum. Thus, skb->csum is undefined in this case.
  93 *
  94 * CHECKSUM_UNNECESSARY:
  95 *
  96 *   The hardware you're dealing with doesn't calculate the full checksum
  97 *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
  98 *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
  99 *   if their checksums are okay. skb->csum is still undefined in this case
 100 *   though. A driver or device must never modify the checksum field in the
 101 *   packet even if checksum is verified.
 102 *
 103 *   CHECKSUM_UNNECESSARY is applicable to following protocols:
 104 *     TCP: IPv6 and IPv4.
 105 *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
 106 *       zero UDP checksum for either IPv4 or IPv6, the networking stack
 107 *       may perform further validation in this case.
 108 *     GRE: only if the checksum is present in the header.
 109 *     SCTP: indicates the CRC in SCTP header has been validated.
 110 *
 111 *   skb->csum_level indicates the number of consecutive checksums found in
 112 *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
 113 *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
 114 *   and a device is able to verify the checksums for UDP (possibly zero),
 115 *   GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
 116 *   two. If the device were only able to verify the UDP checksum and not
 117 *   GRE, either because it doesn't support GRE checksum of because GRE
 118 *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
 119 *   not considered in this case).
 120 *
 121 * CHECKSUM_COMPLETE:
 122 *
 123 *   This is the most generic way. The device supplied checksum of the _whole_
 124 *   packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
 125 *   hardware doesn't need to parse L3/L4 headers to implement this.
 126 *
 127 *   Note: Even if device supports only some protocols, but is able to produce
 128 *   skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
 129 *
 130 * CHECKSUM_PARTIAL:
 131 *
 132 *   A checksum is set up to be offloaded to a device as described in the
 133 *   output description for CHECKSUM_PARTIAL. This may occur on a packet
 134 *   received directly from another Linux OS, e.g., a virtualized Linux kernel
 135 *   on the same host, or it may be set in the input path in GRO or remote
 136 *   checksum offload. For the purposes of checksum verification, the checksum
 137 *   referred to by skb->csum_start + skb->csum_offset and any preceding
 138 *   checksums in the packet are considered verified. Any checksums in the
 139 *   packet that are after the checksum being offloaded are not considered to
 140 *   be verified.
 141 *
 142 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
 143 *    in the skb->ip_summed for a packet. Values are:
 144 *
 145 * CHECKSUM_PARTIAL:
 146 *
 147 *   The driver is required to checksum the packet as seen by hard_start_xmit()
 148 *   from skb->csum_start up to the end, and to record/write the checksum at
 149 *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
 150 *   csum_start and csum_offset values are valid values given the length and
 151 *   offset of the packet, however they should not attempt to validate that the
 152 *   checksum refers to a legitimate transport layer checksum-- it is the
 153 *   purview of the stack to validate that csum_start and csum_offset are set
 154 *   correctly.
 155 *
 156 *   When the stack requests checksum offload for a packet, the driver MUST
 157 *   ensure that the checksum is set correctly. A driver can either offload the
 158 *   checksum calculation to the device, or call skb_checksum_help (in the case
 159 *   that the device does not support offload for a particular checksum).
 160 *
 161 *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
 162 *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
 163 *   checksum offload capability. If a  device has limited checksum capabilities
 164 *   (for instance can only perform NETIF_F_IP_CSUM or NETIF_F_IPV6_CSUM as
 165 *   described above) a helper function can be called to resolve
 166 *   CHECKSUM_PARTIAL. The helper functions are skb_csum_off_chk*. The helper
 167 *   function takes a spec argument that describes the protocol layer that is
 168 *   supported for checksum offload and can be called for each packet. If a
 169 *   packet does not match the specification for offload, skb_checksum_help
 170 *   is called to resolve the checksum.
 171 *
 172 * CHECKSUM_NONE:
 173 *
 174 *   The skb was already checksummed by the protocol, or a checksum is not
 175 *   required.
 176 *
 177 * CHECKSUM_UNNECESSARY:
 178 *
 179 *   This has the same meaning on as CHECKSUM_NONE for checksum offload on
 180 *   output.
 181 *
 182 * CHECKSUM_COMPLETE:
 183 *   Not used in checksum output. If a driver observes a packet with this value
 184 *   set in skbuff, if should treat as CHECKSUM_NONE being set.
 185 *
 186 * D. Non-IP checksum (CRC) offloads
 187 *
 188 *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
 189 *     offloading the SCTP CRC in a packet. To perform this offload the stack
 190 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 191 *     accordingly. Note the there is no indication in the skbuff that the
 192 *     CHECKSUM_PARTIAL refers to an SCTP checksum, a driver that supports
 193 *     both IP checksum offload and SCTP CRC offload must verify which offload
 194 *     is configured for a packet presumably by inspecting packet headers.
 195 *
 196 *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
 197 *     offloading the FCOE CRC in a packet. To perform this offload the stack
 198 *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
 199 *     accordingly. Note the there is no indication in the skbuff that the
 200 *     CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
 201 *     both IP checksum offload and FCOE CRC offload must verify which offload
 202 *     is configured for a packet presumably by inspecting packet headers.
 203 *
 204 * E. Checksumming on output with GSO.
 205 *
 206 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
 207 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
 208 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
 209 * part of the GSO operation is implied. If a checksum is being offloaded
 210 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
 211 * are set to refer to the outermost checksum being offload (two offloaded
 212 * checksums are possible with UDP encapsulation).
 213 */
 214
 215/* Don't change this without changing skb_csum_unnecessary! */
 216#define CHECKSUM_NONE           0
 217#define CHECKSUM_UNNECESSARY    1
 218#define CHECKSUM_COMPLETE       2
 219#define CHECKSUM_PARTIAL        3
 220
 221/* Maximum value in skb->csum_level */
 222#define SKB_MAX_CSUM_LEVEL      3
 223
 224#define SKB_DATA_ALIGN(X)       ALIGN(X, SMP_CACHE_BYTES)
 225#define SKB_WITH_OVERHEAD(X)    \
 226        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 227#define SKB_MAX_ORDER(X, ORDER) \
 228        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
 229#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
 230#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
 231
 232/* return minimum truesize of one skb containing X bytes of data */
 233#define SKB_TRUESIZE(X) ((X) +                                          \
 234                         SKB_DATA_ALIGN(sizeof(struct sk_buff)) +       \
 235                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
 236
 237struct net_device;
 238struct scatterlist;
 239struct pipe_inode_info;
 240struct iov_iter;
 241struct napi_struct;
 242
 243#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 244struct nf_conntrack {
 245        atomic_t use;
 246};
 247#endif
 248
 249#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 250struct nf_bridge_info {
 251        atomic_t                use;
 252        enum {
 253                BRNF_PROTO_UNCHANGED,
 254                BRNF_PROTO_8021Q,
 255                BRNF_PROTO_PPPOE
 256        } orig_proto:8;
 257        u8                      pkt_otherhost:1;
 258        u8                      in_prerouting:1;
 259        u8                      bridged_dnat:1;
 260        __u16                   frag_max_size;
 261        struct net_device       *physindev;
 262
 263        /* always valid & non-NULL from FORWARD on, for physdev match */
 264        struct net_device       *physoutdev;
 265        union {
 266                /* prerouting: detect dnat in orig/reply direction */
 267                __be32          ipv4_daddr;
 268                struct in6_addr ipv6_daddr;
 269
 270                /* after prerouting + nat detected: store original source
 271                 * mac since neigh resolution overwrites it, only used while
 272                 * skb is out in neigh layer.
 273                 */
 274                char neigh_header[8];
 275        };
 276};
 277#endif
 278
 279struct sk_buff_head {
 280        /* These two members must be first. */
 281        struct sk_buff  *next;
 282        struct sk_buff  *prev;
 283
 284        __u32           qlen;
 285        spinlock_t      lock;
 286};
 287
 288struct sk_buff;
 289
 290/* To allow 64K frame to be packed as single skb without frag_list we
 291 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
 292 * buffers which do not start on a page boundary.
 293 *
 294 * Since GRO uses frags we allocate at least 16 regardless of page
 295 * size.
 296 */
 297#if (65536/PAGE_SIZE + 1) < 16
 298#define MAX_SKB_FRAGS 16UL
 299#else
 300#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
 301#endif
 302extern int sysctl_max_skb_frags;
 303
 304typedef struct skb_frag_struct skb_frag_t;
 305
 306struct skb_frag_struct {
 307        struct {
 308                struct page *p;
 309        } page;
 310#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 311        __u32 page_offset;
 312        __u32 size;
 313#else
 314        __u16 page_offset;
 315        __u16 size;
 316#endif
 317};
 318
 319static inline unsigned int skb_frag_size(const skb_frag_t *frag)
 320{
 321        return frag->size;
 322}
 323
 324static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
 325{
 326        frag->size = size;
 327}
 328
 329static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
 330{
 331        frag->size += delta;
 332}
 333
 334static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
 335{
 336        frag->size -= delta;
 337}
 338
 339#define HAVE_HW_TIME_STAMP
 340
 341/**
 342 * struct skb_shared_hwtstamps - hardware time stamps
 343 * @hwtstamp:   hardware time stamp transformed into duration
 344 *              since arbitrary point in time
 345 *
 346 * Software time stamps generated by ktime_get_real() are stored in
 347 * skb->tstamp.
 348 *
 349 * hwtstamps can only be compared against other hwtstamps from
 350 * the same device.
 351 *
 352 * This structure is attached to packets as part of the
 353 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 354 */
 355struct skb_shared_hwtstamps {
 356        ktime_t hwtstamp;
 357};
 358
 359/* Definitions for tx_flags in struct skb_shared_info */
 360enum {
 361        /* generate hardware time stamp */
 362        SKBTX_HW_TSTAMP = 1 << 0,
 363
 364        /* generate software time stamp when queueing packet to NIC */
 365        SKBTX_SW_TSTAMP = 1 << 1,
 366
 367        /* device driver is going to provide hardware time stamp */
 368        SKBTX_IN_PROGRESS = 1 << 2,
 369
 370        /* device driver supports TX zero-copy buffers */
 371        SKBTX_DEV_ZEROCOPY = 1 << 3,
 372
 373        /* generate wifi status information (where possible) */
 374        SKBTX_WIFI_STATUS = 1 << 4,
 375
 376        /* This indicates at least one fragment might be overwritten
 377         * (as in vmsplice(), sendfile() ...)
 378         * If we need to compute a TX checksum, we'll need to copy
 379         * all frags to avoid possible bad checksum
 380         */
 381        SKBTX_SHARED_FRAG = 1 << 5,
 382
 383        /* generate software time stamp when entering packet scheduling */
 384        SKBTX_SCHED_TSTAMP = 1 << 6,
 385};
 386
 387#define SKBTX_ANY_SW_TSTAMP     (SKBTX_SW_TSTAMP    | \
 388                                 SKBTX_SCHED_TSTAMP)
 389#define SKBTX_ANY_TSTAMP        (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
 390
 391/*
 392 * The callback notifies userspace to release buffers when skb DMA is done in
 393 * lower device, the skb last reference should be 0 when calling this.
 394 * The zerocopy_success argument is true if zero copy transmit occurred,
 395 * false on data copy or out of memory error caused by data copy attempt.
 396 * The ctx field is used to track device context.
 397 * The desc field is used to track userspace buffer index.
 398 */
 399struct ubuf_info {
 400        void (*callback)(struct ubuf_info *, bool zerocopy_success);
 401        void *ctx;
 402        unsigned long desc;
 403};
 404
 405/* This data is invariant across clones and lives at
 406 * the end of the header data, ie. at skb->end.
 407 */
 408struct skb_shared_info {
 409        unsigned char   nr_frags;
 410        __u8            tx_flags;
 411        unsigned short  gso_size;
 412        /* Warning: this field is not always filled in (UFO)! */
 413        unsigned short  gso_segs;
 414        unsigned short  gso_type;
 415        struct sk_buff  *frag_list;
 416        struct skb_shared_hwtstamps hwtstamps;
 417        u32             tskey;
 418        __be32          ip6_frag_id;
 419
 420        /*
 421         * Warning : all fields before dataref are cleared in __alloc_skb()
 422         */
 423        atomic_t        dataref;
 424
 425        /* Intermediate layers must ensure that destructor_arg
 426         * remains valid until skb destructor */
 427        void *          destructor_arg;
 428
 429        /* must be last field, see pskb_expand_head() */
 430        skb_frag_t      frags[MAX_SKB_FRAGS];
 431};
 432
 433/* We divide dataref into two halves.  The higher 16 bits hold references
 434 * to the payload part of skb->data.  The lower 16 bits hold references to
 435 * the entire skb->data.  A clone of a headerless skb holds the length of
 436 * the header in skb->hdr_len.
 437 *
 438 * All users must obey the rule that the skb->data reference count must be
 439 * greater than or equal to the payload reference count.
 440 *
 441 * Holding a reference to the payload part means that the user does not
 442 * care about modifications to the header part of skb->data.
 443 */
 444#define SKB_DATAREF_SHIFT 16
 445#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 446
 447
 448enum {
 449        SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
 450        SKB_FCLONE_ORIG,        /* orig skb (from fclone_cache) */
 451        SKB_FCLONE_CLONE,       /* companion fclone skb (from fclone_cache) */
 452};
 453
 454enum {
 455        SKB_GSO_TCPV4 = 1 << 0,
 456        SKB_GSO_UDP = 1 << 1,
 457
 458        /* This indicates the skb is from an untrusted source. */
 459        SKB_GSO_DODGY = 1 << 2,
 460
 461        /* This indicates the tcp segment has CWR set. */
 462        SKB_GSO_TCP_ECN = 1 << 3,
 463
 464        SKB_GSO_TCP_FIXEDID = 1 << 4,
 465
 466        SKB_GSO_TCPV6 = 1 << 5,
 467
 468        SKB_GSO_FCOE = 1 << 6,
 469
 470        SKB_GSO_GRE = 1 << 7,
 471
 472        SKB_GSO_GRE_CSUM = 1 << 8,
 473
 474        SKB_GSO_IPXIP4 = 1 << 9,
 475
 476        SKB_GSO_IPXIP6 = 1 << 10,
 477
 478        SKB_GSO_UDP_TUNNEL = 1 << 11,
 479
 480        SKB_GSO_UDP_TUNNEL_CSUM = 1 << 12,
 481
 482        SKB_GSO_PARTIAL = 1 << 13,
 483
 484        SKB_GSO_TUNNEL_REMCSUM = 1 << 14,
 485};
 486
 487#if BITS_PER_LONG > 32
 488#define NET_SKBUFF_DATA_USES_OFFSET 1
 489#endif
 490
 491#ifdef NET_SKBUFF_DATA_USES_OFFSET
 492typedef unsigned int sk_buff_data_t;
 493#else
 494typedef unsigned char *sk_buff_data_t;
 495#endif
 496
 497/**
 498 * struct skb_mstamp - multi resolution time stamps
 499 * @stamp_us: timestamp in us resolution
 500 * @stamp_jiffies: timestamp in jiffies
 501 */
 502struct skb_mstamp {
 503        union {
 504                u64             v64;
 505                struct {
 506                        u32     stamp_us;
 507                        u32     stamp_jiffies;
 508                };
 509        };
 510};
 511
 512/**
 513 * skb_mstamp_get - get current timestamp
 514 * @cl: place to store timestamps
 515 */
 516static inline void skb_mstamp_get(struct skb_mstamp *cl)
 517{
 518        u64 val = local_clock();
 519
 520        do_div(val, NSEC_PER_USEC);
 521        cl->stamp_us = (u32)val;
 522        cl->stamp_jiffies = (u32)jiffies;
 523}
 524
 525/**
 526 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp
 527 * @t1: pointer to newest sample
 528 * @t0: pointer to oldest sample
 529 */
 530static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1,
 531                                      const struct skb_mstamp *t0)
 532{
 533        s32 delta_us = t1->stamp_us - t0->stamp_us;
 534        u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies;
 535
 536        /* If delta_us is negative, this might be because interval is too big,
 537         * or local_clock() drift is too big : fallback using jiffies.
 538         */
 539        if (delta_us <= 0 ||
 540            delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ)))
 541
 542                delta_us = jiffies_to_usecs(delta_jiffies);
 543
 544        return delta_us;
 545}
 546
 547static inline bool skb_mstamp_after(const struct skb_mstamp *t1,
 548                                    const struct skb_mstamp *t0)
 549{
 550        s32 diff = t1->stamp_jiffies - t0->stamp_jiffies;
 551
 552        if (!diff)
 553                diff = t1->stamp_us - t0->stamp_us;
 554        return diff > 0;
 555}
 556
 557/** 
 558 *      struct sk_buff - socket buffer
 559 *      @next: Next buffer in list
 560 *      @prev: Previous buffer in list
 561 *      @tstamp: Time we arrived/left
 562 *      @rbnode: RB tree node, alternative to next/prev for netem/tcp
 563 *      @sk: Socket we are owned by
 564 *      @dev: Device we arrived on/are leaving by
 565 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 566 *      @_skb_refdst: destination entry (with norefcount bit)
 567 *      @sp: the security path, used for xfrm
 568 *      @len: Length of actual data
 569 *      @data_len: Data length
 570 *      @mac_len: Length of link layer header
 571 *      @hdr_len: writable header length of cloned skb
 572 *      @csum: Checksum (must include start/offset pair)
 573 *      @csum_start: Offset from skb->head where checksumming should start
 574 *      @csum_offset: Offset from csum_start where checksum should be stored
 575 *      @priority: Packet queueing priority
 576 *      @ignore_df: allow local fragmentation
 577 *      @cloned: Head may be cloned (check refcnt to be sure)
 578 *      @ip_summed: Driver fed us an IP checksum
 579 *      @nohdr: Payload reference only, must not modify header
 580 *      @nfctinfo: Relationship of this skb to the connection
 581 *      @pkt_type: Packet class
 582 *      @fclone: skbuff clone status
 583 *      @ipvs_property: skbuff is owned by ipvs
 584 *      @peeked: this packet has been seen already, so stats have been
 585 *              done for it, don't do them again
 586 *      @nf_trace: netfilter packet trace flag
 587 *      @protocol: Packet protocol from driver
 588 *      @destructor: Destruct function
 589 *      @nfct: Associated connection, if any
 590 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 591 *      @skb_iif: ifindex of device we arrived on
 592 *      @tc_index: Traffic control index
 593 *      @tc_verd: traffic control verdict
 594 *      @hash: the packet hash
 595 *      @queue_mapping: Queue mapping for multiqueue devices
 596 *      @xmit_more: More SKBs are pending for this queue
 597 *      @ndisc_nodetype: router type (from link layer)
 598 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 599 *      @l4_hash: indicate hash is a canonical 4-tuple hash over transport
 600 *              ports.
 601 *      @sw_hash: indicates hash was computed in software stack
 602 *      @wifi_acked_valid: wifi_acked was set
 603 *      @wifi_acked: whether frame was acked on wifi or not
 604 *      @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
 605  *     @napi_id: id of the NAPI struct this skb came from
 606 *      @secmark: security marking
 607 *      @offload_fwd_mark: fwding offload mark
 608 *      @mark: Generic packet mark
 609 *      @vlan_proto: vlan encapsulation protocol
 610 *      @vlan_tci: vlan tag control information
 611 *      @inner_protocol: Protocol (encapsulation)
 612 *      @inner_transport_header: Inner transport layer header (encapsulation)
 613 *      @inner_network_header: Network layer header (encapsulation)
 614 *      @inner_mac_header: Link layer header (encapsulation)
 615 *      @transport_header: Transport layer header
 616 *      @network_header: Network layer header
 617 *      @mac_header: Link layer header
 618 *      @tail: Tail pointer
 619 *      @end: End pointer
 620 *      @head: Head of buffer
 621 *      @data: Data head pointer
 622 *      @truesize: Buffer size
 623 *      @users: User count - see {datagram,tcp}.c
 624 */
 625
 626struct sk_buff {
 627        union {
 628                struct {
 629                        /* These two members must be first. */
 630                        struct sk_buff          *next;
 631                        struct sk_buff          *prev;
 632
 633                        union {
 634                                ktime_t         tstamp;
 635                                struct skb_mstamp skb_mstamp;
 636                        };
 637                };
 638                struct rb_node  rbnode; /* used in netem & tcp stack */
 639        };
 640        struct sock             *sk;
 641        struct net_device       *dev;
 642
 643        /*
 644         * This is the control buffer. It is free to use for every
 645         * layer. Please put your private variables there. If you
 646         * want to keep them across layers you have to do a skb_clone()
 647         * first. This is owned by whoever has the skb queued ATM.
 648         */
 649        char                    cb[48] __aligned(8);
 650
 651        unsigned long           _skb_refdst;
 652        void                    (*destructor)(struct sk_buff *skb);
 653#ifdef CONFIG_XFRM
 654        struct  sec_path        *sp;
 655#endif
 656#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 657        struct nf_conntrack     *nfct;
 658#endif
 659#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 660        struct nf_bridge_info   *nf_bridge;
 661#endif
 662        unsigned int            len,
 663                                data_len;
 664        __u16                   mac_len,
 665                                hdr_len;
 666
 667        /* Following fields are _not_ copied in __copy_skb_header()
 668         * Note that queue_mapping is here mostly to fill a hole.
 669         */
 670        kmemcheck_bitfield_begin(flags1);
 671        __u16                   queue_mapping;
 672        __u8                    cloned:1,
 673                                nohdr:1,
 674                                fclone:2,
 675                                peeked:1,
 676                                head_frag:1,
 677                                xmit_more:1;
 678        /* one bit hole */
 679        kmemcheck_bitfield_end(flags1);
 680
 681        /* fields enclosed in headers_start/headers_end are copied
 682         * using a single memcpy() in __copy_skb_header()
 683         */
 684        /* private: */
 685        __u32                   headers_start[0];
 686        /* public: */
 687
 688/* if you move pkt_type around you also must adapt those constants */
 689#ifdef __BIG_ENDIAN_BITFIELD
 690#define PKT_TYPE_MAX    (7 << 5)
 691#else
 692#define PKT_TYPE_MAX    7
 693#endif
 694#define PKT_TYPE_OFFSET()       offsetof(struct sk_buff, __pkt_type_offset)
 695
 696        __u8                    __pkt_type_offset[0];
 697        __u8                    pkt_type:3;
 698        __u8                    pfmemalloc:1;
 699        __u8                    ignore_df:1;
 700        __u8                    nfctinfo:3;
 701
 702        __u8                    nf_trace:1;
 703        __u8                    ip_summed:2;
 704        __u8                    ooo_okay:1;
 705        __u8                    l4_hash:1;
 706        __u8                    sw_hash:1;
 707        __u8                    wifi_acked_valid:1;
 708        __u8                    wifi_acked:1;
 709
 710        __u8                    no_fcs:1;
 711        /* Indicates the inner headers are valid in the skbuff. */
 712        __u8                    encapsulation:1;
 713        __u8                    encap_hdr_csum:1;
 714        __u8                    csum_valid:1;
 715        __u8                    csum_complete_sw:1;
 716        __u8                    csum_level:2;
 717        __u8                    csum_bad:1;
 718
 719#ifdef CONFIG_IPV6_NDISC_NODETYPE
 720        __u8                    ndisc_nodetype:2;
 721#endif
 722        __u8                    ipvs_property:1;
 723        __u8                    inner_protocol_type:1;
 724        __u8                    remcsum_offload:1;
 725        /* 3 or 5 bit hole */
 726
 727#ifdef CONFIG_NET_SCHED
 728        __u16                   tc_index;       /* traffic control index */
 729#ifdef CONFIG_NET_CLS_ACT
 730        __u16                   tc_verd;        /* traffic control verdict */
 731#endif
 732#endif
 733
 734        union {
 735                __wsum          csum;
 736                struct {
 737                        __u16   csum_start;
 738                        __u16   csum_offset;
 739                };
 740        };
 741        __u32                   priority;
 742        int                     skb_iif;
 743        __u32                   hash;
 744        __be16                  vlan_proto;
 745        __u16                   vlan_tci;
 746#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
 747        union {
 748                unsigned int    napi_id;
 749                unsigned int    sender_cpu;
 750        };
 751#endif
 752        union {
 753#ifdef CONFIG_NETWORK_SECMARK
 754                __u32           secmark;
 755#endif
 756#ifdef CONFIG_NET_SWITCHDEV
 757                __u32           offload_fwd_mark;
 758#endif
 759        };
 760
 761        union {
 762                __u32           mark;
 763                __u32           reserved_tailroom;
 764        };
 765
 766        union {
 767                __be16          inner_protocol;
 768                __u8            inner_ipproto;
 769        };
 770
 771        __u16                   inner_transport_header;
 772        __u16                   inner_network_header;
 773        __u16                   inner_mac_header;
 774
 775        __be16                  protocol;
 776        __u16                   transport_header;
 777        __u16                   network_header;
 778        __u16                   mac_header;
 779
 780        /* private: */
 781        __u32                   headers_end[0];
 782        /* public: */
 783
 784        /* These elements must be at the end, see alloc_skb() for details.  */
 785        sk_buff_data_t          tail;
 786        sk_buff_data_t          end;
 787        unsigned char           *head,
 788                                *data;
 789        unsigned int            truesize;
 790        atomic_t                users;
 791};
 792
 793#ifdef __KERNEL__
 794/*
 795 *      Handling routines are only of interest to the kernel
 796 */
 797#include <linux/slab.h>
 798
 799
 800#define SKB_ALLOC_FCLONE        0x01
 801#define SKB_ALLOC_RX            0x02
 802#define SKB_ALLOC_NAPI          0x04
 803
 804/* Returns true if the skb was allocated from PFMEMALLOC reserves */
 805static inline bool skb_pfmemalloc(const struct sk_buff *skb)
 806{
 807        return unlikely(skb->pfmemalloc);
 808}
 809
 810/*
 811 * skb might have a dst pointer attached, refcounted or not.
 812 * _skb_refdst low order bit is set if refcount was _not_ taken
 813 */
 814#define SKB_DST_NOREF   1UL
 815#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 816
 817/**
 818 * skb_dst - returns skb dst_entry
 819 * @skb: buffer
 820 *
 821 * Returns skb dst_entry, regardless of reference taken or not.
 822 */
 823static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 824{
 825        /* If refdst was not refcounted, check we still are in a 
 826         * rcu_read_lock section
 827         */
 828        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 829                !rcu_read_lock_held() &&
 830                !rcu_read_lock_bh_held());
 831        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 832}
 833
 834/**
 835 * skb_dst_set - sets skb dst
 836 * @skb: buffer
 837 * @dst: dst entry
 838 *
 839 * Sets skb dst, assuming a reference was taken on dst and should
 840 * be released by skb_dst_drop()
 841 */
 842static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 843{
 844        skb->_skb_refdst = (unsigned long)dst;
 845}
 846
 847/**
 848 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
 849 * @skb: buffer
 850 * @dst: dst entry
 851 *
 852 * Sets skb dst, assuming a reference was not taken on dst.
 853 * If dst entry is cached, we do not take reference and dst_release
 854 * will be avoided by refdst_drop. If dst entry is not cached, we take
 855 * reference, so that last dst_release can destroy the dst immediately.
 856 */
 857static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
 858{
 859        WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 860        skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
 861}
 862
 863/**
 864 * skb_dst_is_noref - Test if skb dst isn't refcounted
 865 * @skb: buffer
 866 */
 867static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 868{
 869        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 870}
 871
 872static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 873{
 874        return (struct rtable *)skb_dst(skb);
 875}
 876
 877void kfree_skb(struct sk_buff *skb);
 878void kfree_skb_list(struct sk_buff *segs);
 879void skb_tx_error(struct sk_buff *skb);
 880void consume_skb(struct sk_buff *skb);
 881void  __kfree_skb(struct sk_buff *skb);
 882extern struct kmem_cache *skbuff_head_cache;
 883
 884void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
 885bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
 886                      bool *fragstolen, int *delta_truesize);
 887
 888struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
 889                            int node);
 890struct sk_buff *__build_skb(void *data, unsigned int frag_size);
 891struct sk_buff *build_skb(void *data, unsigned int frag_size);
 892static inline struct sk_buff *alloc_skb(unsigned int size,
 893                                        gfp_t priority)
 894{
 895        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 896}
 897
 898struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
 899                                     unsigned long data_len,
 900                                     int max_page_order,
 901                                     int *errcode,
 902                                     gfp_t gfp_mask);
 903
 904/* Layout of fast clones : [skb1][skb2][fclone_ref] */
 905struct sk_buff_fclones {
 906        struct sk_buff  skb1;
 907
 908        struct sk_buff  skb2;
 909
 910        atomic_t        fclone_ref;
 911};
 912
 913/**
 914 *      skb_fclone_busy - check if fclone is busy
 915 *      @skb: buffer
 916 *
 917 * Returns true if skb is a fast clone, and its clone is not freed.
 918 * Some drivers call skb_orphan() in their ndo_start_xmit(),
 919 * so we also check that this didnt happen.
 920 */
 921static inline bool skb_fclone_busy(const struct sock *sk,
 922                                   const struct sk_buff *skb)
 923{
 924        const struct sk_buff_fclones *fclones;
 925
 926        fclones = container_of(skb, struct sk_buff_fclones, skb1);
 927
 928        return skb->fclone == SKB_FCLONE_ORIG &&
 929               atomic_read(&fclones->fclone_ref) > 1 &&
 930               fclones->skb2.sk == sk;
 931}
 932
 933static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
 934                                               gfp_t priority)
 935{
 936        return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
 937}
 938
 939struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
 940static inline struct sk_buff *alloc_skb_head(gfp_t priority)
 941{
 942        return __alloc_skb_head(priority, -1);
 943}
 944
 945struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
 946int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
 947struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
 948struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
 949struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
 950                                   gfp_t gfp_mask, bool fclone);
 951static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
 952                                          gfp_t gfp_mask)
 953{
 954        return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
 955}
 956
 957int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
 958struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
 959                                     unsigned int headroom);
 960struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
 961                                int newtailroom, gfp_t priority);
 962int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
 963                        int offset, int len);
 964int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset,
 965                 int len);
 966int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
 967int skb_pad(struct sk_buff *skb, int pad);
 968#define dev_kfree_skb(a)        consume_skb(a)
 969
 970int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 971                            int getfrag(void *from, char *to, int offset,
 972                                        int len, int odd, struct sk_buff *skb),
 973                            void *from, int length);
 974
 975int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
 976                         int offset, size_t size);
 977
 978struct skb_seq_state {
 979        __u32           lower_offset;
 980        __u32           upper_offset;
 981        __u32           frag_idx;
 982        __u32           stepped_offset;
 983        struct sk_buff  *root_skb;
 984        struct sk_buff  *cur_skb;
 985        __u8            *frag_data;
 986};
 987
 988void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
 989                          unsigned int to, struct skb_seq_state *st);
 990unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
 991                          struct skb_seq_state *st);
 992void skb_abort_seq_read(struct skb_seq_state *st);
 993
 994unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
 995                           unsigned int to, struct ts_config *config);
 996
 997/*
 998 * Packet hash types specify the type of hash in skb_set_hash.
 999 *
1000 * Hash types refer to the protocol layer addresses which are used to
1001 * construct a packet's hash. The hashes are used to differentiate or identify
1002 * flows of the protocol layer for the hash type. Hash types are either
1003 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1004 *
1005 * Properties of hashes:
1006 *
1007 * 1) Two packets in different flows have different hash values
1008 * 2) Two packets in the same flow should have the same hash value
1009 *
1010 * A hash at a higher layer is considered to be more specific. A driver should
1011 * set the most specific hash possible.
1012 *
1013 * A driver cannot indicate a more specific hash than the layer at which a hash
1014 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1015 *
1016 * A driver may indicate a hash level which is less specific than the
1017 * actual layer the hash was computed on. For instance, a hash computed
1018 * at L4 may be considered an L3 hash. This should only be done if the
1019 * driver can't unambiguously determine that the HW computed the hash at
1020 * the higher layer. Note that the "should" in the second property above
1021 * permits this.
1022 */
1023enum pkt_hash_types {
1024        PKT_HASH_TYPE_NONE,     /* Undefined type */
1025        PKT_HASH_TYPE_L2,       /* Input: src_MAC, dest_MAC */
1026        PKT_HASH_TYPE_L3,       /* Input: src_IP, dst_IP */
1027        PKT_HASH_TYPE_L4,       /* Input: src_IP, dst_IP, src_port, dst_port */
1028};
1029
1030static inline void skb_clear_hash(struct sk_buff *skb)
1031{
1032        skb->hash = 0;
1033        skb->sw_hash = 0;
1034        skb->l4_hash = 0;
1035}
1036
1037static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1038{
1039        if (!skb->l4_hash)
1040                skb_clear_hash(skb);
1041}
1042
1043static inline void
1044__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1045{
1046        skb->l4_hash = is_l4;
1047        skb->sw_hash = is_sw;
1048        skb->hash = hash;
1049}
1050
1051static inline void
1052skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1053{
1054        /* Used by drivers to set hash from HW */
1055        __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1056}
1057
1058static inline void
1059__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1060{
1061        __skb_set_hash(skb, hash, true, is_l4);
1062}
1063
1064void __skb_get_hash(struct sk_buff *skb);
1065u32 __skb_get_hash_symmetric(struct sk_buff *skb);
1066u32 skb_get_poff(const struct sk_buff *skb);
1067u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1068                   const struct flow_keys *keys, int hlen);
1069__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1070                            void *data, int hlen_proto);
1071
1072static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1073                                        int thoff, u8 ip_proto)
1074{
1075        return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1076}
1077
1078void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1079                             const struct flow_dissector_key *key,
1080                             unsigned int key_count);
1081
1082bool __skb_flow_dissect(const struct sk_buff *skb,
1083                        struct flow_dissector *flow_dissector,
1084                        void *target_container,
1085                        void *data, __be16 proto, int nhoff, int hlen,
1086                        unsigned int flags);
1087
1088static inline bool skb_flow_dissect(const struct sk_buff *skb,
1089                                    struct flow_dissector *flow_dissector,
1090                                    void *target_container, unsigned int flags)
1091{
1092        return __skb_flow_dissect(skb, flow_dissector, target_container,
1093                                  NULL, 0, 0, 0, flags);
1094}
1095
1096static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1097                                              struct flow_keys *flow,
1098                                              unsigned int flags)
1099{
1100        memset(flow, 0, sizeof(*flow));
1101        return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
1102                                  NULL, 0, 0, 0, flags);
1103}
1104
1105static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1106                                                  void *data, __be16 proto,
1107                                                  int nhoff, int hlen,
1108                                                  unsigned int flags)
1109{
1110        memset(flow, 0, sizeof(*flow));
1111        return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
1112                                  data, proto, nhoff, hlen, flags);
1113}
1114
1115static inline __u32 skb_get_hash(struct sk_buff *skb)
1116{
1117        if (!skb->l4_hash && !skb->sw_hash)
1118                __skb_get_hash(skb);
1119
1120        return skb->hash;
1121}
1122
1123__u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6);
1124
1125static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1126{
1127        if (!skb->l4_hash && !skb->sw_hash) {
1128                struct flow_keys keys;
1129                __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1130
1131                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1132        }
1133
1134        return skb->hash;
1135}
1136
1137__u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl);
1138
1139static inline __u32 skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1140{
1141        if (!skb->l4_hash && !skb->sw_hash) {
1142                struct flow_keys keys;
1143                __u32 hash = __get_hash_from_flowi4(fl4, &keys);
1144
1145                __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1146        }
1147
1148        return skb->hash;
1149}
1150
1151__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1152
1153static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1154{
1155        return skb->hash;
1156}
1157
1158static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1159{
1160        to->hash = from->hash;
1161        to->sw_hash = from->sw_hash;
1162        to->l4_hash = from->l4_hash;
1163};
1164
1165#ifdef NET_SKBUFF_DATA_USES_OFFSET
1166static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1167{
1168        return skb->head + skb->end;
1169}
1170
1171static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1172{
1173        return skb->end;
1174}
1175#else
1176static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1177{
1178        return skb->end;
1179}
1180
1181static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1182{
1183        return skb->end - skb->head;
1184}
1185#endif
1186
1187/* Internal */
1188#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1189
1190static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1191{
1192        return &skb_shinfo(skb)->hwtstamps;
1193}
1194
1195/**
1196 *      skb_queue_empty - check if a queue is empty
1197 *      @list: queue head
1198 *
1199 *      Returns true if the queue is empty, false otherwise.
1200 */
1201static inline int skb_queue_empty(const struct sk_buff_head *list)
1202{
1203        return list->next == (const struct sk_buff *) list;
1204}
1205
1206/**
1207 *      skb_queue_is_last - check if skb is the last entry in the queue
1208 *      @list: queue head
1209 *      @skb: buffer
1210 *
1211 *      Returns true if @skb is the last buffer on the list.
1212 */
1213static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1214                                     const struct sk_buff *skb)
1215{
1216        return skb->next == (const struct sk_buff *) list;
1217}
1218
1219/**
1220 *      skb_queue_is_first - check if skb is the first entry in the queue
1221 *      @list: queue head
1222 *      @skb: buffer
1223 *
1224 *      Returns true if @skb is the first buffer on the list.
1225 */
1226static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1227                                      const struct sk_buff *skb)
1228{
1229        return skb->prev == (const struct sk_buff *) list;
1230}
1231
1232/**
1233 *      skb_queue_next - return the next packet in the queue
1234 *      @list: queue head
1235 *      @skb: current buffer
1236 *
1237 *      Return the next packet in @list after @skb.  It is only valid to
1238 *      call this if skb_queue_is_last() evaluates to false.
1239 */
1240static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1241                                             const struct sk_buff *skb)
1242{
1243        /* This BUG_ON may seem severe, but if we just return then we
1244         * are going to dereference garbage.
1245         */
1246        BUG_ON(skb_queue_is_last(list, skb));
1247        return skb->next;
1248}
1249
1250/**
1251 *      skb_queue_prev - return the prev packet in the queue
1252 *      @list: queue head
1253 *      @skb: current buffer
1254 *
1255 *      Return the prev packet in @list before @skb.  It is only valid to
1256 *      call this if skb_queue_is_first() evaluates to false.
1257 */
1258static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1259                                             const struct sk_buff *skb)
1260{
1261        /* This BUG_ON may seem severe, but if we just return then we
1262         * are going to dereference garbage.
1263         */
1264        BUG_ON(skb_queue_is_first(list, skb));
1265        return skb->prev;
1266}
1267
1268/**
1269 *      skb_get - reference buffer
1270 *      @skb: buffer to reference
1271 *
1272 *      Makes another reference to a socket buffer and returns a pointer
1273 *      to the buffer.
1274 */
1275static inline struct sk_buff *skb_get(struct sk_buff *skb)
1276{
1277        atomic_inc(&skb->users);
1278        return skb;
1279}
1280
1281/*
1282 * If users == 1, we are the only owner and are can avoid redundant
1283 * atomic change.
1284 */
1285
1286/**
1287 *      skb_cloned - is the buffer a clone
1288 *      @skb: buffer to check
1289 *
1290 *      Returns true if the buffer was generated with skb_clone() and is
1291 *      one of multiple shared copies of the buffer. Cloned buffers are
1292 *      shared data so must not be written to under normal circumstances.
1293 */
1294static inline int skb_cloned(const struct sk_buff *skb)
1295{
1296        return skb->cloned &&
1297               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1298}
1299
1300static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1301{
1302        might_sleep_if(gfpflags_allow_blocking(pri));
1303
1304        if (skb_cloned(skb))
1305                return pskb_expand_head(skb, 0, 0, pri);
1306
1307        return 0;
1308}
1309
1310/**
1311 *      skb_header_cloned - is the header a clone
1312 *      @skb: buffer to check
1313 *
1314 *      Returns true if modifying the header part of the buffer requires
1315 *      the data to be copied.
1316 */
1317static inline int skb_header_cloned(const struct sk_buff *skb)
1318{
1319        int dataref;
1320
1321        if (!skb->cloned)
1322                return 0;
1323
1324        dataref = atomic_read(&skb_shinfo(skb)->dataref);
1325        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1326        return dataref != 1;
1327}
1328
1329static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1330{
1331        might_sleep_if(gfpflags_allow_blocking(pri));
1332
1333        if (skb_header_cloned(skb))
1334                return pskb_expand_head(skb, 0, 0, pri);
1335
1336        return 0;
1337}
1338
1339/**
1340 *      skb_header_release - release reference to header
1341 *      @skb: buffer to operate on
1342 *
1343 *      Drop a reference to the header part of the buffer.  This is done
1344 *      by acquiring a payload reference.  You must not read from the header
1345 *      part of skb->data after this.
1346 *      Note : Check if you can use __skb_header_release() instead.
1347 */
1348static inline void skb_header_release(struct sk_buff *skb)
1349{
1350        BUG_ON(skb->nohdr);
1351        skb->nohdr = 1;
1352        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1353}
1354
1355/**
1356 *      __skb_header_release - release reference to header
1357 *      @skb: buffer to operate on
1358 *
1359 *      Variant of skb_header_release() assuming skb is private to caller.
1360 *      We can avoid one atomic operation.
1361 */
1362static inline void __skb_header_release(struct sk_buff *skb)
1363{
1364        skb->nohdr = 1;
1365        atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1366}
1367
1368
1369/**
1370 *      skb_shared - is the buffer shared
1371 *      @skb: buffer to check
1372 *
1373 *      Returns true if more than one person has a reference to this
1374 *      buffer.
1375 */
1376static inline int skb_shared(const struct sk_buff *skb)
1377{
1378        return atomic_read(&skb->users) != 1;
1379}
1380
1381/**
1382 *      skb_share_check - check if buffer is shared and if so clone it
1383 *      @skb: buffer to check
1384 *      @pri: priority for memory allocation
1385 *
1386 *      If the buffer is shared the buffer is cloned and the old copy
1387 *      drops a reference. A new clone with a single reference is returned.
1388 *      If the buffer is not shared the original buffer is returned. When
1389 *      being called from interrupt status or with spinlocks held pri must
1390 *      be GFP_ATOMIC.
1391 *
1392 *      NULL is returned on a memory allocation failure.
1393 */
1394static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1395{
1396        might_sleep_if(gfpflags_allow_blocking(pri));
1397        if (skb_shared(skb)) {
1398                struct sk_buff *nskb = skb_clone(skb, pri);
1399
1400                if (likely(nskb))
1401                        consume_skb(skb);
1402                else
1403                        kfree_skb(skb);
1404                skb = nskb;
1405        }
1406        return skb;
1407}
1408
1409/*
1410 *      Copy shared buffers into a new sk_buff. We effectively do COW on
1411 *      packets to handle cases where we have a local reader and forward
1412 *      and a couple of other messy ones. The normal one is tcpdumping
1413 *      a packet thats being forwarded.
1414 */
1415
1416/**
1417 *      skb_unshare - make a copy of a shared buffer
1418 *      @skb: buffer to check
1419 *      @pri: priority for memory allocation
1420 *
1421 *      If the socket buffer is a clone then this function creates a new
1422 *      copy of the data, drops a reference count on the old copy and returns
1423 *      the new copy with the reference count at 1. If the buffer is not a clone
1424 *      the original buffer is returned. When called with a spinlock held or
1425 *      from interrupt state @pri must be %GFP_ATOMIC
1426 *
1427 *      %NULL is returned on a memory allocation failure.
1428 */
1429static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1430                                          gfp_t pri)
1431{
1432        might_sleep_if(gfpflags_allow_blocking(pri));
1433        if (skb_cloned(skb)) {
1434                struct sk_buff *nskb = skb_copy(skb, pri);
1435
1436                /* Free our shared copy */
1437                if (likely(nskb))
1438                        consume_skb(skb);
1439                else
1440                        kfree_skb(skb);
1441                skb = nskb;
1442        }
1443        return skb;
1444}
1445
1446/**
1447 *      skb_peek - peek at the head of an &sk_buff_head
1448 *      @list_: list to peek at
1449 *
1450 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1451 *      be careful with this one. A peek leaves the buffer on the
1452 *      list and someone else may run off with it. You must hold
1453 *      the appropriate locks or have a private queue to do this.
1454 *
1455 *      Returns %NULL for an empty list or a pointer to the head element.
1456 *      The reference count is not incremented and the reference is therefore
1457 *      volatile. Use with caution.
1458 */
1459static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1460{
1461        struct sk_buff *skb = list_->next;
1462
1463        if (skb == (struct sk_buff *)list_)
1464                skb = NULL;
1465        return skb;
1466}
1467
1468/**
1469 *      skb_peek_next - peek skb following the given one from a queue
1470 *      @skb: skb to start from
1471 *      @list_: list to peek at
1472 *
1473 *      Returns %NULL when the end of the list is met or a pointer to the
1474 *      next element. The reference count is not incremented and the
1475 *      reference is therefore volatile. Use with caution.
1476 */
1477static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1478                const struct sk_buff_head *list_)
1479{
1480        struct sk_buff *next = skb->next;
1481
1482        if (next == (struct sk_buff *)list_)
1483                next = NULL;
1484        return next;
1485}
1486
1487/**
1488 *      skb_peek_tail - peek at the tail of an &sk_buff_head
1489 *      @list_: list to peek at
1490 *
1491 *      Peek an &sk_buff. Unlike most other operations you _MUST_
1492 *      be careful with this one. A peek leaves the buffer on the
1493 *      list and someone else may run off with it. You must hold
1494 *      the appropriate locks or have a private queue to do this.
1495 *
1496 *      Returns %NULL for an empty list or a pointer to the tail element.
1497 *      The reference count is not incremented and the reference is therefore
1498 *      volatile. Use with caution.
1499 */
1500static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1501{
1502        struct sk_buff *skb = list_->prev;
1503
1504        if (skb == (struct sk_buff *)list_)
1505                skb = NULL;
1506        return skb;
1507
1508}
1509
1510/**
1511 *      skb_queue_len   - get queue length
1512 *      @list_: list to measure
1513 *
1514 *      Return the length of an &sk_buff queue.
1515 */
1516static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1517{
1518        return list_->qlen;
1519}
1520
1521/**
1522 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1523 *      @list: queue to initialize
1524 *
1525 *      This initializes only the list and queue length aspects of
1526 *      an sk_buff_head object.  This allows to initialize the list
1527 *      aspects of an sk_buff_head without reinitializing things like
1528 *      the spinlock.  It can also be used for on-stack sk_buff_head
1529 *      objects where the spinlock is known to not be used.
1530 */
1531static inline void __skb_queue_head_init(struct sk_buff_head *list)
1532{
1533        list->prev = list->next = (struct sk_buff *)list;
1534        list->qlen = 0;
1535}
1536
1537/*
1538 * This function creates a split out lock class for each invocation;
1539 * this is needed for now since a whole lot of users of the skb-queue
1540 * infrastructure in drivers have different locking usage (in hardirq)
1541 * than the networking core (in softirq only). In the long run either the
1542 * network layer or drivers should need annotation to consolidate the
1543 * main types of usage into 3 classes.
1544 */
1545static inline void skb_queue_head_init(struct sk_buff_head *list)
1546{
1547        spin_lock_init(&list->lock);
1548        __skb_queue_head_init(list);
1549}
1550
1551static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1552                struct lock_class_key *class)
1553{
1554        skb_queue_head_init(list);
1555        lockdep_set_class(&list->lock, class);
1556}
1557
1558/*
1559 *      Insert an sk_buff on a list.
1560 *
1561 *      The "__skb_xxxx()" functions are the non-atomic ones that
1562 *      can only be called with interrupts disabled.
1563 */
1564void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1565                struct sk_buff_head *list);
1566static inline void __skb_insert(struct sk_buff *newsk,
1567                                struct sk_buff *prev, struct sk_buff *next,
1568                                struct sk_buff_head *list)
1569{
1570        newsk->next = next;
1571        newsk->prev = prev;
1572        next->prev  = prev->next = newsk;
1573        list->qlen++;
1574}
1575
1576static inline void __skb_queue_splice(const struct sk_buff_head *list,
1577                                      struct sk_buff *prev,
1578                                      struct sk_buff *next)
1579{
1580        struct sk_buff *first = list->next;
1581        struct sk_buff *last = list->prev;
1582
1583        first->prev = prev;
1584        prev->next = first;
1585
1586        last->next = next;
1587        next->prev = last;
1588}
1589
1590/**
1591 *      skb_queue_splice - join two skb lists, this is designed for stacks
1592 *      @list: the new list to add
1593 *      @head: the place to add it in the first list
1594 */
1595static inline void skb_queue_splice(const struct sk_buff_head *list,
1596                                    struct sk_buff_head *head)
1597{
1598        if (!skb_queue_empty(list)) {
1599                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1600                head->qlen += list->qlen;
1601        }
1602}
1603
1604/**
1605 *      skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1606 *      @list: the new list to add
1607 *      @head: the place to add it in the first list
1608 *
1609 *      The list at @list is reinitialised
1610 */
1611static inline void skb_queue_splice_init(struct sk_buff_head *list,
1612                                         struct sk_buff_head *head)
1613{
1614        if (!skb_queue_empty(list)) {
1615                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1616                head->qlen += list->qlen;
1617                __skb_queue_head_init(list);
1618        }
1619}
1620
1621/**
1622 *      skb_queue_splice_tail - join two skb lists, each list being a queue
1623 *      @list: the new list to add
1624 *      @head: the place to add it in the first list
1625 */
1626static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1627                                         struct sk_buff_head *head)
1628{
1629        if (!skb_queue_empty(list)) {
1630                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1631                head->qlen += list->qlen;
1632        }
1633}
1634
1635/**
1636 *      skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
1637 *      @list: the new list to add
1638 *      @head: the place to add it in the first list
1639 *
1640 *      Each of the lists is a queue.
1641 *      The list at @list is reinitialised
1642 */
1643static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1644                                              struct sk_buff_head *head)
1645{
1646        if (!skb_queue_empty(list)) {
1647                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1648                head->qlen += list->qlen;
1649                __skb_queue_head_init(list);
1650        }
1651}
1652
1653/**
1654 *      __skb_queue_after - queue a buffer at the list head
1655 *      @list: list to use
1656 *      @prev: place after this buffer
1657 *      @newsk: buffer to queue
1658 *
1659 *      Queue a buffer int the middle of a list. This function takes no locks
1660 *      and you must therefore hold required locks before calling it.
1661 *
1662 *      A buffer cannot be placed on two lists at the same time.
1663 */
1664static inline void __skb_queue_after(struct sk_buff_head *list,
1665                                     struct sk_buff *prev,
1666                                     struct sk_buff *newsk)
1667{
1668        __skb_insert(newsk, prev, prev->next, list);
1669}
1670
1671void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1672                struct sk_buff_head *list);
1673
1674static inline void __skb_queue_before(struct sk_buff_head *list,
1675                                      struct sk_buff *next,
1676                                      struct sk_buff *newsk)
1677{
1678        __skb_insert(newsk, next->prev, next, list);
1679}
1680
1681/**
1682 *      __skb_queue_head - queue a buffer at the list head
1683 *      @list: list to use
1684 *      @newsk: buffer to queue
1685 *
1686 *      Queue a buffer at the start of a list. This function takes no locks
1687 *      and you must therefore hold required locks before calling it.
1688 *
1689 *      A buffer cannot be placed on two lists at the same time.
1690 */
1691void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1692static inline void __skb_queue_head(struct sk_buff_head *list,
1693                                    struct sk_buff *newsk)
1694{
1695        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1696}
1697
1698/**
1699 *      __skb_queue_tail - queue a buffer at the list tail
1700 *      @list: list to use
1701 *      @newsk: buffer to queue
1702 *
1703 *      Queue a buffer at the end of a list. This function takes no locks
1704 *      and you must therefore hold required locks before calling it.
1705 *
1706 *      A buffer cannot be placed on two lists at the same time.
1707 */
1708void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1709static inline void __skb_queue_tail(struct sk_buff_head *list,
1710                                   struct sk_buff *newsk)
1711{
1712        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1713}
1714
1715/*
1716 * remove sk_buff from list. _Must_ be called atomically, and with
1717 * the list known..
1718 */
1719void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1720static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1721{
1722        struct sk_buff *next, *prev;
1723
1724        list->qlen--;
1725        next       = skb->next;
1726        prev       = skb->prev;
1727        skb->next  = skb->prev = NULL;
1728        next->prev = prev;
1729        prev->next = next;
1730}
1731
1732/**
1733 *      __skb_dequeue - remove from the head of the queue
1734 *      @list: list to dequeue from
1735 *
1736 *      Remove the head of the list. This function does not take any locks
1737 *      so must be used with appropriate locks held only. The head item is
1738 *      returned or %NULL if the list is empty.
1739 */
1740struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1741static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1742{
1743        struct sk_buff *skb = skb_peek(list);
1744        if (skb)
1745                __skb_unlink(skb, list);
1746        return skb;
1747}
1748
1749/**
1750 *      __skb_dequeue_tail - remove from the tail of the queue
1751 *      @list: list to dequeue from
1752 *
1753 *      Remove the tail of the list. This function does not take any locks
1754 *      so must be used with appropriate locks held only. The tail item is
1755 *      returned or %NULL if the list is empty.
1756 */
1757struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1758static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1759{
1760        struct sk_buff *skb = skb_peek_tail(list);
1761        if (skb)
1762                __skb_unlink(skb, list);
1763        return skb;
1764}
1765
1766
1767static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1768{
1769        return skb->data_len;
1770}
1771
1772static inline unsigned int skb_headlen(const struct sk_buff *skb)
1773{
1774        return skb->len - skb->data_len;
1775}
1776
1777static inline int skb_pagelen(const struct sk_buff *skb)
1778{
1779        int i, len = 0;
1780
1781        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1782                len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1783        return len + skb_headlen(skb);
1784}
1785
1786/**
1787 * __skb_fill_page_desc - initialise a paged fragment in an skb
1788 * @skb: buffer containing fragment to be initialised
1789 * @i: paged fragment index to initialise
1790 * @page: the page to use for this fragment
1791 * @off: the offset to the data with @page
1792 * @size: the length of the data
1793 *
1794 * Initialises the @i'th fragment of @skb to point to &size bytes at
1795 * offset @off within @page.
1796 *
1797 * Does not take any additional reference on the fragment.
1798 */
1799static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1800                                        struct page *page, int off, int size)
1801{
1802        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1803
1804        /*
1805         * Propagate page pfmemalloc to the skb if we can. The problem is
1806         * that not all callers have unique ownership of the page but rely
1807         * on page_is_pfmemalloc doing the right thing(tm).
1808         */
1809        frag->page.p              = page;
1810        frag->page_offset         = off;
1811        skb_frag_size_set(frag, size);
1812
1813        page = compound_head(page);
1814        if (page_is_pfmemalloc(page))
1815                skb->pfmemalloc = true;
1816}
1817
1818/**
1819 * skb_fill_page_desc - initialise a paged fragment in an skb
1820 * @skb: buffer containing fragment to be initialised
1821 * @i: paged fragment index to initialise
1822 * @page: the page to use for this fragment
1823 * @off: the offset to the data with @page
1824 * @size: the length of the data
1825 *
1826 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
1827 * @skb to point to @size bytes at offset @off within @page. In
1828 * addition updates @skb such that @i is the last fragment.
1829 *
1830 * Does not take any additional reference on the fragment.
1831 */
1832static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1833                                      struct page *page, int off, int size)
1834{
1835        __skb_fill_page_desc(skb, i, page, off, size);
1836        skb_shinfo(skb)->nr_frags = i + 1;
1837}
1838
1839void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1840                     int size, unsigned int truesize);
1841
1842void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1843                          unsigned int truesize);
1844
1845#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1846#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1847#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1848
1849#ifdef NET_SKBUFF_DATA_USES_OFFSET
1850static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1851{
1852        return skb->head + skb->tail;
1853}
1854
1855static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1856{
1857        skb->tail = skb->data - skb->head;
1858}
1859
1860static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1861{
1862        skb_reset_tail_pointer(skb);
1863        skb->tail += offset;
1864}
1865
1866#else /* NET_SKBUFF_DATA_USES_OFFSET */
1867static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1868{
1869        return skb->tail;
1870}
1871
1872static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1873{
1874        skb->tail = skb->data;
1875}
1876
1877static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1878{
1879        skb->tail = skb->data + offset;
1880}
1881
1882#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1883
1884/*
1885 *      Add data to an sk_buff
1886 */
1887unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
1888unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1889static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1890{
1891        unsigned char *tmp = skb_tail_pointer(skb);
1892        SKB_LINEAR_ASSERT(skb);
1893        skb->tail += len;
1894        skb->len  += len;
1895        return tmp;
1896}
1897
1898unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1899static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1900{
1901        skb->data -= len;
1902        skb->len  += len;
1903        return skb->data;
1904}
1905
1906unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1907static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1908{
1909        skb->len -= len;
1910        BUG_ON(skb->len < skb->data_len);
1911        return skb->data += len;
1912}
1913
1914static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1915{
1916        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1917}
1918
1919unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1920
1921static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1922{
1923        if (len > skb_headlen(skb) &&
1924            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1925                return NULL;
1926        skb->len -= len;
1927        return skb->data += len;
1928}
1929
1930static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1931{
1932        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1933}
1934
1935static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1936{
1937        if (likely(len <= skb_headlen(skb)))
1938                return 1;
1939        if (unlikely(len > skb->len))
1940                return 0;
1941        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1942}
1943
1944/**
1945 *      skb_headroom - bytes at buffer head
1946 *      @skb: buffer to check
1947 *
1948 *      Return the number of bytes of free space at the head of an &sk_buff.
1949 */
1950static inline unsigned int skb_headroom(const struct sk_buff *skb)
1951{
1952        return skb->data - skb->head;
1953}
1954
1955/**
1956 *      skb_tailroom - bytes at buffer end
1957 *      @skb: buffer to check
1958 *
1959 *      Return the number of bytes of free space at the tail of an sk_buff
1960 */
1961static inline int skb_tailroom(const struct sk_buff *skb)
1962{
1963        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1964}
1965
1966/**
1967 *      skb_availroom - bytes at buffer end
1968 *      @skb: buffer to check
1969 *
1970 *      Return the number of bytes of free space at the tail of an sk_buff
1971 *      allocated by sk_stream_alloc()
1972 */
1973static inline int skb_availroom(const struct sk_buff *skb)
1974{
1975        if (skb_is_nonlinear(skb))
1976                return 0;
1977
1978        return skb->end - skb->tail - skb->reserved_tailroom;
1979}
1980
1981/**
1982 *      skb_reserve - adjust headroom
1983 *      @skb: buffer to alter
1984 *      @len: bytes to move
1985 *
1986 *      Increase the headroom of an empty &sk_buff by reducing the tail
1987 *      room. This is only allowed for an empty buffer.
1988 */
1989static inline void skb_reserve(struct sk_buff *skb, int len)
1990{
1991        skb->data += len;
1992        skb->tail += len;
1993}
1994
1995/**
1996 *      skb_tailroom_reserve - adjust reserved_tailroom
1997 *      @skb: buffer to alter
1998 *      @mtu: maximum amount of headlen permitted
1999 *      @needed_tailroom: minimum amount of reserved_tailroom
2000 *
2001 *      Set reserved_tailroom so that headlen can be as large as possible but
2002 *      not larger than mtu and tailroom cannot be smaller than
2003 *      needed_tailroom.
2004 *      The required headroom should already have been reserved before using
2005 *      this function.
2006 */
2007static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2008                                        unsigned int needed_tailroom)
2009{
2010        SKB_LINEAR_ASSERT(skb);
2011        if (mtu < skb_tailroom(skb) - needed_tailroom)
2012                /* use at most mtu */
2013                skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2014        else
2015                /* use up to all available space */
2016                skb->reserved_tailroom = needed_tailroom;
2017}
2018
2019#define ENCAP_TYPE_ETHER        0
2020#define ENCAP_TYPE_IPPROTO      1
2021
2022static inline void skb_set_inner_protocol(struct sk_buff *skb,
2023                                          __be16 protocol)
2024{
2025        skb->inner_protocol = protocol;
2026        skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2027}
2028
2029static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2030                                         __u8 ipproto)
2031{
2032        skb->inner_ipproto = ipproto;
2033        skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2034}
2035
2036static inline void skb_reset_inner_headers(struct sk_buff *skb)
2037{
2038        skb->inner_mac_header = skb->mac_header;
2039        skb->inner_network_header = skb->network_header;
2040        skb->inner_transport_header = skb->transport_header;
2041}
2042
2043static inline void skb_reset_mac_len(struct sk_buff *skb)
2044{
2045        skb->mac_len = skb->network_header - skb->mac_header;
2046}
2047
2048static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2049                                                        *skb)
2050{
2051        return skb->head + skb->inner_transport_header;
2052}
2053
2054static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2055{
2056        return skb_inner_transport_header(skb) - skb->data;
2057}
2058
2059static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2060{
2061        skb->inner_transport_header = skb->data - skb->head;
2062}
2063
2064static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2065                                                   const int offset)
2066{
2067        skb_reset_inner_transport_header(skb);
2068        skb->inner_transport_header += offset;
2069}
2070
2071static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2072{
2073        return skb->head + skb->inner_network_header;
2074}
2075
2076static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2077{
2078        skb->inner_network_header = skb->data - skb->head;
2079}
2080
2081static inline void skb_set_inner_network_header(struct sk_buff *skb,
2082                                                const int offset)
2083{
2084        skb_reset_inner_network_header(skb);
2085        skb->inner_network_header += offset;
2086}
2087
2088static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2089{
2090        return skb->head + skb->inner_mac_header;
2091}
2092
2093static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2094{
2095        skb->inner_mac_header = skb->data - skb->head;
2096}
2097
2098static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2099                                            const int offset)
2100{
2101        skb_reset_inner_mac_header(skb);
2102        skb->inner_mac_header += offset;
2103}
2104static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2105{
2106        return skb->transport_header != (typeof(skb->transport_header))~0U;
2107}
2108
2109static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2110{
2111        return skb->head + skb->transport_header;
2112}
2113
2114static inline void skb_reset_transport_header(struct sk_buff *skb)
2115{
2116        skb->transport_header = skb->data - skb->head;
2117}
2118
2119static inline void skb_set_transport_header(struct sk_buff *skb,
2120                                            const int offset)
2121{
2122        skb_reset_transport_header(skb);
2123        skb->transport_header += offset;
2124}
2125
2126static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2127{
2128        return skb->head + skb->network_header;
2129}
2130
2131static inline void skb_reset_network_header(struct sk_buff *skb)
2132{
2133        skb->network_header = skb->data - skb->head;
2134}
2135
2136static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2137{
2138        skb_reset_network_header(skb);
2139        skb->network_header += offset;
2140}
2141
2142static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2143{
2144        return skb->head + skb->mac_header;
2145}
2146
2147static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2148{
2149        return skb->mac_header != (typeof(skb->mac_header))~0U;
2150}
2151
2152static inline void skb_reset_mac_header(struct sk_buff *skb)
2153{
2154        skb->mac_header = skb->data - skb->head;
2155}
2156
2157static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2158{
2159        skb_reset_mac_header(skb);
2160        skb->mac_header += offset;
2161}
2162
2163static inline void skb_pop_mac_header(struct sk_buff *skb)
2164{
2165        skb->mac_header = skb->network_header;
2166}
2167
2168static inline void skb_probe_transport_header(struct sk_buff *skb,
2169                                              const int offset_hint)
2170{
2171        struct flow_keys keys;
2172
2173        if (skb_transport_header_was_set(skb))
2174                return;
2175        else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
2176                skb_set_transport_header(skb, keys.control.thoff);
2177        else
2178                skb_set_transport_header(skb, offset_hint);
2179}
2180
2181static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2182{
2183        if (skb_mac_header_was_set(skb)) {
2184                const unsigned char *old_mac = skb_mac_header(skb);
2185
2186                skb_set_mac_header(skb, -skb->mac_len);
2187                memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2188        }
2189}
2190
2191static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2192{
2193        return skb->csum_start - skb_headroom(skb);
2194}
2195
2196static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2197{
2198        return skb->head + skb->csum_start;
2199}
2200
2201static inline int skb_transport_offset(const struct sk_buff *skb)
2202{
2203        return skb_transport_header(skb) - skb->data;
2204}
2205
2206static inline u32 skb_network_header_len(const struct sk_buff *skb)
2207{
2208        return skb->transport_header - skb->network_header;
2209}
2210
2211static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2212{
2213        return skb->inner_transport_header - skb->inner_network_header;
2214}
2215
2216static inline int skb_network_offset(const struct sk_buff *skb)
2217{
2218        return skb_network_header(skb) - skb->data;
2219}
2220
2221static inline int skb_inner_network_offset(const struct sk_buff *skb)
2222{
2223        return skb_inner_network_header(skb) - skb->data;
2224}
2225
2226static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2227{
2228        return pskb_may_pull(skb, skb_network_offset(skb) + len);
2229}
2230
2231/*
2232 * CPUs often take a performance hit when accessing unaligned memory
2233 * locations. The actual performance hit varies, it can be small if the
2234 * hardware handles it or large if we have to take an exception and fix it
2235 * in software.
2236 *
2237 * Since an ethernet header is 14 bytes network drivers often end up with
2238 * the IP header at an unaligned offset. The IP header can be aligned by
2239 * shifting the start of the packet by 2 bytes. Drivers should do this
2240 * with:
2241 *
2242 * skb_reserve(skb, NET_IP_ALIGN);
2243 *
2244 * The downside to this alignment of the IP header is that the DMA is now
2245 * unaligned. On some architectures the cost of an unaligned DMA is high
2246 * and this cost outweighs the gains made by aligning the IP header.
2247 *
2248 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2249 * to be overridden.
2250 */
2251#ifndef NET_IP_ALIGN
2252#define NET_IP_ALIGN    2
2253#endif
2254
2255/*
2256 * The networking layer reserves some headroom in skb data (via
2257 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2258 * the header has to grow. In the default case, if the header has to grow
2259 * 32 bytes or less we avoid the reallocation.
2260 *
2261 * Unfortunately this headroom changes the DMA alignment of the resulting
2262 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2263 * on some architectures. An architecture can override this value,
2264 * perhaps setting it to a cacheline in size (since that will maintain
2265 * cacheline alignment of the DMA). It must be a power of 2.
2266 *
2267 * Various parts of the networking layer expect at least 32 bytes of
2268 * headroom, you should not reduce this.
2269 *
2270 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2271 * to reduce average number of cache lines per packet.
2272 * get_rps_cpus() for example only access one 64 bytes aligned block :
2273 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2274 */
2275#ifndef NET_SKB_PAD
2276#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
2277#endif
2278
2279int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2280
2281static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2282{
2283        if (unlikely(skb_is_nonlinear(skb))) {
2284                WARN_ON(1);
2285                return;
2286        }
2287        skb->len = len;
2288        skb_set_tail_pointer(skb, len);
2289}
2290
2291void skb_trim(struct sk_buff *skb, unsigned int len);
2292
2293static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2294{
2295        if (skb->data_len)
2296                return ___pskb_trim(skb, len);
2297        __skb_trim(skb, len);
2298        return 0;
2299}
2300
2301static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2302{
2303        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2304}
2305
2306/**
2307 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2308 *      @skb: buffer to alter
2309 *      @len: new length
2310 *
2311 *      This is identical to pskb_trim except that the caller knows that
2312 *      the skb is not cloned so we should never get an error due to out-
2313 *      of-memory.
2314 */
2315static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2316{
2317        int err = pskb_trim(skb, len);
2318        BUG_ON(err);
2319}
2320
2321/**
2322 *      skb_orphan - orphan a buffer
2323 *      @skb: buffer to orphan
2324 *
2325 *      If a buffer currently has an owner then we call the owner's
2326 *      destructor function and make the @skb unowned. The buffer continues
2327 *      to exist but is no longer charged to its former owner.
2328 */
2329static inline void skb_orphan(struct sk_buff *skb)
2330{
2331        if (skb->destructor) {
2332                skb->destructor(skb);
2333                skb->destructor = NULL;
2334                skb->sk         = NULL;
2335        } else {
2336                BUG_ON(skb->sk);
2337        }
2338}
2339
2340/**
2341 *      skb_orphan_frags - orphan the frags contained in a buffer
2342 *      @skb: buffer to orphan frags from
2343 *      @gfp_mask: allocation mask for replacement pages
2344 *
2345 *      For each frag in the SKB which needs a destructor (i.e. has an
2346 *      owner) create a copy of that frag and release the original
2347 *      page by calling the destructor.
2348 */
2349static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2350{
2351        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
2352                return 0;
2353        return skb_copy_ubufs(skb, gfp_mask);
2354}
2355
2356/**
2357 *      __skb_queue_purge - empty a list
2358 *      @list: list to empty
2359 *
2360 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2361 *      the list and one reference dropped. This function does not take the
2362 *      list lock and the caller must hold the relevant locks to use it.
2363 */
2364void skb_queue_purge(struct sk_buff_head *list);
2365static inline void __skb_queue_purge(struct sk_buff_head *list)
2366{
2367        struct sk_buff *skb;
2368        while ((skb = __skb_dequeue(list)) != NULL)
2369                kfree_skb(skb);
2370}
2371
2372void *netdev_alloc_frag(unsigned int fragsz);
2373
2374struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2375                                   gfp_t gfp_mask);
2376
2377/**
2378 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
2379 *      @dev: network device to receive on
2380 *      @length: length to allocate
2381 *
2382 *      Allocate a new &sk_buff and assign it a usage count of one. The
2383 *      buffer has unspecified headroom built in. Users should allocate
2384 *      the headroom they think they need without accounting for the
2385 *      built in space. The built in space is used for optimisations.
2386 *
2387 *      %NULL is returned if there is no free memory. Although this function
2388 *      allocates memory it can be called from an interrupt.
2389 */
2390static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2391                                               unsigned int length)
2392{
2393        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2394}
2395
2396/* legacy helper around __netdev_alloc_skb() */
2397static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2398                                              gfp_t gfp_mask)
2399{
2400        return __netdev_alloc_skb(NULL, length, gfp_mask);
2401}
2402
2403/* legacy helper around netdev_alloc_skb() */
2404static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2405{
2406        return netdev_alloc_skb(NULL, length);
2407}
2408
2409
2410static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2411                unsigned int length, gfp_t gfp)
2412{
2413        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2414
2415        if (NET_IP_ALIGN && skb)
2416                skb_reserve(skb, NET_IP_ALIGN);
2417        return skb;
2418}
2419
2420static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2421                unsigned int length)
2422{
2423        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2424}
2425
2426static inline void skb_free_frag(void *addr)
2427{
2428        __free_page_frag(addr);
2429}
2430
2431void *napi_alloc_frag(unsigned int fragsz);
2432struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2433                                 unsigned int length, gfp_t gfp_mask);
2434static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2435                                             unsigned int length)
2436{
2437        return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2438}
2439void napi_consume_skb(struct sk_buff *skb, int budget);
2440
2441void __kfree_skb_flush(void);
2442void __kfree_skb_defer(struct sk_buff *skb);
2443
2444/**
2445 * __dev_alloc_pages - allocate page for network Rx
2446 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2447 * @order: size of the allocation
2448 *
2449 * Allocate a new page.
2450 *
2451 * %NULL is returned if there is no free memory.
2452*/
2453static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2454                                             unsigned int order)
2455{
2456        /* This piece of code contains several assumptions.
2457         * 1.  This is for device Rx, therefor a cold page is preferred.
2458         * 2.  The expectation is the user wants a compound page.
2459         * 3.  If requesting a order 0 page it will not be compound
2460         *     due to the check to see if order has a value in prep_new_page
2461         * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2462         *     code in gfp_to_alloc_flags that should be enforcing this.
2463         */
2464        gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2465
2466        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2467}
2468
2469static inline struct page *dev_alloc_pages(unsigned int order)
2470{
2471        return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2472}
2473
2474/**
2475 * __dev_alloc_page - allocate a page for network Rx
2476 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2477 *
2478 * Allocate a new page.
2479 *
2480 * %NULL is returned if there is no free memory.
2481 */
2482static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2483{
2484        return __dev_alloc_pages(gfp_mask, 0);
2485}
2486
2487static inline struct page *dev_alloc_page(void)
2488{
2489        return dev_alloc_pages(0);
2490}
2491
2492/**
2493 *      skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2494 *      @page: The page that was allocated from skb_alloc_page
2495 *      @skb: The skb that may need pfmemalloc set
2496 */
2497static inline void skb_propagate_pfmemalloc(struct page *page,
2498                                             struct sk_buff *skb)
2499{
2500        if (page_is_pfmemalloc(page))
2501                skb->pfmemalloc = true;
2502}
2503
2504/**
2505 * skb_frag_page - retrieve the page referred to by a paged fragment
2506 * @frag: the paged fragment
2507 *
2508 * Returns the &struct page associated with @frag.
2509 */
2510static inline struct page *skb_frag_page(const skb_frag_t *frag)
2511{
2512        return frag->page.p;
2513}
2514
2515/**
2516 * __skb_frag_ref - take an addition reference on a paged fragment.
2517 * @frag: the paged fragment
2518 *
2519 * Takes an additional reference on the paged fragment @frag.
2520 */
2521static inline void __skb_frag_ref(skb_frag_t *frag)
2522{
2523        get_page(skb_frag_page(frag));
2524}
2525
2526/**
2527 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2528 * @skb: the buffer
2529 * @f: the fragment offset.
2530 *
2531 * Takes an additional reference on the @f'th paged fragment of @skb.
2532 */
2533static inline void skb_frag_ref(struct sk_buff *skb, int f)
2534{
2535        __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2536}
2537
2538/**
2539 * __skb_frag_unref - release a reference on a paged fragment.
2540 * @frag: the paged fragment
2541 *
2542 * Releases a reference on the paged fragment @frag.
2543 */
2544static inline void __skb_frag_unref(skb_frag_t *frag)
2545{
2546        put_page(skb_frag_page(frag));
2547}
2548
2549/**
2550 * skb_frag_unref - release a reference on a paged fragment of an skb.
2551 * @skb: the buffer
2552 * @f: the fragment offset
2553 *
2554 * Releases a reference on the @f'th paged fragment of @skb.
2555 */
2556static inline void skb_frag_unref(struct sk_buff *skb, int f)
2557{
2558        __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2559}
2560
2561/**
2562 * skb_frag_address - gets the address of the data contained in a paged fragment
2563 * @frag: the paged fragment buffer
2564 *
2565 * Returns the address of the data within @frag. The page must already
2566 * be mapped.
2567 */
2568static inline void *skb_frag_address(const skb_frag_t *frag)
2569{
2570        return page_address(skb_frag_page(frag)) + frag->page_offset;
2571}
2572
2573/**
2574 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2575 * @frag: the paged fragment buffer
2576 *
2577 * Returns the address of the data within @frag. Checks that the page
2578 * is mapped and returns %NULL otherwise.
2579 */
2580static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2581{
2582        void *ptr = page_address(skb_frag_page(frag));
2583        if (unlikely(!ptr))
2584                return NULL;
2585
2586        return ptr + frag->page_offset;
2587}
2588
2589/**
2590 * __skb_frag_set_page - sets the page contained in a paged fragment
2591 * @frag: the paged fragment
2592 * @page: the page to set
2593 *
2594 * Sets the fragment @frag to contain @page.
2595 */
2596static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2597{
2598        frag->page.p = page;
2599}
2600
2601/**
2602 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2603 * @skb: the buffer
2604 * @f: the fragment offset
2605 * @page: the page to set
2606 *
2607 * Sets the @f'th fragment of @skb to contain @page.
2608 */
2609static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2610                                     struct page *page)
2611{
2612        __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2613}
2614
2615bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2616
2617/**
2618 * skb_frag_dma_map - maps a paged fragment via the DMA API
2619 * @dev: the device to map the fragment to
2620 * @frag: the paged fragment to map
2621 * @offset: the offset within the fragment (starting at the
2622 *          fragment's own offset)
2623 * @size: the number of bytes to map
2624 * @dir: the direction of the mapping (%PCI_DMA_*)
2625 *
2626 * Maps the page associated with @frag to @device.
2627 */
2628static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2629                                          const skb_frag_t *frag,
2630                                          size_t offset, size_t size,
2631                                          enum dma_data_direction dir)
2632{
2633        return dma_map_page(dev, skb_frag_page(frag),
2634                            frag->page_offset + offset, size, dir);
2635}
2636
2637static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2638                                        gfp_t gfp_mask)
2639{
2640        return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2641}
2642
2643
2644static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2645                                                  gfp_t gfp_mask)
2646{
2647        return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2648}
2649
2650
2651/**
2652 *      skb_clone_writable - is the header of a clone writable
2653 *      @skb: buffer to check
2654 *      @len: length up to which to write
2655 *
2656 *      Returns true if modifying the header part of the cloned buffer
2657 *      does not requires the data to be copied.
2658 */
2659static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
2660{
2661        return !skb_header_cloned(skb) &&
2662               skb_headroom(skb) + len <= skb->hdr_len;
2663}
2664
2665static inline int skb_try_make_writable(struct sk_buff *skb,
2666                                        unsigned int write_len)
2667{
2668        return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2669               pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2670}
2671
2672static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2673                            int cloned)
2674{
2675        int delta = 0;
2676
2677        if (headroom > skb_headroom(skb))
2678                delta = headroom - skb_headroom(skb);
2679
2680        if (delta || cloned)
2681                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2682                                        GFP_ATOMIC);
2683        return 0;
2684}
2685
2686/**
2687 *      skb_cow - copy header of skb when it is required
2688 *      @skb: buffer to cow
2689 *      @headroom: needed headroom
2690 *
2691 *      If the skb passed lacks sufficient headroom or its data part
2692 *      is shared, data is reallocated. If reallocation fails, an error
2693 *      is returned and original skb is not changed.
2694 *
2695 *      The result is skb with writable area skb->head...skb->tail
2696 *      and at least @headroom of space at head.
2697 */
2698static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2699{
2700        return __skb_cow(skb, headroom, skb_cloned(skb));
2701}
2702
2703/**
2704 *      skb_cow_head - skb_cow but only making the head writable
2705 *      @skb: buffer to cow
2706 *      @headroom: needed headroom
2707 *
2708 *      This function is identical to skb_cow except that we replace the
2709 *      skb_cloned check by skb_header_cloned.  It should be used when
2710 *      you only need to push on some header and do not need to modify
2711 *      the data.
2712 */
2713static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2714{
2715        return __skb_cow(skb, headroom, skb_header_cloned(skb));
2716}
2717
2718/**
2719 *      skb_padto       - pad an skbuff up to a minimal size
2720 *      @skb: buffer to pad
2721 *      @len: minimal length
2722 *
2723 *      Pads up a buffer to ensure the trailing bytes exist and are
2724 *      blanked. If the buffer already contains sufficient data it
2725 *      is untouched. Otherwise it is extended. Returns zero on
2726 *      success. The skb is freed on error.
2727 */
2728static inline int skb_padto(struct sk_buff *skb, unsigned int len)
2729{
2730        unsigned int size = skb->len;
2731        if (likely(size >= len))
2732                return 0;
2733        return skb_pad(skb, len - size);
2734}
2735
2736/**
2737 *      skb_put_padto - increase size and pad an skbuff up to a minimal size
2738 *      @skb: buffer to pad
2739 *      @len: minimal length
2740 *
2741 *      Pads up a buffer to ensure the trailing bytes exist and are
2742 *      blanked. If the buffer already contains sufficient data it
2743 *      is untouched. Otherwise it is extended. Returns zero on
2744 *      success. The skb is freed on error.
2745 */
2746static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2747{
2748        unsigned int size = skb->len;
2749
2750        if (unlikely(size < len)) {
2751                len -= size;
2752                if (skb_pad(skb, len))
2753                        return -ENOMEM;
2754                __skb_put(skb, len);
2755        }
2756        return 0;
2757}
2758
2759static inline int skb_add_data(struct sk_buff *skb,
2760                               struct iov_iter *from, int copy)
2761{
2762        const int off = skb->len;
2763
2764        if (skb->ip_summed == CHECKSUM_NONE) {
2765                __wsum csum = 0;
2766                if (csum_and_copy_from_iter(skb_put(skb, copy), copy,
2767                                            &csum, from) == copy) {
2768                        skb->csum = csum_block_add(skb->csum, csum, off);
2769                        return 0;
2770                }
2771        } else if (copy_from_iter(skb_put(skb, copy), copy, from) == copy)
2772                return 0;
2773
2774        __skb_trim(skb, off);
2775        return -EFAULT;
2776}
2777
2778static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
2779                                    const struct page *page, int off)
2780{
2781        if (i) {
2782                const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
2783
2784                return page == skb_frag_page(frag) &&
2785                       off == frag->page_offset + skb_frag_size(frag);
2786        }
2787        return false;
2788}
2789
2790static inline int __skb_linearize(struct sk_buff *skb)
2791{
2792        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
2793}
2794
2795/**
2796 *      skb_linearize - convert paged skb to linear one
2797 *      @skb: buffer to linarize
2798 *
2799 *      If there is no free memory -ENOMEM is returned, otherwise zero
2800 *      is returned and the old skb data released.
2801 */
2802static inline int skb_linearize(struct sk_buff *skb)
2803{
2804        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
2805}
2806
2807/**
2808 * skb_has_shared_frag - can any frag be overwritten
2809 * @skb: buffer to test
2810 *
2811 * Return true if the skb has at least one frag that might be modified
2812 * by an external entity (as in vmsplice()/sendfile())
2813 */
2814static inline bool skb_has_shared_frag(const struct sk_buff *skb)
2815{
2816        return skb_is_nonlinear(skb) &&
2817               skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2818}
2819
2820/**
2821 *      skb_linearize_cow - make sure skb is linear and writable
2822 *      @skb: buffer to process
2823 *
2824 *      If there is no free memory -ENOMEM is returned, otherwise zero
2825 *      is returned and the old skb data released.
2826 */
2827static inline int skb_linearize_cow(struct sk_buff *skb)
2828{
2829        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
2830               __skb_linearize(skb) : 0;
2831}
2832
2833/**
2834 *      skb_postpull_rcsum - update checksum for received skb after pull
2835 *      @skb: buffer to update
2836 *      @start: start of data before pull
2837 *      @len: length of data pulled
2838 *
2839 *      After doing a pull on a received packet, you need to call this to
2840 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
2841 *      CHECKSUM_NONE so that it can be recomputed from scratch.
2842 */
2843
2844static inline void skb_postpull_rcsum(struct sk_buff *skb,
2845                                      const void *start, unsigned int len)
2846{
2847        if (skb->ip_summed == CHECKSUM_COMPLETE)
2848                skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
2849        else if (skb->ip_summed == CHECKSUM_PARTIAL &&
2850                 skb_checksum_start_offset(skb) < 0)
2851                skb->ip_summed = CHECKSUM_NONE;
2852}
2853
2854unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
2855
2856static inline void skb_postpush_rcsum(struct sk_buff *skb,
2857                                      const void *start, unsigned int len)
2858{
2859        /* For performing the reverse operation to skb_postpull_rcsum(),
2860         * we can instead of ...
2861         *
2862         *   skb->csum = csum_add(skb->csum, csum_partial(start, len, 0));
2863         *
2864         * ... just use this equivalent version here to save a few
2865         * instructions. Feeding csum of 0 in csum_partial() and later
2866         * on adding skb->csum is equivalent to feed skb->csum in the
2867         * first place.
2868         */
2869        if (skb->ip_summed == CHECKSUM_COMPLETE)
2870                skb->csum = csum_partial(start, len, skb->csum);
2871}
2872
2873/**
2874 *      skb_push_rcsum - push skb and update receive checksum
2875 *      @skb: buffer to update
2876 *      @len: length of data pulled
2877 *
2878 *      This function performs an skb_push on the packet and updates
2879 *      the CHECKSUM_COMPLETE checksum.  It should be used on
2880 *      receive path processing instead of skb_push unless you know
2881 *      that the checksum difference is zero (e.g., a valid IP header)
2882 *      or you are setting ip_summed to CHECKSUM_NONE.
2883 */
2884static inline unsigned char *skb_push_rcsum(struct sk_buff *skb,
2885                                            unsigned int len)
2886{
2887        skb_push(skb, len);
2888        skb_postpush_rcsum(skb, skb->data, len);
2889        return skb->data;
2890}
2891
2892/**
2893 *      pskb_trim_rcsum - trim received skb and update checksum
2894 *      @skb: buffer to trim
2895 *      @len: new length
2896 *
2897 *      This is exactly the same as pskb_trim except that it ensures the
2898 *      checksum of received packets are still valid after the operation.
2899 */
2900
2901static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
2902{
2903        if (likely(len >= skb->len))
2904                return 0;
2905        if (skb->ip_summed == CHECKSUM_COMPLETE)
2906                skb->ip_summed = CHECKSUM_NONE;
2907        return __pskb_trim(skb, len);
2908}
2909
2910#define skb_queue_walk(queue, skb) \
2911                for (skb = (queue)->next;                                       \
2912                     skb != (struct sk_buff *)(queue);                          \
2913                     skb = skb->next)
2914
2915#define skb_queue_walk_safe(queue, skb, tmp)                                    \
2916                for (skb = (queue)->next, tmp = skb->next;                      \
2917                     skb != (struct sk_buff *)(queue);                          \
2918                     skb = tmp, tmp = skb->next)
2919
2920#define skb_queue_walk_from(queue, skb)                                         \
2921                for (; skb != (struct sk_buff *)(queue);                        \
2922                     skb = skb->next)
2923
2924#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
2925                for (tmp = skb->next;                                           \
2926                     skb != (struct sk_buff *)(queue);                          \
2927                     skb = tmp, tmp = skb->next)
2928
2929#define skb_queue_reverse_walk(queue, skb) \
2930                for (skb = (queue)->prev;                                       \
2931                     skb != (struct sk_buff *)(queue);                          \
2932                     skb = skb->prev)
2933
2934#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
2935                for (skb = (queue)->prev, tmp = skb->prev;                      \
2936                     skb != (struct sk_buff *)(queue);                          \
2937                     skb = tmp, tmp = skb->prev)
2938
2939#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
2940                for (tmp = skb->prev;                                           \
2941                     skb != (struct sk_buff *)(queue);                          \
2942                     skb = tmp, tmp = skb->prev)
2943
2944static inline bool skb_has_frag_list(const struct sk_buff *skb)
2945{
2946        return skb_shinfo(skb)->frag_list != NULL;
2947}
2948
2949static inline void skb_frag_list_init(struct sk_buff *skb)
2950{
2951        skb_shinfo(skb)->frag_list = NULL;
2952}
2953
2954#define skb_walk_frags(skb, iter)       \
2955        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
2956
2957
2958int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
2959                                const struct sk_buff *skb);
2960struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
2961                                        int *peeked, int *off, int *err,
2962                                        struct sk_buff **last);
2963struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
2964                                    int *peeked, int *off, int *err);
2965struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
2966                                  int *err);
2967unsigned int datagram_poll(struct file *file, struct socket *sock,
2968                           struct poll_table_struct *wait);
2969int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
2970                           struct iov_iter *to, int size);
2971static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
2972                                        struct msghdr *msg, int size)
2973{
2974        return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
2975}
2976int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
2977                                   struct msghdr *msg);
2978int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
2979                                 struct iov_iter *from, int len);
2980int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
2981void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
2982void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
2983static inline void skb_free_datagram_locked(struct sock *sk,
2984                                            struct sk_buff *skb)
2985{
2986        __skb_free_datagram_locked(sk, skb, 0);
2987}
2988int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
2989int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
2990int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
2991__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
2992                              int len, __wsum csum);
2993ssize_t skb_socket_splice(struct sock *sk,
2994                          struct pipe_inode_info *pipe,
2995                          struct splice_pipe_desc *spd);
2996int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2997                    struct pipe_inode_info *pipe, unsigned int len,
2998                    unsigned int flags,
2999                    ssize_t (*splice_cb)(struct sock *,
3000                                         struct pipe_inode_info *,
3001                                         struct splice_pipe_desc *));
3002void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3003unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3004int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3005                 int len, int hlen);
3006void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3007int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3008void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3009unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
3010struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3011struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3012int skb_ensure_writable(struct sk_buff *skb, int write_len);
3013int skb_vlan_pop(struct sk_buff *skb);
3014int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3015struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3016                             gfp_t gfp);
3017
3018static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3019{
3020        return copy_from_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3021}
3022
3023static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3024{
3025        return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3026}
3027
3028struct skb_checksum_ops {
3029        __wsum (*update)(const void *mem, int len, __wsum wsum);
3030        __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3031};
3032
3033__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3034                      __wsum csum, const struct skb_checksum_ops *ops);
3035__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3036                    __wsum csum);
3037
3038static inline void * __must_check
3039__skb_header_pointer(const struct sk_buff *skb, int offset,
3040                     int len, void *data, int hlen, void *buffer)
3041{
3042        if (hlen - offset >= len)
3043                return data + offset;
3044
3045        if (!skb ||
3046            skb_copy_bits(skb, offset, buffer, len) < 0)
3047                return NULL;
3048
3049        return buffer;
3050}
3051
3052static inline void * __must_check
3053skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3054{
3055        return __skb_header_pointer(skb, offset, len, skb->data,
3056                                    skb_headlen(skb), buffer);
3057}
3058
3059/**
3060 *      skb_needs_linearize - check if we need to linearize a given skb
3061 *                            depending on the given device features.
3062 *      @skb: socket buffer to check
3063 *      @features: net device features
3064 *
3065 *      Returns true if either:
3066 *      1. skb has frag_list and the device doesn't support FRAGLIST, or
3067 *      2. skb is fragmented and the device does not support SG.
3068 */
3069static inline bool skb_needs_linearize(struct sk_buff *skb,
3070                                       netdev_features_t features)
3071{
3072        return skb_is_nonlinear(skb) &&
3073               ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3074                (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3075}
3076
3077static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3078                                             void *to,
3079                                             const unsigned int len)
3080{
3081        memcpy(to, skb->data, len);
3082}
3083
3084static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3085                                                    const int offset, void *to,
3086                                                    const unsigned int len)
3087{
3088        memcpy(to, skb->data + offset, len);
3089}
3090
3091static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3092                                           const void *from,
3093                                           const unsigned int len)
3094{
3095        memcpy(skb->data, from, len);
3096}
3097
3098static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3099                                                  const int offset,
3100                                                  const void *from,
3101                                                  const unsigned int len)
3102{
3103        memcpy(skb->data + offset, from, len);
3104}
3105
3106void skb_init(void);
3107
3108static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3109{
3110        return skb->tstamp;
3111}
3112
3113/**
3114 *      skb_get_timestamp - get timestamp from a skb
3115 *      @skb: skb to get stamp from
3116 *      @stamp: pointer to struct timeval to store stamp in
3117 *
3118 *      Timestamps are stored in the skb as offsets to a base timestamp.
3119 *      This function converts the offset back to a struct timeval and stores
3120 *      it in stamp.
3121 */
3122static inline void skb_get_timestamp(const struct sk_buff *skb,
3123                                     struct timeval *stamp)
3124{
3125        *stamp = ktime_to_timeval(skb->tstamp);
3126}
3127
3128static inline void skb_get_timestampns(const struct sk_buff *skb,
3129                                       struct timespec *stamp)
3130{
3131        *stamp = ktime_to_timespec(skb->tstamp);
3132}
3133
3134static inline void __net_timestamp(struct sk_buff *skb)
3135{
3136        skb->tstamp = ktime_get_real();
3137}
3138
3139static inline ktime_t net_timedelta(ktime_t t)
3140{
3141        return ktime_sub(ktime_get_real(), t);
3142}
3143
3144static inline ktime_t net_invalid_timestamp(void)
3145{
3146        return ktime_set(0, 0);
3147}
3148
3149struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3150
3151#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3152
3153void skb_clone_tx_timestamp(struct sk_buff *skb);
3154bool skb_defer_rx_timestamp(struct sk_buff *skb);
3155
3156#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3157
3158static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3159{
3160}
3161
3162static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3163{
3164        return false;
3165}
3166
3167#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3168
3169/**
3170 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3171 *
3172 * PHY drivers may accept clones of transmitted packets for
3173 * timestamping via their phy_driver.txtstamp method. These drivers
3174 * must call this function to return the skb back to the stack with a
3175 * timestamp.
3176 *
3177 * @skb: clone of the the original outgoing packet
3178 * @hwtstamps: hardware time stamps
3179 *
3180 */
3181void skb_complete_tx_timestamp(struct sk_buff *skb,
3182                               struct skb_shared_hwtstamps *hwtstamps);
3183
3184void __skb_tstamp_tx(struct sk_buff *orig_skb,
3185                     struct skb_shared_hwtstamps *hwtstamps,
3186                     struct sock *sk, int tstype);
3187
3188/**
3189 * skb_tstamp_tx - queue clone of skb with send time stamps
3190 * @orig_skb:   the original outgoing packet
3191 * @hwtstamps:  hardware time stamps, may be NULL if not available
3192 *
3193 * If the skb has a socket associated, then this function clones the
3194 * skb (thus sharing the actual data and optional structures), stores
3195 * the optional hardware time stamping information (if non NULL) or
3196 * generates a software time stamp (otherwise), then queues the clone
3197 * to the error queue of the socket.  Errors are silently ignored.
3198 */
3199void skb_tstamp_tx(struct sk_buff *orig_skb,
3200                   struct skb_shared_hwtstamps *hwtstamps);
3201
3202static inline void sw_tx_timestamp(struct sk_buff *skb)
3203{
3204        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
3205            !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
3206                skb_tstamp_tx(skb, NULL);
3207}
3208
3209/**
3210 * skb_tx_timestamp() - Driver hook for transmit timestamping
3211 *
3212 * Ethernet MAC Drivers should call this function in their hard_xmit()
3213 * function immediately before giving the sk_buff to the MAC hardware.
3214 *
3215 * Specifically, one should make absolutely sure that this function is
3216 * called before TX completion of this packet can trigger.  Otherwise
3217 * the packet could potentially already be freed.
3218 *
3219 * @skb: A socket buffer.
3220 */
3221static inline void skb_tx_timestamp(struct sk_buff *skb)
3222{
3223        skb_clone_tx_timestamp(skb);
3224        sw_tx_timestamp(skb);
3225}
3226
3227/**
3228 * skb_complete_wifi_ack - deliver skb with wifi status
3229 *
3230 * @skb: the original outgoing packet
3231 * @acked: ack status
3232 *
3233 */
3234void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3235
3236__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3237__sum16 __skb_checksum_complete(struct sk_buff *skb);
3238
3239static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3240{
3241        return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3242                skb->csum_valid ||
3243                (skb->ip_summed == CHECKSUM_PARTIAL &&
3244                 skb_checksum_start_offset(skb) >= 0));
3245}
3246
3247/**
3248 *      skb_checksum_complete - Calculate checksum of an entire packet
3249 *      @skb: packet to process
3250 *
3251 *      This function calculates the checksum over the entire packet plus
3252 *      the value of skb->csum.  The latter can be used to supply the
3253 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
3254 *      checksum.
3255 *
3256 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
3257 *      this function can be used to verify that checksum on received
3258 *      packets.  In that case the function should return zero if the
3259 *      checksum is correct.  In particular, this function will return zero
3260 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3261 *      hardware has already verified the correctness of the checksum.
3262 */
3263static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
3264{
3265        return skb_csum_unnecessary(skb) ?
3266               0 : __skb_checksum_complete(skb);
3267}
3268
3269static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3270{
3271        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3272                if (skb->csum_level == 0)
3273                        skb->ip_summed = CHECKSUM_NONE;
3274                else
3275                        skb->csum_level--;
3276        }
3277}
3278
3279static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3280{
3281        if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3282                if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3283                        skb->csum_level++;
3284        } else if (skb->ip_summed == CHECKSUM_NONE) {
3285                skb->ip_summed = CHECKSUM_UNNECESSARY;
3286                skb->csum_level = 0;
3287        }
3288}
3289
3290static inline void __skb_mark_checksum_bad(struct sk_buff *skb)
3291{
3292        /* Mark current checksum as bad (typically called from GRO
3293         * path). In the case that ip_summed is CHECKSUM_NONE
3294         * this must be the first checksum encountered in the packet.
3295         * When ip_summed is CHECKSUM_UNNECESSARY, this is the first
3296         * checksum after the last one validated. For UDP, a zero
3297         * checksum can not be marked as bad.
3298         */
3299
3300        if (skb->ip_summed == CHECKSUM_NONE ||
3301            skb->ip_summed == CHECKSUM_UNNECESSARY)
3302                skb->csum_bad = 1;
3303}
3304
3305/* Check if we need to perform checksum complete validation.
3306 *
3307 * Returns true if checksum complete is needed, false otherwise
3308 * (either checksum is unnecessary or zero checksum is allowed).
3309 */
3310static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3311                                                  bool zero_okay,
3312                                                  __sum16 check)
3313{
3314        if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3315                skb->csum_valid = 1;
3316                __skb_decr_checksum_unnecessary(skb);
3317                return false;
3318        }
3319
3320        return true;
3321}
3322
3323/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3324 * in checksum_init.
3325 */
3326#define CHECKSUM_BREAK 76
3327
3328/* Unset checksum-complete
3329 *
3330 * Unset checksum complete can be done when packet is being modified
3331 * (uncompressed for instance) and checksum-complete value is
3332 * invalidated.
3333 */
3334static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3335{
3336        if (skb->ip_summed == CHECKSUM_COMPLETE)
3337                skb->ip_summed = CHECKSUM_NONE;
3338}
3339
3340/* Validate (init) checksum based on checksum complete.
3341 *
3342 * Return values:
3343 *   0: checksum is validated or try to in skb_checksum_complete. In the latter
3344 *      case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3345 *      checksum is stored in skb->csum for use in __skb_checksum_complete
3346 *   non-zero: value of invalid checksum
3347 *
3348 */
3349static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3350                                                       bool complete,
3351                                                       __wsum psum)
3352{
3353        if (skb->ip_summed == CHECKSUM_COMPLETE) {
3354                if (!csum_fold(csum_add(psum, skb->csum))) {
3355                        skb->csum_valid = 1;
3356                        return 0;
3357                }
3358        } else if (skb->csum_bad) {
3359                /* ip_summed == CHECKSUM_NONE in this case */
3360                return (__force __sum16)1;
3361        }
3362
3363        skb->csum = psum;
3364
3365        if (complete || skb->len <= CHECKSUM_BREAK) {
3366                __sum16 csum;
3367
3368                csum = __skb_checksum_complete(skb);
3369                skb->csum_valid = !csum;
3370                return csum;
3371        }
3372
3373        return 0;
3374}
3375
3376static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3377{
3378        return 0;
3379}
3380
3381/* Perform checksum validate (init). Note that this is a macro since we only
3382 * want to calculate the pseudo header which is an input function if necessary.
3383 * First we try to validate without any computation (checksum unnecessary) and
3384 * then calculate based on checksum complete calling the function to compute
3385 * pseudo header.
3386 *
3387 * Return values:
3388 *   0: checksum is validated or try to in skb_checksum_complete
3389 *   non-zero: value of invalid checksum
3390 */
3391#define __skb_checksum_validate(skb, proto, complete,                   \
3392                                zero_okay, check, compute_pseudo)       \
3393({                                                                      \
3394        __sum16 __ret = 0;                                              \
3395        skb->csum_valid = 0;                                            \
3396        if (__skb_checksum_validate_needed(skb, zero_okay, check))      \
3397                __ret = __skb_checksum_validate_complete(skb,           \
3398                                complete, compute_pseudo(skb, proto));  \
3399        __ret;                                                          \
3400})
3401
3402#define skb_checksum_init(skb, proto, compute_pseudo)                   \
3403        __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3404
3405#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3406        __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3407
3408#define skb_checksum_validate(skb, proto, compute_pseudo)               \
3409        __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3410
3411#define skb_checksum_validate_zero_check(skb, proto, check,             \
3412                                         compute_pseudo)                \
3413        __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
3414
3415#define skb_checksum_simple_validate(skb)                               \
3416        __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3417
3418static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3419{
3420        return (skb->ip_summed == CHECKSUM_NONE &&
3421                skb->csum_valid && !skb->csum_bad);
3422}
3423
3424static inline void __skb_checksum_convert(struct sk_buff *skb,
3425                                          __sum16 check, __wsum pseudo)
3426{
3427        skb->csum = ~pseudo;
3428        skb->ip_summed = CHECKSUM_COMPLETE;
3429}
3430
3431#define skb_checksum_try_convert(skb, proto, check, compute_pseudo)     \
3432do {                                                                    \
3433        if (__skb_checksum_convert_check(skb))                          \
3434                __skb_checksum_convert(skb, check,                      \
3435                                       compute_pseudo(skb, proto));     \
3436} while (0)
3437
3438static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3439                                              u16 start, u16 offset)
3440{
3441        skb->ip_summed = CHECKSUM_PARTIAL;
3442        skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3443        skb->csum_offset = offset - start;
3444}
3445
3446/* Update skbuf and packet to reflect the remote checksum offload operation.
3447 * When called, ptr indicates the starting point for skb->csum when
3448 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3449 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3450 */
3451static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
3452                                       int start, int offset, bool nopartial)
3453{
3454        __wsum delta;
3455
3456        if (!nopartial) {
3457                skb_remcsum_adjust_partial(skb, ptr, start, offset);
3458                return;
3459        }
3460
3461         if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3462                __skb_checksum_complete(skb);
3463                skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3464        }
3465
3466        delta = remcsum_adjust(ptr, skb->csum, start, offset);
3467
3468        /* Adjust skb->csum since we changed the packet */
3469        skb->csum = csum_add(skb->csum, delta);
3470}
3471
3472#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3473void nf_conntrack_destroy(struct nf_conntrack *nfct);
3474static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3475{
3476        if (nfct && atomic_dec_and_test(&nfct->use))
3477                nf_conntrack_destroy(nfct);
3478}
3479static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3480{
3481        if (nfct)
3482                atomic_inc(&nfct->use);
3483}
3484#endif
3485#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3486static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3487{
3488        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
3489                kfree(nf_bridge);
3490}
3491static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3492{
3493        if (nf_bridge)
3494                atomic_inc(&nf_bridge->use);
3495}
3496#endif /* CONFIG_BRIDGE_NETFILTER */
3497static inline void nf_reset(struct sk_buff *skb)
3498{
3499#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3500        nf_conntrack_put(skb->nfct);
3501        skb->nfct = NULL;
3502#endif
3503#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3504        nf_bridge_put(skb->nf_bridge);
3505        skb->nf_bridge = NULL;
3506#endif
3507}
3508
3509static inline void nf_reset_trace(struct sk_buff *skb)
3510{
3511#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3512        skb->nf_trace = 0;
3513#endif
3514}
3515
3516/* Note: This doesn't put any conntrack and bridge info in dst. */
3517static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3518                             bool copy)
3519{
3520#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3521        dst->nfct = src->nfct;
3522        nf_conntrack_get(src->nfct);
3523        if (copy)
3524                dst->nfctinfo = src->nfctinfo;
3525#endif
3526#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3527        dst->nf_bridge  = src->nf_bridge;
3528        nf_bridge_get(src->nf_bridge);
3529#endif
3530#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
3531        if (copy)
3532                dst->nf_trace = src->nf_trace;
3533#endif
3534}
3535
3536static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3537{
3538#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
3539        nf_conntrack_put(dst->nfct);
3540#endif
3541#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
3542        nf_bridge_put(dst->nf_bridge);
3543#endif
3544        __nf_copy(dst, src, true);
3545}
3546
3547#ifdef CONFIG_NETWORK_SECMARK
3548static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3549{
3550        to->secmark = from->secmark;
3551}
3552
3553static inline void skb_init_secmark(struct sk_buff *skb)
3554{
3555        skb->secmark = 0;
3556}
3557#else
3558static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3559{ }
3560
3561static inline void skb_init_secmark(struct sk_buff *skb)
3562{ }
3563#endif
3564
3565static inline bool skb_irq_freeable(const struct sk_buff *skb)
3566{
3567        return !skb->destructor &&
3568#if IS_ENABLED(CONFIG_XFRM)
3569                !skb->sp &&
3570#endif
3571#if IS_ENABLED(CONFIG_NF_CONNTRACK)
3572                !skb->nfct &&
3573#endif
3574                !skb->_skb_refdst &&
3575                !skb_has_frag_list(skb);
3576}
3577
3578static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3579{
3580        skb->queue_mapping = queue_mapping;
3581}
3582
3583static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
3584{
3585        return skb->queue_mapping;
3586}
3587
3588static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3589{
3590        to->queue_mapping = from->queue_mapping;
3591}
3592
3593static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3594{
3595        skb->queue_mapping = rx_queue + 1;
3596}
3597
3598static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
3599{
3600        return skb->queue_mapping - 1;
3601}
3602
3603static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
3604{
3605        return skb->queue_mapping != 0;
3606}
3607
3608static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3609{
3610#ifdef CONFIG_XFRM
3611        return skb->sp;
3612#else
3613        return NULL;
3614#endif
3615}
3616
3617/* Keeps track of mac header offset relative to skb->head.
3618 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3619 * For non-tunnel skb it points to skb_mac_header() and for
3620 * tunnel skb it points to outer mac header.
3621 * Keeps track of level of encapsulation of network headers.
3622 */
3623struct skb_gso_cb {
3624        union {
3625                int     mac_offset;
3626                int     data_offset;
3627        };
3628        int     encap_level;
3629        __wsum  csum;
3630        __u16   csum_start;
3631};
3632#define SKB_SGO_CB_OFFSET       32
3633#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
3634
3635static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3636{
3637        return (skb_mac_header(inner_skb) - inner_skb->head) -
3638                SKB_GSO_CB(inner_skb)->mac_offset;
3639}
3640
3641static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3642{
3643        int new_headroom, headroom;
3644        int ret;
3645
3646        headroom = skb_headroom(skb);
3647        ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3648        if (ret)
3649                return ret;
3650
3651        new_headroom = skb_headroom(skb);
3652        SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3653        return 0;
3654}
3655
3656static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3657{
3658        /* Do not update partial checksums if remote checksum is enabled. */
3659        if (skb->remcsum_offload)
3660                return;
3661
3662        SKB_GSO_CB(skb)->csum = res;
3663        SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3664}
3665
3666/* Compute the checksum for a gso segment. First compute the checksum value
3667 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3668 * then add in skb->csum (checksum from csum_start to end of packet).
3669 * skb->csum and csum_start are then updated to reflect the checksum of the
3670 * resultant packet starting from the transport header-- the resultant checksum
3671 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3672 * header.
3673 */
3674static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3675{
3676        unsigned char *csum_start = skb_transport_header(skb);
3677        int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3678        __wsum partial = SKB_GSO_CB(skb)->csum;
3679
3680        SKB_GSO_CB(skb)->csum = res;
3681        SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
3682
3683        return csum_fold(csum_partial(csum_start, plen, partial));
3684}
3685
3686static inline bool skb_is_gso(const struct sk_buff *skb)
3687{
3688        return skb_shinfo(skb)->gso_size;
3689}
3690
3691/* Note: Should be called only if skb_is_gso(skb) is true */
3692static inline bool skb_is_gso_v6(const struct sk_buff *skb)
3693{
3694        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3695}
3696
3697void __skb_warn_lro_forwarding(const struct sk_buff *skb);
3698
3699static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3700{
3701        /* LRO sets gso_size but not gso_type, whereas if GSO is really
3702         * wanted then gso_type will be set. */
3703        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3704
3705        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3706            unlikely(shinfo->gso_type == 0)) {
3707                __skb_warn_lro_forwarding(skb);
3708                return true;
3709        }
3710        return false;
3711}
3712
3713static inline void skb_forward_csum(struct sk_buff *skb)
3714{
3715        /* Unfortunately we don't support this one.  Any brave souls? */
3716        if (skb->ip_summed == CHECKSUM_COMPLETE)
3717                skb->ip_summed = CHECKSUM_NONE;
3718}
3719
3720/**
3721 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3722 * @skb: skb to check
3723 *
3724 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3725 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3726 * use this helper, to document places where we make this assertion.
3727 */
3728static inline void skb_checksum_none_assert(const struct sk_buff *skb)
3729{
3730#ifdef DEBUG
3731        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
3732#endif
3733}
3734
3735bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
3736
3737int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
3738struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
3739                                     unsigned int transport_len,
3740                                     __sum16(*skb_chkf)(struct sk_buff *skb));
3741
3742/**
3743 * skb_head_is_locked - Determine if the skb->head is locked down
3744 * @skb: skb to check
3745 *
3746 * The head on skbs build around a head frag can be removed if they are
3747 * not cloned.  This function returns true if the skb head is locked down
3748 * due to either being allocated via kmalloc, or by being a clone with
3749 * multiple references to the head.
3750 */
3751static inline bool skb_head_is_locked(const struct sk_buff *skb)
3752{
3753        return !skb->head_frag || skb_cloned(skb);
3754}
3755
3756/**
3757 * skb_gso_network_seglen - Return length of individual segments of a gso packet
3758 *
3759 * @skb: GSO skb
3760 *
3761 * skb_gso_network_seglen is used to determine the real size of the
3762 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
3763 *
3764 * The MAC/L2 header is not accounted for.
3765 */
3766static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
3767{
3768        unsigned int hdr_len = skb_transport_header(skb) -
3769                               skb_network_header(skb);
3770        return hdr_len + skb_gso_transport_seglen(skb);
3771}
3772
3773/* Local Checksum Offload.
3774 * Compute outer checksum based on the assumption that the
3775 * inner checksum will be offloaded later.
3776 * See Documentation/networking/checksum-offloads.txt for
3777 * explanation of how this works.
3778 * Fill in outer checksum adjustment (e.g. with sum of outer
3779 * pseudo-header) before calling.
3780 * Also ensure that inner checksum is in linear data area.
3781 */
3782static inline __wsum lco_csum(struct sk_buff *skb)
3783{
3784        unsigned char *csum_start = skb_checksum_start(skb);
3785        unsigned char *l4_hdr = skb_transport_header(skb);
3786        __wsum partial;
3787
3788        /* Start with complement of inner checksum adjustment */
3789        partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
3790                                                    skb->csum_offset));
3791
3792        /* Add in checksum of our headers (incl. outer checksum
3793         * adjustment filled in by caller) and return result.
3794         */
3795        return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
3796}
3797
3798#endif  /* __KERNEL__ */
3799#endif  /* _LINUX_SKBUFF_H */
3800