linux/kernel/audit.c
<<
>>
Prefs
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *        2) Minimal run-time overhead:
  26 *           a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *           b) Small when syscall auditing is enabled and no audit record
  28 *              is generated (defer as much work as possible to record
  29 *              generation time):
  30 *              i) context is allocated,
  31 *              ii) names from getname are stored without a copy, and
  32 *              iii) inode information stored from path_lookup.
  33 *        3) Ability to disable syscall auditing at boot time (audit=0).
  34 *        4) Usable by other parts of the kernel (if audit_log* is called,
  35 *           then a syscall record will be generated automatically for the
  36 *           current syscall).
  37 *        5) Netlink interface to user-space.
  38 *        6) Support low-overhead kernel-based filtering to minimize the
  39 *           information that must be passed to user-space.
  40 *
  41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42 */
  43
  44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  45
  46#include <linux/file.h>
  47#include <linux/init.h>
  48#include <linux/types.h>
  49#include <linux/atomic.h>
  50#include <linux/mm.h>
  51#include <linux/export.h>
  52#include <linux/slab.h>
  53#include <linux/err.h>
  54#include <linux/kthread.h>
  55#include <linux/kernel.h>
  56#include <linux/syscalls.h>
  57
  58#include <linux/audit.h>
  59
  60#include <net/sock.h>
  61#include <net/netlink.h>
  62#include <linux/skbuff.h>
  63#ifdef CONFIG_SECURITY
  64#include <linux/security.h>
  65#endif
  66#include <linux/freezer.h>
  67#include <linux/pid_namespace.h>
  68#include <net/netns/generic.h>
  69
  70#include "audit.h"
  71
  72/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  73 * (Initialization happens after skb_init is called.) */
  74#define AUDIT_DISABLED          -1
  75#define AUDIT_UNINITIALIZED     0
  76#define AUDIT_INITIALIZED       1
  77static int      audit_initialized;
  78
  79#define AUDIT_OFF       0
  80#define AUDIT_ON        1
  81#define AUDIT_LOCKED    2
  82u32             audit_enabled;
  83u32             audit_ever_enabled;
  84
  85EXPORT_SYMBOL_GPL(audit_enabled);
  86
  87/* Default state when kernel boots without any parameters. */
  88static u32      audit_default;
  89
  90/* If auditing cannot proceed, audit_failure selects what happens. */
  91static u32      audit_failure = AUDIT_FAIL_PRINTK;
  92
  93/*
  94 * If audit records are to be written to the netlink socket, audit_pid
  95 * contains the pid of the auditd process and audit_nlk_portid contains
  96 * the portid to use to send netlink messages to that process.
  97 */
  98int             audit_pid;
  99static __u32    audit_nlk_portid;
 100
 101/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 102 * to that number per second.  This prevents DoS attacks, but results in
 103 * audit records being dropped. */
 104static u32      audit_rate_limit;
 105
 106/* Number of outstanding audit_buffers allowed.
 107 * When set to zero, this means unlimited. */
 108static u32      audit_backlog_limit = 64;
 109#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 110static u32      audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
 111static u32      audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 112
 113/* The identity of the user shutting down the audit system. */
 114kuid_t          audit_sig_uid = INVALID_UID;
 115pid_t           audit_sig_pid = -1;
 116u32             audit_sig_sid = 0;
 117
 118/* Records can be lost in several ways:
 119   0) [suppressed in audit_alloc]
 120   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 121   2) out of memory in audit_log_move [alloc_skb]
 122   3) suppressed due to audit_rate_limit
 123   4) suppressed due to audit_backlog_limit
 124*/
 125static atomic_t    audit_lost = ATOMIC_INIT(0);
 126
 127/* The netlink socket. */
 128static struct sock *audit_sock;
 129static int audit_net_id;
 130
 131/* Hash for inode-based rules */
 132struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 133
 134/* The audit_freelist is a list of pre-allocated audit buffers (if more
 135 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
 136 * being placed on the freelist). */
 137static DEFINE_SPINLOCK(audit_freelist_lock);
 138static int         audit_freelist_count;
 139static LIST_HEAD(audit_freelist);
 140
 141static struct sk_buff_head audit_skb_queue;
 142/* queue of skbs to send to auditd when/if it comes back */
 143static struct sk_buff_head audit_skb_hold_queue;
 144static struct task_struct *kauditd_task;
 145static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 146static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 147
 148static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 149                                   .mask = -1,
 150                                   .features = 0,
 151                                   .lock = 0,};
 152
 153static char *audit_feature_names[2] = {
 154        "only_unset_loginuid",
 155        "loginuid_immutable",
 156};
 157
 158
 159/* Serialize requests from userspace. */
 160DEFINE_MUTEX(audit_cmd_mutex);
 161
 162/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 163 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 164 * should be at least that large. */
 165#define AUDIT_BUFSIZ 1024
 166
 167/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
 168 * audit_freelist.  Doing so eliminates many kmalloc/kfree calls. */
 169#define AUDIT_MAXFREE  (2*NR_CPUS)
 170
 171/* The audit_buffer is used when formatting an audit record.  The caller
 172 * locks briefly to get the record off the freelist or to allocate the
 173 * buffer, and locks briefly to send the buffer to the netlink layer or
 174 * to place it on a transmit queue.  Multiple audit_buffers can be in
 175 * use simultaneously. */
 176struct audit_buffer {
 177        struct list_head     list;
 178        struct sk_buff       *skb;      /* formatted skb ready to send */
 179        struct audit_context *ctx;      /* NULL or associated context */
 180        gfp_t                gfp_mask;
 181};
 182
 183struct audit_reply {
 184        __u32 portid;
 185        struct net *net;
 186        struct sk_buff *skb;
 187};
 188
 189static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
 190{
 191        if (ab) {
 192                struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
 193                nlh->nlmsg_pid = portid;
 194        }
 195}
 196
 197void audit_panic(const char *message)
 198{
 199        switch (audit_failure) {
 200        case AUDIT_FAIL_SILENT:
 201                break;
 202        case AUDIT_FAIL_PRINTK:
 203                if (printk_ratelimit())
 204                        pr_err("%s\n", message);
 205                break;
 206        case AUDIT_FAIL_PANIC:
 207                /* test audit_pid since printk is always losey, why bother? */
 208                if (audit_pid)
 209                        panic("audit: %s\n", message);
 210                break;
 211        }
 212}
 213
 214static inline int audit_rate_check(void)
 215{
 216        static unsigned long    last_check = 0;
 217        static int              messages   = 0;
 218        static DEFINE_SPINLOCK(lock);
 219        unsigned long           flags;
 220        unsigned long           now;
 221        unsigned long           elapsed;
 222        int                     retval     = 0;
 223
 224        if (!audit_rate_limit) return 1;
 225
 226        spin_lock_irqsave(&lock, flags);
 227        if (++messages < audit_rate_limit) {
 228                retval = 1;
 229        } else {
 230                now     = jiffies;
 231                elapsed = now - last_check;
 232                if (elapsed > HZ) {
 233                        last_check = now;
 234                        messages   = 0;
 235                        retval     = 1;
 236                }
 237        }
 238        spin_unlock_irqrestore(&lock, flags);
 239
 240        return retval;
 241}
 242
 243/**
 244 * audit_log_lost - conditionally log lost audit message event
 245 * @message: the message stating reason for lost audit message
 246 *
 247 * Emit at least 1 message per second, even if audit_rate_check is
 248 * throttling.
 249 * Always increment the lost messages counter.
 250*/
 251void audit_log_lost(const char *message)
 252{
 253        static unsigned long    last_msg = 0;
 254        static DEFINE_SPINLOCK(lock);
 255        unsigned long           flags;
 256        unsigned long           now;
 257        int                     print;
 258
 259        atomic_inc(&audit_lost);
 260
 261        print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 262
 263        if (!print) {
 264                spin_lock_irqsave(&lock, flags);
 265                now = jiffies;
 266                if (now - last_msg > HZ) {
 267                        print = 1;
 268                        last_msg = now;
 269                }
 270                spin_unlock_irqrestore(&lock, flags);
 271        }
 272
 273        if (print) {
 274                if (printk_ratelimit())
 275                        pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 276                                atomic_read(&audit_lost),
 277                                audit_rate_limit,
 278                                audit_backlog_limit);
 279                audit_panic(message);
 280        }
 281}
 282
 283static int audit_log_config_change(char *function_name, u32 new, u32 old,
 284                                   int allow_changes)
 285{
 286        struct audit_buffer *ab;
 287        int rc = 0;
 288
 289        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 290        if (unlikely(!ab))
 291                return rc;
 292        audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 293        audit_log_session_info(ab);
 294        rc = audit_log_task_context(ab);
 295        if (rc)
 296                allow_changes = 0; /* Something weird, deny request */
 297        audit_log_format(ab, " res=%d", allow_changes);
 298        audit_log_end(ab);
 299        return rc;
 300}
 301
 302static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 303{
 304        int allow_changes, rc = 0;
 305        u32 old = *to_change;
 306
 307        /* check if we are locked */
 308        if (audit_enabled == AUDIT_LOCKED)
 309                allow_changes = 0;
 310        else
 311                allow_changes = 1;
 312
 313        if (audit_enabled != AUDIT_OFF) {
 314                rc = audit_log_config_change(function_name, new, old, allow_changes);
 315                if (rc)
 316                        allow_changes = 0;
 317        }
 318
 319        /* If we are allowed, make the change */
 320        if (allow_changes == 1)
 321                *to_change = new;
 322        /* Not allowed, update reason */
 323        else if (rc == 0)
 324                rc = -EPERM;
 325        return rc;
 326}
 327
 328static int audit_set_rate_limit(u32 limit)
 329{
 330        return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 331}
 332
 333static int audit_set_backlog_limit(u32 limit)
 334{
 335        return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 336}
 337
 338static int audit_set_backlog_wait_time(u32 timeout)
 339{
 340        return audit_do_config_change("audit_backlog_wait_time",
 341                                      &audit_backlog_wait_time_master, timeout);
 342}
 343
 344static int audit_set_enabled(u32 state)
 345{
 346        int rc;
 347        if (state > AUDIT_LOCKED)
 348                return -EINVAL;
 349
 350        rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 351        if (!rc)
 352                audit_ever_enabled |= !!state;
 353
 354        return rc;
 355}
 356
 357static int audit_set_failure(u32 state)
 358{
 359        if (state != AUDIT_FAIL_SILENT
 360            && state != AUDIT_FAIL_PRINTK
 361            && state != AUDIT_FAIL_PANIC)
 362                return -EINVAL;
 363
 364        return audit_do_config_change("audit_failure", &audit_failure, state);
 365}
 366
 367/*
 368 * Queue skbs to be sent to auditd when/if it comes back.  These skbs should
 369 * already have been sent via prink/syslog and so if these messages are dropped
 370 * it is not a huge concern since we already passed the audit_log_lost()
 371 * notification and stuff.  This is just nice to get audit messages during
 372 * boot before auditd is running or messages generated while auditd is stopped.
 373 * This only holds messages is audit_default is set, aka booting with audit=1
 374 * or building your kernel that way.
 375 */
 376static void audit_hold_skb(struct sk_buff *skb)
 377{
 378        if (audit_default &&
 379            (!audit_backlog_limit ||
 380             skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
 381                skb_queue_tail(&audit_skb_hold_queue, skb);
 382        else
 383                kfree_skb(skb);
 384}
 385
 386/*
 387 * For one reason or another this nlh isn't getting delivered to the userspace
 388 * audit daemon, just send it to printk.
 389 */
 390static void audit_printk_skb(struct sk_buff *skb)
 391{
 392        struct nlmsghdr *nlh = nlmsg_hdr(skb);
 393        char *data = nlmsg_data(nlh);
 394
 395        if (nlh->nlmsg_type != AUDIT_EOE) {
 396                if (printk_ratelimit())
 397                        pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 398                else
 399                        audit_log_lost("printk limit exceeded");
 400        }
 401
 402        audit_hold_skb(skb);
 403}
 404
 405static void kauditd_send_skb(struct sk_buff *skb)
 406{
 407        int err;
 408        int attempts = 0;
 409#define AUDITD_RETRIES 5
 410
 411restart:
 412        /* take a reference in case we can't send it and we want to hold it */
 413        skb_get(skb);
 414        err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 415        if (err < 0) {
 416                pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
 417                       audit_pid, err);
 418                if (audit_pid) {
 419                        if (err == -ECONNREFUSED || err == -EPERM
 420                            || ++attempts >= AUDITD_RETRIES) {
 421                                char s[32];
 422
 423                                snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
 424                                audit_log_lost(s);
 425                                audit_pid = 0;
 426                                audit_sock = NULL;
 427                        } else {
 428                                pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
 429                                        attempts, audit_pid);
 430                                set_current_state(TASK_INTERRUPTIBLE);
 431                                schedule();
 432                                goto restart;
 433                        }
 434                }
 435                /* we might get lucky and get this in the next auditd */
 436                audit_hold_skb(skb);
 437        } else
 438                /* drop the extra reference if sent ok */
 439                consume_skb(skb);
 440}
 441
 442/*
 443 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
 444 *
 445 * This function doesn't consume an skb as might be expected since it has to
 446 * copy it anyways.
 447 */
 448static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
 449{
 450        struct sk_buff          *copy;
 451        struct audit_net        *aunet = net_generic(&init_net, audit_net_id);
 452        struct sock             *sock = aunet->nlsk;
 453
 454        if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 455                return;
 456
 457        /*
 458         * The seemingly wasteful skb_copy() rather than bumping the refcount
 459         * using skb_get() is necessary because non-standard mods are made to
 460         * the skb by the original kaudit unicast socket send routine.  The
 461         * existing auditd daemon assumes this breakage.  Fixing this would
 462         * require co-ordinating a change in the established protocol between
 463         * the kaudit kernel subsystem and the auditd userspace code.  There is
 464         * no reason for new multicast clients to continue with this
 465         * non-compliance.
 466         */
 467        copy = skb_copy(skb, gfp_mask);
 468        if (!copy)
 469                return;
 470
 471        nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
 472}
 473
 474/*
 475 * flush_hold_queue - empty the hold queue if auditd appears
 476 *
 477 * If auditd just started, drain the queue of messages already
 478 * sent to syslog/printk.  Remember loss here is ok.  We already
 479 * called audit_log_lost() if it didn't go out normally.  so the
 480 * race between the skb_dequeue and the next check for audit_pid
 481 * doesn't matter.
 482 *
 483 * If you ever find kauditd to be too slow we can get a perf win
 484 * by doing our own locking and keeping better track if there
 485 * are messages in this queue.  I don't see the need now, but
 486 * in 5 years when I want to play with this again I'll see this
 487 * note and still have no friggin idea what i'm thinking today.
 488 */
 489static void flush_hold_queue(void)
 490{
 491        struct sk_buff *skb;
 492
 493        if (!audit_default || !audit_pid)
 494                return;
 495
 496        skb = skb_dequeue(&audit_skb_hold_queue);
 497        if (likely(!skb))
 498                return;
 499
 500        while (skb && audit_pid) {
 501                kauditd_send_skb(skb);
 502                skb = skb_dequeue(&audit_skb_hold_queue);
 503        }
 504
 505        /*
 506         * if auditd just disappeared but we
 507         * dequeued an skb we need to drop ref
 508         */
 509        consume_skb(skb);
 510}
 511
 512static int kauditd_thread(void *dummy)
 513{
 514        set_freezable();
 515        while (!kthread_should_stop()) {
 516                struct sk_buff *skb;
 517
 518                flush_hold_queue();
 519
 520                skb = skb_dequeue(&audit_skb_queue);
 521
 522                if (skb) {
 523                        if (!audit_backlog_limit ||
 524                            (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
 525                                wake_up(&audit_backlog_wait);
 526                        if (audit_pid)
 527                                kauditd_send_skb(skb);
 528                        else
 529                                audit_printk_skb(skb);
 530                        continue;
 531                }
 532
 533                wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
 534        }
 535        return 0;
 536}
 537
 538int audit_send_list(void *_dest)
 539{
 540        struct audit_netlink_list *dest = _dest;
 541        struct sk_buff *skb;
 542        struct net *net = dest->net;
 543        struct audit_net *aunet = net_generic(net, audit_net_id);
 544
 545        /* wait for parent to finish and send an ACK */
 546        mutex_lock(&audit_cmd_mutex);
 547        mutex_unlock(&audit_cmd_mutex);
 548
 549        while ((skb = __skb_dequeue(&dest->q)) != NULL)
 550                netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
 551
 552        put_net(net);
 553        kfree(dest);
 554
 555        return 0;
 556}
 557
 558struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
 559                                 int multi, const void *payload, int size)
 560{
 561        struct sk_buff  *skb;
 562        struct nlmsghdr *nlh;
 563        void            *data;
 564        int             flags = multi ? NLM_F_MULTI : 0;
 565        int             t     = done  ? NLMSG_DONE  : type;
 566
 567        skb = nlmsg_new(size, GFP_KERNEL);
 568        if (!skb)
 569                return NULL;
 570
 571        nlh     = nlmsg_put(skb, portid, seq, t, size, flags);
 572        if (!nlh)
 573                goto out_kfree_skb;
 574        data = nlmsg_data(nlh);
 575        memcpy(data, payload, size);
 576        return skb;
 577
 578out_kfree_skb:
 579        kfree_skb(skb);
 580        return NULL;
 581}
 582
 583static int audit_send_reply_thread(void *arg)
 584{
 585        struct audit_reply *reply = (struct audit_reply *)arg;
 586        struct net *net = reply->net;
 587        struct audit_net *aunet = net_generic(net, audit_net_id);
 588
 589        mutex_lock(&audit_cmd_mutex);
 590        mutex_unlock(&audit_cmd_mutex);
 591
 592        /* Ignore failure. It'll only happen if the sender goes away,
 593           because our timeout is set to infinite. */
 594        netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
 595        put_net(net);
 596        kfree(reply);
 597        return 0;
 598}
 599/**
 600 * audit_send_reply - send an audit reply message via netlink
 601 * @request_skb: skb of request we are replying to (used to target the reply)
 602 * @seq: sequence number
 603 * @type: audit message type
 604 * @done: done (last) flag
 605 * @multi: multi-part message flag
 606 * @payload: payload data
 607 * @size: payload size
 608 *
 609 * Allocates an skb, builds the netlink message, and sends it to the port id.
 610 * No failure notifications.
 611 */
 612static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 613                             int multi, const void *payload, int size)
 614{
 615        u32 portid = NETLINK_CB(request_skb).portid;
 616        struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 617        struct sk_buff *skb;
 618        struct task_struct *tsk;
 619        struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 620                                            GFP_KERNEL);
 621
 622        if (!reply)
 623                return;
 624
 625        skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
 626        if (!skb)
 627                goto out;
 628
 629        reply->net = get_net(net);
 630        reply->portid = portid;
 631        reply->skb = skb;
 632
 633        tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 634        if (!IS_ERR(tsk))
 635                return;
 636        kfree_skb(skb);
 637out:
 638        kfree(reply);
 639}
 640
 641/*
 642 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 643 * control messages.
 644 */
 645static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
 646{
 647        int err = 0;
 648
 649        /* Only support initial user namespace for now. */
 650        /*
 651         * We return ECONNREFUSED because it tricks userspace into thinking
 652         * that audit was not configured into the kernel.  Lots of users
 653         * configure their PAM stack (because that's what the distro does)
 654         * to reject login if unable to send messages to audit.  If we return
 655         * ECONNREFUSED the PAM stack thinks the kernel does not have audit
 656         * configured in and will let login proceed.  If we return EPERM
 657         * userspace will reject all logins.  This should be removed when we
 658         * support non init namespaces!!
 659         */
 660        if (current_user_ns() != &init_user_ns)
 661                return -ECONNREFUSED;
 662
 663        switch (msg_type) {
 664        case AUDIT_LIST:
 665        case AUDIT_ADD:
 666        case AUDIT_DEL:
 667                return -EOPNOTSUPP;
 668        case AUDIT_GET:
 669        case AUDIT_SET:
 670        case AUDIT_GET_FEATURE:
 671        case AUDIT_SET_FEATURE:
 672        case AUDIT_LIST_RULES:
 673        case AUDIT_ADD_RULE:
 674        case AUDIT_DEL_RULE:
 675        case AUDIT_SIGNAL_INFO:
 676        case AUDIT_TTY_GET:
 677        case AUDIT_TTY_SET:
 678        case AUDIT_TRIM:
 679        case AUDIT_MAKE_EQUIV:
 680                /* Only support auditd and auditctl in initial pid namespace
 681                 * for now. */
 682                if (task_active_pid_ns(current) != &init_pid_ns)
 683                        return -EPERM;
 684
 685                if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
 686                        err = -EPERM;
 687                break;
 688        case AUDIT_USER:
 689        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 690        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 691                if (!netlink_capable(skb, CAP_AUDIT_WRITE))
 692                        err = -EPERM;
 693                break;
 694        default:  /* bad msg */
 695                err = -EINVAL;
 696        }
 697
 698        return err;
 699}
 700
 701static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
 702{
 703        uid_t uid = from_kuid(&init_user_ns, current_uid());
 704        pid_t pid = task_tgid_nr(current);
 705
 706        if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
 707                *ab = NULL;
 708                return;
 709        }
 710
 711        *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
 712        if (unlikely(!*ab))
 713                return;
 714        audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
 715        audit_log_session_info(*ab);
 716        audit_log_task_context(*ab);
 717}
 718
 719int is_audit_feature_set(int i)
 720{
 721        return af.features & AUDIT_FEATURE_TO_MASK(i);
 722}
 723
 724
 725static int audit_get_feature(struct sk_buff *skb)
 726{
 727        u32 seq;
 728
 729        seq = nlmsg_hdr(skb)->nlmsg_seq;
 730
 731        audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
 732
 733        return 0;
 734}
 735
 736static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
 737                                     u32 old_lock, u32 new_lock, int res)
 738{
 739        struct audit_buffer *ab;
 740
 741        if (audit_enabled == AUDIT_OFF)
 742                return;
 743
 744        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
 745        audit_log_task_info(ab, current);
 746        audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
 747                         audit_feature_names[which], !!old_feature, !!new_feature,
 748                         !!old_lock, !!new_lock, res);
 749        audit_log_end(ab);
 750}
 751
 752static int audit_set_feature(struct sk_buff *skb)
 753{
 754        struct audit_features *uaf;
 755        int i;
 756
 757        BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
 758        uaf = nlmsg_data(nlmsg_hdr(skb));
 759
 760        /* if there is ever a version 2 we should handle that here */
 761
 762        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 763                u32 feature = AUDIT_FEATURE_TO_MASK(i);
 764                u32 old_feature, new_feature, old_lock, new_lock;
 765
 766                /* if we are not changing this feature, move along */
 767                if (!(feature & uaf->mask))
 768                        continue;
 769
 770                old_feature = af.features & feature;
 771                new_feature = uaf->features & feature;
 772                new_lock = (uaf->lock | af.lock) & feature;
 773                old_lock = af.lock & feature;
 774
 775                /* are we changing a locked feature? */
 776                if (old_lock && (new_feature != old_feature)) {
 777                        audit_log_feature_change(i, old_feature, new_feature,
 778                                                 old_lock, new_lock, 0);
 779                        return -EPERM;
 780                }
 781        }
 782        /* nothing invalid, do the changes */
 783        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
 784                u32 feature = AUDIT_FEATURE_TO_MASK(i);
 785                u32 old_feature, new_feature, old_lock, new_lock;
 786
 787                /* if we are not changing this feature, move along */
 788                if (!(feature & uaf->mask))
 789                        continue;
 790
 791                old_feature = af.features & feature;
 792                new_feature = uaf->features & feature;
 793                old_lock = af.lock & feature;
 794                new_lock = (uaf->lock | af.lock) & feature;
 795
 796                if (new_feature != old_feature)
 797                        audit_log_feature_change(i, old_feature, new_feature,
 798                                                 old_lock, new_lock, 1);
 799
 800                if (new_feature)
 801                        af.features |= feature;
 802                else
 803                        af.features &= ~feature;
 804                af.lock |= new_lock;
 805        }
 806
 807        return 0;
 808}
 809
 810static int audit_replace(pid_t pid)
 811{
 812        struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
 813                                               &pid, sizeof(pid));
 814
 815        if (!skb)
 816                return -ENOMEM;
 817        return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
 818}
 819
 820static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
 821{
 822        u32                     seq;
 823        void                    *data;
 824        int                     err;
 825        struct audit_buffer     *ab;
 826        u16                     msg_type = nlh->nlmsg_type;
 827        struct audit_sig_info   *sig_data;
 828        char                    *ctx = NULL;
 829        u32                     len;
 830
 831        err = audit_netlink_ok(skb, msg_type);
 832        if (err)
 833                return err;
 834
 835        /* As soon as there's any sign of userspace auditd,
 836         * start kauditd to talk to it */
 837        if (!kauditd_task) {
 838                kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
 839                if (IS_ERR(kauditd_task)) {
 840                        err = PTR_ERR(kauditd_task);
 841                        kauditd_task = NULL;
 842                        return err;
 843                }
 844        }
 845        seq  = nlh->nlmsg_seq;
 846        data = nlmsg_data(nlh);
 847
 848        switch (msg_type) {
 849        case AUDIT_GET: {
 850                struct audit_status     s;
 851                memset(&s, 0, sizeof(s));
 852                s.enabled               = audit_enabled;
 853                s.failure               = audit_failure;
 854                s.pid                   = audit_pid;
 855                s.rate_limit            = audit_rate_limit;
 856                s.backlog_limit         = audit_backlog_limit;
 857                s.lost                  = atomic_read(&audit_lost);
 858                s.backlog               = skb_queue_len(&audit_skb_queue);
 859                s.feature_bitmap        = AUDIT_FEATURE_BITMAP_ALL;
 860                s.backlog_wait_time     = audit_backlog_wait_time_master;
 861                audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
 862                break;
 863        }
 864        case AUDIT_SET: {
 865                struct audit_status     s;
 866                memset(&s, 0, sizeof(s));
 867                /* guard against past and future API changes */
 868                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
 869                if (s.mask & AUDIT_STATUS_ENABLED) {
 870                        err = audit_set_enabled(s.enabled);
 871                        if (err < 0)
 872                                return err;
 873                }
 874                if (s.mask & AUDIT_STATUS_FAILURE) {
 875                        err = audit_set_failure(s.failure);
 876                        if (err < 0)
 877                                return err;
 878                }
 879                if (s.mask & AUDIT_STATUS_PID) {
 880                        int new_pid = s.pid;
 881                        pid_t requesting_pid = task_tgid_vnr(current);
 882
 883                        if ((!new_pid) && (requesting_pid != audit_pid)) {
 884                                audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
 885                                return -EACCES;
 886                        }
 887                        if (audit_pid && new_pid &&
 888                            audit_replace(requesting_pid) != -ECONNREFUSED) {
 889                                audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
 890                                return -EEXIST;
 891                        }
 892                        if (audit_enabled != AUDIT_OFF)
 893                                audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
 894                        audit_pid = new_pid;
 895                        audit_nlk_portid = NETLINK_CB(skb).portid;
 896                        audit_sock = skb->sk;
 897                }
 898                if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
 899                        err = audit_set_rate_limit(s.rate_limit);
 900                        if (err < 0)
 901                                return err;
 902                }
 903                if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
 904                        err = audit_set_backlog_limit(s.backlog_limit);
 905                        if (err < 0)
 906                                return err;
 907                }
 908                if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
 909                        if (sizeof(s) > (size_t)nlh->nlmsg_len)
 910                                return -EINVAL;
 911                        if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
 912                                return -EINVAL;
 913                        err = audit_set_backlog_wait_time(s.backlog_wait_time);
 914                        if (err < 0)
 915                                return err;
 916                }
 917                break;
 918        }
 919        case AUDIT_GET_FEATURE:
 920                err = audit_get_feature(skb);
 921                if (err)
 922                        return err;
 923                break;
 924        case AUDIT_SET_FEATURE:
 925                err = audit_set_feature(skb);
 926                if (err)
 927                        return err;
 928                break;
 929        case AUDIT_USER:
 930        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
 931        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
 932                if (!audit_enabled && msg_type != AUDIT_USER_AVC)
 933                        return 0;
 934
 935                err = audit_filter_user(msg_type);
 936                if (err == 1) { /* match or error */
 937                        err = 0;
 938                        if (msg_type == AUDIT_USER_TTY) {
 939                                err = tty_audit_push();
 940                                if (err)
 941                                        break;
 942                        }
 943                        mutex_unlock(&audit_cmd_mutex);
 944                        audit_log_common_recv_msg(&ab, msg_type);
 945                        if (msg_type != AUDIT_USER_TTY)
 946                                audit_log_format(ab, " msg='%.*s'",
 947                                                 AUDIT_MESSAGE_TEXT_MAX,
 948                                                 (char *)data);
 949                        else {
 950                                int size;
 951
 952                                audit_log_format(ab, " data=");
 953                                size = nlmsg_len(nlh);
 954                                if (size > 0 &&
 955                                    ((unsigned char *)data)[size - 1] == '\0')
 956                                        size--;
 957                                audit_log_n_untrustedstring(ab, data, size);
 958                        }
 959                        audit_set_portid(ab, NETLINK_CB(skb).portid);
 960                        audit_log_end(ab);
 961                        mutex_lock(&audit_cmd_mutex);
 962                }
 963                break;
 964        case AUDIT_ADD_RULE:
 965        case AUDIT_DEL_RULE:
 966                if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
 967                        return -EINVAL;
 968                if (audit_enabled == AUDIT_LOCKED) {
 969                        audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 970                        audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
 971                        audit_log_end(ab);
 972                        return -EPERM;
 973                }
 974                err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
 975                                           seq, data, nlmsg_len(nlh));
 976                break;
 977        case AUDIT_LIST_RULES:
 978                err = audit_list_rules_send(skb, seq);
 979                break;
 980        case AUDIT_TRIM:
 981                audit_trim_trees();
 982                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
 983                audit_log_format(ab, " op=trim res=1");
 984                audit_log_end(ab);
 985                break;
 986        case AUDIT_MAKE_EQUIV: {
 987                void *bufp = data;
 988                u32 sizes[2];
 989                size_t msglen = nlmsg_len(nlh);
 990                char *old, *new;
 991
 992                err = -EINVAL;
 993                if (msglen < 2 * sizeof(u32))
 994                        break;
 995                memcpy(sizes, bufp, 2 * sizeof(u32));
 996                bufp += 2 * sizeof(u32);
 997                msglen -= 2 * sizeof(u32);
 998                old = audit_unpack_string(&bufp, &msglen, sizes[0]);
 999                if (IS_ERR(old)) {
1000                        err = PTR_ERR(old);
1001                        break;
1002                }
1003                new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1004                if (IS_ERR(new)) {
1005                        err = PTR_ERR(new);
1006                        kfree(old);
1007                        break;
1008                }
1009                /* OK, here comes... */
1010                err = audit_tag_tree(old, new);
1011
1012                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1013
1014                audit_log_format(ab, " op=make_equiv old=");
1015                audit_log_untrustedstring(ab, old);
1016                audit_log_format(ab, " new=");
1017                audit_log_untrustedstring(ab, new);
1018                audit_log_format(ab, " res=%d", !err);
1019                audit_log_end(ab);
1020                kfree(old);
1021                kfree(new);
1022                break;
1023        }
1024        case AUDIT_SIGNAL_INFO:
1025                len = 0;
1026                if (audit_sig_sid) {
1027                        err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1028                        if (err)
1029                                return err;
1030                }
1031                sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1032                if (!sig_data) {
1033                        if (audit_sig_sid)
1034                                security_release_secctx(ctx, len);
1035                        return -ENOMEM;
1036                }
1037                sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1038                sig_data->pid = audit_sig_pid;
1039                if (audit_sig_sid) {
1040                        memcpy(sig_data->ctx, ctx, len);
1041                        security_release_secctx(ctx, len);
1042                }
1043                audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1044                                 sig_data, sizeof(*sig_data) + len);
1045                kfree(sig_data);
1046                break;
1047        case AUDIT_TTY_GET: {
1048                struct audit_tty_status s;
1049                unsigned int t;
1050
1051                t = READ_ONCE(current->signal->audit_tty);
1052                s.enabled = t & AUDIT_TTY_ENABLE;
1053                s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1054
1055                audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1056                break;
1057        }
1058        case AUDIT_TTY_SET: {
1059                struct audit_tty_status s, old;
1060                struct audit_buffer     *ab;
1061                unsigned int t;
1062
1063                memset(&s, 0, sizeof(s));
1064                /* guard against past and future API changes */
1065                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1066                /* check if new data is valid */
1067                if ((s.enabled != 0 && s.enabled != 1) ||
1068                    (s.log_passwd != 0 && s.log_passwd != 1))
1069                        err = -EINVAL;
1070
1071                if (err)
1072                        t = READ_ONCE(current->signal->audit_tty);
1073                else {
1074                        t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1075                        t = xchg(&current->signal->audit_tty, t);
1076                }
1077                old.enabled = t & AUDIT_TTY_ENABLE;
1078                old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1079
1080                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1081                audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1082                                 " old-log_passwd=%d new-log_passwd=%d res=%d",
1083                                 old.enabled, s.enabled, old.log_passwd,
1084                                 s.log_passwd, !err);
1085                audit_log_end(ab);
1086                break;
1087        }
1088        default:
1089                err = -EINVAL;
1090                break;
1091        }
1092
1093        return err < 0 ? err : 0;
1094}
1095
1096/*
1097 * Get message from skb.  Each message is processed by audit_receive_msg.
1098 * Malformed skbs with wrong length are discarded silently.
1099 */
1100static void audit_receive_skb(struct sk_buff *skb)
1101{
1102        struct nlmsghdr *nlh;
1103        /*
1104         * len MUST be signed for nlmsg_next to be able to dec it below 0
1105         * if the nlmsg_len was not aligned
1106         */
1107        int len;
1108        int err;
1109
1110        nlh = nlmsg_hdr(skb);
1111        len = skb->len;
1112
1113        while (nlmsg_ok(nlh, len)) {
1114                err = audit_receive_msg(skb, nlh);
1115                /* if err or if this message says it wants a response */
1116                if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1117                        netlink_ack(skb, nlh, err);
1118
1119                nlh = nlmsg_next(nlh, &len);
1120        }
1121}
1122
1123/* Receive messages from netlink socket. */
1124static void audit_receive(struct sk_buff  *skb)
1125{
1126        mutex_lock(&audit_cmd_mutex);
1127        audit_receive_skb(skb);
1128        mutex_unlock(&audit_cmd_mutex);
1129}
1130
1131/* Run custom bind function on netlink socket group connect or bind requests. */
1132static int audit_bind(struct net *net, int group)
1133{
1134        if (!capable(CAP_AUDIT_READ))
1135                return -EPERM;
1136
1137        return 0;
1138}
1139
1140static int __net_init audit_net_init(struct net *net)
1141{
1142        struct netlink_kernel_cfg cfg = {
1143                .input  = audit_receive,
1144                .bind   = audit_bind,
1145                .flags  = NL_CFG_F_NONROOT_RECV,
1146                .groups = AUDIT_NLGRP_MAX,
1147        };
1148
1149        struct audit_net *aunet = net_generic(net, audit_net_id);
1150
1151        aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1152        if (aunet->nlsk == NULL) {
1153                audit_panic("cannot initialize netlink socket in namespace");
1154                return -ENOMEM;
1155        }
1156        aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1157        return 0;
1158}
1159
1160static void __net_exit audit_net_exit(struct net *net)
1161{
1162        struct audit_net *aunet = net_generic(net, audit_net_id);
1163        struct sock *sock = aunet->nlsk;
1164        if (sock == audit_sock) {
1165                audit_pid = 0;
1166                audit_sock = NULL;
1167        }
1168
1169        RCU_INIT_POINTER(aunet->nlsk, NULL);
1170        synchronize_net();
1171        netlink_kernel_release(sock);
1172}
1173
1174static struct pernet_operations audit_net_ops __net_initdata = {
1175        .init = audit_net_init,
1176        .exit = audit_net_exit,
1177        .id = &audit_net_id,
1178        .size = sizeof(struct audit_net),
1179};
1180
1181/* Initialize audit support at boot time. */
1182static int __init audit_init(void)
1183{
1184        int i;
1185
1186        if (audit_initialized == AUDIT_DISABLED)
1187                return 0;
1188
1189        pr_info("initializing netlink subsys (%s)\n",
1190                audit_default ? "enabled" : "disabled");
1191        register_pernet_subsys(&audit_net_ops);
1192
1193        skb_queue_head_init(&audit_skb_queue);
1194        skb_queue_head_init(&audit_skb_hold_queue);
1195        audit_initialized = AUDIT_INITIALIZED;
1196        audit_enabled = audit_default;
1197        audit_ever_enabled |= !!audit_default;
1198
1199        audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1200
1201        for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1202                INIT_LIST_HEAD(&audit_inode_hash[i]);
1203
1204        return 0;
1205}
1206__initcall(audit_init);
1207
1208/* Process kernel command-line parameter at boot time.  audit=0 or audit=1. */
1209static int __init audit_enable(char *str)
1210{
1211        audit_default = !!simple_strtol(str, NULL, 0);
1212        if (!audit_default)
1213                audit_initialized = AUDIT_DISABLED;
1214
1215        pr_info("%s\n", audit_default ?
1216                "enabled (after initialization)" : "disabled (until reboot)");
1217
1218        return 1;
1219}
1220__setup("audit=", audit_enable);
1221
1222/* Process kernel command-line parameter at boot time.
1223 * audit_backlog_limit=<n> */
1224static int __init audit_backlog_limit_set(char *str)
1225{
1226        u32 audit_backlog_limit_arg;
1227
1228        pr_info("audit_backlog_limit: ");
1229        if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1230                pr_cont("using default of %u, unable to parse %s\n",
1231                        audit_backlog_limit, str);
1232                return 1;
1233        }
1234
1235        audit_backlog_limit = audit_backlog_limit_arg;
1236        pr_cont("%d\n", audit_backlog_limit);
1237
1238        return 1;
1239}
1240__setup("audit_backlog_limit=", audit_backlog_limit_set);
1241
1242static void audit_buffer_free(struct audit_buffer *ab)
1243{
1244        unsigned long flags;
1245
1246        if (!ab)
1247                return;
1248
1249        kfree_skb(ab->skb);
1250        spin_lock_irqsave(&audit_freelist_lock, flags);
1251        if (audit_freelist_count > AUDIT_MAXFREE)
1252                kfree(ab);
1253        else {
1254                audit_freelist_count++;
1255                list_add(&ab->list, &audit_freelist);
1256        }
1257        spin_unlock_irqrestore(&audit_freelist_lock, flags);
1258}
1259
1260static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1261                                                gfp_t gfp_mask, int type)
1262{
1263        unsigned long flags;
1264        struct audit_buffer *ab = NULL;
1265        struct nlmsghdr *nlh;
1266
1267        spin_lock_irqsave(&audit_freelist_lock, flags);
1268        if (!list_empty(&audit_freelist)) {
1269                ab = list_entry(audit_freelist.next,
1270                                struct audit_buffer, list);
1271                list_del(&ab->list);
1272                --audit_freelist_count;
1273        }
1274        spin_unlock_irqrestore(&audit_freelist_lock, flags);
1275
1276        if (!ab) {
1277                ab = kmalloc(sizeof(*ab), gfp_mask);
1278                if (!ab)
1279                        goto err;
1280        }
1281
1282        ab->ctx = ctx;
1283        ab->gfp_mask = gfp_mask;
1284
1285        ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1286        if (!ab->skb)
1287                goto err;
1288
1289        nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1290        if (!nlh)
1291                goto out_kfree_skb;
1292
1293        return ab;
1294
1295out_kfree_skb:
1296        kfree_skb(ab->skb);
1297        ab->skb = NULL;
1298err:
1299        audit_buffer_free(ab);
1300        return NULL;
1301}
1302
1303/**
1304 * audit_serial - compute a serial number for the audit record
1305 *
1306 * Compute a serial number for the audit record.  Audit records are
1307 * written to user-space as soon as they are generated, so a complete
1308 * audit record may be written in several pieces.  The timestamp of the
1309 * record and this serial number are used by the user-space tools to
1310 * determine which pieces belong to the same audit record.  The
1311 * (timestamp,serial) tuple is unique for each syscall and is live from
1312 * syscall entry to syscall exit.
1313 *
1314 * NOTE: Another possibility is to store the formatted records off the
1315 * audit context (for those records that have a context), and emit them
1316 * all at syscall exit.  However, this could delay the reporting of
1317 * significant errors until syscall exit (or never, if the system
1318 * halts).
1319 */
1320unsigned int audit_serial(void)
1321{
1322        static atomic_t serial = ATOMIC_INIT(0);
1323
1324        return atomic_add_return(1, &serial);
1325}
1326
1327static inline void audit_get_stamp(struct audit_context *ctx,
1328                                   struct timespec *t, unsigned int *serial)
1329{
1330        if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1331                *t = CURRENT_TIME;
1332                *serial = audit_serial();
1333        }
1334}
1335
1336/*
1337 * Wait for auditd to drain the queue a little
1338 */
1339static long wait_for_auditd(long sleep_time)
1340{
1341        DECLARE_WAITQUEUE(wait, current);
1342
1343        if (audit_backlog_limit &&
1344            skb_queue_len(&audit_skb_queue) > audit_backlog_limit) {
1345                add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1346                set_current_state(TASK_UNINTERRUPTIBLE);
1347                sleep_time = schedule_timeout(sleep_time);
1348                remove_wait_queue(&audit_backlog_wait, &wait);
1349        }
1350
1351        return sleep_time;
1352}
1353
1354/**
1355 * audit_log_start - obtain an audit buffer
1356 * @ctx: audit_context (may be NULL)
1357 * @gfp_mask: type of allocation
1358 * @type: audit message type
1359 *
1360 * Returns audit_buffer pointer on success or NULL on error.
1361 *
1362 * Obtain an audit buffer.  This routine does locking to obtain the
1363 * audit buffer, but then no locking is required for calls to
1364 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1365 * syscall, then the syscall is marked as auditable and an audit record
1366 * will be written at syscall exit.  If there is no associated task, then
1367 * task context (ctx) should be NULL.
1368 */
1369struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1370                                     int type)
1371{
1372        struct audit_buffer     *ab     = NULL;
1373        struct timespec         t;
1374        unsigned int            uninitialized_var(serial);
1375        int reserve = 5; /* Allow atomic callers to go up to five
1376                            entries over the normal backlog limit */
1377        unsigned long timeout_start = jiffies;
1378
1379        if (audit_initialized != AUDIT_INITIALIZED)
1380                return NULL;
1381
1382        if (unlikely(audit_filter_type(type)))
1383                return NULL;
1384
1385        if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1386                if (audit_pid && audit_pid == current->tgid)
1387                        gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1388                else
1389                        reserve = 0;
1390        }
1391
1392        while (audit_backlog_limit
1393               && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1394                if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1395                        long sleep_time;
1396
1397                        sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1398                        if (sleep_time > 0) {
1399                                sleep_time = wait_for_auditd(sleep_time);
1400                                if (sleep_time > 0)
1401                                        continue;
1402                        }
1403                }
1404                if (audit_rate_check() && printk_ratelimit())
1405                        pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1406                                skb_queue_len(&audit_skb_queue),
1407                                audit_backlog_limit);
1408                audit_log_lost("backlog limit exceeded");
1409                audit_backlog_wait_time = 0;
1410                wake_up(&audit_backlog_wait);
1411                return NULL;
1412        }
1413
1414        if (!reserve && !audit_backlog_wait_time)
1415                audit_backlog_wait_time = audit_backlog_wait_time_master;
1416
1417        ab = audit_buffer_alloc(ctx, gfp_mask, type);
1418        if (!ab) {
1419                audit_log_lost("out of memory in audit_log_start");
1420                return NULL;
1421        }
1422
1423        audit_get_stamp(ab->ctx, &t, &serial);
1424
1425        audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1426                         t.tv_sec, t.tv_nsec/1000000, serial);
1427        return ab;
1428}
1429
1430/**
1431 * audit_expand - expand skb in the audit buffer
1432 * @ab: audit_buffer
1433 * @extra: space to add at tail of the skb
1434 *
1435 * Returns 0 (no space) on failed expansion, or available space if
1436 * successful.
1437 */
1438static inline int audit_expand(struct audit_buffer *ab, int extra)
1439{
1440        struct sk_buff *skb = ab->skb;
1441        int oldtail = skb_tailroom(skb);
1442        int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1443        int newtail = skb_tailroom(skb);
1444
1445        if (ret < 0) {
1446                audit_log_lost("out of memory in audit_expand");
1447                return 0;
1448        }
1449
1450        skb->truesize += newtail - oldtail;
1451        return newtail;
1452}
1453
1454/*
1455 * Format an audit message into the audit buffer.  If there isn't enough
1456 * room in the audit buffer, more room will be allocated and vsnprint
1457 * will be called a second time.  Currently, we assume that a printk
1458 * can't format message larger than 1024 bytes, so we don't either.
1459 */
1460static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1461                              va_list args)
1462{
1463        int len, avail;
1464        struct sk_buff *skb;
1465        va_list args2;
1466
1467        if (!ab)
1468                return;
1469
1470        BUG_ON(!ab->skb);
1471        skb = ab->skb;
1472        avail = skb_tailroom(skb);
1473        if (avail == 0) {
1474                avail = audit_expand(ab, AUDIT_BUFSIZ);
1475                if (!avail)
1476                        goto out;
1477        }
1478        va_copy(args2, args);
1479        len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1480        if (len >= avail) {
1481                /* The printk buffer is 1024 bytes long, so if we get
1482                 * here and AUDIT_BUFSIZ is at least 1024, then we can
1483                 * log everything that printk could have logged. */
1484                avail = audit_expand(ab,
1485                        max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1486                if (!avail)
1487                        goto out_va_end;
1488                len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1489        }
1490        if (len > 0)
1491                skb_put(skb, len);
1492out_va_end:
1493        va_end(args2);
1494out:
1495        return;
1496}
1497
1498/**
1499 * audit_log_format - format a message into the audit buffer.
1500 * @ab: audit_buffer
1501 * @fmt: format string
1502 * @...: optional parameters matching @fmt string
1503 *
1504 * All the work is done in audit_log_vformat.
1505 */
1506void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1507{
1508        va_list args;
1509
1510        if (!ab)
1511                return;
1512        va_start(args, fmt);
1513        audit_log_vformat(ab, fmt, args);
1514        va_end(args);
1515}
1516
1517/**
1518 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1519 * @ab: the audit_buffer
1520 * @buf: buffer to convert to hex
1521 * @len: length of @buf to be converted
1522 *
1523 * No return value; failure to expand is silently ignored.
1524 *
1525 * This function will take the passed buf and convert it into a string of
1526 * ascii hex digits. The new string is placed onto the skb.
1527 */
1528void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1529                size_t len)
1530{
1531        int i, avail, new_len;
1532        unsigned char *ptr;
1533        struct sk_buff *skb;
1534
1535        if (!ab)
1536                return;
1537
1538        BUG_ON(!ab->skb);
1539        skb = ab->skb;
1540        avail = skb_tailroom(skb);
1541        new_len = len<<1;
1542        if (new_len >= avail) {
1543                /* Round the buffer request up to the next multiple */
1544                new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1545                avail = audit_expand(ab, new_len);
1546                if (!avail)
1547                        return;
1548        }
1549
1550        ptr = skb_tail_pointer(skb);
1551        for (i = 0; i < len; i++)
1552                ptr = hex_byte_pack_upper(ptr, buf[i]);
1553        *ptr = 0;
1554        skb_put(skb, len << 1); /* new string is twice the old string */
1555}
1556
1557/*
1558 * Format a string of no more than slen characters into the audit buffer,
1559 * enclosed in quote marks.
1560 */
1561void audit_log_n_string(struct audit_buffer *ab, const char *string,
1562                        size_t slen)
1563{
1564        int avail, new_len;
1565        unsigned char *ptr;
1566        struct sk_buff *skb;
1567
1568        if (!ab)
1569                return;
1570
1571        BUG_ON(!ab->skb);
1572        skb = ab->skb;
1573        avail = skb_tailroom(skb);
1574        new_len = slen + 3;     /* enclosing quotes + null terminator */
1575        if (new_len > avail) {
1576                avail = audit_expand(ab, new_len);
1577                if (!avail)
1578                        return;
1579        }
1580        ptr = skb_tail_pointer(skb);
1581        *ptr++ = '"';
1582        memcpy(ptr, string, slen);
1583        ptr += slen;
1584        *ptr++ = '"';
1585        *ptr = 0;
1586        skb_put(skb, slen + 2); /* don't include null terminator */
1587}
1588
1589/**
1590 * audit_string_contains_control - does a string need to be logged in hex
1591 * @string: string to be checked
1592 * @len: max length of the string to check
1593 */
1594bool audit_string_contains_control(const char *string, size_t len)
1595{
1596        const unsigned char *p;
1597        for (p = string; p < (const unsigned char *)string + len; p++) {
1598                if (*p == '"' || *p < 0x21 || *p > 0x7e)
1599                        return true;
1600        }
1601        return false;
1602}
1603
1604/**
1605 * audit_log_n_untrustedstring - log a string that may contain random characters
1606 * @ab: audit_buffer
1607 * @len: length of string (not including trailing null)
1608 * @string: string to be logged
1609 *
1610 * This code will escape a string that is passed to it if the string
1611 * contains a control character, unprintable character, double quote mark,
1612 * or a space. Unescaped strings will start and end with a double quote mark.
1613 * Strings that are escaped are printed in hex (2 digits per char).
1614 *
1615 * The caller specifies the number of characters in the string to log, which may
1616 * or may not be the entire string.
1617 */
1618void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1619                                 size_t len)
1620{
1621        if (audit_string_contains_control(string, len))
1622                audit_log_n_hex(ab, string, len);
1623        else
1624                audit_log_n_string(ab, string, len);
1625}
1626
1627/**
1628 * audit_log_untrustedstring - log a string that may contain random characters
1629 * @ab: audit_buffer
1630 * @string: string to be logged
1631 *
1632 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1633 * determine string length.
1634 */
1635void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1636{
1637        audit_log_n_untrustedstring(ab, string, strlen(string));
1638}
1639
1640/* This is a helper-function to print the escaped d_path */
1641void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1642                      const struct path *path)
1643{
1644        char *p, *pathname;
1645
1646        if (prefix)
1647                audit_log_format(ab, "%s", prefix);
1648
1649        /* We will allow 11 spaces for ' (deleted)' to be appended */
1650        pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1651        if (!pathname) {
1652                audit_log_string(ab, "<no_memory>");
1653                return;
1654        }
1655        p = d_path(path, pathname, PATH_MAX+11);
1656        if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1657                /* FIXME: can we save some information here? */
1658                audit_log_string(ab, "<too_long>");
1659        } else
1660                audit_log_untrustedstring(ab, p);
1661        kfree(pathname);
1662}
1663
1664void audit_log_session_info(struct audit_buffer *ab)
1665{
1666        unsigned int sessionid = audit_get_sessionid(current);
1667        uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1668
1669        audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1670}
1671
1672void audit_log_key(struct audit_buffer *ab, char *key)
1673{
1674        audit_log_format(ab, " key=");
1675        if (key)
1676                audit_log_untrustedstring(ab, key);
1677        else
1678                audit_log_format(ab, "(null)");
1679}
1680
1681void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1682{
1683        int i;
1684
1685        audit_log_format(ab, " %s=", prefix);
1686        CAP_FOR_EACH_U32(i) {
1687                audit_log_format(ab, "%08x",
1688                                 cap->cap[CAP_LAST_U32 - i]);
1689        }
1690}
1691
1692static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1693{
1694        kernel_cap_t *perm = &name->fcap.permitted;
1695        kernel_cap_t *inh = &name->fcap.inheritable;
1696        int log = 0;
1697
1698        if (!cap_isclear(*perm)) {
1699                audit_log_cap(ab, "cap_fp", perm);
1700                log = 1;
1701        }
1702        if (!cap_isclear(*inh)) {
1703                audit_log_cap(ab, "cap_fi", inh);
1704                log = 1;
1705        }
1706
1707        if (log)
1708                audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1709                                 name->fcap.fE, name->fcap_ver);
1710}
1711
1712static inline int audit_copy_fcaps(struct audit_names *name,
1713                                   const struct dentry *dentry)
1714{
1715        struct cpu_vfs_cap_data caps;
1716        int rc;
1717
1718        if (!dentry)
1719                return 0;
1720
1721        rc = get_vfs_caps_from_disk(dentry, &caps);
1722        if (rc)
1723                return rc;
1724
1725        name->fcap.permitted = caps.permitted;
1726        name->fcap.inheritable = caps.inheritable;
1727        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1728        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1729                                VFS_CAP_REVISION_SHIFT;
1730
1731        return 0;
1732}
1733
1734/* Copy inode data into an audit_names. */
1735void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1736                      struct inode *inode)
1737{
1738        name->ino   = inode->i_ino;
1739        name->dev   = inode->i_sb->s_dev;
1740        name->mode  = inode->i_mode;
1741        name->uid   = inode->i_uid;
1742        name->gid   = inode->i_gid;
1743        name->rdev  = inode->i_rdev;
1744        security_inode_getsecid(inode, &name->osid);
1745        audit_copy_fcaps(name, dentry);
1746}
1747
1748/**
1749 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1750 * @context: audit_context for the task
1751 * @n: audit_names structure with reportable details
1752 * @path: optional path to report instead of audit_names->name
1753 * @record_num: record number to report when handling a list of names
1754 * @call_panic: optional pointer to int that will be updated if secid fails
1755 */
1756void audit_log_name(struct audit_context *context, struct audit_names *n,
1757                    struct path *path, int record_num, int *call_panic)
1758{
1759        struct audit_buffer *ab;
1760        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1761        if (!ab)
1762                return;
1763
1764        audit_log_format(ab, "item=%d", record_num);
1765
1766        if (path)
1767                audit_log_d_path(ab, " name=", path);
1768        else if (n->name) {
1769                switch (n->name_len) {
1770                case AUDIT_NAME_FULL:
1771                        /* log the full path */
1772                        audit_log_format(ab, " name=");
1773                        audit_log_untrustedstring(ab, n->name->name);
1774                        break;
1775                case 0:
1776                        /* name was specified as a relative path and the
1777                         * directory component is the cwd */
1778                        audit_log_d_path(ab, " name=", &context->pwd);
1779                        break;
1780                default:
1781                        /* log the name's directory component */
1782                        audit_log_format(ab, " name=");
1783                        audit_log_n_untrustedstring(ab, n->name->name,
1784                                                    n->name_len);
1785                }
1786        } else
1787                audit_log_format(ab, " name=(null)");
1788
1789        if (n->ino != AUDIT_INO_UNSET)
1790                audit_log_format(ab, " inode=%lu"
1791                                 " dev=%02x:%02x mode=%#ho"
1792                                 " ouid=%u ogid=%u rdev=%02x:%02x",
1793                                 n->ino,
1794                                 MAJOR(n->dev),
1795                                 MINOR(n->dev),
1796                                 n->mode,
1797                                 from_kuid(&init_user_ns, n->uid),
1798                                 from_kgid(&init_user_ns, n->gid),
1799                                 MAJOR(n->rdev),
1800                                 MINOR(n->rdev));
1801        if (n->osid != 0) {
1802                char *ctx = NULL;
1803                u32 len;
1804                if (security_secid_to_secctx(
1805                        n->osid, &ctx, &len)) {
1806                        audit_log_format(ab, " osid=%u", n->osid);
1807                        if (call_panic)
1808                                *call_panic = 2;
1809                } else {
1810                        audit_log_format(ab, " obj=%s", ctx);
1811                        security_release_secctx(ctx, len);
1812                }
1813        }
1814
1815        /* log the audit_names record type */
1816        audit_log_format(ab, " nametype=");
1817        switch(n->type) {
1818        case AUDIT_TYPE_NORMAL:
1819                audit_log_format(ab, "NORMAL");
1820                break;
1821        case AUDIT_TYPE_PARENT:
1822                audit_log_format(ab, "PARENT");
1823                break;
1824        case AUDIT_TYPE_CHILD_DELETE:
1825                audit_log_format(ab, "DELETE");
1826                break;
1827        case AUDIT_TYPE_CHILD_CREATE:
1828                audit_log_format(ab, "CREATE");
1829                break;
1830        default:
1831                audit_log_format(ab, "UNKNOWN");
1832                break;
1833        }
1834
1835        audit_log_fcaps(ab, n);
1836        audit_log_end(ab);
1837}
1838
1839int audit_log_task_context(struct audit_buffer *ab)
1840{
1841        char *ctx = NULL;
1842        unsigned len;
1843        int error;
1844        u32 sid;
1845
1846        security_task_getsecid(current, &sid);
1847        if (!sid)
1848                return 0;
1849
1850        error = security_secid_to_secctx(sid, &ctx, &len);
1851        if (error) {
1852                if (error != -EINVAL)
1853                        goto error_path;
1854                return 0;
1855        }
1856
1857        audit_log_format(ab, " subj=%s", ctx);
1858        security_release_secctx(ctx, len);
1859        return 0;
1860
1861error_path:
1862        audit_panic("error in audit_log_task_context");
1863        return error;
1864}
1865EXPORT_SYMBOL(audit_log_task_context);
1866
1867void audit_log_d_path_exe(struct audit_buffer *ab,
1868                          struct mm_struct *mm)
1869{
1870        struct file *exe_file;
1871
1872        if (!mm)
1873                goto out_null;
1874
1875        exe_file = get_mm_exe_file(mm);
1876        if (!exe_file)
1877                goto out_null;
1878
1879        audit_log_d_path(ab, " exe=", &exe_file->f_path);
1880        fput(exe_file);
1881        return;
1882out_null:
1883        audit_log_format(ab, " exe=(null)");
1884}
1885
1886struct tty_struct *audit_get_tty(struct task_struct *tsk)
1887{
1888        struct tty_struct *tty = NULL;
1889        unsigned long flags;
1890
1891        spin_lock_irqsave(&tsk->sighand->siglock, flags);
1892        if (tsk->signal)
1893                tty = tty_kref_get(tsk->signal->tty);
1894        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1895        return tty;
1896}
1897
1898void audit_put_tty(struct tty_struct *tty)
1899{
1900        tty_kref_put(tty);
1901}
1902
1903void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1904{
1905        const struct cred *cred;
1906        char comm[sizeof(tsk->comm)];
1907        struct tty_struct *tty;
1908
1909        if (!ab)
1910                return;
1911
1912        /* tsk == current */
1913        cred = current_cred();
1914        tty = audit_get_tty(tsk);
1915        audit_log_format(ab,
1916                         " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1917                         " euid=%u suid=%u fsuid=%u"
1918                         " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1919                         task_ppid_nr(tsk),
1920                         task_pid_nr(tsk),
1921                         from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1922                         from_kuid(&init_user_ns, cred->uid),
1923                         from_kgid(&init_user_ns, cred->gid),
1924                         from_kuid(&init_user_ns, cred->euid),
1925                         from_kuid(&init_user_ns, cred->suid),
1926                         from_kuid(&init_user_ns, cred->fsuid),
1927                         from_kgid(&init_user_ns, cred->egid),
1928                         from_kgid(&init_user_ns, cred->sgid),
1929                         from_kgid(&init_user_ns, cred->fsgid),
1930                         tty ? tty_name(tty) : "(none)",
1931                         audit_get_sessionid(tsk));
1932        audit_put_tty(tty);
1933        audit_log_format(ab, " comm=");
1934        audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1935        audit_log_d_path_exe(ab, tsk->mm);
1936        audit_log_task_context(ab);
1937}
1938EXPORT_SYMBOL(audit_log_task_info);
1939
1940/**
1941 * audit_log_link_denied - report a link restriction denial
1942 * @operation: specific link operation
1943 * @link: the path that triggered the restriction
1944 */
1945void audit_log_link_denied(const char *operation, struct path *link)
1946{
1947        struct audit_buffer *ab;
1948        struct audit_names *name;
1949
1950        name = kzalloc(sizeof(*name), GFP_NOFS);
1951        if (!name)
1952                return;
1953
1954        /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1955        ab = audit_log_start(current->audit_context, GFP_KERNEL,
1956                             AUDIT_ANOM_LINK);
1957        if (!ab)
1958                goto out;
1959        audit_log_format(ab, "op=%s", operation);
1960        audit_log_task_info(ab, current);
1961        audit_log_format(ab, " res=0");
1962        audit_log_end(ab);
1963
1964        /* Generate AUDIT_PATH record with object. */
1965        name->type = AUDIT_TYPE_NORMAL;
1966        audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1967        audit_log_name(current->audit_context, name, link, 0, NULL);
1968out:
1969        kfree(name);
1970}
1971
1972/**
1973 * audit_log_end - end one audit record
1974 * @ab: the audit_buffer
1975 *
1976 * netlink_unicast() cannot be called inside an irq context because it blocks
1977 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1978 * on a queue and a tasklet is scheduled to remove them from the queue outside
1979 * the irq context.  May be called in any context.
1980 */
1981void audit_log_end(struct audit_buffer *ab)
1982{
1983        if (!ab)
1984                return;
1985        if (!audit_rate_check()) {
1986                audit_log_lost("rate limit exceeded");
1987        } else {
1988                struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1989
1990                nlh->nlmsg_len = ab->skb->len;
1991                kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1992
1993                /*
1994                 * The original kaudit unicast socket sends up messages with
1995                 * nlmsg_len set to the payload length rather than the entire
1996                 * message length.  This breaks the standard set by netlink.
1997                 * The existing auditd daemon assumes this breakage.  Fixing
1998                 * this would require co-ordinating a change in the established
1999                 * protocol between the kaudit kernel subsystem and the auditd
2000                 * userspace code.
2001                 */
2002                nlh->nlmsg_len -= NLMSG_HDRLEN;
2003
2004                if (audit_pid) {
2005                        skb_queue_tail(&audit_skb_queue, ab->skb);
2006                        wake_up_interruptible(&kauditd_wait);
2007                } else {
2008                        audit_printk_skb(ab->skb);
2009                }
2010                ab->skb = NULL;
2011        }
2012        audit_buffer_free(ab);
2013}
2014
2015/**
2016 * audit_log - Log an audit record
2017 * @ctx: audit context
2018 * @gfp_mask: type of allocation
2019 * @type: audit message type
2020 * @fmt: format string to use
2021 * @...: variable parameters matching the format string
2022 *
2023 * This is a convenience function that calls audit_log_start,
2024 * audit_log_vformat, and audit_log_end.  It may be called
2025 * in any context.
2026 */
2027void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2028               const char *fmt, ...)
2029{
2030        struct audit_buffer *ab;
2031        va_list args;
2032
2033        ab = audit_log_start(ctx, gfp_mask, type);
2034        if (ab) {
2035                va_start(args, fmt);
2036                audit_log_vformat(ab, fmt, args);
2037                va_end(args);
2038                audit_log_end(ab);
2039        }
2040}
2041
2042#ifdef CONFIG_SECURITY
2043/**
2044 * audit_log_secctx - Converts and logs SELinux context
2045 * @ab: audit_buffer
2046 * @secid: security number
2047 *
2048 * This is a helper function that calls security_secid_to_secctx to convert
2049 * secid to secctx and then adds the (converted) SELinux context to the audit
2050 * log by calling audit_log_format, thus also preventing leak of internal secid
2051 * to userspace. If secid cannot be converted audit_panic is called.
2052 */
2053void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2054{
2055        u32 len;
2056        char *secctx;
2057
2058        if (security_secid_to_secctx(secid, &secctx, &len)) {
2059                audit_panic("Cannot convert secid to context");
2060        } else {
2061                audit_log_format(ab, " obj=%s", secctx);
2062                security_release_secctx(secctx, len);
2063        }
2064}
2065EXPORT_SYMBOL(audit_log_secctx);
2066#endif
2067
2068EXPORT_SYMBOL(audit_log_start);
2069EXPORT_SYMBOL(audit_log_end);
2070EXPORT_SYMBOL(audit_log_format);
2071EXPORT_SYMBOL(audit_log);
2072