linux/kernel/fork.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/personality.h>
  21#include <linux/mempolicy.h>
  22#include <linux/sem.h>
  23#include <linux/file.h>
  24#include <linux/fdtable.h>
  25#include <linux/iocontext.h>
  26#include <linux/key.h>
  27#include <linux/binfmts.h>
  28#include <linux/mman.h>
  29#include <linux/mmu_notifier.h>
  30#include <linux/fs.h>
  31#include <linux/mm.h>
  32#include <linux/vmacache.h>
  33#include <linux/nsproxy.h>
  34#include <linux/capability.h>
  35#include <linux/cpu.h>
  36#include <linux/cgroup.h>
  37#include <linux/security.h>
  38#include <linux/hugetlb.h>
  39#include <linux/seccomp.h>
  40#include <linux/swap.h>
  41#include <linux/syscalls.h>
  42#include <linux/jiffies.h>
  43#include <linux/futex.h>
  44#include <linux/compat.h>
  45#include <linux/kthread.h>
  46#include <linux/task_io_accounting_ops.h>
  47#include <linux/rcupdate.h>
  48#include <linux/ptrace.h>
  49#include <linux/mount.h>
  50#include <linux/audit.h>
  51#include <linux/memcontrol.h>
  52#include <linux/ftrace.h>
  53#include <linux/proc_fs.h>
  54#include <linux/profile.h>
  55#include <linux/rmap.h>
  56#include <linux/ksm.h>
  57#include <linux/acct.h>
  58#include <linux/tsacct_kern.h>
  59#include <linux/cn_proc.h>
  60#include <linux/freezer.h>
  61#include <linux/delayacct.h>
  62#include <linux/taskstats_kern.h>
  63#include <linux/random.h>
  64#include <linux/tty.h>
  65#include <linux/blkdev.h>
  66#include <linux/fs_struct.h>
  67#include <linux/magic.h>
  68#include <linux/perf_event.h>
  69#include <linux/posix-timers.h>
  70#include <linux/user-return-notifier.h>
  71#include <linux/oom.h>
  72#include <linux/khugepaged.h>
  73#include <linux/signalfd.h>
  74#include <linux/uprobes.h>
  75#include <linux/aio.h>
  76#include <linux/compiler.h>
  77#include <linux/sysctl.h>
  78#include <linux/kcov.h>
  79
  80#include <asm/pgtable.h>
  81#include <asm/pgalloc.h>
  82#include <asm/uaccess.h>
  83#include <asm/mmu_context.h>
  84#include <asm/cacheflush.h>
  85#include <asm/tlbflush.h>
  86
  87#include <trace/events/sched.h>
  88
  89#define CREATE_TRACE_POINTS
  90#include <trace/events/task.h>
  91
  92/*
  93 * Minimum number of threads to boot the kernel
  94 */
  95#define MIN_THREADS 20
  96
  97/*
  98 * Maximum number of threads
  99 */
 100#define MAX_THREADS FUTEX_TID_MASK
 101
 102/*
 103 * Protected counters by write_lock_irq(&tasklist_lock)
 104 */
 105unsigned long total_forks;      /* Handle normal Linux uptimes. */
 106int nr_threads;                 /* The idle threads do not count.. */
 107
 108int max_threads;                /* tunable limit on nr_threads */
 109
 110DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 111
 112__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 113
 114#ifdef CONFIG_PROVE_RCU
 115int lockdep_tasklist_lock_is_held(void)
 116{
 117        return lockdep_is_held(&tasklist_lock);
 118}
 119EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 120#endif /* #ifdef CONFIG_PROVE_RCU */
 121
 122int nr_processes(void)
 123{
 124        int cpu;
 125        int total = 0;
 126
 127        for_each_possible_cpu(cpu)
 128                total += per_cpu(process_counts, cpu);
 129
 130        return total;
 131}
 132
 133void __weak arch_release_task_struct(struct task_struct *tsk)
 134{
 135}
 136
 137#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 138static struct kmem_cache *task_struct_cachep;
 139
 140static inline struct task_struct *alloc_task_struct_node(int node)
 141{
 142        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 143}
 144
 145static inline void free_task_struct(struct task_struct *tsk)
 146{
 147        kmem_cache_free(task_struct_cachep, tsk);
 148}
 149#endif
 150
 151void __weak arch_release_thread_stack(unsigned long *stack)
 152{
 153}
 154
 155#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 156
 157/*
 158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 159 * kmemcache based allocator.
 160 */
 161# if THREAD_SIZE >= PAGE_SIZE
 162static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 163                                                  int node)
 164{
 165        struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
 166                                                  THREAD_SIZE_ORDER);
 167
 168        if (page)
 169                memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
 170                                            1 << THREAD_SIZE_ORDER);
 171
 172        return page ? page_address(page) : NULL;
 173}
 174
 175static inline void free_thread_stack(unsigned long *stack)
 176{
 177        struct page *page = virt_to_page(stack);
 178
 179        memcg_kmem_update_page_stat(page, MEMCG_KERNEL_STACK,
 180                                    -(1 << THREAD_SIZE_ORDER));
 181        __free_kmem_pages(page, THREAD_SIZE_ORDER);
 182}
 183# else
 184static struct kmem_cache *thread_stack_cache;
 185
 186static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 187                                                  int node)
 188{
 189        return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 190}
 191
 192static void free_thread_stack(unsigned long *stack)
 193{
 194        kmem_cache_free(thread_stack_cache, stack);
 195}
 196
 197void thread_stack_cache_init(void)
 198{
 199        thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
 200                                              THREAD_SIZE, 0, NULL);
 201        BUG_ON(thread_stack_cache == NULL);
 202}
 203# endif
 204#endif
 205
 206/* SLAB cache for signal_struct structures (tsk->signal) */
 207static struct kmem_cache *signal_cachep;
 208
 209/* SLAB cache for sighand_struct structures (tsk->sighand) */
 210struct kmem_cache *sighand_cachep;
 211
 212/* SLAB cache for files_struct structures (tsk->files) */
 213struct kmem_cache *files_cachep;
 214
 215/* SLAB cache for fs_struct structures (tsk->fs) */
 216struct kmem_cache *fs_cachep;
 217
 218/* SLAB cache for vm_area_struct structures */
 219struct kmem_cache *vm_area_cachep;
 220
 221/* SLAB cache for mm_struct structures (tsk->mm) */
 222static struct kmem_cache *mm_cachep;
 223
 224static void account_kernel_stack(unsigned long *stack, int account)
 225{
 226        struct zone *zone = page_zone(virt_to_page(stack));
 227
 228        mod_zone_page_state(zone, NR_KERNEL_STACK, account);
 229}
 230
 231void free_task(struct task_struct *tsk)
 232{
 233        account_kernel_stack(tsk->stack, -1);
 234        arch_release_thread_stack(tsk->stack);
 235        free_thread_stack(tsk->stack);
 236        rt_mutex_debug_task_free(tsk);
 237        ftrace_graph_exit_task(tsk);
 238        put_seccomp_filter(tsk);
 239        arch_release_task_struct(tsk);
 240        free_task_struct(tsk);
 241}
 242EXPORT_SYMBOL(free_task);
 243
 244static inline void free_signal_struct(struct signal_struct *sig)
 245{
 246        taskstats_tgid_free(sig);
 247        sched_autogroup_exit(sig);
 248        kmem_cache_free(signal_cachep, sig);
 249}
 250
 251static inline void put_signal_struct(struct signal_struct *sig)
 252{
 253        if (atomic_dec_and_test(&sig->sigcnt))
 254                free_signal_struct(sig);
 255}
 256
 257void __put_task_struct(struct task_struct *tsk)
 258{
 259        WARN_ON(!tsk->exit_state);
 260        WARN_ON(atomic_read(&tsk->usage));
 261        WARN_ON(tsk == current);
 262
 263        cgroup_free(tsk);
 264        task_numa_free(tsk);
 265        security_task_free(tsk);
 266        exit_creds(tsk);
 267        delayacct_tsk_free(tsk);
 268        put_signal_struct(tsk->signal);
 269
 270        if (!profile_handoff_task(tsk))
 271                free_task(tsk);
 272}
 273EXPORT_SYMBOL_GPL(__put_task_struct);
 274
 275void __init __weak arch_task_cache_init(void) { }
 276
 277/*
 278 * set_max_threads
 279 */
 280static void set_max_threads(unsigned int max_threads_suggested)
 281{
 282        u64 threads;
 283
 284        /*
 285         * The number of threads shall be limited such that the thread
 286         * structures may only consume a small part of the available memory.
 287         */
 288        if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 289                threads = MAX_THREADS;
 290        else
 291                threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 292                                    (u64) THREAD_SIZE * 8UL);
 293
 294        if (threads > max_threads_suggested)
 295                threads = max_threads_suggested;
 296
 297        max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 298}
 299
 300#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 301/* Initialized by the architecture: */
 302int arch_task_struct_size __read_mostly;
 303#endif
 304
 305void __init fork_init(void)
 306{
 307#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 308#ifndef ARCH_MIN_TASKALIGN
 309#define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
 310#endif
 311        /* create a slab on which task_structs can be allocated */
 312        task_struct_cachep = kmem_cache_create("task_struct",
 313                        arch_task_struct_size, ARCH_MIN_TASKALIGN,
 314                        SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
 315#endif
 316
 317        /* do the arch specific task caches init */
 318        arch_task_cache_init();
 319
 320        set_max_threads(MAX_THREADS);
 321
 322        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 323        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 324        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 325                init_task.signal->rlim[RLIMIT_NPROC];
 326}
 327
 328int __weak arch_dup_task_struct(struct task_struct *dst,
 329                                               struct task_struct *src)
 330{
 331        *dst = *src;
 332        return 0;
 333}
 334
 335void set_task_stack_end_magic(struct task_struct *tsk)
 336{
 337        unsigned long *stackend;
 338
 339        stackend = end_of_stack(tsk);
 340        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 341}
 342
 343static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 344{
 345        struct task_struct *tsk;
 346        unsigned long *stack;
 347        int err;
 348
 349        if (node == NUMA_NO_NODE)
 350                node = tsk_fork_get_node(orig);
 351        tsk = alloc_task_struct_node(node);
 352        if (!tsk)
 353                return NULL;
 354
 355        stack = alloc_thread_stack_node(tsk, node);
 356        if (!stack)
 357                goto free_tsk;
 358
 359        err = arch_dup_task_struct(tsk, orig);
 360        if (err)
 361                goto free_stack;
 362
 363        tsk->stack = stack;
 364#ifdef CONFIG_SECCOMP
 365        /*
 366         * We must handle setting up seccomp filters once we're under
 367         * the sighand lock in case orig has changed between now and
 368         * then. Until then, filter must be NULL to avoid messing up
 369         * the usage counts on the error path calling free_task.
 370         */
 371        tsk->seccomp.filter = NULL;
 372#endif
 373
 374        setup_thread_stack(tsk, orig);
 375        clear_user_return_notifier(tsk);
 376        clear_tsk_need_resched(tsk);
 377        set_task_stack_end_magic(tsk);
 378
 379#ifdef CONFIG_CC_STACKPROTECTOR
 380        tsk->stack_canary = get_random_int();
 381#endif
 382
 383        /*
 384         * One for us, one for whoever does the "release_task()" (usually
 385         * parent)
 386         */
 387        atomic_set(&tsk->usage, 2);
 388#ifdef CONFIG_BLK_DEV_IO_TRACE
 389        tsk->btrace_seq = 0;
 390#endif
 391        tsk->splice_pipe = NULL;
 392        tsk->task_frag.page = NULL;
 393        tsk->wake_q.next = NULL;
 394
 395        account_kernel_stack(stack, 1);
 396
 397        kcov_task_init(tsk);
 398
 399        return tsk;
 400
 401free_stack:
 402        free_thread_stack(stack);
 403free_tsk:
 404        free_task_struct(tsk);
 405        return NULL;
 406}
 407
 408#ifdef CONFIG_MMU
 409static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 410{
 411        struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 412        struct rb_node **rb_link, *rb_parent;
 413        int retval;
 414        unsigned long charge;
 415
 416        uprobe_start_dup_mmap();
 417        if (down_write_killable(&oldmm->mmap_sem)) {
 418                retval = -EINTR;
 419                goto fail_uprobe_end;
 420        }
 421        flush_cache_dup_mm(oldmm);
 422        uprobe_dup_mmap(oldmm, mm);
 423        /*
 424         * Not linked in yet - no deadlock potential:
 425         */
 426        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 427
 428        /* No ordering required: file already has been exposed. */
 429        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 430
 431        mm->total_vm = oldmm->total_vm;
 432        mm->data_vm = oldmm->data_vm;
 433        mm->exec_vm = oldmm->exec_vm;
 434        mm->stack_vm = oldmm->stack_vm;
 435
 436        rb_link = &mm->mm_rb.rb_node;
 437        rb_parent = NULL;
 438        pprev = &mm->mmap;
 439        retval = ksm_fork(mm, oldmm);
 440        if (retval)
 441                goto out;
 442        retval = khugepaged_fork(mm, oldmm);
 443        if (retval)
 444                goto out;
 445
 446        prev = NULL;
 447        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 448                struct file *file;
 449
 450                if (mpnt->vm_flags & VM_DONTCOPY) {
 451                        vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 452                        continue;
 453                }
 454                charge = 0;
 455                if (mpnt->vm_flags & VM_ACCOUNT) {
 456                        unsigned long len = vma_pages(mpnt);
 457
 458                        if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 459                                goto fail_nomem;
 460                        charge = len;
 461                }
 462                tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 463                if (!tmp)
 464                        goto fail_nomem;
 465                *tmp = *mpnt;
 466                INIT_LIST_HEAD(&tmp->anon_vma_chain);
 467                retval = vma_dup_policy(mpnt, tmp);
 468                if (retval)
 469                        goto fail_nomem_policy;
 470                tmp->vm_mm = mm;
 471                if (anon_vma_fork(tmp, mpnt))
 472                        goto fail_nomem_anon_vma_fork;
 473                tmp->vm_flags &=
 474                        ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
 475                tmp->vm_next = tmp->vm_prev = NULL;
 476                tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 477                file = tmp->vm_file;
 478                if (file) {
 479                        struct inode *inode = file_inode(file);
 480                        struct address_space *mapping = file->f_mapping;
 481
 482                        get_file(file);
 483                        if (tmp->vm_flags & VM_DENYWRITE)
 484                                atomic_dec(&inode->i_writecount);
 485                        i_mmap_lock_write(mapping);
 486                        if (tmp->vm_flags & VM_SHARED)
 487                                atomic_inc(&mapping->i_mmap_writable);
 488                        flush_dcache_mmap_lock(mapping);
 489                        /* insert tmp into the share list, just after mpnt */
 490                        vma_interval_tree_insert_after(tmp, mpnt,
 491                                        &mapping->i_mmap);
 492                        flush_dcache_mmap_unlock(mapping);
 493                        i_mmap_unlock_write(mapping);
 494                }
 495
 496                /*
 497                 * Clear hugetlb-related page reserves for children. This only
 498                 * affects MAP_PRIVATE mappings. Faults generated by the child
 499                 * are not guaranteed to succeed, even if read-only
 500                 */
 501                if (is_vm_hugetlb_page(tmp))
 502                        reset_vma_resv_huge_pages(tmp);
 503
 504                /*
 505                 * Link in the new vma and copy the page table entries.
 506                 */
 507                *pprev = tmp;
 508                pprev = &tmp->vm_next;
 509                tmp->vm_prev = prev;
 510                prev = tmp;
 511
 512                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 513                rb_link = &tmp->vm_rb.rb_right;
 514                rb_parent = &tmp->vm_rb;
 515
 516                mm->map_count++;
 517                retval = copy_page_range(mm, oldmm, mpnt);
 518
 519                if (tmp->vm_ops && tmp->vm_ops->open)
 520                        tmp->vm_ops->open(tmp);
 521
 522                if (retval)
 523                        goto out;
 524        }
 525        /* a new mm has just been created */
 526        arch_dup_mmap(oldmm, mm);
 527        retval = 0;
 528out:
 529        up_write(&mm->mmap_sem);
 530        flush_tlb_mm(oldmm);
 531        up_write(&oldmm->mmap_sem);
 532fail_uprobe_end:
 533        uprobe_end_dup_mmap();
 534        return retval;
 535fail_nomem_anon_vma_fork:
 536        mpol_put(vma_policy(tmp));
 537fail_nomem_policy:
 538        kmem_cache_free(vm_area_cachep, tmp);
 539fail_nomem:
 540        retval = -ENOMEM;
 541        vm_unacct_memory(charge);
 542        goto out;
 543}
 544
 545static inline int mm_alloc_pgd(struct mm_struct *mm)
 546{
 547        mm->pgd = pgd_alloc(mm);
 548        if (unlikely(!mm->pgd))
 549                return -ENOMEM;
 550        return 0;
 551}
 552
 553static inline void mm_free_pgd(struct mm_struct *mm)
 554{
 555        pgd_free(mm, mm->pgd);
 556}
 557#else
 558static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 559{
 560        down_write(&oldmm->mmap_sem);
 561        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 562        up_write(&oldmm->mmap_sem);
 563        return 0;
 564}
 565#define mm_alloc_pgd(mm)        (0)
 566#define mm_free_pgd(mm)
 567#endif /* CONFIG_MMU */
 568
 569__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 570
 571#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 572#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 573
 574static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 575
 576static int __init coredump_filter_setup(char *s)
 577{
 578        default_dump_filter =
 579                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 580                MMF_DUMP_FILTER_MASK;
 581        return 1;
 582}
 583
 584__setup("coredump_filter=", coredump_filter_setup);
 585
 586#include <linux/init_task.h>
 587
 588static void mm_init_aio(struct mm_struct *mm)
 589{
 590#ifdef CONFIG_AIO
 591        spin_lock_init(&mm->ioctx_lock);
 592        mm->ioctx_table = NULL;
 593#endif
 594}
 595
 596static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 597{
 598#ifdef CONFIG_MEMCG
 599        mm->owner = p;
 600#endif
 601}
 602
 603static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
 604{
 605        mm->mmap = NULL;
 606        mm->mm_rb = RB_ROOT;
 607        mm->vmacache_seqnum = 0;
 608        atomic_set(&mm->mm_users, 1);
 609        atomic_set(&mm->mm_count, 1);
 610        init_rwsem(&mm->mmap_sem);
 611        INIT_LIST_HEAD(&mm->mmlist);
 612        mm->core_state = NULL;
 613        atomic_long_set(&mm->nr_ptes, 0);
 614        mm_nr_pmds_init(mm);
 615        mm->map_count = 0;
 616        mm->locked_vm = 0;
 617        mm->pinned_vm = 0;
 618        memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 619        spin_lock_init(&mm->page_table_lock);
 620        mm_init_cpumask(mm);
 621        mm_init_aio(mm);
 622        mm_init_owner(mm, p);
 623        mmu_notifier_mm_init(mm);
 624        clear_tlb_flush_pending(mm);
 625#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 626        mm->pmd_huge_pte = NULL;
 627#endif
 628
 629        if (current->mm) {
 630                mm->flags = current->mm->flags & MMF_INIT_MASK;
 631                mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 632        } else {
 633                mm->flags = default_dump_filter;
 634                mm->def_flags = 0;
 635        }
 636
 637        if (mm_alloc_pgd(mm))
 638                goto fail_nopgd;
 639
 640        if (init_new_context(p, mm))
 641                goto fail_nocontext;
 642
 643        return mm;
 644
 645fail_nocontext:
 646        mm_free_pgd(mm);
 647fail_nopgd:
 648        free_mm(mm);
 649        return NULL;
 650}
 651
 652static void check_mm(struct mm_struct *mm)
 653{
 654        int i;
 655
 656        for (i = 0; i < NR_MM_COUNTERS; i++) {
 657                long x = atomic_long_read(&mm->rss_stat.count[i]);
 658
 659                if (unlikely(x))
 660                        printk(KERN_ALERT "BUG: Bad rss-counter state "
 661                                          "mm:%p idx:%d val:%ld\n", mm, i, x);
 662        }
 663
 664        if (atomic_long_read(&mm->nr_ptes))
 665                pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
 666                                atomic_long_read(&mm->nr_ptes));
 667        if (mm_nr_pmds(mm))
 668                pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
 669                                mm_nr_pmds(mm));
 670
 671#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 672        VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 673#endif
 674}
 675
 676/*
 677 * Allocate and initialize an mm_struct.
 678 */
 679struct mm_struct *mm_alloc(void)
 680{
 681        struct mm_struct *mm;
 682
 683        mm = allocate_mm();
 684        if (!mm)
 685                return NULL;
 686
 687        memset(mm, 0, sizeof(*mm));
 688        return mm_init(mm, current);
 689}
 690
 691/*
 692 * Called when the last reference to the mm
 693 * is dropped: either by a lazy thread or by
 694 * mmput. Free the page directory and the mm.
 695 */
 696void __mmdrop(struct mm_struct *mm)
 697{
 698        BUG_ON(mm == &init_mm);
 699        mm_free_pgd(mm);
 700        destroy_context(mm);
 701        mmu_notifier_mm_destroy(mm);
 702        check_mm(mm);
 703        free_mm(mm);
 704}
 705EXPORT_SYMBOL_GPL(__mmdrop);
 706
 707static inline void __mmput(struct mm_struct *mm)
 708{
 709        VM_BUG_ON(atomic_read(&mm->mm_users));
 710
 711        uprobe_clear_state(mm);
 712        exit_aio(mm);
 713        ksm_exit(mm);
 714        khugepaged_exit(mm); /* must run before exit_mmap */
 715        exit_mmap(mm);
 716        set_mm_exe_file(mm, NULL);
 717        if (!list_empty(&mm->mmlist)) {
 718                spin_lock(&mmlist_lock);
 719                list_del(&mm->mmlist);
 720                spin_unlock(&mmlist_lock);
 721        }
 722        if (mm->binfmt)
 723                module_put(mm->binfmt->module);
 724        mmdrop(mm);
 725}
 726
 727/*
 728 * Decrement the use count and release all resources for an mm.
 729 */
 730void mmput(struct mm_struct *mm)
 731{
 732        might_sleep();
 733
 734        if (atomic_dec_and_test(&mm->mm_users))
 735                __mmput(mm);
 736}
 737EXPORT_SYMBOL_GPL(mmput);
 738
 739#ifdef CONFIG_MMU
 740static void mmput_async_fn(struct work_struct *work)
 741{
 742        struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
 743        __mmput(mm);
 744}
 745
 746void mmput_async(struct mm_struct *mm)
 747{
 748        if (atomic_dec_and_test(&mm->mm_users)) {
 749                INIT_WORK(&mm->async_put_work, mmput_async_fn);
 750                schedule_work(&mm->async_put_work);
 751        }
 752}
 753#endif
 754
 755/**
 756 * set_mm_exe_file - change a reference to the mm's executable file
 757 *
 758 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
 759 *
 760 * Main users are mmput() and sys_execve(). Callers prevent concurrent
 761 * invocations: in mmput() nobody alive left, in execve task is single
 762 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
 763 * mm->exe_file, but does so without using set_mm_exe_file() in order
 764 * to do avoid the need for any locks.
 765 */
 766void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
 767{
 768        struct file *old_exe_file;
 769
 770        /*
 771         * It is safe to dereference the exe_file without RCU as
 772         * this function is only called if nobody else can access
 773         * this mm -- see comment above for justification.
 774         */
 775        old_exe_file = rcu_dereference_raw(mm->exe_file);
 776
 777        if (new_exe_file)
 778                get_file(new_exe_file);
 779        rcu_assign_pointer(mm->exe_file, new_exe_file);
 780        if (old_exe_file)
 781                fput(old_exe_file);
 782}
 783
 784/**
 785 * get_mm_exe_file - acquire a reference to the mm's executable file
 786 *
 787 * Returns %NULL if mm has no associated executable file.
 788 * User must release file via fput().
 789 */
 790struct file *get_mm_exe_file(struct mm_struct *mm)
 791{
 792        struct file *exe_file;
 793
 794        rcu_read_lock();
 795        exe_file = rcu_dereference(mm->exe_file);
 796        if (exe_file && !get_file_rcu(exe_file))
 797                exe_file = NULL;
 798        rcu_read_unlock();
 799        return exe_file;
 800}
 801EXPORT_SYMBOL(get_mm_exe_file);
 802
 803/**
 804 * get_task_mm - acquire a reference to the task's mm
 805 *
 806 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
 807 * this kernel workthread has transiently adopted a user mm with use_mm,
 808 * to do its AIO) is not set and if so returns a reference to it, after
 809 * bumping up the use count.  User must release the mm via mmput()
 810 * after use.  Typically used by /proc and ptrace.
 811 */
 812struct mm_struct *get_task_mm(struct task_struct *task)
 813{
 814        struct mm_struct *mm;
 815
 816        task_lock(task);
 817        mm = task->mm;
 818        if (mm) {
 819                if (task->flags & PF_KTHREAD)
 820                        mm = NULL;
 821                else
 822                        atomic_inc(&mm->mm_users);
 823        }
 824        task_unlock(task);
 825        return mm;
 826}
 827EXPORT_SYMBOL_GPL(get_task_mm);
 828
 829struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
 830{
 831        struct mm_struct *mm;
 832        int err;
 833
 834        err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
 835        if (err)
 836                return ERR_PTR(err);
 837
 838        mm = get_task_mm(task);
 839        if (mm && mm != current->mm &&
 840                        !ptrace_may_access(task, mode)) {
 841                mmput(mm);
 842                mm = ERR_PTR(-EACCES);
 843        }
 844        mutex_unlock(&task->signal->cred_guard_mutex);
 845
 846        return mm;
 847}
 848
 849static void complete_vfork_done(struct task_struct *tsk)
 850{
 851        struct completion *vfork;
 852
 853        task_lock(tsk);
 854        vfork = tsk->vfork_done;
 855        if (likely(vfork)) {
 856                tsk->vfork_done = NULL;
 857                complete(vfork);
 858        }
 859        task_unlock(tsk);
 860}
 861
 862static int wait_for_vfork_done(struct task_struct *child,
 863                                struct completion *vfork)
 864{
 865        int killed;
 866
 867        freezer_do_not_count();
 868        killed = wait_for_completion_killable(vfork);
 869        freezer_count();
 870
 871        if (killed) {
 872                task_lock(child);
 873                child->vfork_done = NULL;
 874                task_unlock(child);
 875        }
 876
 877        put_task_struct(child);
 878        return killed;
 879}
 880
 881/* Please note the differences between mmput and mm_release.
 882 * mmput is called whenever we stop holding onto a mm_struct,
 883 * error success whatever.
 884 *
 885 * mm_release is called after a mm_struct has been removed
 886 * from the current process.
 887 *
 888 * This difference is important for error handling, when we
 889 * only half set up a mm_struct for a new process and need to restore
 890 * the old one.  Because we mmput the new mm_struct before
 891 * restoring the old one. . .
 892 * Eric Biederman 10 January 1998
 893 */
 894void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 895{
 896        /* Get rid of any futexes when releasing the mm */
 897#ifdef CONFIG_FUTEX
 898        if (unlikely(tsk->robust_list)) {
 899                exit_robust_list(tsk);
 900                tsk->robust_list = NULL;
 901        }
 902#ifdef CONFIG_COMPAT
 903        if (unlikely(tsk->compat_robust_list)) {
 904                compat_exit_robust_list(tsk);
 905                tsk->compat_robust_list = NULL;
 906        }
 907#endif
 908        if (unlikely(!list_empty(&tsk->pi_state_list)))
 909                exit_pi_state_list(tsk);
 910#endif
 911
 912        uprobe_free_utask(tsk);
 913
 914        /* Get rid of any cached register state */
 915        deactivate_mm(tsk, mm);
 916
 917        /*
 918         * If we're exiting normally, clear a user-space tid field if
 919         * requested.  We leave this alone when dying by signal, to leave
 920         * the value intact in a core dump, and to save the unnecessary
 921         * trouble, say, a killed vfork parent shouldn't touch this mm.
 922         * Userland only wants this done for a sys_exit.
 923         */
 924        if (tsk->clear_child_tid) {
 925                if (!(tsk->flags & PF_SIGNALED) &&
 926                    atomic_read(&mm->mm_users) > 1) {
 927                        /*
 928                         * We don't check the error code - if userspace has
 929                         * not set up a proper pointer then tough luck.
 930                         */
 931                        put_user(0, tsk->clear_child_tid);
 932                        sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
 933                                        1, NULL, NULL, 0);
 934                }
 935                tsk->clear_child_tid = NULL;
 936        }
 937
 938        /*
 939         * All done, finally we can wake up parent and return this mm to him.
 940         * Also kthread_stop() uses this completion for synchronization.
 941         */
 942        if (tsk->vfork_done)
 943                complete_vfork_done(tsk);
 944}
 945
 946/*
 947 * Allocate a new mm structure and copy contents from the
 948 * mm structure of the passed in task structure.
 949 */
 950static struct mm_struct *dup_mm(struct task_struct *tsk)
 951{
 952        struct mm_struct *mm, *oldmm = current->mm;
 953        int err;
 954
 955        mm = allocate_mm();
 956        if (!mm)
 957                goto fail_nomem;
 958
 959        memcpy(mm, oldmm, sizeof(*mm));
 960
 961        if (!mm_init(mm, tsk))
 962                goto fail_nomem;
 963
 964        err = dup_mmap(mm, oldmm);
 965        if (err)
 966                goto free_pt;
 967
 968        mm->hiwater_rss = get_mm_rss(mm);
 969        mm->hiwater_vm = mm->total_vm;
 970
 971        if (mm->binfmt && !try_module_get(mm->binfmt->module))
 972                goto free_pt;
 973
 974        return mm;
 975
 976free_pt:
 977        /* don't put binfmt in mmput, we haven't got module yet */
 978        mm->binfmt = NULL;
 979        mmput(mm);
 980
 981fail_nomem:
 982        return NULL;
 983}
 984
 985static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
 986{
 987        struct mm_struct *mm, *oldmm;
 988        int retval;
 989
 990        tsk->min_flt = tsk->maj_flt = 0;
 991        tsk->nvcsw = tsk->nivcsw = 0;
 992#ifdef CONFIG_DETECT_HUNG_TASK
 993        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
 994#endif
 995
 996        tsk->mm = NULL;
 997        tsk->active_mm = NULL;
 998
 999        /*
1000         * Are we cloning a kernel thread?
1001         *
1002         * We need to steal a active VM for that..
1003         */
1004        oldmm = current->mm;
1005        if (!oldmm)
1006                return 0;
1007
1008        /* initialize the new vmacache entries */
1009        vmacache_flush(tsk);
1010
1011        if (clone_flags & CLONE_VM) {
1012                atomic_inc(&oldmm->mm_users);
1013                mm = oldmm;
1014                goto good_mm;
1015        }
1016
1017        retval = -ENOMEM;
1018        mm = dup_mm(tsk);
1019        if (!mm)
1020                goto fail_nomem;
1021
1022good_mm:
1023        tsk->mm = mm;
1024        tsk->active_mm = mm;
1025        return 0;
1026
1027fail_nomem:
1028        return retval;
1029}
1030
1031static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1032{
1033        struct fs_struct *fs = current->fs;
1034        if (clone_flags & CLONE_FS) {
1035                /* tsk->fs is already what we want */
1036                spin_lock(&fs->lock);
1037                if (fs->in_exec) {
1038                        spin_unlock(&fs->lock);
1039                        return -EAGAIN;
1040                }
1041                fs->users++;
1042                spin_unlock(&fs->lock);
1043                return 0;
1044        }
1045        tsk->fs = copy_fs_struct(fs);
1046        if (!tsk->fs)
1047                return -ENOMEM;
1048        return 0;
1049}
1050
1051static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1052{
1053        struct files_struct *oldf, *newf;
1054        int error = 0;
1055
1056        /*
1057         * A background process may not have any files ...
1058         */
1059        oldf = current->files;
1060        if (!oldf)
1061                goto out;
1062
1063        if (clone_flags & CLONE_FILES) {
1064                atomic_inc(&oldf->count);
1065                goto out;
1066        }
1067
1068        newf = dup_fd(oldf, &error);
1069        if (!newf)
1070                goto out;
1071
1072        tsk->files = newf;
1073        error = 0;
1074out:
1075        return error;
1076}
1077
1078static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1079{
1080#ifdef CONFIG_BLOCK
1081        struct io_context *ioc = current->io_context;
1082        struct io_context *new_ioc;
1083
1084        if (!ioc)
1085                return 0;
1086        /*
1087         * Share io context with parent, if CLONE_IO is set
1088         */
1089        if (clone_flags & CLONE_IO) {
1090                ioc_task_link(ioc);
1091                tsk->io_context = ioc;
1092        } else if (ioprio_valid(ioc->ioprio)) {
1093                new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1094                if (unlikely(!new_ioc))
1095                        return -ENOMEM;
1096
1097                new_ioc->ioprio = ioc->ioprio;
1098                put_io_context(new_ioc);
1099        }
1100#endif
1101        return 0;
1102}
1103
1104static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1105{
1106        struct sighand_struct *sig;
1107
1108        if (clone_flags & CLONE_SIGHAND) {
1109                atomic_inc(&current->sighand->count);
1110                return 0;
1111        }
1112        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1113        rcu_assign_pointer(tsk->sighand, sig);
1114        if (!sig)
1115                return -ENOMEM;
1116
1117        atomic_set(&sig->count, 1);
1118        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1119        return 0;
1120}
1121
1122void __cleanup_sighand(struct sighand_struct *sighand)
1123{
1124        if (atomic_dec_and_test(&sighand->count)) {
1125                signalfd_cleanup(sighand);
1126                /*
1127                 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1128                 * without an RCU grace period, see __lock_task_sighand().
1129                 */
1130                kmem_cache_free(sighand_cachep, sighand);
1131        }
1132}
1133
1134/*
1135 * Initialize POSIX timer handling for a thread group.
1136 */
1137static void posix_cpu_timers_init_group(struct signal_struct *sig)
1138{
1139        unsigned long cpu_limit;
1140
1141        cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1142        if (cpu_limit != RLIM_INFINITY) {
1143                sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1144                sig->cputimer.running = true;
1145        }
1146
1147        /* The timer lists. */
1148        INIT_LIST_HEAD(&sig->cpu_timers[0]);
1149        INIT_LIST_HEAD(&sig->cpu_timers[1]);
1150        INIT_LIST_HEAD(&sig->cpu_timers[2]);
1151}
1152
1153static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1154{
1155        struct signal_struct *sig;
1156
1157        if (clone_flags & CLONE_THREAD)
1158                return 0;
1159
1160        sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1161        tsk->signal = sig;
1162        if (!sig)
1163                return -ENOMEM;
1164
1165        sig->nr_threads = 1;
1166        atomic_set(&sig->live, 1);
1167        atomic_set(&sig->sigcnt, 1);
1168
1169        /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1170        sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1171        tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1172
1173        init_waitqueue_head(&sig->wait_chldexit);
1174        sig->curr_target = tsk;
1175        init_sigpending(&sig->shared_pending);
1176        INIT_LIST_HEAD(&sig->posix_timers);
1177        seqlock_init(&sig->stats_lock);
1178        prev_cputime_init(&sig->prev_cputime);
1179
1180        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1181        sig->real_timer.function = it_real_fn;
1182
1183        task_lock(current->group_leader);
1184        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1185        task_unlock(current->group_leader);
1186
1187        posix_cpu_timers_init_group(sig);
1188
1189        tty_audit_fork(sig);
1190        sched_autogroup_fork(sig);
1191
1192        sig->oom_score_adj = current->signal->oom_score_adj;
1193        sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1194
1195        sig->has_child_subreaper = current->signal->has_child_subreaper ||
1196                                   current->signal->is_child_subreaper;
1197
1198        mutex_init(&sig->cred_guard_mutex);
1199
1200        return 0;
1201}
1202
1203static void copy_seccomp(struct task_struct *p)
1204{
1205#ifdef CONFIG_SECCOMP
1206        /*
1207         * Must be called with sighand->lock held, which is common to
1208         * all threads in the group. Holding cred_guard_mutex is not
1209         * needed because this new task is not yet running and cannot
1210         * be racing exec.
1211         */
1212        assert_spin_locked(&current->sighand->siglock);
1213
1214        /* Ref-count the new filter user, and assign it. */
1215        get_seccomp_filter(current);
1216        p->seccomp = current->seccomp;
1217
1218        /*
1219         * Explicitly enable no_new_privs here in case it got set
1220         * between the task_struct being duplicated and holding the
1221         * sighand lock. The seccomp state and nnp must be in sync.
1222         */
1223        if (task_no_new_privs(current))
1224                task_set_no_new_privs(p);
1225
1226        /*
1227         * If the parent gained a seccomp mode after copying thread
1228         * flags and between before we held the sighand lock, we have
1229         * to manually enable the seccomp thread flag here.
1230         */
1231        if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1232                set_tsk_thread_flag(p, TIF_SECCOMP);
1233#endif
1234}
1235
1236SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1237{
1238        current->clear_child_tid = tidptr;
1239
1240        return task_pid_vnr(current);
1241}
1242
1243static void rt_mutex_init_task(struct task_struct *p)
1244{
1245        raw_spin_lock_init(&p->pi_lock);
1246#ifdef CONFIG_RT_MUTEXES
1247        p->pi_waiters = RB_ROOT;
1248        p->pi_waiters_leftmost = NULL;
1249        p->pi_blocked_on = NULL;
1250#endif
1251}
1252
1253/*
1254 * Initialize POSIX timer handling for a single task.
1255 */
1256static void posix_cpu_timers_init(struct task_struct *tsk)
1257{
1258        tsk->cputime_expires.prof_exp = 0;
1259        tsk->cputime_expires.virt_exp = 0;
1260        tsk->cputime_expires.sched_exp = 0;
1261        INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1262        INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1263        INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1264}
1265
1266static inline void
1267init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1268{
1269         task->pids[type].pid = pid;
1270}
1271
1272/*
1273 * This creates a new process as a copy of the old one,
1274 * but does not actually start it yet.
1275 *
1276 * It copies the registers, and all the appropriate
1277 * parts of the process environment (as per the clone
1278 * flags). The actual kick-off is left to the caller.
1279 */
1280static struct task_struct *copy_process(unsigned long clone_flags,
1281                                        unsigned long stack_start,
1282                                        unsigned long stack_size,
1283                                        int __user *child_tidptr,
1284                                        struct pid *pid,
1285                                        int trace,
1286                                        unsigned long tls,
1287                                        int node)
1288{
1289        int retval;
1290        struct task_struct *p;
1291
1292        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1293                return ERR_PTR(-EINVAL);
1294
1295        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1296                return ERR_PTR(-EINVAL);
1297
1298        /*
1299         * Thread groups must share signals as well, and detached threads
1300         * can only be started up within the thread group.
1301         */
1302        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1303                return ERR_PTR(-EINVAL);
1304
1305        /*
1306         * Shared signal handlers imply shared VM. By way of the above,
1307         * thread groups also imply shared VM. Blocking this case allows
1308         * for various simplifications in other code.
1309         */
1310        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1311                return ERR_PTR(-EINVAL);
1312
1313        /*
1314         * Siblings of global init remain as zombies on exit since they are
1315         * not reaped by their parent (swapper). To solve this and to avoid
1316         * multi-rooted process trees, prevent global and container-inits
1317         * from creating siblings.
1318         */
1319        if ((clone_flags & CLONE_PARENT) &&
1320                                current->signal->flags & SIGNAL_UNKILLABLE)
1321                return ERR_PTR(-EINVAL);
1322
1323        /*
1324         * If the new process will be in a different pid or user namespace
1325         * do not allow it to share a thread group with the forking task.
1326         */
1327        if (clone_flags & CLONE_THREAD) {
1328                if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1329                    (task_active_pid_ns(current) !=
1330                                current->nsproxy->pid_ns_for_children))
1331                        return ERR_PTR(-EINVAL);
1332        }
1333
1334        retval = security_task_create(clone_flags);
1335        if (retval)
1336                goto fork_out;
1337
1338        retval = -ENOMEM;
1339        p = dup_task_struct(current, node);
1340        if (!p)
1341                goto fork_out;
1342
1343        ftrace_graph_init_task(p);
1344
1345        rt_mutex_init_task(p);
1346
1347#ifdef CONFIG_PROVE_LOCKING
1348        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1349        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1350#endif
1351        retval = -EAGAIN;
1352        if (atomic_read(&p->real_cred->user->processes) >=
1353                        task_rlimit(p, RLIMIT_NPROC)) {
1354                if (p->real_cred->user != INIT_USER &&
1355                    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1356                        goto bad_fork_free;
1357        }
1358        current->flags &= ~PF_NPROC_EXCEEDED;
1359
1360        retval = copy_creds(p, clone_flags);
1361        if (retval < 0)
1362                goto bad_fork_free;
1363
1364        /*
1365         * If multiple threads are within copy_process(), then this check
1366         * triggers too late. This doesn't hurt, the check is only there
1367         * to stop root fork bombs.
1368         */
1369        retval = -EAGAIN;
1370        if (nr_threads >= max_threads)
1371                goto bad_fork_cleanup_count;
1372
1373        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1374        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1375        p->flags |= PF_FORKNOEXEC;
1376        INIT_LIST_HEAD(&p->children);
1377        INIT_LIST_HEAD(&p->sibling);
1378        rcu_copy_process(p);
1379        p->vfork_done = NULL;
1380        spin_lock_init(&p->alloc_lock);
1381
1382        init_sigpending(&p->pending);
1383
1384        p->utime = p->stime = p->gtime = 0;
1385        p->utimescaled = p->stimescaled = 0;
1386        prev_cputime_init(&p->prev_cputime);
1387
1388#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1389        seqcount_init(&p->vtime_seqcount);
1390        p->vtime_snap = 0;
1391        p->vtime_snap_whence = VTIME_INACTIVE;
1392#endif
1393
1394#if defined(SPLIT_RSS_COUNTING)
1395        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1396#endif
1397
1398        p->default_timer_slack_ns = current->timer_slack_ns;
1399
1400        task_io_accounting_init(&p->ioac);
1401        acct_clear_integrals(p);
1402
1403        posix_cpu_timers_init(p);
1404
1405        p->start_time = ktime_get_ns();
1406        p->real_start_time = ktime_get_boot_ns();
1407        p->io_context = NULL;
1408        p->audit_context = NULL;
1409        threadgroup_change_begin(current);
1410        cgroup_fork(p);
1411#ifdef CONFIG_NUMA
1412        p->mempolicy = mpol_dup(p->mempolicy);
1413        if (IS_ERR(p->mempolicy)) {
1414                retval = PTR_ERR(p->mempolicy);
1415                p->mempolicy = NULL;
1416                goto bad_fork_cleanup_threadgroup_lock;
1417        }
1418#endif
1419#ifdef CONFIG_CPUSETS
1420        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1421        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1422        seqcount_init(&p->mems_allowed_seq);
1423#endif
1424#ifdef CONFIG_TRACE_IRQFLAGS
1425        p->irq_events = 0;
1426        p->hardirqs_enabled = 0;
1427        p->hardirq_enable_ip = 0;
1428        p->hardirq_enable_event = 0;
1429        p->hardirq_disable_ip = _THIS_IP_;
1430        p->hardirq_disable_event = 0;
1431        p->softirqs_enabled = 1;
1432        p->softirq_enable_ip = _THIS_IP_;
1433        p->softirq_enable_event = 0;
1434        p->softirq_disable_ip = 0;
1435        p->softirq_disable_event = 0;
1436        p->hardirq_context = 0;
1437        p->softirq_context = 0;
1438#endif
1439
1440        p->pagefault_disabled = 0;
1441
1442#ifdef CONFIG_LOCKDEP
1443        p->lockdep_depth = 0; /* no locks held yet */
1444        p->curr_chain_key = 0;
1445        p->lockdep_recursion = 0;
1446#endif
1447
1448#ifdef CONFIG_DEBUG_MUTEXES
1449        p->blocked_on = NULL; /* not blocked yet */
1450#endif
1451#ifdef CONFIG_BCACHE
1452        p->sequential_io        = 0;
1453        p->sequential_io_avg    = 0;
1454#endif
1455
1456        /* Perform scheduler related setup. Assign this task to a CPU. */
1457        retval = sched_fork(clone_flags, p);
1458        if (retval)
1459                goto bad_fork_cleanup_policy;
1460
1461        retval = perf_event_init_task(p);
1462        if (retval)
1463                goto bad_fork_cleanup_policy;
1464        retval = audit_alloc(p);
1465        if (retval)
1466                goto bad_fork_cleanup_perf;
1467        /* copy all the process information */
1468        shm_init_task(p);
1469        retval = copy_semundo(clone_flags, p);
1470        if (retval)
1471                goto bad_fork_cleanup_audit;
1472        retval = copy_files(clone_flags, p);
1473        if (retval)
1474                goto bad_fork_cleanup_semundo;
1475        retval = copy_fs(clone_flags, p);
1476        if (retval)
1477                goto bad_fork_cleanup_files;
1478        retval = copy_sighand(clone_flags, p);
1479        if (retval)
1480                goto bad_fork_cleanup_fs;
1481        retval = copy_signal(clone_flags, p);
1482        if (retval)
1483                goto bad_fork_cleanup_sighand;
1484        retval = copy_mm(clone_flags, p);
1485        if (retval)
1486                goto bad_fork_cleanup_signal;
1487        retval = copy_namespaces(clone_flags, p);
1488        if (retval)
1489                goto bad_fork_cleanup_mm;
1490        retval = copy_io(clone_flags, p);
1491        if (retval)
1492                goto bad_fork_cleanup_namespaces;
1493        retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1494        if (retval)
1495                goto bad_fork_cleanup_io;
1496
1497        if (pid != &init_struct_pid) {
1498                pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1499                if (IS_ERR(pid)) {
1500                        retval = PTR_ERR(pid);
1501                        goto bad_fork_cleanup_thread;
1502                }
1503        }
1504
1505        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1506        /*
1507         * Clear TID on mm_release()?
1508         */
1509        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1510#ifdef CONFIG_BLOCK
1511        p->plug = NULL;
1512#endif
1513#ifdef CONFIG_FUTEX
1514        p->robust_list = NULL;
1515#ifdef CONFIG_COMPAT
1516        p->compat_robust_list = NULL;
1517#endif
1518        INIT_LIST_HEAD(&p->pi_state_list);
1519        p->pi_state_cache = NULL;
1520#endif
1521        /*
1522         * sigaltstack should be cleared when sharing the same VM
1523         */
1524        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1525                sas_ss_reset(p);
1526
1527        /*
1528         * Syscall tracing and stepping should be turned off in the
1529         * child regardless of CLONE_PTRACE.
1530         */
1531        user_disable_single_step(p);
1532        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1533#ifdef TIF_SYSCALL_EMU
1534        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1535#endif
1536        clear_all_latency_tracing(p);
1537
1538        /* ok, now we should be set up.. */
1539        p->pid = pid_nr(pid);
1540        if (clone_flags & CLONE_THREAD) {
1541                p->exit_signal = -1;
1542                p->group_leader = current->group_leader;
1543                p->tgid = current->tgid;
1544        } else {
1545                if (clone_flags & CLONE_PARENT)
1546                        p->exit_signal = current->group_leader->exit_signal;
1547                else
1548                        p->exit_signal = (clone_flags & CSIGNAL);
1549                p->group_leader = p;
1550                p->tgid = p->pid;
1551        }
1552
1553        p->nr_dirtied = 0;
1554        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1555        p->dirty_paused_when = 0;
1556
1557        p->pdeath_signal = 0;
1558        INIT_LIST_HEAD(&p->thread_group);
1559        p->task_works = NULL;
1560
1561        /*
1562         * Ensure that the cgroup subsystem policies allow the new process to be
1563         * forked. It should be noted the the new process's css_set can be changed
1564         * between here and cgroup_post_fork() if an organisation operation is in
1565         * progress.
1566         */
1567        retval = cgroup_can_fork(p);
1568        if (retval)
1569                goto bad_fork_free_pid;
1570
1571        /*
1572         * Make it visible to the rest of the system, but dont wake it up yet.
1573         * Need tasklist lock for parent etc handling!
1574         */
1575        write_lock_irq(&tasklist_lock);
1576
1577        /* CLONE_PARENT re-uses the old parent */
1578        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1579                p->real_parent = current->real_parent;
1580                p->parent_exec_id = current->parent_exec_id;
1581        } else {
1582                p->real_parent = current;
1583                p->parent_exec_id = current->self_exec_id;
1584        }
1585
1586        spin_lock(&current->sighand->siglock);
1587
1588        /*
1589         * Copy seccomp details explicitly here, in case they were changed
1590         * before holding sighand lock.
1591         */
1592        copy_seccomp(p);
1593
1594        /*
1595         * Process group and session signals need to be delivered to just the
1596         * parent before the fork or both the parent and the child after the
1597         * fork. Restart if a signal comes in before we add the new process to
1598         * it's process group.
1599         * A fatal signal pending means that current will exit, so the new
1600         * thread can't slip out of an OOM kill (or normal SIGKILL).
1601        */
1602        recalc_sigpending();
1603        if (signal_pending(current)) {
1604                spin_unlock(&current->sighand->siglock);
1605                write_unlock_irq(&tasklist_lock);
1606                retval = -ERESTARTNOINTR;
1607                goto bad_fork_cancel_cgroup;
1608        }
1609
1610        if (likely(p->pid)) {
1611                ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1612
1613                init_task_pid(p, PIDTYPE_PID, pid);
1614                if (thread_group_leader(p)) {
1615                        init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1616                        init_task_pid(p, PIDTYPE_SID, task_session(current));
1617
1618                        if (is_child_reaper(pid)) {
1619                                ns_of_pid(pid)->child_reaper = p;
1620                                p->signal->flags |= SIGNAL_UNKILLABLE;
1621                        }
1622
1623                        p->signal->leader_pid = pid;
1624                        p->signal->tty = tty_kref_get(current->signal->tty);
1625                        list_add_tail(&p->sibling, &p->real_parent->children);
1626                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
1627                        attach_pid(p, PIDTYPE_PGID);
1628                        attach_pid(p, PIDTYPE_SID);
1629                        __this_cpu_inc(process_counts);
1630                } else {
1631                        current->signal->nr_threads++;
1632                        atomic_inc(&current->signal->live);
1633                        atomic_inc(&current->signal->sigcnt);
1634                        list_add_tail_rcu(&p->thread_group,
1635                                          &p->group_leader->thread_group);
1636                        list_add_tail_rcu(&p->thread_node,
1637                                          &p->signal->thread_head);
1638                }
1639                attach_pid(p, PIDTYPE_PID);
1640                nr_threads++;
1641        }
1642
1643        total_forks++;
1644        spin_unlock(&current->sighand->siglock);
1645        syscall_tracepoint_update(p);
1646        write_unlock_irq(&tasklist_lock);
1647
1648        proc_fork_connector(p);
1649        cgroup_post_fork(p);
1650        threadgroup_change_end(current);
1651        perf_event_fork(p);
1652
1653        trace_task_newtask(p, clone_flags);
1654        uprobe_copy_process(p, clone_flags);
1655
1656        return p;
1657
1658bad_fork_cancel_cgroup:
1659        cgroup_cancel_fork(p);
1660bad_fork_free_pid:
1661        if (pid != &init_struct_pid)
1662                free_pid(pid);
1663bad_fork_cleanup_thread:
1664        exit_thread(p);
1665bad_fork_cleanup_io:
1666        if (p->io_context)
1667                exit_io_context(p);
1668bad_fork_cleanup_namespaces:
1669        exit_task_namespaces(p);
1670bad_fork_cleanup_mm:
1671        if (p->mm)
1672                mmput(p->mm);
1673bad_fork_cleanup_signal:
1674        if (!(clone_flags & CLONE_THREAD))
1675                free_signal_struct(p->signal);
1676bad_fork_cleanup_sighand:
1677        __cleanup_sighand(p->sighand);
1678bad_fork_cleanup_fs:
1679        exit_fs(p); /* blocking */
1680bad_fork_cleanup_files:
1681        exit_files(p); /* blocking */
1682bad_fork_cleanup_semundo:
1683        exit_sem(p);
1684bad_fork_cleanup_audit:
1685        audit_free(p);
1686bad_fork_cleanup_perf:
1687        perf_event_free_task(p);
1688bad_fork_cleanup_policy:
1689#ifdef CONFIG_NUMA
1690        mpol_put(p->mempolicy);
1691bad_fork_cleanup_threadgroup_lock:
1692#endif
1693        threadgroup_change_end(current);
1694        delayacct_tsk_free(p);
1695bad_fork_cleanup_count:
1696        atomic_dec(&p->cred->user->processes);
1697        exit_creds(p);
1698bad_fork_free:
1699        free_task(p);
1700fork_out:
1701        return ERR_PTR(retval);
1702}
1703
1704static inline void init_idle_pids(struct pid_link *links)
1705{
1706        enum pid_type type;
1707
1708        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1709                INIT_HLIST_NODE(&links[type].node); /* not really needed */
1710                links[type].pid = &init_struct_pid;
1711        }
1712}
1713
1714struct task_struct *fork_idle(int cpu)
1715{
1716        struct task_struct *task;
1717        task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1718                            cpu_to_node(cpu));
1719        if (!IS_ERR(task)) {
1720                init_idle_pids(task->pids);
1721                init_idle(task, cpu);
1722        }
1723
1724        return task;
1725}
1726
1727/*
1728 *  Ok, this is the main fork-routine.
1729 *
1730 * It copies the process, and if successful kick-starts
1731 * it and waits for it to finish using the VM if required.
1732 */
1733long _do_fork(unsigned long clone_flags,
1734              unsigned long stack_start,
1735              unsigned long stack_size,
1736              int __user *parent_tidptr,
1737              int __user *child_tidptr,
1738              unsigned long tls)
1739{
1740        struct task_struct *p;
1741        int trace = 0;
1742        long nr;
1743
1744        /*
1745         * Determine whether and which event to report to ptracer.  When
1746         * called from kernel_thread or CLONE_UNTRACED is explicitly
1747         * requested, no event is reported; otherwise, report if the event
1748         * for the type of forking is enabled.
1749         */
1750        if (!(clone_flags & CLONE_UNTRACED)) {
1751                if (clone_flags & CLONE_VFORK)
1752                        trace = PTRACE_EVENT_VFORK;
1753                else if ((clone_flags & CSIGNAL) != SIGCHLD)
1754                        trace = PTRACE_EVENT_CLONE;
1755                else
1756                        trace = PTRACE_EVENT_FORK;
1757
1758                if (likely(!ptrace_event_enabled(current, trace)))
1759                        trace = 0;
1760        }
1761
1762        p = copy_process(clone_flags, stack_start, stack_size,
1763                         child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1764        /*
1765         * Do this prior waking up the new thread - the thread pointer
1766         * might get invalid after that point, if the thread exits quickly.
1767         */
1768        if (!IS_ERR(p)) {
1769                struct completion vfork;
1770                struct pid *pid;
1771
1772                trace_sched_process_fork(current, p);
1773
1774                pid = get_task_pid(p, PIDTYPE_PID);
1775                nr = pid_vnr(pid);
1776
1777                if (clone_flags & CLONE_PARENT_SETTID)
1778                        put_user(nr, parent_tidptr);
1779
1780                if (clone_flags & CLONE_VFORK) {
1781                        p->vfork_done = &vfork;
1782                        init_completion(&vfork);
1783                        get_task_struct(p);
1784                }
1785
1786                wake_up_new_task(p);
1787
1788                /* forking complete and child started to run, tell ptracer */
1789                if (unlikely(trace))
1790                        ptrace_event_pid(trace, pid);
1791
1792                if (clone_flags & CLONE_VFORK) {
1793                        if (!wait_for_vfork_done(p, &vfork))
1794                                ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1795                }
1796
1797                put_pid(pid);
1798        } else {
1799                nr = PTR_ERR(p);
1800        }
1801        return nr;
1802}
1803
1804#ifndef CONFIG_HAVE_COPY_THREAD_TLS
1805/* For compatibility with architectures that call do_fork directly rather than
1806 * using the syscall entry points below. */
1807long do_fork(unsigned long clone_flags,
1808              unsigned long stack_start,
1809              unsigned long stack_size,
1810              int __user *parent_tidptr,
1811              int __user *child_tidptr)
1812{
1813        return _do_fork(clone_flags, stack_start, stack_size,
1814                        parent_tidptr, child_tidptr, 0);
1815}
1816#endif
1817
1818/*
1819 * Create a kernel thread.
1820 */
1821pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1822{
1823        return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1824                (unsigned long)arg, NULL, NULL, 0);
1825}
1826
1827#ifdef __ARCH_WANT_SYS_FORK
1828SYSCALL_DEFINE0(fork)
1829{
1830#ifdef CONFIG_MMU
1831        return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1832#else
1833        /* can not support in nommu mode */
1834        return -EINVAL;
1835#endif
1836}
1837#endif
1838
1839#ifdef __ARCH_WANT_SYS_VFORK
1840SYSCALL_DEFINE0(vfork)
1841{
1842        return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1843                        0, NULL, NULL, 0);
1844}
1845#endif
1846
1847#ifdef __ARCH_WANT_SYS_CLONE
1848#ifdef CONFIG_CLONE_BACKWARDS
1849SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1850                 int __user *, parent_tidptr,
1851                 unsigned long, tls,
1852                 int __user *, child_tidptr)
1853#elif defined(CONFIG_CLONE_BACKWARDS2)
1854SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1855                 int __user *, parent_tidptr,
1856                 int __user *, child_tidptr,
1857                 unsigned long, tls)
1858#elif defined(CONFIG_CLONE_BACKWARDS3)
1859SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1860                int, stack_size,
1861                int __user *, parent_tidptr,
1862                int __user *, child_tidptr,
1863                unsigned long, tls)
1864#else
1865SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1866                 int __user *, parent_tidptr,
1867                 int __user *, child_tidptr,
1868                 unsigned long, tls)
1869#endif
1870{
1871        return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1872}
1873#endif
1874
1875#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1876#define ARCH_MIN_MMSTRUCT_ALIGN 0
1877#endif
1878
1879static void sighand_ctor(void *data)
1880{
1881        struct sighand_struct *sighand = data;
1882
1883        spin_lock_init(&sighand->siglock);
1884        init_waitqueue_head(&sighand->signalfd_wqh);
1885}
1886
1887void __init proc_caches_init(void)
1888{
1889        sighand_cachep = kmem_cache_create("sighand_cache",
1890                        sizeof(struct sighand_struct), 0,
1891                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1892                        SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1893        signal_cachep = kmem_cache_create("signal_cache",
1894                        sizeof(struct signal_struct), 0,
1895                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1896                        NULL);
1897        files_cachep = kmem_cache_create("files_cache",
1898                        sizeof(struct files_struct), 0,
1899                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1900                        NULL);
1901        fs_cachep = kmem_cache_create("fs_cache",
1902                        sizeof(struct fs_struct), 0,
1903                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1904                        NULL);
1905        /*
1906         * FIXME! The "sizeof(struct mm_struct)" currently includes the
1907         * whole struct cpumask for the OFFSTACK case. We could change
1908         * this to *only* allocate as much of it as required by the
1909         * maximum number of CPU's we can ever have.  The cpumask_allocation
1910         * is at the end of the structure, exactly for that reason.
1911         */
1912        mm_cachep = kmem_cache_create("mm_struct",
1913                        sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1914                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1915                        NULL);
1916        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1917        mmap_init();
1918        nsproxy_cache_init();
1919}
1920
1921/*
1922 * Check constraints on flags passed to the unshare system call.
1923 */
1924static int check_unshare_flags(unsigned long unshare_flags)
1925{
1926        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1927                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1928                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1929                                CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1930                return -EINVAL;
1931        /*
1932         * Not implemented, but pretend it works if there is nothing
1933         * to unshare.  Note that unsharing the address space or the
1934         * signal handlers also need to unshare the signal queues (aka
1935         * CLONE_THREAD).
1936         */
1937        if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1938                if (!thread_group_empty(current))
1939                        return -EINVAL;
1940        }
1941        if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1942                if (atomic_read(&current->sighand->count) > 1)
1943                        return -EINVAL;
1944        }
1945        if (unshare_flags & CLONE_VM) {
1946                if (!current_is_single_threaded())
1947                        return -EINVAL;
1948        }
1949
1950        return 0;
1951}
1952
1953/*
1954 * Unshare the filesystem structure if it is being shared
1955 */
1956static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1957{
1958        struct fs_struct *fs = current->fs;
1959
1960        if (!(unshare_flags & CLONE_FS) || !fs)
1961                return 0;
1962
1963        /* don't need lock here; in the worst case we'll do useless copy */
1964        if (fs->users == 1)
1965                return 0;
1966
1967        *new_fsp = copy_fs_struct(fs);
1968        if (!*new_fsp)
1969                return -ENOMEM;
1970
1971        return 0;
1972}
1973
1974/*
1975 * Unshare file descriptor table if it is being shared
1976 */
1977static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1978{
1979        struct files_struct *fd = current->files;
1980        int error = 0;
1981
1982        if ((unshare_flags & CLONE_FILES) &&
1983            (fd && atomic_read(&fd->count) > 1)) {
1984                *new_fdp = dup_fd(fd, &error);
1985                if (!*new_fdp)
1986                        return error;
1987        }
1988
1989        return 0;
1990}
1991
1992/*
1993 * unshare allows a process to 'unshare' part of the process
1994 * context which was originally shared using clone.  copy_*
1995 * functions used by do_fork() cannot be used here directly
1996 * because they modify an inactive task_struct that is being
1997 * constructed. Here we are modifying the current, active,
1998 * task_struct.
1999 */
2000SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2001{
2002        struct fs_struct *fs, *new_fs = NULL;
2003        struct files_struct *fd, *new_fd = NULL;
2004        struct cred *new_cred = NULL;
2005        struct nsproxy *new_nsproxy = NULL;
2006        int do_sysvsem = 0;
2007        int err;
2008
2009        /*
2010         * If unsharing a user namespace must also unshare the thread group
2011         * and unshare the filesystem root and working directories.
2012         */
2013        if (unshare_flags & CLONE_NEWUSER)
2014                unshare_flags |= CLONE_THREAD | CLONE_FS;
2015        /*
2016         * If unsharing vm, must also unshare signal handlers.
2017         */
2018        if (unshare_flags & CLONE_VM)
2019                unshare_flags |= CLONE_SIGHAND;
2020        /*
2021         * If unsharing a signal handlers, must also unshare the signal queues.
2022         */
2023        if (unshare_flags & CLONE_SIGHAND)
2024                unshare_flags |= CLONE_THREAD;
2025        /*
2026         * If unsharing namespace, must also unshare filesystem information.
2027         */
2028        if (unshare_flags & CLONE_NEWNS)
2029                unshare_flags |= CLONE_FS;
2030
2031        err = check_unshare_flags(unshare_flags);
2032        if (err)
2033                goto bad_unshare_out;
2034        /*
2035         * CLONE_NEWIPC must also detach from the undolist: after switching
2036         * to a new ipc namespace, the semaphore arrays from the old
2037         * namespace are unreachable.
2038         */
2039        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2040                do_sysvsem = 1;
2041        err = unshare_fs(unshare_flags, &new_fs);
2042        if (err)
2043                goto bad_unshare_out;
2044        err = unshare_fd(unshare_flags, &new_fd);
2045        if (err)
2046                goto bad_unshare_cleanup_fs;
2047        err = unshare_userns(unshare_flags, &new_cred);
2048        if (err)
2049                goto bad_unshare_cleanup_fd;
2050        err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2051                                         new_cred, new_fs);
2052        if (err)
2053                goto bad_unshare_cleanup_cred;
2054
2055        if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2056                if (do_sysvsem) {
2057                        /*
2058                         * CLONE_SYSVSEM is equivalent to sys_exit().
2059                         */
2060                        exit_sem(current);
2061                }
2062                if (unshare_flags & CLONE_NEWIPC) {
2063                        /* Orphan segments in old ns (see sem above). */
2064                        exit_shm(current);
2065                        shm_init_task(current);
2066                }
2067
2068                if (new_nsproxy)
2069                        switch_task_namespaces(current, new_nsproxy);
2070
2071                task_lock(current);
2072
2073                if (new_fs) {
2074                        fs = current->fs;
2075                        spin_lock(&fs->lock);
2076                        current->fs = new_fs;
2077                        if (--fs->users)
2078                                new_fs = NULL;
2079                        else
2080                                new_fs = fs;
2081                        spin_unlock(&fs->lock);
2082                }
2083
2084                if (new_fd) {
2085                        fd = current->files;
2086                        current->files = new_fd;
2087                        new_fd = fd;
2088                }
2089
2090                task_unlock(current);
2091
2092                if (new_cred) {
2093                        /* Install the new user namespace */
2094                        commit_creds(new_cred);
2095                        new_cred = NULL;
2096                }
2097        }
2098
2099bad_unshare_cleanup_cred:
2100        if (new_cred)
2101                put_cred(new_cred);
2102bad_unshare_cleanup_fd:
2103        if (new_fd)
2104                put_files_struct(new_fd);
2105
2106bad_unshare_cleanup_fs:
2107        if (new_fs)
2108                free_fs_struct(new_fs);
2109
2110bad_unshare_out:
2111        return err;
2112}
2113
2114/*
2115 *      Helper to unshare the files of the current task.
2116 *      We don't want to expose copy_files internals to
2117 *      the exec layer of the kernel.
2118 */
2119
2120int unshare_files(struct files_struct **displaced)
2121{
2122        struct task_struct *task = current;
2123        struct files_struct *copy = NULL;
2124        int error;
2125
2126        error = unshare_fd(CLONE_FILES, &copy);
2127        if (error || !copy) {
2128                *displaced = NULL;
2129                return error;
2130        }
2131        *displaced = task->files;
2132        task_lock(task);
2133        task->files = copy;
2134        task_unlock(task);
2135        return 0;
2136}
2137
2138int sysctl_max_threads(struct ctl_table *table, int write,
2139                       void __user *buffer, size_t *lenp, loff_t *ppos)
2140{
2141        struct ctl_table t;
2142        int ret;
2143        int threads = max_threads;
2144        int min = MIN_THREADS;
2145        int max = MAX_THREADS;
2146
2147        t = *table;
2148        t.data = &threads;
2149        t.extra1 = &min;
2150        t.extra2 = &max;
2151
2152        ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2153        if (ret || !write)
2154                return ret;
2155
2156        set_max_threads(threads);
2157
2158        return 0;
2159}
2160