linux/kernel/sched/core.c
<<
>>
Prefs
   1/*
   2 *  kernel/sched/core.c
   3 *
   4 *  Kernel scheduler and related syscalls
   5 *
   6 *  Copyright (C) 1991-2002  Linus Torvalds
   7 *
   8 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
   9 *              make semaphores SMP safe
  10 *  1998-11-19  Implemented schedule_timeout() and related stuff
  11 *              by Andrea Arcangeli
  12 *  2002-01-04  New ultra-scalable O(1) scheduler by Ingo Molnar:
  13 *              hybrid priority-list and round-robin design with
  14 *              an array-switch method of distributing timeslices
  15 *              and per-CPU runqueues.  Cleanups and useful suggestions
  16 *              by Davide Libenzi, preemptible kernel bits by Robert Love.
  17 *  2003-09-03  Interactivity tuning by Con Kolivas.
  18 *  2004-04-02  Scheduler domains code by Nick Piggin
  19 *  2007-04-15  Work begun on replacing all interactivity tuning with a
  20 *              fair scheduling design by Con Kolivas.
  21 *  2007-05-05  Load balancing (smp-nice) and other improvements
  22 *              by Peter Williams
  23 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
  24 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
  25 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26 *              Thomas Gleixner, Mike Kravetz
  27 */
  28
  29#include <linux/kasan.h>
  30#include <linux/mm.h>
  31#include <linux/module.h>
  32#include <linux/nmi.h>
  33#include <linux/init.h>
  34#include <linux/uaccess.h>
  35#include <linux/highmem.h>
  36#include <linux/mmu_context.h>
  37#include <linux/interrupt.h>
  38#include <linux/capability.h>
  39#include <linux/completion.h>
  40#include <linux/kernel_stat.h>
  41#include <linux/debug_locks.h>
  42#include <linux/perf_event.h>
  43#include <linux/security.h>
  44#include <linux/notifier.h>
  45#include <linux/profile.h>
  46#include <linux/freezer.h>
  47#include <linux/vmalloc.h>
  48#include <linux/blkdev.h>
  49#include <linux/delay.h>
  50#include <linux/pid_namespace.h>
  51#include <linux/smp.h>
  52#include <linux/threads.h>
  53#include <linux/timer.h>
  54#include <linux/rcupdate.h>
  55#include <linux/cpu.h>
  56#include <linux/cpuset.h>
  57#include <linux/percpu.h>
  58#include <linux/proc_fs.h>
  59#include <linux/seq_file.h>
  60#include <linux/sysctl.h>
  61#include <linux/syscalls.h>
  62#include <linux/times.h>
  63#include <linux/tsacct_kern.h>
  64#include <linux/kprobes.h>
  65#include <linux/delayacct.h>
  66#include <linux/unistd.h>
  67#include <linux/pagemap.h>
  68#include <linux/hrtimer.h>
  69#include <linux/tick.h>
  70#include <linux/ctype.h>
  71#include <linux/ftrace.h>
  72#include <linux/slab.h>
  73#include <linux/init_task.h>
  74#include <linux/context_tracking.h>
  75#include <linux/compiler.h>
  76#include <linux/frame.h>
  77
  78#include <asm/switch_to.h>
  79#include <asm/tlb.h>
  80#include <asm/irq_regs.h>
  81#include <asm/mutex.h>
  82#ifdef CONFIG_PARAVIRT
  83#include <asm/paravirt.h>
  84#endif
  85
  86#include "sched.h"
  87#include "../workqueue_internal.h"
  88#include "../smpboot.h"
  89
  90#define CREATE_TRACE_POINTS
  91#include <trace/events/sched.h>
  92
  93DEFINE_MUTEX(sched_domains_mutex);
  94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  95
  96static void update_rq_clock_task(struct rq *rq, s64 delta);
  97
  98void update_rq_clock(struct rq *rq)
  99{
 100        s64 delta;
 101
 102        lockdep_assert_held(&rq->lock);
 103
 104        if (rq->clock_skip_update & RQCF_ACT_SKIP)
 105                return;
 106
 107        delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
 108        if (delta < 0)
 109                return;
 110        rq->clock += delta;
 111        update_rq_clock_task(rq, delta);
 112}
 113
 114/*
 115 * Debugging: various feature bits
 116 */
 117
 118#define SCHED_FEAT(name, enabled)       \
 119        (1UL << __SCHED_FEAT_##name) * enabled |
 120
 121const_debug unsigned int sysctl_sched_features =
 122#include "features.h"
 123        0;
 124
 125#undef SCHED_FEAT
 126
 127/*
 128 * Number of tasks to iterate in a single balance run.
 129 * Limited because this is done with IRQs disabled.
 130 */
 131const_debug unsigned int sysctl_sched_nr_migrate = 32;
 132
 133/*
 134 * period over which we average the RT time consumption, measured
 135 * in ms.
 136 *
 137 * default: 1s
 138 */
 139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
 140
 141/*
 142 * period over which we measure -rt task cpu usage in us.
 143 * default: 1s
 144 */
 145unsigned int sysctl_sched_rt_period = 1000000;
 146
 147__read_mostly int scheduler_running;
 148
 149/*
 150 * part of the period that we allow rt tasks to run in us.
 151 * default: 0.95s
 152 */
 153int sysctl_sched_rt_runtime = 950000;
 154
 155/* cpus with isolated domains */
 156cpumask_var_t cpu_isolated_map;
 157
 158/*
 159 * this_rq_lock - lock this runqueue and disable interrupts.
 160 */
 161static struct rq *this_rq_lock(void)
 162        __acquires(rq->lock)
 163{
 164        struct rq *rq;
 165
 166        local_irq_disable();
 167        rq = this_rq();
 168        raw_spin_lock(&rq->lock);
 169
 170        return rq;
 171}
 172
 173/*
 174 * __task_rq_lock - lock the rq @p resides on.
 175 */
 176struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 177        __acquires(rq->lock)
 178{
 179        struct rq *rq;
 180
 181        lockdep_assert_held(&p->pi_lock);
 182
 183        for (;;) {
 184                rq = task_rq(p);
 185                raw_spin_lock(&rq->lock);
 186                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 187                        rf->cookie = lockdep_pin_lock(&rq->lock);
 188                        return rq;
 189                }
 190                raw_spin_unlock(&rq->lock);
 191
 192                while (unlikely(task_on_rq_migrating(p)))
 193                        cpu_relax();
 194        }
 195}
 196
 197/*
 198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 199 */
 200struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
 201        __acquires(p->pi_lock)
 202        __acquires(rq->lock)
 203{
 204        struct rq *rq;
 205
 206        for (;;) {
 207                raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
 208                rq = task_rq(p);
 209                raw_spin_lock(&rq->lock);
 210                /*
 211                 *      move_queued_task()              task_rq_lock()
 212                 *
 213                 *      ACQUIRE (rq->lock)
 214                 *      [S] ->on_rq = MIGRATING         [L] rq = task_rq()
 215                 *      WMB (__set_task_cpu())          ACQUIRE (rq->lock);
 216                 *      [S] ->cpu = new_cpu             [L] task_rq()
 217                 *                                      [L] ->on_rq
 218                 *      RELEASE (rq->lock)
 219                 *
 220                 * If we observe the old cpu in task_rq_lock, the acquire of
 221                 * the old rq->lock will fully serialize against the stores.
 222                 *
 223                 * If we observe the new cpu in task_rq_lock, the acquire will
 224                 * pair with the WMB to ensure we must then also see migrating.
 225                 */
 226                if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
 227                        rf->cookie = lockdep_pin_lock(&rq->lock);
 228                        return rq;
 229                }
 230                raw_spin_unlock(&rq->lock);
 231                raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
 232
 233                while (unlikely(task_on_rq_migrating(p)))
 234                        cpu_relax();
 235        }
 236}
 237
 238#ifdef CONFIG_SCHED_HRTICK
 239/*
 240 * Use HR-timers to deliver accurate preemption points.
 241 */
 242
 243static void hrtick_clear(struct rq *rq)
 244{
 245        if (hrtimer_active(&rq->hrtick_timer))
 246                hrtimer_cancel(&rq->hrtick_timer);
 247}
 248
 249/*
 250 * High-resolution timer tick.
 251 * Runs from hardirq context with interrupts disabled.
 252 */
 253static enum hrtimer_restart hrtick(struct hrtimer *timer)
 254{
 255        struct rq *rq = container_of(timer, struct rq, hrtick_timer);
 256
 257        WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
 258
 259        raw_spin_lock(&rq->lock);
 260        update_rq_clock(rq);
 261        rq->curr->sched_class->task_tick(rq, rq->curr, 1);
 262        raw_spin_unlock(&rq->lock);
 263
 264        return HRTIMER_NORESTART;
 265}
 266
 267#ifdef CONFIG_SMP
 268
 269static void __hrtick_restart(struct rq *rq)
 270{
 271        struct hrtimer *timer = &rq->hrtick_timer;
 272
 273        hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
 274}
 275
 276/*
 277 * called from hardirq (IPI) context
 278 */
 279static void __hrtick_start(void *arg)
 280{
 281        struct rq *rq = arg;
 282
 283        raw_spin_lock(&rq->lock);
 284        __hrtick_restart(rq);
 285        rq->hrtick_csd_pending = 0;
 286        raw_spin_unlock(&rq->lock);
 287}
 288
 289/*
 290 * Called to set the hrtick timer state.
 291 *
 292 * called with rq->lock held and irqs disabled
 293 */
 294void hrtick_start(struct rq *rq, u64 delay)
 295{
 296        struct hrtimer *timer = &rq->hrtick_timer;
 297        ktime_t time;
 298        s64 delta;
 299
 300        /*
 301         * Don't schedule slices shorter than 10000ns, that just
 302         * doesn't make sense and can cause timer DoS.
 303         */
 304        delta = max_t(s64, delay, 10000LL);
 305        time = ktime_add_ns(timer->base->get_time(), delta);
 306
 307        hrtimer_set_expires(timer, time);
 308
 309        if (rq == this_rq()) {
 310                __hrtick_restart(rq);
 311        } else if (!rq->hrtick_csd_pending) {
 312                smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
 313                rq->hrtick_csd_pending = 1;
 314        }
 315}
 316
 317#else
 318/*
 319 * Called to set the hrtick timer state.
 320 *
 321 * called with rq->lock held and irqs disabled
 322 */
 323void hrtick_start(struct rq *rq, u64 delay)
 324{
 325        /*
 326         * Don't schedule slices shorter than 10000ns, that just
 327         * doesn't make sense. Rely on vruntime for fairness.
 328         */
 329        delay = max_t(u64, delay, 10000LL);
 330        hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
 331                      HRTIMER_MODE_REL_PINNED);
 332}
 333#endif /* CONFIG_SMP */
 334
 335static void init_rq_hrtick(struct rq *rq)
 336{
 337#ifdef CONFIG_SMP
 338        rq->hrtick_csd_pending = 0;
 339
 340        rq->hrtick_csd.flags = 0;
 341        rq->hrtick_csd.func = __hrtick_start;
 342        rq->hrtick_csd.info = rq;
 343#endif
 344
 345        hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 346        rq->hrtick_timer.function = hrtick;
 347}
 348#else   /* CONFIG_SCHED_HRTICK */
 349static inline void hrtick_clear(struct rq *rq)
 350{
 351}
 352
 353static inline void init_rq_hrtick(struct rq *rq)
 354{
 355}
 356#endif  /* CONFIG_SCHED_HRTICK */
 357
 358/*
 359 * cmpxchg based fetch_or, macro so it works for different integer types
 360 */
 361#define fetch_or(ptr, mask)                                             \
 362        ({                                                              \
 363                typeof(ptr) _ptr = (ptr);                               \
 364                typeof(mask) _mask = (mask);                            \
 365                typeof(*_ptr) _old, _val = *_ptr;                       \
 366                                                                        \
 367                for (;;) {                                              \
 368                        _old = cmpxchg(_ptr, _val, _val | _mask);       \
 369                        if (_old == _val)                               \
 370                                break;                                  \
 371                        _val = _old;                                    \
 372                }                                                       \
 373        _old;                                                           \
 374})
 375
 376#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
 377/*
 378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 379 * this avoids any races wrt polling state changes and thereby avoids
 380 * spurious IPIs.
 381 */
 382static bool set_nr_and_not_polling(struct task_struct *p)
 383{
 384        struct thread_info *ti = task_thread_info(p);
 385        return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
 386}
 387
 388/*
 389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 390 *
 391 * If this returns true, then the idle task promises to call
 392 * sched_ttwu_pending() and reschedule soon.
 393 */
 394static bool set_nr_if_polling(struct task_struct *p)
 395{
 396        struct thread_info *ti = task_thread_info(p);
 397        typeof(ti->flags) old, val = READ_ONCE(ti->flags);
 398
 399        for (;;) {
 400                if (!(val & _TIF_POLLING_NRFLAG))
 401                        return false;
 402                if (val & _TIF_NEED_RESCHED)
 403                        return true;
 404                old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
 405                if (old == val)
 406                        break;
 407                val = old;
 408        }
 409        return true;
 410}
 411
 412#else
 413static bool set_nr_and_not_polling(struct task_struct *p)
 414{
 415        set_tsk_need_resched(p);
 416        return true;
 417}
 418
 419#ifdef CONFIG_SMP
 420static bool set_nr_if_polling(struct task_struct *p)
 421{
 422        return false;
 423}
 424#endif
 425#endif
 426
 427void wake_q_add(struct wake_q_head *head, struct task_struct *task)
 428{
 429        struct wake_q_node *node = &task->wake_q;
 430
 431        /*
 432         * Atomically grab the task, if ->wake_q is !nil already it means
 433         * its already queued (either by us or someone else) and will get the
 434         * wakeup due to that.
 435         *
 436         * This cmpxchg() implies a full barrier, which pairs with the write
 437         * barrier implied by the wakeup in wake_up_q().
 438         */
 439        if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
 440                return;
 441
 442        get_task_struct(task);
 443
 444        /*
 445         * The head is context local, there can be no concurrency.
 446         */
 447        *head->lastp = node;
 448        head->lastp = &node->next;
 449}
 450
 451void wake_up_q(struct wake_q_head *head)
 452{
 453        struct wake_q_node *node = head->first;
 454
 455        while (node != WAKE_Q_TAIL) {
 456                struct task_struct *task;
 457
 458                task = container_of(node, struct task_struct, wake_q);
 459                BUG_ON(!task);
 460                /* task can safely be re-inserted now */
 461                node = node->next;
 462                task->wake_q.next = NULL;
 463
 464                /*
 465                 * wake_up_process() implies a wmb() to pair with the queueing
 466                 * in wake_q_add() so as not to miss wakeups.
 467                 */
 468                wake_up_process(task);
 469                put_task_struct(task);
 470        }
 471}
 472
 473/*
 474 * resched_curr - mark rq's current task 'to be rescheduled now'.
 475 *
 476 * On UP this means the setting of the need_resched flag, on SMP it
 477 * might also involve a cross-CPU call to trigger the scheduler on
 478 * the target CPU.
 479 */
 480void resched_curr(struct rq *rq)
 481{
 482        struct task_struct *curr = rq->curr;
 483        int cpu;
 484
 485        lockdep_assert_held(&rq->lock);
 486
 487        if (test_tsk_need_resched(curr))
 488                return;
 489
 490        cpu = cpu_of(rq);
 491
 492        if (cpu == smp_processor_id()) {
 493                set_tsk_need_resched(curr);
 494                set_preempt_need_resched();
 495                return;
 496        }
 497
 498        if (set_nr_and_not_polling(curr))
 499                smp_send_reschedule(cpu);
 500        else
 501                trace_sched_wake_idle_without_ipi(cpu);
 502}
 503
 504void resched_cpu(int cpu)
 505{
 506        struct rq *rq = cpu_rq(cpu);
 507        unsigned long flags;
 508
 509        if (!raw_spin_trylock_irqsave(&rq->lock, flags))
 510                return;
 511        resched_curr(rq);
 512        raw_spin_unlock_irqrestore(&rq->lock, flags);
 513}
 514
 515#ifdef CONFIG_SMP
 516#ifdef CONFIG_NO_HZ_COMMON
 517/*
 518 * In the semi idle case, use the nearest busy cpu for migrating timers
 519 * from an idle cpu.  This is good for power-savings.
 520 *
 521 * We don't do similar optimization for completely idle system, as
 522 * selecting an idle cpu will add more delays to the timers than intended
 523 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 524 */
 525int get_nohz_timer_target(void)
 526{
 527        int i, cpu = smp_processor_id();
 528        struct sched_domain *sd;
 529
 530        if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
 531                return cpu;
 532
 533        rcu_read_lock();
 534        for_each_domain(cpu, sd) {
 535                for_each_cpu(i, sched_domain_span(sd)) {
 536                        if (cpu == i)
 537                                continue;
 538
 539                        if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
 540                                cpu = i;
 541                                goto unlock;
 542                        }
 543                }
 544        }
 545
 546        if (!is_housekeeping_cpu(cpu))
 547                cpu = housekeeping_any_cpu();
 548unlock:
 549        rcu_read_unlock();
 550        return cpu;
 551}
 552/*
 553 * When add_timer_on() enqueues a timer into the timer wheel of an
 554 * idle CPU then this timer might expire before the next timer event
 555 * which is scheduled to wake up that CPU. In case of a completely
 556 * idle system the next event might even be infinite time into the
 557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 558 * leaves the inner idle loop so the newly added timer is taken into
 559 * account when the CPU goes back to idle and evaluates the timer
 560 * wheel for the next timer event.
 561 */
 562static void wake_up_idle_cpu(int cpu)
 563{
 564        struct rq *rq = cpu_rq(cpu);
 565
 566        if (cpu == smp_processor_id())
 567                return;
 568
 569        if (set_nr_and_not_polling(rq->idle))
 570                smp_send_reschedule(cpu);
 571        else
 572                trace_sched_wake_idle_without_ipi(cpu);
 573}
 574
 575static bool wake_up_full_nohz_cpu(int cpu)
 576{
 577        /*
 578         * We just need the target to call irq_exit() and re-evaluate
 579         * the next tick. The nohz full kick at least implies that.
 580         * If needed we can still optimize that later with an
 581         * empty IRQ.
 582         */
 583        if (tick_nohz_full_cpu(cpu)) {
 584                if (cpu != smp_processor_id() ||
 585                    tick_nohz_tick_stopped())
 586                        tick_nohz_full_kick_cpu(cpu);
 587                return true;
 588        }
 589
 590        return false;
 591}
 592
 593void wake_up_nohz_cpu(int cpu)
 594{
 595        if (!wake_up_full_nohz_cpu(cpu))
 596                wake_up_idle_cpu(cpu);
 597}
 598
 599static inline bool got_nohz_idle_kick(void)
 600{
 601        int cpu = smp_processor_id();
 602
 603        if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
 604                return false;
 605
 606        if (idle_cpu(cpu) && !need_resched())
 607                return true;
 608
 609        /*
 610         * We can't run Idle Load Balance on this CPU for this time so we
 611         * cancel it and clear NOHZ_BALANCE_KICK
 612         */
 613        clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
 614        return false;
 615}
 616
 617#else /* CONFIG_NO_HZ_COMMON */
 618
 619static inline bool got_nohz_idle_kick(void)
 620{
 621        return false;
 622}
 623
 624#endif /* CONFIG_NO_HZ_COMMON */
 625
 626#ifdef CONFIG_NO_HZ_FULL
 627bool sched_can_stop_tick(struct rq *rq)
 628{
 629        int fifo_nr_running;
 630
 631        /* Deadline tasks, even if single, need the tick */
 632        if (rq->dl.dl_nr_running)
 633                return false;
 634
 635        /*
 636         * If there are more than one RR tasks, we need the tick to effect the
 637         * actual RR behaviour.
 638         */
 639        if (rq->rt.rr_nr_running) {
 640                if (rq->rt.rr_nr_running == 1)
 641                        return true;
 642                else
 643                        return false;
 644        }
 645
 646        /*
 647         * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
 648         * forced preemption between FIFO tasks.
 649         */
 650        fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
 651        if (fifo_nr_running)
 652                return true;
 653
 654        /*
 655         * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
 656         * if there's more than one we need the tick for involuntary
 657         * preemption.
 658         */
 659        if (rq->nr_running > 1)
 660                return false;
 661
 662        return true;
 663}
 664#endif /* CONFIG_NO_HZ_FULL */
 665
 666void sched_avg_update(struct rq *rq)
 667{
 668        s64 period = sched_avg_period();
 669
 670        while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
 671                /*
 672                 * Inline assembly required to prevent the compiler
 673                 * optimising this loop into a divmod call.
 674                 * See __iter_div_u64_rem() for another example of this.
 675                 */
 676                asm("" : "+rm" (rq->age_stamp));
 677                rq->age_stamp += period;
 678                rq->rt_avg /= 2;
 679        }
 680}
 681
 682#endif /* CONFIG_SMP */
 683
 684#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
 685                        (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
 686/*
 687 * Iterate task_group tree rooted at *from, calling @down when first entering a
 688 * node and @up when leaving it for the final time.
 689 *
 690 * Caller must hold rcu_lock or sufficient equivalent.
 691 */
 692int walk_tg_tree_from(struct task_group *from,
 693                             tg_visitor down, tg_visitor up, void *data)
 694{
 695        struct task_group *parent, *child;
 696        int ret;
 697
 698        parent = from;
 699
 700down:
 701        ret = (*down)(parent, data);
 702        if (ret)
 703                goto out;
 704        list_for_each_entry_rcu(child, &parent->children, siblings) {
 705                parent = child;
 706                goto down;
 707
 708up:
 709                continue;
 710        }
 711        ret = (*up)(parent, data);
 712        if (ret || parent == from)
 713                goto out;
 714
 715        child = parent;
 716        parent = parent->parent;
 717        if (parent)
 718                goto up;
 719out:
 720        return ret;
 721}
 722
 723int tg_nop(struct task_group *tg, void *data)
 724{
 725        return 0;
 726}
 727#endif
 728
 729static void set_load_weight(struct task_struct *p)
 730{
 731        int prio = p->static_prio - MAX_RT_PRIO;
 732        struct load_weight *load = &p->se.load;
 733
 734        /*
 735         * SCHED_IDLE tasks get minimal weight:
 736         */
 737        if (idle_policy(p->policy)) {
 738                load->weight = scale_load(WEIGHT_IDLEPRIO);
 739                load->inv_weight = WMULT_IDLEPRIO;
 740                return;
 741        }
 742
 743        load->weight = scale_load(sched_prio_to_weight[prio]);
 744        load->inv_weight = sched_prio_to_wmult[prio];
 745}
 746
 747static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
 748{
 749        update_rq_clock(rq);
 750        if (!(flags & ENQUEUE_RESTORE))
 751                sched_info_queued(rq, p);
 752        p->sched_class->enqueue_task(rq, p, flags);
 753}
 754
 755static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
 756{
 757        update_rq_clock(rq);
 758        if (!(flags & DEQUEUE_SAVE))
 759                sched_info_dequeued(rq, p);
 760        p->sched_class->dequeue_task(rq, p, flags);
 761}
 762
 763void activate_task(struct rq *rq, struct task_struct *p, int flags)
 764{
 765        if (task_contributes_to_load(p))
 766                rq->nr_uninterruptible--;
 767
 768        enqueue_task(rq, p, flags);
 769}
 770
 771void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
 772{
 773        if (task_contributes_to_load(p))
 774                rq->nr_uninterruptible++;
 775
 776        dequeue_task(rq, p, flags);
 777}
 778
 779static void update_rq_clock_task(struct rq *rq, s64 delta)
 780{
 781/*
 782 * In theory, the compile should just see 0 here, and optimize out the call
 783 * to sched_rt_avg_update. But I don't trust it...
 784 */
 785#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 786        s64 steal = 0, irq_delta = 0;
 787#endif
 788#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 789        irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
 790
 791        /*
 792         * Since irq_time is only updated on {soft,}irq_exit, we might run into
 793         * this case when a previous update_rq_clock() happened inside a
 794         * {soft,}irq region.
 795         *
 796         * When this happens, we stop ->clock_task and only update the
 797         * prev_irq_time stamp to account for the part that fit, so that a next
 798         * update will consume the rest. This ensures ->clock_task is
 799         * monotonic.
 800         *
 801         * It does however cause some slight miss-attribution of {soft,}irq
 802         * time, a more accurate solution would be to update the irq_time using
 803         * the current rq->clock timestamp, except that would require using
 804         * atomic ops.
 805         */
 806        if (irq_delta > delta)
 807                irq_delta = delta;
 808
 809        rq->prev_irq_time += irq_delta;
 810        delta -= irq_delta;
 811#endif
 812#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 813        if (static_key_false((&paravirt_steal_rq_enabled))) {
 814                steal = paravirt_steal_clock(cpu_of(rq));
 815                steal -= rq->prev_steal_time_rq;
 816
 817                if (unlikely(steal > delta))
 818                        steal = delta;
 819
 820                rq->prev_steal_time_rq += steal;
 821                delta -= steal;
 822        }
 823#endif
 824
 825        rq->clock_task += delta;
 826
 827#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
 828        if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
 829                sched_rt_avg_update(rq, irq_delta + steal);
 830#endif
 831}
 832
 833void sched_set_stop_task(int cpu, struct task_struct *stop)
 834{
 835        struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
 836        struct task_struct *old_stop = cpu_rq(cpu)->stop;
 837
 838        if (stop) {
 839                /*
 840                 * Make it appear like a SCHED_FIFO task, its something
 841                 * userspace knows about and won't get confused about.
 842                 *
 843                 * Also, it will make PI more or less work without too
 844                 * much confusion -- but then, stop work should not
 845                 * rely on PI working anyway.
 846                 */
 847                sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
 848
 849                stop->sched_class = &stop_sched_class;
 850        }
 851
 852        cpu_rq(cpu)->stop = stop;
 853
 854        if (old_stop) {
 855                /*
 856                 * Reset it back to a normal scheduling class so that
 857                 * it can die in pieces.
 858                 */
 859                old_stop->sched_class = &rt_sched_class;
 860        }
 861}
 862
 863/*
 864 * __normal_prio - return the priority that is based on the static prio
 865 */
 866static inline int __normal_prio(struct task_struct *p)
 867{
 868        return p->static_prio;
 869}
 870
 871/*
 872 * Calculate the expected normal priority: i.e. priority
 873 * without taking RT-inheritance into account. Might be
 874 * boosted by interactivity modifiers. Changes upon fork,
 875 * setprio syscalls, and whenever the interactivity
 876 * estimator recalculates.
 877 */
 878static inline int normal_prio(struct task_struct *p)
 879{
 880        int prio;
 881
 882        if (task_has_dl_policy(p))
 883                prio = MAX_DL_PRIO-1;
 884        else if (task_has_rt_policy(p))
 885                prio = MAX_RT_PRIO-1 - p->rt_priority;
 886        else
 887                prio = __normal_prio(p);
 888        return prio;
 889}
 890
 891/*
 892 * Calculate the current priority, i.e. the priority
 893 * taken into account by the scheduler. This value might
 894 * be boosted by RT tasks, or might be boosted by
 895 * interactivity modifiers. Will be RT if the task got
 896 * RT-boosted. If not then it returns p->normal_prio.
 897 */
 898static int effective_prio(struct task_struct *p)
 899{
 900        p->normal_prio = normal_prio(p);
 901        /*
 902         * If we are RT tasks or we were boosted to RT priority,
 903         * keep the priority unchanged. Otherwise, update priority
 904         * to the normal priority:
 905         */
 906        if (!rt_prio(p->prio))
 907                return p->normal_prio;
 908        return p->prio;
 909}
 910
 911/**
 912 * task_curr - is this task currently executing on a CPU?
 913 * @p: the task in question.
 914 *
 915 * Return: 1 if the task is currently executing. 0 otherwise.
 916 */
 917inline int task_curr(const struct task_struct *p)
 918{
 919        return cpu_curr(task_cpu(p)) == p;
 920}
 921
 922/*
 923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
 924 * use the balance_callback list if you want balancing.
 925 *
 926 * this means any call to check_class_changed() must be followed by a call to
 927 * balance_callback().
 928 */
 929static inline void check_class_changed(struct rq *rq, struct task_struct *p,
 930                                       const struct sched_class *prev_class,
 931                                       int oldprio)
 932{
 933        if (prev_class != p->sched_class) {
 934                if (prev_class->switched_from)
 935                        prev_class->switched_from(rq, p);
 936
 937                p->sched_class->switched_to(rq, p);
 938        } else if (oldprio != p->prio || dl_task(p))
 939                p->sched_class->prio_changed(rq, p, oldprio);
 940}
 941
 942void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
 943{
 944        const struct sched_class *class;
 945
 946        if (p->sched_class == rq->curr->sched_class) {
 947                rq->curr->sched_class->check_preempt_curr(rq, p, flags);
 948        } else {
 949                for_each_class(class) {
 950                        if (class == rq->curr->sched_class)
 951                                break;
 952                        if (class == p->sched_class) {
 953                                resched_curr(rq);
 954                                break;
 955                        }
 956                }
 957        }
 958
 959        /*
 960         * A queue event has occurred, and we're going to schedule.  In
 961         * this case, we can save a useless back to back clock update.
 962         */
 963        if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
 964                rq_clock_skip_update(rq, true);
 965}
 966
 967#ifdef CONFIG_SMP
 968/*
 969 * This is how migration works:
 970 *
 971 * 1) we invoke migration_cpu_stop() on the target CPU using
 972 *    stop_one_cpu().
 973 * 2) stopper starts to run (implicitly forcing the migrated thread
 974 *    off the CPU)
 975 * 3) it checks whether the migrated task is still in the wrong runqueue.
 976 * 4) if it's in the wrong runqueue then the migration thread removes
 977 *    it and puts it into the right queue.
 978 * 5) stopper completes and stop_one_cpu() returns and the migration
 979 *    is done.
 980 */
 981
 982/*
 983 * move_queued_task - move a queued task to new rq.
 984 *
 985 * Returns (locked) new rq. Old rq's lock is released.
 986 */
 987static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
 988{
 989        lockdep_assert_held(&rq->lock);
 990
 991        p->on_rq = TASK_ON_RQ_MIGRATING;
 992        dequeue_task(rq, p, 0);
 993        set_task_cpu(p, new_cpu);
 994        raw_spin_unlock(&rq->lock);
 995
 996        rq = cpu_rq(new_cpu);
 997
 998        raw_spin_lock(&rq->lock);
 999        BUG_ON(task_cpu(p) != new_cpu);
1000        enqueue_task(rq, p, 0);
1001        p->on_rq = TASK_ON_RQ_QUEUED;
1002        check_preempt_curr(rq, p, 0);
1003
1004        return rq;
1005}
1006
1007struct migration_arg {
1008        struct task_struct *task;
1009        int dest_cpu;
1010};
1011
1012/*
1013 * Move (not current) task off this cpu, onto dest cpu. We're doing
1014 * this because either it can't run here any more (set_cpus_allowed()
1015 * away from this CPU, or CPU going down), or because we're
1016 * attempting to rebalance this task on exec (sched_exec).
1017 *
1018 * So we race with normal scheduler movements, but that's OK, as long
1019 * as the task is no longer on this CPU.
1020 */
1021static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1022{
1023        if (unlikely(!cpu_active(dest_cpu)))
1024                return rq;
1025
1026        /* Affinity changed (again). */
1027        if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1028                return rq;
1029
1030        rq = move_queued_task(rq, p, dest_cpu);
1031
1032        return rq;
1033}
1034
1035/*
1036 * migration_cpu_stop - this will be executed by a highprio stopper thread
1037 * and performs thread migration by bumping thread off CPU then
1038 * 'pushing' onto another runqueue.
1039 */
1040static int migration_cpu_stop(void *data)
1041{
1042        struct migration_arg *arg = data;
1043        struct task_struct *p = arg->task;
1044        struct rq *rq = this_rq();
1045
1046        /*
1047         * The original target cpu might have gone down and we might
1048         * be on another cpu but it doesn't matter.
1049         */
1050        local_irq_disable();
1051        /*
1052         * We need to explicitly wake pending tasks before running
1053         * __migrate_task() such that we will not miss enforcing cpus_allowed
1054         * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055         */
1056        sched_ttwu_pending();
1057
1058        raw_spin_lock(&p->pi_lock);
1059        raw_spin_lock(&rq->lock);
1060        /*
1061         * If task_rq(p) != rq, it cannot be migrated here, because we're
1062         * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063         * we're holding p->pi_lock.
1064         */
1065        if (task_rq(p) == rq && task_on_rq_queued(p))
1066                rq = __migrate_task(rq, p, arg->dest_cpu);
1067        raw_spin_unlock(&rq->lock);
1068        raw_spin_unlock(&p->pi_lock);
1069
1070        local_irq_enable();
1071        return 0;
1072}
1073
1074/*
1075 * sched_class::set_cpus_allowed must do the below, but is not required to
1076 * actually call this function.
1077 */
1078void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1079{
1080        cpumask_copy(&p->cpus_allowed, new_mask);
1081        p->nr_cpus_allowed = cpumask_weight(new_mask);
1082}
1083
1084void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085{
1086        struct rq *rq = task_rq(p);
1087        bool queued, running;
1088
1089        lockdep_assert_held(&p->pi_lock);
1090
1091        queued = task_on_rq_queued(p);
1092        running = task_current(rq, p);
1093
1094        if (queued) {
1095                /*
1096                 * Because __kthread_bind() calls this on blocked tasks without
1097                 * holding rq->lock.
1098                 */
1099                lockdep_assert_held(&rq->lock);
1100                dequeue_task(rq, p, DEQUEUE_SAVE);
1101        }
1102        if (running)
1103                put_prev_task(rq, p);
1104
1105        p->sched_class->set_cpus_allowed(p, new_mask);
1106
1107        if (running)
1108                p->sched_class->set_curr_task(rq);
1109        if (queued)
1110                enqueue_task(rq, p, ENQUEUE_RESTORE);
1111}
1112
1113/*
1114 * Change a given task's CPU affinity. Migrate the thread to a
1115 * proper CPU and schedule it away if the CPU it's executing on
1116 * is removed from the allowed bitmask.
1117 *
1118 * NOTE: the caller must have a valid reference to the task, the
1119 * task must not exit() & deallocate itself prematurely. The
1120 * call is not atomic; no spinlocks may be held.
1121 */
1122static int __set_cpus_allowed_ptr(struct task_struct *p,
1123                                  const struct cpumask *new_mask, bool check)
1124{
1125        const struct cpumask *cpu_valid_mask = cpu_active_mask;
1126        unsigned int dest_cpu;
1127        struct rq_flags rf;
1128        struct rq *rq;
1129        int ret = 0;
1130
1131        rq = task_rq_lock(p, &rf);
1132
1133        if (p->flags & PF_KTHREAD) {
1134                /*
1135                 * Kernel threads are allowed on online && !active CPUs
1136                 */
1137                cpu_valid_mask = cpu_online_mask;
1138        }
1139
1140        /*
1141         * Must re-check here, to close a race against __kthread_bind(),
1142         * sched_setaffinity() is not guaranteed to observe the flag.
1143         */
1144        if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145                ret = -EINVAL;
1146                goto out;
1147        }
1148
1149        if (cpumask_equal(&p->cpus_allowed, new_mask))
1150                goto out;
1151
1152        if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1153                ret = -EINVAL;
1154                goto out;
1155        }
1156
1157        do_set_cpus_allowed(p, new_mask);
1158
1159        if (p->flags & PF_KTHREAD) {
1160                /*
1161                 * For kernel threads that do indeed end up on online &&
1162                 * !active we want to ensure they are strict per-cpu threads.
1163                 */
1164                WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165                        !cpumask_intersects(new_mask, cpu_active_mask) &&
1166                        p->nr_cpus_allowed != 1);
1167        }
1168
1169        /* Can the task run on the task's current CPU? If so, we're done */
1170        if (cpumask_test_cpu(task_cpu(p), new_mask))
1171                goto out;
1172
1173        dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1174        if (task_running(rq, p) || p->state == TASK_WAKING) {
1175                struct migration_arg arg = { p, dest_cpu };
1176                /* Need help from migration thread: drop lock and wait. */
1177                task_rq_unlock(rq, p, &rf);
1178                stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179                tlb_migrate_finish(p->mm);
1180                return 0;
1181        } else if (task_on_rq_queued(p)) {
1182                /*
1183                 * OK, since we're going to drop the lock immediately
1184                 * afterwards anyway.
1185                 */
1186                lockdep_unpin_lock(&rq->lock, rf.cookie);
1187                rq = move_queued_task(rq, p, dest_cpu);
1188                lockdep_repin_lock(&rq->lock, rf.cookie);
1189        }
1190out:
1191        task_rq_unlock(rq, p, &rf);
1192
1193        return ret;
1194}
1195
1196int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197{
1198        return __set_cpus_allowed_ptr(p, new_mask, false);
1199}
1200EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201
1202void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1203{
1204#ifdef CONFIG_SCHED_DEBUG
1205        /*
1206         * We should never call set_task_cpu() on a blocked task,
1207         * ttwu() will sort out the placement.
1208         */
1209        WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1210                        !p->on_rq);
1211
1212        /*
1213         * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214         * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215         * time relying on p->on_rq.
1216         */
1217        WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218                     p->sched_class == &fair_sched_class &&
1219                     (p->on_rq && !task_on_rq_migrating(p)));
1220
1221#ifdef CONFIG_LOCKDEP
1222        /*
1223         * The caller should hold either p->pi_lock or rq->lock, when changing
1224         * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225         *
1226         * sched_move_task() holds both and thus holding either pins the cgroup,
1227         * see task_group().
1228         *
1229         * Furthermore, all task_rq users should acquire both locks, see
1230         * task_rq_lock().
1231         */
1232        WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233                                      lockdep_is_held(&task_rq(p)->lock)));
1234#endif
1235#endif
1236
1237        trace_sched_migrate_task(p, new_cpu);
1238
1239        if (task_cpu(p) != new_cpu) {
1240                if (p->sched_class->migrate_task_rq)
1241                        p->sched_class->migrate_task_rq(p);
1242                p->se.nr_migrations++;
1243                perf_event_task_migrate(p);
1244        }
1245
1246        __set_task_cpu(p, new_cpu);
1247}
1248
1249static void __migrate_swap_task(struct task_struct *p, int cpu)
1250{
1251        if (task_on_rq_queued(p)) {
1252                struct rq *src_rq, *dst_rq;
1253
1254                src_rq = task_rq(p);
1255                dst_rq = cpu_rq(cpu);
1256
1257                p->on_rq = TASK_ON_RQ_MIGRATING;
1258                deactivate_task(src_rq, p, 0);
1259                set_task_cpu(p, cpu);
1260                activate_task(dst_rq, p, 0);
1261                p->on_rq = TASK_ON_RQ_QUEUED;
1262                check_preempt_curr(dst_rq, p, 0);
1263        } else {
1264                /*
1265                 * Task isn't running anymore; make it appear like we migrated
1266                 * it before it went to sleep. This means on wakeup we make the
1267                 * previous cpu our targer instead of where it really is.
1268                 */
1269                p->wake_cpu = cpu;
1270        }
1271}
1272
1273struct migration_swap_arg {
1274        struct task_struct *src_task, *dst_task;
1275        int src_cpu, dst_cpu;
1276};
1277
1278static int migrate_swap_stop(void *data)
1279{
1280        struct migration_swap_arg *arg = data;
1281        struct rq *src_rq, *dst_rq;
1282        int ret = -EAGAIN;
1283
1284        if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285                return -EAGAIN;
1286
1287        src_rq = cpu_rq(arg->src_cpu);
1288        dst_rq = cpu_rq(arg->dst_cpu);
1289
1290        double_raw_lock(&arg->src_task->pi_lock,
1291                        &arg->dst_task->pi_lock);
1292        double_rq_lock(src_rq, dst_rq);
1293
1294        if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295                goto unlock;
1296
1297        if (task_cpu(arg->src_task) != arg->src_cpu)
1298                goto unlock;
1299
1300        if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301                goto unlock;
1302
1303        if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304                goto unlock;
1305
1306        __migrate_swap_task(arg->src_task, arg->dst_cpu);
1307        __migrate_swap_task(arg->dst_task, arg->src_cpu);
1308
1309        ret = 0;
1310
1311unlock:
1312        double_rq_unlock(src_rq, dst_rq);
1313        raw_spin_unlock(&arg->dst_task->pi_lock);
1314        raw_spin_unlock(&arg->src_task->pi_lock);
1315
1316        return ret;
1317}
1318
1319/*
1320 * Cross migrate two tasks
1321 */
1322int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323{
1324        struct migration_swap_arg arg;
1325        int ret = -EINVAL;
1326
1327        arg = (struct migration_swap_arg){
1328                .src_task = cur,
1329                .src_cpu = task_cpu(cur),
1330                .dst_task = p,
1331                .dst_cpu = task_cpu(p),
1332        };
1333
1334        if (arg.src_cpu == arg.dst_cpu)
1335                goto out;
1336
1337        /*
1338         * These three tests are all lockless; this is OK since all of them
1339         * will be re-checked with proper locks held further down the line.
1340         */
1341        if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342                goto out;
1343
1344        if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345                goto out;
1346
1347        if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348                goto out;
1349
1350        trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1351        ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352
1353out:
1354        return ret;
1355}
1356
1357/*
1358 * wait_task_inactive - wait for a thread to unschedule.
1359 *
1360 * If @match_state is nonzero, it's the @p->state value just checked and
1361 * not expected to change.  If it changes, i.e. @p might have woken up,
1362 * then return zero.  When we succeed in waiting for @p to be off its CPU,
1363 * we return a positive number (its total switch count).  If a second call
1364 * a short while later returns the same number, the caller can be sure that
1365 * @p has remained unscheduled the whole time.
1366 *
1367 * The caller must ensure that the task *will* unschedule sometime soon,
1368 * else this function might spin for a *long* time. This function can't
1369 * be called with interrupts off, or it may introduce deadlock with
1370 * smp_call_function() if an IPI is sent by the same process we are
1371 * waiting to become inactive.
1372 */
1373unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1374{
1375        int running, queued;
1376        struct rq_flags rf;
1377        unsigned long ncsw;
1378        struct rq *rq;
1379
1380        for (;;) {
1381                /*
1382                 * We do the initial early heuristics without holding
1383                 * any task-queue locks at all. We'll only try to get
1384                 * the runqueue lock when things look like they will
1385                 * work out!
1386                 */
1387                rq = task_rq(p);
1388
1389                /*
1390                 * If the task is actively running on another CPU
1391                 * still, just relax and busy-wait without holding
1392                 * any locks.
1393                 *
1394                 * NOTE! Since we don't hold any locks, it's not
1395                 * even sure that "rq" stays as the right runqueue!
1396                 * But we don't care, since "task_running()" will
1397                 * return false if the runqueue has changed and p
1398                 * is actually now running somewhere else!
1399                 */
1400                while (task_running(rq, p)) {
1401                        if (match_state && unlikely(p->state != match_state))
1402                                return 0;
1403                        cpu_relax();
1404                }
1405
1406                /*
1407                 * Ok, time to look more closely! We need the rq
1408                 * lock now, to be *sure*. If we're wrong, we'll
1409                 * just go back and repeat.
1410                 */
1411                rq = task_rq_lock(p, &rf);
1412                trace_sched_wait_task(p);
1413                running = task_running(rq, p);
1414                queued = task_on_rq_queued(p);
1415                ncsw = 0;
1416                if (!match_state || p->state == match_state)
1417                        ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1418                task_rq_unlock(rq, p, &rf);
1419
1420                /*
1421                 * If it changed from the expected state, bail out now.
1422                 */
1423                if (unlikely(!ncsw))
1424                        break;
1425
1426                /*
1427                 * Was it really running after all now that we
1428                 * checked with the proper locks actually held?
1429                 *
1430                 * Oops. Go back and try again..
1431                 */
1432                if (unlikely(running)) {
1433                        cpu_relax();
1434                        continue;
1435                }
1436
1437                /*
1438                 * It's not enough that it's not actively running,
1439                 * it must be off the runqueue _entirely_, and not
1440                 * preempted!
1441                 *
1442                 * So if it was still runnable (but just not actively
1443                 * running right now), it's preempted, and we should
1444                 * yield - it could be a while.
1445                 */
1446                if (unlikely(queued)) {
1447                        ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448
1449                        set_current_state(TASK_UNINTERRUPTIBLE);
1450                        schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1451                        continue;
1452                }
1453
1454                /*
1455                 * Ahh, all good. It wasn't running, and it wasn't
1456                 * runnable, which means that it will never become
1457                 * running in the future either. We're all done!
1458                 */
1459                break;
1460        }
1461
1462        return ncsw;
1463}
1464
1465/***
1466 * kick_process - kick a running thread to enter/exit the kernel
1467 * @p: the to-be-kicked thread
1468 *
1469 * Cause a process which is running on another CPU to enter
1470 * kernel-mode, without any delay. (to get signals handled.)
1471 *
1472 * NOTE: this function doesn't have to take the runqueue lock,
1473 * because all it wants to ensure is that the remote task enters
1474 * the kernel. If the IPI races and the task has been migrated
1475 * to another CPU then no harm is done and the purpose has been
1476 * achieved as well.
1477 */
1478void kick_process(struct task_struct *p)
1479{
1480        int cpu;
1481
1482        preempt_disable();
1483        cpu = task_cpu(p);
1484        if ((cpu != smp_processor_id()) && task_curr(p))
1485                smp_send_reschedule(cpu);
1486        preempt_enable();
1487}
1488EXPORT_SYMBOL_GPL(kick_process);
1489
1490/*
1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1492 *
1493 * A few notes on cpu_active vs cpu_online:
1494 *
1495 *  - cpu_active must be a subset of cpu_online
1496 *
1497 *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498 *    see __set_cpus_allowed_ptr(). At this point the newly online
1499 *    cpu isn't yet part of the sched domains, and balancing will not
1500 *    see it.
1501 *
1502 *  - on cpu-down we clear cpu_active() to mask the sched domains and
1503 *    avoid the load balancer to place new tasks on the to be removed
1504 *    cpu. Existing tasks will remain running there and will be taken
1505 *    off.
1506 *
1507 * This means that fallback selection must not select !active CPUs.
1508 * And can assume that any active CPU must be online. Conversely
1509 * select_task_rq() below may allow selection of !active CPUs in order
1510 * to satisfy the above rules.
1511 */
1512static int select_fallback_rq(int cpu, struct task_struct *p)
1513{
1514        int nid = cpu_to_node(cpu);
1515        const struct cpumask *nodemask = NULL;
1516        enum { cpuset, possible, fail } state = cpuset;
1517        int dest_cpu;
1518
1519        /*
1520         * If the node that the cpu is on has been offlined, cpu_to_node()
1521         * will return -1. There is no cpu on the node, and we should
1522         * select the cpu on the other node.
1523         */
1524        if (nid != -1) {
1525                nodemask = cpumask_of_node(nid);
1526
1527                /* Look for allowed, online CPU in same node. */
1528                for_each_cpu(dest_cpu, nodemask) {
1529                        if (!cpu_active(dest_cpu))
1530                                continue;
1531                        if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532                                return dest_cpu;
1533                }
1534        }
1535
1536        for (;;) {
1537                /* Any allowed, online CPU? */
1538                for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1539                        if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1540                                continue;
1541                        if (!cpu_online(dest_cpu))
1542                                continue;
1543                        goto out;
1544                }
1545
1546                /* No more Mr. Nice Guy. */
1547                switch (state) {
1548                case cpuset:
1549                        if (IS_ENABLED(CONFIG_CPUSETS)) {
1550                                cpuset_cpus_allowed_fallback(p);
1551                                state = possible;
1552                                break;
1553                        }
1554                        /* fall-through */
1555                case possible:
1556                        do_set_cpus_allowed(p, cpu_possible_mask);
1557                        state = fail;
1558                        break;
1559
1560                case fail:
1561                        BUG();
1562                        break;
1563                }
1564        }
1565
1566out:
1567        if (state != cpuset) {
1568                /*
1569                 * Don't tell them about moving exiting tasks or
1570                 * kernel threads (both mm NULL), since they never
1571                 * leave kernel.
1572                 */
1573                if (p->mm && printk_ratelimit()) {
1574                        printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1575                                        task_pid_nr(p), p->comm, cpu);
1576                }
1577        }
1578
1579        return dest_cpu;
1580}
1581
1582/*
1583 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1584 */
1585static inline
1586int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1587{
1588        lockdep_assert_held(&p->pi_lock);
1589
1590        if (tsk_nr_cpus_allowed(p) > 1)
1591                cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1592        else
1593                cpu = cpumask_any(tsk_cpus_allowed(p));
1594
1595        /*
1596         * In order not to call set_task_cpu() on a blocking task we need
1597         * to rely on ttwu() to place the task on a valid ->cpus_allowed
1598         * cpu.
1599         *
1600         * Since this is common to all placement strategies, this lives here.
1601         *
1602         * [ this allows ->select_task() to simply return task_cpu(p) and
1603         *   not worry about this generic constraint ]
1604         */
1605        if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1606                     !cpu_online(cpu)))
1607                cpu = select_fallback_rq(task_cpu(p), p);
1608
1609        return cpu;
1610}
1611
1612static void update_avg(u64 *avg, u64 sample)
1613{
1614        s64 diff = sample - *avg;
1615        *avg += diff >> 3;
1616}
1617
1618#else
1619
1620static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1621                                         const struct cpumask *new_mask, bool check)
1622{
1623        return set_cpus_allowed_ptr(p, new_mask);
1624}
1625
1626#endif /* CONFIG_SMP */
1627
1628static void
1629ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1630{
1631#ifdef CONFIG_SCHEDSTATS
1632        struct rq *rq = this_rq();
1633
1634#ifdef CONFIG_SMP
1635        int this_cpu = smp_processor_id();
1636
1637        if (cpu == this_cpu) {
1638                schedstat_inc(rq, ttwu_local);
1639                schedstat_inc(p, se.statistics.nr_wakeups_local);
1640        } else {
1641                struct sched_domain *sd;
1642
1643                schedstat_inc(p, se.statistics.nr_wakeups_remote);
1644                rcu_read_lock();
1645                for_each_domain(this_cpu, sd) {
1646                        if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1647                                schedstat_inc(sd, ttwu_wake_remote);
1648                                break;
1649                        }
1650                }
1651                rcu_read_unlock();
1652        }
1653
1654        if (wake_flags & WF_MIGRATED)
1655                schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1656
1657#endif /* CONFIG_SMP */
1658
1659        schedstat_inc(rq, ttwu_count);
1660        schedstat_inc(p, se.statistics.nr_wakeups);
1661
1662        if (wake_flags & WF_SYNC)
1663                schedstat_inc(p, se.statistics.nr_wakeups_sync);
1664
1665#endif /* CONFIG_SCHEDSTATS */
1666}
1667
1668static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1669{
1670        activate_task(rq, p, en_flags);
1671        p->on_rq = TASK_ON_RQ_QUEUED;
1672
1673        /* if a worker is waking up, notify workqueue */
1674        if (p->flags & PF_WQ_WORKER)
1675                wq_worker_waking_up(p, cpu_of(rq));
1676}
1677
1678/*
1679 * Mark the task runnable and perform wakeup-preemption.
1680 */
1681static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1682                           struct pin_cookie cookie)
1683{
1684        check_preempt_curr(rq, p, wake_flags);
1685        p->state = TASK_RUNNING;
1686        trace_sched_wakeup(p);
1687
1688#ifdef CONFIG_SMP
1689        if (p->sched_class->task_woken) {
1690                /*
1691                 * Our task @p is fully woken up and running; so its safe to
1692                 * drop the rq->lock, hereafter rq is only used for statistics.
1693                 */
1694                lockdep_unpin_lock(&rq->lock, cookie);
1695                p->sched_class->task_woken(rq, p);
1696                lockdep_repin_lock(&rq->lock, cookie);
1697        }
1698
1699        if (rq->idle_stamp) {
1700                u64 delta = rq_clock(rq) - rq->idle_stamp;
1701                u64 max = 2*rq->max_idle_balance_cost;
1702
1703                update_avg(&rq->avg_idle, delta);
1704
1705                if (rq->avg_idle > max)
1706                        rq->avg_idle = max;
1707
1708                rq->idle_stamp = 0;
1709        }
1710#endif
1711}
1712
1713static void
1714ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1715                 struct pin_cookie cookie)
1716{
1717        int en_flags = ENQUEUE_WAKEUP;
1718
1719        lockdep_assert_held(&rq->lock);
1720
1721#ifdef CONFIG_SMP
1722        if (p->sched_contributes_to_load)
1723                rq->nr_uninterruptible--;
1724
1725        if (wake_flags & WF_MIGRATED)
1726                en_flags |= ENQUEUE_MIGRATED;
1727#endif
1728
1729        ttwu_activate(rq, p, en_flags);
1730        ttwu_do_wakeup(rq, p, wake_flags, cookie);
1731}
1732
1733/*
1734 * Called in case the task @p isn't fully descheduled from its runqueue,
1735 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1736 * since all we need to do is flip p->state to TASK_RUNNING, since
1737 * the task is still ->on_rq.
1738 */
1739static int ttwu_remote(struct task_struct *p, int wake_flags)
1740{
1741        struct rq_flags rf;
1742        struct rq *rq;
1743        int ret = 0;
1744
1745        rq = __task_rq_lock(p, &rf);
1746        if (task_on_rq_queued(p)) {
1747                /* check_preempt_curr() may use rq clock */
1748                update_rq_clock(rq);
1749                ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1750                ret = 1;
1751        }
1752        __task_rq_unlock(rq, &rf);
1753
1754        return ret;
1755}
1756
1757#ifdef CONFIG_SMP
1758void sched_ttwu_pending(void)
1759{
1760        struct rq *rq = this_rq();
1761        struct llist_node *llist = llist_del_all(&rq->wake_list);
1762        struct pin_cookie cookie;
1763        struct task_struct *p;
1764        unsigned long flags;
1765
1766        if (!llist)
1767                return;
1768
1769        raw_spin_lock_irqsave(&rq->lock, flags);
1770        cookie = lockdep_pin_lock(&rq->lock);
1771
1772        while (llist) {
1773                int wake_flags = 0;
1774
1775                p = llist_entry(llist, struct task_struct, wake_entry);
1776                llist = llist_next(llist);
1777
1778                if (p->sched_remote_wakeup)
1779                        wake_flags = WF_MIGRATED;
1780
1781                ttwu_do_activate(rq, p, wake_flags, cookie);
1782        }
1783
1784        lockdep_unpin_lock(&rq->lock, cookie);
1785        raw_spin_unlock_irqrestore(&rq->lock, flags);
1786}
1787
1788void scheduler_ipi(void)
1789{
1790        /*
1791         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1792         * TIF_NEED_RESCHED remotely (for the first time) will also send
1793         * this IPI.
1794         */
1795        preempt_fold_need_resched();
1796
1797        if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1798                return;
1799
1800        /*
1801         * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1802         * traditionally all their work was done from the interrupt return
1803         * path. Now that we actually do some work, we need to make sure
1804         * we do call them.
1805         *
1806         * Some archs already do call them, luckily irq_enter/exit nest
1807         * properly.
1808         *
1809         * Arguably we should visit all archs and update all handlers,
1810         * however a fair share of IPIs are still resched only so this would
1811         * somewhat pessimize the simple resched case.
1812         */
1813        irq_enter();
1814        sched_ttwu_pending();
1815
1816        /*
1817         * Check if someone kicked us for doing the nohz idle load balance.
1818         */
1819        if (unlikely(got_nohz_idle_kick())) {
1820                this_rq()->idle_balance = 1;
1821                raise_softirq_irqoff(SCHED_SOFTIRQ);
1822        }
1823        irq_exit();
1824}
1825
1826static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1827{
1828        struct rq *rq = cpu_rq(cpu);
1829
1830        p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1831
1832        if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1833                if (!set_nr_if_polling(rq->idle))
1834                        smp_send_reschedule(cpu);
1835                else
1836                        trace_sched_wake_idle_without_ipi(cpu);
1837        }
1838}
1839
1840void wake_up_if_idle(int cpu)
1841{
1842        struct rq *rq = cpu_rq(cpu);
1843        unsigned long flags;
1844
1845        rcu_read_lock();
1846
1847        if (!is_idle_task(rcu_dereference(rq->curr)))
1848                goto out;
1849
1850        if (set_nr_if_polling(rq->idle)) {
1851                trace_sched_wake_idle_without_ipi(cpu);
1852        } else {
1853                raw_spin_lock_irqsave(&rq->lock, flags);
1854                if (is_idle_task(rq->curr))
1855                        smp_send_reschedule(cpu);
1856                /* Else cpu is not in idle, do nothing here */
1857                raw_spin_unlock_irqrestore(&rq->lock, flags);
1858        }
1859
1860out:
1861        rcu_read_unlock();
1862}
1863
1864bool cpus_share_cache(int this_cpu, int that_cpu)
1865{
1866        return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1867}
1868#endif /* CONFIG_SMP */
1869
1870static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1871{
1872        struct rq *rq = cpu_rq(cpu);
1873        struct pin_cookie cookie;
1874
1875#if defined(CONFIG_SMP)
1876        if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1877                sched_clock_cpu(cpu); /* sync clocks x-cpu */
1878                ttwu_queue_remote(p, cpu, wake_flags);
1879                return;
1880        }
1881#endif
1882
1883        raw_spin_lock(&rq->lock);
1884        cookie = lockdep_pin_lock(&rq->lock);
1885        ttwu_do_activate(rq, p, wake_flags, cookie);
1886        lockdep_unpin_lock(&rq->lock, cookie);
1887        raw_spin_unlock(&rq->lock);
1888}
1889
1890/*
1891 * Notes on Program-Order guarantees on SMP systems.
1892 *
1893 *  MIGRATION
1894 *
1895 * The basic program-order guarantee on SMP systems is that when a task [t]
1896 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1897 * execution on its new cpu [c1].
1898 *
1899 * For migration (of runnable tasks) this is provided by the following means:
1900 *
1901 *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1902 *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1903 *     rq(c1)->lock (if not at the same time, then in that order).
1904 *  C) LOCK of the rq(c1)->lock scheduling in task
1905 *
1906 * Transitivity guarantees that B happens after A and C after B.
1907 * Note: we only require RCpc transitivity.
1908 * Note: the cpu doing B need not be c0 or c1
1909 *
1910 * Example:
1911 *
1912 *   CPU0            CPU1            CPU2
1913 *
1914 *   LOCK rq(0)->lock
1915 *   sched-out X
1916 *   sched-in Y
1917 *   UNLOCK rq(0)->lock
1918 *
1919 *                                   LOCK rq(0)->lock // orders against CPU0
1920 *                                   dequeue X
1921 *                                   UNLOCK rq(0)->lock
1922 *
1923 *                                   LOCK rq(1)->lock
1924 *                                   enqueue X
1925 *                                   UNLOCK rq(1)->lock
1926 *
1927 *                   LOCK rq(1)->lock // orders against CPU2
1928 *                   sched-out Z
1929 *                   sched-in X
1930 *                   UNLOCK rq(1)->lock
1931 *
1932 *
1933 *  BLOCKING -- aka. SLEEP + WAKEUP
1934 *
1935 * For blocking we (obviously) need to provide the same guarantee as for
1936 * migration. However the means are completely different as there is no lock
1937 * chain to provide order. Instead we do:
1938 *
1939 *   1) smp_store_release(X->on_cpu, 0)
1940 *   2) smp_cond_acquire(!X->on_cpu)
1941 *
1942 * Example:
1943 *
1944 *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1945 *
1946 *   LOCK rq(0)->lock LOCK X->pi_lock
1947 *   dequeue X
1948 *   sched-out X
1949 *   smp_store_release(X->on_cpu, 0);
1950 *
1951 *                    smp_cond_acquire(!X->on_cpu);
1952 *                    X->state = WAKING
1953 *                    set_task_cpu(X,2)
1954 *
1955 *                    LOCK rq(2)->lock
1956 *                    enqueue X
1957 *                    X->state = RUNNING
1958 *                    UNLOCK rq(2)->lock
1959 *
1960 *                                          LOCK rq(2)->lock // orders against CPU1
1961 *                                          sched-out Z
1962 *                                          sched-in X
1963 *                                          UNLOCK rq(2)->lock
1964 *
1965 *                    UNLOCK X->pi_lock
1966 *   UNLOCK rq(0)->lock
1967 *
1968 *
1969 * However; for wakeups there is a second guarantee we must provide, namely we
1970 * must observe the state that lead to our wakeup. That is, not only must our
1971 * task observe its own prior state, it must also observe the stores prior to
1972 * its wakeup.
1973 *
1974 * This means that any means of doing remote wakeups must order the CPU doing
1975 * the wakeup against the CPU the task is going to end up running on. This,
1976 * however, is already required for the regular Program-Order guarantee above,
1977 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1978 *
1979 */
1980
1981/**
1982 * try_to_wake_up - wake up a thread
1983 * @p: the thread to be awakened
1984 * @state: the mask of task states that can be woken
1985 * @wake_flags: wake modifier flags (WF_*)
1986 *
1987 * Put it on the run-queue if it's not already there. The "current"
1988 * thread is always on the run-queue (except when the actual
1989 * re-schedule is in progress), and as such you're allowed to do
1990 * the simpler "current->state = TASK_RUNNING" to mark yourself
1991 * runnable without the overhead of this.
1992 *
1993 * Return: %true if @p was woken up, %false if it was already running.
1994 * or @state didn't match @p's state.
1995 */
1996static int
1997try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1998{
1999        unsigned long flags;
2000        int cpu, success = 0;
2001
2002        /*
2003         * If we are going to wake up a thread waiting for CONDITION we
2004         * need to ensure that CONDITION=1 done by the caller can not be
2005         * reordered with p->state check below. This pairs with mb() in
2006         * set_current_state() the waiting thread does.
2007         */
2008        smp_mb__before_spinlock();
2009        raw_spin_lock_irqsave(&p->pi_lock, flags);
2010        if (!(p->state & state))
2011                goto out;
2012
2013        trace_sched_waking(p);
2014
2015        success = 1; /* we're going to change ->state */
2016        cpu = task_cpu(p);
2017
2018        if (p->on_rq && ttwu_remote(p, wake_flags))
2019                goto stat;
2020
2021#ifdef CONFIG_SMP
2022        /*
2023         * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2024         * possible to, falsely, observe p->on_cpu == 0.
2025         *
2026         * One must be running (->on_cpu == 1) in order to remove oneself
2027         * from the runqueue.
2028         *
2029         *  [S] ->on_cpu = 1;   [L] ->on_rq
2030         *      UNLOCK rq->lock
2031         *                      RMB
2032         *      LOCK   rq->lock
2033         *  [S] ->on_rq = 0;    [L] ->on_cpu
2034         *
2035         * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2036         * from the consecutive calls to schedule(); the first switching to our
2037         * task, the second putting it to sleep.
2038         */
2039        smp_rmb();
2040
2041        /*
2042         * If the owning (remote) cpu is still in the middle of schedule() with
2043         * this task as prev, wait until its done referencing the task.
2044         *
2045         * Pairs with the smp_store_release() in finish_lock_switch().
2046         *
2047         * This ensures that tasks getting woken will be fully ordered against
2048         * their previous state and preserve Program Order.
2049         */
2050        smp_cond_acquire(!p->on_cpu);
2051
2052        p->sched_contributes_to_load = !!task_contributes_to_load(p);
2053        p->state = TASK_WAKING;
2054
2055        cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2056        if (task_cpu(p) != cpu) {
2057                wake_flags |= WF_MIGRATED;
2058                set_task_cpu(p, cpu);
2059        }
2060#endif /* CONFIG_SMP */
2061
2062        ttwu_queue(p, cpu, wake_flags);
2063stat:
2064        if (schedstat_enabled())
2065                ttwu_stat(p, cpu, wake_flags);
2066out:
2067        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2068
2069        return success;
2070}
2071
2072/**
2073 * try_to_wake_up_local - try to wake up a local task with rq lock held
2074 * @p: the thread to be awakened
2075 *
2076 * Put @p on the run-queue if it's not already there. The caller must
2077 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2078 * the current task.
2079 */
2080static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2081{
2082        struct rq *rq = task_rq(p);
2083
2084        if (WARN_ON_ONCE(rq != this_rq()) ||
2085            WARN_ON_ONCE(p == current))
2086                return;
2087
2088        lockdep_assert_held(&rq->lock);
2089
2090        if (!raw_spin_trylock(&p->pi_lock)) {
2091                /*
2092                 * This is OK, because current is on_cpu, which avoids it being
2093                 * picked for load-balance and preemption/IRQs are still
2094                 * disabled avoiding further scheduler activity on it and we've
2095                 * not yet picked a replacement task.
2096                 */
2097                lockdep_unpin_lock(&rq->lock, cookie);
2098                raw_spin_unlock(&rq->lock);
2099                raw_spin_lock(&p->pi_lock);
2100                raw_spin_lock(&rq->lock);
2101                lockdep_repin_lock(&rq->lock, cookie);
2102        }
2103
2104        if (!(p->state & TASK_NORMAL))
2105                goto out;
2106
2107        trace_sched_waking(p);
2108
2109        if (!task_on_rq_queued(p))
2110                ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2111
2112        ttwu_do_wakeup(rq, p, 0, cookie);
2113        if (schedstat_enabled())
2114                ttwu_stat(p, smp_processor_id(), 0);
2115out:
2116        raw_spin_unlock(&p->pi_lock);
2117}
2118
2119/**
2120 * wake_up_process - Wake up a specific process
2121 * @p: The process to be woken up.
2122 *
2123 * Attempt to wake up the nominated process and move it to the set of runnable
2124 * processes.
2125 *
2126 * Return: 1 if the process was woken up, 0 if it was already running.
2127 *
2128 * It may be assumed that this function implies a write memory barrier before
2129 * changing the task state if and only if any tasks are woken up.
2130 */
2131int wake_up_process(struct task_struct *p)
2132{
2133        return try_to_wake_up(p, TASK_NORMAL, 0);
2134}
2135EXPORT_SYMBOL(wake_up_process);
2136
2137int wake_up_state(struct task_struct *p, unsigned int state)
2138{
2139        return try_to_wake_up(p, state, 0);
2140}
2141
2142/*
2143 * This function clears the sched_dl_entity static params.
2144 */
2145void __dl_clear_params(struct task_struct *p)
2146{
2147        struct sched_dl_entity *dl_se = &p->dl;
2148
2149        dl_se->dl_runtime = 0;
2150        dl_se->dl_deadline = 0;
2151        dl_se->dl_period = 0;
2152        dl_se->flags = 0;
2153        dl_se->dl_bw = 0;
2154
2155        dl_se->dl_throttled = 0;
2156        dl_se->dl_yielded = 0;
2157}
2158
2159/*
2160 * Perform scheduler related setup for a newly forked process p.
2161 * p is forked by current.
2162 *
2163 * __sched_fork() is basic setup used by init_idle() too:
2164 */
2165static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2166{
2167        p->on_rq                        = 0;
2168
2169        p->se.on_rq                     = 0;
2170        p->se.exec_start                = 0;
2171        p->se.sum_exec_runtime          = 0;
2172        p->se.prev_sum_exec_runtime     = 0;
2173        p->se.nr_migrations             = 0;
2174        p->se.vruntime                  = 0;
2175        INIT_LIST_HEAD(&p->se.group_node);
2176
2177#ifdef CONFIG_FAIR_GROUP_SCHED
2178        p->se.cfs_rq                    = NULL;
2179#endif
2180
2181#ifdef CONFIG_SCHEDSTATS
2182        /* Even if schedstat is disabled, there should not be garbage */
2183        memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2184#endif
2185
2186        RB_CLEAR_NODE(&p->dl.rb_node);
2187        init_dl_task_timer(&p->dl);
2188        __dl_clear_params(p);
2189
2190        INIT_LIST_HEAD(&p->rt.run_list);
2191        p->rt.timeout           = 0;
2192        p->rt.time_slice        = sched_rr_timeslice;
2193        p->rt.on_rq             = 0;
2194        p->rt.on_list           = 0;
2195
2196#ifdef CONFIG_PREEMPT_NOTIFIERS
2197        INIT_HLIST_HEAD(&p->preempt_notifiers);
2198#endif
2199
2200#ifdef CONFIG_NUMA_BALANCING
2201        if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2202                p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2203                p->mm->numa_scan_seq = 0;
2204        }
2205
2206        if (clone_flags & CLONE_VM)
2207                p->numa_preferred_nid = current->numa_preferred_nid;
2208        else
2209                p->numa_preferred_nid = -1;
2210
2211        p->node_stamp = 0ULL;
2212        p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2213        p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2214        p->numa_work.next = &p->numa_work;
2215        p->numa_faults = NULL;
2216        p->last_task_numa_placement = 0;
2217        p->last_sum_exec_runtime = 0;
2218
2219        p->numa_group = NULL;
2220#endif /* CONFIG_NUMA_BALANCING */
2221}
2222
2223DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2224
2225#ifdef CONFIG_NUMA_BALANCING
2226
2227void set_numabalancing_state(bool enabled)
2228{
2229        if (enabled)
2230                static_branch_enable(&sched_numa_balancing);
2231        else
2232                static_branch_disable(&sched_numa_balancing);
2233}
2234
2235#ifdef CONFIG_PROC_SYSCTL
2236int sysctl_numa_balancing(struct ctl_table *table, int write,
2237                         void __user *buffer, size_t *lenp, loff_t *ppos)
2238{
2239        struct ctl_table t;
2240        int err;
2241        int state = static_branch_likely(&sched_numa_balancing);
2242
2243        if (write && !capable(CAP_SYS_ADMIN))
2244                return -EPERM;
2245
2246        t = *table;
2247        t.data = &state;
2248        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2249        if (err < 0)
2250                return err;
2251        if (write)
2252                set_numabalancing_state(state);
2253        return err;
2254}
2255#endif
2256#endif
2257
2258#ifdef CONFIG_SCHEDSTATS
2259
2260DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2261static bool __initdata __sched_schedstats = false;
2262
2263static void set_schedstats(bool enabled)
2264{
2265        if (enabled)
2266                static_branch_enable(&sched_schedstats);
2267        else
2268                static_branch_disable(&sched_schedstats);
2269}
2270
2271void force_schedstat_enabled(void)
2272{
2273        if (!schedstat_enabled()) {
2274                pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2275                static_branch_enable(&sched_schedstats);
2276        }
2277}
2278
2279static int __init setup_schedstats(char *str)
2280{
2281        int ret = 0;
2282        if (!str)
2283                goto out;
2284
2285        /*
2286         * This code is called before jump labels have been set up, so we can't
2287         * change the static branch directly just yet.  Instead set a temporary
2288         * variable so init_schedstats() can do it later.
2289         */
2290        if (!strcmp(str, "enable")) {
2291                __sched_schedstats = true;
2292                ret = 1;
2293        } else if (!strcmp(str, "disable")) {
2294                __sched_schedstats = false;
2295                ret = 1;
2296        }
2297out:
2298        if (!ret)
2299                pr_warn("Unable to parse schedstats=\n");
2300
2301        return ret;
2302}
2303__setup("schedstats=", setup_schedstats);
2304
2305static void __init init_schedstats(void)
2306{
2307        set_schedstats(__sched_schedstats);
2308}
2309
2310#ifdef CONFIG_PROC_SYSCTL
2311int sysctl_schedstats(struct ctl_table *table, int write,
2312                         void __user *buffer, size_t *lenp, loff_t *ppos)
2313{
2314        struct ctl_table t;
2315        int err;
2316        int state = static_branch_likely(&sched_schedstats);
2317
2318        if (write && !capable(CAP_SYS_ADMIN))
2319                return -EPERM;
2320
2321        t = *table;
2322        t.data = &state;
2323        err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2324        if (err < 0)
2325                return err;
2326        if (write)
2327                set_schedstats(state);
2328        return err;
2329}
2330#endif /* CONFIG_PROC_SYSCTL */
2331#else  /* !CONFIG_SCHEDSTATS */
2332static inline void init_schedstats(void) {}
2333#endif /* CONFIG_SCHEDSTATS */
2334
2335/*
2336 * fork()/clone()-time setup:
2337 */
2338int sched_fork(unsigned long clone_flags, struct task_struct *p)
2339{
2340        unsigned long flags;
2341        int cpu = get_cpu();
2342
2343        __sched_fork(clone_flags, p);
2344        /*
2345         * We mark the process as running here. This guarantees that
2346         * nobody will actually run it, and a signal or other external
2347         * event cannot wake it up and insert it on the runqueue either.
2348         */
2349        p->state = TASK_RUNNING;
2350
2351        /*
2352         * Make sure we do not leak PI boosting priority to the child.
2353         */
2354        p->prio = current->normal_prio;
2355
2356        /*
2357         * Revert to default priority/policy on fork if requested.
2358         */
2359        if (unlikely(p->sched_reset_on_fork)) {
2360                if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2361                        p->policy = SCHED_NORMAL;
2362                        p->static_prio = NICE_TO_PRIO(0);
2363                        p->rt_priority = 0;
2364                } else if (PRIO_TO_NICE(p->static_prio) < 0)
2365                        p->static_prio = NICE_TO_PRIO(0);
2366
2367                p->prio = p->normal_prio = __normal_prio(p);
2368                set_load_weight(p);
2369
2370                /*
2371                 * We don't need the reset flag anymore after the fork. It has
2372                 * fulfilled its duty:
2373                 */
2374                p->sched_reset_on_fork = 0;
2375        }
2376
2377        if (dl_prio(p->prio)) {
2378                put_cpu();
2379                return -EAGAIN;
2380        } else if (rt_prio(p->prio)) {
2381                p->sched_class = &rt_sched_class;
2382        } else {
2383                p->sched_class = &fair_sched_class;
2384        }
2385
2386        if (p->sched_class->task_fork)
2387                p->sched_class->task_fork(p);
2388
2389        /*
2390         * The child is not yet in the pid-hash so no cgroup attach races,
2391         * and the cgroup is pinned to this child due to cgroup_fork()
2392         * is ran before sched_fork().
2393         *
2394         * Silence PROVE_RCU.
2395         */
2396        raw_spin_lock_irqsave(&p->pi_lock, flags);
2397        set_task_cpu(p, cpu);
2398        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2399
2400#ifdef CONFIG_SCHED_INFO
2401        if (likely(sched_info_on()))
2402                memset(&p->sched_info, 0, sizeof(p->sched_info));
2403#endif
2404#if defined(CONFIG_SMP)
2405        p->on_cpu = 0;
2406#endif
2407        init_task_preempt_count(p);
2408#ifdef CONFIG_SMP
2409        plist_node_init(&p->pushable_tasks, MAX_PRIO);
2410        RB_CLEAR_NODE(&p->pushable_dl_tasks);
2411#endif
2412
2413        put_cpu();
2414        return 0;
2415}
2416
2417unsigned long to_ratio(u64 period, u64 runtime)
2418{
2419        if (runtime == RUNTIME_INF)
2420                return 1ULL << 20;
2421
2422        /*
2423         * Doing this here saves a lot of checks in all
2424         * the calling paths, and returning zero seems
2425         * safe for them anyway.
2426         */
2427        if (period == 0)
2428                return 0;
2429
2430        return div64_u64(runtime << 20, period);
2431}
2432
2433#ifdef CONFIG_SMP
2434inline struct dl_bw *dl_bw_of(int i)
2435{
2436        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2437                         "sched RCU must be held");
2438        return &cpu_rq(i)->rd->dl_bw;
2439}
2440
2441static inline int dl_bw_cpus(int i)
2442{
2443        struct root_domain *rd = cpu_rq(i)->rd;
2444        int cpus = 0;
2445
2446        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2447                         "sched RCU must be held");
2448        for_each_cpu_and(i, rd->span, cpu_active_mask)
2449                cpus++;
2450
2451        return cpus;
2452}
2453#else
2454inline struct dl_bw *dl_bw_of(int i)
2455{
2456        return &cpu_rq(i)->dl.dl_bw;
2457}
2458
2459static inline int dl_bw_cpus(int i)
2460{
2461        return 1;
2462}
2463#endif
2464
2465/*
2466 * We must be sure that accepting a new task (or allowing changing the
2467 * parameters of an existing one) is consistent with the bandwidth
2468 * constraints. If yes, this function also accordingly updates the currently
2469 * allocated bandwidth to reflect the new situation.
2470 *
2471 * This function is called while holding p's rq->lock.
2472 *
2473 * XXX we should delay bw change until the task's 0-lag point, see
2474 * __setparam_dl().
2475 */
2476static int dl_overflow(struct task_struct *p, int policy,
2477                       const struct sched_attr *attr)
2478{
2479
2480        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2481        u64 period = attr->sched_period ?: attr->sched_deadline;
2482        u64 runtime = attr->sched_runtime;
2483        u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2484        int cpus, err = -1;
2485
2486        /* !deadline task may carry old deadline bandwidth */
2487        if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2488                return 0;
2489
2490        /*
2491         * Either if a task, enters, leave, or stays -deadline but changes
2492         * its parameters, we may need to update accordingly the total
2493         * allocated bandwidth of the container.
2494         */
2495        raw_spin_lock(&dl_b->lock);
2496        cpus = dl_bw_cpus(task_cpu(p));
2497        if (dl_policy(policy) && !task_has_dl_policy(p) &&
2498            !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2499                __dl_add(dl_b, new_bw);
2500                err = 0;
2501        } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2502                   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2503                __dl_clear(dl_b, p->dl.dl_bw);
2504                __dl_add(dl_b, new_bw);
2505                err = 0;
2506        } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2507                __dl_clear(dl_b, p->dl.dl_bw);
2508                err = 0;
2509        }
2510        raw_spin_unlock(&dl_b->lock);
2511
2512        return err;
2513}
2514
2515extern void init_dl_bw(struct dl_bw *dl_b);
2516
2517/*
2518 * wake_up_new_task - wake up a newly created task for the first time.
2519 *
2520 * This function will do some initial scheduler statistics housekeeping
2521 * that must be done for every newly created context, then puts the task
2522 * on the runqueue and wakes it.
2523 */
2524void wake_up_new_task(struct task_struct *p)
2525{
2526        struct rq_flags rf;
2527        struct rq *rq;
2528
2529        /* Initialize new task's runnable average */
2530        init_entity_runnable_average(&p->se);
2531        raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2532#ifdef CONFIG_SMP
2533        /*
2534         * Fork balancing, do it here and not earlier because:
2535         *  - cpus_allowed can change in the fork path
2536         *  - any previously selected cpu might disappear through hotplug
2537         */
2538        set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2539#endif
2540        rq = __task_rq_lock(p, &rf);
2541        post_init_entity_util_avg(&p->se);
2542
2543        activate_task(rq, p, 0);
2544        p->on_rq = TASK_ON_RQ_QUEUED;
2545        trace_sched_wakeup_new(p);
2546        check_preempt_curr(rq, p, WF_FORK);
2547#ifdef CONFIG_SMP
2548        if (p->sched_class->task_woken) {
2549                /*
2550                 * Nothing relies on rq->lock after this, so its fine to
2551                 * drop it.
2552                 */
2553                lockdep_unpin_lock(&rq->lock, rf.cookie);
2554                p->sched_class->task_woken(rq, p);
2555                lockdep_repin_lock(&rq->lock, rf.cookie);
2556        }
2557#endif
2558        task_rq_unlock(rq, p, &rf);
2559}
2560
2561#ifdef CONFIG_PREEMPT_NOTIFIERS
2562
2563static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2564
2565void preempt_notifier_inc(void)
2566{
2567        static_key_slow_inc(&preempt_notifier_key);
2568}
2569EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2570
2571void preempt_notifier_dec(void)
2572{
2573        static_key_slow_dec(&preempt_notifier_key);
2574}
2575EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2576
2577/**
2578 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2579 * @notifier: notifier struct to register
2580 */
2581void preempt_notifier_register(struct preempt_notifier *notifier)
2582{
2583        if (!static_key_false(&preempt_notifier_key))
2584                WARN(1, "registering preempt_notifier while notifiers disabled\n");
2585
2586        hlist_add_head(&notifier->link, &current->preempt_notifiers);
2587}
2588EXPORT_SYMBOL_GPL(preempt_notifier_register);
2589
2590/**
2591 * preempt_notifier_unregister - no longer interested in preemption notifications
2592 * @notifier: notifier struct to unregister
2593 *
2594 * This is *not* safe to call from within a preemption notifier.
2595 */
2596void preempt_notifier_unregister(struct preempt_notifier *notifier)
2597{
2598        hlist_del(&notifier->link);
2599}
2600EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2601
2602static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2603{
2604        struct preempt_notifier *notifier;
2605
2606        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2607                notifier->ops->sched_in(notifier, raw_smp_processor_id());
2608}
2609
2610static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2611{
2612        if (static_key_false(&preempt_notifier_key))
2613                __fire_sched_in_preempt_notifiers(curr);
2614}
2615
2616static void
2617__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2618                                   struct task_struct *next)
2619{
2620        struct preempt_notifier *notifier;
2621
2622        hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2623                notifier->ops->sched_out(notifier, next);
2624}
2625
2626static __always_inline void
2627fire_sched_out_preempt_notifiers(struct task_struct *curr,
2628                                 struct task_struct *next)
2629{
2630        if (static_key_false(&preempt_notifier_key))
2631                __fire_sched_out_preempt_notifiers(curr, next);
2632}
2633
2634#else /* !CONFIG_PREEMPT_NOTIFIERS */
2635
2636static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2637{
2638}
2639
2640static inline void
2641fire_sched_out_preempt_notifiers(struct task_struct *curr,
2642                                 struct task_struct *next)
2643{
2644}
2645
2646#endif /* CONFIG_PREEMPT_NOTIFIERS */
2647
2648/**
2649 * prepare_task_switch - prepare to switch tasks
2650 * @rq: the runqueue preparing to switch
2651 * @prev: the current task that is being switched out
2652 * @next: the task we are going to switch to.
2653 *
2654 * This is called with the rq lock held and interrupts off. It must
2655 * be paired with a subsequent finish_task_switch after the context
2656 * switch.
2657 *
2658 * prepare_task_switch sets up locking and calls architecture specific
2659 * hooks.
2660 */
2661static inline void
2662prepare_task_switch(struct rq *rq, struct task_struct *prev,
2663                    struct task_struct *next)
2664{
2665        sched_info_switch(rq, prev, next);
2666        perf_event_task_sched_out(prev, next);
2667        fire_sched_out_preempt_notifiers(prev, next);
2668        prepare_lock_switch(rq, next);
2669        prepare_arch_switch(next);
2670}
2671
2672/**
2673 * finish_task_switch - clean up after a task-switch
2674 * @prev: the thread we just switched away from.
2675 *
2676 * finish_task_switch must be called after the context switch, paired
2677 * with a prepare_task_switch call before the context switch.
2678 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2679 * and do any other architecture-specific cleanup actions.
2680 *
2681 * Note that we may have delayed dropping an mm in context_switch(). If
2682 * so, we finish that here outside of the runqueue lock. (Doing it
2683 * with the lock held can cause deadlocks; see schedule() for
2684 * details.)
2685 *
2686 * The context switch have flipped the stack from under us and restored the
2687 * local variables which were saved when this task called schedule() in the
2688 * past. prev == current is still correct but we need to recalculate this_rq
2689 * because prev may have moved to another CPU.
2690 */
2691static struct rq *finish_task_switch(struct task_struct *prev)
2692        __releases(rq->lock)
2693{
2694        struct rq *rq = this_rq();
2695        struct mm_struct *mm = rq->prev_mm;
2696        long prev_state;
2697
2698        /*
2699         * The previous task will have left us with a preempt_count of 2
2700         * because it left us after:
2701         *
2702         *      schedule()
2703         *        preempt_disable();                    // 1
2704         *        __schedule()
2705         *          raw_spin_lock_irq(&rq->lock)        // 2
2706         *
2707         * Also, see FORK_PREEMPT_COUNT.
2708         */
2709        if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2710                      "corrupted preempt_count: %s/%d/0x%x\n",
2711                      current->comm, current->pid, preempt_count()))
2712                preempt_count_set(FORK_PREEMPT_COUNT);
2713
2714        rq->prev_mm = NULL;
2715
2716        /*
2717         * A task struct has one reference for the use as "current".
2718         * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2719         * schedule one last time. The schedule call will never return, and
2720         * the scheduled task must drop that reference.
2721         *
2722         * We must observe prev->state before clearing prev->on_cpu (in
2723         * finish_lock_switch), otherwise a concurrent wakeup can get prev
2724         * running on another CPU and we could rave with its RUNNING -> DEAD
2725         * transition, resulting in a double drop.
2726         */
2727        prev_state = prev->state;
2728        vtime_task_switch(prev);
2729        perf_event_task_sched_in(prev, current);
2730        finish_lock_switch(rq, prev);
2731        finish_arch_post_lock_switch();
2732
2733        fire_sched_in_preempt_notifiers(current);
2734        if (mm)
2735                mmdrop(mm);
2736        if (unlikely(prev_state == TASK_DEAD)) {
2737                if (prev->sched_class->task_dead)
2738                        prev->sched_class->task_dead(prev);
2739
2740                /*
2741                 * Remove function-return probe instances associated with this
2742                 * task and put them back on the free list.
2743                 */
2744                kprobe_flush_task(prev);
2745                put_task_struct(prev);
2746        }
2747
2748        tick_nohz_task_switch();
2749        return rq;
2750}
2751
2752#ifdef CONFIG_SMP
2753
2754/* rq->lock is NOT held, but preemption is disabled */
2755static void __balance_callback(struct rq *rq)
2756{
2757        struct callback_head *head, *next;
2758        void (*func)(struct rq *rq);
2759        unsigned long flags;
2760
2761        raw_spin_lock_irqsave(&rq->lock, flags);
2762        head = rq->balance_callback;
2763        rq->balance_callback = NULL;
2764        while (head) {
2765                func = (void (*)(struct rq *))head->func;
2766                next = head->next;
2767                head->next = NULL;
2768                head = next;
2769
2770                func(rq);
2771        }
2772        raw_spin_unlock_irqrestore(&rq->lock, flags);
2773}
2774
2775static inline void balance_callback(struct rq *rq)
2776{
2777        if (unlikely(rq->balance_callback))
2778                __balance_callback(rq);
2779}
2780
2781#else
2782
2783static inline void balance_callback(struct rq *rq)
2784{
2785}
2786
2787#endif
2788
2789/**
2790 * schedule_tail - first thing a freshly forked thread must call.
2791 * @prev: the thread we just switched away from.
2792 */
2793asmlinkage __visible void schedule_tail(struct task_struct *prev)
2794        __releases(rq->lock)
2795{
2796        struct rq *rq;
2797
2798        /*
2799         * New tasks start with FORK_PREEMPT_COUNT, see there and
2800         * finish_task_switch() for details.
2801         *
2802         * finish_task_switch() will drop rq->lock() and lower preempt_count
2803         * and the preempt_enable() will end up enabling preemption (on
2804         * PREEMPT_COUNT kernels).
2805         */
2806
2807        rq = finish_task_switch(prev);
2808        balance_callback(rq);
2809        preempt_enable();
2810
2811        if (current->set_child_tid)
2812                put_user(task_pid_vnr(current), current->set_child_tid);
2813}
2814
2815/*
2816 * context_switch - switch to the new MM and the new thread's register state.
2817 */
2818static __always_inline struct rq *
2819context_switch(struct rq *rq, struct task_struct *prev,
2820               struct task_struct *next, struct pin_cookie cookie)
2821{
2822        struct mm_struct *mm, *oldmm;
2823
2824        prepare_task_switch(rq, prev, next);
2825
2826        mm = next->mm;
2827        oldmm = prev->active_mm;
2828        /*
2829         * For paravirt, this is coupled with an exit in switch_to to
2830         * combine the page table reload and the switch backend into
2831         * one hypercall.
2832         */
2833        arch_start_context_switch(prev);
2834
2835        if (!mm) {
2836                next->active_mm = oldmm;
2837                atomic_inc(&oldmm->mm_count);
2838                enter_lazy_tlb(oldmm, next);
2839        } else
2840                switch_mm_irqs_off(oldmm, mm, next);
2841
2842        if (!prev->mm) {
2843                prev->active_mm = NULL;
2844                rq->prev_mm = oldmm;
2845        }
2846        /*
2847         * Since the runqueue lock will be released by the next
2848         * task (which is an invalid locking op but in the case
2849         * of the scheduler it's an obvious special-case), so we
2850         * do an early lockdep release here:
2851         */
2852        lockdep_unpin_lock(&rq->lock, cookie);
2853        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2854
2855        /* Here we just switch the register state and the stack. */
2856        switch_to(prev, next, prev);
2857        barrier();
2858
2859        return finish_task_switch(prev);
2860}
2861
2862/*
2863 * nr_running and nr_context_switches:
2864 *
2865 * externally visible scheduler statistics: current number of runnable
2866 * threads, total number of context switches performed since bootup.
2867 */
2868unsigned long nr_running(void)
2869{
2870        unsigned long i, sum = 0;
2871
2872        for_each_online_cpu(i)
2873                sum += cpu_rq(i)->nr_running;
2874
2875        return sum;
2876}
2877
2878/*
2879 * Check if only the current task is running on the cpu.
2880 *
2881 * Caution: this function does not check that the caller has disabled
2882 * preemption, thus the result might have a time-of-check-to-time-of-use
2883 * race.  The caller is responsible to use it correctly, for example:
2884 *
2885 * - from a non-preemptable section (of course)
2886 *
2887 * - from a thread that is bound to a single CPU
2888 *
2889 * - in a loop with very short iterations (e.g. a polling loop)
2890 */
2891bool single_task_running(void)
2892{
2893        return raw_rq()->nr_running == 1;
2894}
2895EXPORT_SYMBOL(single_task_running);
2896
2897unsigned long long nr_context_switches(void)
2898{
2899        int i;
2900        unsigned long long sum = 0;
2901
2902        for_each_possible_cpu(i)
2903                sum += cpu_rq(i)->nr_switches;
2904
2905        return sum;
2906}
2907
2908unsigned long nr_iowait(void)
2909{
2910        unsigned long i, sum = 0;
2911
2912        for_each_possible_cpu(i)
2913                sum += atomic_read(&cpu_rq(i)->nr_iowait);
2914
2915        return sum;
2916}
2917
2918unsigned long nr_iowait_cpu(int cpu)
2919{
2920        struct rq *this = cpu_rq(cpu);
2921        return atomic_read(&this->nr_iowait);
2922}
2923
2924void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2925{
2926        struct rq *rq = this_rq();
2927        *nr_waiters = atomic_read(&rq->nr_iowait);
2928        *load = rq->load.weight;
2929}
2930
2931#ifdef CONFIG_SMP
2932
2933/*
2934 * sched_exec - execve() is a valuable balancing opportunity, because at
2935 * this point the task has the smallest effective memory and cache footprint.
2936 */
2937void sched_exec(void)
2938{
2939        struct task_struct *p = current;
2940        unsigned long flags;
2941        int dest_cpu;
2942
2943        raw_spin_lock_irqsave(&p->pi_lock, flags);
2944        dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2945        if (dest_cpu == smp_processor_id())
2946                goto unlock;
2947
2948        if (likely(cpu_active(dest_cpu))) {
2949                struct migration_arg arg = { p, dest_cpu };
2950
2951                raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2952                stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2953                return;
2954        }
2955unlock:
2956        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2957}
2958
2959#endif
2960
2961DEFINE_PER_CPU(struct kernel_stat, kstat);
2962DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2963
2964EXPORT_PER_CPU_SYMBOL(kstat);
2965EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2966
2967/*
2968 * Return accounted runtime for the task.
2969 * In case the task is currently running, return the runtime plus current's
2970 * pending runtime that have not been accounted yet.
2971 */
2972unsigned long long task_sched_runtime(struct task_struct *p)
2973{
2974        struct rq_flags rf;
2975        struct rq *rq;
2976        u64 ns;
2977
2978#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2979        /*
2980         * 64-bit doesn't need locks to atomically read a 64bit value.
2981         * So we have a optimization chance when the task's delta_exec is 0.
2982         * Reading ->on_cpu is racy, but this is ok.
2983         *
2984         * If we race with it leaving cpu, we'll take a lock. So we're correct.
2985         * If we race with it entering cpu, unaccounted time is 0. This is
2986         * indistinguishable from the read occurring a few cycles earlier.
2987         * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2988         * been accounted, so we're correct here as well.
2989         */
2990        if (!p->on_cpu || !task_on_rq_queued(p))
2991                return p->se.sum_exec_runtime;
2992#endif
2993
2994        rq = task_rq_lock(p, &rf);
2995        /*
2996         * Must be ->curr _and_ ->on_rq.  If dequeued, we would
2997         * project cycles that may never be accounted to this
2998         * thread, breaking clock_gettime().
2999         */
3000        if (task_current(rq, p) && task_on_rq_queued(p)) {
3001                update_rq_clock(rq);
3002                p->sched_class->update_curr(rq);
3003        }
3004        ns = p->se.sum_exec_runtime;
3005        task_rq_unlock(rq, p, &rf);
3006
3007        return ns;
3008}
3009
3010/*
3011 * This function gets called by the timer code, with HZ frequency.
3012 * We call it with interrupts disabled.
3013 */
3014void scheduler_tick(void)
3015{
3016        int cpu = smp_processor_id();
3017        struct rq *rq = cpu_rq(cpu);
3018        struct task_struct *curr = rq->curr;
3019
3020        sched_clock_tick();
3021
3022        raw_spin_lock(&rq->lock);
3023        update_rq_clock(rq);
3024        curr->sched_class->task_tick(rq, curr, 0);
3025        cpu_load_update_active(rq);
3026        calc_global_load_tick(rq);
3027        raw_spin_unlock(&rq->lock);
3028
3029        perf_event_task_tick();
3030
3031#ifdef CONFIG_SMP
3032        rq->idle_balance = idle_cpu(cpu);
3033        trigger_load_balance(rq);
3034#endif
3035        rq_last_tick_reset(rq);
3036}
3037
3038#ifdef CONFIG_NO_HZ_FULL
3039/**
3040 * scheduler_tick_max_deferment
3041 *
3042 * Keep at least one tick per second when a single
3043 * active task is running because the scheduler doesn't
3044 * yet completely support full dynticks environment.
3045 *
3046 * This makes sure that uptime, CFS vruntime, load
3047 * balancing, etc... continue to move forward, even
3048 * with a very low granularity.
3049 *
3050 * Return: Maximum deferment in nanoseconds.
3051 */
3052u64 scheduler_tick_max_deferment(void)
3053{
3054        struct rq *rq = this_rq();
3055        unsigned long next, now = READ_ONCE(jiffies);
3056
3057        next = rq->last_sched_tick + HZ;
3058
3059        if (time_before_eq(next, now))
3060                return 0;
3061
3062        return jiffies_to_nsecs(next - now);
3063}
3064#endif
3065
3066#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3067                                defined(CONFIG_PREEMPT_TRACER))
3068/*
3069 * If the value passed in is equal to the current preempt count
3070 * then we just disabled preemption. Start timing the latency.
3071 */
3072static inline void preempt_latency_start(int val)
3073{
3074        if (preempt_count() == val) {
3075                unsigned long ip = get_lock_parent_ip();
3076#ifdef CONFIG_DEBUG_PREEMPT
3077                current->preempt_disable_ip = ip;
3078#endif
3079                trace_preempt_off(CALLER_ADDR0, ip);
3080        }
3081}
3082
3083void preempt_count_add(int val)
3084{
3085#ifdef CONFIG_DEBUG_PREEMPT
3086        /*
3087         * Underflow?
3088         */
3089        if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3090                return;
3091#endif
3092        __preempt_count_add(val);
3093#ifdef CONFIG_DEBUG_PREEMPT
3094        /*
3095         * Spinlock count overflowing soon?
3096         */
3097        DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3098                                PREEMPT_MASK - 10);
3099#endif
3100        preempt_latency_start(val);
3101}
3102EXPORT_SYMBOL(preempt_count_add);
3103NOKPROBE_SYMBOL(preempt_count_add);
3104
3105/*
3106 * If the value passed in equals to the current preempt count
3107 * then we just enabled preemption. Stop timing the latency.
3108 */
3109static inline void preempt_latency_stop(int val)
3110{
3111        if (preempt_count() == val)
3112                trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3113}
3114
3115void preempt_count_sub(int val)
3116{
3117#ifdef CONFIG_DEBUG_PREEMPT
3118        /*
3119         * Underflow?
3120         */
3121        if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3122                return;
3123        /*
3124         * Is the spinlock portion underflowing?
3125         */
3126        if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3127                        !(preempt_count() & PREEMPT_MASK)))
3128                return;
3129#endif
3130
3131        preempt_latency_stop(val);
3132        __preempt_count_sub(val);
3133}
3134EXPORT_SYMBOL(preempt_count_sub);
3135NOKPROBE_SYMBOL(preempt_count_sub);
3136
3137#else
3138static inline void preempt_latency_start(int val) { }
3139static inline void preempt_latency_stop(int val) { }
3140#endif
3141
3142/*
3143 * Print scheduling while atomic bug:
3144 */
3145static noinline void __schedule_bug(struct task_struct *prev)
3146{
3147        if (oops_in_progress)
3148                return;
3149
3150        printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3151                prev->comm, prev->pid, preempt_count());
3152
3153        debug_show_held_locks(prev);
3154        print_modules();
3155        if (irqs_disabled())
3156                print_irqtrace_events(prev);
3157#ifdef CONFIG_DEBUG_PREEMPT
3158        if (in_atomic_preempt_off()) {
3159                pr_err("Preemption disabled at:");
3160                print_ip_sym(current->preempt_disable_ip);
3161                pr_cont("\n");
3162        }
3163#endif
3164        dump_stack();
3165        add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3166}
3167
3168/*
3169 * Various schedule()-time debugging checks and statistics:
3170 */
3171static inline void schedule_debug(struct task_struct *prev)
3172{
3173#ifdef CONFIG_SCHED_STACK_END_CHECK
3174        if (task_stack_end_corrupted(prev))
3175                panic("corrupted stack end detected inside scheduler\n");
3176#endif
3177
3178        if (unlikely(in_atomic_preempt_off())) {
3179                __schedule_bug(prev);
3180                preempt_count_set(PREEMPT_DISABLED);
3181        }
3182        rcu_sleep_check();
3183
3184        profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3185
3186        schedstat_inc(this_rq(), sched_count);
3187}
3188
3189/*
3190 * Pick up the highest-prio task:
3191 */
3192static inline struct task_struct *
3193pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3194{
3195        const struct sched_class *class = &fair_sched_class;
3196        struct task_struct *p;
3197
3198        /*
3199         * Optimization: we know that if all tasks are in
3200         * the fair class we can call that function directly:
3201         */
3202        if (likely(prev->sched_class == class &&
3203                   rq->nr_running == rq->cfs.h_nr_running)) {
3204                p = fair_sched_class.pick_next_task(rq, prev, cookie);
3205                if (unlikely(p == RETRY_TASK))
3206                        goto again;
3207
3208                /* assumes fair_sched_class->next == idle_sched_class */
3209                if (unlikely(!p))
3210                        p = idle_sched_class.pick_next_task(rq, prev, cookie);
3211
3212                return p;
3213        }
3214
3215again:
3216        for_each_class(class) {
3217                p = class->pick_next_task(rq, prev, cookie);
3218                if (p) {
3219                        if (unlikely(p == RETRY_TASK))
3220                                goto again;
3221                        return p;
3222                }
3223        }
3224
3225        BUG(); /* the idle class will always have a runnable task */
3226}
3227
3228/*
3229 * __schedule() is the main scheduler function.
3230 *
3231 * The main means of driving the scheduler and thus entering this function are:
3232 *
3233 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3234 *
3235 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3236 *      paths. For example, see arch/x86/entry_64.S.
3237 *
3238 *      To drive preemption between tasks, the scheduler sets the flag in timer
3239 *      interrupt handler scheduler_tick().
3240 *
3241 *   3. Wakeups don't really cause entry into schedule(). They add a
3242 *      task to the run-queue and that's it.
3243 *
3244 *      Now, if the new task added to the run-queue preempts the current
3245 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3246 *      called on the nearest possible occasion:
3247 *
3248 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3249 *
3250 *         - in syscall or exception context, at the next outmost
3251 *           preempt_enable(). (this might be as soon as the wake_up()'s
3252 *           spin_unlock()!)
3253 *
3254 *         - in IRQ context, return from interrupt-handler to
3255 *           preemptible context
3256 *
3257 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3258 *         then at the next:
3259 *
3260 *          - cond_resched() call
3261 *          - explicit schedule() call
3262 *          - return from syscall or exception to user-space
3263 *          - return from interrupt-handler to user-space
3264 *
3265 * WARNING: must be called with preemption disabled!
3266 */
3267static void __sched notrace __schedule(bool preempt)
3268{
3269        struct task_struct *prev, *next;
3270        unsigned long *switch_count;
3271        struct pin_cookie cookie;
3272        struct rq *rq;
3273        int cpu;
3274
3275        cpu = smp_processor_id();
3276        rq = cpu_rq(cpu);
3277        prev = rq->curr;
3278
3279        /*
3280         * do_exit() calls schedule() with preemption disabled as an exception;
3281         * however we must fix that up, otherwise the next task will see an
3282         * inconsistent (higher) preempt count.
3283         *
3284         * It also avoids the below schedule_debug() test from complaining
3285         * about this.
3286         */
3287        if (unlikely(prev->state == TASK_DEAD))
3288                preempt_enable_no_resched_notrace();
3289
3290        schedule_debug(prev);
3291
3292        if (sched_feat(HRTICK))
3293                hrtick_clear(rq);
3294
3295        local_irq_disable();
3296        rcu_note_context_switch();
3297
3298        /*
3299         * Make sure that signal_pending_state()->signal_pending() below
3300         * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3301         * done by the caller to avoid the race with signal_wake_up().
3302         */
3303        smp_mb__before_spinlock();
3304        raw_spin_lock(&rq->lock);
3305        cookie = lockdep_pin_lock(&rq->lock);
3306
3307        rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3308
3309        switch_count = &prev->nivcsw;
3310        if (!preempt && prev->state) {
3311                if (unlikely(signal_pending_state(prev->state, prev))) {
3312                        prev->state = TASK_RUNNING;
3313                } else {
3314                        deactivate_task(rq, prev, DEQUEUE_SLEEP);
3315                        prev->on_rq = 0;
3316
3317                        /*
3318                         * If a worker went to sleep, notify and ask workqueue
3319                         * whether it wants to wake up a task to maintain
3320                         * concurrency.
3321                         */
3322                        if (prev->flags & PF_WQ_WORKER) {
3323                                struct task_struct *to_wakeup;
3324
3325                                to_wakeup = wq_worker_sleeping(prev);
3326                                if (to_wakeup)
3327                                        try_to_wake_up_local(to_wakeup, cookie);
3328                        }
3329                }
3330                switch_count = &prev->nvcsw;
3331        }
3332
3333        if (task_on_rq_queued(prev))
3334                update_rq_clock(rq);
3335
3336        next = pick_next_task(rq, prev, cookie);
3337        clear_tsk_need_resched(prev);
3338        clear_preempt_need_resched();
3339        rq->clock_skip_update = 0;
3340
3341        if (likely(prev != next)) {
3342                rq->nr_switches++;
3343                rq->curr = next;
3344                ++*switch_count;
3345
3346                trace_sched_switch(preempt, prev, next);
3347                rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3348        } else {
3349                lockdep_unpin_lock(&rq->lock, cookie);
3350                raw_spin_unlock_irq(&rq->lock);
3351        }
3352
3353        balance_callback(rq);
3354}
3355STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3356
3357static inline void sched_submit_work(struct task_struct *tsk)
3358{
3359        if (!tsk->state || tsk_is_pi_blocked(tsk))
3360                return;
3361        /*
3362         * If we are going to sleep and we have plugged IO queued,
3363         * make sure to submit it to avoid deadlocks.
3364         */
3365        if (blk_needs_flush_plug(tsk))
3366                blk_schedule_flush_plug(tsk);
3367}
3368
3369asmlinkage __visible void __sched schedule(void)
3370{
3371        struct task_struct *tsk = current;
3372
3373        sched_submit_work(tsk);
3374        do {
3375                preempt_disable();
3376                __schedule(false);
3377                sched_preempt_enable_no_resched();
3378        } while (need_resched());
3379}
3380EXPORT_SYMBOL(schedule);
3381
3382#ifdef CONFIG_CONTEXT_TRACKING
3383asmlinkage __visible void __sched schedule_user(void)
3384{
3385        /*
3386         * If we come here after a random call to set_need_resched(),
3387         * or we have been woken up remotely but the IPI has not yet arrived,
3388         * we haven't yet exited the RCU idle mode. Do it here manually until
3389         * we find a better solution.
3390         *
3391         * NB: There are buggy callers of this function.  Ideally we
3392         * should warn if prev_state != CONTEXT_USER, but that will trigger
3393         * too frequently to make sense yet.
3394         */
3395        enum ctx_state prev_state = exception_enter();
3396        schedule();
3397        exception_exit(prev_state);
3398}
3399#endif
3400
3401/**
3402 * schedule_preempt_disabled - called with preemption disabled
3403 *
3404 * Returns with preemption disabled. Note: preempt_count must be 1
3405 */
3406void __sched schedule_preempt_disabled(void)
3407{
3408        sched_preempt_enable_no_resched();
3409        schedule();
3410        preempt_disable();
3411}
3412
3413static void __sched notrace preempt_schedule_common(void)
3414{
3415        do {
3416                /*
3417                 * Because the function tracer can trace preempt_count_sub()
3418                 * and it also uses preempt_enable/disable_notrace(), if
3419                 * NEED_RESCHED is set, the preempt_enable_notrace() called
3420                 * by the function tracer will call this function again and
3421                 * cause infinite recursion.
3422                 *
3423                 * Preemption must be disabled here before the function
3424                 * tracer can trace. Break up preempt_disable() into two
3425                 * calls. One to disable preemption without fear of being
3426                 * traced. The other to still record the preemption latency,
3427                 * which can also be traced by the function tracer.
3428                 */
3429                preempt_disable_notrace();
3430                preempt_latency_start(1);
3431                __schedule(true);
3432                preempt_latency_stop(1);
3433                preempt_enable_no_resched_notrace();
3434
3435                /*
3436                 * Check again in case we missed a preemption opportunity
3437                 * between schedule and now.
3438                 */
3439        } while (need_resched());
3440}
3441
3442#ifdef CONFIG_PREEMPT
3443/*
3444 * this is the entry point to schedule() from in-kernel preemption
3445 * off of preempt_enable. Kernel preemptions off return from interrupt
3446 * occur there and call schedule directly.
3447 */
3448asmlinkage __visible void __sched notrace preempt_schedule(void)
3449{
3450        /*
3451         * If there is a non-zero preempt_count or interrupts are disabled,
3452         * we do not want to preempt the current task. Just return..
3453         */
3454        if (likely(!preemptible()))
3455                return;
3456
3457        preempt_schedule_common();
3458}
3459NOKPROBE_SYMBOL(preempt_schedule);
3460EXPORT_SYMBOL(preempt_schedule);
3461
3462/**
3463 * preempt_schedule_notrace - preempt_schedule called by tracing
3464 *
3465 * The tracing infrastructure uses preempt_enable_notrace to prevent
3466 * recursion and tracing preempt enabling caused by the tracing
3467 * infrastructure itself. But as tracing can happen in areas coming
3468 * from userspace or just about to enter userspace, a preempt enable
3469 * can occur before user_exit() is called. This will cause the scheduler
3470 * to be called when the system is still in usermode.
3471 *
3472 * To prevent this, the preempt_enable_notrace will use this function
3473 * instead of preempt_schedule() to exit user context if needed before
3474 * calling the scheduler.
3475 */
3476asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3477{
3478        enum ctx_state prev_ctx;
3479
3480        if (likely(!preemptible()))
3481                return;
3482
3483        do {
3484                /*
3485                 * Because the function tracer can trace preempt_count_sub()
3486                 * and it also uses preempt_enable/disable_notrace(), if
3487                 * NEED_RESCHED is set, the preempt_enable_notrace() called
3488                 * by the function tracer will call this function again and
3489                 * cause infinite recursion.
3490                 *
3491                 * Preemption must be disabled here before the function
3492                 * tracer can trace. Break up preempt_disable() into two
3493                 * calls. One to disable preemption without fear of being
3494                 * traced. The other to still record the preemption latency,
3495                 * which can also be traced by the function tracer.
3496                 */
3497                preempt_disable_notrace();
3498                preempt_latency_start(1);
3499                /*
3500                 * Needs preempt disabled in case user_exit() is traced
3501                 * and the tracer calls preempt_enable_notrace() causing
3502                 * an infinite recursion.
3503                 */
3504                prev_ctx = exception_enter();
3505                __schedule(true);
3506                exception_exit(prev_ctx);
3507
3508                preempt_latency_stop(1);
3509                preempt_enable_no_resched_notrace();
3510        } while (need_resched());
3511}
3512EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3513
3514#endif /* CONFIG_PREEMPT */
3515
3516/*
3517 * this is the entry point to schedule() from kernel preemption
3518 * off of irq context.
3519 * Note, that this is called and return with irqs disabled. This will
3520 * protect us against recursive calling from irq.
3521 */
3522asmlinkage __visible void __sched preempt_schedule_irq(void)
3523{
3524        enum ctx_state prev_state;
3525
3526        /* Catch callers which need to be fixed */
3527        BUG_ON(preempt_count() || !irqs_disabled());
3528
3529        prev_state = exception_enter();
3530
3531        do {
3532                preempt_disable();
3533                local_irq_enable();
3534                __schedule(true);
3535                local_irq_disable();
3536                sched_preempt_enable_no_resched();
3537        } while (need_resched());
3538
3539        exception_exit(prev_state);
3540}
3541
3542int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3543                          void *key)
3544{
3545        return try_to_wake_up(curr->private, mode, wake_flags);
3546}
3547EXPORT_SYMBOL(default_wake_function);
3548
3549#ifdef CONFIG_RT_MUTEXES
3550
3551/*
3552 * rt_mutex_setprio - set the current priority of a task
3553 * @p: task
3554 * @prio: prio value (kernel-internal form)
3555 *
3556 * This function changes the 'effective' priority of a task. It does
3557 * not touch ->normal_prio like __setscheduler().
3558 *
3559 * Used by the rt_mutex code to implement priority inheritance
3560 * logic. Call site only calls if the priority of the task changed.
3561 */
3562void rt_mutex_setprio(struct task_struct *p, int prio)
3563{
3564        int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3565        const struct sched_class *prev_class;
3566        struct rq_flags rf;
3567        struct rq *rq;
3568
3569        BUG_ON(prio > MAX_PRIO);
3570
3571        rq = __task_rq_lock(p, &rf);
3572
3573        /*
3574         * Idle task boosting is a nono in general. There is one
3575         * exception, when PREEMPT_RT and NOHZ is active:
3576         *
3577         * The idle task calls get_next_timer_interrupt() and holds
3578         * the timer wheel base->lock on the CPU and another CPU wants
3579         * to access the timer (probably to cancel it). We can safely
3580         * ignore the boosting request, as the idle CPU runs this code
3581         * with interrupts disabled and will complete the lock
3582         * protected section without being interrupted. So there is no
3583         * real need to boost.
3584         */
3585        if (unlikely(p == rq->idle)) {
3586                WARN_ON(p != rq->curr);
3587                WARN_ON(p->pi_blocked_on);
3588                goto out_unlock;
3589        }
3590
3591        trace_sched_pi_setprio(p, prio);
3592        oldprio = p->prio;
3593
3594        if (oldprio == prio)
3595                queue_flag &= ~DEQUEUE_MOVE;
3596
3597        prev_class = p->sched_class;
3598        queued = task_on_rq_queued(p);
3599        running = task_current(rq, p);
3600        if (queued)
3601                dequeue_task(rq, p, queue_flag);
3602        if (running)
3603                put_prev_task(rq, p);
3604
3605        /*
3606         * Boosting condition are:
3607         * 1. -rt task is running and holds mutex A
3608         *      --> -dl task blocks on mutex A
3609         *
3610         * 2. -dl task is running and holds mutex A
3611         *      --> -dl task blocks on mutex A and could preempt the
3612         *          running task
3613         */
3614        if (dl_prio(prio)) {
3615                struct task_struct *pi_task = rt_mutex_get_top_task(p);
3616                if (!dl_prio(p->normal_prio) ||
3617                    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3618                        p->dl.dl_boosted = 1;
3619                        queue_flag |= ENQUEUE_REPLENISH;
3620                } else
3621                        p->dl.dl_boosted = 0;
3622                p->sched_class = &dl_sched_class;
3623        } else if (rt_prio(prio)) {
3624                if (dl_prio(oldprio))
3625                        p->dl.dl_boosted = 0;
3626                if (oldprio < prio)
3627                        queue_flag |= ENQUEUE_HEAD;
3628                p->sched_class = &rt_sched_class;
3629        } else {
3630                if (dl_prio(oldprio))
3631                        p->dl.dl_boosted = 0;
3632                if (rt_prio(oldprio))
3633                        p->rt.timeout = 0;
3634                p->sched_class = &fair_sched_class;
3635        }
3636
3637        p->prio = prio;
3638
3639        if (running)
3640                p->sched_class->set_curr_task(rq);
3641        if (queued)
3642                enqueue_task(rq, p, queue_flag);
3643
3644        check_class_changed(rq, p, prev_class, oldprio);
3645out_unlock:
3646        preempt_disable(); /* avoid rq from going away on us */
3647        __task_rq_unlock(rq, &rf);
3648
3649        balance_callback(rq);
3650        preempt_enable();
3651}
3652#endif
3653
3654void set_user_nice(struct task_struct *p, long nice)
3655{
3656        int old_prio, delta, queued;
3657        struct rq_flags rf;
3658        struct rq *rq;
3659
3660        if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3661                return;
3662        /*
3663         * We have to be careful, if called from sys_setpriority(),
3664         * the task might be in the middle of scheduling on another CPU.
3665         */
3666        rq = task_rq_lock(p, &rf);
3667        /*
3668         * The RT priorities are set via sched_setscheduler(), but we still
3669         * allow the 'normal' nice value to be set - but as expected
3670         * it wont have any effect on scheduling until the task is
3671         * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3672         */
3673        if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3674                p->static_prio = NICE_TO_PRIO(nice);
3675                goto out_unlock;
3676        }
3677        queued = task_on_rq_queued(p);
3678        if (queued)
3679                dequeue_task(rq, p, DEQUEUE_SAVE);
3680
3681        p->static_prio = NICE_TO_PRIO(nice);
3682        set_load_weight(p);
3683        old_prio = p->prio;
3684        p->prio = effective_prio(p);
3685        delta = p->prio - old_prio;
3686
3687        if (queued) {
3688                enqueue_task(rq, p, ENQUEUE_RESTORE);
3689                /*
3690                 * If the task increased its priority or is running and
3691                 * lowered its priority, then reschedule its CPU:
3692                 */
3693                if (delta < 0 || (delta > 0 && task_running(rq, p)))
3694                        resched_curr(rq);
3695        }
3696out_unlock:
3697        task_rq_unlock(rq, p, &rf);
3698}
3699EXPORT_SYMBOL(set_user_nice);
3700
3701/*
3702 * can_nice - check if a task can reduce its nice value
3703 * @p: task
3704 * @nice: nice value
3705 */
3706int can_nice(const struct task_struct *p, const int nice)
3707{
3708        /* convert nice value [19,-20] to rlimit style value [1,40] */
3709        int nice_rlim = nice_to_rlimit(nice);
3710
3711        return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3712                capable(CAP_SYS_NICE));
3713}
3714
3715#ifdef __ARCH_WANT_SYS_NICE
3716
3717/*
3718 * sys_nice - change the priority of the current process.
3719 * @increment: priority increment
3720 *
3721 * sys_setpriority is a more generic, but much slower function that
3722 * does similar things.
3723 */
3724SYSCALL_DEFINE1(nice, int, increment)
3725{
3726        long nice, retval;
3727
3728        /*
3729         * Setpriority might change our priority at the same moment.
3730         * We don't have to worry. Conceptually one call occurs first
3731         * and we have a single winner.
3732         */
3733        increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3734        nice = task_nice(current) + increment;
3735
3736        nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3737        if (increment < 0 && !can_nice(current, nice))
3738                return -EPERM;
3739
3740        retval = security_task_setnice(current, nice);
3741        if (retval)
3742                return retval;
3743
3744        set_user_nice(current, nice);
3745        return 0;
3746}
3747
3748#endif
3749
3750/**
3751 * task_prio - return the priority value of a given task.
3752 * @p: the task in question.
3753 *
3754 * Return: The priority value as seen by users in /proc.
3755 * RT tasks are offset by -200. Normal tasks are centered
3756 * around 0, value goes from -16 to +15.
3757 */
3758int task_prio(const struct task_struct *p)
3759{
3760        return p->prio - MAX_RT_PRIO;
3761}
3762
3763/**
3764 * idle_cpu - is a given cpu idle currently?
3765 * @cpu: the processor in question.
3766 *
3767 * Return: 1 if the CPU is currently idle. 0 otherwise.
3768 */
3769int idle_cpu(int cpu)
3770{
3771        struct rq *rq = cpu_rq(cpu);
3772
3773        if (rq->curr != rq->idle)
3774                return 0;
3775
3776        if (rq->nr_running)
3777                return 0;
3778
3779#ifdef CONFIG_SMP
3780        if (!llist_empty(&rq->wake_list))
3781                return 0;
3782#endif
3783
3784        return 1;
3785}
3786
3787/**
3788 * idle_task - return the idle task for a given cpu.
3789 * @cpu: the processor in question.
3790 *
3791 * Return: The idle task for the cpu @cpu.
3792 */
3793struct task_struct *idle_task(int cpu)
3794{
3795        return cpu_rq(cpu)->idle;
3796}
3797
3798/**
3799 * find_process_by_pid - find a process with a matching PID value.
3800 * @pid: the pid in question.
3801 *
3802 * The task of @pid, if found. %NULL otherwise.
3803 */
3804static struct task_struct *find_process_by_pid(pid_t pid)
3805{
3806        return pid ? find_task_by_vpid(pid) : current;
3807}
3808
3809/*
3810 * This function initializes the sched_dl_entity of a newly becoming
3811 * SCHED_DEADLINE task.
3812 *
3813 * Only the static values are considered here, the actual runtime and the
3814 * absolute deadline will be properly calculated when the task is enqueued
3815 * for the first time with its new policy.
3816 */
3817static void
3818__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3819{
3820        struct sched_dl_entity *dl_se = &p->dl;
3821
3822        dl_se->dl_runtime = attr->sched_runtime;
3823        dl_se->dl_deadline = attr->sched_deadline;
3824        dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3825        dl_se->flags = attr->sched_flags;
3826        dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3827
3828        /*
3829         * Changing the parameters of a task is 'tricky' and we're not doing
3830         * the correct thing -- also see task_dead_dl() and switched_from_dl().
3831         *
3832         * What we SHOULD do is delay the bandwidth release until the 0-lag
3833         * point. This would include retaining the task_struct until that time
3834         * and change dl_overflow() to not immediately decrement the current
3835         * amount.
3836         *
3837         * Instead we retain the current runtime/deadline and let the new
3838         * parameters take effect after the current reservation period lapses.
3839         * This is safe (albeit pessimistic) because the 0-lag point is always
3840         * before the current scheduling deadline.
3841         *
3842         * We can still have temporary overloads because we do not delay the
3843         * change in bandwidth until that time; so admission control is
3844         * not on the safe side. It does however guarantee tasks will never
3845         * consume more than promised.
3846         */
3847}
3848
3849/*
3850 * sched_setparam() passes in -1 for its policy, to let the functions
3851 * it calls know not to change it.
3852 */
3853#define SETPARAM_POLICY -1
3854
3855static void __setscheduler_params(struct task_struct *p,
3856                const struct sched_attr *attr)
3857{
3858        int policy = attr->sched_policy;
3859
3860        if (policy == SETPARAM_POLICY)
3861                policy = p->policy;
3862
3863        p->policy = policy;
3864
3865        if (dl_policy(policy))
3866                __setparam_dl(p, attr);
3867        else if (fair_policy(policy))
3868                p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3869
3870        /*
3871         * __sched_setscheduler() ensures attr->sched_priority == 0 when
3872         * !rt_policy. Always setting this ensures that things like
3873         * getparam()/getattr() don't report silly values for !rt tasks.
3874         */
3875        p->rt_priority = attr->sched_priority;
3876        p->normal_prio = normal_prio(p);
3877        set_load_weight(p);
3878}
3879
3880/* Actually do priority change: must hold pi & rq lock. */
3881static void __setscheduler(struct rq *rq, struct task_struct *p,
3882                           const struct sched_attr *attr, bool keep_boost)
3883{
3884        __setscheduler_params(p, attr);
3885
3886        /*
3887         * Keep a potential priority boosting if called from
3888         * sched_setscheduler().
3889         */
3890        if (keep_boost)
3891                p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3892        else
3893                p->prio = normal_prio(p);
3894
3895        if (dl_prio(p->prio))
3896                p->sched_class = &dl_sched_class;
3897        else if (rt_prio(p->prio))
3898                p->sched_class = &rt_sched_class;
3899        else
3900                p->sched_class = &fair_sched_class;
3901}
3902
3903static void
3904__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3905{
3906        struct sched_dl_entity *dl_se = &p->dl;
3907
3908        attr->sched_priority = p->rt_priority;
3909        attr->sched_runtime = dl_se->dl_runtime;
3910        attr->sched_deadline = dl_se->dl_deadline;
3911        attr->sched_period = dl_se->dl_period;
3912        attr->sched_flags = dl_se->flags;
3913}
3914
3915/*
3916 * This function validates the new parameters of a -deadline task.
3917 * We ask for the deadline not being zero, and greater or equal
3918 * than the runtime, as well as the period of being zero or
3919 * greater than deadline. Furthermore, we have to be sure that
3920 * user parameters are above the internal resolution of 1us (we
3921 * check sched_runtime only since it is always the smaller one) and
3922 * below 2^63 ns (we have to check both sched_deadline and
3923 * sched_period, as the latter can be zero).
3924 */
3925static bool
3926__checkparam_dl(const struct sched_attr *attr)
3927{
3928        /* deadline != 0 */
3929        if (attr->sched_deadline == 0)
3930                return false;
3931
3932        /*
3933         * Since we truncate DL_SCALE bits, make sure we're at least
3934         * that big.
3935         */
3936        if (attr->sched_runtime < (1ULL << DL_SCALE))
3937                return false;
3938
3939        /*
3940         * Since we use the MSB for wrap-around and sign issues, make
3941         * sure it's not set (mind that period can be equal to zero).
3942         */
3943        if (attr->sched_deadline & (1ULL << 63) ||
3944            attr->sched_period & (1ULL << 63))
3945                return false;
3946
3947        /* runtime <= deadline <= period (if period != 0) */
3948        if ((attr->sched_period != 0 &&
3949             attr->sched_period < attr->sched_deadline) ||
3950            attr->sched_deadline < attr->sched_runtime)
3951                return false;
3952
3953        return true;
3954}
3955
3956/*
3957 * check the target process has a UID that matches the current process's
3958 */
3959static bool check_same_owner(struct task_struct *p)
3960{
3961        const struct cred *cred = current_cred(), *pcred;
3962        bool match;
3963
3964        rcu_read_lock();
3965        pcred = __task_cred(p);
3966        match = (uid_eq(cred->euid, pcred->euid) ||
3967                 uid_eq(cred->euid, pcred->uid));
3968        rcu_read_unlock();
3969        return match;
3970}
3971
3972static bool dl_param_changed(struct task_struct *p,
3973                const struct sched_attr *attr)
3974{
3975        struct sched_dl_entity *dl_se = &p->dl;
3976
3977        if (dl_se->dl_runtime != attr->sched_runtime ||
3978                dl_se->dl_deadline != attr->sched_deadline ||
3979                dl_se->dl_period != attr->sched_period ||
3980                dl_se->flags != attr->sched_flags)
3981                return true;
3982
3983        return false;
3984}
3985
3986static int __sched_setscheduler(struct task_struct *p,
3987                                const struct sched_attr *attr,
3988                                bool user, bool pi)
3989{
3990        int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3991                      MAX_RT_PRIO - 1 - attr->sched_priority;
3992        int retval, oldprio, oldpolicy = -1, queued, running;
3993        int new_effective_prio, policy = attr->sched_policy;
3994        const struct sched_class *prev_class;
3995        struct rq_flags rf;
3996        int reset_on_fork;
3997        int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3998        struct rq *rq;
3999
4000        /* may grab non-irq protected spin_locks */
4001        BUG_ON(in_interrupt());
4002recheck:
4003        /* double check policy once rq lock held */
4004        if (policy < 0) {
4005                reset_on_fork = p->sched_reset_on_fork;
4006                policy = oldpolicy = p->policy;
4007        } else {
4008                reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4009
4010                if (!valid_policy(policy))
4011                        return -EINVAL;
4012        }
4013
4014        if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4015                return -EINVAL;
4016
4017        /*
4018         * Valid priorities for SCHED_FIFO and SCHED_RR are
4019         * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4020         * SCHED_BATCH and SCHED_IDLE is 0.
4021         */
4022        if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4023            (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4024                return -EINVAL;
4025        if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4026            (rt_policy(policy) != (attr->sched_priority != 0)))
4027                return -EINVAL;
4028
4029        /*
4030         * Allow unprivileged RT tasks to decrease priority:
4031         */
4032        if (user && !capable(CAP_SYS_NICE)) {
4033                if (fair_policy(policy)) {
4034                        if (attr->sched_nice < task_nice(p) &&
4035                            !can_nice(p, attr->sched_nice))
4036                                return -EPERM;
4037                }
4038
4039                if (rt_policy(policy)) {
4040                        unsigned long rlim_rtprio =
4041                                        task_rlimit(p, RLIMIT_RTPRIO);
4042
4043                        /* can't set/change the rt policy */
4044                        if (policy != p->policy && !rlim_rtprio)
4045                                return -EPERM;
4046
4047                        /* can't increase priority */
4048                        if (attr->sched_priority > p->rt_priority &&
4049                            attr->sched_priority > rlim_rtprio)
4050                                return -EPERM;
4051                }
4052
4053                 /*
4054                  * Can't set/change SCHED_DEADLINE policy at all for now
4055                  * (safest behavior); in the future we would like to allow
4056                  * unprivileged DL tasks to increase their relative deadline
4057                  * or reduce their runtime (both ways reducing utilization)
4058                  */
4059                if (dl_policy(policy))
4060                        return -EPERM;
4061
4062                /*
4063                 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4064                 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4065                 */
4066                if (idle_policy(p->policy) && !idle_policy(policy)) {
4067                        if (!can_nice(p, task_nice(p)))
4068                                return -EPERM;
4069                }
4070
4071                /* can't change other user's priorities */
4072                if (!check_same_owner(p))
4073                        return -EPERM;
4074
4075                /* Normal users shall not reset the sched_reset_on_fork flag */
4076                if (p->sched_reset_on_fork && !reset_on_fork)
4077                        return -EPERM;
4078        }
4079
4080        if (user) {
4081                retval = security_task_setscheduler(p);
4082                if (retval)
4083                        return retval;
4084        }
4085
4086        /*
4087         * make sure no PI-waiters arrive (or leave) while we are
4088         * changing the priority of the task:
4089         *
4090         * To be able to change p->policy safely, the appropriate
4091         * runqueue lock must be held.
4092         */
4093        rq = task_rq_lock(p, &rf);
4094
4095        /*
4096         * Changing the policy of the stop threads its a very bad idea
4097         */
4098        if (p == rq->stop) {
4099                task_rq_unlock(rq, p, &rf);
4100                return -EINVAL;
4101        }
4102
4103        /*
4104         * If not changing anything there's no need to proceed further,
4105         * but store a possible modification of reset_on_fork.
4106         */
4107        if (unlikely(policy == p->policy)) {
4108                if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4109                        goto change;
4110                if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4111                        goto change;
4112                if (dl_policy(policy) && dl_param_changed(p, attr))
4113                        goto change;
4114
4115                p->sched_reset_on_fork = reset_on_fork;
4116                task_rq_unlock(rq, p, &rf);
4117                return 0;
4118        }
4119change:
4120
4121        if (user) {
4122#ifdef CONFIG_RT_GROUP_SCHED
4123                /*
4124                 * Do not allow realtime tasks into groups that have no runtime
4125                 * assigned.
4126                 */
4127                if (rt_bandwidth_enabled() && rt_policy(policy) &&
4128                                task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4129                                !task_group_is_autogroup(task_group(p))) {
4130                        task_rq_unlock(rq, p, &rf);
4131                        return -EPERM;
4132                }
4133#endif
4134#ifdef CONFIG_SMP
4135                if (dl_bandwidth_enabled() && dl_policy(policy)) {
4136                        cpumask_t *span = rq->rd->span;
4137
4138                        /*
4139                         * Don't allow tasks with an affinity mask smaller than
4140                         * the entire root_domain to become SCHED_DEADLINE. We
4141                         * will also fail if there's no bandwidth available.
4142                         */
4143                        if (!cpumask_subset(span, &p->cpus_allowed) ||
4144                            rq->rd->dl_bw.bw == 0) {
4145                                task_rq_unlock(rq, p, &rf);
4146                                return -EPERM;
4147                        }
4148                }
4149#endif
4150        }
4151
4152        /* recheck policy now with rq lock held */
4153        if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4154                policy = oldpolicy = -1;
4155                task_rq_unlock(rq, p, &rf);
4156                goto recheck;
4157        }
4158
4159        /*
4160         * If setscheduling to SCHED_DEADLINE (or changing the parameters
4161         * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4162         * is available.
4163         */
4164        if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4165                task_rq_unlock(rq, p, &rf);
4166                return -EBUSY;
4167        }
4168
4169        p->sched_reset_on_fork = reset_on_fork;
4170        oldprio = p->prio;
4171
4172        if (pi) {
4173                /*
4174                 * Take priority boosted tasks into account. If the new
4175                 * effective priority is unchanged, we just store the new
4176                 * normal parameters and do not touch the scheduler class and
4177                 * the runqueue. This will be done when the task deboost
4178                 * itself.
4179                 */
4180                new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4181                if (new_effective_prio == oldprio)
4182                        queue_flags &= ~DEQUEUE_MOVE;
4183        }
4184
4185        queued = task_on_rq_queued(p);
4186        running = task_current(rq, p);
4187        if (queued)
4188                dequeue_task(rq, p, queue_flags);
4189        if (running)
4190                put_prev_task(rq, p);
4191
4192        prev_class = p->sched_class;
4193        __setscheduler(rq, p, attr, pi);
4194
4195        if (running)
4196                p->sched_class->set_curr_task(rq);
4197        if (queued) {
4198                /*
4199                 * We enqueue to tail when the priority of a task is
4200                 * increased (user space view).
4201                 */
4202                if (oldprio < p->prio)
4203                        queue_flags |= ENQUEUE_HEAD;
4204
4205                enqueue_task(rq, p, queue_flags);
4206        }
4207
4208        check_class_changed(rq, p, prev_class, oldprio);
4209        preempt_disable(); /* avoid rq from going away on us */
4210        task_rq_unlock(rq, p, &rf);
4211
4212        if (pi)
4213                rt_mutex_adjust_pi(p);
4214
4215        /*
4216         * Run balance callbacks after we've adjusted the PI chain.
4217         */
4218        balance_callback(rq);
4219        preempt_enable();
4220
4221        return 0;
4222}
4223
4224static int _sched_setscheduler(struct task_struct *p, int policy,
4225                               const struct sched_param *param, bool check)
4226{
4227        struct sched_attr attr = {
4228                .sched_policy   = policy,
4229                .sched_priority = param->sched_priority,
4230                .sched_nice     = PRIO_TO_NICE(p->static_prio),
4231        };
4232
4233        /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4234        if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4235                attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4236                policy &= ~SCHED_RESET_ON_FORK;
4237                attr.sched_policy = policy;
4238        }
4239
4240        return __sched_setscheduler(p, &attr, check, true);
4241}
4242/**
4243 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4244 * @p: the task in question.
4245 * @policy: new policy.
4246 * @param: structure containing the new RT priority.
4247 *
4248 * Return: 0 on success. An error code otherwise.
4249 *
4250 * NOTE that the task may be already dead.
4251 */
4252int sched_setscheduler(struct task_struct *p, int policy,
4253                       const struct sched_param *param)
4254{
4255        return _sched_setscheduler(p, policy, param, true);
4256}
4257EXPORT_SYMBOL_GPL(sched_setscheduler);
4258
4259int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4260{
4261        return __sched_setscheduler(p, attr, true, true);
4262}
4263EXPORT_SYMBOL_GPL(sched_setattr);
4264
4265/**
4266 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4267 * @p: the task in question.
4268 * @policy: new policy.
4269 * @param: structure containing the new RT priority.
4270 *
4271 * Just like sched_setscheduler, only don't bother checking if the
4272 * current context has permission.  For example, this is needed in
4273 * stop_machine(): we create temporary high priority worker threads,
4274 * but our caller might not have that capability.
4275 *
4276 * Return: 0 on success. An error code otherwise.
4277 */
4278int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4279                               const struct sched_param *param)
4280{
4281        return _sched_setscheduler(p, policy, param, false);
4282}
4283EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4284
4285static int
4286do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4287{
4288        struct sched_param lparam;
4289        struct task_struct *p;
4290        int retval;
4291
4292        if (!param || pid < 0)
4293                return -EINVAL;
4294        if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4295                return -EFAULT;
4296
4297        rcu_read_lock();
4298        retval = -ESRCH;
4299        p = find_process_by_pid(pid);
4300        if (p != NULL)
4301                retval = sched_setscheduler(p, policy, &lparam);
4302        rcu_read_unlock();
4303
4304        return retval;
4305}
4306
4307/*
4308 * Mimics kernel/events/core.c perf_copy_attr().
4309 */
4310static int sched_copy_attr(struct sched_attr __user *uattr,
4311                           struct sched_attr *attr)
4312{
4313        u32 size;
4314        int ret;
4315
4316        if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4317                return -EFAULT;
4318
4319        /*
4320         * zero the full structure, so that a short copy will be nice.
4321         */
4322        memset(attr, 0, sizeof(*attr));
4323
4324        ret = get_user(size, &uattr->size);
4325        if (ret)
4326                return ret;
4327
4328        if (size > PAGE_SIZE)   /* silly large */
4329                goto err_size;
4330
4331        if (!size)              /* abi compat */
4332                size = SCHED_ATTR_SIZE_VER0;
4333
4334        if (size < SCHED_ATTR_SIZE_VER0)
4335                goto err_size;
4336
4337        /*
4338         * If we're handed a bigger struct than we know of,
4339         * ensure all the unknown bits are 0 - i.e. new
4340         * user-space does not rely on any kernel feature
4341         * extensions we dont know about yet.
4342         */
4343        if (size > sizeof(*attr)) {
4344                unsigned char __user *addr;
4345                unsigned char __user *end;
4346                unsigned char val;
4347
4348                addr = (void __user *)uattr + sizeof(*attr);
4349                end  = (void __user *)uattr + size;
4350
4351                for (; addr < end; addr++) {
4352                        ret = get_user(val, addr);
4353                        if (ret)
4354                                return ret;
4355                        if (val)
4356                                goto err_size;
4357                }
4358                size = sizeof(*attr);
4359        }
4360
4361        ret = copy_from_user(attr, uattr, size);
4362        if (ret)
4363                return -EFAULT;
4364
4365        /*
4366         * XXX: do we want to be lenient like existing syscalls; or do we want
4367         * to be strict and return an error on out-of-bounds values?
4368         */
4369        attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4370
4371        return 0;
4372
4373err_size:
4374        put_user(sizeof(*attr), &uattr->size);
4375        return -E2BIG;
4376}
4377
4378/**
4379 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4380 * @pid: the pid in question.
4381 * @policy: new policy.
4382 * @param: structure containing the new RT priority.
4383 *
4384 * Return: 0 on success. An error code otherwise.
4385 */
4386SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4387                struct sched_param __user *, param)
4388{
4389        /* negative values for policy are not valid */
4390        if (policy < 0)
4391                return -EINVAL;
4392
4393        return do_sched_setscheduler(pid, policy, param);
4394}
4395
4396/**
4397 * sys_sched_setparam - set/change the RT priority of a thread
4398 * @pid: the pid in question.
4399 * @param: structure containing the new RT priority.
4400 *
4401 * Return: 0 on success. An error code otherwise.
4402 */
4403SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4404{
4405        return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4406}
4407
4408/**
4409 * sys_sched_setattr - same as above, but with extended sched_attr
4410 * @pid: the pid in question.
4411 * @uattr: structure containing the extended parameters.
4412 * @flags: for future extension.
4413 */
4414SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4415                               unsigned int, flags)
4416{
4417        struct sched_attr attr;
4418        struct task_struct *p;
4419        int retval;
4420
4421        if (!uattr || pid < 0 || flags)
4422                return -EINVAL;
4423
4424        retval = sched_copy_attr(uattr, &attr);
4425        if (retval)
4426                return retval;
4427
4428        if ((int)attr.sched_policy < 0)
4429                return -EINVAL;
4430
4431        rcu_read_lock();
4432        retval = -ESRCH;
4433        p = find_process_by_pid(pid);
4434        if (p != NULL)
4435                retval = sched_setattr(p, &attr);
4436        rcu_read_unlock();
4437
4438        return retval;
4439}
4440
4441/**
4442 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4443 * @pid: the pid in question.
4444 *
4445 * Return: On success, the policy of the thread. Otherwise, a negative error
4446 * code.
4447 */
4448SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4449{
4450        struct task_struct *p;
4451        int retval;
4452
4453        if (pid < 0)
4454                return -EINVAL;
4455
4456        retval = -ESRCH;
4457        rcu_read_lock();
4458        p = find_process_by_pid(pid);
4459        if (p) {
4460                retval = security_task_getscheduler(p);
4461                if (!retval)
4462                        retval = p->policy
4463                                | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4464        }
4465        rcu_read_unlock();
4466        return retval;
4467}
4468
4469/**
4470 * sys_sched_getparam - get the RT priority of a thread
4471 * @pid: the pid in question.
4472 * @param: structure containing the RT priority.
4473 *
4474 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4475 * code.
4476 */
4477SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4478{
4479        struct sched_param lp = { .sched_priority = 0 };
4480        struct task_struct *p;
4481        int retval;
4482
4483        if (!param || pid < 0)
4484                return -EINVAL;
4485
4486        rcu_read_lock();
4487        p = find_process_by_pid(pid);
4488        retval = -ESRCH;
4489        if (!p)
4490                goto out_unlock;
4491
4492        retval = security_task_getscheduler(p);
4493        if (retval)
4494                goto out_unlock;
4495
4496        if (task_has_rt_policy(p))
4497                lp.sched_priority = p->rt_priority;
4498        rcu_read_unlock();
4499
4500        /*
4501         * This one might sleep, we cannot do it with a spinlock held ...
4502         */
4503        retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4504
4505        return retval;
4506
4507out_unlock:
4508        rcu_read_unlock();
4509        return retval;
4510}
4511
4512static int sched_read_attr(struct sched_attr __user *uattr,
4513                           struct sched_attr *attr,
4514                           unsigned int usize)
4515{
4516        int ret;
4517
4518        if (!access_ok(VERIFY_WRITE, uattr, usize))
4519                return -EFAULT;
4520
4521        /*
4522         * If we're handed a smaller struct than we know of,
4523         * ensure all the unknown bits are 0 - i.e. old
4524         * user-space does not get uncomplete information.
4525         */
4526        if (usize < sizeof(*attr)) {
4527                unsigned char *addr;
4528                unsigned char *end;
4529
4530                addr = (void *)attr + usize;
4531                end  = (void *)attr + sizeof(*attr);
4532
4533                for (; addr < end; addr++) {
4534                        if (*addr)
4535                                return -EFBIG;
4536                }
4537
4538                attr->size = usize;
4539        }
4540
4541        ret = copy_to_user(uattr, attr, attr->size);
4542        if (ret)
4543                return -EFAULT;
4544
4545        return 0;
4546}
4547
4548/**
4549 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4550 * @pid: the pid in question.
4551 * @uattr: structure containing the extended parameters.
4552 * @size: sizeof(attr) for fwd/bwd comp.
4553 * @flags: for future extension.
4554 */
4555SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4556                unsigned int, size, unsigned int, flags)
4557{
4558        struct sched_attr attr = {
4559                .size = sizeof(struct sched_attr),
4560        };
4561        struct task_struct *p;
4562        int retval;
4563
4564        if (!uattr || pid < 0 || size > PAGE_SIZE ||
4565            size < SCHED_ATTR_SIZE_VER0 || flags)
4566                return -EINVAL;
4567
4568        rcu_read_lock();
4569        p = find_process_by_pid(pid);
4570        retval = -ESRCH;
4571        if (!p)
4572                goto out_unlock;
4573
4574        retval = security_task_getscheduler(p);
4575        if (retval)
4576                goto out_unlock;
4577
4578        attr.sched_policy = p->policy;
4579        if (p->sched_reset_on_fork)
4580                attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4581        if (task_has_dl_policy(p))
4582                __getparam_dl(p, &attr);
4583        else if (task_has_rt_policy(p))
4584                attr.sched_priority = p->rt_priority;
4585        else
4586                attr.sched_nice = task_nice(p);
4587
4588        rcu_read_unlock();
4589
4590        retval = sched_read_attr(uattr, &attr, size);
4591        return retval;
4592
4593out_unlock:
4594        rcu_read_unlock();
4595        return retval;
4596}
4597
4598long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4599{
4600        cpumask_var_t cpus_allowed, new_mask;
4601        struct task_struct *p;
4602        int retval;
4603
4604        rcu_read_lock();
4605
4606        p = find_process_by_pid(pid);
4607        if (!p) {
4608                rcu_read_unlock();
4609                return -ESRCH;
4610        }
4611
4612        /* Prevent p going away */
4613        get_task_struct(p);
4614        rcu_read_unlock();
4615
4616        if (p->flags & PF_NO_SETAFFINITY) {
4617                retval = -EINVAL;
4618                goto out_put_task;
4619        }
4620        if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4621                retval = -ENOMEM;
4622                goto out_put_task;
4623        }
4624        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4625                retval = -ENOMEM;
4626                goto out_free_cpus_allowed;
4627        }
4628        retval = -EPERM;
4629        if (!check_same_owner(p)) {
4630                rcu_read_lock();
4631                if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4632                        rcu_read_unlock();
4633                        goto out_free_new_mask;
4634                }
4635                rcu_read_unlock();
4636        }
4637
4638        retval = security_task_setscheduler(p);
4639        if (retval)
4640                goto out_free_new_mask;
4641
4642
4643        cpuset_cpus_allowed(p, cpus_allowed);
4644        cpumask_and(new_mask, in_mask, cpus_allowed);
4645
4646        /*
4647         * Since bandwidth control happens on root_domain basis,
4648         * if admission test is enabled, we only admit -deadline
4649         * tasks allowed to run on all the CPUs in the task's
4650         * root_domain.
4651         */
4652#ifdef CONFIG_SMP
4653        if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4654                rcu_read_lock();
4655                if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4656                        retval = -EBUSY;
4657                        rcu_read_unlock();
4658                        goto out_free_new_mask;
4659                }
4660                rcu_read_unlock();
4661        }
4662#endif
4663again:
4664        retval = __set_cpus_allowed_ptr(p, new_mask, true);
4665
4666        if (!retval) {
4667                cpuset_cpus_allowed(p, cpus_allowed);
4668                if (!cpumask_subset(new_mask, cpus_allowed)) {
4669                        /*
4670                         * We must have raced with a concurrent cpuset
4671                         * update. Just reset the cpus_allowed to the
4672                         * cpuset's cpus_allowed
4673                         */
4674                        cpumask_copy(new_mask, cpus_allowed);
4675                        goto again;
4676                }
4677        }
4678out_free_new_mask:
4679        free_cpumask_var(new_mask);
4680out_free_cpus_allowed:
4681        free_cpumask_var(cpus_allowed);
4682out_put_task:
4683        put_task_struct(p);
4684        return retval;
4685}
4686
4687static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4688                             struct cpumask *new_mask)
4689{
4690        if (len < cpumask_size())
4691                cpumask_clear(new_mask);
4692        else if (len > cpumask_size())
4693                len = cpumask_size();
4694
4695        return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4696}
4697
4698/**
4699 * sys_sched_setaffinity - set the cpu affinity of a process
4700 * @pid: pid of the process
4701 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4702 * @user_mask_ptr: user-space pointer to the new cpu mask
4703 *
4704 * Return: 0 on success. An error code otherwise.
4705 */
4706SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4707                unsigned long __user *, user_mask_ptr)
4708{
4709        cpumask_var_t new_mask;
4710        int retval;
4711
4712        if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4713                return -ENOMEM;
4714
4715        retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4716        if (retval == 0)
4717                retval = sched_setaffinity(pid, new_mask);
4718        free_cpumask_var(new_mask);
4719        return retval;
4720}
4721
4722long sched_getaffinity(pid_t pid, struct cpumask *mask)
4723{
4724        struct task_struct *p;
4725        unsigned long flags;
4726        int retval;
4727
4728        rcu_read_lock();
4729
4730        retval = -ESRCH;
4731        p = find_process_by_pid(pid);
4732        if (!p)
4733                goto out_unlock;
4734
4735        retval = security_task_getscheduler(p);
4736        if (retval)
4737                goto out_unlock;
4738
4739        raw_spin_lock_irqsave(&p->pi_lock, flags);
4740        cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4741        raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4742
4743out_unlock:
4744        rcu_read_unlock();
4745
4746        return retval;
4747}
4748
4749/**
4750 * sys_sched_getaffinity - get the cpu affinity of a process
4751 * @pid: pid of the process
4752 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4753 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4754 *
4755 * Return: 0 on success. An error code otherwise.
4756 */
4757SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4758                unsigned long __user *, user_mask_ptr)
4759{
4760        int ret;
4761        cpumask_var_t mask;
4762
4763        if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4764                return -EINVAL;
4765        if (len & (sizeof(unsigned long)-1))
4766                return -EINVAL;
4767
4768        if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4769                return -ENOMEM;
4770
4771        ret = sched_getaffinity(pid, mask);
4772        if (ret == 0) {
4773                size_t retlen = min_t(size_t, len, cpumask_size());
4774
4775                if (copy_to_user(user_mask_ptr, mask, retlen))
4776                        ret = -EFAULT;
4777                else
4778                        ret = retlen;
4779        }
4780        free_cpumask_var(mask);
4781
4782        return ret;
4783}
4784
4785/**
4786 * sys_sched_yield - yield the current processor to other threads.
4787 *
4788 * This function yields the current CPU to other tasks. If there are no
4789 * other threads running on this CPU then this function will return.
4790 *
4791 * Return: 0.
4792 */
4793SYSCALL_DEFINE0(sched_yield)
4794{
4795        struct rq *rq = this_rq_lock();
4796
4797        schedstat_inc(rq, yld_count);
4798        current->sched_class->yield_task(rq);
4799
4800        /*
4801         * Since we are going to call schedule() anyway, there's
4802         * no need to preempt or enable interrupts:
4803         */
4804        __release(rq->lock);
4805        spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4806        do_raw_spin_unlock(&rq->lock);
4807        sched_preempt_enable_no_resched();
4808
4809        schedule();
4810
4811        return 0;
4812}
4813
4814int __sched _cond_resched(void)
4815{
4816        if (should_resched(0)) {
4817                preempt_schedule_common();
4818                return 1;
4819        }
4820        return 0;
4821}
4822EXPORT_SYMBOL(_cond_resched);
4823
4824/*
4825 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4826 * call schedule, and on return reacquire the lock.
4827 *
4828 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4829 * operations here to prevent schedule() from being called twice (once via
4830 * spin_unlock(), once by hand).
4831 */
4832int __cond_resched_lock(spinlock_t *lock)
4833{
4834        int resched = should_resched(PREEMPT_LOCK_OFFSET);
4835        int ret = 0;
4836
4837        lockdep_assert_held(lock);
4838
4839        if (spin_needbreak(lock) || resched) {
4840                spin_unlock(lock);
4841                if (resched)
4842                        preempt_schedule_common();
4843                else
4844                        cpu_relax();
4845                ret = 1;
4846                spin_lock(lock);
4847        }
4848        return ret;
4849}
4850EXPORT_SYMBOL(__cond_resched_lock);
4851
4852int __sched __cond_resched_softirq(void)
4853{
4854        BUG_ON(!in_softirq());
4855
4856        if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4857                local_bh_enable();
4858                preempt_schedule_common();
4859                local_bh_disable();
4860                return 1;
4861        }
4862        return 0;
4863}
4864EXPORT_SYMBOL(__cond_resched_softirq);
4865
4866/**
4867 * yield - yield the current processor to other threads.
4868 *
4869 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4870 *
4871 * The scheduler is at all times free to pick the calling task as the most
4872 * eligible task to run, if removing the yield() call from your code breaks
4873 * it, its already broken.
4874 *
4875 * Typical broken usage is:
4876 *
4877 * while (!event)
4878 *      yield();
4879 *
4880 * where one assumes that yield() will let 'the other' process run that will
4881 * make event true. If the current task is a SCHED_FIFO task that will never
4882 * happen. Never use yield() as a progress guarantee!!
4883 *
4884 * If you want to use yield() to wait for something, use wait_event().
4885 * If you want to use yield() to be 'nice' for others, use cond_resched().
4886 * If you still want to use yield(), do not!
4887 */
4888void __sched yield(void)
4889{
4890        set_current_state(TASK_RUNNING);
4891        sys_sched_yield();
4892}
4893EXPORT_SYMBOL(yield);
4894
4895/**
4896 * yield_to - yield the current processor to another thread in
4897 * your thread group, or accelerate that thread toward the
4898 * processor it's on.
4899 * @p: target task
4900 * @preempt: whether task preemption is allowed or not
4901 *
4902 * It's the caller's job to ensure that the target task struct
4903 * can't go away on us before we can do any checks.
4904 *
4905 * Return:
4906 *      true (>0) if we indeed boosted the target task.
4907 *      false (0) if we failed to boost the target.
4908 *      -ESRCH if there's no task to yield to.
4909 */
4910int __sched yield_to(struct task_struct *p, bool preempt)
4911{
4912        struct task_struct *curr = current;
4913        struct rq *rq, *p_rq;
4914        unsigned long flags;
4915        int yielded = 0;
4916
4917        local_irq_save(flags);
4918        rq = this_rq();
4919
4920again:
4921        p_rq = task_rq(p);
4922        /*
4923         * If we're the only runnable task on the rq and target rq also
4924         * has only one task, there's absolutely no point in yielding.
4925         */
4926        if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4927                yielded = -ESRCH;
4928                goto out_irq;
4929        }
4930
4931        double_rq_lock(rq, p_rq);
4932        if (task_rq(p) != p_rq) {
4933                double_rq_unlock(rq, p_rq);
4934                goto again;
4935        }
4936
4937        if (!curr->sched_class->yield_to_task)
4938                goto out_unlock;
4939
4940        if (curr->sched_class != p->sched_class)
4941                goto out_unlock;
4942
4943        if (task_running(p_rq, p) || p->state)
4944                goto out_unlock;
4945
4946        yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4947        if (yielded) {
4948                schedstat_inc(rq, yld_count);
4949                /*
4950                 * Make p's CPU reschedule; pick_next_entity takes care of
4951                 * fairness.
4952                 */
4953                if (preempt && rq != p_rq)
4954                        resched_curr(p_rq);
4955        }
4956
4957out_unlock:
4958        double_rq_unlock(rq, p_rq);
4959out_irq:
4960        local_irq_restore(flags);
4961
4962        if (yielded > 0)
4963                schedule();
4964
4965        return yielded;
4966}
4967EXPORT_SYMBOL_GPL(yield_to);
4968
4969/*
4970 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4971 * that process accounting knows that this is a task in IO wait state.
4972 */
4973long __sched io_schedule_timeout(long timeout)
4974{
4975        int old_iowait = current->in_iowait;
4976        struct rq *rq;
4977        long ret;
4978
4979        current->in_iowait = 1;
4980        blk_schedule_flush_plug(current);
4981
4982        delayacct_blkio_start();
4983        rq = raw_rq();
4984        atomic_inc(&rq->nr_iowait);
4985        ret = schedule_timeout(timeout);
4986        current->in_iowait = old_iowait;
4987        atomic_dec(&rq->nr_iowait);
4988        delayacct_blkio_end();
4989
4990        return ret;
4991}
4992EXPORT_SYMBOL(io_schedule_timeout);
4993
4994/**
4995 * sys_sched_get_priority_max - return maximum RT priority.
4996 * @policy: scheduling class.
4997 *
4998 * Return: On success, this syscall returns the maximum
4999 * rt_priority that can be used by a given scheduling class.
5000 * On failure, a negative error code is returned.
5001 */
5002SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5003{
5004        int ret = -EINVAL;
5005
5006        switch (policy) {
5007        case SCHED_FIFO:
5008        case SCHED_RR:
5009                ret = MAX_USER_RT_PRIO-1;
5010                break;
5011        case SCHED_DEADLINE:
5012        case SCHED_NORMAL:
5013        case SCHED_BATCH:
5014        case SCHED_IDLE:
5015                ret = 0;
5016                break;
5017        }
5018        return ret;
5019}
5020
5021/**
5022 * sys_sched_get_priority_min - return minimum RT priority.
5023 * @policy: scheduling class.
5024 *
5025 * Return: On success, this syscall returns the minimum
5026 * rt_priority that can be used by a given scheduling class.
5027 * On failure, a negative error code is returned.
5028 */
5029SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5030{
5031        int ret = -EINVAL;
5032
5033        switch (policy) {
5034        case SCHED_FIFO:
5035        case SCHED_RR:
5036                ret = 1;
5037                break;
5038        case SCHED_DEADLINE:
5039        case SCHED_NORMAL:
5040        case SCHED_BATCH:
5041        case SCHED_IDLE:
5042                ret = 0;
5043        }
5044        return ret;
5045}
5046
5047/**
5048 * sys_sched_rr_get_interval - return the default timeslice of a process.
5049 * @pid: pid of the process.
5050 * @interval: userspace pointer to the timeslice value.
5051 *
5052 * this syscall writes the default timeslice value of a given process
5053 * into the user-space timespec buffer. A value of '0' means infinity.
5054 *
5055 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5056 * an error code.
5057 */
5058SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5059                struct timespec __user *, interval)
5060{
5061        struct task_struct *p;
5062        unsigned int time_slice;
5063        struct rq_flags rf;
5064        struct timespec t;
5065        struct rq *rq;
5066        int retval;
5067
5068        if (pid < 0)
5069                return -EINVAL;
5070
5071        retval = -ESRCH;
5072        rcu_read_lock();
5073        p = find_process_by_pid(pid);
5074        if (!p)
5075                goto out_unlock;
5076
5077        retval = security_task_getscheduler(p);
5078        if (retval)
5079                goto out_unlock;
5080
5081        rq = task_rq_lock(p, &rf);
5082        time_slice = 0;
5083        if (p->sched_class->get_rr_interval)
5084                time_slice = p->sched_class->get_rr_interval(rq, p);
5085        task_rq_unlock(rq, p, &rf);
5086
5087        rcu_read_unlock();
5088        jiffies_to_timespec(time_slice, &t);
5089        retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5090        return retval;
5091
5092out_unlock:
5093        rcu_read_unlock();
5094        return retval;
5095}
5096
5097static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5098
5099void sched_show_task(struct task_struct *p)
5100{
5101        unsigned long free = 0;
5102        int ppid;
5103        unsigned long state = p->state;
5104
5105        if (state)
5106                state = __ffs(state) + 1;
5107        printk(KERN_INFO "%-15.15s %c", p->comm,
5108                state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5109#if BITS_PER_LONG == 32
5110        if (state == TASK_RUNNING)
5111                printk(KERN_CONT " running  ");
5112        else
5113                printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5114#else
5115        if (state == TASK_RUNNING)
5116                printk(KERN_CONT "  running task    ");
5117        else
5118                printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5119#endif
5120#ifdef CONFIG_DEBUG_STACK_USAGE
5121        free = stack_not_used(p);
5122#endif
5123        ppid = 0;
5124        rcu_read_lock();
5125        if (pid_alive(p))
5126                ppid = task_pid_nr(rcu_dereference(p->real_parent));
5127        rcu_read_unlock();
5128        printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5129                task_pid_nr(p), ppid,
5130                (unsigned long)task_thread_info(p)->flags);
5131
5132        print_worker_info(KERN_INFO, p);
5133        show_stack(p, NULL);
5134}
5135
5136void show_state_filter(unsigned long state_filter)
5137{
5138        struct task_struct *g, *p;
5139
5140#if BITS_PER_LONG == 32
5141        printk(KERN_INFO
5142                "  task                PC stack   pid father\n");
5143#else
5144        printk(KERN_INFO
5145                "  task                        PC stack   pid father\n");
5146#endif
5147        rcu_read_lock();
5148        for_each_process_thread(g, p) {
5149                /*
5150                 * reset the NMI-timeout, listing all files on a slow
5151                 * console might take a lot of time:
5152                 * Also, reset softlockup watchdogs on all CPUs, because
5153                 * another CPU might be blocked waiting for us to process
5154                 * an IPI.
5155                 */
5156                touch_nmi_watchdog();
5157                touch_all_softlockup_watchdogs();
5158                if (!state_filter || (p->state & state_filter))
5159                        sched_show_task(p);
5160        }
5161
5162#ifdef CONFIG_SCHED_DEBUG
5163        if (!state_filter)
5164                sysrq_sched_debug_show();
5165#endif
5166        rcu_read_unlock();
5167        /*
5168         * Only show locks if all tasks are dumped:
5169         */
5170        if (!state_filter)
5171                debug_show_all_locks();
5172}
5173
5174void init_idle_bootup_task(struct task_struct *idle)
5175{
5176        idle->sched_class = &idle_sched_class;
5177}
5178
5179/**
5180 * init_idle - set up an idle thread for a given CPU
5181 * @idle: task in question
5182 * @cpu: cpu the idle task belongs to
5183 *
5184 * NOTE: this function does not set the idle thread's NEED_RESCHED
5185 * flag, to make booting more robust.
5186 */
5187void init_idle(struct task_struct *idle, int cpu)
5188{
5189        struct rq *rq = cpu_rq(cpu);
5190        unsigned long flags;
5191
5192        raw_spin_lock_irqsave(&idle->pi_lock, flags);
5193        raw_spin_lock(&rq->lock);
5194
5195        __sched_fork(0, idle);
5196        idle->state = TASK_RUNNING;
5197        idle->se.exec_start = sched_clock();
5198
5199        kasan_unpoison_task_stack(idle);
5200
5201#ifdef CONFIG_SMP
5202        /*
5203         * Its possible that init_idle() gets called multiple times on a task,
5204         * in that case do_set_cpus_allowed() will not do the right thing.
5205         *
5206         * And since this is boot we can forgo the serialization.
5207         */
5208        set_cpus_allowed_common(idle, cpumask_of(cpu));
5209#endif
5210        /*
5211         * We're having a chicken and egg problem, even though we are
5212         * holding rq->lock, the cpu isn't yet set to this cpu so the
5213         * lockdep check in task_group() will fail.
5214         *
5215         * Similar case to sched_fork(). / Alternatively we could
5216         * use task_rq_lock() here and obtain the other rq->lock.
5217         *
5218         * Silence PROVE_RCU
5219         */
5220        rcu_read_lock();
5221        __set_task_cpu(idle, cpu);
5222        rcu_read_unlock();
5223
5224        rq->curr = rq->idle = idle;
5225        idle->on_rq = TASK_ON_RQ_QUEUED;
5226#ifdef CONFIG_SMP
5227        idle->on_cpu = 1;
5228#endif
5229        raw_spin_unlock(&rq->lock);
5230        raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5231
5232        /* Set the preempt count _outside_ the spinlocks! */
5233        init_idle_preempt_count(idle, cpu);
5234
5235        /*
5236         * The idle tasks have their own, simple scheduling class:
5237         */
5238        idle->sched_class = &idle_sched_class;
5239        ftrace_graph_init_idle_task(idle, cpu);
5240        vtime_init_idle(idle, cpu);
5241#ifdef CONFIG_SMP
5242        sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5243#endif
5244}
5245
5246int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5247                              const struct cpumask *trial)
5248{
5249        int ret = 1, trial_cpus;
5250        struct dl_bw *cur_dl_b;
5251        unsigned long flags;
5252
5253        if (!cpumask_weight(cur))
5254                return ret;
5255
5256        rcu_read_lock_sched();
5257        cur_dl_b = dl_bw_of(cpumask_any(cur));
5258        trial_cpus = cpumask_weight(trial);
5259
5260        raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5261        if (cur_dl_b->bw != -1 &&
5262            cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5263                ret = 0;
5264        raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5265        rcu_read_unlock_sched();
5266
5267        return ret;
5268}
5269
5270int task_can_attach(struct task_struct *p,
5271                    const struct cpumask *cs_cpus_allowed)
5272{
5273        int ret = 0;
5274
5275        /*
5276         * Kthreads which disallow setaffinity shouldn't be moved
5277         * to a new cpuset; we don't want to change their cpu
5278         * affinity and isolating such threads by their set of
5279         * allowed nodes is unnecessary.  Thus, cpusets are not
5280         * applicable for such threads.  This prevents checking for
5281         * success of set_cpus_allowed_ptr() on all attached tasks
5282         * before cpus_allowed may be changed.
5283         */
5284        if (p->flags & PF_NO_SETAFFINITY) {
5285                ret = -EINVAL;
5286                goto out;
5287        }
5288
5289#ifdef CONFIG_SMP
5290        if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5291                                              cs_cpus_allowed)) {
5292                unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5293                                                        cs_cpus_allowed);
5294                struct dl_bw *dl_b;
5295                bool overflow;
5296                int cpus;
5297                unsigned long flags;
5298
5299                rcu_read_lock_sched();
5300                dl_b = dl_bw_of(dest_cpu);
5301                raw_spin_lock_irqsave(&dl_b->lock, flags);
5302                cpus = dl_bw_cpus(dest_cpu);
5303                overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5304                if (overflow)
5305                        ret = -EBUSY;
5306                else {
5307                        /*
5308                         * We reserve space for this task in the destination
5309                         * root_domain, as we can't fail after this point.
5310                         * We will free resources in the source root_domain
5311                         * later on (see set_cpus_allowed_dl()).
5312                         */
5313                        __dl_add(dl_b, p->dl.dl_bw);
5314                }
5315                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5316                rcu_read_unlock_sched();
5317
5318        }
5319#endif
5320out:
5321        return ret;
5322}
5323
5324#ifdef CONFIG_SMP
5325
5326static bool sched_smp_initialized __read_mostly;
5327
5328#ifdef CONFIG_NUMA_BALANCING
5329/* Migrate current task p to target_cpu */
5330int migrate_task_to(struct task_struct *p, int target_cpu)
5331{
5332        struct migration_arg arg = { p, target_cpu };
5333        int curr_cpu = task_cpu(p);
5334
5335        if (curr_cpu == target_cpu)
5336                return 0;
5337
5338        if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5339                return -EINVAL;
5340
5341        /* TODO: This is not properly updating schedstats */
5342
5343        trace_sched_move_numa(p, curr_cpu, target_cpu);
5344        return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5345}
5346
5347/*
5348 * Requeue a task on a given node and accurately track the number of NUMA
5349 * tasks on the runqueues
5350 */
5351void sched_setnuma(struct task_struct *p, int nid)
5352{
5353        bool queued, running;
5354        struct rq_flags rf;
5355        struct rq *rq;
5356
5357        rq = task_rq_lock(p, &rf);
5358        queued = task_on_rq_queued(p);
5359        running = task_current(rq, p);
5360
5361        if (queued)
5362                dequeue_task(rq, p, DEQUEUE_SAVE);
5363        if (running)
5364                put_prev_task(rq, p);
5365
5366        p->numa_preferred_nid = nid;
5367
5368        if (running)
5369                p->sched_class->set_curr_task(rq);
5370        if (queued)
5371                enqueue_task(rq, p, ENQUEUE_RESTORE);
5372        task_rq_unlock(rq, p, &rf);
5373}
5374#endif /* CONFIG_NUMA_BALANCING */
5375
5376#ifdef CONFIG_HOTPLUG_CPU
5377/*
5378 * Ensures that the idle task is using init_mm right before its cpu goes
5379 * offline.
5380 */
5381void idle_task_exit(void)
5382{
5383        struct mm_struct *mm = current->active_mm;
5384
5385        BUG_ON(cpu_online(smp_processor_id()));
5386
5387        if (mm != &init_mm) {
5388                switch_mm_irqs_off(mm, &init_mm, current);
5389                finish_arch_post_lock_switch();
5390        }
5391        mmdrop(mm);
5392}
5393
5394/*
5395 * Since this CPU is going 'away' for a while, fold any nr_active delta
5396 * we might have. Assumes we're called after migrate_tasks() so that the
5397 * nr_active count is stable. We need to take the teardown thread which
5398 * is calling this into account, so we hand in adjust = 1 to the load
5399 * calculation.
5400 *
5401 * Also see the comment "Global load-average calculations".
5402 */
5403static void calc_load_migrate(struct rq *rq)
5404{
5405        long delta = calc_load_fold_active(rq, 1);
5406        if (delta)
5407                atomic_long_add(delta, &calc_load_tasks);
5408}
5409
5410static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5411{
5412}
5413
5414static const struct sched_class fake_sched_class = {
5415        .put_prev_task = put_prev_task_fake,
5416};
5417
5418static struct task_struct fake_task = {
5419        /*
5420         * Avoid pull_{rt,dl}_task()
5421         */
5422        .prio = MAX_PRIO + 1,
5423        .sched_class = &fake_sched_class,
5424};
5425
5426/*
5427 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5428 * try_to_wake_up()->select_task_rq().
5429 *
5430 * Called with rq->lock held even though we'er in stop_machine() and
5431 * there's no concurrency possible, we hold the required locks anyway
5432 * because of lock validation efforts.
5433 */
5434static void migrate_tasks(struct rq *dead_rq)
5435{
5436        struct rq *rq = dead_rq;
5437        struct task_struct *next, *stop = rq->stop;
5438        struct pin_cookie cookie;
5439        int dest_cpu;
5440
5441        /*
5442         * Fudge the rq selection such that the below task selection loop
5443         * doesn't get stuck on the currently eligible stop task.
5444         *
5445         * We're currently inside stop_machine() and the rq is either stuck
5446         * in the stop_machine_cpu_stop() loop, or we're executing this code,
5447         * either way we should never end up calling schedule() until we're
5448         * done here.
5449         */
5450        rq->stop = NULL;
5451
5452        /*
5453         * put_prev_task() and pick_next_task() sched
5454         * class method both need to have an up-to-date
5455         * value of rq->clock[_task]
5456         */
5457        update_rq_clock(rq);
5458
5459        for (;;) {
5460                /*
5461                 * There's this thread running, bail when that's the only
5462                 * remaining thread.
5463                 */
5464                if (rq->nr_running == 1)
5465                        break;
5466
5467                /*
5468                 * pick_next_task assumes pinned rq->lock.
5469                 */
5470                cookie = lockdep_pin_lock(&rq->lock);
5471                next = pick_next_task(rq, &fake_task, cookie);
5472                BUG_ON(!next);
5473                next->sched_class->put_prev_task(rq, next);
5474
5475                /*
5476                 * Rules for changing task_struct::cpus_allowed are holding
5477                 * both pi_lock and rq->lock, such that holding either
5478                 * stabilizes the mask.
5479                 *
5480                 * Drop rq->lock is not quite as disastrous as it usually is
5481                 * because !cpu_active at this point, which means load-balance
5482                 * will not interfere. Also, stop-machine.
5483                 */
5484                lockdep_unpin_lock(&rq->lock, cookie);
5485                raw_spin_unlock(&rq->lock);
5486                raw_spin_lock(&next->pi_lock);
5487                raw_spin_lock(&rq->lock);
5488
5489                /*
5490                 * Since we're inside stop-machine, _nothing_ should have
5491                 * changed the task, WARN if weird stuff happened, because in
5492                 * that case the above rq->lock drop is a fail too.
5493                 */
5494                if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5495                        raw_spin_unlock(&next->pi_lock);
5496                        continue;
5497                }
5498
5499                /* Find suitable destination for @next, with force if needed. */
5500                dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5501
5502                rq = __migrate_task(rq, next, dest_cpu);
5503                if (rq != dead_rq) {
5504                        raw_spin_unlock(&rq->lock);
5505                        rq = dead_rq;
5506                        raw_spin_lock(&rq->lock);
5507                }
5508                raw_spin_unlock(&next->pi_lock);
5509        }
5510
5511        rq->stop = stop;
5512}
5513#endif /* CONFIG_HOTPLUG_CPU */
5514
5515static void set_rq_online(struct rq *rq)
5516{
5517        if (!rq->online) {
5518                const struct sched_class *class;
5519
5520                cpumask_set_cpu(rq->cpu, rq->rd->online);
5521                rq->online = 1;
5522
5523                for_each_class(class) {
5524                        if (class->rq_online)
5525                                class->rq_online(rq);
5526                }
5527        }
5528}
5529
5530static void set_rq_offline(struct rq *rq)
5531{
5532        if (rq->online) {
5533                const struct sched_class *class;
5534
5535                for_each_class(class) {
5536                        if (class->rq_offline)
5537                                class->rq_offline(rq);
5538                }
5539
5540                cpumask_clear_cpu(rq->cpu, rq->rd->online);
5541                rq->online = 0;
5542        }
5543}
5544
5545static void set_cpu_rq_start_time(unsigned int cpu)
5546{
5547        struct rq *rq = cpu_rq(cpu);
5548
5549        rq->age_stamp = sched_clock_cpu(cpu);
5550}
5551
5552static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5553
5554#ifdef CONFIG_SCHED_DEBUG
5555
5556static __read_mostly int sched_debug_enabled;
5557
5558static int __init sched_debug_setup(char *str)
5559{
5560        sched_debug_enabled = 1;
5561
5562        return 0;
5563}
5564early_param("sched_debug", sched_debug_setup);
5565
5566static inline bool sched_debug(void)
5567{
5568        return sched_debug_enabled;
5569}
5570
5571static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5572                                  struct cpumask *groupmask)
5573{
5574        struct sched_group *group = sd->groups;
5575
5576        cpumask_clear(groupmask);
5577
5578        printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5579
5580        if (!(sd->flags & SD_LOAD_BALANCE)) {
5581                printk("does not load-balance\n");
5582                if (sd->parent)
5583                        printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5584                                        " has parent");
5585                return -1;
5586        }
5587
5588        printk(KERN_CONT "span %*pbl level %s\n",
5589               cpumask_pr_args(sched_domain_span(sd)), sd->name);
5590
5591        if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5592                printk(KERN_ERR "ERROR: domain->span does not contain "
5593                                "CPU%d\n", cpu);
5594        }
5595        if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5596                printk(KERN_ERR "ERROR: domain->groups does not contain"
5597                                " CPU%d\n", cpu);
5598        }
5599
5600        printk(KERN_DEBUG "%*s groups:", level + 1, "");
5601        do {
5602                if (!group) {
5603                        printk("\n");
5604                        printk(KERN_ERR "ERROR: group is NULL\n");
5605                        break;
5606                }
5607
5608                if (!cpumask_weight(sched_group_cpus(group))) {
5609                        printk(KERN_CONT "\n");
5610                        printk(KERN_ERR "ERROR: empty group\n");
5611                        break;
5612                }
5613
5614                if (!(sd->flags & SD_OVERLAP) &&
5615                    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5616                        printk(KERN_CONT "\n");
5617                        printk(KERN_ERR "ERROR: repeated CPUs\n");
5618                        break;
5619                }
5620
5621                cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5622
5623                printk(KERN_CONT " %*pbl",
5624                       cpumask_pr_args(sched_group_cpus(group)));
5625                if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5626                        printk(KERN_CONT " (cpu_capacity = %d)",
5627                                group->sgc->capacity);
5628                }
5629
5630                group = group->next;
5631        } while (group != sd->groups);
5632        printk(KERN_CONT "\n");
5633
5634        if (!cpumask_equal(sched_domain_span(sd), groupmask))
5635                printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5636
5637        if (sd->parent &&
5638            !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5639                printk(KERN_ERR "ERROR: parent span is not a superset "
5640                        "of domain->span\n");
5641        return 0;
5642}
5643
5644static void sched_domain_debug(struct sched_domain *sd, int cpu)
5645{
5646        int level = 0;
5647
5648        if (!sched_debug_enabled)
5649                return;
5650
5651        if (!sd) {
5652                printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5653                return;
5654        }
5655
5656        printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5657
5658        for (;;) {
5659                if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5660                        break;
5661                level++;
5662                sd = sd->parent;
5663                if (!sd)
5664                        break;
5665        }
5666}
5667#else /* !CONFIG_SCHED_DEBUG */
5668# define sched_domain_debug(sd, cpu) do { } while (0)
5669static inline bool sched_debug(void)
5670{
5671        return false;
5672}
5673#endif /* CONFIG_SCHED_DEBUG */
5674
5675static int sd_degenerate(struct sched_domain *sd)
5676{
5677        if (cpumask_weight(sched_domain_span(sd)) == 1)
5678                return 1;
5679
5680        /* Following flags need at least 2 groups */
5681        if (sd->flags & (SD_LOAD_BALANCE |
5682                         SD_BALANCE_NEWIDLE |
5683                         SD_BALANCE_FORK |
5684                         SD_BALANCE_EXEC |
5685                         SD_SHARE_CPUCAPACITY |
5686                         SD_SHARE_PKG_RESOURCES |
5687                         SD_SHARE_POWERDOMAIN)) {
5688                if (sd->groups != sd->groups->next)
5689                        return 0;
5690        }
5691
5692        /* Following flags don't use groups */
5693        if (sd->flags & (SD_WAKE_AFFINE))
5694                return 0;
5695
5696        return 1;
5697}
5698
5699static int
5700sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5701{
5702        unsigned long cflags = sd->flags, pflags = parent->flags;
5703
5704        if (sd_degenerate(parent))
5705                return 1;
5706
5707        if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5708                return 0;
5709
5710        /* Flags needing groups don't count if only 1 group in parent */
5711        if (parent->groups == parent->groups->next) {
5712                pflags &= ~(SD_LOAD_BALANCE |
5713                                SD_BALANCE_NEWIDLE |
5714                                SD_BALANCE_FORK |
5715                                SD_BALANCE_EXEC |
5716                                SD_SHARE_CPUCAPACITY |
5717                                SD_SHARE_PKG_RESOURCES |
5718                                SD_PREFER_SIBLING |
5719                                SD_SHARE_POWERDOMAIN);
5720                if (nr_node_ids == 1)
5721                        pflags &= ~SD_SERIALIZE;
5722        }
5723        if (~cflags & pflags)
5724                return 0;
5725
5726        return 1;
5727}
5728
5729static void free_rootdomain(struct rcu_head *rcu)
5730{
5731        struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5732
5733        cpupri_cleanup(&rd->cpupri);
5734        cpudl_cleanup(&rd->cpudl);
5735        free_cpumask_var(rd->dlo_mask);
5736        free_cpumask_var(rd->rto_mask);
5737        free_cpumask_var(rd->online);
5738        free_cpumask_var(rd->span);
5739        kfree(rd);
5740}
5741
5742static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5743{
5744        struct root_domain *old_rd = NULL;
5745        unsigned long flags;
5746
5747        raw_spin_lock_irqsave(&rq->lock, flags);
5748
5749        if (rq->rd) {
5750                old_rd = rq->rd;
5751
5752                if (cpumask_test_cpu(rq->cpu, old_rd->online))
5753                        set_rq_offline(rq);
5754
5755                cpumask_clear_cpu(rq->cpu, old_rd->span);
5756
5757                /*
5758                 * If we dont want to free the old_rd yet then
5759                 * set old_rd to NULL to skip the freeing later
5760                 * in this function:
5761                 */
5762                if (!atomic_dec_and_test(&old_rd->refcount))
5763                        old_rd = NULL;
5764        }
5765
5766        atomic_inc(&rd->refcount);
5767        rq->rd = rd;
5768
5769        cpumask_set_cpu(rq->cpu, rd->span);
5770        if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5771                set_rq_online(rq);
5772
5773        raw_spin_unlock_irqrestore(&rq->lock, flags);
5774
5775        if (old_rd)
5776                call_rcu_sched(&old_rd->rcu, free_rootdomain);
5777}
5778
5779static int init_rootdomain(struct root_domain *rd)
5780{
5781        memset(rd, 0, sizeof(*rd));
5782
5783        if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5784                goto out;
5785        if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5786                goto free_span;
5787        if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5788                goto free_online;
5789        if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5790                goto free_dlo_mask;
5791
5792        init_dl_bw(&rd->dl_bw);
5793        if (cpudl_init(&rd->cpudl) != 0)
5794                goto free_dlo_mask;
5795
5796        if (cpupri_init(&rd->cpupri) != 0)
5797                goto free_rto_mask;
5798        return 0;
5799
5800free_rto_mask:
5801        free_cpumask_var(rd->rto_mask);
5802free_dlo_mask:
5803        free_cpumask_var(rd->dlo_mask);
5804free_online:
5805        free_cpumask_var(rd->online);
5806free_span:
5807        free_cpumask_var(rd->span);
5808out:
5809        return -ENOMEM;
5810}
5811
5812/*
5813 * By default the system creates a single root-domain with all cpus as
5814 * members (mimicking the global state we have today).
5815 */
5816struct root_domain def_root_domain;
5817
5818static void init_defrootdomain(void)
5819{
5820        init_rootdomain(&def_root_domain);
5821
5822        atomic_set(&def_root_domain.refcount, 1);
5823}
5824
5825static struct root_domain *alloc_rootdomain(void)
5826{
5827        struct root_domain *rd;
5828
5829        rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5830        if (!rd)
5831                return NULL;
5832
5833        if (init_rootdomain(rd) != 0) {
5834                kfree(rd);
5835                return NULL;
5836        }
5837
5838        return rd;
5839}
5840
5841static void free_sched_groups(struct sched_group *sg, int free_sgc)
5842{
5843        struct sched_group *tmp, *first;
5844
5845        if (!sg)
5846                return;
5847
5848        first = sg;
5849        do {
5850                tmp = sg->next;
5851
5852                if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5853                        kfree(sg->sgc);
5854
5855                kfree(sg);
5856                sg = tmp;
5857        } while (sg != first);
5858}
5859
5860static void free_sched_domain(struct rcu_head *rcu)
5861{
5862        struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5863
5864        /*
5865         * If its an overlapping domain it has private groups, iterate and
5866         * nuke them all.
5867         */
5868        if (sd->flags & SD_OVERLAP) {
5869                free_sched_groups(sd->groups, 1);
5870        } else if (atomic_dec_and_test(&sd->groups->ref)) {
5871                kfree(sd->groups->sgc);
5872                kfree(sd->groups);
5873        }
5874        kfree(sd);
5875}
5876
5877static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5878{
5879        call_rcu(&sd->rcu, free_sched_domain);
5880}
5881
5882static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5883{
5884        for (; sd; sd = sd->parent)
5885                destroy_sched_domain(sd, cpu);
5886}
5887
5888/*
5889 * Keep a special pointer to the highest sched_domain that has
5890 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5891 * allows us to avoid some pointer chasing select_idle_sibling().
5892 *
5893 * Also keep a unique ID per domain (we use the first cpu number in
5894 * the cpumask of the domain), this allows us to quickly tell if
5895 * two cpus are in the same cache domain, see cpus_share_cache().
5896 */
5897DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5898DEFINE_PER_CPU(int, sd_llc_size);
5899DEFINE_PER_CPU(int, sd_llc_id);
5900DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5901DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5902DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5903
5904static void update_top_cache_domain(int cpu)
5905{
5906        struct sched_domain *sd;
5907        struct sched_domain *busy_sd = NULL;
5908        int id = cpu;
5909        int size = 1;
5910
5911        sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5912        if (sd) {
5913                id = cpumask_first(sched_domain_span(sd));
5914                size = cpumask_weight(sched_domain_span(sd));
5915                busy_sd = sd->parent; /* sd_busy */
5916        }
5917        rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5918
5919        rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5920        per_cpu(sd_llc_size, cpu) = size;
5921        per_cpu(sd_llc_id, cpu) = id;
5922
5923        sd = lowest_flag_domain(cpu, SD_NUMA);
5924        rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5925
5926        sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5927        rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5928}
5929
5930/*
5931 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5932 * hold the hotplug lock.
5933 */
5934static void
5935cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5936{
5937        struct rq *rq = cpu_rq(cpu);
5938        struct sched_domain *tmp;
5939
5940        /* Remove the sched domains which do not contribute to scheduling. */
5941        for (tmp = sd; tmp; ) {
5942                struct sched_domain *parent = tmp->parent;
5943                if (!parent)
5944                        break;
5945
5946                if (sd_parent_degenerate(tmp, parent)) {
5947                        tmp->parent = parent->parent;
5948                        if (parent->parent)
5949                                parent->parent->child = tmp;
5950                        /*
5951                         * Transfer SD_PREFER_SIBLING down in case of a
5952                         * degenerate parent; the spans match for this
5953                         * so the property transfers.
5954                         */
5955                        if (parent->flags & SD_PREFER_SIBLING)
5956                                tmp->flags |= SD_PREFER_SIBLING;
5957                        destroy_sched_domain(parent, cpu);
5958                } else
5959                        tmp = tmp->parent;
5960        }
5961
5962        if (sd && sd_degenerate(sd)) {
5963                tmp = sd;
5964                sd = sd->parent;
5965                destroy_sched_domain(tmp, cpu);
5966                if (sd)
5967                        sd->child = NULL;
5968        }
5969
5970        sched_domain_debug(sd, cpu);
5971
5972        rq_attach_root(rq, rd);
5973        tmp = rq->sd;
5974        rcu_assign_pointer(rq->sd, sd);
5975        destroy_sched_domains(tmp, cpu);
5976
5977        update_top_cache_domain(cpu);
5978}
5979
5980/* Setup the mask of cpus configured for isolated domains */
5981static int __init isolated_cpu_setup(char *str)
5982{
5983        int ret;
5984
5985        alloc_bootmem_cpumask_var(&cpu_isolated_map);
5986        ret = cpulist_parse(str, cpu_isolated_map);
5987        if (ret) {
5988                pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5989                return 0;
5990        }
5991        return 1;
5992}
5993__setup("isolcpus=", isolated_cpu_setup);
5994
5995struct s_data {
5996        struct sched_domain ** __percpu sd;
5997        struct root_domain      *rd;
5998};
5999
6000enum s_alloc {
6001        sa_rootdomain,
6002        sa_sd,
6003        sa_sd_storage,
6004        sa_none,
6005};
6006
6007/*
6008 * Build an iteration mask that can exclude certain CPUs from the upwards
6009 * domain traversal.
6010 *
6011 * Asymmetric node setups can result in situations where the domain tree is of
6012 * unequal depth, make sure to skip domains that already cover the entire
6013 * range.
6014 *
6015 * In that case build_sched_domains() will have terminated the iteration early
6016 * and our sibling sd spans will be empty. Domains should always include the
6017 * cpu they're built on, so check that.
6018 *
6019 */
6020static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6021{
6022        const struct cpumask *span = sched_domain_span(sd);
6023        struct sd_data *sdd = sd->private;
6024        struct sched_domain *sibling;
6025        int i;
6026
6027        for_each_cpu(i, span) {
6028                sibling = *per_cpu_ptr(sdd->sd, i);
6029                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6030                        continue;
6031
6032                cpumask_set_cpu(i, sched_group_mask(sg));
6033        }
6034}
6035
6036/*
6037 * Return the canonical balance cpu for this group, this is the first cpu
6038 * of this group that's also in the iteration mask.
6039 */
6040int group_balance_cpu(struct sched_group *sg)
6041{
6042        return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6043}
6044
6045static int
6046build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6047{
6048        struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6049        const struct cpumask *span = sched_domain_span(sd);
6050        struct cpumask *covered = sched_domains_tmpmask;
6051        struct sd_data *sdd = sd->private;
6052        struct sched_domain *sibling;
6053        int i;
6054
6055        cpumask_clear(covered);
6056
6057        for_each_cpu(i, span) {
6058                struct cpumask *sg_span;
6059
6060                if (cpumask_test_cpu(i, covered))
6061                        continue;
6062
6063                sibling = *per_cpu_ptr(sdd->sd, i);
6064
6065                /* See the comment near build_group_mask(). */
6066                if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6067                        continue;
6068
6069                sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6070                                GFP_KERNEL, cpu_to_node(cpu));
6071
6072                if (!sg)
6073                        goto fail;
6074
6075                sg_span = sched_group_cpus(sg);
6076                if (sibling->child)
6077                        cpumask_copy(sg_span, sched_domain_span(sibling->child));
6078                else
6079                        cpumask_set_cpu(i, sg_span);
6080
6081                cpumask_or(covered, covered, sg_span);
6082
6083                sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6084                if (atomic_inc_return(&sg->sgc->ref) == 1)
6085                        build_group_mask(sd, sg);
6086
6087                /*
6088                 * Initialize sgc->capacity such that even if we mess up the
6089                 * domains and no possible iteration will get us here, we won't
6090                 * die on a /0 trap.
6091                 */
6092                sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6093
6094                /*
6095                 * Make sure the first group of this domain contains the
6096                 * canonical balance cpu. Otherwise the sched_domain iteration
6097                 * breaks. See update_sg_lb_stats().
6098                 */
6099                if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6100                    group_balance_cpu(sg) == cpu)
6101                        groups = sg;
6102
6103                if (!first)
6104                        first = sg;
6105                if (last)
6106                        last->next = sg;
6107                last = sg;
6108                last->next = first;
6109        }
6110        sd->groups = groups;
6111
6112        return 0;
6113
6114fail:
6115        free_sched_groups(first, 0);
6116
6117        return -ENOMEM;
6118}
6119
6120static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6121{
6122        struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6123        struct sched_domain *child = sd->child;
6124
6125        if (child)
6126                cpu = cpumask_first(sched_domain_span(child));
6127
6128        if (sg) {
6129                *sg = *per_cpu_ptr(sdd->sg, cpu);
6130                (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6131                atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6132        }
6133
6134        return cpu;
6135}
6136
6137/*
6138 * build_sched_groups will build a circular linked list of the groups
6139 * covered by the given span, and will set each group's ->cpumask correctly,
6140 * and ->cpu_capacity to 0.
6141 *
6142 * Assumes the sched_domain tree is fully constructed
6143 */
6144static int
6145build_sched_groups(struct sched_domain *sd, int cpu)
6146{
6147        struct sched_group *first = NULL, *last = NULL;
6148        struct sd_data *sdd = sd->private;
6149        const struct cpumask *span = sched_domain_span(sd);
6150        struct cpumask *covered;
6151        int i;
6152
6153        get_group(cpu, sdd, &sd->groups);
6154        atomic_inc(&sd->groups->ref);
6155
6156        if (cpu != cpumask_first(span))
6157                return 0;
6158
6159        lockdep_assert_held(&sched_domains_mutex);
6160        covered = sched_domains_tmpmask;
6161
6162        cpumask_clear(covered);
6163
6164        for_each_cpu(i, span) {
6165                struct sched_group *sg;
6166                int group, j;
6167
6168                if (cpumask_test_cpu(i, covered))
6169                        continue;
6170
6171                group = get_group(i, sdd, &sg);
6172                cpumask_setall(sched_group_mask(sg));
6173
6174                for_each_cpu(j, span) {
6175                        if (get_group(j, sdd, NULL) != group)
6176                                continue;
6177
6178                        cpumask_set_cpu(j, covered);
6179                        cpumask_set_cpu(j, sched_group_cpus(sg));
6180                }
6181
6182                if (!first)
6183                        first = sg;
6184                if (last)
6185                        last->next = sg;
6186                last = sg;
6187        }
6188        last->next = first;
6189
6190        return 0;
6191}
6192
6193/*
6194 * Initialize sched groups cpu_capacity.
6195 *
6196 * cpu_capacity indicates the capacity of sched group, which is used while
6197 * distributing the load between different sched groups in a sched domain.
6198 * Typically cpu_capacity for all the groups in a sched domain will be same
6199 * unless there are asymmetries in the topology. If there are asymmetries,
6200 * group having more cpu_capacity will pickup more load compared to the
6201 * group having less cpu_capacity.
6202 */
6203static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6204{
6205        struct sched_group *sg = sd->groups;
6206
6207        WARN_ON(!sg);
6208
6209        do {
6210                sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6211                sg = sg->next;
6212        } while (sg != sd->groups);
6213
6214        if (cpu != group_balance_cpu(sg))
6215                return;
6216
6217        update_group_capacity(sd, cpu);
6218        atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6219}
6220
6221/*
6222 * Initializers for schedule domains
6223 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6224 */
6225
6226static int default_relax_domain_level = -1;
6227int sched_domain_level_max;
6228
6229static int __init setup_relax_domain_level(char *str)
6230{
6231        if (kstrtoint(str, 0, &default_relax_domain_level))
6232                pr_warn("Unable to set relax_domain_level\n");
6233
6234        return 1;
6235}
6236__setup("relax_domain_level=", setup_relax_domain_level);
6237
6238static void set_domain_attribute(struct sched_domain *sd,
6239                                 struct sched_domain_attr *attr)
6240{
6241        int request;
6242
6243        if (!attr || attr->relax_domain_level < 0) {
6244                if (default_relax_domain_level < 0)
6245                        return;
6246                else
6247                        request = default_relax_domain_level;
6248        } else
6249                request = attr->relax_domain_level;
6250        if (request < sd->level) {
6251                /* turn off idle balance on this domain */
6252                sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6253        } else {
6254                /* turn on idle balance on this domain */
6255                sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6256        }
6257}
6258
6259static void __sdt_free(const struct cpumask *cpu_map);
6260static int __sdt_alloc(const struct cpumask *cpu_map);
6261
6262static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6263                                 const struct cpumask *cpu_map)
6264{
6265        switch (what) {
6266        case sa_rootdomain:
6267                if (!atomic_read(&d->rd->refcount))
6268                        free_rootdomain(&d->rd->rcu); /* fall through */
6269        case sa_sd:
6270                free_percpu(d->sd); /* fall through */
6271        case sa_sd_storage:
6272                __sdt_free(cpu_map); /* fall through */
6273        case sa_none:
6274                break;
6275        }
6276}
6277
6278static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6279                                                   const struct cpumask *cpu_map)
6280{
6281        memset(d, 0, sizeof(*d));
6282
6283        if (__sdt_alloc(cpu_map))
6284                return sa_sd_storage;
6285        d->sd = alloc_percpu(struct sched_domain *);
6286        if (!d->sd)
6287                return sa_sd_storage;
6288        d->rd = alloc_rootdomain();
6289        if (!d->rd)
6290                return sa_sd;
6291        return sa_rootdomain;
6292}
6293
6294/*
6295 * NULL the sd_data elements we've used to build the sched_domain and
6296 * sched_group structure so that the subsequent __free_domain_allocs()
6297 * will not free the data we're using.
6298 */
6299static void claim_allocations(int cpu, struct sched_domain *sd)
6300{
6301        struct sd_data *sdd = sd->private;
6302
6303        WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6304        *per_cpu_ptr(sdd->sd, cpu) = NULL;
6305
6306        if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6307                *per_cpu_ptr(sdd->sg, cpu) = NULL;
6308
6309        if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6310                *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6311}
6312
6313#ifdef CONFIG_NUMA
6314static int sched_domains_numa_levels;
6315enum numa_topology_type sched_numa_topology_type;
6316static int *sched_domains_numa_distance;
6317int sched_max_numa_distance;
6318static struct cpumask ***sched_domains_numa_masks;
6319static int sched_domains_curr_level;
6320#endif
6321
6322/*
6323 * SD_flags allowed in topology descriptions.
6324 *
6325 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6326 * SD_SHARE_PKG_RESOURCES - describes shared caches
6327 * SD_NUMA                - describes NUMA topologies
6328 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6329 *
6330 * Odd one out:
6331 * SD_ASYM_PACKING        - describes SMT quirks
6332 */
6333#define TOPOLOGY_SD_FLAGS               \
6334        (SD_SHARE_CPUCAPACITY |         \
6335         SD_SHARE_PKG_RESOURCES |       \
6336         SD_NUMA |                      \
6337         SD_ASYM_PACKING |              \
6338         SD_SHARE_POWERDOMAIN)
6339
6340static struct sched_domain *
6341sd_init(struct sched_domain_topology_level *tl, int cpu)
6342{
6343        struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6344        int sd_weight, sd_flags = 0;
6345
6346#ifdef CONFIG_NUMA
6347        /*
6348         * Ugly hack to pass state to sd_numa_mask()...
6349         */
6350        sched_domains_curr_level = tl->numa_level;
6351#endif
6352
6353        sd_weight = cpumask_weight(tl->mask(cpu));
6354
6355        if (tl->sd_flags)
6356                sd_flags = (*tl->sd_flags)();
6357        if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6358                        "wrong sd_flags in topology description\n"))
6359                sd_flags &= ~TOPOLOGY_SD_FLAGS;
6360
6361        *sd = (struct sched_domain){
6362                .min_interval           = sd_weight,
6363                .max_interval           = 2*sd_weight,
6364                .busy_factor            = 32,
6365                .imbalance_pct          = 125,
6366
6367                .cache_nice_tries       = 0,
6368                .busy_idx               = 0,
6369                .idle_idx               = 0,
6370                .newidle_idx            = 0,
6371                .wake_idx               = 0,
6372                .forkexec_idx           = 0,
6373
6374                .flags                  = 1*SD_LOAD_BALANCE
6375                                        | 1*SD_BALANCE_NEWIDLE
6376                                        | 1*SD_BALANCE_EXEC
6377                                        | 1*SD_BALANCE_FORK
6378                                        | 0*SD_BALANCE_WAKE
6379                                        | 1*SD_WAKE_AFFINE
6380                                        | 0*SD_SHARE_CPUCAPACITY
6381                                        | 0*SD_SHARE_PKG_RESOURCES
6382                                        | 0*SD_SERIALIZE
6383                                        | 0*SD_PREFER_SIBLING
6384                                        | 0*SD_NUMA
6385                                        | sd_flags
6386                                        ,
6387
6388                .last_balance           = jiffies,
6389                .balance_interval       = sd_weight,
6390                .smt_gain               = 0,
6391                .max_newidle_lb_cost    = 0,
6392                .next_decay_max_lb_cost = jiffies,
6393#ifdef CONFIG_SCHED_DEBUG
6394                .name                   = tl->name,
6395#endif
6396        };
6397
6398        /*
6399         * Convert topological properties into behaviour.
6400         */
6401
6402        if (sd->flags & SD_SHARE_CPUCAPACITY) {
6403                sd->flags |= SD_PREFER_SIBLING;
6404                sd->imbalance_pct = 110;
6405                sd->smt_gain = 1178; /* ~15% */
6406
6407        } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6408                sd->imbalance_pct = 117;
6409                sd->cache_nice_tries = 1;
6410                sd->busy_idx = 2;
6411
6412#ifdef CONFIG_NUMA
6413        } else if (sd->flags & SD_NUMA) {
6414                sd->cache_nice_tries = 2;
6415                sd->busy_idx = 3;
6416                sd->idle_idx = 2;
6417
6418                sd->flags |= SD_SERIALIZE;
6419                if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6420                        sd->flags &= ~(SD_BALANCE_EXEC |
6421                                       SD_BALANCE_FORK |
6422                                       SD_WAKE_AFFINE);
6423                }
6424
6425#endif
6426        } else {
6427                sd->flags |= SD_PREFER_SIBLING;
6428                sd->cache_nice_tries = 1;
6429                sd->busy_idx = 2;
6430                sd->idle_idx = 1;
6431        }
6432
6433        sd->private = &tl->data;
6434
6435        return sd;
6436}
6437
6438/*
6439 * Topology list, bottom-up.
6440 */
6441static struct sched_domain_topology_level default_topology[] = {
6442#ifdef CONFIG_SCHED_SMT
6443        { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6444#endif
6445#ifdef CONFIG_SCHED_MC
6446        { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6447#endif
6448        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6449        { NULL, },
6450};
6451
6452static struct sched_domain_topology_level *sched_domain_topology =
6453        default_topology;
6454
6455#define for_each_sd_topology(tl)                        \
6456        for (tl = sched_domain_topology; tl->mask; tl++)
6457
6458void set_sched_topology(struct sched_domain_topology_level *tl)
6459{
6460        sched_domain_topology = tl;
6461}
6462
6463#ifdef CONFIG_NUMA
6464
6465static const struct cpumask *sd_numa_mask(int cpu)
6466{
6467        return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6468}
6469
6470static void sched_numa_warn(const char *str)
6471{
6472        static int done = false;
6473        int i,j;
6474
6475        if (done)
6476                return;
6477
6478        done = true;
6479
6480        printk(KERN_WARNING "ERROR: %s\n\n", str);
6481
6482        for (i = 0; i < nr_node_ids; i++) {
6483                printk(KERN_WARNING "  ");
6484                for (j = 0; j < nr_node_ids; j++)
6485                        printk(KERN_CONT "%02d ", node_distance(i,j));
6486                printk(KERN_CONT "\n");
6487        }
6488        printk(KERN_WARNING "\n");
6489}
6490
6491bool find_numa_distance(int distance)
6492{
6493        int i;
6494
6495        if (distance == node_distance(0, 0))
6496                return true;
6497
6498        for (i = 0; i < sched_domains_numa_levels; i++) {
6499                if (sched_domains_numa_distance[i] == distance)
6500                        return true;
6501        }
6502
6503        return false;
6504}
6505
6506/*
6507 * A system can have three types of NUMA topology:
6508 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6509 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6510 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6511 *
6512 * The difference between a glueless mesh topology and a backplane
6513 * topology lies in whether communication between not directly
6514 * connected nodes goes through intermediary nodes (where programs
6515 * could run), or through backplane controllers. This affects
6516 * placement of programs.
6517 *
6518 * The type of topology can be discerned with the following tests:
6519 * - If the maximum distance between any nodes is 1 hop, the system
6520 *   is directly connected.
6521 * - If for two nodes A and B, located N > 1 hops away from each other,
6522 *   there is an intermediary node C, which is < N hops away from both
6523 *   nodes A and B, the system is a glueless mesh.
6524 */
6525static void init_numa_topology_type(void)
6526{
6527        int a, b, c, n;
6528
6529        n = sched_max_numa_distance;
6530
6531        if (sched_domains_numa_levels <= 1) {
6532                sched_numa_topology_type = NUMA_DIRECT;
6533                return;
6534        }
6535
6536        for_each_online_node(a) {
6537                for_each_online_node(b) {
6538                        /* Find two nodes furthest removed from each other. */
6539                        if (node_distance(a, b) < n)
6540                                continue;
6541
6542                        /* Is there an intermediary node between a and b? */
6543                        for_each_online_node(c) {
6544                                if (node_distance(a, c) < n &&
6545                                    node_distance(b, c) < n) {
6546                                        sched_numa_topology_type =
6547                                                        NUMA_GLUELESS_MESH;
6548                                        return;
6549                                }
6550                        }
6551
6552                        sched_numa_topology_type = NUMA_BACKPLANE;
6553                        return;
6554                }
6555        }
6556}
6557
6558static void sched_init_numa(void)
6559{
6560        int next_distance, curr_distance = node_distance(0, 0);
6561        struct sched_domain_topology_level *tl;
6562        int level = 0;
6563        int i, j, k;
6564
6565        sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6566        if (!sched_domains_numa_distance)
6567                return;
6568
6569        /*
6570         * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6571         * unique distances in the node_distance() table.
6572         *
6573         * Assumes node_distance(0,j) includes all distances in
6574         * node_distance(i,j) in order to avoid cubic time.
6575         */
6576        next_distance = curr_distance;
6577        for (i = 0; i < nr_node_ids; i++) {
6578                for (j = 0; j < nr_node_ids; j++) {
6579                        for (k = 0; k < nr_node_ids; k++) {
6580                                int distance = node_distance(i, k);
6581
6582                                if (distance > curr_distance &&
6583                                    (distance < next_distance ||
6584                                     next_distance == curr_distance))
6585                                        next_distance = distance;
6586
6587                                /*
6588                                 * While not a strong assumption it would be nice to know
6589                                 * about cases where if node A is connected to B, B is not
6590                                 * equally connected to A.
6591                                 */
6592                                if (sched_debug() && node_distance(k, i) != distance)
6593                                        sched_numa_warn("Node-distance not symmetric");
6594
6595                                if (sched_debug() && i && !find_numa_distance(distance))
6596                                        sched_numa_warn("Node-0 not representative");
6597                        }
6598                        if (next_distance != curr_distance) {
6599                                sched_domains_numa_distance[level++] = next_distance;
6600                                sched_domains_numa_levels = level;
6601                                curr_distance = next_distance;
6602                        } else break;
6603                }
6604
6605                /*
6606                 * In case of sched_debug() we verify the above assumption.
6607                 */
6608                if (!sched_debug())
6609                        break;
6610        }
6611
6612        if (!level)
6613                return;
6614
6615        /*
6616         * 'level' contains the number of unique distances, excluding the
6617         * identity distance node_distance(i,i).
6618         *
6619         * The sched_domains_numa_distance[] array includes the actual distance
6620         * numbers.
6621         */
6622
6623        /*
6624         * Here, we should temporarily reset sched_domains_numa_levels to 0.
6625         * If it fails to allocate memory for array sched_domains_numa_masks[][],
6626         * the array will contain less then 'level' members. This could be
6627         * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6628         * in other functions.
6629         *
6630         * We reset it to 'level' at the end of this function.
6631         */
6632        sched_domains_numa_levels = 0;
6633
6634        sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6635        if (!sched_domains_numa_masks)
6636                return;
6637
6638        /*
6639         * Now for each level, construct a mask per node which contains all
6640         * cpus of nodes that are that many hops away from us.
6641         */
6642        for (i = 0; i < level; i++) {
6643                sched_domains_numa_masks[i] =
6644                        kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6645                if (!sched_domains_numa_masks[i])
6646                        return;
6647
6648                for (j = 0; j < nr_node_ids; j++) {
6649                        struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6650                        if (!mask)
6651                                return;
6652
6653                        sched_domains_numa_masks[i][j] = mask;
6654
6655                        for_each_node(k) {
6656                                if (node_distance(j, k) > sched_domains_numa_distance[i])
6657                                        continue;
6658
6659                                cpumask_or(mask, mask, cpumask_of_node(k));
6660                        }
6661                }
6662        }
6663
6664        /* Compute default topology size */
6665        for (i = 0; sched_domain_topology[i].mask; i++);
6666
6667        tl = kzalloc((i + level + 1) *
6668                        sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6669        if (!tl)
6670                return;
6671
6672        /*
6673         * Copy the default topology bits..
6674         */
6675        for (i = 0; sched_domain_topology[i].mask; i++)
6676                tl[i] = sched_domain_topology[i];
6677
6678        /*
6679         * .. and append 'j' levels of NUMA goodness.
6680         */
6681        for (j = 0; j < level; i++, j++) {
6682                tl[i] = (struct sched_domain_topology_level){
6683                        .mask = sd_numa_mask,
6684                        .sd_flags = cpu_numa_flags,
6685                        .flags = SDTL_OVERLAP,
6686                        .numa_level = j,
6687                        SD_INIT_NAME(NUMA)
6688                };
6689        }
6690
6691        sched_domain_topology = tl;
6692
6693        sched_domains_numa_levels = level;
6694        sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6695
6696        init_numa_topology_type();
6697}
6698
6699static void sched_domains_numa_masks_set(unsigned int cpu)
6700{
6701        int node = cpu_to_node(cpu);
6702        int i, j;
6703
6704        for (i = 0; i < sched_domains_numa_levels; i++) {
6705                for (j = 0; j < nr_node_ids; j++) {
6706                        if (node_distance(j, node) <= sched_domains_numa_distance[i])
6707                                cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6708                }
6709        }
6710}
6711
6712static void sched_domains_numa_masks_clear(unsigned int cpu)
6713{
6714        int i, j;
6715
6716        for (i = 0; i < sched_domains_numa_levels; i++) {
6717                for (j = 0; j < nr_node_ids; j++)
6718                        cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6719        }
6720}
6721
6722#else
6723static inline void sched_init_numa(void) { }
6724static void sched_domains_numa_masks_set(unsigned int cpu) { }
6725static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6726#endif /* CONFIG_NUMA */
6727
6728static int __sdt_alloc(const struct cpumask *cpu_map)
6729{
6730        struct sched_domain_topology_level *tl;
6731        int j;
6732
6733        for_each_sd_topology(tl) {
6734                struct sd_data *sdd = &tl->data;
6735
6736                sdd->sd = alloc_percpu(struct sched_domain *);
6737                if (!sdd->sd)
6738                        return -ENOMEM;
6739
6740                sdd->sg = alloc_percpu(struct sched_group *);
6741                if (!sdd->sg)
6742                        return -ENOMEM;
6743
6744                sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6745                if (!sdd->sgc)
6746                        return -ENOMEM;
6747
6748                for_each_cpu(j, cpu_map) {
6749                        struct sched_domain *sd;
6750                        struct sched_group *sg;
6751                        struct sched_group_capacity *sgc;
6752
6753                        sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6754                                        GFP_KERNEL, cpu_to_node(j));
6755                        if (!sd)
6756                                return -ENOMEM;
6757
6758                        *per_cpu_ptr(sdd->sd, j) = sd;
6759
6760                        sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6761                                        GFP_KERNEL, cpu_to_node(j));
6762                        if (!sg)
6763                                return -ENOMEM;
6764
6765                        sg->next = sg;
6766
6767                        *per_cpu_ptr(sdd->sg, j) = sg;
6768
6769                        sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6770                                        GFP_KERNEL, cpu_to_node(j));
6771                        if (!sgc)
6772                                return -ENOMEM;
6773
6774                        *per_cpu_ptr(sdd->sgc, j) = sgc;
6775                }
6776        }
6777
6778        return 0;
6779}
6780
6781static void __sdt_free(const struct cpumask *cpu_map)
6782{
6783        struct sched_domain_topology_level *tl;
6784        int j;
6785
6786        for_each_sd_topology(tl) {
6787                struct sd_data *sdd = &tl->data;
6788
6789                for_each_cpu(j, cpu_map) {
6790                        struct sched_domain *sd;
6791
6792                        if (sdd->sd) {
6793                                sd = *per_cpu_ptr(sdd->sd, j);
6794                                if (sd && (sd->flags & SD_OVERLAP))
6795                                        free_sched_groups(sd->groups, 0);
6796                                kfree(*per_cpu_ptr(sdd->sd, j));
6797                        }
6798
6799                        if (sdd->sg)
6800                                kfree(*per_cpu_ptr(sdd->sg, j));
6801                        if (sdd->sgc)
6802                                kfree(*per_cpu_ptr(sdd->sgc, j));
6803                }
6804                free_percpu(sdd->sd);
6805                sdd->sd = NULL;
6806                free_percpu(sdd->sg);
6807                sdd->sg = NULL;
6808                free_percpu(sdd->sgc);
6809                sdd->sgc = NULL;
6810        }
6811}
6812
6813struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6814                const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6815                struct sched_domain *child, int cpu)
6816{
6817        struct sched_domain *sd = sd_init(tl, cpu);
6818        if (!sd)
6819                return child;
6820
6821        cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6822        if (child) {
6823                sd->level = child->level + 1;
6824                sched_domain_level_max = max(sched_domain_level_max, sd->level);
6825                child->parent = sd;
6826                sd->child = child;
6827
6828                if (!cpumask_subset(sched_domain_span(child),
6829                                    sched_domain_span(sd))) {
6830                        pr_err("BUG: arch topology borken\n");
6831#ifdef CONFIG_SCHED_DEBUG
6832                        pr_err("     the %s domain not a subset of the %s domain\n",
6833                                        child->name, sd->name);
6834#endif
6835                        /* Fixup, ensure @sd has at least @child cpus. */
6836                        cpumask_or(sched_domain_span(sd),
6837                                   sched_domain_span(sd),
6838                                   sched_domain_span(child));
6839                }
6840
6841        }
6842        set_domain_attribute(sd, attr);
6843
6844        return sd;
6845}
6846
6847/*
6848 * Build sched domains for a given set of cpus and attach the sched domains
6849 * to the individual cpus
6850 */
6851static int build_sched_domains(const struct cpumask *cpu_map,
6852                               struct sched_domain_attr *attr)
6853{
6854        enum s_alloc alloc_state;
6855        struct sched_domain *sd;
6856        struct s_data d;
6857        int i, ret = -ENOMEM;
6858
6859        alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6860        if (alloc_state != sa_rootdomain)
6861                goto error;
6862
6863        /* Set up domains for cpus specified by the cpu_map. */
6864        for_each_cpu(i, cpu_map) {
6865                struct sched_domain_topology_level *tl;
6866
6867                sd = NULL;
6868                for_each_sd_topology(tl) {
6869                        sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6870                        if (tl == sched_domain_topology)
6871                                *per_cpu_ptr(d.sd, i) = sd;
6872                        if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6873                                sd->flags |= SD_OVERLAP;
6874                        if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6875                                break;
6876                }
6877        }
6878
6879        /* Build the groups for the domains */
6880        for_each_cpu(i, cpu_map) {
6881                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6882                        sd->span_weight = cpumask_weight(sched_domain_span(sd));
6883                        if (sd->flags & SD_OVERLAP) {
6884                                if (build_overlap_sched_groups(sd, i))
6885                                        goto error;
6886                        } else {
6887                                if (build_sched_groups(sd, i))
6888                                        goto error;
6889                        }
6890                }
6891        }
6892
6893        /* Calculate CPU capacity for physical packages and nodes */
6894        for (i = nr_cpumask_bits-1; i >= 0; i--) {
6895                if (!cpumask_test_cpu(i, cpu_map))
6896                        continue;
6897
6898                for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6899                        claim_allocations(i, sd);
6900                        init_sched_groups_capacity(i, sd);
6901                }
6902        }
6903
6904        /* Attach the domains */
6905        rcu_read_lock();
6906        for_each_cpu(i, cpu_map) {
6907                sd = *per_cpu_ptr(d.sd, i);
6908                cpu_attach_domain(sd, d.rd, i);
6909        }
6910        rcu_read_unlock();
6911
6912        ret = 0;
6913error:
6914        __free_domain_allocs(&d, alloc_state, cpu_map);
6915        return ret;
6916}
6917
6918static cpumask_var_t *doms_cur; /* current sched domains */
6919static int ndoms_cur;           /* number of sched domains in 'doms_cur' */
6920static struct sched_domain_attr *dattr_cur;
6921                                /* attribues of custom domains in 'doms_cur' */
6922
6923/*
6924 * Special case: If a kmalloc of a doms_cur partition (array of
6925 * cpumask) fails, then fallback to a single sched domain,
6926 * as determined by the single cpumask fallback_doms.
6927 */
6928static cpumask_var_t fallback_doms;
6929
6930/*
6931 * arch_update_cpu_topology lets virtualized architectures update the
6932 * cpu core maps. It is supposed to return 1 if the topology changed
6933 * or 0 if it stayed the same.
6934 */
6935int __weak arch_update_cpu_topology(void)
6936{
6937        return 0;
6938}
6939
6940cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6941{
6942        int i;
6943        cpumask_var_t *doms;
6944
6945        doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6946        if (!doms)
6947                return NULL;
6948        for (i = 0; i < ndoms; i++) {
6949                if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6950                        free_sched_domains(doms, i);
6951                        return NULL;
6952                }
6953        }
6954        return doms;
6955}
6956
6957void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6958{
6959        unsigned int i;
6960        for (i = 0; i < ndoms; i++)
6961                free_cpumask_var(doms[i]);
6962        kfree(doms);
6963}
6964
6965/*
6966 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6967 * For now this just excludes isolated cpus, but could be used to
6968 * exclude other special cases in the future.
6969 */
6970static int init_sched_domains(const struct cpumask *cpu_map)
6971{
6972        int err;
6973
6974        arch_update_cpu_topology();
6975        ndoms_cur = 1;
6976        doms_cur = alloc_sched_domains(ndoms_cur);
6977        if (!doms_cur)
6978                doms_cur = &fallback_doms;
6979        cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6980        err = build_sched_domains(doms_cur[0], NULL);
6981        register_sched_domain_sysctl();
6982
6983        return err;
6984}
6985
6986/*
6987 * Detach sched domains from a group of cpus specified in cpu_map
6988 * These cpus will now be attached to the NULL domain
6989 */
6990static void detach_destroy_domains(const struct cpumask *cpu_map)
6991{
6992        int i;
6993
6994        rcu_read_lock();
6995        for_each_cpu(i, cpu_map)
6996                cpu_attach_domain(NULL, &def_root_domain, i);
6997        rcu_read_unlock();
6998}
6999
7000/* handle null as "default" */
7001static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7002                        struct sched_domain_attr *new, int idx_new)
7003{
7004        struct sched_domain_attr tmp;
7005
7006        /* fast path */
7007        if (!new && !cur)
7008                return 1;
7009
7010        tmp = SD_ATTR_INIT;
7011        return !memcmp(cur ? (cur + idx_cur) : &tmp,
7012                        new ? (new + idx_new) : &tmp,
7013                        sizeof(struct sched_domain_attr));
7014}
7015
7016/*
7017 * Partition sched domains as specified by the 'ndoms_new'
7018 * cpumasks in the array doms_new[] of cpumasks. This compares
7019 * doms_new[] to the current sched domain partitioning, doms_cur[].
7020 * It destroys each deleted domain and builds each new domain.
7021 *
7022 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7023 * The masks don't intersect (don't overlap.) We should setup one
7024 * sched domain for each mask. CPUs not in any of the cpumasks will
7025 * not be load balanced. If the same cpumask appears both in the
7026 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7027 * it as it is.
7028 *
7029 * The passed in 'doms_new' should be allocated using
7030 * alloc_sched_domains.  This routine takes ownership of it and will
7031 * free_sched_domains it when done with it. If the caller failed the
7032 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7033 * and partition_sched_domains() will fallback to the single partition
7034 * 'fallback_doms', it also forces the domains to be rebuilt.
7035 *
7036 * If doms_new == NULL it will be replaced with cpu_online_mask.
7037 * ndoms_new == 0 is a special case for destroying existing domains,
7038 * and it will not create the default domain.
7039 *
7040 * Call with hotplug lock held
7041 */
7042void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7043                             struct sched_domain_attr *dattr_new)
7044{
7045        int i, j, n;
7046        int new_topology;
7047
7048        mutex_lock(&sched_domains_mutex);
7049
7050        /* always unregister in case we don't destroy any domains */
7051        unregister_sched_domain_sysctl();
7052
7053        /* Let architecture update cpu core mappings. */
7054        new_topology = arch_update_cpu_topology();
7055
7056        n = doms_new ? ndoms_new : 0;
7057
7058        /* Destroy deleted domains */
7059        for (i = 0; i < ndoms_cur; i++) {
7060                for (j = 0; j < n && !new_topology; j++) {
7061                        if (cpumask_equal(doms_cur[i], doms_new[j])
7062                            && dattrs_equal(dattr_cur, i, dattr_new, j))
7063                                goto match1;
7064                }
7065                /* no match - a current sched domain not in new doms_new[] */
7066                detach_destroy_domains(doms_cur[i]);
7067match1:
7068                ;
7069        }
7070
7071        n = ndoms_cur;
7072        if (doms_new == NULL) {
7073                n = 0;
7074                doms_new = &fallback_doms;
7075                cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7076                WARN_ON_ONCE(dattr_new);
7077        }
7078
7079        /* Build new domains */
7080        for (i = 0; i < ndoms_new; i++) {
7081                for (j = 0; j < n && !new_topology; j++) {
7082                        if (cpumask_equal(doms_new[i], doms_cur[j])
7083                            && dattrs_equal(dattr_new, i, dattr_cur, j))
7084                                goto match2;
7085                }
7086                /* no match - add a new doms_new */
7087                build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7088match2:
7089                ;
7090        }
7091
7092        /* Remember the new sched domains */
7093        if (doms_cur != &fallback_doms)
7094                free_sched_domains(doms_cur, ndoms_cur);
7095        kfree(dattr_cur);       /* kfree(NULL) is safe */
7096        doms_cur = doms_new;
7097        dattr_cur = dattr_new;
7098        ndoms_cur = ndoms_new;
7099
7100        register_sched_domain_sysctl();
7101
7102        mutex_unlock(&sched_domains_mutex);
7103}
7104
7105static int num_cpus_frozen;     /* used to mark begin/end of suspend/resume */
7106
7107/*
7108 * Update cpusets according to cpu_active mask.  If cpusets are
7109 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7110 * around partition_sched_domains().
7111 *
7112 * If we come here as part of a suspend/resume, don't touch cpusets because we
7113 * want to restore it back to its original state upon resume anyway.
7114 */
7115static void cpuset_cpu_active(void)
7116{
7117        if (cpuhp_tasks_frozen) {
7118                /*
7119                 * num_cpus_frozen tracks how many CPUs are involved in suspend
7120                 * resume sequence. As long as this is not the last online
7121                 * operation in the resume sequence, just build a single sched
7122                 * domain, ignoring cpusets.
7123                 */
7124                num_cpus_frozen--;
7125                if (likely(num_cpus_frozen)) {
7126                        partition_sched_domains(1, NULL, NULL);
7127                        return;
7128                }
7129                /*
7130                 * This is the last CPU online operation. So fall through and
7131                 * restore the original sched domains by considering the
7132                 * cpuset configurations.
7133                 */
7134        }
7135        cpuset_update_active_cpus(true);
7136}
7137
7138static int cpuset_cpu_inactive(unsigned int cpu)
7139{
7140        unsigned long flags;
7141        struct dl_bw *dl_b;
7142        bool overflow;
7143        int cpus;
7144
7145        if (!cpuhp_tasks_frozen) {
7146                rcu_read_lock_sched();
7147                dl_b = dl_bw_of(cpu);
7148
7149                raw_spin_lock_irqsave(&dl_b->lock, flags);
7150                cpus = dl_bw_cpus(cpu);
7151                overflow = __dl_overflow(dl_b, cpus, 0, 0);
7152                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7153
7154                rcu_read_unlock_sched();
7155
7156                if (overflow)
7157                        return -EBUSY;
7158                cpuset_update_active_cpus(false);
7159        } else {
7160                num_cpus_frozen++;
7161                partition_sched_domains(1, NULL, NULL);
7162        }
7163        return 0;
7164}
7165
7166int sched_cpu_activate(unsigned int cpu)
7167{
7168        struct rq *rq = cpu_rq(cpu);
7169        unsigned long flags;
7170
7171        set_cpu_active(cpu, true);
7172
7173        if (sched_smp_initialized) {
7174                sched_domains_numa_masks_set(cpu);
7175                cpuset_cpu_active();
7176        }
7177
7178        /*
7179         * Put the rq online, if not already. This happens:
7180         *
7181         * 1) In the early boot process, because we build the real domains
7182         *    after all cpus have been brought up.
7183         *
7184         * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7185         *    domains.
7186         */
7187        raw_spin_lock_irqsave(&rq->lock, flags);
7188        if (rq->rd) {
7189                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7190                set_rq_online(rq);
7191        }
7192        raw_spin_unlock_irqrestore(&rq->lock, flags);
7193
7194        update_max_interval();
7195
7196        return 0;
7197}
7198
7199int sched_cpu_deactivate(unsigned int cpu)
7200{
7201        int ret;
7202
7203        set_cpu_active(cpu, false);
7204        /*
7205         * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7206         * users of this state to go away such that all new such users will
7207         * observe it.
7208         *
7209         * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7210         * not imply sync_sched(), so wait for both.
7211         *
7212         * Do sync before park smpboot threads to take care the rcu boost case.
7213         */
7214        if (IS_ENABLED(CONFIG_PREEMPT))
7215                synchronize_rcu_mult(call_rcu, call_rcu_sched);
7216        else
7217                synchronize_rcu();
7218
7219        if (!sched_smp_initialized)
7220                return 0;
7221
7222        ret = cpuset_cpu_inactive(cpu);
7223        if (ret) {
7224                set_cpu_active(cpu, true);
7225                return ret;
7226        }
7227        sched_domains_numa_masks_clear(cpu);
7228        return 0;
7229}
7230
7231static void sched_rq_cpu_starting(unsigned int cpu)
7232{
7233        struct rq *rq = cpu_rq(cpu);
7234
7235        rq->calc_load_update = calc_load_update;
7236        account_reset_rq(rq);
7237        update_max_interval();
7238}
7239
7240int sched_cpu_starting(unsigned int cpu)
7241{
7242        set_cpu_rq_start_time(cpu);
7243        sched_rq_cpu_starting(cpu);
7244        return 0;
7245}
7246
7247#ifdef CONFIG_HOTPLUG_CPU
7248int sched_cpu_dying(unsigned int cpu)
7249{
7250        struct rq *rq = cpu_rq(cpu);
7251        unsigned long flags;
7252
7253        /* Handle pending wakeups and then migrate everything off */
7254        sched_ttwu_pending();
7255        raw_spin_lock_irqsave(&rq->lock, flags);
7256        if (rq->rd) {
7257                BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7258                set_rq_offline(rq);
7259        }
7260        migrate_tasks(rq);
7261        BUG_ON(rq->nr_running != 1);
7262        raw_spin_unlock_irqrestore(&rq->lock, flags);
7263        calc_load_migrate(rq);
7264        update_max_interval();
7265        nohz_balance_exit_idle(cpu);
7266        hrtick_clear(rq);
7267        return 0;
7268}
7269#endif
7270
7271void __init sched_init_smp(void)
7272{
7273        cpumask_var_t non_isolated_cpus;
7274
7275        alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7276        alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7277
7278        sched_init_numa();
7279
7280        /*
7281         * There's no userspace yet to cause hotplug operations; hence all the
7282         * cpu masks are stable and all blatant races in the below code cannot
7283         * happen.
7284         */
7285        mutex_lock(&sched_domains_mutex);
7286        init_sched_domains(cpu_active_mask);
7287        cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7288        if (cpumask_empty(non_isolated_cpus))
7289                cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7290        mutex_unlock(&sched_domains_mutex);
7291
7292        /* Move init over to a non-isolated CPU */
7293        if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7294                BUG();
7295        sched_init_granularity();
7296        free_cpumask_var(non_isolated_cpus);
7297
7298        init_sched_rt_class();
7299        init_sched_dl_class();
7300        sched_smp_initialized = true;
7301}
7302
7303static int __init migration_init(void)
7304{
7305        sched_rq_cpu_starting(smp_processor_id());
7306        return 0;
7307}
7308early_initcall(migration_init);
7309
7310#else
7311void __init sched_init_smp(void)
7312{
7313        sched_init_granularity();
7314}
7315#endif /* CONFIG_SMP */
7316
7317int in_sched_functions(unsigned long addr)
7318{
7319        return in_lock_functions(addr) ||
7320                (addr >= (unsigned long)__sched_text_start
7321                && addr < (unsigned long)__sched_text_end);
7322}
7323
7324#ifdef CONFIG_CGROUP_SCHED
7325/*
7326 * Default task group.
7327 * Every task in system belongs to this group at bootup.
7328 */
7329struct task_group root_task_group;
7330LIST_HEAD(task_groups);
7331
7332/* Cacheline aligned slab cache for task_group */
7333static struct kmem_cache *task_group_cache __read_mostly;
7334#endif
7335
7336DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7337
7338void __init sched_init(void)
7339{
7340        int i, j;
7341        unsigned long alloc_size = 0, ptr;
7342
7343#ifdef CONFIG_FAIR_GROUP_SCHED
7344        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7345#endif
7346#ifdef CONFIG_RT_GROUP_SCHED
7347        alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7348#endif
7349        if (alloc_size) {
7350                ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7351
7352#ifdef CONFIG_FAIR_GROUP_SCHED
7353                root_task_group.se = (struct sched_entity **)ptr;
7354                ptr += nr_cpu_ids * sizeof(void **);
7355
7356                root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7357                ptr += nr_cpu_ids * sizeof(void **);
7358
7359#endif /* CONFIG_FAIR_GROUP_SCHED */
7360#ifdef CONFIG_RT_GROUP_SCHED
7361                root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7362                ptr += nr_cpu_ids * sizeof(void **);
7363
7364                root_task_group.rt_rq = (struct rt_rq **)ptr;
7365                ptr += nr_cpu_ids * sizeof(void **);
7366
7367#endif /* CONFIG_RT_GROUP_SCHED */
7368        }
7369#ifdef CONFIG_CPUMASK_OFFSTACK
7370        for_each_possible_cpu(i) {
7371                per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7372                        cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7373        }
7374#endif /* CONFIG_CPUMASK_OFFSTACK */
7375
7376        init_rt_bandwidth(&def_rt_bandwidth,
7377                        global_rt_period(), global_rt_runtime());
7378        init_dl_bandwidth(&def_dl_bandwidth,
7379                        global_rt_period(), global_rt_runtime());
7380
7381#ifdef CONFIG_SMP
7382        init_defrootdomain();
7383#endif
7384
7385#ifdef CONFIG_RT_GROUP_SCHED
7386        init_rt_bandwidth(&root_task_group.rt_bandwidth,
7387                        global_rt_period(), global_rt_runtime());
7388#endif /* CONFIG_RT_GROUP_SCHED */
7389
7390#ifdef CONFIG_CGROUP_SCHED
7391        task_group_cache = KMEM_CACHE(task_group, 0);
7392
7393        list_add(&root_task_group.list, &task_groups);
7394        INIT_LIST_HEAD(&root_task_group.children);
7395        INIT_LIST_HEAD(&root_task_group.siblings);
7396        autogroup_init(&init_task);
7397#endif /* CONFIG_CGROUP_SCHED */
7398
7399        for_each_possible_cpu(i) {
7400                struct rq *rq;
7401
7402                rq = cpu_rq(i);
7403                raw_spin_lock_init(&rq->lock);
7404                rq->nr_running = 0;
7405                rq->calc_load_active = 0;
7406                rq->calc_load_update = jiffies + LOAD_FREQ;
7407                init_cfs_rq(&rq->cfs);
7408                init_rt_rq(&rq->rt);
7409                init_dl_rq(&rq->dl);
7410#ifdef CONFIG_FAIR_GROUP_SCHED
7411                root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7412                INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7413                /*
7414                 * How much cpu bandwidth does root_task_group get?
7415                 *
7416                 * In case of task-groups formed thr' the cgroup filesystem, it
7417                 * gets 100% of the cpu resources in the system. This overall
7418                 * system cpu resource is divided among the tasks of
7419                 * root_task_group and its child task-groups in a fair manner,
7420                 * based on each entity's (task or task-group's) weight
7421                 * (se->load.weight).
7422                 *
7423                 * In other words, if root_task_group has 10 tasks of weight
7424                 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7425                 * then A0's share of the cpu resource is:
7426                 *
7427                 *      A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7428                 *
7429                 * We achieve this by letting root_task_group's tasks sit
7430                 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7431                 */
7432                init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7433                init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7434#endif /* CONFIG_FAIR_GROUP_SCHED */
7435
7436                rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7437#ifdef CONFIG_RT_GROUP_SCHED
7438                init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7439#endif
7440
7441                for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7442                        rq->cpu_load[j] = 0;
7443
7444#ifdef CONFIG_SMP
7445                rq->sd = NULL;
7446                rq->rd = NULL;
7447                rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7448                rq->balance_callback = NULL;
7449                rq->active_balance = 0;
7450                rq->next_balance = jiffies;
7451                rq->push_cpu = 0;
7452                rq->cpu = i;
7453                rq->online = 0;
7454                rq->idle_stamp = 0;
7455                rq->avg_idle = 2*sysctl_sched_migration_cost;
7456                rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7457
7458                INIT_LIST_HEAD(&rq->cfs_tasks);
7459
7460                rq_attach_root(rq, &def_root_domain);
7461#ifdef CONFIG_NO_HZ_COMMON
7462                rq->last_load_update_tick = jiffies;
7463                rq->nohz_flags = 0;
7464#endif
7465#ifdef CONFIG_NO_HZ_FULL
7466                rq->last_sched_tick = 0;
7467#endif
7468#endif /* CONFIG_SMP */
7469                init_rq_hrtick(rq);
7470                atomic_set(&rq->nr_iowait, 0);
7471        }
7472
7473        set_load_weight(&init_task);
7474
7475#ifdef CONFIG_PREEMPT_NOTIFIERS
7476        INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7477#endif
7478
7479        /*
7480         * The boot idle thread does lazy MMU switching as well:
7481         */
7482        atomic_inc(&init_mm.mm_count);
7483        enter_lazy_tlb(&init_mm, current);
7484
7485        /*
7486         * During early bootup we pretend to be a normal task:
7487         */
7488        current->sched_class = &fair_sched_class;
7489
7490        /*
7491         * Make us the idle thread. Technically, schedule() should not be
7492         * called from this thread, however somewhere below it might be,
7493         * but because we are the idle thread, we just pick up running again
7494         * when this runqueue becomes "idle".
7495         */
7496        init_idle(current, smp_processor_id());
7497
7498        calc_load_update = jiffies + LOAD_FREQ;
7499
7500#ifdef CONFIG_SMP
7501        zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7502        /* May be allocated at isolcpus cmdline parse time */
7503        if (cpu_isolated_map == NULL)
7504                zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7505        idle_thread_set_boot_cpu();
7506        set_cpu_rq_start_time(smp_processor_id());
7507#endif
7508        init_sched_fair_class();
7509
7510        init_schedstats();
7511
7512        scheduler_running = 1;
7513}
7514
7515#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7516static inline int preempt_count_equals(int preempt_offset)
7517{
7518        int nested = preempt_count() + rcu_preempt_depth();
7519
7520        return (nested == preempt_offset);
7521}
7522
7523void __might_sleep(const char *file, int line, int preempt_offset)
7524{
7525        /*
7526         * Blocking primitives will set (and therefore destroy) current->state,
7527         * since we will exit with TASK_RUNNING make sure we enter with it,
7528         * otherwise we will destroy state.
7529         */
7530        WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7531                        "do not call blocking ops when !TASK_RUNNING; "
7532                        "state=%lx set at [<%p>] %pS\n",
7533                        current->state,
7534                        (void *)current->task_state_change,
7535                        (void *)current->task_state_change);
7536
7537        ___might_sleep(file, line, preempt_offset);
7538}
7539EXPORT_SYMBOL(__might_sleep);
7540
7541void ___might_sleep(const char *file, int line, int preempt_offset)
7542{
7543        static unsigned long prev_jiffy;        /* ratelimiting */
7544
7545        rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7546        if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7547             !is_idle_task(current)) ||
7548            system_state != SYSTEM_RUNNING || oops_in_progress)
7549                return;
7550        if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7551                return;
7552        prev_jiffy = jiffies;
7553
7554        printk(KERN_ERR
7555                "BUG: sleeping function called from invalid context at %s:%d\n",
7556                        file, line);
7557        printk(KERN_ERR
7558                "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7559                        in_atomic(), irqs_disabled(),
7560                        current->pid, current->comm);
7561
7562        if (task_stack_end_corrupted(current))
7563                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7564
7565        debug_show_held_locks(current);
7566        if (irqs_disabled())
7567                print_irqtrace_events(current);
7568#ifdef CONFIG_DEBUG_PREEMPT
7569        if (!preempt_count_equals(preempt_offset)) {
7570                pr_err("Preemption disabled at:");
7571                print_ip_sym(current->preempt_disable_ip);
7572                pr_cont("\n");
7573        }
7574#endif
7575        dump_stack();
7576}
7577EXPORT_SYMBOL(___might_sleep);
7578#endif
7579
7580#ifdef CONFIG_MAGIC_SYSRQ
7581void normalize_rt_tasks(void)
7582{
7583        struct task_struct *g, *p;
7584        struct sched_attr attr = {
7585                .sched_policy = SCHED_NORMAL,
7586        };
7587
7588        read_lock(&tasklist_lock);
7589        for_each_process_thread(g, p) {
7590                /*
7591                 * Only normalize user tasks:
7592                 */
7593                if (p->flags & PF_KTHREAD)
7594                        continue;
7595
7596                p->se.exec_start                = 0;
7597#ifdef CONFIG_SCHEDSTATS
7598                p->se.statistics.wait_start     = 0;
7599                p->se.statistics.sleep_start    = 0;
7600                p->se.statistics.block_start    = 0;
7601#endif
7602
7603                if (!dl_task(p) && !rt_task(p)) {
7604                        /*
7605                         * Renice negative nice level userspace
7606                         * tasks back to 0:
7607                         */
7608                        if (task_nice(p) < 0)
7609                                set_user_nice(p, 0);
7610                        continue;
7611                }
7612
7613                __sched_setscheduler(p, &attr, false, false);
7614        }
7615        read_unlock(&tasklist_lock);
7616}
7617
7618#endif /* CONFIG_MAGIC_SYSRQ */
7619
7620#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7621/*
7622 * These functions are only useful for the IA64 MCA handling, or kdb.
7623 *
7624 * They can only be called when the whole system has been
7625 * stopped - every CPU needs to be quiescent, and no scheduling
7626 * activity can take place. Using them for anything else would
7627 * be a serious bug, and as a result, they aren't even visible
7628 * under any other configuration.
7629 */
7630
7631/**
7632 * curr_task - return the current task for a given cpu.
7633 * @cpu: the processor in question.
7634 *
7635 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7636 *
7637 * Return: The current task for @cpu.
7638 */
7639struct task_struct *curr_task(int cpu)
7640{
7641        return cpu_curr(cpu);
7642}
7643
7644#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7645
7646#ifdef CONFIG_IA64
7647/**
7648 * set_curr_task - set the current task for a given cpu.
7649 * @cpu: the processor in question.
7650 * @p: the task pointer to set.
7651 *
7652 * Description: This function must only be used when non-maskable interrupts
7653 * are serviced on a separate stack. It allows the architecture to switch the
7654 * notion of the current task on a cpu in a non-blocking manner. This function
7655 * must be called with all CPU's synchronized, and interrupts disabled, the
7656 * and caller must save the original value of the current task (see
7657 * curr_task() above) and restore that value before reenabling interrupts and
7658 * re-starting the system.
7659 *
7660 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7661 */
7662void set_curr_task(int cpu, struct task_struct *p)
7663{
7664        cpu_curr(cpu) = p;
7665}
7666
7667#endif
7668
7669#ifdef CONFIG_CGROUP_SCHED
7670/* task_group_lock serializes the addition/removal of task groups */
7671static DEFINE_SPINLOCK(task_group_lock);
7672
7673static void sched_free_group(struct task_group *tg)
7674{
7675        free_fair_sched_group(tg);
7676        free_rt_sched_group(tg);
7677        autogroup_free(tg);
7678        kmem_cache_free(task_group_cache, tg);
7679}
7680
7681/* allocate runqueue etc for a new task group */
7682struct task_group *sched_create_group(struct task_group *parent)
7683{
7684        struct task_group *tg;
7685
7686        tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7687        if (!tg)
7688                return ERR_PTR(-ENOMEM);
7689
7690        if (!alloc_fair_sched_group(tg, parent))
7691                goto err;
7692
7693        if (!alloc_rt_sched_group(tg, parent))
7694                goto err;
7695
7696        return tg;
7697
7698err:
7699        sched_free_group(tg);
7700        return ERR_PTR(-ENOMEM);
7701}
7702
7703void sched_online_group(struct task_group *tg, struct task_group *parent)
7704{
7705        unsigned long flags;
7706
7707        spin_lock_irqsave(&task_group_lock, flags);
7708        list_add_rcu(&tg->list, &task_groups);
7709
7710        WARN_ON(!parent); /* root should already exist */
7711
7712        tg->parent = parent;
7713        INIT_LIST_HEAD(&tg->children);
7714        list_add_rcu(&tg->siblings, &parent->children);
7715        spin_unlock_irqrestore(&task_group_lock, flags);
7716}
7717
7718/* rcu callback to free various structures associated with a task group */
7719static void sched_free_group_rcu(struct rcu_head *rhp)
7720{
7721        /* now it should be safe to free those cfs_rqs */
7722        sched_free_group(container_of(rhp, struct task_group, rcu));
7723}
7724
7725void sched_destroy_group(struct task_group *tg)
7726{
7727        /* wait for possible concurrent references to cfs_rqs complete */
7728        call_rcu(&tg->rcu, sched_free_group_rcu);
7729}
7730
7731void sched_offline_group(struct task_group *tg)
7732{
7733        unsigned long flags;
7734
7735        /* end participation in shares distribution */
7736        unregister_fair_sched_group(tg);
7737
7738        spin_lock_irqsave(&task_group_lock, flags);
7739        list_del_rcu(&tg->list);
7740        list_del_rcu(&tg->siblings);
7741        spin_unlock_irqrestore(&task_group_lock, flags);
7742}
7743
7744/* change task's runqueue when it moves between groups.
7745 *      The caller of this function should have put the task in its new group
7746 *      by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7747 *      reflect its new group.
7748 */
7749void sched_move_task(struct task_struct *tsk)
7750{
7751        struct task_group *tg;
7752        int queued, running;
7753        struct rq_flags rf;
7754        struct rq *rq;
7755
7756        rq = task_rq_lock(tsk, &rf);
7757
7758        running = task_current(rq, tsk);
7759        queued = task_on_rq_queued(tsk);
7760
7761        if (queued)
7762                dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7763        if (unlikely(running))
7764                put_prev_task(rq, tsk);
7765
7766        /*
7767         * All callers are synchronized by task_rq_lock(); we do not use RCU
7768         * which is pointless here. Thus, we pass "true" to task_css_check()
7769         * to prevent lockdep warnings.
7770         */
7771        tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7772                          struct task_group, css);
7773        tg = autogroup_task_group(tsk, tg);
7774        tsk->sched_task_group = tg;
7775
7776#ifdef CONFIG_FAIR_GROUP_SCHED
7777        if (tsk->sched_class->task_move_group)
7778                tsk->sched_class->task_move_group(tsk);
7779        else
7780#endif
7781                set_task_rq(tsk, task_cpu(tsk));
7782
7783        if (unlikely(running))
7784                tsk->sched_class->set_curr_task(rq);
7785        if (queued)
7786                enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7787
7788        task_rq_unlock(rq, tsk, &rf);
7789}
7790#endif /* CONFIG_CGROUP_SCHED */
7791
7792#ifdef CONFIG_RT_GROUP_SCHED
7793/*
7794 * Ensure that the real time constraints are schedulable.
7795 */
7796static DEFINE_MUTEX(rt_constraints_mutex);
7797
7798/* Must be called with tasklist_lock held */
7799static inline int tg_has_rt_tasks(struct task_group *tg)
7800{
7801        struct task_struct *g, *p;
7802
7803        /*
7804         * Autogroups do not have RT tasks; see autogroup_create().
7805         */
7806        if (task_group_is_autogroup(tg))
7807                return 0;
7808
7809        for_each_process_thread(g, p) {
7810                if (rt_task(p) && task_group(p) == tg)
7811                        return 1;
7812        }
7813
7814        return 0;
7815}
7816
7817struct rt_schedulable_data {
7818        struct task_group *tg;
7819        u64 rt_period;
7820        u64 rt_runtime;
7821};
7822
7823static int tg_rt_schedulable(struct task_group *tg, void *data)
7824{
7825        struct rt_schedulable_data *d = data;
7826        struct task_group *child;
7827        unsigned long total, sum = 0;
7828        u64 period, runtime;
7829
7830        period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7831        runtime = tg->rt_bandwidth.rt_runtime;
7832
7833        if (tg == d->tg) {
7834                period = d->rt_period;
7835                runtime = d->rt_runtime;
7836        }
7837
7838        /*
7839         * Cannot have more runtime than the period.
7840         */
7841        if (runtime > period && runtime != RUNTIME_INF)
7842                return -EINVAL;
7843
7844        /*
7845         * Ensure we don't starve existing RT tasks.
7846         */
7847        if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7848                return -EBUSY;
7849
7850        total = to_ratio(period, runtime);
7851
7852        /*
7853         * Nobody can have more than the global setting allows.
7854         */
7855        if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7856                return -EINVAL;
7857
7858        /*
7859         * The sum of our children's runtime should not exceed our own.
7860         */
7861        list_for_each_entry_rcu(child, &tg->children, siblings) {
7862                period = ktime_to_ns(child->rt_bandwidth.rt_period);
7863                runtime = child->rt_bandwidth.rt_runtime;
7864
7865                if (child == d->tg) {
7866                        period = d->rt_period;
7867                        runtime = d->rt_runtime;
7868                }
7869
7870                sum += to_ratio(period, runtime);
7871        }
7872
7873        if (sum > total)
7874                return -EINVAL;
7875
7876        return 0;
7877}
7878
7879static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7880{
7881        int ret;
7882
7883        struct rt_schedulable_data data = {
7884                .tg = tg,
7885                .rt_period = period,
7886                .rt_runtime = runtime,
7887        };
7888
7889        rcu_read_lock();
7890        ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7891        rcu_read_unlock();
7892
7893        return ret;
7894}
7895
7896static int tg_set_rt_bandwidth(struct task_group *tg,
7897                u64 rt_period, u64 rt_runtime)
7898{
7899        int i, err = 0;
7900
7901        /*
7902         * Disallowing the root group RT runtime is BAD, it would disallow the
7903         * kernel creating (and or operating) RT threads.
7904         */
7905        if (tg == &root_task_group && rt_runtime == 0)
7906                return -EINVAL;
7907
7908        /* No period doesn't make any sense. */
7909        if (rt_period == 0)
7910                return -EINVAL;
7911
7912        mutex_lock(&rt_constraints_mutex);
7913        read_lock(&tasklist_lock);
7914        err = __rt_schedulable(tg, rt_period, rt_runtime);
7915        if (err)
7916                goto unlock;
7917
7918        raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7919        tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7920        tg->rt_bandwidth.rt_runtime = rt_runtime;
7921
7922        for_each_possible_cpu(i) {
7923                struct rt_rq *rt_rq = tg->rt_rq[i];
7924
7925                raw_spin_lock(&rt_rq->rt_runtime_lock);
7926                rt_rq->rt_runtime = rt_runtime;
7927                raw_spin_unlock(&rt_rq->rt_runtime_lock);
7928        }
7929        raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7930unlock:
7931        read_unlock(&tasklist_lock);
7932        mutex_unlock(&rt_constraints_mutex);
7933
7934        return err;
7935}
7936
7937static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7938{
7939        u64 rt_runtime, rt_period;
7940
7941        rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7942        rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7943        if (rt_runtime_us < 0)
7944                rt_runtime = RUNTIME_INF;
7945
7946        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7947}
7948
7949static long sched_group_rt_runtime(struct task_group *tg)
7950{
7951        u64 rt_runtime_us;
7952
7953        if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7954                return -1;
7955
7956        rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7957        do_div(rt_runtime_us, NSEC_PER_USEC);
7958        return rt_runtime_us;
7959}
7960
7961static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7962{
7963        u64 rt_runtime, rt_period;
7964
7965        rt_period = rt_period_us * NSEC_PER_USEC;
7966        rt_runtime = tg->rt_bandwidth.rt_runtime;
7967
7968        return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7969}
7970
7971static long sched_group_rt_period(struct task_group *tg)
7972{
7973        u64 rt_period_us;
7974
7975        rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7976        do_div(rt_period_us, NSEC_PER_USEC);
7977        return rt_period_us;
7978}
7979#endif /* CONFIG_RT_GROUP_SCHED */
7980
7981#ifdef CONFIG_RT_GROUP_SCHED
7982static int sched_rt_global_constraints(void)
7983{
7984        int ret = 0;
7985
7986        mutex_lock(&rt_constraints_mutex);
7987        read_lock(&tasklist_lock);
7988        ret = __rt_schedulable(NULL, 0, 0);
7989        read_unlock(&tasklist_lock);
7990        mutex_unlock(&rt_constraints_mutex);
7991
7992        return ret;
7993}
7994
7995static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7996{
7997        /* Don't accept realtime tasks when there is no way for them to run */
7998        if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7999                return 0;
8000
8001        return 1;
8002}
8003
8004#else /* !CONFIG_RT_GROUP_SCHED */
8005static int sched_rt_global_constraints(void)
8006{
8007        unsigned long flags;
8008        int i;
8009
8010        raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8011        for_each_possible_cpu(i) {
8012                struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8013
8014                raw_spin_lock(&rt_rq->rt_runtime_lock);
8015                rt_rq->rt_runtime = global_rt_runtime();
8016                raw_spin_unlock(&rt_rq->rt_runtime_lock);
8017        }
8018        raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8019
8020        return 0;
8021}
8022#endif /* CONFIG_RT_GROUP_SCHED */
8023
8024static int sched_dl_global_validate(void)
8025{
8026        u64 runtime = global_rt_runtime();
8027        u64 period = global_rt_period();
8028        u64 new_bw = to_ratio(period, runtime);
8029        struct dl_bw *dl_b;
8030        int cpu, ret = 0;
8031        unsigned long flags;
8032
8033        /*
8034         * Here we want to check the bandwidth not being set to some
8035         * value smaller than the currently allocated bandwidth in
8036         * any of the root_domains.
8037         *
8038         * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8039         * cycling on root_domains... Discussion on different/better
8040         * solutions is welcome!
8041         */
8042        for_each_possible_cpu(cpu) {
8043                rcu_read_lock_sched();
8044                dl_b = dl_bw_of(cpu);
8045
8046                raw_spin_lock_irqsave(&dl_b->lock, flags);
8047                if (new_bw < dl_b->total_bw)
8048                        ret = -EBUSY;
8049                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8050
8051                rcu_read_unlock_sched();
8052
8053                if (ret)
8054                        break;
8055        }
8056
8057        return ret;
8058}
8059
8060static void sched_dl_do_global(void)
8061{
8062        u64 new_bw = -1;
8063        struct dl_bw *dl_b;
8064        int cpu;
8065        unsigned long flags;
8066
8067        def_dl_bandwidth.dl_period = global_rt_period();
8068        def_dl_bandwidth.dl_runtime = global_rt_runtime();
8069
8070        if (global_rt_runtime() != RUNTIME_INF)
8071                new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8072
8073        /*
8074         * FIXME: As above...
8075         */
8076        for_each_possible_cpu(cpu) {
8077                rcu_read_lock_sched();
8078                dl_b = dl_bw_of(cpu);
8079
8080                raw_spin_lock_irqsave(&dl_b->lock, flags);
8081                dl_b->bw = new_bw;
8082                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8083
8084                rcu_read_unlock_sched();
8085        }
8086}
8087
8088static int sched_rt_global_validate(void)
8089{
8090        if (sysctl_sched_rt_period <= 0)
8091                return -EINVAL;
8092
8093        if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8094                (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8095                return -EINVAL;
8096
8097        return 0;
8098}
8099
8100static void sched_rt_do_global(void)
8101{
8102        def_rt_bandwidth.rt_runtime = global_rt_runtime();
8103        def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8104}
8105
8106int sched_rt_handler(struct ctl_table *table, int write,
8107                void __user *buffer, size_t *lenp,
8108                loff_t *ppos)
8109{
8110        int old_period, old_runtime;
8111        static DEFINE_MUTEX(mutex);
8112        int ret;
8113
8114        mutex_lock(&mutex);
8115        old_period = sysctl_sched_rt_period;
8116        old_runtime = sysctl_sched_rt_runtime;
8117
8118        ret = proc_dointvec(table, write, buffer, lenp, ppos);
8119
8120        if (!ret && write) {
8121                ret = sched_rt_global_validate();
8122                if (ret)
8123                        goto undo;
8124
8125                ret = sched_dl_global_validate();
8126                if (ret)
8127                        goto undo;
8128
8129                ret = sched_rt_global_constraints();
8130                if (ret)
8131                        goto undo;
8132
8133                sched_rt_do_global();
8134                sched_dl_do_global();
8135        }
8136        if (0) {
8137undo:
8138                sysctl_sched_rt_period = old_period;
8139                sysctl_sched_rt_runtime = old_runtime;
8140        }
8141        mutex_unlock(&mutex);
8142
8143        return ret;
8144}
8145
8146int sched_rr_handler(struct ctl_table *table, int write,
8147                void __user *buffer, size_t *lenp,
8148                loff_t *ppos)
8149{
8150        int ret;
8151        static DEFINE_MUTEX(mutex);
8152
8153        mutex_lock(&mutex);
8154        ret = proc_dointvec(table, write, buffer, lenp, ppos);
8155        /* make sure that internally we keep jiffies */
8156        /* also, writing zero resets timeslice to default */
8157        if (!ret && write) {
8158                sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8159                        RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8160        }
8161        mutex_unlock(&mutex);
8162        return ret;
8163}
8164
8165#ifdef CONFIG_CGROUP_SCHED
8166
8167static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8168{
8169        return css ? container_of(css, struct task_group, css) : NULL;
8170}
8171
8172static struct cgroup_subsys_state *
8173cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8174{
8175        struct task_group *parent = css_tg(parent_css);
8176        struct task_group *tg;
8177
8178        if (!parent) {
8179                /* This is early initialization for the top cgroup */
8180                return &root_task_group.css;
8181        }
8182
8183        tg = sched_create_group(parent);
8184        if (IS_ERR(tg))
8185                return ERR_PTR(-ENOMEM);
8186
8187        sched_online_group(tg, parent);
8188
8189        return &tg->css;
8190}
8191
8192static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8193{
8194        struct task_group *tg = css_tg(css);
8195
8196        sched_offline_group(tg);
8197}
8198
8199static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8200{
8201        struct task_group *tg = css_tg(css);
8202
8203        /*
8204         * Relies on the RCU grace period between css_released() and this.
8205         */
8206        sched_free_group(tg);
8207}
8208
8209static void cpu_cgroup_fork(struct task_struct *task)
8210{
8211        sched_move_task(task);
8212}
8213
8214static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8215{
8216        struct task_struct *task;
8217        struct cgroup_subsys_state *css;
8218
8219        cgroup_taskset_for_each(task, css, tset) {
8220#ifdef CONFIG_RT_GROUP_SCHED
8221                if (!sched_rt_can_attach(css_tg(css), task))
8222                        return -EINVAL;
8223#else
8224                /* We don't support RT-tasks being in separate groups */
8225                if (task->sched_class != &fair_sched_class)
8226                        return -EINVAL;
8227#endif
8228        }
8229        return 0;
8230}
8231
8232static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8233{
8234        struct task_struct *task;
8235        struct cgroup_subsys_state *css;
8236
8237        cgroup_taskset_for_each(task, css, tset)
8238                sched_move_task(task);
8239}
8240
8241#ifdef CONFIG_FAIR_GROUP_SCHED
8242static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8243                                struct cftype *cftype, u64 shareval)
8244{
8245        return sched_group_set_shares(css_tg(css), scale_load(shareval));
8246}
8247
8248static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8249                               struct cftype *cft)
8250{
8251        struct task_group *tg = css_tg(css);
8252
8253        return (u64) scale_load_down(tg->shares);
8254}
8255
8256#ifdef CONFIG_CFS_BANDWIDTH
8257static DEFINE_MUTEX(cfs_constraints_mutex);
8258
8259const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8260const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8261
8262static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8263
8264static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8265{
8266        int i, ret = 0, runtime_enabled, runtime_was_enabled;
8267        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8268
8269        if (tg == &root_task_group)
8270                return -EINVAL;
8271
8272        /*
8273         * Ensure we have at some amount of bandwidth every period.  This is
8274         * to prevent reaching a state of large arrears when throttled via
8275         * entity_tick() resulting in prolonged exit starvation.
8276         */
8277        if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8278                return -EINVAL;
8279
8280        /*
8281         * Likewise, bound things on the otherside by preventing insane quota
8282         * periods.  This also allows us to normalize in computing quota
8283         * feasibility.
8284         */
8285        if (period > max_cfs_quota_period)
8286                return -EINVAL;
8287
8288        /*
8289         * Prevent race between setting of cfs_rq->runtime_enabled and
8290         * unthrottle_offline_cfs_rqs().
8291         */
8292        get_online_cpus();
8293        mutex_lock(&cfs_constraints_mutex);
8294        ret = __cfs_schedulable(tg, period, quota);
8295        if (ret)
8296                goto out_unlock;
8297
8298        runtime_enabled = quota != RUNTIME_INF;
8299        runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8300        /*
8301         * If we need to toggle cfs_bandwidth_used, off->on must occur
8302         * before making related changes, and on->off must occur afterwards
8303         */
8304        if (runtime_enabled && !runtime_was_enabled)
8305                cfs_bandwidth_usage_inc();
8306        raw_spin_lock_irq(&cfs_b->lock);
8307        cfs_b->period = ns_to_ktime(period);
8308        cfs_b->quota = quota;
8309
8310        __refill_cfs_bandwidth_runtime(cfs_b);
8311        /* restart the period timer (if active) to handle new period expiry */
8312        if (runtime_enabled)
8313                start_cfs_bandwidth(cfs_b);
8314        raw_spin_unlock_irq(&cfs_b->lock);
8315
8316        for_each_online_cpu(i) {
8317                struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8318                struct rq *rq = cfs_rq->rq;
8319
8320                raw_spin_lock_irq(&rq->lock);
8321                cfs_rq->runtime_enabled = runtime_enabled;
8322                cfs_rq->runtime_remaining = 0;
8323
8324                if (cfs_rq->throttled)
8325                        unthrottle_cfs_rq(cfs_rq);
8326                raw_spin_unlock_irq(&rq->lock);
8327        }
8328        if (runtime_was_enabled && !runtime_enabled)
8329                cfs_bandwidth_usage_dec();
8330out_unlock:
8331        mutex_unlock(&cfs_constraints_mutex);
8332        put_online_cpus();
8333
8334        return ret;
8335}
8336
8337int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8338{
8339        u64 quota, period;
8340
8341        period = ktime_to_ns(tg->cfs_bandwidth.period);
8342        if (cfs_quota_us < 0)
8343                quota = RUNTIME_INF;
8344        else
8345                quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8346
8347        return tg_set_cfs_bandwidth(tg, period, quota);
8348}
8349
8350long tg_get_cfs_quota(struct task_group *tg)
8351{
8352        u64 quota_us;
8353
8354        if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8355                return -1;
8356
8357        quota_us = tg->cfs_bandwidth.quota;
8358        do_div(quota_us, NSEC_PER_USEC);
8359
8360        return quota_us;
8361}
8362
8363int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8364{
8365        u64 quota, period;
8366
8367        period = (u64)cfs_period_us * NSEC_PER_USEC;
8368        quota = tg->cfs_bandwidth.quota;
8369
8370        return tg_set_cfs_bandwidth(tg, period, quota);
8371}
8372
8373long tg_get_cfs_period(struct task_group *tg)
8374{
8375        u64 cfs_period_us;
8376
8377        cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8378        do_div(cfs_period_us, NSEC_PER_USEC);
8379
8380        return cfs_period_us;
8381}
8382
8383static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8384                                  struct cftype *cft)
8385{
8386        return tg_get_cfs_quota(css_tg(css));
8387}
8388
8389static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8390                                   struct cftype *cftype, s64 cfs_quota_us)
8391{
8392        return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8393}
8394
8395static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8396                                   struct cftype *cft)
8397{
8398        return tg_get_cfs_period(css_tg(css));
8399}
8400
8401static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8402                                    struct cftype *cftype, u64 cfs_period_us)
8403{
8404        return tg_set_cfs_period(css_tg(css), cfs_period_us);
8405}
8406
8407struct cfs_schedulable_data {
8408        struct task_group *tg;
8409        u64 period, quota;
8410};
8411
8412/*
8413 * normalize group quota/period to be quota/max_period
8414 * note: units are usecs
8415 */
8416static u64 normalize_cfs_quota(struct task_group *tg,
8417                               struct cfs_schedulable_data *d)
8418{
8419        u64 quota, period;
8420
8421        if (tg == d->tg) {
8422                period = d->period;
8423                quota = d->quota;
8424        } else {
8425                period = tg_get_cfs_period(tg);
8426                quota = tg_get_cfs_quota(tg);
8427        }
8428
8429        /* note: these should typically be equivalent */
8430        if (quota == RUNTIME_INF || quota == -1)
8431                return RUNTIME_INF;
8432
8433        return to_ratio(period, quota);
8434}
8435
8436static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8437{
8438        struct cfs_schedulable_data *d = data;
8439        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8440        s64 quota = 0, parent_quota = -1;
8441
8442        if (!tg->parent) {
8443                quota = RUNTIME_INF;
8444        } else {
8445                struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8446
8447                quota = normalize_cfs_quota(tg, d);
8448                parent_quota = parent_b->hierarchical_quota;
8449
8450                /*
8451                 * ensure max(child_quota) <= parent_quota, inherit when no
8452                 * limit is set
8453                 */
8454                if (quota == RUNTIME_INF)
8455                        quota = parent_quota;
8456                else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8457                        return -EINVAL;
8458        }
8459        cfs_b->hierarchical_quota = quota;
8460
8461        return 0;
8462}
8463
8464static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8465{
8466        int ret;
8467        struct cfs_schedulable_data data = {
8468                .tg = tg,
8469                .period = period,
8470                .quota = quota,
8471        };
8472
8473        if (quota != RUNTIME_INF) {
8474                do_div(data.period, NSEC_PER_USEC);
8475                do_div(data.quota, NSEC_PER_USEC);
8476        }
8477
8478        rcu_read_lock();
8479        ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8480        rcu_read_unlock();
8481
8482        return ret;
8483}
8484
8485static int cpu_stats_show(struct seq_file *sf, void *v)
8486{
8487        struct task_group *tg = css_tg(seq_css(sf));
8488        struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8489
8490        seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8491        seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8492        seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8493
8494        return 0;
8495}
8496#endif /* CONFIG_CFS_BANDWIDTH */
8497#endif /* CONFIG_FAIR_GROUP_SCHED */
8498
8499#ifdef CONFIG_RT_GROUP_SCHED
8500static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8501                                struct cftype *cft, s64 val)
8502{
8503        return sched_group_set_rt_runtime(css_tg(css), val);
8504}
8505
8506static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8507                               struct cftype *cft)
8508{
8509        return sched_group_rt_runtime(css_tg(css));
8510}
8511
8512static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8513                                    struct cftype *cftype, u64 rt_period_us)
8514{
8515        return sched_group_set_rt_period(css_tg(css), rt_period_us);
8516}
8517
8518static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8519                                   struct cftype *cft)
8520{
8521        return sched_group_rt_period(css_tg(css));
8522}
8523#endif /* CONFIG_RT_GROUP_SCHED */
8524
8525static struct cftype cpu_files[] = {
8526#ifdef CONFIG_FAIR_GROUP_SCHED
8527        {
8528                .name = "shares",
8529                .read_u64 = cpu_shares_read_u64,
8530                .write_u64 = cpu_shares_write_u64,
8531        },
8532#endif
8533#ifdef CONFIG_CFS_BANDWIDTH
8534        {
8535                .name = "cfs_quota_us",
8536                .read_s64 = cpu_cfs_quota_read_s64,
8537                .write_s64 = cpu_cfs_quota_write_s64,
8538        },
8539        {
8540                .name = "cfs_period_us",
8541                .read_u64 = cpu_cfs_period_read_u64,
8542                .write_u64 = cpu_cfs_period_write_u64,
8543        },
8544        {
8545                .name = "stat",
8546                .seq_show = cpu_stats_show,
8547        },
8548#endif
8549#ifdef CONFIG_RT_GROUP_SCHED
8550        {
8551                .name = "rt_runtime_us",
8552                .read_s64 = cpu_rt_runtime_read,
8553                .write_s64 = cpu_rt_runtime_write,
8554        },
8555        {
8556                .name = "rt_period_us",
8557                .read_u64 = cpu_rt_period_read_uint,
8558                .write_u64 = cpu_rt_period_write_uint,
8559        },
8560#endif
8561        { }     /* terminate */
8562};
8563
8564struct cgroup_subsys cpu_cgrp_subsys = {
8565        .css_alloc      = cpu_cgroup_css_alloc,
8566        .css_released   = cpu_cgroup_css_released,
8567        .css_free       = cpu_cgroup_css_free,
8568        .fork           = cpu_cgroup_fork,
8569        .can_attach     = cpu_cgroup_can_attach,
8570        .attach         = cpu_cgroup_attach,
8571        .legacy_cftypes = cpu_files,
8572        .early_init     = true,
8573};
8574
8575#endif  /* CONFIG_CGROUP_SCHED */
8576
8577void dump_cpu_task(int cpu)
8578{
8579        pr_info("Task dump for CPU %d:\n", cpu);
8580        sched_show_task(cpu_curr(cpu));
8581}
8582
8583/*
8584 * Nice levels are multiplicative, with a gentle 10% change for every
8585 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8586 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8587 * that remained on nice 0.
8588 *
8589 * The "10% effect" is relative and cumulative: from _any_ nice level,
8590 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8591 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8592 * If a task goes up by ~10% and another task goes down by ~10% then
8593 * the relative distance between them is ~25%.)
8594 */
8595const int sched_prio_to_weight[40] = {
8596 /* -20 */     88761,     71755,     56483,     46273,     36291,
8597 /* -15 */     29154,     23254,     18705,     14949,     11916,
8598 /* -10 */      9548,      7620,      6100,      4904,      3906,
8599 /*  -5 */      3121,      2501,      1991,      1586,      1277,
8600 /*   0 */      1024,       820,       655,       526,       423,
8601 /*   5 */       335,       272,       215,       172,       137,
8602 /*  10 */       110,        87,        70,        56,        45,
8603 /*  15 */        36,        29,        23,        18,        15,
8604};
8605
8606/*
8607 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8608 *
8609 * In cases where the weight does not change often, we can use the
8610 * precalculated inverse to speed up arithmetics by turning divisions
8611 * into multiplications:
8612 */
8613const u32 sched_prio_to_wmult[40] = {
8614 /* -20 */     48388,     59856,     76040,     92818,    118348,
8615 /* -15 */    147320,    184698,    229616,    287308,    360437,
8616 /* -10 */    449829,    563644,    704093,    875809,   1099582,
8617 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
8618 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
8619 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
8620 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
8621 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8622};
8623