linux/kernel/sched/deadline.c
<<
>>
Prefs
   1/*
   2 * Deadline Scheduling Class (SCHED_DEADLINE)
   3 *
   4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   5 *
   6 * Tasks that periodically executes their instances for less than their
   7 * runtime won't miss any of their deadlines.
   8 * Tasks that are not periodic or sporadic or that tries to execute more
   9 * than their reserved bandwidth will be slowed down (and may potentially
  10 * miss some of their deadlines), and won't affect any other task.
  11 *
  12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  13 *                    Juri Lelli <juri.lelli@gmail.com>,
  14 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  15 *                    Fabio Checconi <fchecconi@gmail.com>
  16 */
  17#include "sched.h"
  18
  19#include <linux/slab.h>
  20
  21struct dl_bandwidth def_dl_bandwidth;
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
  25        return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30        return container_of(dl_rq, struct rq, dl);
  31}
  32
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35        struct task_struct *p = dl_task_of(dl_se);
  36        struct rq *rq = task_rq(p);
  37
  38        return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43        return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
  46static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
  47{
  48        struct sched_dl_entity *dl_se = &p->dl;
  49
  50        return dl_rq->rb_leftmost == &dl_se->rb_node;
  51}
  52
  53void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
  54{
  55        raw_spin_lock_init(&dl_b->dl_runtime_lock);
  56        dl_b->dl_period = period;
  57        dl_b->dl_runtime = runtime;
  58}
  59
  60void init_dl_bw(struct dl_bw *dl_b)
  61{
  62        raw_spin_lock_init(&dl_b->lock);
  63        raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
  64        if (global_rt_runtime() == RUNTIME_INF)
  65                dl_b->bw = -1;
  66        else
  67                dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
  68        raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
  69        dl_b->total_bw = 0;
  70}
  71
  72void init_dl_rq(struct dl_rq *dl_rq)
  73{
  74        dl_rq->rb_root = RB_ROOT;
  75
  76#ifdef CONFIG_SMP
  77        /* zero means no -deadline tasks */
  78        dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
  79
  80        dl_rq->dl_nr_migratory = 0;
  81        dl_rq->overloaded = 0;
  82        dl_rq->pushable_dl_tasks_root = RB_ROOT;
  83#else
  84        init_dl_bw(&dl_rq->dl_bw);
  85#endif
  86}
  87
  88#ifdef CONFIG_SMP
  89
  90static inline int dl_overloaded(struct rq *rq)
  91{
  92        return atomic_read(&rq->rd->dlo_count);
  93}
  94
  95static inline void dl_set_overload(struct rq *rq)
  96{
  97        if (!rq->online)
  98                return;
  99
 100        cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 101        /*
 102         * Must be visible before the overload count is
 103         * set (as in sched_rt.c).
 104         *
 105         * Matched by the barrier in pull_dl_task().
 106         */
 107        smp_wmb();
 108        atomic_inc(&rq->rd->dlo_count);
 109}
 110
 111static inline void dl_clear_overload(struct rq *rq)
 112{
 113        if (!rq->online)
 114                return;
 115
 116        atomic_dec(&rq->rd->dlo_count);
 117        cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 118}
 119
 120static void update_dl_migration(struct dl_rq *dl_rq)
 121{
 122        if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 123                if (!dl_rq->overloaded) {
 124                        dl_set_overload(rq_of_dl_rq(dl_rq));
 125                        dl_rq->overloaded = 1;
 126                }
 127        } else if (dl_rq->overloaded) {
 128                dl_clear_overload(rq_of_dl_rq(dl_rq));
 129                dl_rq->overloaded = 0;
 130        }
 131}
 132
 133static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 134{
 135        struct task_struct *p = dl_task_of(dl_se);
 136
 137        if (tsk_nr_cpus_allowed(p) > 1)
 138                dl_rq->dl_nr_migratory++;
 139
 140        update_dl_migration(dl_rq);
 141}
 142
 143static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 144{
 145        struct task_struct *p = dl_task_of(dl_se);
 146
 147        if (tsk_nr_cpus_allowed(p) > 1)
 148                dl_rq->dl_nr_migratory--;
 149
 150        update_dl_migration(dl_rq);
 151}
 152
 153/*
 154 * The list of pushable -deadline task is not a plist, like in
 155 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 156 */
 157static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 158{
 159        struct dl_rq *dl_rq = &rq->dl;
 160        struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
 161        struct rb_node *parent = NULL;
 162        struct task_struct *entry;
 163        int leftmost = 1;
 164
 165        BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 166
 167        while (*link) {
 168                parent = *link;
 169                entry = rb_entry(parent, struct task_struct,
 170                                 pushable_dl_tasks);
 171                if (dl_entity_preempt(&p->dl, &entry->dl))
 172                        link = &parent->rb_left;
 173                else {
 174                        link = &parent->rb_right;
 175                        leftmost = 0;
 176                }
 177        }
 178
 179        if (leftmost) {
 180                dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
 181                dl_rq->earliest_dl.next = p->dl.deadline;
 182        }
 183
 184        rb_link_node(&p->pushable_dl_tasks, parent, link);
 185        rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 186}
 187
 188static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 189{
 190        struct dl_rq *dl_rq = &rq->dl;
 191
 192        if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 193                return;
 194
 195        if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
 196                struct rb_node *next_node;
 197
 198                next_node = rb_next(&p->pushable_dl_tasks);
 199                dl_rq->pushable_dl_tasks_leftmost = next_node;
 200                if (next_node) {
 201                        dl_rq->earliest_dl.next = rb_entry(next_node,
 202                                struct task_struct, pushable_dl_tasks)->dl.deadline;
 203                }
 204        }
 205
 206        rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 207        RB_CLEAR_NODE(&p->pushable_dl_tasks);
 208}
 209
 210static inline int has_pushable_dl_tasks(struct rq *rq)
 211{
 212        return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
 213}
 214
 215static int push_dl_task(struct rq *rq);
 216
 217static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 218{
 219        return dl_task(prev);
 220}
 221
 222static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 223static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 224
 225static void push_dl_tasks(struct rq *);
 226static void pull_dl_task(struct rq *);
 227
 228static inline void queue_push_tasks(struct rq *rq)
 229{
 230        if (!has_pushable_dl_tasks(rq))
 231                return;
 232
 233        queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 234}
 235
 236static inline void queue_pull_task(struct rq *rq)
 237{
 238        queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 239}
 240
 241static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 242
 243static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 244{
 245        struct rq *later_rq = NULL;
 246        bool fallback = false;
 247
 248        later_rq = find_lock_later_rq(p, rq);
 249
 250        if (!later_rq) {
 251                int cpu;
 252
 253                /*
 254                 * If we cannot preempt any rq, fall back to pick any
 255                 * online cpu.
 256                 */
 257                fallback = true;
 258                cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
 259                if (cpu >= nr_cpu_ids) {
 260                        /*
 261                         * Fail to find any suitable cpu.
 262                         * The task will never come back!
 263                         */
 264                        BUG_ON(dl_bandwidth_enabled());
 265
 266                        /*
 267                         * If admission control is disabled we
 268                         * try a little harder to let the task
 269                         * run.
 270                         */
 271                        cpu = cpumask_any(cpu_active_mask);
 272                }
 273                later_rq = cpu_rq(cpu);
 274                double_lock_balance(rq, later_rq);
 275        }
 276
 277        /*
 278         * By now the task is replenished and enqueued; migrate it.
 279         */
 280        deactivate_task(rq, p, 0);
 281        set_task_cpu(p, later_rq->cpu);
 282        activate_task(later_rq, p, 0);
 283
 284        if (!fallback)
 285                resched_curr(later_rq);
 286
 287        double_unlock_balance(later_rq, rq);
 288
 289        return later_rq;
 290}
 291
 292#else
 293
 294static inline
 295void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 296{
 297}
 298
 299static inline
 300void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 301{
 302}
 303
 304static inline
 305void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 306{
 307}
 308
 309static inline
 310void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 311{
 312}
 313
 314static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 315{
 316        return false;
 317}
 318
 319static inline void pull_dl_task(struct rq *rq)
 320{
 321}
 322
 323static inline void queue_push_tasks(struct rq *rq)
 324{
 325}
 326
 327static inline void queue_pull_task(struct rq *rq)
 328{
 329}
 330#endif /* CONFIG_SMP */
 331
 332static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 333static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 334static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
 335                                  int flags);
 336
 337/*
 338 * We are being explicitly informed that a new instance is starting,
 339 * and this means that:
 340 *  - the absolute deadline of the entity has to be placed at
 341 *    current time + relative deadline;
 342 *  - the runtime of the entity has to be set to the maximum value.
 343 *
 344 * The capability of specifying such event is useful whenever a -deadline
 345 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 346 * one, and to (try to!) reconcile itself with its own scheduling
 347 * parameters.
 348 */
 349static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
 350                                       struct sched_dl_entity *pi_se)
 351{
 352        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 353        struct rq *rq = rq_of_dl_rq(dl_rq);
 354
 355        WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 356
 357        /*
 358         * We are racing with the deadline timer. So, do nothing because
 359         * the deadline timer handler will take care of properly recharging
 360         * the runtime and postponing the deadline
 361         */
 362        if (dl_se->dl_throttled)
 363                return;
 364
 365        /*
 366         * We use the regular wall clock time to set deadlines in the
 367         * future; in fact, we must consider execution overheads (time
 368         * spent on hardirq context, etc.).
 369         */
 370        dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 371        dl_se->runtime = pi_se->dl_runtime;
 372}
 373
 374/*
 375 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 376 * possibility of a entity lasting more than what it declared, and thus
 377 * exhausting its runtime.
 378 *
 379 * Here we are interested in making runtime overrun possible, but we do
 380 * not want a entity which is misbehaving to affect the scheduling of all
 381 * other entities.
 382 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 383 * is used, in order to confine each entity within its own bandwidth.
 384 *
 385 * This function deals exactly with that, and ensures that when the runtime
 386 * of a entity is replenished, its deadline is also postponed. That ensures
 387 * the overrunning entity can't interfere with other entity in the system and
 388 * can't make them miss their deadlines. Reasons why this kind of overruns
 389 * could happen are, typically, a entity voluntarily trying to overcome its
 390 * runtime, or it just underestimated it during sched_setattr().
 391 */
 392static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 393                                struct sched_dl_entity *pi_se)
 394{
 395        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 396        struct rq *rq = rq_of_dl_rq(dl_rq);
 397
 398        BUG_ON(pi_se->dl_runtime <= 0);
 399
 400        /*
 401         * This could be the case for a !-dl task that is boosted.
 402         * Just go with full inherited parameters.
 403         */
 404        if (dl_se->dl_deadline == 0) {
 405                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 406                dl_se->runtime = pi_se->dl_runtime;
 407        }
 408
 409        if (dl_se->dl_yielded && dl_se->runtime > 0)
 410                dl_se->runtime = 0;
 411
 412        /*
 413         * We keep moving the deadline away until we get some
 414         * available runtime for the entity. This ensures correct
 415         * handling of situations where the runtime overrun is
 416         * arbitrary large.
 417         */
 418        while (dl_se->runtime <= 0) {
 419                dl_se->deadline += pi_se->dl_period;
 420                dl_se->runtime += pi_se->dl_runtime;
 421        }
 422
 423        /*
 424         * At this point, the deadline really should be "in
 425         * the future" with respect to rq->clock. If it's
 426         * not, we are, for some reason, lagging too much!
 427         * Anyway, after having warn userspace abut that,
 428         * we still try to keep the things running by
 429         * resetting the deadline and the budget of the
 430         * entity.
 431         */
 432        if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 433                printk_deferred_once("sched: DL replenish lagged too much\n");
 434                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 435                dl_se->runtime = pi_se->dl_runtime;
 436        }
 437
 438        if (dl_se->dl_yielded)
 439                dl_se->dl_yielded = 0;
 440        if (dl_se->dl_throttled)
 441                dl_se->dl_throttled = 0;
 442}
 443
 444/*
 445 * Here we check if --at time t-- an entity (which is probably being
 446 * [re]activated or, in general, enqueued) can use its remaining runtime
 447 * and its current deadline _without_ exceeding the bandwidth it is
 448 * assigned (function returns true if it can't). We are in fact applying
 449 * one of the CBS rules: when a task wakes up, if the residual runtime
 450 * over residual deadline fits within the allocated bandwidth, then we
 451 * can keep the current (absolute) deadline and residual budget without
 452 * disrupting the schedulability of the system. Otherwise, we should
 453 * refill the runtime and set the deadline a period in the future,
 454 * because keeping the current (absolute) deadline of the task would
 455 * result in breaking guarantees promised to other tasks (refer to
 456 * Documentation/scheduler/sched-deadline.txt for more informations).
 457 *
 458 * This function returns true if:
 459 *
 460 *   runtime / (deadline - t) > dl_runtime / dl_period ,
 461 *
 462 * IOW we can't recycle current parameters.
 463 *
 464 * Notice that the bandwidth check is done against the period. For
 465 * task with deadline equal to period this is the same of using
 466 * dl_deadline instead of dl_period in the equation above.
 467 */
 468static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 469                               struct sched_dl_entity *pi_se, u64 t)
 470{
 471        u64 left, right;
 472
 473        /*
 474         * left and right are the two sides of the equation above,
 475         * after a bit of shuffling to use multiplications instead
 476         * of divisions.
 477         *
 478         * Note that none of the time values involved in the two
 479         * multiplications are absolute: dl_deadline and dl_runtime
 480         * are the relative deadline and the maximum runtime of each
 481         * instance, runtime is the runtime left for the last instance
 482         * and (deadline - t), since t is rq->clock, is the time left
 483         * to the (absolute) deadline. Even if overflowing the u64 type
 484         * is very unlikely to occur in both cases, here we scale down
 485         * as we want to avoid that risk at all. Scaling down by 10
 486         * means that we reduce granularity to 1us. We are fine with it,
 487         * since this is only a true/false check and, anyway, thinking
 488         * of anything below microseconds resolution is actually fiction
 489         * (but still we want to give the user that illusion >;).
 490         */
 491        left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 492        right = ((dl_se->deadline - t) >> DL_SCALE) *
 493                (pi_se->dl_runtime >> DL_SCALE);
 494
 495        return dl_time_before(right, left);
 496}
 497
 498/*
 499 * When a -deadline entity is queued back on the runqueue, its runtime and
 500 * deadline might need updating.
 501 *
 502 * The policy here is that we update the deadline of the entity only if:
 503 *  - the current deadline is in the past,
 504 *  - using the remaining runtime with the current deadline would make
 505 *    the entity exceed its bandwidth.
 506 */
 507static void update_dl_entity(struct sched_dl_entity *dl_se,
 508                             struct sched_dl_entity *pi_se)
 509{
 510        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 511        struct rq *rq = rq_of_dl_rq(dl_rq);
 512
 513        if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 514            dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 515                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 516                dl_se->runtime = pi_se->dl_runtime;
 517        }
 518}
 519
 520/*
 521 * If the entity depleted all its runtime, and if we want it to sleep
 522 * while waiting for some new execution time to become available, we
 523 * set the bandwidth enforcement timer to the replenishment instant
 524 * and try to activate it.
 525 *
 526 * Notice that it is important for the caller to know if the timer
 527 * actually started or not (i.e., the replenishment instant is in
 528 * the future or in the past).
 529 */
 530static int start_dl_timer(struct task_struct *p)
 531{
 532        struct sched_dl_entity *dl_se = &p->dl;
 533        struct hrtimer *timer = &dl_se->dl_timer;
 534        struct rq *rq = task_rq(p);
 535        ktime_t now, act;
 536        s64 delta;
 537
 538        lockdep_assert_held(&rq->lock);
 539
 540        /*
 541         * We want the timer to fire at the deadline, but considering
 542         * that it is actually coming from rq->clock and not from
 543         * hrtimer's time base reading.
 544         */
 545        act = ns_to_ktime(dl_se->deadline);
 546        now = hrtimer_cb_get_time(timer);
 547        delta = ktime_to_ns(now) - rq_clock(rq);
 548        act = ktime_add_ns(act, delta);
 549
 550        /*
 551         * If the expiry time already passed, e.g., because the value
 552         * chosen as the deadline is too small, don't even try to
 553         * start the timer in the past!
 554         */
 555        if (ktime_us_delta(act, now) < 0)
 556                return 0;
 557
 558        /*
 559         * !enqueued will guarantee another callback; even if one is already in
 560         * progress. This ensures a balanced {get,put}_task_struct().
 561         *
 562         * The race against __run_timer() clearing the enqueued state is
 563         * harmless because we're holding task_rq()->lock, therefore the timer
 564         * expiring after we've done the check will wait on its task_rq_lock()
 565         * and observe our state.
 566         */
 567        if (!hrtimer_is_queued(timer)) {
 568                get_task_struct(p);
 569                hrtimer_start(timer, act, HRTIMER_MODE_ABS);
 570        }
 571
 572        return 1;
 573}
 574
 575/*
 576 * This is the bandwidth enforcement timer callback. If here, we know
 577 * a task is not on its dl_rq, since the fact that the timer was running
 578 * means the task is throttled and needs a runtime replenishment.
 579 *
 580 * However, what we actually do depends on the fact the task is active,
 581 * (it is on its rq) or has been removed from there by a call to
 582 * dequeue_task_dl(). In the former case we must issue the runtime
 583 * replenishment and add the task back to the dl_rq; in the latter, we just
 584 * do nothing but clearing dl_throttled, so that runtime and deadline
 585 * updating (and the queueing back to dl_rq) will be done by the
 586 * next call to enqueue_task_dl().
 587 */
 588static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 589{
 590        struct sched_dl_entity *dl_se = container_of(timer,
 591                                                     struct sched_dl_entity,
 592                                                     dl_timer);
 593        struct task_struct *p = dl_task_of(dl_se);
 594        struct rq_flags rf;
 595        struct rq *rq;
 596
 597        rq = task_rq_lock(p, &rf);
 598
 599        /*
 600         * The task might have changed its scheduling policy to something
 601         * different than SCHED_DEADLINE (through switched_fromd_dl()).
 602         */
 603        if (!dl_task(p)) {
 604                __dl_clear_params(p);
 605                goto unlock;
 606        }
 607
 608        /*
 609         * The task might have been boosted by someone else and might be in the
 610         * boosting/deboosting path, its not throttled.
 611         */
 612        if (dl_se->dl_boosted)
 613                goto unlock;
 614
 615        /*
 616         * Spurious timer due to start_dl_timer() race; or we already received
 617         * a replenishment from rt_mutex_setprio().
 618         */
 619        if (!dl_se->dl_throttled)
 620                goto unlock;
 621
 622        sched_clock_tick();
 623        update_rq_clock(rq);
 624
 625        /*
 626         * If the throttle happened during sched-out; like:
 627         *
 628         *   schedule()
 629         *     deactivate_task()
 630         *       dequeue_task_dl()
 631         *         update_curr_dl()
 632         *           start_dl_timer()
 633         *         __dequeue_task_dl()
 634         *     prev->on_rq = 0;
 635         *
 636         * We can be both throttled and !queued. Replenish the counter
 637         * but do not enqueue -- wait for our wakeup to do that.
 638         */
 639        if (!task_on_rq_queued(p)) {
 640                replenish_dl_entity(dl_se, dl_se);
 641                goto unlock;
 642        }
 643
 644        enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
 645        if (dl_task(rq->curr))
 646                check_preempt_curr_dl(rq, p, 0);
 647        else
 648                resched_curr(rq);
 649
 650#ifdef CONFIG_SMP
 651        /*
 652         * Perform balancing operations here; after the replenishments.  We
 653         * cannot drop rq->lock before this, otherwise the assertion in
 654         * start_dl_timer() about not missing updates is not true.
 655         *
 656         * If we find that the rq the task was on is no longer available, we
 657         * need to select a new rq.
 658         *
 659         * XXX figure out if select_task_rq_dl() deals with offline cpus.
 660         */
 661        if (unlikely(!rq->online))
 662                rq = dl_task_offline_migration(rq, p);
 663
 664        /*
 665         * Queueing this task back might have overloaded rq, check if we need
 666         * to kick someone away.
 667         */
 668        if (has_pushable_dl_tasks(rq)) {
 669                /*
 670                 * Nothing relies on rq->lock after this, so its safe to drop
 671                 * rq->lock.
 672                 */
 673                lockdep_unpin_lock(&rq->lock, rf.cookie);
 674                push_dl_task(rq);
 675                lockdep_repin_lock(&rq->lock, rf.cookie);
 676        }
 677#endif
 678
 679unlock:
 680        task_rq_unlock(rq, p, &rf);
 681
 682        /*
 683         * This can free the task_struct, including this hrtimer, do not touch
 684         * anything related to that after this.
 685         */
 686        put_task_struct(p);
 687
 688        return HRTIMER_NORESTART;
 689}
 690
 691void init_dl_task_timer(struct sched_dl_entity *dl_se)
 692{
 693        struct hrtimer *timer = &dl_se->dl_timer;
 694
 695        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 696        timer->function = dl_task_timer;
 697}
 698
 699static
 700int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
 701{
 702        return (dl_se->runtime <= 0);
 703}
 704
 705extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
 706
 707/*
 708 * Update the current task's runtime statistics (provided it is still
 709 * a -deadline task and has not been removed from the dl_rq).
 710 */
 711static void update_curr_dl(struct rq *rq)
 712{
 713        struct task_struct *curr = rq->curr;
 714        struct sched_dl_entity *dl_se = &curr->dl;
 715        u64 delta_exec;
 716
 717        if (!dl_task(curr) || !on_dl_rq(dl_se))
 718                return;
 719
 720        /*
 721         * Consumed budget is computed considering the time as
 722         * observed by schedulable tasks (excluding time spent
 723         * in hardirq context, etc.). Deadlines are instead
 724         * computed using hard walltime. This seems to be the more
 725         * natural solution, but the full ramifications of this
 726         * approach need further study.
 727         */
 728        delta_exec = rq_clock_task(rq) - curr->se.exec_start;
 729        if (unlikely((s64)delta_exec <= 0)) {
 730                if (unlikely(dl_se->dl_yielded))
 731                        goto throttle;
 732                return;
 733        }
 734
 735        /* kick cpufreq (see the comment in linux/cpufreq.h). */
 736        if (cpu_of(rq) == smp_processor_id())
 737                cpufreq_trigger_update(rq_clock(rq));
 738
 739        schedstat_set(curr->se.statistics.exec_max,
 740                      max(curr->se.statistics.exec_max, delta_exec));
 741
 742        curr->se.sum_exec_runtime += delta_exec;
 743        account_group_exec_runtime(curr, delta_exec);
 744
 745        curr->se.exec_start = rq_clock_task(rq);
 746        cpuacct_charge(curr, delta_exec);
 747
 748        sched_rt_avg_update(rq, delta_exec);
 749
 750        dl_se->runtime -= delta_exec;
 751
 752throttle:
 753        if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
 754                dl_se->dl_throttled = 1;
 755                __dequeue_task_dl(rq, curr, 0);
 756                if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
 757                        enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
 758
 759                if (!is_leftmost(curr, &rq->dl))
 760                        resched_curr(rq);
 761        }
 762
 763        /*
 764         * Because -- for now -- we share the rt bandwidth, we need to
 765         * account our runtime there too, otherwise actual rt tasks
 766         * would be able to exceed the shared quota.
 767         *
 768         * Account to the root rt group for now.
 769         *
 770         * The solution we're working towards is having the RT groups scheduled
 771         * using deadline servers -- however there's a few nasties to figure
 772         * out before that can happen.
 773         */
 774        if (rt_bandwidth_enabled()) {
 775                struct rt_rq *rt_rq = &rq->rt;
 776
 777                raw_spin_lock(&rt_rq->rt_runtime_lock);
 778                /*
 779                 * We'll let actual RT tasks worry about the overflow here, we
 780                 * have our own CBS to keep us inline; only account when RT
 781                 * bandwidth is relevant.
 782                 */
 783                if (sched_rt_bandwidth_account(rt_rq))
 784                        rt_rq->rt_time += delta_exec;
 785                raw_spin_unlock(&rt_rq->rt_runtime_lock);
 786        }
 787}
 788
 789#ifdef CONFIG_SMP
 790
 791static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 792{
 793        struct rq *rq = rq_of_dl_rq(dl_rq);
 794
 795        if (dl_rq->earliest_dl.curr == 0 ||
 796            dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
 797                dl_rq->earliest_dl.curr = deadline;
 798                cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
 799        }
 800}
 801
 802static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
 803{
 804        struct rq *rq = rq_of_dl_rq(dl_rq);
 805
 806        /*
 807         * Since we may have removed our earliest (and/or next earliest)
 808         * task we must recompute them.
 809         */
 810        if (!dl_rq->dl_nr_running) {
 811                dl_rq->earliest_dl.curr = 0;
 812                dl_rq->earliest_dl.next = 0;
 813                cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
 814        } else {
 815                struct rb_node *leftmost = dl_rq->rb_leftmost;
 816                struct sched_dl_entity *entry;
 817
 818                entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
 819                dl_rq->earliest_dl.curr = entry->deadline;
 820                cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
 821        }
 822}
 823
 824#else
 825
 826static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 827static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
 828
 829#endif /* CONFIG_SMP */
 830
 831static inline
 832void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 833{
 834        int prio = dl_task_of(dl_se)->prio;
 835        u64 deadline = dl_se->deadline;
 836
 837        WARN_ON(!dl_prio(prio));
 838        dl_rq->dl_nr_running++;
 839        add_nr_running(rq_of_dl_rq(dl_rq), 1);
 840
 841        inc_dl_deadline(dl_rq, deadline);
 842        inc_dl_migration(dl_se, dl_rq);
 843}
 844
 845static inline
 846void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 847{
 848        int prio = dl_task_of(dl_se)->prio;
 849
 850        WARN_ON(!dl_prio(prio));
 851        WARN_ON(!dl_rq->dl_nr_running);
 852        dl_rq->dl_nr_running--;
 853        sub_nr_running(rq_of_dl_rq(dl_rq), 1);
 854
 855        dec_dl_deadline(dl_rq, dl_se->deadline);
 856        dec_dl_migration(dl_se, dl_rq);
 857}
 858
 859static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
 860{
 861        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 862        struct rb_node **link = &dl_rq->rb_root.rb_node;
 863        struct rb_node *parent = NULL;
 864        struct sched_dl_entity *entry;
 865        int leftmost = 1;
 866
 867        BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
 868
 869        while (*link) {
 870                parent = *link;
 871                entry = rb_entry(parent, struct sched_dl_entity, rb_node);
 872                if (dl_time_before(dl_se->deadline, entry->deadline))
 873                        link = &parent->rb_left;
 874                else {
 875                        link = &parent->rb_right;
 876                        leftmost = 0;
 877                }
 878        }
 879
 880        if (leftmost)
 881                dl_rq->rb_leftmost = &dl_se->rb_node;
 882
 883        rb_link_node(&dl_se->rb_node, parent, link);
 884        rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
 885
 886        inc_dl_tasks(dl_se, dl_rq);
 887}
 888
 889static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
 890{
 891        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 892
 893        if (RB_EMPTY_NODE(&dl_se->rb_node))
 894                return;
 895
 896        if (dl_rq->rb_leftmost == &dl_se->rb_node) {
 897                struct rb_node *next_node;
 898
 899                next_node = rb_next(&dl_se->rb_node);
 900                dl_rq->rb_leftmost = next_node;
 901        }
 902
 903        rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
 904        RB_CLEAR_NODE(&dl_se->rb_node);
 905
 906        dec_dl_tasks(dl_se, dl_rq);
 907}
 908
 909static void
 910enqueue_dl_entity(struct sched_dl_entity *dl_se,
 911                  struct sched_dl_entity *pi_se, int flags)
 912{
 913        BUG_ON(on_dl_rq(dl_se));
 914
 915        /*
 916         * If this is a wakeup or a new instance, the scheduling
 917         * parameters of the task might need updating. Otherwise,
 918         * we want a replenishment of its runtime.
 919         */
 920        if (flags & ENQUEUE_WAKEUP)
 921                update_dl_entity(dl_se, pi_se);
 922        else if (flags & ENQUEUE_REPLENISH)
 923                replenish_dl_entity(dl_se, pi_se);
 924
 925        __enqueue_dl_entity(dl_se);
 926}
 927
 928static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
 929{
 930        __dequeue_dl_entity(dl_se);
 931}
 932
 933static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 934{
 935        struct task_struct *pi_task = rt_mutex_get_top_task(p);
 936        struct sched_dl_entity *pi_se = &p->dl;
 937
 938        /*
 939         * Use the scheduling parameters of the top pi-waiter
 940         * task if we have one and its (absolute) deadline is
 941         * smaller than our one... OTW we keep our runtime and
 942         * deadline.
 943         */
 944        if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) {
 945                pi_se = &pi_task->dl;
 946        } else if (!dl_prio(p->normal_prio)) {
 947                /*
 948                 * Special case in which we have a !SCHED_DEADLINE task
 949                 * that is going to be deboosted, but exceedes its
 950                 * runtime while doing so. No point in replenishing
 951                 * it, as it's going to return back to its original
 952                 * scheduling class after this.
 953                 */
 954                BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
 955                return;
 956        }
 957
 958        /*
 959         * If p is throttled, we do nothing. In fact, if it exhausted
 960         * its budget it needs a replenishment and, since it now is on
 961         * its rq, the bandwidth timer callback (which clearly has not
 962         * run yet) will take care of this.
 963         */
 964        if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
 965                return;
 966
 967        enqueue_dl_entity(&p->dl, pi_se, flags);
 968
 969        if (!task_current(rq, p) && tsk_nr_cpus_allowed(p) > 1)
 970                enqueue_pushable_dl_task(rq, p);
 971}
 972
 973static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 974{
 975        dequeue_dl_entity(&p->dl);
 976        dequeue_pushable_dl_task(rq, p);
 977}
 978
 979static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
 980{
 981        update_curr_dl(rq);
 982        __dequeue_task_dl(rq, p, flags);
 983}
 984
 985/*
 986 * Yield task semantic for -deadline tasks is:
 987 *
 988 *   get off from the CPU until our next instance, with
 989 *   a new runtime. This is of little use now, since we
 990 *   don't have a bandwidth reclaiming mechanism. Anyway,
 991 *   bandwidth reclaiming is planned for the future, and
 992 *   yield_task_dl will indicate that some spare budget
 993 *   is available for other task instances to use it.
 994 */
 995static void yield_task_dl(struct rq *rq)
 996{
 997        /*
 998         * We make the task go to sleep until its current deadline by
 999         * forcing its runtime to zero. This way, update_curr_dl() stops
1000         * it and the bandwidth timer will wake it up and will give it
1001         * new scheduling parameters (thanks to dl_yielded=1).
1002         */
1003        rq->curr->dl.dl_yielded = 1;
1004
1005        update_rq_clock(rq);
1006        update_curr_dl(rq);
1007        /*
1008         * Tell update_rq_clock() that we've just updated,
1009         * so we don't do microscopic update in schedule()
1010         * and double the fastpath cost.
1011         */
1012        rq_clock_skip_update(rq, true);
1013}
1014
1015#ifdef CONFIG_SMP
1016
1017static int find_later_rq(struct task_struct *task);
1018
1019static int
1020select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1021{
1022        struct task_struct *curr;
1023        struct rq *rq;
1024
1025        if (sd_flag != SD_BALANCE_WAKE)
1026                goto out;
1027
1028        rq = cpu_rq(cpu);
1029
1030        rcu_read_lock();
1031        curr = READ_ONCE(rq->curr); /* unlocked access */
1032
1033        /*
1034         * If we are dealing with a -deadline task, we must
1035         * decide where to wake it up.
1036         * If it has a later deadline and the current task
1037         * on this rq can't move (provided the waking task
1038         * can!) we prefer to send it somewhere else. On the
1039         * other hand, if it has a shorter deadline, we
1040         * try to make it stay here, it might be important.
1041         */
1042        if (unlikely(dl_task(curr)) &&
1043            (tsk_nr_cpus_allowed(curr) < 2 ||
1044             !dl_entity_preempt(&p->dl, &curr->dl)) &&
1045            (tsk_nr_cpus_allowed(p) > 1)) {
1046                int target = find_later_rq(p);
1047
1048                if (target != -1 &&
1049                                (dl_time_before(p->dl.deadline,
1050                                        cpu_rq(target)->dl.earliest_dl.curr) ||
1051                                (cpu_rq(target)->dl.dl_nr_running == 0)))
1052                        cpu = target;
1053        }
1054        rcu_read_unlock();
1055
1056out:
1057        return cpu;
1058}
1059
1060static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1061{
1062        /*
1063         * Current can't be migrated, useless to reschedule,
1064         * let's hope p can move out.
1065         */
1066        if (tsk_nr_cpus_allowed(rq->curr) == 1 ||
1067            cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
1068                return;
1069
1070        /*
1071         * p is migratable, so let's not schedule it and
1072         * see if it is pushed or pulled somewhere else.
1073         */
1074        if (tsk_nr_cpus_allowed(p) != 1 &&
1075            cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
1076                return;
1077
1078        resched_curr(rq);
1079}
1080
1081#endif /* CONFIG_SMP */
1082
1083/*
1084 * Only called when both the current and waking task are -deadline
1085 * tasks.
1086 */
1087static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1088                                  int flags)
1089{
1090        if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1091                resched_curr(rq);
1092                return;
1093        }
1094
1095#ifdef CONFIG_SMP
1096        /*
1097         * In the unlikely case current and p have the same deadline
1098         * let us try to decide what's the best thing to do...
1099         */
1100        if ((p->dl.deadline == rq->curr->dl.deadline) &&
1101            !test_tsk_need_resched(rq->curr))
1102                check_preempt_equal_dl(rq, p);
1103#endif /* CONFIG_SMP */
1104}
1105
1106#ifdef CONFIG_SCHED_HRTICK
1107static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1108{
1109        hrtick_start(rq, p->dl.runtime);
1110}
1111#else /* !CONFIG_SCHED_HRTICK */
1112static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1113{
1114}
1115#endif
1116
1117static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1118                                                   struct dl_rq *dl_rq)
1119{
1120        struct rb_node *left = dl_rq->rb_leftmost;
1121
1122        if (!left)
1123                return NULL;
1124
1125        return rb_entry(left, struct sched_dl_entity, rb_node);
1126}
1127
1128struct task_struct *
1129pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
1130{
1131        struct sched_dl_entity *dl_se;
1132        struct task_struct *p;
1133        struct dl_rq *dl_rq;
1134
1135        dl_rq = &rq->dl;
1136
1137        if (need_pull_dl_task(rq, prev)) {
1138                /*
1139                 * This is OK, because current is on_cpu, which avoids it being
1140                 * picked for load-balance and preemption/IRQs are still
1141                 * disabled avoiding further scheduler activity on it and we're
1142                 * being very careful to re-start the picking loop.
1143                 */
1144                lockdep_unpin_lock(&rq->lock, cookie);
1145                pull_dl_task(rq);
1146                lockdep_repin_lock(&rq->lock, cookie);
1147                /*
1148                 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1149                 * means a stop task can slip in, in which case we need to
1150                 * re-start task selection.
1151                 */
1152                if (rq->stop && task_on_rq_queued(rq->stop))
1153                        return RETRY_TASK;
1154        }
1155
1156        /*
1157         * When prev is DL, we may throttle it in put_prev_task().
1158         * So, we update time before we check for dl_nr_running.
1159         */
1160        if (prev->sched_class == &dl_sched_class)
1161                update_curr_dl(rq);
1162
1163        if (unlikely(!dl_rq->dl_nr_running))
1164                return NULL;
1165
1166        put_prev_task(rq, prev);
1167
1168        dl_se = pick_next_dl_entity(rq, dl_rq);
1169        BUG_ON(!dl_se);
1170
1171        p = dl_task_of(dl_se);
1172        p->se.exec_start = rq_clock_task(rq);
1173
1174        /* Running task will never be pushed. */
1175       dequeue_pushable_dl_task(rq, p);
1176
1177        if (hrtick_enabled(rq))
1178                start_hrtick_dl(rq, p);
1179
1180        queue_push_tasks(rq);
1181
1182        return p;
1183}
1184
1185static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1186{
1187        update_curr_dl(rq);
1188
1189        if (on_dl_rq(&p->dl) && tsk_nr_cpus_allowed(p) > 1)
1190                enqueue_pushable_dl_task(rq, p);
1191}
1192
1193static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1194{
1195        update_curr_dl(rq);
1196
1197        /*
1198         * Even when we have runtime, update_curr_dl() might have resulted in us
1199         * not being the leftmost task anymore. In that case NEED_RESCHED will
1200         * be set and schedule() will start a new hrtick for the next task.
1201         */
1202        if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1203            is_leftmost(p, &rq->dl))
1204                start_hrtick_dl(rq, p);
1205}
1206
1207static void task_fork_dl(struct task_struct *p)
1208{
1209        /*
1210         * SCHED_DEADLINE tasks cannot fork and this is achieved through
1211         * sched_fork()
1212         */
1213}
1214
1215static void task_dead_dl(struct task_struct *p)
1216{
1217        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1218
1219        /*
1220         * Since we are TASK_DEAD we won't slip out of the domain!
1221         */
1222        raw_spin_lock_irq(&dl_b->lock);
1223        /* XXX we should retain the bw until 0-lag */
1224        dl_b->total_bw -= p->dl.dl_bw;
1225        raw_spin_unlock_irq(&dl_b->lock);
1226}
1227
1228static void set_curr_task_dl(struct rq *rq)
1229{
1230        struct task_struct *p = rq->curr;
1231
1232        p->se.exec_start = rq_clock_task(rq);
1233
1234        /* You can't push away the running task */
1235        dequeue_pushable_dl_task(rq, p);
1236}
1237
1238#ifdef CONFIG_SMP
1239
1240/* Only try algorithms three times */
1241#define DL_MAX_TRIES 3
1242
1243static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1244{
1245        if (!task_running(rq, p) &&
1246            cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1247                return 1;
1248        return 0;
1249}
1250
1251/*
1252 * Return the earliest pushable rq's task, which is suitable to be executed
1253 * on the CPU, NULL otherwise:
1254 */
1255static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1256{
1257        struct rb_node *next_node = rq->dl.pushable_dl_tasks_leftmost;
1258        struct task_struct *p = NULL;
1259
1260        if (!has_pushable_dl_tasks(rq))
1261                return NULL;
1262
1263next_node:
1264        if (next_node) {
1265                p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1266
1267                if (pick_dl_task(rq, p, cpu))
1268                        return p;
1269
1270                next_node = rb_next(next_node);
1271                goto next_node;
1272        }
1273
1274        return NULL;
1275}
1276
1277static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1278
1279static int find_later_rq(struct task_struct *task)
1280{
1281        struct sched_domain *sd;
1282        struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1283        int this_cpu = smp_processor_id();
1284        int best_cpu, cpu = task_cpu(task);
1285
1286        /* Make sure the mask is initialized first */
1287        if (unlikely(!later_mask))
1288                return -1;
1289
1290        if (tsk_nr_cpus_allowed(task) == 1)
1291                return -1;
1292
1293        /*
1294         * We have to consider system topology and task affinity
1295         * first, then we can look for a suitable cpu.
1296         */
1297        best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1298                        task, later_mask);
1299        if (best_cpu == -1)
1300                return -1;
1301
1302        /*
1303         * If we are here, some target has been found,
1304         * the most suitable of which is cached in best_cpu.
1305         * This is, among the runqueues where the current tasks
1306         * have later deadlines than the task's one, the rq
1307         * with the latest possible one.
1308         *
1309         * Now we check how well this matches with task's
1310         * affinity and system topology.
1311         *
1312         * The last cpu where the task run is our first
1313         * guess, since it is most likely cache-hot there.
1314         */
1315        if (cpumask_test_cpu(cpu, later_mask))
1316                return cpu;
1317        /*
1318         * Check if this_cpu is to be skipped (i.e., it is
1319         * not in the mask) or not.
1320         */
1321        if (!cpumask_test_cpu(this_cpu, later_mask))
1322                this_cpu = -1;
1323
1324        rcu_read_lock();
1325        for_each_domain(cpu, sd) {
1326                if (sd->flags & SD_WAKE_AFFINE) {
1327
1328                        /*
1329                         * If possible, preempting this_cpu is
1330                         * cheaper than migrating.
1331                         */
1332                        if (this_cpu != -1 &&
1333                            cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1334                                rcu_read_unlock();
1335                                return this_cpu;
1336                        }
1337
1338                        /*
1339                         * Last chance: if best_cpu is valid and is
1340                         * in the mask, that becomes our choice.
1341                         */
1342                        if (best_cpu < nr_cpu_ids &&
1343                            cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1344                                rcu_read_unlock();
1345                                return best_cpu;
1346                        }
1347                }
1348        }
1349        rcu_read_unlock();
1350
1351        /*
1352         * At this point, all our guesses failed, we just return
1353         * 'something', and let the caller sort the things out.
1354         */
1355        if (this_cpu != -1)
1356                return this_cpu;
1357
1358        cpu = cpumask_any(later_mask);
1359        if (cpu < nr_cpu_ids)
1360                return cpu;
1361
1362        return -1;
1363}
1364
1365/* Locks the rq it finds */
1366static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1367{
1368        struct rq *later_rq = NULL;
1369        int tries;
1370        int cpu;
1371
1372        for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1373                cpu = find_later_rq(task);
1374
1375                if ((cpu == -1) || (cpu == rq->cpu))
1376                        break;
1377
1378                later_rq = cpu_rq(cpu);
1379
1380                if (later_rq->dl.dl_nr_running &&
1381                    !dl_time_before(task->dl.deadline,
1382                                        later_rq->dl.earliest_dl.curr)) {
1383                        /*
1384                         * Target rq has tasks of equal or earlier deadline,
1385                         * retrying does not release any lock and is unlikely
1386                         * to yield a different result.
1387                         */
1388                        later_rq = NULL;
1389                        break;
1390                }
1391
1392                /* Retry if something changed. */
1393                if (double_lock_balance(rq, later_rq)) {
1394                        if (unlikely(task_rq(task) != rq ||
1395                                     !cpumask_test_cpu(later_rq->cpu,
1396                                                       tsk_cpus_allowed(task)) ||
1397                                     task_running(rq, task) ||
1398                                     !dl_task(task) ||
1399                                     !task_on_rq_queued(task))) {
1400                                double_unlock_balance(rq, later_rq);
1401                                later_rq = NULL;
1402                                break;
1403                        }
1404                }
1405
1406                /*
1407                 * If the rq we found has no -deadline task, or
1408                 * its earliest one has a later deadline than our
1409                 * task, the rq is a good one.
1410                 */
1411                if (!later_rq->dl.dl_nr_running ||
1412                    dl_time_before(task->dl.deadline,
1413                                   later_rq->dl.earliest_dl.curr))
1414                        break;
1415
1416                /* Otherwise we try again. */
1417                double_unlock_balance(rq, later_rq);
1418                later_rq = NULL;
1419        }
1420
1421        return later_rq;
1422}
1423
1424static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1425{
1426        struct task_struct *p;
1427
1428        if (!has_pushable_dl_tasks(rq))
1429                return NULL;
1430
1431        p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1432                     struct task_struct, pushable_dl_tasks);
1433
1434        BUG_ON(rq->cpu != task_cpu(p));
1435        BUG_ON(task_current(rq, p));
1436        BUG_ON(tsk_nr_cpus_allowed(p) <= 1);
1437
1438        BUG_ON(!task_on_rq_queued(p));
1439        BUG_ON(!dl_task(p));
1440
1441        return p;
1442}
1443
1444/*
1445 * See if the non running -deadline tasks on this rq
1446 * can be sent to some other CPU where they can preempt
1447 * and start executing.
1448 */
1449static int push_dl_task(struct rq *rq)
1450{
1451        struct task_struct *next_task;
1452        struct rq *later_rq;
1453        int ret = 0;
1454
1455        if (!rq->dl.overloaded)
1456                return 0;
1457
1458        next_task = pick_next_pushable_dl_task(rq);
1459        if (!next_task)
1460                return 0;
1461
1462retry:
1463        if (unlikely(next_task == rq->curr)) {
1464                WARN_ON(1);
1465                return 0;
1466        }
1467
1468        /*
1469         * If next_task preempts rq->curr, and rq->curr
1470         * can move away, it makes sense to just reschedule
1471         * without going further in pushing next_task.
1472         */
1473        if (dl_task(rq->curr) &&
1474            dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1475            tsk_nr_cpus_allowed(rq->curr) > 1) {
1476                resched_curr(rq);
1477                return 0;
1478        }
1479
1480        /* We might release rq lock */
1481        get_task_struct(next_task);
1482
1483        /* Will lock the rq it'll find */
1484        later_rq = find_lock_later_rq(next_task, rq);
1485        if (!later_rq) {
1486                struct task_struct *task;
1487
1488                /*
1489                 * We must check all this again, since
1490                 * find_lock_later_rq releases rq->lock and it is
1491                 * then possible that next_task has migrated.
1492                 */
1493                task = pick_next_pushable_dl_task(rq);
1494                if (task_cpu(next_task) == rq->cpu && task == next_task) {
1495                        /*
1496                         * The task is still there. We don't try
1497                         * again, some other cpu will pull it when ready.
1498                         */
1499                        goto out;
1500                }
1501
1502                if (!task)
1503                        /* No more tasks */
1504                        goto out;
1505
1506                put_task_struct(next_task);
1507                next_task = task;
1508                goto retry;
1509        }
1510
1511        deactivate_task(rq, next_task, 0);
1512        set_task_cpu(next_task, later_rq->cpu);
1513        activate_task(later_rq, next_task, 0);
1514        ret = 1;
1515
1516        resched_curr(later_rq);
1517
1518        double_unlock_balance(rq, later_rq);
1519
1520out:
1521        put_task_struct(next_task);
1522
1523        return ret;
1524}
1525
1526static void push_dl_tasks(struct rq *rq)
1527{
1528        /* push_dl_task() will return true if it moved a -deadline task */
1529        while (push_dl_task(rq))
1530                ;
1531}
1532
1533static void pull_dl_task(struct rq *this_rq)
1534{
1535        int this_cpu = this_rq->cpu, cpu;
1536        struct task_struct *p;
1537        bool resched = false;
1538        struct rq *src_rq;
1539        u64 dmin = LONG_MAX;
1540
1541        if (likely(!dl_overloaded(this_rq)))
1542                return;
1543
1544        /*
1545         * Match the barrier from dl_set_overloaded; this guarantees that if we
1546         * see overloaded we must also see the dlo_mask bit.
1547         */
1548        smp_rmb();
1549
1550        for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1551                if (this_cpu == cpu)
1552                        continue;
1553
1554                src_rq = cpu_rq(cpu);
1555
1556                /*
1557                 * It looks racy, abd it is! However, as in sched_rt.c,
1558                 * we are fine with this.
1559                 */
1560                if (this_rq->dl.dl_nr_running &&
1561                    dl_time_before(this_rq->dl.earliest_dl.curr,
1562                                   src_rq->dl.earliest_dl.next))
1563                        continue;
1564
1565                /* Might drop this_rq->lock */
1566                double_lock_balance(this_rq, src_rq);
1567
1568                /*
1569                 * If there are no more pullable tasks on the
1570                 * rq, we're done with it.
1571                 */
1572                if (src_rq->dl.dl_nr_running <= 1)
1573                        goto skip;
1574
1575                p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
1576
1577                /*
1578                 * We found a task to be pulled if:
1579                 *  - it preempts our current (if there's one),
1580                 *  - it will preempt the last one we pulled (if any).
1581                 */
1582                if (p && dl_time_before(p->dl.deadline, dmin) &&
1583                    (!this_rq->dl.dl_nr_running ||
1584                     dl_time_before(p->dl.deadline,
1585                                    this_rq->dl.earliest_dl.curr))) {
1586                        WARN_ON(p == src_rq->curr);
1587                        WARN_ON(!task_on_rq_queued(p));
1588
1589                        /*
1590                         * Then we pull iff p has actually an earlier
1591                         * deadline than the current task of its runqueue.
1592                         */
1593                        if (dl_time_before(p->dl.deadline,
1594                                           src_rq->curr->dl.deadline))
1595                                goto skip;
1596
1597                        resched = true;
1598
1599                        deactivate_task(src_rq, p, 0);
1600                        set_task_cpu(p, this_cpu);
1601                        activate_task(this_rq, p, 0);
1602                        dmin = p->dl.deadline;
1603
1604                        /* Is there any other task even earlier? */
1605                }
1606skip:
1607                double_unlock_balance(this_rq, src_rq);
1608        }
1609
1610        if (resched)
1611                resched_curr(this_rq);
1612}
1613
1614/*
1615 * Since the task is not running and a reschedule is not going to happen
1616 * anytime soon on its runqueue, we try pushing it away now.
1617 */
1618static void task_woken_dl(struct rq *rq, struct task_struct *p)
1619{
1620        if (!task_running(rq, p) &&
1621            !test_tsk_need_resched(rq->curr) &&
1622            tsk_nr_cpus_allowed(p) > 1 &&
1623            dl_task(rq->curr) &&
1624            (tsk_nr_cpus_allowed(rq->curr) < 2 ||
1625             !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
1626                push_dl_tasks(rq);
1627        }
1628}
1629
1630static void set_cpus_allowed_dl(struct task_struct *p,
1631                                const struct cpumask *new_mask)
1632{
1633        struct root_domain *src_rd;
1634        struct rq *rq;
1635
1636        BUG_ON(!dl_task(p));
1637
1638        rq = task_rq(p);
1639        src_rd = rq->rd;
1640        /*
1641         * Migrating a SCHED_DEADLINE task between exclusive
1642         * cpusets (different root_domains) entails a bandwidth
1643         * update. We already made space for us in the destination
1644         * domain (see cpuset_can_attach()).
1645         */
1646        if (!cpumask_intersects(src_rd->span, new_mask)) {
1647                struct dl_bw *src_dl_b;
1648
1649                src_dl_b = dl_bw_of(cpu_of(rq));
1650                /*
1651                 * We now free resources of the root_domain we are migrating
1652                 * off. In the worst case, sched_setattr() may temporary fail
1653                 * until we complete the update.
1654                 */
1655                raw_spin_lock(&src_dl_b->lock);
1656                __dl_clear(src_dl_b, p->dl.dl_bw);
1657                raw_spin_unlock(&src_dl_b->lock);
1658        }
1659
1660        set_cpus_allowed_common(p, new_mask);
1661}
1662
1663/* Assumes rq->lock is held */
1664static void rq_online_dl(struct rq *rq)
1665{
1666        if (rq->dl.overloaded)
1667                dl_set_overload(rq);
1668
1669        cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
1670        if (rq->dl.dl_nr_running > 0)
1671                cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1672}
1673
1674/* Assumes rq->lock is held */
1675static void rq_offline_dl(struct rq *rq)
1676{
1677        if (rq->dl.overloaded)
1678                dl_clear_overload(rq);
1679
1680        cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1681        cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
1682}
1683
1684void __init init_sched_dl_class(void)
1685{
1686        unsigned int i;
1687
1688        for_each_possible_cpu(i)
1689                zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1690                                        GFP_KERNEL, cpu_to_node(i));
1691}
1692
1693#endif /* CONFIG_SMP */
1694
1695static void switched_from_dl(struct rq *rq, struct task_struct *p)
1696{
1697        /*
1698         * Start the deadline timer; if we switch back to dl before this we'll
1699         * continue consuming our current CBS slice. If we stay outside of
1700         * SCHED_DEADLINE until the deadline passes, the timer will reset the
1701         * task.
1702         */
1703        if (!start_dl_timer(p))
1704                __dl_clear_params(p);
1705
1706        /*
1707         * Since this might be the only -deadline task on the rq,
1708         * this is the right place to try to pull some other one
1709         * from an overloaded cpu, if any.
1710         */
1711        if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
1712                return;
1713
1714        queue_pull_task(rq);
1715}
1716
1717/*
1718 * When switching to -deadline, we may overload the rq, then
1719 * we try to push someone off, if possible.
1720 */
1721static void switched_to_dl(struct rq *rq, struct task_struct *p)
1722{
1723        if (dl_time_before(p->dl.deadline, rq_clock(rq)))
1724                setup_new_dl_entity(&p->dl, &p->dl);
1725
1726        if (task_on_rq_queued(p) && rq->curr != p) {
1727#ifdef CONFIG_SMP
1728                if (tsk_nr_cpus_allowed(p) > 1 && rq->dl.overloaded)
1729                        queue_push_tasks(rq);
1730#else
1731                if (dl_task(rq->curr))
1732                        check_preempt_curr_dl(rq, p, 0);
1733                else
1734                        resched_curr(rq);
1735#endif
1736        }
1737}
1738
1739/*
1740 * If the scheduling parameters of a -deadline task changed,
1741 * a push or pull operation might be needed.
1742 */
1743static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1744                            int oldprio)
1745{
1746        if (task_on_rq_queued(p) || rq->curr == p) {
1747#ifdef CONFIG_SMP
1748                /*
1749                 * This might be too much, but unfortunately
1750                 * we don't have the old deadline value, and
1751                 * we can't argue if the task is increasing
1752                 * or lowering its prio, so...
1753                 */
1754                if (!rq->dl.overloaded)
1755                        queue_pull_task(rq);
1756
1757                /*
1758                 * If we now have a earlier deadline task than p,
1759                 * then reschedule, provided p is still on this
1760                 * runqueue.
1761                 */
1762                if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
1763                        resched_curr(rq);
1764#else
1765                /*
1766                 * Again, we don't know if p has a earlier
1767                 * or later deadline, so let's blindly set a
1768                 * (maybe not needed) rescheduling point.
1769                 */
1770                resched_curr(rq);
1771#endif /* CONFIG_SMP */
1772        }
1773}
1774
1775const struct sched_class dl_sched_class = {
1776        .next                   = &rt_sched_class,
1777        .enqueue_task           = enqueue_task_dl,
1778        .dequeue_task           = dequeue_task_dl,
1779        .yield_task             = yield_task_dl,
1780
1781        .check_preempt_curr     = check_preempt_curr_dl,
1782
1783        .pick_next_task         = pick_next_task_dl,
1784        .put_prev_task          = put_prev_task_dl,
1785
1786#ifdef CONFIG_SMP
1787        .select_task_rq         = select_task_rq_dl,
1788        .set_cpus_allowed       = set_cpus_allowed_dl,
1789        .rq_online              = rq_online_dl,
1790        .rq_offline             = rq_offline_dl,
1791        .task_woken             = task_woken_dl,
1792#endif
1793
1794        .set_curr_task          = set_curr_task_dl,
1795        .task_tick              = task_tick_dl,
1796        .task_fork              = task_fork_dl,
1797        .task_dead              = task_dead_dl,
1798
1799        .prio_changed           = prio_changed_dl,
1800        .switched_from          = switched_from_dl,
1801        .switched_to            = switched_to_dl,
1802
1803        .update_curr            = update_curr_dl,
1804};
1805
1806#ifdef CONFIG_SCHED_DEBUG
1807extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
1808
1809void print_dl_stats(struct seq_file *m, int cpu)
1810{
1811        print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
1812}
1813#endif /* CONFIG_SCHED_DEBUG */
1814