linux/kernel/time/time.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  This file contains the interface functions for the various
   7 *  time related system calls: time, stime, gettimeofday, settimeofday,
   8 *                             adjtime
   9 */
  10/*
  11 * Modification history kernel/time.c
  12 *
  13 * 1993-09-02    Philip Gladstone
  14 *      Created file with time related functions from sched/core.c and adjtimex()
  15 * 1993-10-08    Torsten Duwe
  16 *      adjtime interface update and CMOS clock write code
  17 * 1995-08-13    Torsten Duwe
  18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19 * 1999-01-16    Ulrich Windl
  20 *      Introduced error checking for many cases in adjtimex().
  21 *      Updated NTP code according to technical memorandum Jan '96
  22 *      "A Kernel Model for Precision Timekeeping" by Dave Mills
  23 *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24 *      (Even though the technical memorandum forbids it)
  25 * 2004-07-14    Christoph Lameter
  26 *      Added getnstimeofday to allow the posix timer functions to return
  27 *      with nanosecond accuracy
  28 */
  29
  30#include <linux/export.h>
  31#include <linux/timex.h>
  32#include <linux/capability.h>
  33#include <linux/timekeeper_internal.h>
  34#include <linux/errno.h>
  35#include <linux/syscalls.h>
  36#include <linux/security.h>
  37#include <linux/fs.h>
  38#include <linux/math64.h>
  39#include <linux/ptrace.h>
  40
  41#include <asm/uaccess.h>
  42#include <asm/unistd.h>
  43
  44#include <generated/timeconst.h>
  45#include "timekeeping.h"
  46
  47/*
  48 * The timezone where the local system is located.  Used as a default by some
  49 * programs who obtain this value by using gettimeofday.
  50 */
  51struct timezone sys_tz;
  52
  53EXPORT_SYMBOL(sys_tz);
  54
  55#ifdef __ARCH_WANT_SYS_TIME
  56
  57/*
  58 * sys_time() can be implemented in user-level using
  59 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
  60 * why not move it into the appropriate arch directory (for those
  61 * architectures that need it).
  62 */
  63SYSCALL_DEFINE1(time, time_t __user *, tloc)
  64{
  65        time_t i = get_seconds();
  66
  67        if (tloc) {
  68                if (put_user(i,tloc))
  69                        return -EFAULT;
  70        }
  71        force_successful_syscall_return();
  72        return i;
  73}
  74
  75/*
  76 * sys_stime() can be implemented in user-level using
  77 * sys_settimeofday().  Is this for backwards compatibility?  If so,
  78 * why not move it into the appropriate arch directory (for those
  79 * architectures that need it).
  80 */
  81
  82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  83{
  84        struct timespec tv;
  85        int err;
  86
  87        if (get_user(tv.tv_sec, tptr))
  88                return -EFAULT;
  89
  90        tv.tv_nsec = 0;
  91
  92        err = security_settime(&tv, NULL);
  93        if (err)
  94                return err;
  95
  96        do_settimeofday(&tv);
  97        return 0;
  98}
  99
 100#endif /* __ARCH_WANT_SYS_TIME */
 101
 102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
 103                struct timezone __user *, tz)
 104{
 105        if (likely(tv != NULL)) {
 106                struct timeval ktv;
 107                do_gettimeofday(&ktv);
 108                if (copy_to_user(tv, &ktv, sizeof(ktv)))
 109                        return -EFAULT;
 110        }
 111        if (unlikely(tz != NULL)) {
 112                if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 113                        return -EFAULT;
 114        }
 115        return 0;
 116}
 117
 118/*
 119 * Indicates if there is an offset between the system clock and the hardware
 120 * clock/persistent clock/rtc.
 121 */
 122int persistent_clock_is_local;
 123
 124/*
 125 * Adjust the time obtained from the CMOS to be UTC time instead of
 126 * local time.
 127 *
 128 * This is ugly, but preferable to the alternatives.  Otherwise we
 129 * would either need to write a program to do it in /etc/rc (and risk
 130 * confusion if the program gets run more than once; it would also be
 131 * hard to make the program warp the clock precisely n hours)  or
 132 * compile in the timezone information into the kernel.  Bad, bad....
 133 *
 134 *                                              - TYT, 1992-01-01
 135 *
 136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 137 * as real UNIX machines always do it. This avoids all headaches about
 138 * daylight saving times and warping kernel clocks.
 139 */
 140static inline void warp_clock(void)
 141{
 142        if (sys_tz.tz_minuteswest != 0) {
 143                struct timespec adjust;
 144
 145                persistent_clock_is_local = 1;
 146                adjust.tv_sec = sys_tz.tz_minuteswest * 60;
 147                adjust.tv_nsec = 0;
 148                timekeeping_inject_offset(&adjust);
 149        }
 150}
 151
 152/*
 153 * In case for some reason the CMOS clock has not already been running
 154 * in UTC, but in some local time: The first time we set the timezone,
 155 * we will warp the clock so that it is ticking UTC time instead of
 156 * local time. Presumably, if someone is setting the timezone then we
 157 * are running in an environment where the programs understand about
 158 * timezones. This should be done at boot time in the /etc/rc script,
 159 * as soon as possible, so that the clock can be set right. Otherwise,
 160 * various programs will get confused when the clock gets warped.
 161 */
 162
 163int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
 164{
 165        static int firsttime = 1;
 166        int error = 0;
 167
 168        if (tv && !timespec64_valid(tv))
 169                return -EINVAL;
 170
 171        error = security_settime64(tv, tz);
 172        if (error)
 173                return error;
 174
 175        if (tz) {
 176                /* Verify we're witin the +-15 hrs range */
 177                if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
 178                        return -EINVAL;
 179
 180                sys_tz = *tz;
 181                update_vsyscall_tz();
 182                if (firsttime) {
 183                        firsttime = 0;
 184                        if (!tv)
 185                                warp_clock();
 186                }
 187        }
 188        if (tv)
 189                return do_settimeofday64(tv);
 190        return 0;
 191}
 192
 193SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
 194                struct timezone __user *, tz)
 195{
 196        struct timeval user_tv;
 197        struct timespec new_ts;
 198        struct timezone new_tz;
 199
 200        if (tv) {
 201                if (copy_from_user(&user_tv, tv, sizeof(*tv)))
 202                        return -EFAULT;
 203
 204                if (!timeval_valid(&user_tv))
 205                        return -EINVAL;
 206
 207                new_ts.tv_sec = user_tv.tv_sec;
 208                new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
 209        }
 210        if (tz) {
 211                if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 212                        return -EFAULT;
 213        }
 214
 215        return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 216}
 217
 218SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
 219{
 220        struct timex txc;               /* Local copy of parameter */
 221        int ret;
 222
 223        /* Copy the user data space into the kernel copy
 224         * structure. But bear in mind that the structures
 225         * may change
 226         */
 227        if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
 228                return -EFAULT;
 229        ret = do_adjtimex(&txc);
 230        return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
 231}
 232
 233/**
 234 * current_fs_time - Return FS time
 235 * @sb: Superblock.
 236 *
 237 * Return the current time truncated to the time granularity supported by
 238 * the fs.
 239 */
 240struct timespec current_fs_time(struct super_block *sb)
 241{
 242        struct timespec now = current_kernel_time();
 243        return timespec_trunc(now, sb->s_time_gran);
 244}
 245EXPORT_SYMBOL(current_fs_time);
 246
 247/*
 248 * Convert jiffies to milliseconds and back.
 249 *
 250 * Avoid unnecessary multiplications/divisions in the
 251 * two most common HZ cases:
 252 */
 253unsigned int jiffies_to_msecs(const unsigned long j)
 254{
 255#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 256        return (MSEC_PER_SEC / HZ) * j;
 257#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 258        return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
 259#else
 260# if BITS_PER_LONG == 32
 261        return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
 262# else
 263        return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
 264# endif
 265#endif
 266}
 267EXPORT_SYMBOL(jiffies_to_msecs);
 268
 269unsigned int jiffies_to_usecs(const unsigned long j)
 270{
 271        /*
 272         * Hz usually doesn't go much further MSEC_PER_SEC.
 273         * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
 274         */
 275        BUILD_BUG_ON(HZ > USEC_PER_SEC);
 276
 277#if !(USEC_PER_SEC % HZ)
 278        return (USEC_PER_SEC / HZ) * j;
 279#else
 280# if BITS_PER_LONG == 32
 281        return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
 282# else
 283        return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
 284# endif
 285#endif
 286}
 287EXPORT_SYMBOL(jiffies_to_usecs);
 288
 289/**
 290 * timespec_trunc - Truncate timespec to a granularity
 291 * @t: Timespec
 292 * @gran: Granularity in ns.
 293 *
 294 * Truncate a timespec to a granularity. Always rounds down. gran must
 295 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
 296 */
 297struct timespec timespec_trunc(struct timespec t, unsigned gran)
 298{
 299        /* Avoid division in the common cases 1 ns and 1 s. */
 300        if (gran == 1) {
 301                /* nothing */
 302        } else if (gran == NSEC_PER_SEC) {
 303                t.tv_nsec = 0;
 304        } else if (gran > 1 && gran < NSEC_PER_SEC) {
 305                t.tv_nsec -= t.tv_nsec % gran;
 306        } else {
 307                WARN(1, "illegal file time granularity: %u", gran);
 308        }
 309        return t;
 310}
 311EXPORT_SYMBOL(timespec_trunc);
 312
 313/*
 314 * mktime64 - Converts date to seconds.
 315 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 316 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 317 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 318 *
 319 * [For the Julian calendar (which was used in Russia before 1917,
 320 * Britain & colonies before 1752, anywhere else before 1582,
 321 * and is still in use by some communities) leave out the
 322 * -year/100+year/400 terms, and add 10.]
 323 *
 324 * This algorithm was first published by Gauss (I think).
 325 *
 326 * A leap second can be indicated by calling this function with sec as
 327 * 60 (allowable under ISO 8601).  The leap second is treated the same
 328 * as the following second since they don't exist in UNIX time.
 329 *
 330 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 331 * tomorrow - (allowable under ISO 8601) is supported.
 332 */
 333time64_t mktime64(const unsigned int year0, const unsigned int mon0,
 334                const unsigned int day, const unsigned int hour,
 335                const unsigned int min, const unsigned int sec)
 336{
 337        unsigned int mon = mon0, year = year0;
 338
 339        /* 1..12 -> 11,12,1..10 */
 340        if (0 >= (int) (mon -= 2)) {
 341                mon += 12;      /* Puts Feb last since it has leap day */
 342                year -= 1;
 343        }
 344
 345        return ((((time64_t)
 346                  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
 347                  year*365 - 719499
 348            )*24 + hour /* now have hours - midnight tomorrow handled here */
 349          )*60 + min /* now have minutes */
 350        )*60 + sec; /* finally seconds */
 351}
 352EXPORT_SYMBOL(mktime64);
 353
 354/**
 355 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 356 *
 357 * @ts:         pointer to timespec variable to be set
 358 * @sec:        seconds to set
 359 * @nsec:       nanoseconds to set
 360 *
 361 * Set seconds and nanoseconds field of a timespec variable and
 362 * normalize to the timespec storage format
 363 *
 364 * Note: The tv_nsec part is always in the range of
 365 *      0 <= tv_nsec < NSEC_PER_SEC
 366 * For negative values only the tv_sec field is negative !
 367 */
 368void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
 369{
 370        while (nsec >= NSEC_PER_SEC) {
 371                /*
 372                 * The following asm() prevents the compiler from
 373                 * optimising this loop into a modulo operation. See
 374                 * also __iter_div_u64_rem() in include/linux/time.h
 375                 */
 376                asm("" : "+rm"(nsec));
 377                nsec -= NSEC_PER_SEC;
 378                ++sec;
 379        }
 380        while (nsec < 0) {
 381                asm("" : "+rm"(nsec));
 382                nsec += NSEC_PER_SEC;
 383                --sec;
 384        }
 385        ts->tv_sec = sec;
 386        ts->tv_nsec = nsec;
 387}
 388EXPORT_SYMBOL(set_normalized_timespec);
 389
 390/**
 391 * ns_to_timespec - Convert nanoseconds to timespec
 392 * @nsec:       the nanoseconds value to be converted
 393 *
 394 * Returns the timespec representation of the nsec parameter.
 395 */
 396struct timespec ns_to_timespec(const s64 nsec)
 397{
 398        struct timespec ts;
 399        s32 rem;
 400
 401        if (!nsec)
 402                return (struct timespec) {0, 0};
 403
 404        ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
 405        if (unlikely(rem < 0)) {
 406                ts.tv_sec--;
 407                rem += NSEC_PER_SEC;
 408        }
 409        ts.tv_nsec = rem;
 410
 411        return ts;
 412}
 413EXPORT_SYMBOL(ns_to_timespec);
 414
 415/**
 416 * ns_to_timeval - Convert nanoseconds to timeval
 417 * @nsec:       the nanoseconds value to be converted
 418 *
 419 * Returns the timeval representation of the nsec parameter.
 420 */
 421struct timeval ns_to_timeval(const s64 nsec)
 422{
 423        struct timespec ts = ns_to_timespec(nsec);
 424        struct timeval tv;
 425
 426        tv.tv_sec = ts.tv_sec;
 427        tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
 428
 429        return tv;
 430}
 431EXPORT_SYMBOL(ns_to_timeval);
 432
 433#if BITS_PER_LONG == 32
 434/**
 435 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 436 *
 437 * @ts:         pointer to timespec variable to be set
 438 * @sec:        seconds to set
 439 * @nsec:       nanoseconds to set
 440 *
 441 * Set seconds and nanoseconds field of a timespec variable and
 442 * normalize to the timespec storage format
 443 *
 444 * Note: The tv_nsec part is always in the range of
 445 *      0 <= tv_nsec < NSEC_PER_SEC
 446 * For negative values only the tv_sec field is negative !
 447 */
 448void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
 449{
 450        while (nsec >= NSEC_PER_SEC) {
 451                /*
 452                 * The following asm() prevents the compiler from
 453                 * optimising this loop into a modulo operation. See
 454                 * also __iter_div_u64_rem() in include/linux/time.h
 455                 */
 456                asm("" : "+rm"(nsec));
 457                nsec -= NSEC_PER_SEC;
 458                ++sec;
 459        }
 460        while (nsec < 0) {
 461                asm("" : "+rm"(nsec));
 462                nsec += NSEC_PER_SEC;
 463                --sec;
 464        }
 465        ts->tv_sec = sec;
 466        ts->tv_nsec = nsec;
 467}
 468EXPORT_SYMBOL(set_normalized_timespec64);
 469
 470/**
 471 * ns_to_timespec64 - Convert nanoseconds to timespec64
 472 * @nsec:       the nanoseconds value to be converted
 473 *
 474 * Returns the timespec64 representation of the nsec parameter.
 475 */
 476struct timespec64 ns_to_timespec64(const s64 nsec)
 477{
 478        struct timespec64 ts;
 479        s32 rem;
 480
 481        if (!nsec)
 482                return (struct timespec64) {0, 0};
 483
 484        ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
 485        if (unlikely(rem < 0)) {
 486                ts.tv_sec--;
 487                rem += NSEC_PER_SEC;
 488        }
 489        ts.tv_nsec = rem;
 490
 491        return ts;
 492}
 493EXPORT_SYMBOL(ns_to_timespec64);
 494#endif
 495/**
 496 * msecs_to_jiffies: - convert milliseconds to jiffies
 497 * @m:  time in milliseconds
 498 *
 499 * conversion is done as follows:
 500 *
 501 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 502 *
 503 * - 'too large' values [that would result in larger than
 504 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 505 *
 506 * - all other values are converted to jiffies by either multiplying
 507 *   the input value by a factor or dividing it with a factor and
 508 *   handling any 32-bit overflows.
 509 *   for the details see __msecs_to_jiffies()
 510 *
 511 * msecs_to_jiffies() checks for the passed in value being a constant
 512 * via __builtin_constant_p() allowing gcc to eliminate most of the
 513 * code, __msecs_to_jiffies() is called if the value passed does not
 514 * allow constant folding and the actual conversion must be done at
 515 * runtime.
 516 * the _msecs_to_jiffies helpers are the HZ dependent conversion
 517 * routines found in include/linux/jiffies.h
 518 */
 519unsigned long __msecs_to_jiffies(const unsigned int m)
 520{
 521        /*
 522         * Negative value, means infinite timeout:
 523         */
 524        if ((int)m < 0)
 525                return MAX_JIFFY_OFFSET;
 526        return _msecs_to_jiffies(m);
 527}
 528EXPORT_SYMBOL(__msecs_to_jiffies);
 529
 530unsigned long __usecs_to_jiffies(const unsigned int u)
 531{
 532        if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 533                return MAX_JIFFY_OFFSET;
 534        return _usecs_to_jiffies(u);
 535}
 536EXPORT_SYMBOL(__usecs_to_jiffies);
 537
 538/*
 539 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 540 * that a remainder subtract here would not do the right thing as the
 541 * resolution values don't fall on second boundries.  I.e. the line:
 542 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 543 * Note that due to the small error in the multiplier here, this
 544 * rounding is incorrect for sufficiently large values of tv_nsec, but
 545 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 546 * OK.
 547 *
 548 * Rather, we just shift the bits off the right.
 549 *
 550 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 551 * value to a scaled second value.
 552 */
 553static unsigned long
 554__timespec64_to_jiffies(u64 sec, long nsec)
 555{
 556        nsec = nsec + TICK_NSEC - 1;
 557
 558        if (sec >= MAX_SEC_IN_JIFFIES){
 559                sec = MAX_SEC_IN_JIFFIES;
 560                nsec = 0;
 561        }
 562        return ((sec * SEC_CONVERSION) +
 563                (((u64)nsec * NSEC_CONVERSION) >>
 564                 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 565
 566}
 567
 568static unsigned long
 569__timespec_to_jiffies(unsigned long sec, long nsec)
 570{
 571        return __timespec64_to_jiffies((u64)sec, nsec);
 572}
 573
 574unsigned long
 575timespec64_to_jiffies(const struct timespec64 *value)
 576{
 577        return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
 578}
 579EXPORT_SYMBOL(timespec64_to_jiffies);
 580
 581void
 582jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
 583{
 584        /*
 585         * Convert jiffies to nanoseconds and separate with
 586         * one divide.
 587         */
 588        u32 rem;
 589        value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 590                                    NSEC_PER_SEC, &rem);
 591        value->tv_nsec = rem;
 592}
 593EXPORT_SYMBOL(jiffies_to_timespec64);
 594
 595/*
 596 * We could use a similar algorithm to timespec_to_jiffies (with a
 597 * different multiplier for usec instead of nsec). But this has a
 598 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
 599 * usec value, since it's not necessarily integral.
 600 *
 601 * We could instead round in the intermediate scaled representation
 602 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
 603 * perilous: the scaling introduces a small positive error, which
 604 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
 605 * units to the intermediate before shifting) leads to accidental
 606 * overflow and overestimates.
 607 *
 608 * At the cost of one additional multiplication by a constant, just
 609 * use the timespec implementation.
 610 */
 611unsigned long
 612timeval_to_jiffies(const struct timeval *value)
 613{
 614        return __timespec_to_jiffies(value->tv_sec,
 615                                     value->tv_usec * NSEC_PER_USEC);
 616}
 617EXPORT_SYMBOL(timeval_to_jiffies);
 618
 619void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
 620{
 621        /*
 622         * Convert jiffies to nanoseconds and separate with
 623         * one divide.
 624         */
 625        u32 rem;
 626
 627        value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 628                                    NSEC_PER_SEC, &rem);
 629        value->tv_usec = rem / NSEC_PER_USEC;
 630}
 631EXPORT_SYMBOL(jiffies_to_timeval);
 632
 633/*
 634 * Convert jiffies/jiffies_64 to clock_t and back.
 635 */
 636clock_t jiffies_to_clock_t(unsigned long x)
 637{
 638#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 639# if HZ < USER_HZ
 640        return x * (USER_HZ / HZ);
 641# else
 642        return x / (HZ / USER_HZ);
 643# endif
 644#else
 645        return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
 646#endif
 647}
 648EXPORT_SYMBOL(jiffies_to_clock_t);
 649
 650unsigned long clock_t_to_jiffies(unsigned long x)
 651{
 652#if (HZ % USER_HZ)==0
 653        if (x >= ~0UL / (HZ / USER_HZ))
 654                return ~0UL;
 655        return x * (HZ / USER_HZ);
 656#else
 657        /* Don't worry about loss of precision here .. */
 658        if (x >= ~0UL / HZ * USER_HZ)
 659                return ~0UL;
 660
 661        /* .. but do try to contain it here */
 662        return div_u64((u64)x * HZ, USER_HZ);
 663#endif
 664}
 665EXPORT_SYMBOL(clock_t_to_jiffies);
 666
 667u64 jiffies_64_to_clock_t(u64 x)
 668{
 669#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 670# if HZ < USER_HZ
 671        x = div_u64(x * USER_HZ, HZ);
 672# elif HZ > USER_HZ
 673        x = div_u64(x, HZ / USER_HZ);
 674# else
 675        /* Nothing to do */
 676# endif
 677#else
 678        /*
 679         * There are better ways that don't overflow early,
 680         * but even this doesn't overflow in hundreds of years
 681         * in 64 bits, so..
 682         */
 683        x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
 684#endif
 685        return x;
 686}
 687EXPORT_SYMBOL(jiffies_64_to_clock_t);
 688
 689u64 nsec_to_clock_t(u64 x)
 690{
 691#if (NSEC_PER_SEC % USER_HZ) == 0
 692        return div_u64(x, NSEC_PER_SEC / USER_HZ);
 693#elif (USER_HZ % 512) == 0
 694        return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
 695#else
 696        /*
 697         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
 698         * overflow after 64.99 years.
 699         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
 700         */
 701        return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
 702#endif
 703}
 704
 705/**
 706 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
 707 *
 708 * @n:  nsecs in u64
 709 *
 710 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 711 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 712 * for scheduler, not for use in device drivers to calculate timeout value.
 713 *
 714 * note:
 715 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 716 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 717 */
 718u64 nsecs_to_jiffies64(u64 n)
 719{
 720#if (NSEC_PER_SEC % HZ) == 0
 721        /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
 722        return div_u64(n, NSEC_PER_SEC / HZ);
 723#elif (HZ % 512) == 0
 724        /* overflow after 292 years if HZ = 1024 */
 725        return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
 726#else
 727        /*
 728         * Generic case - optimized for cases where HZ is a multiple of 3.
 729         * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
 730         */
 731        return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
 732#endif
 733}
 734EXPORT_SYMBOL(nsecs_to_jiffies64);
 735
 736/**
 737 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 738 *
 739 * @n:  nsecs in u64
 740 *
 741 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 742 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 743 * for scheduler, not for use in device drivers to calculate timeout value.
 744 *
 745 * note:
 746 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 747 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 748 */
 749unsigned long nsecs_to_jiffies(u64 n)
 750{
 751        return (unsigned long)nsecs_to_jiffies64(n);
 752}
 753EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
 754
 755/*
 756 * Add two timespec values and do a safety check for overflow.
 757 * It's assumed that both values are valid (>= 0)
 758 */
 759struct timespec timespec_add_safe(const struct timespec lhs,
 760                                  const struct timespec rhs)
 761{
 762        struct timespec res;
 763
 764        set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
 765                                lhs.tv_nsec + rhs.tv_nsec);
 766
 767        if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
 768                res.tv_sec = TIME_T_MAX;
 769
 770        return res;
 771}
 772
 773/*
 774 * Add two timespec64 values and do a safety check for overflow.
 775 * It's assumed that both values are valid (>= 0).
 776 * And, each timespec64 is in normalized form.
 777 */
 778struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
 779                                const struct timespec64 rhs)
 780{
 781        struct timespec64 res;
 782
 783        set_normalized_timespec64(&res, lhs.tv_sec + rhs.tv_sec,
 784                        lhs.tv_nsec + rhs.tv_nsec);
 785
 786        if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
 787                res.tv_sec = TIME64_MAX;
 788                res.tv_nsec = 0;
 789        }
 790
 791        return res;
 792}
 793