linux/lib/radix-tree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 * Copyright (C) 2016 Intel, Matthew Wilcox
   8 * Copyright (C) 2016 Intel, Ross Zwisler
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/errno.h>
  26#include <linux/init.h>
  27#include <linux/kernel.h>
  28#include <linux/export.h>
  29#include <linux/radix-tree.h>
  30#include <linux/percpu.h>
  31#include <linux/slab.h>
  32#include <linux/kmemleak.h>
  33#include <linux/notifier.h>
  34#include <linux/cpu.h>
  35#include <linux/string.h>
  36#include <linux/bitops.h>
  37#include <linux/rcupdate.h>
  38#include <linux/preempt.h>              /* in_interrupt() */
  39
  40
  41/*
  42 * Radix tree node cache.
  43 */
  44static struct kmem_cache *radix_tree_node_cachep;
  45
  46/*
  47 * The radix tree is variable-height, so an insert operation not only has
  48 * to build the branch to its corresponding item, it also has to build the
  49 * branch to existing items if the size has to be increased (by
  50 * radix_tree_extend).
  51 *
  52 * The worst case is a zero height tree with just a single item at index 0,
  53 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  54 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  55 * Hence:
  56 */
  57#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  58
  59/*
  60 * Per-cpu pool of preloaded nodes
  61 */
  62struct radix_tree_preload {
  63        unsigned nr;
  64        /* nodes->private_data points to next preallocated node */
  65        struct radix_tree_node *nodes;
  66};
  67static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  68
  69static inline void *node_to_entry(void *ptr)
  70{
  71        return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  72}
  73
  74#define RADIX_TREE_RETRY        node_to_entry(NULL)
  75
  76#ifdef CONFIG_RADIX_TREE_MULTIORDER
  77/* Sibling slots point directly to another slot in the same node */
  78static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
  79{
  80        void **ptr = node;
  81        return (parent->slots <= ptr) &&
  82                        (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
  83}
  84#else
  85static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
  86{
  87        return false;
  88}
  89#endif
  90
  91static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
  92                                                 void **slot)
  93{
  94        return slot - parent->slots;
  95}
  96
  97static unsigned int radix_tree_descend(struct radix_tree_node *parent,
  98                        struct radix_tree_node **nodep, unsigned long index)
  99{
 100        unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
 101        void **entry = rcu_dereference_raw(parent->slots[offset]);
 102
 103#ifdef CONFIG_RADIX_TREE_MULTIORDER
 104        if (radix_tree_is_internal_node(entry)) {
 105                unsigned long siboff = get_slot_offset(parent, entry);
 106                if (siboff < RADIX_TREE_MAP_SIZE) {
 107                        offset = siboff;
 108                        entry = rcu_dereference_raw(parent->slots[offset]);
 109                }
 110        }
 111#endif
 112
 113        *nodep = (void *)entry;
 114        return offset;
 115}
 116
 117static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
 118{
 119        return root->gfp_mask & __GFP_BITS_MASK;
 120}
 121
 122static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 123                int offset)
 124{
 125        __set_bit(offset, node->tags[tag]);
 126}
 127
 128static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 129                int offset)
 130{
 131        __clear_bit(offset, node->tags[tag]);
 132}
 133
 134static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
 135                int offset)
 136{
 137        return test_bit(offset, node->tags[tag]);
 138}
 139
 140static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 141{
 142        root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 143}
 144
 145static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 146{
 147        root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 148}
 149
 150static inline void root_tag_clear_all(struct radix_tree_root *root)
 151{
 152        root->gfp_mask &= __GFP_BITS_MASK;
 153}
 154
 155static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 156{
 157        return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 158}
 159
 160static inline unsigned root_tags_get(struct radix_tree_root *root)
 161{
 162        return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
 163}
 164
 165/*
 166 * Returns 1 if any slot in the node has this tag set.
 167 * Otherwise returns 0.
 168 */
 169static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 170{
 171        unsigned idx;
 172        for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 173                if (node->tags[tag][idx])
 174                        return 1;
 175        }
 176        return 0;
 177}
 178
 179/**
 180 * radix_tree_find_next_bit - find the next set bit in a memory region
 181 *
 182 * @addr: The address to base the search on
 183 * @size: The bitmap size in bits
 184 * @offset: The bitnumber to start searching at
 185 *
 186 * Unrollable variant of find_next_bit() for constant size arrays.
 187 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 188 * Returns next bit offset, or size if nothing found.
 189 */
 190static __always_inline unsigned long
 191radix_tree_find_next_bit(const unsigned long *addr,
 192                         unsigned long size, unsigned long offset)
 193{
 194        if (!__builtin_constant_p(size))
 195                return find_next_bit(addr, size, offset);
 196
 197        if (offset < size) {
 198                unsigned long tmp;
 199
 200                addr += offset / BITS_PER_LONG;
 201                tmp = *addr >> (offset % BITS_PER_LONG);
 202                if (tmp)
 203                        return __ffs(tmp) + offset;
 204                offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 205                while (offset < size) {
 206                        tmp = *++addr;
 207                        if (tmp)
 208                                return __ffs(tmp) + offset;
 209                        offset += BITS_PER_LONG;
 210                }
 211        }
 212        return size;
 213}
 214
 215#ifndef __KERNEL__
 216static void dump_node(struct radix_tree_node *node, unsigned long index)
 217{
 218        unsigned long i;
 219
 220        pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n",
 221                node, node->offset,
 222                node->tags[0][0], node->tags[1][0], node->tags[2][0],
 223                node->shift, node->count, node->parent);
 224
 225        for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
 226                unsigned long first = index | (i << node->shift);
 227                unsigned long last = first | ((1UL << node->shift) - 1);
 228                void *entry = node->slots[i];
 229                if (!entry)
 230                        continue;
 231                if (is_sibling_entry(node, entry)) {
 232                        pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
 233                                        entry, i,
 234                                        *(void **)entry_to_node(entry),
 235                                        first, last);
 236                } else if (!radix_tree_is_internal_node(entry)) {
 237                        pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
 238                                        entry, i, first, last);
 239                } else {
 240                        dump_node(entry_to_node(entry), first);
 241                }
 242        }
 243}
 244
 245/* For debug */
 246static void radix_tree_dump(struct radix_tree_root *root)
 247{
 248        pr_debug("radix root: %p rnode %p tags %x\n",
 249                        root, root->rnode,
 250                        root->gfp_mask >> __GFP_BITS_SHIFT);
 251        if (!radix_tree_is_internal_node(root->rnode))
 252                return;
 253        dump_node(entry_to_node(root->rnode), 0);
 254}
 255#endif
 256
 257/*
 258 * This assumes that the caller has performed appropriate preallocation, and
 259 * that the caller has pinned this thread of control to the current CPU.
 260 */
 261static struct radix_tree_node *
 262radix_tree_node_alloc(struct radix_tree_root *root)
 263{
 264        struct radix_tree_node *ret = NULL;
 265        gfp_t gfp_mask = root_gfp_mask(root);
 266
 267        /*
 268         * Preload code isn't irq safe and it doesn't make sense to use
 269         * preloading during an interrupt anyway as all the allocations have
 270         * to be atomic. So just do normal allocation when in interrupt.
 271         */
 272        if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 273                struct radix_tree_preload *rtp;
 274
 275                /*
 276                 * Even if the caller has preloaded, try to allocate from the
 277                 * cache first for the new node to get accounted.
 278                 */
 279                ret = kmem_cache_alloc(radix_tree_node_cachep,
 280                                       gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
 281                if (ret)
 282                        goto out;
 283
 284                /*
 285                 * Provided the caller has preloaded here, we will always
 286                 * succeed in getting a node here (and never reach
 287                 * kmem_cache_alloc)
 288                 */
 289                rtp = this_cpu_ptr(&radix_tree_preloads);
 290                if (rtp->nr) {
 291                        ret = rtp->nodes;
 292                        rtp->nodes = ret->private_data;
 293                        ret->private_data = NULL;
 294                        rtp->nr--;
 295                }
 296                /*
 297                 * Update the allocation stack trace as this is more useful
 298                 * for debugging.
 299                 */
 300                kmemleak_update_trace(ret);
 301                goto out;
 302        }
 303        ret = kmem_cache_alloc(radix_tree_node_cachep,
 304                               gfp_mask | __GFP_ACCOUNT);
 305out:
 306        BUG_ON(radix_tree_is_internal_node(ret));
 307        return ret;
 308}
 309
 310static void radix_tree_node_rcu_free(struct rcu_head *head)
 311{
 312        struct radix_tree_node *node =
 313                        container_of(head, struct radix_tree_node, rcu_head);
 314        int i;
 315
 316        /*
 317         * must only free zeroed nodes into the slab. radix_tree_shrink
 318         * can leave us with a non-NULL entry in the first slot, so clear
 319         * that here to make sure.
 320         */
 321        for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
 322                tag_clear(node, i, 0);
 323
 324        node->slots[0] = NULL;
 325        node->count = 0;
 326
 327        kmem_cache_free(radix_tree_node_cachep, node);
 328}
 329
 330static inline void
 331radix_tree_node_free(struct radix_tree_node *node)
 332{
 333        call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 334}
 335
 336/*
 337 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 338 * ensure that the addition of a single element in the tree cannot fail.  On
 339 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 340 * with preemption not disabled.
 341 *
 342 * To make use of this facility, the radix tree must be initialised without
 343 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 344 */
 345static int __radix_tree_preload(gfp_t gfp_mask)
 346{
 347        struct radix_tree_preload *rtp;
 348        struct radix_tree_node *node;
 349        int ret = -ENOMEM;
 350
 351        preempt_disable();
 352        rtp = this_cpu_ptr(&radix_tree_preloads);
 353        while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
 354                preempt_enable();
 355                node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 356                if (node == NULL)
 357                        goto out;
 358                preempt_disable();
 359                rtp = this_cpu_ptr(&radix_tree_preloads);
 360                if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
 361                        node->private_data = rtp->nodes;
 362                        rtp->nodes = node;
 363                        rtp->nr++;
 364                } else {
 365                        kmem_cache_free(radix_tree_node_cachep, node);
 366                }
 367        }
 368        ret = 0;
 369out:
 370        return ret;
 371}
 372
 373/*
 374 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 375 * ensure that the addition of a single element in the tree cannot fail.  On
 376 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 377 * with preemption not disabled.
 378 *
 379 * To make use of this facility, the radix tree must be initialised without
 380 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 381 */
 382int radix_tree_preload(gfp_t gfp_mask)
 383{
 384        /* Warn on non-sensical use... */
 385        WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 386        return __radix_tree_preload(gfp_mask);
 387}
 388EXPORT_SYMBOL(radix_tree_preload);
 389
 390/*
 391 * The same as above function, except we don't guarantee preloading happens.
 392 * We do it, if we decide it helps. On success, return zero with preemption
 393 * disabled. On error, return -ENOMEM with preemption not disabled.
 394 */
 395int radix_tree_maybe_preload(gfp_t gfp_mask)
 396{
 397        if (gfpflags_allow_blocking(gfp_mask))
 398                return __radix_tree_preload(gfp_mask);
 399        /* Preloading doesn't help anything with this gfp mask, skip it */
 400        preempt_disable();
 401        return 0;
 402}
 403EXPORT_SYMBOL(radix_tree_maybe_preload);
 404
 405/*
 406 * The maximum index which can be stored in a radix tree
 407 */
 408static inline unsigned long shift_maxindex(unsigned int shift)
 409{
 410        return (RADIX_TREE_MAP_SIZE << shift) - 1;
 411}
 412
 413static inline unsigned long node_maxindex(struct radix_tree_node *node)
 414{
 415        return shift_maxindex(node->shift);
 416}
 417
 418static unsigned radix_tree_load_root(struct radix_tree_root *root,
 419                struct radix_tree_node **nodep, unsigned long *maxindex)
 420{
 421        struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 422
 423        *nodep = node;
 424
 425        if (likely(radix_tree_is_internal_node(node))) {
 426                node = entry_to_node(node);
 427                *maxindex = node_maxindex(node);
 428                return node->shift + RADIX_TREE_MAP_SHIFT;
 429        }
 430
 431        *maxindex = 0;
 432        return 0;
 433}
 434
 435/*
 436 *      Extend a radix tree so it can store key @index.
 437 */
 438static int radix_tree_extend(struct radix_tree_root *root,
 439                                unsigned long index, unsigned int shift)
 440{
 441        struct radix_tree_node *slot;
 442        unsigned int maxshift;
 443        int tag;
 444
 445        /* Figure out what the shift should be.  */
 446        maxshift = shift;
 447        while (index > shift_maxindex(maxshift))
 448                maxshift += RADIX_TREE_MAP_SHIFT;
 449
 450        slot = root->rnode;
 451        if (!slot)
 452                goto out;
 453
 454        do {
 455                struct radix_tree_node *node = radix_tree_node_alloc(root);
 456
 457                if (!node)
 458                        return -ENOMEM;
 459
 460                /* Propagate the aggregated tag info into the new root */
 461                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 462                        if (root_tag_get(root, tag))
 463                                tag_set(node, tag, 0);
 464                }
 465
 466                BUG_ON(shift > BITS_PER_LONG);
 467                node->shift = shift;
 468                node->offset = 0;
 469                node->count = 1;
 470                node->parent = NULL;
 471                if (radix_tree_is_internal_node(slot))
 472                        entry_to_node(slot)->parent = node;
 473                node->slots[0] = slot;
 474                slot = node_to_entry(node);
 475                rcu_assign_pointer(root->rnode, slot);
 476                shift += RADIX_TREE_MAP_SHIFT;
 477        } while (shift <= maxshift);
 478out:
 479        return maxshift + RADIX_TREE_MAP_SHIFT;
 480}
 481
 482/**
 483 *      __radix_tree_create     -       create a slot in a radix tree
 484 *      @root:          radix tree root
 485 *      @index:         index key
 486 *      @order:         index occupies 2^order aligned slots
 487 *      @nodep:         returns node
 488 *      @slotp:         returns slot
 489 *
 490 *      Create, if necessary, and return the node and slot for an item
 491 *      at position @index in the radix tree @root.
 492 *
 493 *      Until there is more than one item in the tree, no nodes are
 494 *      allocated and @root->rnode is used as a direct slot instead of
 495 *      pointing to a node, in which case *@nodep will be NULL.
 496 *
 497 *      Returns -ENOMEM, or 0 for success.
 498 */
 499int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 500                        unsigned order, struct radix_tree_node **nodep,
 501                        void ***slotp)
 502{
 503        struct radix_tree_node *node = NULL, *child;
 504        void **slot = (void **)&root->rnode;
 505        unsigned long maxindex;
 506        unsigned int shift, offset = 0;
 507        unsigned long max = index | ((1UL << order) - 1);
 508
 509        shift = radix_tree_load_root(root, &child, &maxindex);
 510
 511        /* Make sure the tree is high enough.  */
 512        if (max > maxindex) {
 513                int error = radix_tree_extend(root, max, shift);
 514                if (error < 0)
 515                        return error;
 516                shift = error;
 517                child = root->rnode;
 518                if (order == shift)
 519                        shift += RADIX_TREE_MAP_SHIFT;
 520        }
 521
 522        while (shift > order) {
 523                shift -= RADIX_TREE_MAP_SHIFT;
 524                if (child == NULL) {
 525                        /* Have to add a child node.  */
 526                        child = radix_tree_node_alloc(root);
 527                        if (!child)
 528                                return -ENOMEM;
 529                        child->shift = shift;
 530                        child->offset = offset;
 531                        child->parent = node;
 532                        rcu_assign_pointer(*slot, node_to_entry(child));
 533                        if (node)
 534                                node->count++;
 535                } else if (!radix_tree_is_internal_node(child))
 536                        break;
 537
 538                /* Go a level down */
 539                node = entry_to_node(child);
 540                offset = radix_tree_descend(node, &child, index);
 541                slot = &node->slots[offset];
 542        }
 543
 544#ifdef CONFIG_RADIX_TREE_MULTIORDER
 545        /* Insert pointers to the canonical entry */
 546        if (order > shift) {
 547                unsigned i, n = 1 << (order - shift);
 548                offset = offset & ~(n - 1);
 549                slot = &node->slots[offset];
 550                child = node_to_entry(slot);
 551                for (i = 0; i < n; i++) {
 552                        if (slot[i])
 553                                return -EEXIST;
 554                }
 555
 556                for (i = 1; i < n; i++) {
 557                        rcu_assign_pointer(slot[i], child);
 558                        node->count++;
 559                }
 560        }
 561#endif
 562
 563        if (nodep)
 564                *nodep = node;
 565        if (slotp)
 566                *slotp = slot;
 567        return 0;
 568}
 569
 570/**
 571 *      __radix_tree_insert    -    insert into a radix tree
 572 *      @root:          radix tree root
 573 *      @index:         index key
 574 *      @order:         key covers the 2^order indices around index
 575 *      @item:          item to insert
 576 *
 577 *      Insert an item into the radix tree at position @index.
 578 */
 579int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 580                        unsigned order, void *item)
 581{
 582        struct radix_tree_node *node;
 583        void **slot;
 584        int error;
 585
 586        BUG_ON(radix_tree_is_internal_node(item));
 587
 588        error = __radix_tree_create(root, index, order, &node, &slot);
 589        if (error)
 590                return error;
 591        if (*slot != NULL)
 592                return -EEXIST;
 593        rcu_assign_pointer(*slot, item);
 594
 595        if (node) {
 596                unsigned offset = get_slot_offset(node, slot);
 597                node->count++;
 598                BUG_ON(tag_get(node, 0, offset));
 599                BUG_ON(tag_get(node, 1, offset));
 600                BUG_ON(tag_get(node, 2, offset));
 601        } else {
 602                BUG_ON(root_tags_get(root));
 603        }
 604
 605        return 0;
 606}
 607EXPORT_SYMBOL(__radix_tree_insert);
 608
 609/**
 610 *      __radix_tree_lookup     -       lookup an item in a radix tree
 611 *      @root:          radix tree root
 612 *      @index:         index key
 613 *      @nodep:         returns node
 614 *      @slotp:         returns slot
 615 *
 616 *      Lookup and return the item at position @index in the radix
 617 *      tree @root.
 618 *
 619 *      Until there is more than one item in the tree, no nodes are
 620 *      allocated and @root->rnode is used as a direct slot instead of
 621 *      pointing to a node, in which case *@nodep will be NULL.
 622 */
 623void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 624                          struct radix_tree_node **nodep, void ***slotp)
 625{
 626        struct radix_tree_node *node, *parent;
 627        unsigned long maxindex;
 628        void **slot;
 629
 630 restart:
 631        parent = NULL;
 632        slot = (void **)&root->rnode;
 633        radix_tree_load_root(root, &node, &maxindex);
 634        if (index > maxindex)
 635                return NULL;
 636
 637        while (radix_tree_is_internal_node(node)) {
 638                unsigned offset;
 639
 640                if (node == RADIX_TREE_RETRY)
 641                        goto restart;
 642                parent = entry_to_node(node);
 643                offset = radix_tree_descend(parent, &node, index);
 644                slot = parent->slots + offset;
 645        }
 646
 647        if (nodep)
 648                *nodep = parent;
 649        if (slotp)
 650                *slotp = slot;
 651        return node;
 652}
 653
 654/**
 655 *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
 656 *      @root:          radix tree root
 657 *      @index:         index key
 658 *
 659 *      Returns:  the slot corresponding to the position @index in the
 660 *      radix tree @root. This is useful for update-if-exists operations.
 661 *
 662 *      This function can be called under rcu_read_lock iff the slot is not
 663 *      modified by radix_tree_replace_slot, otherwise it must be called
 664 *      exclusive from other writers. Any dereference of the slot must be done
 665 *      using radix_tree_deref_slot.
 666 */
 667void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 668{
 669        void **slot;
 670
 671        if (!__radix_tree_lookup(root, index, NULL, &slot))
 672                return NULL;
 673        return slot;
 674}
 675EXPORT_SYMBOL(radix_tree_lookup_slot);
 676
 677/**
 678 *      radix_tree_lookup    -    perform lookup operation on a radix tree
 679 *      @root:          radix tree root
 680 *      @index:         index key
 681 *
 682 *      Lookup the item at the position @index in the radix tree @root.
 683 *
 684 *      This function can be called under rcu_read_lock, however the caller
 685 *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 686 *      them safely). No RCU barriers are required to access or modify the
 687 *      returned item, however.
 688 */
 689void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 690{
 691        return __radix_tree_lookup(root, index, NULL, NULL);
 692}
 693EXPORT_SYMBOL(radix_tree_lookup);
 694
 695/**
 696 *      radix_tree_tag_set - set a tag on a radix tree node
 697 *      @root:          radix tree root
 698 *      @index:         index key
 699 *      @tag:           tag index
 700 *
 701 *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 702 *      corresponding to @index in the radix tree.  From
 703 *      the root all the way down to the leaf node.
 704 *
 705 *      Returns the address of the tagged item.  Setting a tag on a not-present
 706 *      item is a bug.
 707 */
 708void *radix_tree_tag_set(struct radix_tree_root *root,
 709                        unsigned long index, unsigned int tag)
 710{
 711        struct radix_tree_node *node, *parent;
 712        unsigned long maxindex;
 713
 714        radix_tree_load_root(root, &node, &maxindex);
 715        BUG_ON(index > maxindex);
 716
 717        while (radix_tree_is_internal_node(node)) {
 718                unsigned offset;
 719
 720                parent = entry_to_node(node);
 721                offset = radix_tree_descend(parent, &node, index);
 722                BUG_ON(!node);
 723
 724                if (!tag_get(parent, tag, offset))
 725                        tag_set(parent, tag, offset);
 726        }
 727
 728        /* set the root's tag bit */
 729        if (!root_tag_get(root, tag))
 730                root_tag_set(root, tag);
 731
 732        return node;
 733}
 734EXPORT_SYMBOL(radix_tree_tag_set);
 735
 736static void node_tag_clear(struct radix_tree_root *root,
 737                                struct radix_tree_node *node,
 738                                unsigned int tag, unsigned int offset)
 739{
 740        while (node) {
 741                if (!tag_get(node, tag, offset))
 742                        return;
 743                tag_clear(node, tag, offset);
 744                if (any_tag_set(node, tag))
 745                        return;
 746
 747                offset = node->offset;
 748                node = node->parent;
 749        }
 750
 751        /* clear the root's tag bit */
 752        if (root_tag_get(root, tag))
 753                root_tag_clear(root, tag);
 754}
 755
 756/**
 757 *      radix_tree_tag_clear - clear a tag on a radix tree node
 758 *      @root:          radix tree root
 759 *      @index:         index key
 760 *      @tag:           tag index
 761 *
 762 *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 763 *      corresponding to @index in the radix tree.  If this causes
 764 *      the leaf node to have no tags set then clear the tag in the
 765 *      next-to-leaf node, etc.
 766 *
 767 *      Returns the address of the tagged item on success, else NULL.  ie:
 768 *      has the same return value and semantics as radix_tree_lookup().
 769 */
 770void *radix_tree_tag_clear(struct radix_tree_root *root,
 771                        unsigned long index, unsigned int tag)
 772{
 773        struct radix_tree_node *node, *parent;
 774        unsigned long maxindex;
 775        int uninitialized_var(offset);
 776
 777        radix_tree_load_root(root, &node, &maxindex);
 778        if (index > maxindex)
 779                return NULL;
 780
 781        parent = NULL;
 782
 783        while (radix_tree_is_internal_node(node)) {
 784                parent = entry_to_node(node);
 785                offset = radix_tree_descend(parent, &node, index);
 786        }
 787
 788        if (node)
 789                node_tag_clear(root, parent, tag, offset);
 790
 791        return node;
 792}
 793EXPORT_SYMBOL(radix_tree_tag_clear);
 794
 795/**
 796 * radix_tree_tag_get - get a tag on a radix tree node
 797 * @root:               radix tree root
 798 * @index:              index key
 799 * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
 800 *
 801 * Return values:
 802 *
 803 *  0: tag not present or not set
 804 *  1: tag set
 805 *
 806 * Note that the return value of this function may not be relied on, even if
 807 * the RCU lock is held, unless tag modification and node deletion are excluded
 808 * from concurrency.
 809 */
 810int radix_tree_tag_get(struct radix_tree_root *root,
 811                        unsigned long index, unsigned int tag)
 812{
 813        struct radix_tree_node *node, *parent;
 814        unsigned long maxindex;
 815
 816        if (!root_tag_get(root, tag))
 817                return 0;
 818
 819        radix_tree_load_root(root, &node, &maxindex);
 820        if (index > maxindex)
 821                return 0;
 822        if (node == NULL)
 823                return 0;
 824
 825        while (radix_tree_is_internal_node(node)) {
 826                unsigned offset;
 827
 828                parent = entry_to_node(node);
 829                offset = radix_tree_descend(parent, &node, index);
 830
 831                if (!node)
 832                        return 0;
 833                if (!tag_get(parent, tag, offset))
 834                        return 0;
 835                if (node == RADIX_TREE_RETRY)
 836                        break;
 837        }
 838
 839        return 1;
 840}
 841EXPORT_SYMBOL(radix_tree_tag_get);
 842
 843static inline void __set_iter_shift(struct radix_tree_iter *iter,
 844                                        unsigned int shift)
 845{
 846#ifdef CONFIG_RADIX_TREE_MULTIORDER
 847        iter->shift = shift;
 848#endif
 849}
 850
 851/**
 852 * radix_tree_next_chunk - find next chunk of slots for iteration
 853 *
 854 * @root:       radix tree root
 855 * @iter:       iterator state
 856 * @flags:      RADIX_TREE_ITER_* flags and tag index
 857 * Returns:     pointer to chunk first slot, or NULL if iteration is over
 858 */
 859void **radix_tree_next_chunk(struct radix_tree_root *root,
 860                             struct radix_tree_iter *iter, unsigned flags)
 861{
 862        unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
 863        struct radix_tree_node *node, *child;
 864        unsigned long index, offset, maxindex;
 865
 866        if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
 867                return NULL;
 868
 869        /*
 870         * Catch next_index overflow after ~0UL. iter->index never overflows
 871         * during iterating; it can be zero only at the beginning.
 872         * And we cannot overflow iter->next_index in a single step,
 873         * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
 874         *
 875         * This condition also used by radix_tree_next_slot() to stop
 876         * contiguous iterating, and forbid swithing to the next chunk.
 877         */
 878        index = iter->next_index;
 879        if (!index && iter->index)
 880                return NULL;
 881
 882 restart:
 883        radix_tree_load_root(root, &child, &maxindex);
 884        if (index > maxindex)
 885                return NULL;
 886        if (!child)
 887                return NULL;
 888
 889        if (!radix_tree_is_internal_node(child)) {
 890                /* Single-slot tree */
 891                iter->index = index;
 892                iter->next_index = maxindex + 1;
 893                iter->tags = 1;
 894                __set_iter_shift(iter, 0);
 895                return (void **)&root->rnode;
 896        }
 897
 898        do {
 899                node = entry_to_node(child);
 900                offset = radix_tree_descend(node, &child, index);
 901
 902                if ((flags & RADIX_TREE_ITER_TAGGED) ?
 903                                !tag_get(node, tag, offset) : !child) {
 904                        /* Hole detected */
 905                        if (flags & RADIX_TREE_ITER_CONTIG)
 906                                return NULL;
 907
 908                        if (flags & RADIX_TREE_ITER_TAGGED)
 909                                offset = radix_tree_find_next_bit(
 910                                                node->tags[tag],
 911                                                RADIX_TREE_MAP_SIZE,
 912                                                offset + 1);
 913                        else
 914                                while (++offset < RADIX_TREE_MAP_SIZE) {
 915                                        void *slot = node->slots[offset];
 916                                        if (is_sibling_entry(node, slot))
 917                                                continue;
 918                                        if (slot)
 919                                                break;
 920                                }
 921                        index &= ~node_maxindex(node);
 922                        index += offset << node->shift;
 923                        /* Overflow after ~0UL */
 924                        if (!index)
 925                                return NULL;
 926                        if (offset == RADIX_TREE_MAP_SIZE)
 927                                goto restart;
 928                        child = rcu_dereference_raw(node->slots[offset]);
 929                }
 930
 931                if ((child == NULL) || (child == RADIX_TREE_RETRY))
 932                        goto restart;
 933        } while (radix_tree_is_internal_node(child));
 934
 935        /* Update the iterator state */
 936        iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
 937        iter->next_index = (index | node_maxindex(node)) + 1;
 938        __set_iter_shift(iter, node->shift);
 939
 940        /* Construct iter->tags bit-mask from node->tags[tag] array */
 941        if (flags & RADIX_TREE_ITER_TAGGED) {
 942                unsigned tag_long, tag_bit;
 943
 944                tag_long = offset / BITS_PER_LONG;
 945                tag_bit  = offset % BITS_PER_LONG;
 946                iter->tags = node->tags[tag][tag_long] >> tag_bit;
 947                /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
 948                if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
 949                        /* Pick tags from next element */
 950                        if (tag_bit)
 951                                iter->tags |= node->tags[tag][tag_long + 1] <<
 952                                                (BITS_PER_LONG - tag_bit);
 953                        /* Clip chunk size, here only BITS_PER_LONG tags */
 954                        iter->next_index = index + BITS_PER_LONG;
 955                }
 956        }
 957
 958        return node->slots + offset;
 959}
 960EXPORT_SYMBOL(radix_tree_next_chunk);
 961
 962/**
 963 * radix_tree_range_tag_if_tagged - for each item in given range set given
 964 *                                 tag if item has another tag set
 965 * @root:               radix tree root
 966 * @first_indexp:       pointer to a starting index of a range to scan
 967 * @last_index:         last index of a range to scan
 968 * @nr_to_tag:          maximum number items to tag
 969 * @iftag:              tag index to test
 970 * @settag:             tag index to set if tested tag is set
 971 *
 972 * This function scans range of radix tree from first_index to last_index
 973 * (inclusive).  For each item in the range if iftag is set, the function sets
 974 * also settag. The function stops either after tagging nr_to_tag items or
 975 * after reaching last_index.
 976 *
 977 * The tags must be set from the leaf level only and propagated back up the
 978 * path to the root. We must do this so that we resolve the full path before
 979 * setting any tags on intermediate nodes. If we set tags as we descend, then
 980 * we can get to the leaf node and find that the index that has the iftag
 981 * set is outside the range we are scanning. This reults in dangling tags and
 982 * can lead to problems with later tag operations (e.g. livelocks on lookups).
 983 *
 984 * The function returns the number of leaves where the tag was set and sets
 985 * *first_indexp to the first unscanned index.
 986 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
 987 * be prepared to handle that.
 988 */
 989unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
 990                unsigned long *first_indexp, unsigned long last_index,
 991                unsigned long nr_to_tag,
 992                unsigned int iftag, unsigned int settag)
 993{
 994        struct radix_tree_node *parent, *node, *child;
 995        unsigned long maxindex;
 996        unsigned long tagged = 0;
 997        unsigned long index = *first_indexp;
 998
 999        radix_tree_load_root(root, &child, &maxindex);
1000        last_index = min(last_index, maxindex);
1001        if (index > last_index)
1002                return 0;
1003        if (!nr_to_tag)
1004                return 0;
1005        if (!root_tag_get(root, iftag)) {
1006                *first_indexp = last_index + 1;
1007                return 0;
1008        }
1009        if (!radix_tree_is_internal_node(child)) {
1010                *first_indexp = last_index + 1;
1011                root_tag_set(root, settag);
1012                return 1;
1013        }
1014
1015        node = entry_to_node(child);
1016
1017        for (;;) {
1018                unsigned offset = radix_tree_descend(node, &child, index);
1019                if (!child)
1020                        goto next;
1021                if (!tag_get(node, iftag, offset))
1022                        goto next;
1023                /* Sibling slots never have tags set on them */
1024                if (radix_tree_is_internal_node(child)) {
1025                        node = entry_to_node(child);
1026                        continue;
1027                }
1028
1029                /* tag the leaf */
1030                tagged++;
1031                tag_set(node, settag, offset);
1032
1033                /* walk back up the path tagging interior nodes */
1034                parent = node;
1035                for (;;) {
1036                        offset = parent->offset;
1037                        parent = parent->parent;
1038                        if (!parent)
1039                                break;
1040                        /* stop if we find a node with the tag already set */
1041                        if (tag_get(parent, settag, offset))
1042                                break;
1043                        tag_set(parent, settag, offset);
1044                }
1045 next:
1046                /* Go to next entry in node */
1047                index = ((index >> node->shift) + 1) << node->shift;
1048                /* Overflow can happen when last_index is ~0UL... */
1049                if (index > last_index || !index)
1050                        break;
1051                offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1052                while (offset == 0) {
1053                        /*
1054                         * We've fully scanned this node. Go up. Because
1055                         * last_index is guaranteed to be in the tree, what
1056                         * we do below cannot wander astray.
1057                         */
1058                        node = node->parent;
1059                        offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1060                }
1061                if (is_sibling_entry(node, node->slots[offset]))
1062                        goto next;
1063                if (tagged >= nr_to_tag)
1064                        break;
1065        }
1066        /*
1067         * We need not to tag the root tag if there is no tag which is set with
1068         * settag within the range from *first_indexp to last_index.
1069         */
1070        if (tagged > 0)
1071                root_tag_set(root, settag);
1072        *first_indexp = index;
1073
1074        return tagged;
1075}
1076EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1077
1078/**
1079 *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
1080 *      @root:          radix tree root
1081 *      @results:       where the results of the lookup are placed
1082 *      @first_index:   start the lookup from this key
1083 *      @max_items:     place up to this many items at *results
1084 *
1085 *      Performs an index-ascending scan of the tree for present items.  Places
1086 *      them at *@results and returns the number of items which were placed at
1087 *      *@results.
1088 *
1089 *      The implementation is naive.
1090 *
1091 *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1092 *      rcu_read_lock. In this case, rather than the returned results being
1093 *      an atomic snapshot of the tree at a single point in time, the
1094 *      semantics of an RCU protected gang lookup are as though multiple
1095 *      radix_tree_lookups have been issued in individual locks, and results
1096 *      stored in 'results'.
1097 */
1098unsigned int
1099radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1100                        unsigned long first_index, unsigned int max_items)
1101{
1102        struct radix_tree_iter iter;
1103        void **slot;
1104        unsigned int ret = 0;
1105
1106        if (unlikely(!max_items))
1107                return 0;
1108
1109        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1110                results[ret] = rcu_dereference_raw(*slot);
1111                if (!results[ret])
1112                        continue;
1113                if (radix_tree_is_internal_node(results[ret])) {
1114                        slot = radix_tree_iter_retry(&iter);
1115                        continue;
1116                }
1117                if (++ret == max_items)
1118                        break;
1119        }
1120
1121        return ret;
1122}
1123EXPORT_SYMBOL(radix_tree_gang_lookup);
1124
1125/**
1126 *      radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1127 *      @root:          radix tree root
1128 *      @results:       where the results of the lookup are placed
1129 *      @indices:       where their indices should be placed (but usually NULL)
1130 *      @first_index:   start the lookup from this key
1131 *      @max_items:     place up to this many items at *results
1132 *
1133 *      Performs an index-ascending scan of the tree for present items.  Places
1134 *      their slots at *@results and returns the number of items which were
1135 *      placed at *@results.
1136 *
1137 *      The implementation is naive.
1138 *
1139 *      Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1140 *      be dereferenced with radix_tree_deref_slot, and if using only RCU
1141 *      protection, radix_tree_deref_slot may fail requiring a retry.
1142 */
1143unsigned int
1144radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1145                        void ***results, unsigned long *indices,
1146                        unsigned long first_index, unsigned int max_items)
1147{
1148        struct radix_tree_iter iter;
1149        void **slot;
1150        unsigned int ret = 0;
1151
1152        if (unlikely(!max_items))
1153                return 0;
1154
1155        radix_tree_for_each_slot(slot, root, &iter, first_index) {
1156                results[ret] = slot;
1157                if (indices)
1158                        indices[ret] = iter.index;
1159                if (++ret == max_items)
1160                        break;
1161        }
1162
1163        return ret;
1164}
1165EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1166
1167/**
1168 *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1169 *                                   based on a tag
1170 *      @root:          radix tree root
1171 *      @results:       where the results of the lookup are placed
1172 *      @first_index:   start the lookup from this key
1173 *      @max_items:     place up to this many items at *results
1174 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1175 *
1176 *      Performs an index-ascending scan of the tree for present items which
1177 *      have the tag indexed by @tag set.  Places the items at *@results and
1178 *      returns the number of items which were placed at *@results.
1179 */
1180unsigned int
1181radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1182                unsigned long first_index, unsigned int max_items,
1183                unsigned int tag)
1184{
1185        struct radix_tree_iter iter;
1186        void **slot;
1187        unsigned int ret = 0;
1188
1189        if (unlikely(!max_items))
1190                return 0;
1191
1192        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1193                results[ret] = rcu_dereference_raw(*slot);
1194                if (!results[ret])
1195                        continue;
1196                if (radix_tree_is_internal_node(results[ret])) {
1197                        slot = radix_tree_iter_retry(&iter);
1198                        continue;
1199                }
1200                if (++ret == max_items)
1201                        break;
1202        }
1203
1204        return ret;
1205}
1206EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1207
1208/**
1209 *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1210 *                                        radix tree based on a tag
1211 *      @root:          radix tree root
1212 *      @results:       where the results of the lookup are placed
1213 *      @first_index:   start the lookup from this key
1214 *      @max_items:     place up to this many items at *results
1215 *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1216 *
1217 *      Performs an index-ascending scan of the tree for present items which
1218 *      have the tag indexed by @tag set.  Places the slots at *@results and
1219 *      returns the number of slots which were placed at *@results.
1220 */
1221unsigned int
1222radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1223                unsigned long first_index, unsigned int max_items,
1224                unsigned int tag)
1225{
1226        struct radix_tree_iter iter;
1227        void **slot;
1228        unsigned int ret = 0;
1229
1230        if (unlikely(!max_items))
1231                return 0;
1232
1233        radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1234                results[ret] = slot;
1235                if (++ret == max_items)
1236                        break;
1237        }
1238
1239        return ret;
1240}
1241EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1242
1243#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1244#include <linux/sched.h> /* for cond_resched() */
1245
1246struct locate_info {
1247        unsigned long found_index;
1248        bool stop;
1249};
1250
1251/*
1252 * This linear search is at present only useful to shmem_unuse_inode().
1253 */
1254static unsigned long __locate(struct radix_tree_node *slot, void *item,
1255                              unsigned long index, struct locate_info *info)
1256{
1257        unsigned long i;
1258
1259        do {
1260                unsigned int shift = slot->shift;
1261
1262                for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1263                     i < RADIX_TREE_MAP_SIZE;
1264                     i++, index += (1UL << shift)) {
1265                        struct radix_tree_node *node =
1266                                        rcu_dereference_raw(slot->slots[i]);
1267                        if (node == RADIX_TREE_RETRY)
1268                                goto out;
1269                        if (!radix_tree_is_internal_node(node)) {
1270                                if (node == item) {
1271                                        info->found_index = index;
1272                                        info->stop = true;
1273                                        goto out;
1274                                }
1275                                continue;
1276                        }
1277                        node = entry_to_node(node);
1278                        if (is_sibling_entry(slot, node))
1279                                continue;
1280                        slot = node;
1281                        break;
1282                }
1283        } while (i < RADIX_TREE_MAP_SIZE);
1284
1285out:
1286        if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1287                info->stop = true;
1288        return index;
1289}
1290
1291/**
1292 *      radix_tree_locate_item - search through radix tree for item
1293 *      @root:          radix tree root
1294 *      @item:          item to be found
1295 *
1296 *      Returns index where item was found, or -1 if not found.
1297 *      Caller must hold no lock (since this time-consuming function needs
1298 *      to be preemptible), and must check afterwards if item is still there.
1299 */
1300unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1301{
1302        struct radix_tree_node *node;
1303        unsigned long max_index;
1304        unsigned long cur_index = 0;
1305        struct locate_info info = {
1306                .found_index = -1,
1307                .stop = false,
1308        };
1309
1310        do {
1311                rcu_read_lock();
1312                node = rcu_dereference_raw(root->rnode);
1313                if (!radix_tree_is_internal_node(node)) {
1314                        rcu_read_unlock();
1315                        if (node == item)
1316                                info.found_index = 0;
1317                        break;
1318                }
1319
1320                node = entry_to_node(node);
1321
1322                max_index = node_maxindex(node);
1323                if (cur_index > max_index) {
1324                        rcu_read_unlock();
1325                        break;
1326                }
1327
1328                cur_index = __locate(node, item, cur_index, &info);
1329                rcu_read_unlock();
1330                cond_resched();
1331        } while (!info.stop && cur_index <= max_index);
1332
1333        return info.found_index;
1334}
1335#else
1336unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1337{
1338        return -1;
1339}
1340#endif /* CONFIG_SHMEM && CONFIG_SWAP */
1341
1342/**
1343 *      radix_tree_shrink    -    shrink radix tree to minimum height
1344 *      @root           radix tree root
1345 */
1346static inline bool radix_tree_shrink(struct radix_tree_root *root)
1347{
1348        bool shrunk = false;
1349
1350        for (;;) {
1351                struct radix_tree_node *node = root->rnode;
1352                struct radix_tree_node *child;
1353
1354                if (!radix_tree_is_internal_node(node))
1355                        break;
1356                node = entry_to_node(node);
1357
1358                /*
1359                 * The candidate node has more than one child, or its child
1360                 * is not at the leftmost slot, or the child is a multiorder
1361                 * entry, we cannot shrink.
1362                 */
1363                if (node->count != 1)
1364                        break;
1365                child = node->slots[0];
1366                if (!child)
1367                        break;
1368                if (!radix_tree_is_internal_node(child) && node->shift)
1369                        break;
1370
1371                if (radix_tree_is_internal_node(child))
1372                        entry_to_node(child)->parent = NULL;
1373
1374                /*
1375                 * We don't need rcu_assign_pointer(), since we are simply
1376                 * moving the node from one part of the tree to another: if it
1377                 * was safe to dereference the old pointer to it
1378                 * (node->slots[0]), it will be safe to dereference the new
1379                 * one (root->rnode) as far as dependent read barriers go.
1380                 */
1381                root->rnode = child;
1382
1383                /*
1384                 * We have a dilemma here. The node's slot[0] must not be
1385                 * NULLed in case there are concurrent lookups expecting to
1386                 * find the item. However if this was a bottom-level node,
1387                 * then it may be subject to the slot pointer being visible
1388                 * to callers dereferencing it. If item corresponding to
1389                 * slot[0] is subsequently deleted, these callers would expect
1390                 * their slot to become empty sooner or later.
1391                 *
1392                 * For example, lockless pagecache will look up a slot, deref
1393                 * the page pointer, and if the page has 0 refcount it means it
1394                 * was concurrently deleted from pagecache so try the deref
1395                 * again. Fortunately there is already a requirement for logic
1396                 * to retry the entire slot lookup -- the indirect pointer
1397                 * problem (replacing direct root node with an indirect pointer
1398                 * also results in a stale slot). So tag the slot as indirect
1399                 * to force callers to retry.
1400                 */
1401                if (!radix_tree_is_internal_node(child))
1402                        node->slots[0] = RADIX_TREE_RETRY;
1403
1404                radix_tree_node_free(node);
1405                shrunk = true;
1406        }
1407
1408        return shrunk;
1409}
1410
1411/**
1412 *      __radix_tree_delete_node    -    try to free node after clearing a slot
1413 *      @root:          radix tree root
1414 *      @node:          node containing @index
1415 *
1416 *      After clearing the slot at @index in @node from radix tree
1417 *      rooted at @root, call this function to attempt freeing the
1418 *      node and shrinking the tree.
1419 *
1420 *      Returns %true if @node was freed, %false otherwise.
1421 */
1422bool __radix_tree_delete_node(struct radix_tree_root *root,
1423                              struct radix_tree_node *node)
1424{
1425        bool deleted = false;
1426
1427        do {
1428                struct radix_tree_node *parent;
1429
1430                if (node->count) {
1431                        if (node == entry_to_node(root->rnode))
1432                                deleted |= radix_tree_shrink(root);
1433                        return deleted;
1434                }
1435
1436                parent = node->parent;
1437                if (parent) {
1438                        parent->slots[node->offset] = NULL;
1439                        parent->count--;
1440                } else {
1441                        root_tag_clear_all(root);
1442                        root->rnode = NULL;
1443                }
1444
1445                radix_tree_node_free(node);
1446                deleted = true;
1447
1448                node = parent;
1449        } while (node);
1450
1451        return deleted;
1452}
1453
1454static inline void delete_sibling_entries(struct radix_tree_node *node,
1455                                        void *ptr, unsigned offset)
1456{
1457#ifdef CONFIG_RADIX_TREE_MULTIORDER
1458        int i;
1459        for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1460                if (node->slots[offset + i] != ptr)
1461                        break;
1462                node->slots[offset + i] = NULL;
1463                node->count--;
1464        }
1465#endif
1466}
1467
1468/**
1469 *      radix_tree_delete_item    -    delete an item from a radix tree
1470 *      @root:          radix tree root
1471 *      @index:         index key
1472 *      @item:          expected item
1473 *
1474 *      Remove @item at @index from the radix tree rooted at @root.
1475 *
1476 *      Returns the address of the deleted item, or NULL if it was not present
1477 *      or the entry at the given @index was not @item.
1478 */
1479void *radix_tree_delete_item(struct radix_tree_root *root,
1480                             unsigned long index, void *item)
1481{
1482        struct radix_tree_node *node;
1483        unsigned int offset;
1484        void **slot;
1485        void *entry;
1486        int tag;
1487
1488        entry = __radix_tree_lookup(root, index, &node, &slot);
1489        if (!entry)
1490                return NULL;
1491
1492        if (item && entry != item)
1493                return NULL;
1494
1495        if (!node) {
1496                root_tag_clear_all(root);
1497                root->rnode = NULL;
1498                return entry;
1499        }
1500
1501        offset = get_slot_offset(node, slot);
1502
1503        /* Clear all tags associated with the item to be deleted.  */
1504        for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1505                node_tag_clear(root, node, tag, offset);
1506
1507        delete_sibling_entries(node, node_to_entry(slot), offset);
1508        node->slots[offset] = NULL;
1509        node->count--;
1510
1511        __radix_tree_delete_node(root, node);
1512
1513        return entry;
1514}
1515EXPORT_SYMBOL(radix_tree_delete_item);
1516
1517/**
1518 *      radix_tree_delete    -    delete an item from a radix tree
1519 *      @root:          radix tree root
1520 *      @index:         index key
1521 *
1522 *      Remove the item at @index from the radix tree rooted at @root.
1523 *
1524 *      Returns the address of the deleted item, or NULL if it was not present.
1525 */
1526void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1527{
1528        return radix_tree_delete_item(root, index, NULL);
1529}
1530EXPORT_SYMBOL(radix_tree_delete);
1531
1532struct radix_tree_node *radix_tree_replace_clear_tags(
1533                        struct radix_tree_root *root,
1534                        unsigned long index, void *entry)
1535{
1536        struct radix_tree_node *node;
1537        void **slot;
1538
1539        __radix_tree_lookup(root, index, &node, &slot);
1540
1541        if (node) {
1542                unsigned int tag, offset = get_slot_offset(node, slot);
1543                for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1544                        node_tag_clear(root, node, tag, offset);
1545        } else {
1546                /* Clear root node tags */
1547                root->gfp_mask &= __GFP_BITS_MASK;
1548        }
1549
1550        radix_tree_replace_slot(slot, entry);
1551        return node;
1552}
1553
1554/**
1555 *      radix_tree_tagged - test whether any items in the tree are tagged
1556 *      @root:          radix tree root
1557 *      @tag:           tag to test
1558 */
1559int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1560{
1561        return root_tag_get(root, tag);
1562}
1563EXPORT_SYMBOL(radix_tree_tagged);
1564
1565static void
1566radix_tree_node_ctor(void *arg)
1567{
1568        struct radix_tree_node *node = arg;
1569
1570        memset(node, 0, sizeof(*node));
1571        INIT_LIST_HEAD(&node->private_list);
1572}
1573
1574static int radix_tree_callback(struct notifier_block *nfb,
1575                                unsigned long action, void *hcpu)
1576{
1577        int cpu = (long)hcpu;
1578        struct radix_tree_preload *rtp;
1579        struct radix_tree_node *node;
1580
1581        /* Free per-cpu pool of preloaded nodes */
1582        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1583                rtp = &per_cpu(radix_tree_preloads, cpu);
1584                while (rtp->nr) {
1585                        node = rtp->nodes;
1586                        rtp->nodes = node->private_data;
1587                        kmem_cache_free(radix_tree_node_cachep, node);
1588                        rtp->nr--;
1589                }
1590        }
1591        return NOTIFY_OK;
1592}
1593
1594void __init radix_tree_init(void)
1595{
1596        radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1597                        sizeof(struct radix_tree_node), 0,
1598                        SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1599                        radix_tree_node_ctor);
1600        hotcpu_notifier(radix_tree_callback, 0);
1601}
1602