linux/mm/huge_memory.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/dax.h>
  21#include <linux/kthread.h>
  22#include <linux/khugepaged.h>
  23#include <linux/freezer.h>
  24#include <linux/pfn_t.h>
  25#include <linux/mman.h>
  26#include <linux/memremap.h>
  27#include <linux/pagemap.h>
  28#include <linux/debugfs.h>
  29#include <linux/migrate.h>
  30#include <linux/hashtable.h>
  31#include <linux/userfaultfd_k.h>
  32#include <linux/page_idle.h>
  33
  34#include <asm/tlb.h>
  35#include <asm/pgalloc.h>
  36#include "internal.h"
  37
  38enum scan_result {
  39        SCAN_FAIL,
  40        SCAN_SUCCEED,
  41        SCAN_PMD_NULL,
  42        SCAN_EXCEED_NONE_PTE,
  43        SCAN_PTE_NON_PRESENT,
  44        SCAN_PAGE_RO,
  45        SCAN_NO_REFERENCED_PAGE,
  46        SCAN_PAGE_NULL,
  47        SCAN_SCAN_ABORT,
  48        SCAN_PAGE_COUNT,
  49        SCAN_PAGE_LRU,
  50        SCAN_PAGE_LOCK,
  51        SCAN_PAGE_ANON,
  52        SCAN_PAGE_COMPOUND,
  53        SCAN_ANY_PROCESS,
  54        SCAN_VMA_NULL,
  55        SCAN_VMA_CHECK,
  56        SCAN_ADDRESS_RANGE,
  57        SCAN_SWAP_CACHE_PAGE,
  58        SCAN_DEL_PAGE_LRU,
  59        SCAN_ALLOC_HUGE_PAGE_FAIL,
  60        SCAN_CGROUP_CHARGE_FAIL
  61};
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/huge_memory.h>
  65
  66/*
  67 * By default transparent hugepage support is disabled in order that avoid
  68 * to risk increase the memory footprint of applications without a guaranteed
  69 * benefit. When transparent hugepage support is enabled, is for all mappings,
  70 * and khugepaged scans all mappings.
  71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  72 * for all hugepage allocations.
  73 */
  74unsigned long transparent_hugepage_flags __read_mostly =
  75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  76        (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  77#endif
  78#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  79        (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  80#endif
  81        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  82        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  83        (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  84
  85/* default scan 8*512 pte (or vmas) every 30 second */
  86static unsigned int khugepaged_pages_to_scan __read_mostly;
  87static unsigned int khugepaged_pages_collapsed;
  88static unsigned int khugepaged_full_scans;
  89static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  90/* during fragmentation poll the hugepage allocator once every minute */
  91static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  92static unsigned long khugepaged_sleep_expire;
  93static struct task_struct *khugepaged_thread __read_mostly;
  94static DEFINE_MUTEX(khugepaged_mutex);
  95static DEFINE_SPINLOCK(khugepaged_mm_lock);
  96static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  97/*
  98 * default collapse hugepages if there is at least one pte mapped like
  99 * it would have happened if the vma was large enough during page
 100 * fault.
 101 */
 102static unsigned int khugepaged_max_ptes_none __read_mostly;
 103
 104static int khugepaged(void *none);
 105static int khugepaged_slab_init(void);
 106static void khugepaged_slab_exit(void);
 107
 108#define MM_SLOTS_HASH_BITS 10
 109static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 110
 111static struct kmem_cache *mm_slot_cache __read_mostly;
 112
 113/**
 114 * struct mm_slot - hash lookup from mm to mm_slot
 115 * @hash: hash collision list
 116 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 117 * @mm: the mm that this information is valid for
 118 */
 119struct mm_slot {
 120        struct hlist_node hash;
 121        struct list_head mm_node;
 122        struct mm_struct *mm;
 123};
 124
 125/**
 126 * struct khugepaged_scan - cursor for scanning
 127 * @mm_head: the head of the mm list to scan
 128 * @mm_slot: the current mm_slot we are scanning
 129 * @address: the next address inside that to be scanned
 130 *
 131 * There is only the one khugepaged_scan instance of this cursor structure.
 132 */
 133struct khugepaged_scan {
 134        struct list_head mm_head;
 135        struct mm_slot *mm_slot;
 136        unsigned long address;
 137};
 138static struct khugepaged_scan khugepaged_scan = {
 139        .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 140};
 141
 142static struct shrinker deferred_split_shrinker;
 143
 144static void set_recommended_min_free_kbytes(void)
 145{
 146        struct zone *zone;
 147        int nr_zones = 0;
 148        unsigned long recommended_min;
 149
 150        for_each_populated_zone(zone)
 151                nr_zones++;
 152
 153        /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
 154        recommended_min = pageblock_nr_pages * nr_zones * 2;
 155
 156        /*
 157         * Make sure that on average at least two pageblocks are almost free
 158         * of another type, one for a migratetype to fall back to and a
 159         * second to avoid subsequent fallbacks of other types There are 3
 160         * MIGRATE_TYPES we care about.
 161         */
 162        recommended_min += pageblock_nr_pages * nr_zones *
 163                           MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 164
 165        /* don't ever allow to reserve more than 5% of the lowmem */
 166        recommended_min = min(recommended_min,
 167                              (unsigned long) nr_free_buffer_pages() / 20);
 168        recommended_min <<= (PAGE_SHIFT-10);
 169
 170        if (recommended_min > min_free_kbytes) {
 171                if (user_min_free_kbytes >= 0)
 172                        pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
 173                                min_free_kbytes, recommended_min);
 174
 175                min_free_kbytes = recommended_min;
 176        }
 177        setup_per_zone_wmarks();
 178}
 179
 180static int start_stop_khugepaged(void)
 181{
 182        int err = 0;
 183        if (khugepaged_enabled()) {
 184                if (!khugepaged_thread)
 185                        khugepaged_thread = kthread_run(khugepaged, NULL,
 186                                                        "khugepaged");
 187                if (IS_ERR(khugepaged_thread)) {
 188                        pr_err("khugepaged: kthread_run(khugepaged) failed\n");
 189                        err = PTR_ERR(khugepaged_thread);
 190                        khugepaged_thread = NULL;
 191                        goto fail;
 192                }
 193
 194                if (!list_empty(&khugepaged_scan.mm_head))
 195                        wake_up_interruptible(&khugepaged_wait);
 196
 197                set_recommended_min_free_kbytes();
 198        } else if (khugepaged_thread) {
 199                kthread_stop(khugepaged_thread);
 200                khugepaged_thread = NULL;
 201        }
 202fail:
 203        return err;
 204}
 205
 206static atomic_t huge_zero_refcount;
 207struct page *huge_zero_page __read_mostly;
 208
 209struct page *get_huge_zero_page(void)
 210{
 211        struct page *zero_page;
 212retry:
 213        if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 214                return READ_ONCE(huge_zero_page);
 215
 216        zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 217                        HPAGE_PMD_ORDER);
 218        if (!zero_page) {
 219                count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 220                return NULL;
 221        }
 222        count_vm_event(THP_ZERO_PAGE_ALLOC);
 223        preempt_disable();
 224        if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 225                preempt_enable();
 226                __free_pages(zero_page, compound_order(zero_page));
 227                goto retry;
 228        }
 229
 230        /* We take additional reference here. It will be put back by shrinker */
 231        atomic_set(&huge_zero_refcount, 2);
 232        preempt_enable();
 233        return READ_ONCE(huge_zero_page);
 234}
 235
 236void put_huge_zero_page(void)
 237{
 238        /*
 239         * Counter should never go to zero here. Only shrinker can put
 240         * last reference.
 241         */
 242        BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 243}
 244
 245static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 246                                        struct shrink_control *sc)
 247{
 248        /* we can free zero page only if last reference remains */
 249        return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 250}
 251
 252static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 253                                       struct shrink_control *sc)
 254{
 255        if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 256                struct page *zero_page = xchg(&huge_zero_page, NULL);
 257                BUG_ON(zero_page == NULL);
 258                __free_pages(zero_page, compound_order(zero_page));
 259                return HPAGE_PMD_NR;
 260        }
 261
 262        return 0;
 263}
 264
 265static struct shrinker huge_zero_page_shrinker = {
 266        .count_objects = shrink_huge_zero_page_count,
 267        .scan_objects = shrink_huge_zero_page_scan,
 268        .seeks = DEFAULT_SEEKS,
 269};
 270
 271#ifdef CONFIG_SYSFS
 272
 273static ssize_t triple_flag_store(struct kobject *kobj,
 274                                 struct kobj_attribute *attr,
 275                                 const char *buf, size_t count,
 276                                 enum transparent_hugepage_flag enabled,
 277                                 enum transparent_hugepage_flag deferred,
 278                                 enum transparent_hugepage_flag req_madv)
 279{
 280        if (!memcmp("defer", buf,
 281                    min(sizeof("defer")-1, count))) {
 282                if (enabled == deferred)
 283                        return -EINVAL;
 284                clear_bit(enabled, &transparent_hugepage_flags);
 285                clear_bit(req_madv, &transparent_hugepage_flags);
 286                set_bit(deferred, &transparent_hugepage_flags);
 287        } else if (!memcmp("always", buf,
 288                    min(sizeof("always")-1, count))) {
 289                clear_bit(deferred, &transparent_hugepage_flags);
 290                clear_bit(req_madv, &transparent_hugepage_flags);
 291                set_bit(enabled, &transparent_hugepage_flags);
 292        } else if (!memcmp("madvise", buf,
 293                           min(sizeof("madvise")-1, count))) {
 294                clear_bit(enabled, &transparent_hugepage_flags);
 295                clear_bit(deferred, &transparent_hugepage_flags);
 296                set_bit(req_madv, &transparent_hugepage_flags);
 297        } else if (!memcmp("never", buf,
 298                           min(sizeof("never")-1, count))) {
 299                clear_bit(enabled, &transparent_hugepage_flags);
 300                clear_bit(req_madv, &transparent_hugepage_flags);
 301                clear_bit(deferred, &transparent_hugepage_flags);
 302        } else
 303                return -EINVAL;
 304
 305        return count;
 306}
 307
 308static ssize_t enabled_show(struct kobject *kobj,
 309                            struct kobj_attribute *attr, char *buf)
 310{
 311        if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 312                return sprintf(buf, "[always] madvise never\n");
 313        else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 314                return sprintf(buf, "always [madvise] never\n");
 315        else
 316                return sprintf(buf, "always madvise [never]\n");
 317}
 318
 319static ssize_t enabled_store(struct kobject *kobj,
 320                             struct kobj_attribute *attr,
 321                             const char *buf, size_t count)
 322{
 323        ssize_t ret;
 324
 325        ret = triple_flag_store(kobj, attr, buf, count,
 326                                TRANSPARENT_HUGEPAGE_FLAG,
 327                                TRANSPARENT_HUGEPAGE_FLAG,
 328                                TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 329
 330        if (ret > 0) {
 331                int err;
 332
 333                mutex_lock(&khugepaged_mutex);
 334                err = start_stop_khugepaged();
 335                mutex_unlock(&khugepaged_mutex);
 336
 337                if (err)
 338                        ret = err;
 339        }
 340
 341        return ret;
 342}
 343static struct kobj_attribute enabled_attr =
 344        __ATTR(enabled, 0644, enabled_show, enabled_store);
 345
 346static ssize_t single_flag_show(struct kobject *kobj,
 347                                struct kobj_attribute *attr, char *buf,
 348                                enum transparent_hugepage_flag flag)
 349{
 350        return sprintf(buf, "%d\n",
 351                       !!test_bit(flag, &transparent_hugepage_flags));
 352}
 353
 354static ssize_t single_flag_store(struct kobject *kobj,
 355                                 struct kobj_attribute *attr,
 356                                 const char *buf, size_t count,
 357                                 enum transparent_hugepage_flag flag)
 358{
 359        unsigned long value;
 360        int ret;
 361
 362        ret = kstrtoul(buf, 10, &value);
 363        if (ret < 0)
 364                return ret;
 365        if (value > 1)
 366                return -EINVAL;
 367
 368        if (value)
 369                set_bit(flag, &transparent_hugepage_flags);
 370        else
 371                clear_bit(flag, &transparent_hugepage_flags);
 372
 373        return count;
 374}
 375
 376/*
 377 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 378 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 379 * memory just to allocate one more hugepage.
 380 */
 381static ssize_t defrag_show(struct kobject *kobj,
 382                           struct kobj_attribute *attr, char *buf)
 383{
 384        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 385                return sprintf(buf, "[always] defer madvise never\n");
 386        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 387                return sprintf(buf, "always [defer] madvise never\n");
 388        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 389                return sprintf(buf, "always defer [madvise] never\n");
 390        else
 391                return sprintf(buf, "always defer madvise [never]\n");
 392
 393}
 394static ssize_t defrag_store(struct kobject *kobj,
 395                            struct kobj_attribute *attr,
 396                            const char *buf, size_t count)
 397{
 398        return triple_flag_store(kobj, attr, buf, count,
 399                                 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 400                                 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 401                                 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 402}
 403static struct kobj_attribute defrag_attr =
 404        __ATTR(defrag, 0644, defrag_show, defrag_store);
 405
 406static ssize_t use_zero_page_show(struct kobject *kobj,
 407                struct kobj_attribute *attr, char *buf)
 408{
 409        return single_flag_show(kobj, attr, buf,
 410                                TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 411}
 412static ssize_t use_zero_page_store(struct kobject *kobj,
 413                struct kobj_attribute *attr, const char *buf, size_t count)
 414{
 415        return single_flag_store(kobj, attr, buf, count,
 416                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 417}
 418static struct kobj_attribute use_zero_page_attr =
 419        __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 420#ifdef CONFIG_DEBUG_VM
 421static ssize_t debug_cow_show(struct kobject *kobj,
 422                                struct kobj_attribute *attr, char *buf)
 423{
 424        return single_flag_show(kobj, attr, buf,
 425                                TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 426}
 427static ssize_t debug_cow_store(struct kobject *kobj,
 428                               struct kobj_attribute *attr,
 429                               const char *buf, size_t count)
 430{
 431        return single_flag_store(kobj, attr, buf, count,
 432                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 433}
 434static struct kobj_attribute debug_cow_attr =
 435        __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 436#endif /* CONFIG_DEBUG_VM */
 437
 438static struct attribute *hugepage_attr[] = {
 439        &enabled_attr.attr,
 440        &defrag_attr.attr,
 441        &use_zero_page_attr.attr,
 442#ifdef CONFIG_DEBUG_VM
 443        &debug_cow_attr.attr,
 444#endif
 445        NULL,
 446};
 447
 448static struct attribute_group hugepage_attr_group = {
 449        .attrs = hugepage_attr,
 450};
 451
 452static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 453                                         struct kobj_attribute *attr,
 454                                         char *buf)
 455{
 456        return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 457}
 458
 459static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 460                                          struct kobj_attribute *attr,
 461                                          const char *buf, size_t count)
 462{
 463        unsigned long msecs;
 464        int err;
 465
 466        err = kstrtoul(buf, 10, &msecs);
 467        if (err || msecs > UINT_MAX)
 468                return -EINVAL;
 469
 470        khugepaged_scan_sleep_millisecs = msecs;
 471        khugepaged_sleep_expire = 0;
 472        wake_up_interruptible(&khugepaged_wait);
 473
 474        return count;
 475}
 476static struct kobj_attribute scan_sleep_millisecs_attr =
 477        __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 478               scan_sleep_millisecs_store);
 479
 480static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 481                                          struct kobj_attribute *attr,
 482                                          char *buf)
 483{
 484        return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 485}
 486
 487static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 488                                           struct kobj_attribute *attr,
 489                                           const char *buf, size_t count)
 490{
 491        unsigned long msecs;
 492        int err;
 493
 494        err = kstrtoul(buf, 10, &msecs);
 495        if (err || msecs > UINT_MAX)
 496                return -EINVAL;
 497
 498        khugepaged_alloc_sleep_millisecs = msecs;
 499        khugepaged_sleep_expire = 0;
 500        wake_up_interruptible(&khugepaged_wait);
 501
 502        return count;
 503}
 504static struct kobj_attribute alloc_sleep_millisecs_attr =
 505        __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 506               alloc_sleep_millisecs_store);
 507
 508static ssize_t pages_to_scan_show(struct kobject *kobj,
 509                                  struct kobj_attribute *attr,
 510                                  char *buf)
 511{
 512        return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 513}
 514static ssize_t pages_to_scan_store(struct kobject *kobj,
 515                                   struct kobj_attribute *attr,
 516                                   const char *buf, size_t count)
 517{
 518        int err;
 519        unsigned long pages;
 520
 521        err = kstrtoul(buf, 10, &pages);
 522        if (err || !pages || pages > UINT_MAX)
 523                return -EINVAL;
 524
 525        khugepaged_pages_to_scan = pages;
 526
 527        return count;
 528}
 529static struct kobj_attribute pages_to_scan_attr =
 530        __ATTR(pages_to_scan, 0644, pages_to_scan_show,
 531               pages_to_scan_store);
 532
 533static ssize_t pages_collapsed_show(struct kobject *kobj,
 534                                    struct kobj_attribute *attr,
 535                                    char *buf)
 536{
 537        return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 538}
 539static struct kobj_attribute pages_collapsed_attr =
 540        __ATTR_RO(pages_collapsed);
 541
 542static ssize_t full_scans_show(struct kobject *kobj,
 543                               struct kobj_attribute *attr,
 544                               char *buf)
 545{
 546        return sprintf(buf, "%u\n", khugepaged_full_scans);
 547}
 548static struct kobj_attribute full_scans_attr =
 549        __ATTR_RO(full_scans);
 550
 551static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 552                                      struct kobj_attribute *attr, char *buf)
 553{
 554        return single_flag_show(kobj, attr, buf,
 555                                TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 556}
 557static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 558                                       struct kobj_attribute *attr,
 559                                       const char *buf, size_t count)
 560{
 561        return single_flag_store(kobj, attr, buf, count,
 562                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 563}
 564static struct kobj_attribute khugepaged_defrag_attr =
 565        __ATTR(defrag, 0644, khugepaged_defrag_show,
 566               khugepaged_defrag_store);
 567
 568/*
 569 * max_ptes_none controls if khugepaged should collapse hugepages over
 570 * any unmapped ptes in turn potentially increasing the memory
 571 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 572 * reduce the available free memory in the system as it
 573 * runs. Increasing max_ptes_none will instead potentially reduce the
 574 * free memory in the system during the khugepaged scan.
 575 */
 576static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 577                                             struct kobj_attribute *attr,
 578                                             char *buf)
 579{
 580        return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 581}
 582static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 583                                              struct kobj_attribute *attr,
 584                                              const char *buf, size_t count)
 585{
 586        int err;
 587        unsigned long max_ptes_none;
 588
 589        err = kstrtoul(buf, 10, &max_ptes_none);
 590        if (err || max_ptes_none > HPAGE_PMD_NR-1)
 591                return -EINVAL;
 592
 593        khugepaged_max_ptes_none = max_ptes_none;
 594
 595        return count;
 596}
 597static struct kobj_attribute khugepaged_max_ptes_none_attr =
 598        __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 599               khugepaged_max_ptes_none_store);
 600
 601static struct attribute *khugepaged_attr[] = {
 602        &khugepaged_defrag_attr.attr,
 603        &khugepaged_max_ptes_none_attr.attr,
 604        &pages_to_scan_attr.attr,
 605        &pages_collapsed_attr.attr,
 606        &full_scans_attr.attr,
 607        &scan_sleep_millisecs_attr.attr,
 608        &alloc_sleep_millisecs_attr.attr,
 609        NULL,
 610};
 611
 612static struct attribute_group khugepaged_attr_group = {
 613        .attrs = khugepaged_attr,
 614        .name = "khugepaged",
 615};
 616
 617static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 618{
 619        int err;
 620
 621        *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 622        if (unlikely(!*hugepage_kobj)) {
 623                pr_err("failed to create transparent hugepage kobject\n");
 624                return -ENOMEM;
 625        }
 626
 627        err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 628        if (err) {
 629                pr_err("failed to register transparent hugepage group\n");
 630                goto delete_obj;
 631        }
 632
 633        err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 634        if (err) {
 635                pr_err("failed to register transparent hugepage group\n");
 636                goto remove_hp_group;
 637        }
 638
 639        return 0;
 640
 641remove_hp_group:
 642        sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 643delete_obj:
 644        kobject_put(*hugepage_kobj);
 645        return err;
 646}
 647
 648static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 649{
 650        sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 651        sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 652        kobject_put(hugepage_kobj);
 653}
 654#else
 655static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 656{
 657        return 0;
 658}
 659
 660static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 661{
 662}
 663#endif /* CONFIG_SYSFS */
 664
 665static int __init hugepage_init(void)
 666{
 667        int err;
 668        struct kobject *hugepage_kobj;
 669
 670        if (!has_transparent_hugepage()) {
 671                transparent_hugepage_flags = 0;
 672                return -EINVAL;
 673        }
 674
 675        khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 676        khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 677        /*
 678         * hugepages can't be allocated by the buddy allocator
 679         */
 680        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 681        /*
 682         * we use page->mapping and page->index in second tail page
 683         * as list_head: assuming THP order >= 2
 684         */
 685        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 686
 687        err = hugepage_init_sysfs(&hugepage_kobj);
 688        if (err)
 689                goto err_sysfs;
 690
 691        err = khugepaged_slab_init();
 692        if (err)
 693                goto err_slab;
 694
 695        err = register_shrinker(&huge_zero_page_shrinker);
 696        if (err)
 697                goto err_hzp_shrinker;
 698        err = register_shrinker(&deferred_split_shrinker);
 699        if (err)
 700                goto err_split_shrinker;
 701
 702        /*
 703         * By default disable transparent hugepages on smaller systems,
 704         * where the extra memory used could hurt more than TLB overhead
 705         * is likely to save.  The admin can still enable it through /sys.
 706         */
 707        if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 708                transparent_hugepage_flags = 0;
 709                return 0;
 710        }
 711
 712        err = start_stop_khugepaged();
 713        if (err)
 714                goto err_khugepaged;
 715
 716        return 0;
 717err_khugepaged:
 718        unregister_shrinker(&deferred_split_shrinker);
 719err_split_shrinker:
 720        unregister_shrinker(&huge_zero_page_shrinker);
 721err_hzp_shrinker:
 722        khugepaged_slab_exit();
 723err_slab:
 724        hugepage_exit_sysfs(hugepage_kobj);
 725err_sysfs:
 726        return err;
 727}
 728subsys_initcall(hugepage_init);
 729
 730static int __init setup_transparent_hugepage(char *str)
 731{
 732        int ret = 0;
 733        if (!str)
 734                goto out;
 735        if (!strcmp(str, "always")) {
 736                set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 737                        &transparent_hugepage_flags);
 738                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 739                          &transparent_hugepage_flags);
 740                ret = 1;
 741        } else if (!strcmp(str, "madvise")) {
 742                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 743                          &transparent_hugepage_flags);
 744                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 745                        &transparent_hugepage_flags);
 746                ret = 1;
 747        } else if (!strcmp(str, "never")) {
 748                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 749                          &transparent_hugepage_flags);
 750                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 751                          &transparent_hugepage_flags);
 752                ret = 1;
 753        }
 754out:
 755        if (!ret)
 756                pr_warn("transparent_hugepage= cannot parse, ignored\n");
 757        return ret;
 758}
 759__setup("transparent_hugepage=", setup_transparent_hugepage);
 760
 761pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 762{
 763        if (likely(vma->vm_flags & VM_WRITE))
 764                pmd = pmd_mkwrite(pmd);
 765        return pmd;
 766}
 767
 768static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 769{
 770        return pmd_mkhuge(mk_pmd(page, prot));
 771}
 772
 773static inline struct list_head *page_deferred_list(struct page *page)
 774{
 775        /*
 776         * ->lru in the tail pages is occupied by compound_head.
 777         * Let's use ->mapping + ->index in the second tail page as list_head.
 778         */
 779        return (struct list_head *)&page[2].mapping;
 780}
 781
 782void prep_transhuge_page(struct page *page)
 783{
 784        /*
 785         * we use page->mapping and page->indexlru in second tail page
 786         * as list_head: assuming THP order >= 2
 787         */
 788
 789        INIT_LIST_HEAD(page_deferred_list(page));
 790        set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 791}
 792
 793static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 794                                        struct vm_area_struct *vma,
 795                                        unsigned long address, pmd_t *pmd,
 796                                        struct page *page, gfp_t gfp,
 797                                        unsigned int flags)
 798{
 799        struct mem_cgroup *memcg;
 800        pgtable_t pgtable;
 801        spinlock_t *ptl;
 802        unsigned long haddr = address & HPAGE_PMD_MASK;
 803
 804        VM_BUG_ON_PAGE(!PageCompound(page), page);
 805
 806        if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
 807                put_page(page);
 808                count_vm_event(THP_FAULT_FALLBACK);
 809                return VM_FAULT_FALLBACK;
 810        }
 811
 812        pgtable = pte_alloc_one(mm, haddr);
 813        if (unlikely(!pgtable)) {
 814                mem_cgroup_cancel_charge(page, memcg, true);
 815                put_page(page);
 816                return VM_FAULT_OOM;
 817        }
 818
 819        clear_huge_page(page, haddr, HPAGE_PMD_NR);
 820        /*
 821         * The memory barrier inside __SetPageUptodate makes sure that
 822         * clear_huge_page writes become visible before the set_pmd_at()
 823         * write.
 824         */
 825        __SetPageUptodate(page);
 826
 827        ptl = pmd_lock(mm, pmd);
 828        if (unlikely(!pmd_none(*pmd))) {
 829                spin_unlock(ptl);
 830                mem_cgroup_cancel_charge(page, memcg, true);
 831                put_page(page);
 832                pte_free(mm, pgtable);
 833        } else {
 834                pmd_t entry;
 835
 836                /* Deliver the page fault to userland */
 837                if (userfaultfd_missing(vma)) {
 838                        int ret;
 839
 840                        spin_unlock(ptl);
 841                        mem_cgroup_cancel_charge(page, memcg, true);
 842                        put_page(page);
 843                        pte_free(mm, pgtable);
 844                        ret = handle_userfault(vma, address, flags,
 845                                               VM_UFFD_MISSING);
 846                        VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 847                        return ret;
 848                }
 849
 850                entry = mk_huge_pmd(page, vma->vm_page_prot);
 851                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 852                page_add_new_anon_rmap(page, vma, haddr, true);
 853                mem_cgroup_commit_charge(page, memcg, false, true);
 854                lru_cache_add_active_or_unevictable(page, vma);
 855                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 856                set_pmd_at(mm, haddr, pmd, entry);
 857                add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 858                atomic_long_inc(&mm->nr_ptes);
 859                spin_unlock(ptl);
 860                count_vm_event(THP_FAULT_ALLOC);
 861        }
 862
 863        return 0;
 864}
 865
 866/*
 867 * If THP is set to always then directly reclaim/compact as necessary
 868 * If set to defer then do no reclaim and defer to khugepaged
 869 * If set to madvise and the VMA is flagged then directly reclaim/compact
 870 */
 871static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 872{
 873        gfp_t reclaim_flags = 0;
 874
 875        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
 876            (vma->vm_flags & VM_HUGEPAGE))
 877                reclaim_flags = __GFP_DIRECT_RECLAIM;
 878        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 879                reclaim_flags = __GFP_KSWAPD_RECLAIM;
 880        else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 881                reclaim_flags = __GFP_DIRECT_RECLAIM;
 882
 883        return GFP_TRANSHUGE | reclaim_flags;
 884}
 885
 886/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 887static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 888{
 889        return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
 890}
 891
 892/* Caller must hold page table lock. */
 893static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 894                struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 895                struct page *zero_page)
 896{
 897        pmd_t entry;
 898        if (!pmd_none(*pmd))
 899                return false;
 900        entry = mk_pmd(zero_page, vma->vm_page_prot);
 901        entry = pmd_mkhuge(entry);
 902        if (pgtable)
 903                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 904        set_pmd_at(mm, haddr, pmd, entry);
 905        atomic_long_inc(&mm->nr_ptes);
 906        return true;
 907}
 908
 909int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 910                               unsigned long address, pmd_t *pmd,
 911                               unsigned int flags)
 912{
 913        gfp_t gfp;
 914        struct page *page;
 915        unsigned long haddr = address & HPAGE_PMD_MASK;
 916
 917        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 918                return VM_FAULT_FALLBACK;
 919        if (unlikely(anon_vma_prepare(vma)))
 920                return VM_FAULT_OOM;
 921        if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 922                return VM_FAULT_OOM;
 923        if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
 924                        transparent_hugepage_use_zero_page()) {
 925                spinlock_t *ptl;
 926                pgtable_t pgtable;
 927                struct page *zero_page;
 928                bool set;
 929                int ret;
 930                pgtable = pte_alloc_one(mm, haddr);
 931                if (unlikely(!pgtable))
 932                        return VM_FAULT_OOM;
 933                zero_page = get_huge_zero_page();
 934                if (unlikely(!zero_page)) {
 935                        pte_free(mm, pgtable);
 936                        count_vm_event(THP_FAULT_FALLBACK);
 937                        return VM_FAULT_FALLBACK;
 938                }
 939                ptl = pmd_lock(mm, pmd);
 940                ret = 0;
 941                set = false;
 942                if (pmd_none(*pmd)) {
 943                        if (userfaultfd_missing(vma)) {
 944                                spin_unlock(ptl);
 945                                ret = handle_userfault(vma, address, flags,
 946                                                       VM_UFFD_MISSING);
 947                                VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 948                        } else {
 949                                set_huge_zero_page(pgtable, mm, vma,
 950                                                   haddr, pmd,
 951                                                   zero_page);
 952                                spin_unlock(ptl);
 953                                set = true;
 954                        }
 955                } else
 956                        spin_unlock(ptl);
 957                if (!set) {
 958                        pte_free(mm, pgtable);
 959                        put_huge_zero_page();
 960                }
 961                return ret;
 962        }
 963        gfp = alloc_hugepage_direct_gfpmask(vma);
 964        page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 965        if (unlikely(!page)) {
 966                count_vm_event(THP_FAULT_FALLBACK);
 967                return VM_FAULT_FALLBACK;
 968        }
 969        prep_transhuge_page(page);
 970        return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
 971                                            flags);
 972}
 973
 974static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 975                pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 976{
 977        struct mm_struct *mm = vma->vm_mm;
 978        pmd_t entry;
 979        spinlock_t *ptl;
 980
 981        ptl = pmd_lock(mm, pmd);
 982        entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 983        if (pfn_t_devmap(pfn))
 984                entry = pmd_mkdevmap(entry);
 985        if (write) {
 986                entry = pmd_mkyoung(pmd_mkdirty(entry));
 987                entry = maybe_pmd_mkwrite(entry, vma);
 988        }
 989        set_pmd_at(mm, addr, pmd, entry);
 990        update_mmu_cache_pmd(vma, addr, pmd);
 991        spin_unlock(ptl);
 992}
 993
 994int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 995                        pmd_t *pmd, pfn_t pfn, bool write)
 996{
 997        pgprot_t pgprot = vma->vm_page_prot;
 998        /*
 999         * If we had pmd_special, we could avoid all these restrictions,
1000         * but we need to be consistent with PTEs and architectures that
1001         * can't support a 'special' bit.
1002         */
1003        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005                                                (VM_PFNMAP|VM_MIXEDMAP));
1006        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007        BUG_ON(!pfn_t_devmap(pfn));
1008
1009        if (addr < vma->vm_start || addr >= vma->vm_end)
1010                return VM_FAULT_SIGBUS;
1011        if (track_pfn_insert(vma, &pgprot, pfn))
1012                return VM_FAULT_SIGBUS;
1013        insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1014        return VM_FAULT_NOPAGE;
1015}
1016EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1017
1018static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1019                pmd_t *pmd)
1020{
1021        pmd_t _pmd;
1022
1023        /*
1024         * We should set the dirty bit only for FOLL_WRITE but for now
1025         * the dirty bit in the pmd is meaningless.  And if the dirty
1026         * bit will become meaningful and we'll only set it with
1027         * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1028         * set the young bit, instead of the current set_pmd_at.
1029         */
1030        _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1031        if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1032                                pmd, _pmd,  1))
1033                update_mmu_cache_pmd(vma, addr, pmd);
1034}
1035
1036struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1037                pmd_t *pmd, int flags)
1038{
1039        unsigned long pfn = pmd_pfn(*pmd);
1040        struct mm_struct *mm = vma->vm_mm;
1041        struct dev_pagemap *pgmap;
1042        struct page *page;
1043
1044        assert_spin_locked(pmd_lockptr(mm, pmd));
1045
1046        if (flags & FOLL_WRITE && !pmd_write(*pmd))
1047                return NULL;
1048
1049        if (pmd_present(*pmd) && pmd_devmap(*pmd))
1050                /* pass */;
1051        else
1052                return NULL;
1053
1054        if (flags & FOLL_TOUCH)
1055                touch_pmd(vma, addr, pmd);
1056
1057        /*
1058         * device mapped pages can only be returned if the
1059         * caller will manage the page reference count.
1060         */
1061        if (!(flags & FOLL_GET))
1062                return ERR_PTR(-EEXIST);
1063
1064        pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1065        pgmap = get_dev_pagemap(pfn, NULL);
1066        if (!pgmap)
1067                return ERR_PTR(-EFAULT);
1068        page = pfn_to_page(pfn);
1069        get_page(page);
1070        put_dev_pagemap(pgmap);
1071
1072        return page;
1073}
1074
1075int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076                  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1077                  struct vm_area_struct *vma)
1078{
1079        spinlock_t *dst_ptl, *src_ptl;
1080        struct page *src_page;
1081        pmd_t pmd;
1082        pgtable_t pgtable = NULL;
1083        int ret;
1084
1085        if (!vma_is_dax(vma)) {
1086                ret = -ENOMEM;
1087                pgtable = pte_alloc_one(dst_mm, addr);
1088                if (unlikely(!pgtable))
1089                        goto out;
1090        }
1091
1092        dst_ptl = pmd_lock(dst_mm, dst_pmd);
1093        src_ptl = pmd_lockptr(src_mm, src_pmd);
1094        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1095
1096        ret = -EAGAIN;
1097        pmd = *src_pmd;
1098        if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1099                pte_free(dst_mm, pgtable);
1100                goto out_unlock;
1101        }
1102        /*
1103         * When page table lock is held, the huge zero pmd should not be
1104         * under splitting since we don't split the page itself, only pmd to
1105         * a page table.
1106         */
1107        if (is_huge_zero_pmd(pmd)) {
1108                struct page *zero_page;
1109                /*
1110                 * get_huge_zero_page() will never allocate a new page here,
1111                 * since we already have a zero page to copy. It just takes a
1112                 * reference.
1113                 */
1114                zero_page = get_huge_zero_page();
1115                set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1116                                zero_page);
1117                ret = 0;
1118                goto out_unlock;
1119        }
1120
1121        if (!vma_is_dax(vma)) {
1122                /* thp accounting separate from pmd_devmap accounting */
1123                src_page = pmd_page(pmd);
1124                VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1125                get_page(src_page);
1126                page_dup_rmap(src_page, true);
1127                add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1128                atomic_long_inc(&dst_mm->nr_ptes);
1129                pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1130        }
1131
1132        pmdp_set_wrprotect(src_mm, addr, src_pmd);
1133        pmd = pmd_mkold(pmd_wrprotect(pmd));
1134        set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1135
1136        ret = 0;
1137out_unlock:
1138        spin_unlock(src_ptl);
1139        spin_unlock(dst_ptl);
1140out:
1141        return ret;
1142}
1143
1144void huge_pmd_set_accessed(struct mm_struct *mm,
1145                           struct vm_area_struct *vma,
1146                           unsigned long address,
1147                           pmd_t *pmd, pmd_t orig_pmd,
1148                           int dirty)
1149{
1150        spinlock_t *ptl;
1151        pmd_t entry;
1152        unsigned long haddr;
1153
1154        ptl = pmd_lock(mm, pmd);
1155        if (unlikely(!pmd_same(*pmd, orig_pmd)))
1156                goto unlock;
1157
1158        entry = pmd_mkyoung(orig_pmd);
1159        haddr = address & HPAGE_PMD_MASK;
1160        if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1161                update_mmu_cache_pmd(vma, address, pmd);
1162
1163unlock:
1164        spin_unlock(ptl);
1165}
1166
1167static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1168                                        struct vm_area_struct *vma,
1169                                        unsigned long address,
1170                                        pmd_t *pmd, pmd_t orig_pmd,
1171                                        struct page *page,
1172                                        unsigned long haddr)
1173{
1174        struct mem_cgroup *memcg;
1175        spinlock_t *ptl;
1176        pgtable_t pgtable;
1177        pmd_t _pmd;
1178        int ret = 0, i;
1179        struct page **pages;
1180        unsigned long mmun_start;       /* For mmu_notifiers */
1181        unsigned long mmun_end;         /* For mmu_notifiers */
1182
1183        pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1184                        GFP_KERNEL);
1185        if (unlikely(!pages)) {
1186                ret |= VM_FAULT_OOM;
1187                goto out;
1188        }
1189
1190        for (i = 0; i < HPAGE_PMD_NR; i++) {
1191                pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1192                                               __GFP_OTHER_NODE,
1193                                               vma, address, page_to_nid(page));
1194                if (unlikely(!pages[i] ||
1195                             mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1196                                                   &memcg, false))) {
1197                        if (pages[i])
1198                                put_page(pages[i]);
1199                        while (--i >= 0) {
1200                                memcg = (void *)page_private(pages[i]);
1201                                set_page_private(pages[i], 0);
1202                                mem_cgroup_cancel_charge(pages[i], memcg,
1203                                                false);
1204                                put_page(pages[i]);
1205                        }
1206                        kfree(pages);
1207                        ret |= VM_FAULT_OOM;
1208                        goto out;
1209                }
1210                set_page_private(pages[i], (unsigned long)memcg);
1211        }
1212
1213        for (i = 0; i < HPAGE_PMD_NR; i++) {
1214                copy_user_highpage(pages[i], page + i,
1215                                   haddr + PAGE_SIZE * i, vma);
1216                __SetPageUptodate(pages[i]);
1217                cond_resched();
1218        }
1219
1220        mmun_start = haddr;
1221        mmun_end   = haddr + HPAGE_PMD_SIZE;
1222        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1223
1224        ptl = pmd_lock(mm, pmd);
1225        if (unlikely(!pmd_same(*pmd, orig_pmd)))
1226                goto out_free_pages;
1227        VM_BUG_ON_PAGE(!PageHead(page), page);
1228
1229        pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1230        /* leave pmd empty until pte is filled */
1231
1232        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1233        pmd_populate(mm, &_pmd, pgtable);
1234
1235        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1236                pte_t *pte, entry;
1237                entry = mk_pte(pages[i], vma->vm_page_prot);
1238                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1239                memcg = (void *)page_private(pages[i]);
1240                set_page_private(pages[i], 0);
1241                page_add_new_anon_rmap(pages[i], vma, haddr, false);
1242                mem_cgroup_commit_charge(pages[i], memcg, false, false);
1243                lru_cache_add_active_or_unevictable(pages[i], vma);
1244                pte = pte_offset_map(&_pmd, haddr);
1245                VM_BUG_ON(!pte_none(*pte));
1246                set_pte_at(mm, haddr, pte, entry);
1247                pte_unmap(pte);
1248        }
1249        kfree(pages);
1250
1251        smp_wmb(); /* make pte visible before pmd */
1252        pmd_populate(mm, pmd, pgtable);
1253        page_remove_rmap(page, true);
1254        spin_unlock(ptl);
1255
1256        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1257
1258        ret |= VM_FAULT_WRITE;
1259        put_page(page);
1260
1261out:
1262        return ret;
1263
1264out_free_pages:
1265        spin_unlock(ptl);
1266        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1267        for (i = 0; i < HPAGE_PMD_NR; i++) {
1268                memcg = (void *)page_private(pages[i]);
1269                set_page_private(pages[i], 0);
1270                mem_cgroup_cancel_charge(pages[i], memcg, false);
1271                put_page(pages[i]);
1272        }
1273        kfree(pages);
1274        goto out;
1275}
1276
1277int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1278                        unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1279{
1280        spinlock_t *ptl;
1281        int ret = 0;
1282        struct page *page = NULL, *new_page;
1283        struct mem_cgroup *memcg;
1284        unsigned long haddr;
1285        unsigned long mmun_start;       /* For mmu_notifiers */
1286        unsigned long mmun_end;         /* For mmu_notifiers */
1287        gfp_t huge_gfp;                 /* for allocation and charge */
1288
1289        ptl = pmd_lockptr(mm, pmd);
1290        VM_BUG_ON_VMA(!vma->anon_vma, vma);
1291        haddr = address & HPAGE_PMD_MASK;
1292        if (is_huge_zero_pmd(orig_pmd))
1293                goto alloc;
1294        spin_lock(ptl);
1295        if (unlikely(!pmd_same(*pmd, orig_pmd)))
1296                goto out_unlock;
1297
1298        page = pmd_page(orig_pmd);
1299        VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1300        /*
1301         * We can only reuse the page if nobody else maps the huge page or it's
1302         * part.
1303         */
1304        if (page_trans_huge_mapcount(page, NULL) == 1) {
1305                pmd_t entry;
1306                entry = pmd_mkyoung(orig_pmd);
1307                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1308                if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1309                        update_mmu_cache_pmd(vma, address, pmd);
1310                ret |= VM_FAULT_WRITE;
1311                goto out_unlock;
1312        }
1313        get_page(page);
1314        spin_unlock(ptl);
1315alloc:
1316        if (transparent_hugepage_enabled(vma) &&
1317            !transparent_hugepage_debug_cow()) {
1318                huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1319                new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1320        } else
1321                new_page = NULL;
1322
1323        if (likely(new_page)) {
1324                prep_transhuge_page(new_page);
1325        } else {
1326                if (!page) {
1327                        split_huge_pmd(vma, pmd, address);
1328                        ret |= VM_FAULT_FALLBACK;
1329                } else {
1330                        ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1331                                        pmd, orig_pmd, page, haddr);
1332                        if (ret & VM_FAULT_OOM) {
1333                                split_huge_pmd(vma, pmd, address);
1334                                ret |= VM_FAULT_FALLBACK;
1335                        }
1336                        put_page(page);
1337                }
1338                count_vm_event(THP_FAULT_FALLBACK);
1339                goto out;
1340        }
1341
1342        if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1343                                           true))) {
1344                put_page(new_page);
1345                if (page) {
1346                        split_huge_pmd(vma, pmd, address);
1347                        put_page(page);
1348                } else
1349                        split_huge_pmd(vma, pmd, address);
1350                ret |= VM_FAULT_FALLBACK;
1351                count_vm_event(THP_FAULT_FALLBACK);
1352                goto out;
1353        }
1354
1355        count_vm_event(THP_FAULT_ALLOC);
1356
1357        if (!page)
1358                clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1359        else
1360                copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1361        __SetPageUptodate(new_page);
1362
1363        mmun_start = haddr;
1364        mmun_end   = haddr + HPAGE_PMD_SIZE;
1365        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1366
1367        spin_lock(ptl);
1368        if (page)
1369                put_page(page);
1370        if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1371                spin_unlock(ptl);
1372                mem_cgroup_cancel_charge(new_page, memcg, true);
1373                put_page(new_page);
1374                goto out_mn;
1375        } else {
1376                pmd_t entry;
1377                entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1378                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1379                pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1380                page_add_new_anon_rmap(new_page, vma, haddr, true);
1381                mem_cgroup_commit_charge(new_page, memcg, false, true);
1382                lru_cache_add_active_or_unevictable(new_page, vma);
1383                set_pmd_at(mm, haddr, pmd, entry);
1384                update_mmu_cache_pmd(vma, address, pmd);
1385                if (!page) {
1386                        add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1387                        put_huge_zero_page();
1388                } else {
1389                        VM_BUG_ON_PAGE(!PageHead(page), page);
1390                        page_remove_rmap(page, true);
1391                        put_page(page);
1392                }
1393                ret |= VM_FAULT_WRITE;
1394        }
1395        spin_unlock(ptl);
1396out_mn:
1397        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1398out:
1399        return ret;
1400out_unlock:
1401        spin_unlock(ptl);
1402        return ret;
1403}
1404
1405struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1406                                   unsigned long addr,
1407                                   pmd_t *pmd,
1408                                   unsigned int flags)
1409{
1410        struct mm_struct *mm = vma->vm_mm;
1411        struct page *page = NULL;
1412
1413        assert_spin_locked(pmd_lockptr(mm, pmd));
1414
1415        if (flags & FOLL_WRITE && !pmd_write(*pmd))
1416                goto out;
1417
1418        /* Avoid dumping huge zero page */
1419        if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1420                return ERR_PTR(-EFAULT);
1421
1422        /* Full NUMA hinting faults to serialise migration in fault paths */
1423        if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1424                goto out;
1425
1426        page = pmd_page(*pmd);
1427        VM_BUG_ON_PAGE(!PageHead(page), page);
1428        if (flags & FOLL_TOUCH)
1429                touch_pmd(vma, addr, pmd);
1430        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1431                /*
1432                 * We don't mlock() pte-mapped THPs. This way we can avoid
1433                 * leaking mlocked pages into non-VM_LOCKED VMAs.
1434                 *
1435                 * In most cases the pmd is the only mapping of the page as we
1436                 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1437                 * writable private mappings in populate_vma_page_range().
1438                 *
1439                 * The only scenario when we have the page shared here is if we
1440                 * mlocking read-only mapping shared over fork(). We skip
1441                 * mlocking such pages.
1442                 */
1443                if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1444                                page->mapping && trylock_page(page)) {
1445                        lru_add_drain();
1446                        if (page->mapping)
1447                                mlock_vma_page(page);
1448                        unlock_page(page);
1449                }
1450        }
1451        page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1452        VM_BUG_ON_PAGE(!PageCompound(page), page);
1453        if (flags & FOLL_GET)
1454                get_page(page);
1455
1456out:
1457        return page;
1458}
1459
1460/* NUMA hinting page fault entry point for trans huge pmds */
1461int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1462                                unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1463{
1464        spinlock_t *ptl;
1465        struct anon_vma *anon_vma = NULL;
1466        struct page *page;
1467        unsigned long haddr = addr & HPAGE_PMD_MASK;
1468        int page_nid = -1, this_nid = numa_node_id();
1469        int target_nid, last_cpupid = -1;
1470        bool page_locked;
1471        bool migrated = false;
1472        bool was_writable;
1473        int flags = 0;
1474
1475        /* A PROT_NONE fault should not end up here */
1476        BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1477
1478        ptl = pmd_lock(mm, pmdp);
1479        if (unlikely(!pmd_same(pmd, *pmdp)))
1480                goto out_unlock;
1481
1482        /*
1483         * If there are potential migrations, wait for completion and retry
1484         * without disrupting NUMA hinting information. Do not relock and
1485         * check_same as the page may no longer be mapped.
1486         */
1487        if (unlikely(pmd_trans_migrating(*pmdp))) {
1488                page = pmd_page(*pmdp);
1489                spin_unlock(ptl);
1490                wait_on_page_locked(page);
1491                goto out;
1492        }
1493
1494        page = pmd_page(pmd);
1495        BUG_ON(is_huge_zero_page(page));
1496        page_nid = page_to_nid(page);
1497        last_cpupid = page_cpupid_last(page);
1498        count_vm_numa_event(NUMA_HINT_FAULTS);
1499        if (page_nid == this_nid) {
1500                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1501                flags |= TNF_FAULT_LOCAL;
1502        }
1503
1504        /* See similar comment in do_numa_page for explanation */
1505        if (!(vma->vm_flags & VM_WRITE))
1506                flags |= TNF_NO_GROUP;
1507
1508        /*
1509         * Acquire the page lock to serialise THP migrations but avoid dropping
1510         * page_table_lock if at all possible
1511         */
1512        page_locked = trylock_page(page);
1513        target_nid = mpol_misplaced(page, vma, haddr);
1514        if (target_nid == -1) {
1515                /* If the page was locked, there are no parallel migrations */
1516                if (page_locked)
1517                        goto clear_pmdnuma;
1518        }
1519
1520        /* Migration could have started since the pmd_trans_migrating check */
1521        if (!page_locked) {
1522                spin_unlock(ptl);
1523                wait_on_page_locked(page);
1524                page_nid = -1;
1525                goto out;
1526        }
1527
1528        /*
1529         * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1530         * to serialises splits
1531         */
1532        get_page(page);
1533        spin_unlock(ptl);
1534        anon_vma = page_lock_anon_vma_read(page);
1535
1536        /* Confirm the PMD did not change while page_table_lock was released */
1537        spin_lock(ptl);
1538        if (unlikely(!pmd_same(pmd, *pmdp))) {
1539                unlock_page(page);
1540                put_page(page);
1541                page_nid = -1;
1542                goto out_unlock;
1543        }
1544
1545        /* Bail if we fail to protect against THP splits for any reason */
1546        if (unlikely(!anon_vma)) {
1547                put_page(page);
1548                page_nid = -1;
1549                goto clear_pmdnuma;
1550        }
1551
1552        /*
1553         * Migrate the THP to the requested node, returns with page unlocked
1554         * and access rights restored.
1555         */
1556        spin_unlock(ptl);
1557        migrated = migrate_misplaced_transhuge_page(mm, vma,
1558                                pmdp, pmd, addr, page, target_nid);
1559        if (migrated) {
1560                flags |= TNF_MIGRATED;
1561                page_nid = target_nid;
1562        } else
1563                flags |= TNF_MIGRATE_FAIL;
1564
1565        goto out;
1566clear_pmdnuma:
1567        BUG_ON(!PageLocked(page));
1568        was_writable = pmd_write(pmd);
1569        pmd = pmd_modify(pmd, vma->vm_page_prot);
1570        pmd = pmd_mkyoung(pmd);
1571        if (was_writable)
1572                pmd = pmd_mkwrite(pmd);
1573        set_pmd_at(mm, haddr, pmdp, pmd);
1574        update_mmu_cache_pmd(vma, addr, pmdp);
1575        unlock_page(page);
1576out_unlock:
1577        spin_unlock(ptl);
1578
1579out:
1580        if (anon_vma)
1581                page_unlock_anon_vma_read(anon_vma);
1582
1583        if (page_nid != -1)
1584                task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1585
1586        return 0;
1587}
1588
1589int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1590                pmd_t *pmd, unsigned long addr, unsigned long next)
1591
1592{
1593        spinlock_t *ptl;
1594        pmd_t orig_pmd;
1595        struct page *page;
1596        struct mm_struct *mm = tlb->mm;
1597        int ret = 0;
1598
1599        ptl = pmd_trans_huge_lock(pmd, vma);
1600        if (!ptl)
1601                goto out_unlocked;
1602
1603        orig_pmd = *pmd;
1604        if (is_huge_zero_pmd(orig_pmd)) {
1605                ret = 1;
1606                goto out;
1607        }
1608
1609        page = pmd_page(orig_pmd);
1610        /*
1611         * If other processes are mapping this page, we couldn't discard
1612         * the page unless they all do MADV_FREE so let's skip the page.
1613         */
1614        if (page_mapcount(page) != 1)
1615                goto out;
1616
1617        if (!trylock_page(page))
1618                goto out;
1619
1620        /*
1621         * If user want to discard part-pages of THP, split it so MADV_FREE
1622         * will deactivate only them.
1623         */
1624        if (next - addr != HPAGE_PMD_SIZE) {
1625                get_page(page);
1626                spin_unlock(ptl);
1627                split_huge_page(page);
1628                put_page(page);
1629                unlock_page(page);
1630                goto out_unlocked;
1631        }
1632
1633        if (PageDirty(page))
1634                ClearPageDirty(page);
1635        unlock_page(page);
1636
1637        if (PageActive(page))
1638                deactivate_page(page);
1639
1640        if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1641                orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1642                        tlb->fullmm);
1643                orig_pmd = pmd_mkold(orig_pmd);
1644                orig_pmd = pmd_mkclean(orig_pmd);
1645
1646                set_pmd_at(mm, addr, pmd, orig_pmd);
1647                tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1648        }
1649        ret = 1;
1650out:
1651        spin_unlock(ptl);
1652out_unlocked:
1653        return ret;
1654}
1655
1656int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1657                 pmd_t *pmd, unsigned long addr)
1658{
1659        pmd_t orig_pmd;
1660        spinlock_t *ptl;
1661
1662        ptl = __pmd_trans_huge_lock(pmd, vma);
1663        if (!ptl)
1664                return 0;
1665        /*
1666         * For architectures like ppc64 we look at deposited pgtable
1667         * when calling pmdp_huge_get_and_clear. So do the
1668         * pgtable_trans_huge_withdraw after finishing pmdp related
1669         * operations.
1670         */
1671        orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1672                        tlb->fullmm);
1673        tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1674        if (vma_is_dax(vma)) {
1675                spin_unlock(ptl);
1676                if (is_huge_zero_pmd(orig_pmd))
1677                        tlb_remove_page(tlb, pmd_page(orig_pmd));
1678        } else if (is_huge_zero_pmd(orig_pmd)) {
1679                pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1680                atomic_long_dec(&tlb->mm->nr_ptes);
1681                spin_unlock(ptl);
1682                tlb_remove_page(tlb, pmd_page(orig_pmd));
1683        } else {
1684                struct page *page = pmd_page(orig_pmd);
1685                page_remove_rmap(page, true);
1686                VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1687                add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1688                VM_BUG_ON_PAGE(!PageHead(page), page);
1689                pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1690                atomic_long_dec(&tlb->mm->nr_ptes);
1691                spin_unlock(ptl);
1692                tlb_remove_page(tlb, page);
1693        }
1694        return 1;
1695}
1696
1697bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1698                  unsigned long new_addr, unsigned long old_end,
1699                  pmd_t *old_pmd, pmd_t *new_pmd)
1700{
1701        spinlock_t *old_ptl, *new_ptl;
1702        pmd_t pmd;
1703        struct mm_struct *mm = vma->vm_mm;
1704
1705        if ((old_addr & ~HPAGE_PMD_MASK) ||
1706            (new_addr & ~HPAGE_PMD_MASK) ||
1707            old_end - old_addr < HPAGE_PMD_SIZE)
1708                return false;
1709
1710        /*
1711         * The destination pmd shouldn't be established, free_pgtables()
1712         * should have release it.
1713         */
1714        if (WARN_ON(!pmd_none(*new_pmd))) {
1715                VM_BUG_ON(pmd_trans_huge(*new_pmd));
1716                return false;
1717        }
1718
1719        /*
1720         * We don't have to worry about the ordering of src and dst
1721         * ptlocks because exclusive mmap_sem prevents deadlock.
1722         */
1723        old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1724        if (old_ptl) {
1725                new_ptl = pmd_lockptr(mm, new_pmd);
1726                if (new_ptl != old_ptl)
1727                        spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1728                pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1729                VM_BUG_ON(!pmd_none(*new_pmd));
1730
1731                if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1732                                vma_is_anonymous(vma)) {
1733                        pgtable_t pgtable;
1734                        pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1735                        pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1736                }
1737                set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1738                if (new_ptl != old_ptl)
1739                        spin_unlock(new_ptl);
1740                spin_unlock(old_ptl);
1741                return true;
1742        }
1743        return false;
1744}
1745
1746/*
1747 * Returns
1748 *  - 0 if PMD could not be locked
1749 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1750 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1751 */
1752int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1753                unsigned long addr, pgprot_t newprot, int prot_numa)
1754{
1755        struct mm_struct *mm = vma->vm_mm;
1756        spinlock_t *ptl;
1757        int ret = 0;
1758
1759        ptl = __pmd_trans_huge_lock(pmd, vma);
1760        if (ptl) {
1761                pmd_t entry;
1762                bool preserve_write = prot_numa && pmd_write(*pmd);
1763                ret = 1;
1764
1765                /*
1766                 * Avoid trapping faults against the zero page. The read-only
1767                 * data is likely to be read-cached on the local CPU and
1768                 * local/remote hits to the zero page are not interesting.
1769                 */
1770                if (prot_numa && is_huge_zero_pmd(*pmd)) {
1771                        spin_unlock(ptl);
1772                        return ret;
1773                }
1774
1775                if (!prot_numa || !pmd_protnone(*pmd)) {
1776                        entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1777                        entry = pmd_modify(entry, newprot);
1778                        if (preserve_write)
1779                                entry = pmd_mkwrite(entry);
1780                        ret = HPAGE_PMD_NR;
1781                        set_pmd_at(mm, addr, pmd, entry);
1782                        BUG_ON(!preserve_write && pmd_write(entry));
1783                }
1784                spin_unlock(ptl);
1785        }
1786
1787        return ret;
1788}
1789
1790/*
1791 * Returns true if a given pmd maps a thp, false otherwise.
1792 *
1793 * Note that if it returns true, this routine returns without unlocking page
1794 * table lock. So callers must unlock it.
1795 */
1796spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1797{
1798        spinlock_t *ptl;
1799        ptl = pmd_lock(vma->vm_mm, pmd);
1800        if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1801                return ptl;
1802        spin_unlock(ptl);
1803        return NULL;
1804}
1805
1806#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1807
1808int hugepage_madvise(struct vm_area_struct *vma,
1809                     unsigned long *vm_flags, int advice)
1810{
1811        switch (advice) {
1812        case MADV_HUGEPAGE:
1813#ifdef CONFIG_S390
1814                /*
1815                 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1816                 * can't handle this properly after s390_enable_sie, so we simply
1817                 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1818                 */
1819                if (mm_has_pgste(vma->vm_mm))
1820                        return 0;
1821#endif
1822                /*
1823                 * Be somewhat over-protective like KSM for now!
1824                 */
1825                if (*vm_flags & VM_NO_THP)
1826                        return -EINVAL;
1827                *vm_flags &= ~VM_NOHUGEPAGE;
1828                *vm_flags |= VM_HUGEPAGE;
1829                /*
1830                 * If the vma become good for khugepaged to scan,
1831                 * register it here without waiting a page fault that
1832                 * may not happen any time soon.
1833                 */
1834                if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1835                        return -ENOMEM;
1836                break;
1837        case MADV_NOHUGEPAGE:
1838                /*
1839                 * Be somewhat over-protective like KSM for now!
1840                 */
1841                if (*vm_flags & VM_NO_THP)
1842                        return -EINVAL;
1843                *vm_flags &= ~VM_HUGEPAGE;
1844                *vm_flags |= VM_NOHUGEPAGE;
1845                /*
1846                 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1847                 * this vma even if we leave the mm registered in khugepaged if
1848                 * it got registered before VM_NOHUGEPAGE was set.
1849                 */
1850                break;
1851        }
1852
1853        return 0;
1854}
1855
1856static int __init khugepaged_slab_init(void)
1857{
1858        mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1859                                          sizeof(struct mm_slot),
1860                                          __alignof__(struct mm_slot), 0, NULL);
1861        if (!mm_slot_cache)
1862                return -ENOMEM;
1863
1864        return 0;
1865}
1866
1867static void __init khugepaged_slab_exit(void)
1868{
1869        kmem_cache_destroy(mm_slot_cache);
1870}
1871
1872static inline struct mm_slot *alloc_mm_slot(void)
1873{
1874        if (!mm_slot_cache)     /* initialization failed */
1875                return NULL;
1876        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1877}
1878
1879static inline void free_mm_slot(struct mm_slot *mm_slot)
1880{
1881        kmem_cache_free(mm_slot_cache, mm_slot);
1882}
1883
1884static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1885{
1886        struct mm_slot *mm_slot;
1887
1888        hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1889                if (mm == mm_slot->mm)
1890                        return mm_slot;
1891
1892        return NULL;
1893}
1894
1895static void insert_to_mm_slots_hash(struct mm_struct *mm,
1896                                    struct mm_slot *mm_slot)
1897{
1898        mm_slot->mm = mm;
1899        hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1900}
1901
1902static inline int khugepaged_test_exit(struct mm_struct *mm)
1903{
1904        return atomic_read(&mm->mm_users) == 0;
1905}
1906
1907int __khugepaged_enter(struct mm_struct *mm)
1908{
1909        struct mm_slot *mm_slot;
1910        int wakeup;
1911
1912        mm_slot = alloc_mm_slot();
1913        if (!mm_slot)
1914                return -ENOMEM;
1915
1916        /* __khugepaged_exit() must not run from under us */
1917        VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1918        if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1919                free_mm_slot(mm_slot);
1920                return 0;
1921        }
1922
1923        spin_lock(&khugepaged_mm_lock);
1924        insert_to_mm_slots_hash(mm, mm_slot);
1925        /*
1926         * Insert just behind the scanning cursor, to let the area settle
1927         * down a little.
1928         */
1929        wakeup = list_empty(&khugepaged_scan.mm_head);
1930        list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1931        spin_unlock(&khugepaged_mm_lock);
1932
1933        atomic_inc(&mm->mm_count);
1934        if (wakeup)
1935                wake_up_interruptible(&khugepaged_wait);
1936
1937        return 0;
1938}
1939
1940int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1941                               unsigned long vm_flags)
1942{
1943        unsigned long hstart, hend;
1944        if (!vma->anon_vma)
1945                /*
1946                 * Not yet faulted in so we will register later in the
1947                 * page fault if needed.
1948                 */
1949                return 0;
1950        if (vma->vm_ops || (vm_flags & VM_NO_THP))
1951                /* khugepaged not yet working on file or special mappings */
1952                return 0;
1953        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1954        hend = vma->vm_end & HPAGE_PMD_MASK;
1955        if (hstart < hend)
1956                return khugepaged_enter(vma, vm_flags);
1957        return 0;
1958}
1959
1960void __khugepaged_exit(struct mm_struct *mm)
1961{
1962        struct mm_slot *mm_slot;
1963        int free = 0;
1964
1965        spin_lock(&khugepaged_mm_lock);
1966        mm_slot = get_mm_slot(mm);
1967        if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1968                hash_del(&mm_slot->hash);
1969                list_del(&mm_slot->mm_node);
1970                free = 1;
1971        }
1972        spin_unlock(&khugepaged_mm_lock);
1973
1974        if (free) {
1975                clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1976                free_mm_slot(mm_slot);
1977                mmdrop(mm);
1978        } else if (mm_slot) {
1979                /*
1980                 * This is required to serialize against
1981                 * khugepaged_test_exit() (which is guaranteed to run
1982                 * under mmap sem read mode). Stop here (after we
1983                 * return all pagetables will be destroyed) until
1984                 * khugepaged has finished working on the pagetables
1985                 * under the mmap_sem.
1986                 */
1987                down_write(&mm->mmap_sem);
1988                up_write(&mm->mmap_sem);
1989        }
1990}
1991
1992static void release_pte_page(struct page *page)
1993{
1994        /* 0 stands for page_is_file_cache(page) == false */
1995        dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1996        unlock_page(page);
1997        putback_lru_page(page);
1998}
1999
2000static void release_pte_pages(pte_t *pte, pte_t *_pte)
2001{
2002        while (--_pte >= pte) {
2003                pte_t pteval = *_pte;
2004                if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2005                        release_pte_page(pte_page(pteval));
2006        }
2007}
2008
2009static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2010                                        unsigned long address,
2011                                        pte_t *pte)
2012{
2013        struct page *page = NULL;
2014        pte_t *_pte;
2015        int none_or_zero = 0, result = 0;
2016        bool referenced = false, writable = false;
2017
2018        for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2019             _pte++, address += PAGE_SIZE) {
2020                pte_t pteval = *_pte;
2021                if (pte_none(pteval) || (pte_present(pteval) &&
2022                                is_zero_pfn(pte_pfn(pteval)))) {
2023                        if (!userfaultfd_armed(vma) &&
2024                            ++none_or_zero <= khugepaged_max_ptes_none) {
2025                                continue;
2026                        } else {
2027                                result = SCAN_EXCEED_NONE_PTE;
2028                                goto out;
2029                        }
2030                }
2031                if (!pte_present(pteval)) {
2032                        result = SCAN_PTE_NON_PRESENT;
2033                        goto out;
2034                }
2035                page = vm_normal_page(vma, address, pteval);
2036                if (unlikely(!page)) {
2037                        result = SCAN_PAGE_NULL;
2038                        goto out;
2039                }
2040
2041                VM_BUG_ON_PAGE(PageCompound(page), page);
2042                VM_BUG_ON_PAGE(!PageAnon(page), page);
2043                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2044
2045                /*
2046                 * We can do it before isolate_lru_page because the
2047                 * page can't be freed from under us. NOTE: PG_lock
2048                 * is needed to serialize against split_huge_page
2049                 * when invoked from the VM.
2050                 */
2051                if (!trylock_page(page)) {
2052                        result = SCAN_PAGE_LOCK;
2053                        goto out;
2054                }
2055
2056                /*
2057                 * cannot use mapcount: can't collapse if there's a gup pin.
2058                 * The page must only be referenced by the scanned process
2059                 * and page swap cache.
2060                 */
2061                if (page_count(page) != 1 + !!PageSwapCache(page)) {
2062                        unlock_page(page);
2063                        result = SCAN_PAGE_COUNT;
2064                        goto out;
2065                }
2066                if (pte_write(pteval)) {
2067                        writable = true;
2068                } else {
2069                        if (PageSwapCache(page) &&
2070                            !reuse_swap_page(page, NULL)) {
2071                                unlock_page(page);
2072                                result = SCAN_SWAP_CACHE_PAGE;
2073                                goto out;
2074                        }
2075                        /*
2076                         * Page is not in the swap cache. It can be collapsed
2077                         * into a THP.
2078                         */
2079                }
2080
2081                /*
2082                 * Isolate the page to avoid collapsing an hugepage
2083                 * currently in use by the VM.
2084                 */
2085                if (isolate_lru_page(page)) {
2086                        unlock_page(page);
2087                        result = SCAN_DEL_PAGE_LRU;
2088                        goto out;
2089                }
2090                /* 0 stands for page_is_file_cache(page) == false */
2091                inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2092                VM_BUG_ON_PAGE(!PageLocked(page), page);
2093                VM_BUG_ON_PAGE(PageLRU(page), page);
2094
2095                /* If there is no mapped pte young don't collapse the page */
2096                if (pte_young(pteval) ||
2097                    page_is_young(page) || PageReferenced(page) ||
2098                    mmu_notifier_test_young(vma->vm_mm, address))
2099                        referenced = true;
2100        }
2101        if (likely(writable)) {
2102                if (likely(referenced)) {
2103                        result = SCAN_SUCCEED;
2104                        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2105                                                            referenced, writable, result);
2106                        return 1;
2107                }
2108        } else {
2109                result = SCAN_PAGE_RO;
2110        }
2111
2112out:
2113        release_pte_pages(pte, _pte);
2114        trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2115                                            referenced, writable, result);
2116        return 0;
2117}
2118
2119static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2120                                      struct vm_area_struct *vma,
2121                                      unsigned long address,
2122                                      spinlock_t *ptl)
2123{
2124        pte_t *_pte;
2125        for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2126                pte_t pteval = *_pte;
2127                struct page *src_page;
2128
2129                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2130                        clear_user_highpage(page, address);
2131                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2132                        if (is_zero_pfn(pte_pfn(pteval))) {
2133                                /*
2134                                 * ptl mostly unnecessary.
2135                                 */
2136                                spin_lock(ptl);
2137                                /*
2138                                 * paravirt calls inside pte_clear here are
2139                                 * superfluous.
2140                                 */
2141                                pte_clear(vma->vm_mm, address, _pte);
2142                                spin_unlock(ptl);
2143                        }
2144                } else {
2145                        src_page = pte_page(pteval);
2146                        copy_user_highpage(page, src_page, address, vma);
2147                        VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2148                        release_pte_page(src_page);
2149                        /*
2150                         * ptl mostly unnecessary, but preempt has to
2151                         * be disabled to update the per-cpu stats
2152                         * inside page_remove_rmap().
2153                         */
2154                        spin_lock(ptl);
2155                        /*
2156                         * paravirt calls inside pte_clear here are
2157                         * superfluous.
2158                         */
2159                        pte_clear(vma->vm_mm, address, _pte);
2160                        page_remove_rmap(src_page, false);
2161                        spin_unlock(ptl);
2162                        free_page_and_swap_cache(src_page);
2163                }
2164
2165                address += PAGE_SIZE;
2166                page++;
2167        }
2168}
2169
2170static void khugepaged_alloc_sleep(void)
2171{
2172        DEFINE_WAIT(wait);
2173
2174        add_wait_queue(&khugepaged_wait, &wait);
2175        freezable_schedule_timeout_interruptible(
2176                msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2177        remove_wait_queue(&khugepaged_wait, &wait);
2178}
2179
2180static int khugepaged_node_load[MAX_NUMNODES];
2181
2182static bool khugepaged_scan_abort(int nid)
2183{
2184        int i;
2185
2186        /*
2187         * If zone_reclaim_mode is disabled, then no extra effort is made to
2188         * allocate memory locally.
2189         */
2190        if (!zone_reclaim_mode)
2191                return false;
2192
2193        /* If there is a count for this node already, it must be acceptable */
2194        if (khugepaged_node_load[nid])
2195                return false;
2196
2197        for (i = 0; i < MAX_NUMNODES; i++) {
2198                if (!khugepaged_node_load[i])
2199                        continue;
2200                if (node_distance(nid, i) > RECLAIM_DISTANCE)
2201                        return true;
2202        }
2203        return false;
2204}
2205
2206#ifdef CONFIG_NUMA
2207static int khugepaged_find_target_node(void)
2208{
2209        static int last_khugepaged_target_node = NUMA_NO_NODE;
2210        int nid, target_node = 0, max_value = 0;
2211
2212        /* find first node with max normal pages hit */
2213        for (nid = 0; nid < MAX_NUMNODES; nid++)
2214                if (khugepaged_node_load[nid] > max_value) {
2215                        max_value = khugepaged_node_load[nid];
2216                        target_node = nid;
2217                }
2218
2219        /* do some balance if several nodes have the same hit record */
2220        if (target_node <= last_khugepaged_target_node)
2221                for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2222                                nid++)
2223                        if (max_value == khugepaged_node_load[nid]) {
2224                                target_node = nid;
2225                                break;
2226                        }
2227
2228        last_khugepaged_target_node = target_node;
2229        return target_node;
2230}
2231
2232static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2233{
2234        if (IS_ERR(*hpage)) {
2235                if (!*wait)
2236                        return false;
2237
2238                *wait = false;
2239                *hpage = NULL;
2240                khugepaged_alloc_sleep();
2241        } else if (*hpage) {
2242                put_page(*hpage);
2243                *hpage = NULL;
2244        }
2245
2246        return true;
2247}
2248
2249static struct page *
2250khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2251                       unsigned long address, int node)
2252{
2253        VM_BUG_ON_PAGE(*hpage, *hpage);
2254
2255        /*
2256         * Before allocating the hugepage, release the mmap_sem read lock.
2257         * The allocation can take potentially a long time if it involves
2258         * sync compaction, and we do not need to hold the mmap_sem during
2259         * that. We will recheck the vma after taking it again in write mode.
2260         */
2261        up_read(&mm->mmap_sem);
2262
2263        *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2264        if (unlikely(!*hpage)) {
2265                count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2266                *hpage = ERR_PTR(-ENOMEM);
2267                return NULL;
2268        }
2269
2270        prep_transhuge_page(*hpage);
2271        count_vm_event(THP_COLLAPSE_ALLOC);
2272        return *hpage;
2273}
2274#else
2275static int khugepaged_find_target_node(void)
2276{
2277        return 0;
2278}
2279
2280static inline struct page *alloc_khugepaged_hugepage(void)
2281{
2282        struct page *page;
2283
2284        page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2285                           HPAGE_PMD_ORDER);
2286        if (page)
2287                prep_transhuge_page(page);
2288        return page;
2289}
2290
2291static struct page *khugepaged_alloc_hugepage(bool *wait)
2292{
2293        struct page *hpage;
2294
2295        do {
2296                hpage = alloc_khugepaged_hugepage();
2297                if (!hpage) {
2298                        count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2299                        if (!*wait)
2300                                return NULL;
2301
2302                        *wait = false;
2303                        khugepaged_alloc_sleep();
2304                } else
2305                        count_vm_event(THP_COLLAPSE_ALLOC);
2306        } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2307
2308        return hpage;
2309}
2310
2311static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2312{
2313        if (!*hpage)
2314                *hpage = khugepaged_alloc_hugepage(wait);
2315
2316        if (unlikely(!*hpage))
2317                return false;
2318
2319        return true;
2320}
2321
2322static struct page *
2323khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2324                       unsigned long address, int node)
2325{
2326        up_read(&mm->mmap_sem);
2327        VM_BUG_ON(!*hpage);
2328
2329        return  *hpage;
2330}
2331#endif
2332
2333static bool hugepage_vma_check(struct vm_area_struct *vma)
2334{
2335        if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2336            (vma->vm_flags & VM_NOHUGEPAGE))
2337                return false;
2338        if (!vma->anon_vma || vma->vm_ops)
2339                return false;
2340        if (is_vma_temporary_stack(vma))
2341                return false;
2342        return !(vma->vm_flags & VM_NO_THP);
2343}
2344
2345static void collapse_huge_page(struct mm_struct *mm,
2346                                   unsigned long address,
2347                                   struct page **hpage,
2348                                   struct vm_area_struct *vma,
2349                                   int node)
2350{
2351        pmd_t *pmd, _pmd;
2352        pte_t *pte;
2353        pgtable_t pgtable;
2354        struct page *new_page;
2355        spinlock_t *pmd_ptl, *pte_ptl;
2356        int isolated = 0, result = 0;
2357        unsigned long hstart, hend;
2358        struct mem_cgroup *memcg;
2359        unsigned long mmun_start;       /* For mmu_notifiers */
2360        unsigned long mmun_end;         /* For mmu_notifiers */
2361        gfp_t gfp;
2362
2363        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2364
2365        /* Only allocate from the target node */
2366        gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2367
2368        /* release the mmap_sem read lock. */
2369        new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2370        if (!new_page) {
2371                result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2372                goto out_nolock;
2373        }
2374
2375        if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2376                result = SCAN_CGROUP_CHARGE_FAIL;
2377                goto out_nolock;
2378        }
2379
2380        /*
2381         * Prevent all access to pagetables with the exception of
2382         * gup_fast later hanlded by the ptep_clear_flush and the VM
2383         * handled by the anon_vma lock + PG_lock.
2384         */
2385        down_write(&mm->mmap_sem);
2386        if (unlikely(khugepaged_test_exit(mm))) {
2387                result = SCAN_ANY_PROCESS;
2388                goto out;
2389        }
2390
2391        vma = find_vma(mm, address);
2392        if (!vma) {
2393                result = SCAN_VMA_NULL;
2394                goto out;
2395        }
2396        hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2397        hend = vma->vm_end & HPAGE_PMD_MASK;
2398        if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2399                result = SCAN_ADDRESS_RANGE;
2400                goto out;
2401        }
2402        if (!hugepage_vma_check(vma)) {
2403                result = SCAN_VMA_CHECK;
2404                goto out;
2405        }
2406        pmd = mm_find_pmd(mm, address);
2407        if (!pmd) {
2408                result = SCAN_PMD_NULL;
2409                goto out;
2410        }
2411
2412        anon_vma_lock_write(vma->anon_vma);
2413
2414        pte = pte_offset_map(pmd, address);
2415        pte_ptl = pte_lockptr(mm, pmd);
2416
2417        mmun_start = address;
2418        mmun_end   = address + HPAGE_PMD_SIZE;
2419        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2420        pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2421        /*
2422         * After this gup_fast can't run anymore. This also removes
2423         * any huge TLB entry from the CPU so we won't allow
2424         * huge and small TLB entries for the same virtual address
2425         * to avoid the risk of CPU bugs in that area.
2426         */
2427        _pmd = pmdp_collapse_flush(vma, address, pmd);
2428        spin_unlock(pmd_ptl);
2429        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2430
2431        spin_lock(pte_ptl);
2432        isolated = __collapse_huge_page_isolate(vma, address, pte);
2433        spin_unlock(pte_ptl);
2434
2435        if (unlikely(!isolated)) {
2436                pte_unmap(pte);
2437                spin_lock(pmd_ptl);
2438                BUG_ON(!pmd_none(*pmd));
2439                /*
2440                 * We can only use set_pmd_at when establishing
2441                 * hugepmds and never for establishing regular pmds that
2442                 * points to regular pagetables. Use pmd_populate for that
2443                 */
2444                pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2445                spin_unlock(pmd_ptl);
2446                anon_vma_unlock_write(vma->anon_vma);
2447                result = SCAN_FAIL;
2448                goto out;
2449        }
2450
2451        /*
2452         * All pages are isolated and locked so anon_vma rmap
2453         * can't run anymore.
2454         */
2455        anon_vma_unlock_write(vma->anon_vma);
2456
2457        __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2458        pte_unmap(pte);
2459        __SetPageUptodate(new_page);
2460        pgtable = pmd_pgtable(_pmd);
2461
2462        _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2463        _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2464
2465        /*
2466         * spin_lock() below is not the equivalent of smp_wmb(), so
2467         * this is needed to avoid the copy_huge_page writes to become
2468         * visible after the set_pmd_at() write.
2469         */
2470        smp_wmb();
2471
2472        spin_lock(pmd_ptl);
2473        BUG_ON(!pmd_none(*pmd));
2474        page_add_new_anon_rmap(new_page, vma, address, true);
2475        mem_cgroup_commit_charge(new_page, memcg, false, true);
2476        lru_cache_add_active_or_unevictable(new_page, vma);
2477        pgtable_trans_huge_deposit(mm, pmd, pgtable);
2478        set_pmd_at(mm, address, pmd, _pmd);
2479        update_mmu_cache_pmd(vma, address, pmd);
2480        spin_unlock(pmd_ptl);
2481
2482        *hpage = NULL;
2483
2484        khugepaged_pages_collapsed++;
2485        result = SCAN_SUCCEED;
2486out_up_write:
2487        up_write(&mm->mmap_sem);
2488        trace_mm_collapse_huge_page(mm, isolated, result);
2489        return;
2490
2491out_nolock:
2492        trace_mm_collapse_huge_page(mm, isolated, result);
2493        return;
2494out:
2495        mem_cgroup_cancel_charge(new_page, memcg, true);
2496        goto out_up_write;
2497}
2498
2499static int khugepaged_scan_pmd(struct mm_struct *mm,
2500                               struct vm_area_struct *vma,
2501                               unsigned long address,
2502                               struct page **hpage)
2503{
2504        pmd_t *pmd;
2505        pte_t *pte, *_pte;
2506        int ret = 0, none_or_zero = 0, result = 0;
2507        struct page *page = NULL;
2508        unsigned long _address;
2509        spinlock_t *ptl;
2510        int node = NUMA_NO_NODE;
2511        bool writable = false, referenced = false;
2512
2513        VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2514
2515        pmd = mm_find_pmd(mm, address);
2516        if (!pmd) {
2517                result = SCAN_PMD_NULL;
2518                goto out;
2519        }
2520
2521        memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2522        pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2523        for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2524             _pte++, _address += PAGE_SIZE) {
2525                pte_t pteval = *_pte;
2526                if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2527                        if (!userfaultfd_armed(vma) &&
2528                            ++none_or_zero <= khugepaged_max_ptes_none) {
2529                                continue;
2530                        } else {
2531                                result = SCAN_EXCEED_NONE_PTE;
2532                                goto out_unmap;
2533                        }
2534                }
2535                if (!pte_present(pteval)) {
2536                        result = SCAN_PTE_NON_PRESENT;
2537                        goto out_unmap;
2538                }
2539                if (pte_write(pteval))
2540                        writable = true;
2541
2542                page = vm_normal_page(vma, _address, pteval);
2543                if (unlikely(!page)) {
2544                        result = SCAN_PAGE_NULL;
2545                        goto out_unmap;
2546                }
2547
2548                /* TODO: teach khugepaged to collapse THP mapped with pte */
2549                if (PageCompound(page)) {
2550                        result = SCAN_PAGE_COMPOUND;
2551                        goto out_unmap;
2552                }
2553
2554                /*
2555                 * Record which node the original page is from and save this
2556                 * information to khugepaged_node_load[].
2557                 * Khupaged will allocate hugepage from the node has the max
2558                 * hit record.
2559                 */
2560                node = page_to_nid(page);
2561                if (khugepaged_scan_abort(node)) {
2562                        result = SCAN_SCAN_ABORT;
2563                        goto out_unmap;
2564                }
2565                khugepaged_node_load[node]++;
2566                if (!PageLRU(page)) {
2567                        result = SCAN_PAGE_LRU;
2568                        goto out_unmap;
2569                }
2570                if (PageLocked(page)) {
2571                        result = SCAN_PAGE_LOCK;
2572                        goto out_unmap;
2573                }
2574                if (!PageAnon(page)) {
2575                        result = SCAN_PAGE_ANON;
2576                        goto out_unmap;
2577                }
2578
2579                /*
2580                 * cannot use mapcount: can't collapse if there's a gup pin.
2581                 * The page must only be referenced by the scanned process
2582                 * and page swap cache.
2583                 */
2584                if (page_count(page) != 1 + !!PageSwapCache(page)) {
2585                        result = SCAN_PAGE_COUNT;
2586                        goto out_unmap;
2587                }
2588                if (pte_young(pteval) ||
2589                    page_is_young(page) || PageReferenced(page) ||
2590                    mmu_notifier_test_young(vma->vm_mm, address))
2591                        referenced = true;
2592        }
2593        if (writable) {
2594                if (referenced) {
2595                        result = SCAN_SUCCEED;
2596                        ret = 1;
2597                } else {
2598                        result = SCAN_NO_REFERENCED_PAGE;
2599                }
2600        } else {
2601                result = SCAN_PAGE_RO;
2602        }
2603out_unmap:
2604        pte_unmap_unlock(pte, ptl);
2605        if (ret) {
2606                node = khugepaged_find_target_node();
2607                /* collapse_huge_page will return with the mmap_sem released */
2608                collapse_huge_page(mm, address, hpage, vma, node);
2609        }
2610out:
2611        trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2612                                     none_or_zero, result);
2613        return ret;
2614}
2615
2616static void collect_mm_slot(struct mm_slot *mm_slot)
2617{
2618        struct mm_struct *mm = mm_slot->mm;
2619
2620        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2621
2622        if (khugepaged_test_exit(mm)) {
2623                /* free mm_slot */
2624                hash_del(&mm_slot->hash);
2625                list_del(&mm_slot->mm_node);
2626
2627                /*
2628                 * Not strictly needed because the mm exited already.
2629                 *
2630                 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2631                 */
2632
2633                /* khugepaged_mm_lock actually not necessary for the below */
2634                free_mm_slot(mm_slot);
2635                mmdrop(mm);
2636        }
2637}
2638
2639static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2640                                            struct page **hpage)
2641        __releases(&khugepaged_mm_lock)
2642        __acquires(&khugepaged_mm_lock)
2643{
2644        struct mm_slot *mm_slot;
2645        struct mm_struct *mm;
2646        struct vm_area_struct *vma;
2647        int progress = 0;
2648
2649        VM_BUG_ON(!pages);
2650        VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2651
2652        if (khugepaged_scan.mm_slot)
2653                mm_slot = khugepaged_scan.mm_slot;
2654        else {
2655                mm_slot = list_entry(khugepaged_scan.mm_head.next,
2656                                     struct mm_slot, mm_node);
2657                khugepaged_scan.address = 0;
2658                khugepaged_scan.mm_slot = mm_slot;
2659        }
2660        spin_unlock(&khugepaged_mm_lock);
2661
2662        mm = mm_slot->mm;
2663        down_read(&mm->mmap_sem);
2664        if (unlikely(khugepaged_test_exit(mm)))
2665                vma = NULL;
2666        else
2667                vma = find_vma(mm, khugepaged_scan.address);
2668
2669        progress++;
2670        for (; vma; vma = vma->vm_next) {
2671                unsigned long hstart, hend;
2672
2673                cond_resched();
2674                if (unlikely(khugepaged_test_exit(mm))) {
2675                        progress++;
2676                        break;
2677                }
2678                if (!hugepage_vma_check(vma)) {
2679skip:
2680                        progress++;
2681                        continue;
2682                }
2683                hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2684                hend = vma->vm_end & HPAGE_PMD_MASK;
2685                if (hstart >= hend)
2686                        goto skip;
2687                if (khugepaged_scan.address > hend)
2688                        goto skip;
2689                if (khugepaged_scan.address < hstart)
2690                        khugepaged_scan.address = hstart;
2691                VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2692
2693                while (khugepaged_scan.address < hend) {
2694                        int ret;
2695                        cond_resched();
2696                        if (unlikely(khugepaged_test_exit(mm)))
2697                                goto breakouterloop;
2698
2699                        VM_BUG_ON(khugepaged_scan.address < hstart ||
2700                                  khugepaged_scan.address + HPAGE_PMD_SIZE >
2701                                  hend);
2702                        ret = khugepaged_scan_pmd(mm, vma,
2703                                                  khugepaged_scan.address,
2704                                                  hpage);
2705                        /* move to next address */
2706                        khugepaged_scan.address += HPAGE_PMD_SIZE;
2707                        progress += HPAGE_PMD_NR;
2708                        if (ret)
2709                                /* we released mmap_sem so break loop */
2710                                goto breakouterloop_mmap_sem;
2711                        if (progress >= pages)
2712                                goto breakouterloop;
2713                }
2714        }
2715breakouterloop:
2716        up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2717breakouterloop_mmap_sem:
2718
2719        spin_lock(&khugepaged_mm_lock);
2720        VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2721        /*
2722         * Release the current mm_slot if this mm is about to die, or
2723         * if we scanned all vmas of this mm.
2724         */
2725        if (khugepaged_test_exit(mm) || !vma) {
2726                /*
2727                 * Make sure that if mm_users is reaching zero while
2728                 * khugepaged runs here, khugepaged_exit will find
2729                 * mm_slot not pointing to the exiting mm.
2730                 */
2731                if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2732                        khugepaged_scan.mm_slot = list_entry(
2733                                mm_slot->mm_node.next,
2734                                struct mm_slot, mm_node);
2735                        khugepaged_scan.address = 0;
2736                } else {
2737                        khugepaged_scan.mm_slot = NULL;
2738                        khugepaged_full_scans++;
2739                }
2740
2741                collect_mm_slot(mm_slot);
2742        }
2743
2744        return progress;
2745}
2746
2747static int khugepaged_has_work(void)
2748{
2749        return !list_empty(&khugepaged_scan.mm_head) &&
2750                khugepaged_enabled();
2751}
2752
2753static int khugepaged_wait_event(void)
2754{
2755        return !list_empty(&khugepaged_scan.mm_head) ||
2756                kthread_should_stop();
2757}
2758
2759static void khugepaged_do_scan(void)
2760{
2761        struct page *hpage = NULL;
2762        unsigned int progress = 0, pass_through_head = 0;
2763        unsigned int pages = khugepaged_pages_to_scan;
2764        bool wait = true;
2765
2766        barrier(); /* write khugepaged_pages_to_scan to local stack */
2767
2768        while (progress < pages) {
2769                if (!khugepaged_prealloc_page(&hpage, &wait))
2770                        break;
2771
2772                cond_resched();
2773
2774                if (unlikely(kthread_should_stop() || try_to_freeze()))
2775                        break;
2776
2777                spin_lock(&khugepaged_mm_lock);
2778                if (!khugepaged_scan.mm_slot)
2779                        pass_through_head++;
2780                if (khugepaged_has_work() &&
2781                    pass_through_head < 2)
2782                        progress += khugepaged_scan_mm_slot(pages - progress,
2783                                                            &hpage);
2784                else
2785                        progress = pages;
2786                spin_unlock(&khugepaged_mm_lock);
2787        }
2788
2789        if (!IS_ERR_OR_NULL(hpage))
2790                put_page(hpage);
2791}
2792
2793static bool khugepaged_should_wakeup(void)
2794{
2795        return kthread_should_stop() ||
2796               time_after_eq(jiffies, khugepaged_sleep_expire);
2797}
2798
2799static void khugepaged_wait_work(void)
2800{
2801        if (khugepaged_has_work()) {
2802                const unsigned long scan_sleep_jiffies =
2803                        msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2804
2805                if (!scan_sleep_jiffies)
2806                        return;
2807
2808                khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2809                wait_event_freezable_timeout(khugepaged_wait,
2810                                             khugepaged_should_wakeup(),
2811                                             scan_sleep_jiffies);
2812                return;
2813        }
2814
2815        if (khugepaged_enabled())
2816                wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2817}
2818
2819static int khugepaged(void *none)
2820{
2821        struct mm_slot *mm_slot;
2822
2823        set_freezable();
2824        set_user_nice(current, MAX_NICE);
2825
2826        while (!kthread_should_stop()) {
2827                khugepaged_do_scan();
2828                khugepaged_wait_work();
2829        }
2830
2831        spin_lock(&khugepaged_mm_lock);
2832        mm_slot = khugepaged_scan.mm_slot;
2833        khugepaged_scan.mm_slot = NULL;
2834        if (mm_slot)
2835                collect_mm_slot(mm_slot);
2836        spin_unlock(&khugepaged_mm_lock);
2837        return 0;
2838}
2839
2840static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2841                unsigned long haddr, pmd_t *pmd)
2842{
2843        struct mm_struct *mm = vma->vm_mm;
2844        pgtable_t pgtable;
2845        pmd_t _pmd;
2846        int i;
2847
2848        /* leave pmd empty until pte is filled */
2849        pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2850
2851        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2852        pmd_populate(mm, &_pmd, pgtable);
2853
2854        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2855                pte_t *pte, entry;
2856                entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2857                entry = pte_mkspecial(entry);
2858                pte = pte_offset_map(&_pmd, haddr);
2859                VM_BUG_ON(!pte_none(*pte));
2860                set_pte_at(mm, haddr, pte, entry);
2861                pte_unmap(pte);
2862        }
2863        smp_wmb(); /* make pte visible before pmd */
2864        pmd_populate(mm, pmd, pgtable);
2865        put_huge_zero_page();
2866}
2867
2868static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2869                unsigned long haddr, bool freeze)
2870{
2871        struct mm_struct *mm = vma->vm_mm;
2872        struct page *page;
2873        pgtable_t pgtable;
2874        pmd_t _pmd;
2875        bool young, write, dirty;
2876        unsigned long addr;
2877        int i;
2878
2879        VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2880        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2881        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2882        VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2883
2884        count_vm_event(THP_SPLIT_PMD);
2885
2886        if (vma_is_dax(vma)) {
2887                pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2888                if (is_huge_zero_pmd(_pmd))
2889                        put_huge_zero_page();
2890                return;
2891        } else if (is_huge_zero_pmd(*pmd)) {
2892                return __split_huge_zero_page_pmd(vma, haddr, pmd);
2893        }
2894
2895        page = pmd_page(*pmd);
2896        VM_BUG_ON_PAGE(!page_count(page), page);
2897        page_ref_add(page, HPAGE_PMD_NR - 1);
2898        write = pmd_write(*pmd);
2899        young = pmd_young(*pmd);
2900        dirty = pmd_dirty(*pmd);
2901
2902        pmdp_huge_split_prepare(vma, haddr, pmd);
2903        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2904        pmd_populate(mm, &_pmd, pgtable);
2905
2906        for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2907                pte_t entry, *pte;
2908                /*
2909                 * Note that NUMA hinting access restrictions are not
2910                 * transferred to avoid any possibility of altering
2911                 * permissions across VMAs.
2912                 */
2913                if (freeze) {
2914                        swp_entry_t swp_entry;
2915                        swp_entry = make_migration_entry(page + i, write);
2916                        entry = swp_entry_to_pte(swp_entry);
2917                } else {
2918                        entry = mk_pte(page + i, vma->vm_page_prot);
2919                        entry = maybe_mkwrite(entry, vma);
2920                        if (!write)
2921                                entry = pte_wrprotect(entry);
2922                        if (!young)
2923                                entry = pte_mkold(entry);
2924                }
2925                if (dirty)
2926                        SetPageDirty(page + i);
2927                pte = pte_offset_map(&_pmd, addr);
2928                BUG_ON(!pte_none(*pte));
2929                set_pte_at(mm, addr, pte, entry);
2930                atomic_inc(&page[i]._mapcount);
2931                pte_unmap(pte);
2932        }
2933
2934        /*
2935         * Set PG_double_map before dropping compound_mapcount to avoid
2936         * false-negative page_mapped().
2937         */
2938        if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2939                for (i = 0; i < HPAGE_PMD_NR; i++)
2940                        atomic_inc(&page[i]._mapcount);
2941        }
2942
2943        if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2944                /* Last compound_mapcount is gone. */
2945                __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2946                if (TestClearPageDoubleMap(page)) {
2947                        /* No need in mapcount reference anymore */
2948                        for (i = 0; i < HPAGE_PMD_NR; i++)
2949                                atomic_dec(&page[i]._mapcount);
2950                }
2951        }
2952
2953        smp_wmb(); /* make pte visible before pmd */
2954        /*
2955         * Up to this point the pmd is present and huge and userland has the
2956         * whole access to the hugepage during the split (which happens in
2957         * place). If we overwrite the pmd with the not-huge version pointing
2958         * to the pte here (which of course we could if all CPUs were bug
2959         * free), userland could trigger a small page size TLB miss on the
2960         * small sized TLB while the hugepage TLB entry is still established in
2961         * the huge TLB. Some CPU doesn't like that.
2962         * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2963         * 383 on page 93. Intel should be safe but is also warns that it's
2964         * only safe if the permission and cache attributes of the two entries
2965         * loaded in the two TLB is identical (which should be the case here).
2966         * But it is generally safer to never allow small and huge TLB entries
2967         * for the same virtual address to be loaded simultaneously. So instead
2968         * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2969         * current pmd notpresent (atomically because here the pmd_trans_huge
2970         * and pmd_trans_splitting must remain set at all times on the pmd
2971         * until the split is complete for this pmd), then we flush the SMP TLB
2972         * and finally we write the non-huge version of the pmd entry with
2973         * pmd_populate.
2974         */
2975        pmdp_invalidate(vma, haddr, pmd);
2976        pmd_populate(mm, pmd, pgtable);
2977
2978        if (freeze) {
2979                for (i = 0; i < HPAGE_PMD_NR; i++) {
2980                        page_remove_rmap(page + i, false);
2981                        put_page(page + i);
2982                }
2983        }
2984}
2985
2986void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2987                unsigned long address, bool freeze, struct page *page)
2988{
2989        spinlock_t *ptl;
2990        struct mm_struct *mm = vma->vm_mm;
2991        unsigned long haddr = address & HPAGE_PMD_MASK;
2992
2993        mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2994        ptl = pmd_lock(mm, pmd);
2995
2996        /*
2997         * If caller asks to setup a migration entries, we need a page to check
2998         * pmd against. Otherwise we can end up replacing wrong page.
2999         */
3000        VM_BUG_ON(freeze && !page);
3001        if (page && page != pmd_page(*pmd))
3002                goto out;
3003
3004        if (pmd_trans_huge(*pmd)) {
3005                page = pmd_page(*pmd);
3006                if (PageMlocked(page))
3007                        clear_page_mlock(page);
3008        } else if (!pmd_devmap(*pmd))
3009                goto out;
3010        __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3011out:
3012        spin_unlock(ptl);
3013        mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3014}
3015
3016void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3017                bool freeze, struct page *page)
3018{
3019        pgd_t *pgd;
3020        pud_t *pud;
3021        pmd_t *pmd;
3022
3023        pgd = pgd_offset(vma->vm_mm, address);
3024        if (!pgd_present(*pgd))
3025                return;
3026
3027        pud = pud_offset(pgd, address);
3028        if (!pud_present(*pud))
3029                return;
3030
3031        pmd = pmd_offset(pud, address);
3032
3033        __split_huge_pmd(vma, pmd, address, freeze, page);
3034}
3035
3036void vma_adjust_trans_huge(struct vm_area_struct *vma,
3037                             unsigned long start,
3038                             unsigned long end,
3039                             long adjust_next)
3040{
3041        /*
3042         * If the new start address isn't hpage aligned and it could
3043         * previously contain an hugepage: check if we need to split
3044         * an huge pmd.
3045         */
3046        if (start & ~HPAGE_PMD_MASK &&
3047            (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3048            (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3049                split_huge_pmd_address(vma, start, false, NULL);
3050
3051        /*
3052         * If the new end address isn't hpage aligned and it could
3053         * previously contain an hugepage: check if we need to split
3054         * an huge pmd.
3055         */
3056        if (end & ~HPAGE_PMD_MASK &&
3057            (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3058            (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3059                split_huge_pmd_address(vma, end, false, NULL);
3060
3061        /*
3062         * If we're also updating the vma->vm_next->vm_start, if the new
3063         * vm_next->vm_start isn't page aligned and it could previously
3064         * contain an hugepage: check if we need to split an huge pmd.
3065         */
3066        if (adjust_next > 0) {
3067                struct vm_area_struct *next = vma->vm_next;
3068                unsigned long nstart = next->vm_start;
3069                nstart += adjust_next << PAGE_SHIFT;
3070                if (nstart & ~HPAGE_PMD_MASK &&
3071                    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3072                    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3073                        split_huge_pmd_address(next, nstart, false, NULL);
3074        }
3075}
3076
3077static void freeze_page(struct page *page)
3078{
3079        enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3080                TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3081        int i, ret;
3082
3083        VM_BUG_ON_PAGE(!PageHead(page), page);
3084
3085        /* We only need TTU_SPLIT_HUGE_PMD once */
3086        ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3087        for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3088                /* Cut short if the page is unmapped */
3089                if (page_count(page) == 1)
3090                        return;
3091
3092                ret = try_to_unmap(page + i, ttu_flags);
3093        }
3094        VM_BUG_ON(ret);
3095}
3096
3097static void unfreeze_page(struct page *page)
3098{
3099        int i;
3100
3101        for (i = 0; i < HPAGE_PMD_NR; i++)
3102                remove_migration_ptes(page + i, page + i, true);
3103}
3104
3105static void __split_huge_page_tail(struct page *head, int tail,
3106                struct lruvec *lruvec, struct list_head *list)
3107{
3108        struct page *page_tail = head + tail;
3109
3110        VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3111        VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3112
3113        /*
3114         * tail_page->_refcount is zero and not changing from under us. But
3115         * get_page_unless_zero() may be running from under us on the
3116         * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3117         * would then run atomic_set() concurrently with
3118         * get_page_unless_zero(), and atomic_set() is implemented in C not
3119         * using locked ops. spin_unlock on x86 sometime uses locked ops
3120         * because of PPro errata 66, 92, so unless somebody can guarantee
3121         * atomic_set() here would be safe on all archs (and not only on x86),
3122         * it's safer to use atomic_inc().
3123         */
3124        page_ref_inc(page_tail);
3125
3126        page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3127        page_tail->flags |= (head->flags &
3128                        ((1L << PG_referenced) |
3129                         (1L << PG_swapbacked) |
3130                         (1L << PG_mlocked) |
3131                         (1L << PG_uptodate) |
3132                         (1L << PG_active) |
3133                         (1L << PG_locked) |
3134                         (1L << PG_unevictable) |
3135                         (1L << PG_dirty)));
3136
3137        /*
3138         * After clearing PageTail the gup refcount can be released.
3139         * Page flags also must be visible before we make the page non-compound.
3140         */
3141        smp_wmb();
3142
3143        clear_compound_head(page_tail);
3144
3145        if (page_is_young(head))
3146                set_page_young(page_tail);
3147        if (page_is_idle(head))
3148                set_page_idle(page_tail);
3149
3150        /* ->mapping in first tail page is compound_mapcount */
3151        VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3152                        page_tail);
3153        page_tail->mapping = head->mapping;
3154
3155        page_tail->index = head->index + tail;
3156        page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3157        lru_add_page_tail(head, page_tail, lruvec, list);
3158}
3159
3160static void __split_huge_page(struct page *page, struct list_head *list)
3161{
3162        struct page *head = compound_head(page);
3163        struct zone *zone = page_zone(head);
3164        struct lruvec *lruvec;
3165        int i;
3166
3167        /* prevent PageLRU to go away from under us, and freeze lru stats */
3168        spin_lock_irq(&zone->lru_lock);
3169        lruvec = mem_cgroup_page_lruvec(head, zone);
3170
3171        /* complete memcg works before add pages to LRU */
3172        mem_cgroup_split_huge_fixup(head);
3173
3174        for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3175                __split_huge_page_tail(head, i, lruvec, list);
3176
3177        ClearPageCompound(head);
3178        spin_unlock_irq(&zone->lru_lock);
3179
3180        unfreeze_page(head);
3181
3182        for (i = 0; i < HPAGE_PMD_NR; i++) {
3183                struct page *subpage = head + i;
3184                if (subpage == page)
3185                        continue;
3186                unlock_page(subpage);
3187
3188                /*
3189                 * Subpages may be freed if there wasn't any mapping
3190                 * like if add_to_swap() is running on a lru page that
3191                 * had its mapping zapped. And freeing these pages
3192                 * requires taking the lru_lock so we do the put_page
3193                 * of the tail pages after the split is complete.
3194                 */
3195                put_page(subpage);
3196        }
3197}
3198
3199int total_mapcount(struct page *page)
3200{
3201        int i, ret;
3202
3203        VM_BUG_ON_PAGE(PageTail(page), page);
3204
3205        if (likely(!PageCompound(page)))
3206                return atomic_read(&page->_mapcount) + 1;
3207
3208        ret = compound_mapcount(page);
3209        if (PageHuge(page))
3210                return ret;
3211        for (i = 0; i < HPAGE_PMD_NR; i++)
3212                ret += atomic_read(&page[i]._mapcount) + 1;
3213        if (PageDoubleMap(page))
3214                ret -= HPAGE_PMD_NR;
3215        return ret;
3216}
3217
3218/*
3219 * This calculates accurately how many mappings a transparent hugepage
3220 * has (unlike page_mapcount() which isn't fully accurate). This full
3221 * accuracy is primarily needed to know if copy-on-write faults can
3222 * reuse the page and change the mapping to read-write instead of
3223 * copying them. At the same time this returns the total_mapcount too.
3224 *
3225 * The function returns the highest mapcount any one of the subpages
3226 * has. If the return value is one, even if different processes are
3227 * mapping different subpages of the transparent hugepage, they can
3228 * all reuse it, because each process is reusing a different subpage.
3229 *
3230 * The total_mapcount is instead counting all virtual mappings of the
3231 * subpages. If the total_mapcount is equal to "one", it tells the
3232 * caller all mappings belong to the same "mm" and in turn the
3233 * anon_vma of the transparent hugepage can become the vma->anon_vma
3234 * local one as no other process may be mapping any of the subpages.
3235 *
3236 * It would be more accurate to replace page_mapcount() with
3237 * page_trans_huge_mapcount(), however we only use
3238 * page_trans_huge_mapcount() in the copy-on-write faults where we
3239 * need full accuracy to avoid breaking page pinning, because
3240 * page_trans_huge_mapcount() is slower than page_mapcount().
3241 */
3242int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3243{
3244        int i, ret, _total_mapcount, mapcount;
3245
3246        /* hugetlbfs shouldn't call it */
3247        VM_BUG_ON_PAGE(PageHuge(page), page);
3248
3249        if (likely(!PageTransCompound(page))) {
3250                mapcount = atomic_read(&page->_mapcount) + 1;
3251                if (total_mapcount)
3252                        *total_mapcount = mapcount;
3253                return mapcount;
3254        }
3255
3256        page = compound_head(page);
3257
3258        _total_mapcount = ret = 0;
3259        for (i = 0; i < HPAGE_PMD_NR; i++) {
3260                mapcount = atomic_read(&page[i]._mapcount) + 1;
3261                ret = max(ret, mapcount);
3262                _total_mapcount += mapcount;
3263        }
3264        if (PageDoubleMap(page)) {
3265                ret -= 1;
3266                _total_mapcount -= HPAGE_PMD_NR;
3267        }
3268        mapcount = compound_mapcount(page);
3269        ret += mapcount;
3270        _total_mapcount += mapcount;
3271        if (total_mapcount)
3272                *total_mapcount = _total_mapcount;
3273        return ret;
3274}
3275
3276/*
3277 * This function splits huge page into normal pages. @page can point to any
3278 * subpage of huge page to split. Split doesn't change the position of @page.
3279 *
3280 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3281 * The huge page must be locked.
3282 *
3283 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3284 *
3285 * Both head page and tail pages will inherit mapping, flags, and so on from
3286 * the hugepage.
3287 *
3288 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3289 * they are not mapped.
3290 *
3291 * Returns 0 if the hugepage is split successfully.
3292 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3293 * us.
3294 */
3295int split_huge_page_to_list(struct page *page, struct list_head *list)
3296{
3297        struct page *head = compound_head(page);
3298        struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3299        struct anon_vma *anon_vma;
3300        int count, mapcount, ret;
3301        bool mlocked;
3302        unsigned long flags;
3303
3304        VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3305        VM_BUG_ON_PAGE(!PageAnon(page), page);
3306        VM_BUG_ON_PAGE(!PageLocked(page), page);
3307        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3308        VM_BUG_ON_PAGE(!PageCompound(page), page);
3309
3310        /*
3311         * The caller does not necessarily hold an mmap_sem that would prevent
3312         * the anon_vma disappearing so we first we take a reference to it
3313         * and then lock the anon_vma for write. This is similar to
3314         * page_lock_anon_vma_read except the write lock is taken to serialise
3315         * against parallel split or collapse operations.
3316         */
3317        anon_vma = page_get_anon_vma(head);
3318        if (!anon_vma) {
3319                ret = -EBUSY;
3320                goto out;
3321        }
3322        anon_vma_lock_write(anon_vma);
3323
3324        /*
3325         * Racy check if we can split the page, before freeze_page() will
3326         * split PMDs
3327         */
3328        if (total_mapcount(head) != page_count(head) - 1) {
3329                ret = -EBUSY;
3330                goto out_unlock;
3331        }
3332
3333        mlocked = PageMlocked(page);
3334        freeze_page(head);
3335        VM_BUG_ON_PAGE(compound_mapcount(head), head);
3336
3337        /* Make sure the page is not on per-CPU pagevec as it takes pin */
3338        if (mlocked)
3339                lru_add_drain();
3340
3341        /* Prevent deferred_split_scan() touching ->_refcount */
3342        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3343        count = page_count(head);
3344        mapcount = total_mapcount(head);
3345        if (!mapcount && count == 1) {
3346                if (!list_empty(page_deferred_list(head))) {
3347                        pgdata->split_queue_len--;
3348                        list_del(page_deferred_list(head));
3349                }
3350                spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3351                __split_huge_page(page, list);
3352                ret = 0;
3353        } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3354                spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3355                pr_alert("total_mapcount: %u, page_count(): %u\n",
3356                                mapcount, count);
3357                if (PageTail(page))
3358                        dump_page(head, NULL);
3359                dump_page(page, "total_mapcount(head) > 0");
3360                BUG();
3361        } else {
3362                spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3363                unfreeze_page(head);
3364                ret = -EBUSY;
3365        }
3366
3367out_unlock:
3368        anon_vma_unlock_write(anon_vma);
3369        put_anon_vma(anon_vma);
3370out:
3371        count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3372        return ret;
3373}
3374
3375void free_transhuge_page(struct page *page)
3376{
3377        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3378        unsigned long flags;
3379
3380        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3381        if (!list_empty(page_deferred_list(page))) {
3382                pgdata->split_queue_len--;
3383                list_del(page_deferred_list(page));
3384        }
3385        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3386        free_compound_page(page);
3387}
3388
3389void deferred_split_huge_page(struct page *page)
3390{
3391        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3392        unsigned long flags;
3393
3394        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3395
3396        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3397        if (list_empty(page_deferred_list(page))) {
3398                count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3399                list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3400                pgdata->split_queue_len++;
3401        }
3402        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3403}
3404
3405static unsigned long deferred_split_count(struct shrinker *shrink,
3406                struct shrink_control *sc)
3407{
3408        struct pglist_data *pgdata = NODE_DATA(sc->nid);
3409        return ACCESS_ONCE(pgdata->split_queue_len);
3410}
3411
3412static unsigned long deferred_split_scan(struct shrinker *shrink,
3413                struct shrink_control *sc)
3414{
3415        struct pglist_data *pgdata = NODE_DATA(sc->nid);
3416        unsigned long flags;
3417        LIST_HEAD(list), *pos, *next;
3418        struct page *page;
3419        int split = 0;
3420
3421        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3422        /* Take pin on all head pages to avoid freeing them under us */
3423        list_for_each_safe(pos, next, &pgdata->split_queue) {
3424                page = list_entry((void *)pos, struct page, mapping);
3425                page = compound_head(page);
3426                if (get_page_unless_zero(page)) {
3427                        list_move(page_deferred_list(page), &list);
3428                } else {
3429                        /* We lost race with put_compound_page() */
3430                        list_del_init(page_deferred_list(page));
3431                        pgdata->split_queue_len--;
3432                }
3433                if (!--sc->nr_to_scan)
3434                        break;
3435        }
3436        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3437
3438        list_for_each_safe(pos, next, &list) {
3439                page = list_entry((void *)pos, struct page, mapping);
3440                lock_page(page);
3441                /* split_huge_page() removes page from list on success */
3442                if (!split_huge_page(page))
3443                        split++;
3444                unlock_page(page);
3445                put_page(page);
3446        }
3447
3448        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3449        list_splice_tail(&list, &pgdata->split_queue);
3450        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3451
3452        /*
3453         * Stop shrinker if we didn't split any page, but the queue is empty.
3454         * This can happen if pages were freed under us.
3455         */
3456        if (!split && list_empty(&pgdata->split_queue))
3457                return SHRINK_STOP;
3458        return split;
3459}
3460
3461static struct shrinker deferred_split_shrinker = {
3462        .count_objects = deferred_split_count,
3463        .scan_objects = deferred_split_scan,
3464        .seeks = DEFAULT_SEEKS,
3465        .flags = SHRINKER_NUMA_AWARE,
3466};
3467
3468#ifdef CONFIG_DEBUG_FS
3469static int split_huge_pages_set(void *data, u64 val)
3470{
3471        struct zone *zone;
3472        struct page *page;
3473        unsigned long pfn, max_zone_pfn;
3474        unsigned long total = 0, split = 0;
3475
3476        if (val != 1)
3477                return -EINVAL;
3478
3479        for_each_populated_zone(zone) {
3480                max_zone_pfn = zone_end_pfn(zone);
3481                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3482                        if (!pfn_valid(pfn))
3483                                continue;
3484
3485                        page = pfn_to_page(pfn);
3486                        if (!get_page_unless_zero(page))
3487                                continue;
3488
3489                        if (zone != page_zone(page))
3490                                goto next;
3491
3492                        if (!PageHead(page) || !PageAnon(page) ||
3493                                        PageHuge(page))
3494                                goto next;
3495
3496                        total++;
3497                        lock_page(page);
3498                        if (!split_huge_page(page))
3499                                split++;
3500                        unlock_page(page);
3501next:
3502                        put_page(page);
3503                }
3504        }
3505
3506        pr_info("%lu of %lu THP split\n", split, total);
3507
3508        return 0;
3509}
3510DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3511                "%llu\n");
3512
3513static int __init split_huge_pages_debugfs(void)
3514{
3515        void *ret;
3516
3517        ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3518                        &split_huge_pages_fops);
3519        if (!ret)
3520                pr_warn("Failed to create split_huge_pages in debugfs");
3521        return 0;
3522}
3523late_initcall(split_huge_pages_debugfs);
3524#endif
3525