linux/mm/page-writeback.c
<<
>>
Prefs
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002    Andrew Morton
  11 *              Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE               max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL      max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT    10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125struct wb_domain global_wb_domain;
 126
 127/* consolidated parameters for balance_dirty_pages() and its subroutines */
 128struct dirty_throttle_control {
 129#ifdef CONFIG_CGROUP_WRITEBACK
 130        struct wb_domain        *dom;
 131        struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
 132#endif
 133        struct bdi_writeback    *wb;
 134        struct fprop_local_percpu *wb_completions;
 135
 136        unsigned long           avail;          /* dirtyable */
 137        unsigned long           dirty;          /* file_dirty + write + nfs */
 138        unsigned long           thresh;         /* dirty threshold */
 139        unsigned long           bg_thresh;      /* dirty background threshold */
 140
 141        unsigned long           wb_dirty;       /* per-wb counterparts */
 142        unsigned long           wb_thresh;
 143        unsigned long           wb_bg_thresh;
 144
 145        unsigned long           pos_ratio;
 146};
 147
 148/*
 149 * Length of period for aging writeout fractions of bdis. This is an
 150 * arbitrarily chosen number. The longer the period, the slower fractions will
 151 * reflect changes in current writeout rate.
 152 */
 153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 154
 155#ifdef CONFIG_CGROUP_WRITEBACK
 156
 157#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 158                                .dom = &global_wb_domain,               \
 159                                .wb_completions = &(__wb)->completions
 160
 161#define GDTC_INIT_NO_WB         .dom = &global_wb_domain
 162
 163#define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
 164                                .dom = mem_cgroup_wb_domain(__wb),      \
 165                                .wb_completions = &(__wb)->memcg_completions, \
 166                                .gdtc = __gdtc
 167
 168static bool mdtc_valid(struct dirty_throttle_control *dtc)
 169{
 170        return dtc->dom;
 171}
 172
 173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 174{
 175        return dtc->dom;
 176}
 177
 178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 179{
 180        return mdtc->gdtc;
 181}
 182
 183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 184{
 185        return &wb->memcg_completions;
 186}
 187
 188static void wb_min_max_ratio(struct bdi_writeback *wb,
 189                             unsigned long *minp, unsigned long *maxp)
 190{
 191        unsigned long this_bw = wb->avg_write_bandwidth;
 192        unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 193        unsigned long long min = wb->bdi->min_ratio;
 194        unsigned long long max = wb->bdi->max_ratio;
 195
 196        /*
 197         * @wb may already be clean by the time control reaches here and
 198         * the total may not include its bw.
 199         */
 200        if (this_bw < tot_bw) {
 201                if (min) {
 202                        min *= this_bw;
 203                        do_div(min, tot_bw);
 204                }
 205                if (max < 100) {
 206                        max *= this_bw;
 207                        do_div(max, tot_bw);
 208                }
 209        }
 210
 211        *minp = min;
 212        *maxp = max;
 213}
 214
 215#else   /* CONFIG_CGROUP_WRITEBACK */
 216
 217#define GDTC_INIT(__wb)         .wb = (__wb),                           \
 218                                .wb_completions = &(__wb)->completions
 219#define GDTC_INIT_NO_WB
 220#define MDTC_INIT(__wb, __gdtc)
 221
 222static bool mdtc_valid(struct dirty_throttle_control *dtc)
 223{
 224        return false;
 225}
 226
 227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 228{
 229        return &global_wb_domain;
 230}
 231
 232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 233{
 234        return NULL;
 235}
 236
 237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 238{
 239        return NULL;
 240}
 241
 242static void wb_min_max_ratio(struct bdi_writeback *wb,
 243                             unsigned long *minp, unsigned long *maxp)
 244{
 245        *minp = wb->bdi->min_ratio;
 246        *maxp = wb->bdi->max_ratio;
 247}
 248
 249#endif  /* CONFIG_CGROUP_WRITEBACK */
 250
 251/*
 252 * In a memory zone, there is a certain amount of pages we consider
 253 * available for the page cache, which is essentially the number of
 254 * free and reclaimable pages, minus some zone reserves to protect
 255 * lowmem and the ability to uphold the zone's watermarks without
 256 * requiring writeback.
 257 *
 258 * This number of dirtyable pages is the base value of which the
 259 * user-configurable dirty ratio is the effictive number of pages that
 260 * are allowed to be actually dirtied.  Per individual zone, or
 261 * globally by using the sum of dirtyable pages over all zones.
 262 *
 263 * Because the user is allowed to specify the dirty limit globally as
 264 * absolute number of bytes, calculating the per-zone dirty limit can
 265 * require translating the configured limit into a percentage of
 266 * global dirtyable memory first.
 267 */
 268
 269/**
 270 * zone_dirtyable_memory - number of dirtyable pages in a zone
 271 * @zone: the zone
 272 *
 273 * Returns the zone's number of pages potentially available for dirty
 274 * page cache.  This is the base value for the per-zone dirty limits.
 275 */
 276static unsigned long zone_dirtyable_memory(struct zone *zone)
 277{
 278        unsigned long nr_pages;
 279
 280        nr_pages = zone_page_state(zone, NR_FREE_PAGES);
 281        /*
 282         * Pages reserved for the kernel should not be considered
 283         * dirtyable, to prevent a situation where reclaim has to
 284         * clean pages in order to balance the zones.
 285         */
 286        nr_pages -= min(nr_pages, zone->totalreserve_pages);
 287
 288        nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
 289        nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
 290
 291        return nr_pages;
 292}
 293
 294static unsigned long highmem_dirtyable_memory(unsigned long total)
 295{
 296#ifdef CONFIG_HIGHMEM
 297        int node;
 298        unsigned long x = 0;
 299        int i;
 300
 301        for_each_node_state(node, N_HIGH_MEMORY) {
 302                for (i = 0; i < MAX_NR_ZONES; i++) {
 303                        struct zone *z = &NODE_DATA(node)->node_zones[i];
 304
 305                        if (is_highmem(z))
 306                                x += zone_dirtyable_memory(z);
 307                }
 308        }
 309        /*
 310         * Unreclaimable memory (kernel memory or anonymous memory
 311         * without swap) can bring down the dirtyable pages below
 312         * the zone's dirty balance reserve and the above calculation
 313         * will underflow.  However we still want to add in nodes
 314         * which are below threshold (negative values) to get a more
 315         * accurate calculation but make sure that the total never
 316         * underflows.
 317         */
 318        if ((long)x < 0)
 319                x = 0;
 320
 321        /*
 322         * Make sure that the number of highmem pages is never larger
 323         * than the number of the total dirtyable memory. This can only
 324         * occur in very strange VM situations but we want to make sure
 325         * that this does not occur.
 326         */
 327        return min(x, total);
 328#else
 329        return 0;
 330#endif
 331}
 332
 333/**
 334 * global_dirtyable_memory - number of globally dirtyable pages
 335 *
 336 * Returns the global number of pages potentially available for dirty
 337 * page cache.  This is the base value for the global dirty limits.
 338 */
 339static unsigned long global_dirtyable_memory(void)
 340{
 341        unsigned long x;
 342
 343        x = global_page_state(NR_FREE_PAGES);
 344        /*
 345         * Pages reserved for the kernel should not be considered
 346         * dirtyable, to prevent a situation where reclaim has to
 347         * clean pages in order to balance the zones.
 348         */
 349        x -= min(x, totalreserve_pages);
 350
 351        x += global_page_state(NR_INACTIVE_FILE);
 352        x += global_page_state(NR_ACTIVE_FILE);
 353
 354        if (!vm_highmem_is_dirtyable)
 355                x -= highmem_dirtyable_memory(x);
 356
 357        return x + 1;   /* Ensure that we never return 0 */
 358}
 359
 360/**
 361 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 362 * @dtc: dirty_throttle_control of interest
 363 *
 364 * Calculate @dtc->thresh and ->bg_thresh considering
 365 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 366 * must ensure that @dtc->avail is set before calling this function.  The
 367 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 368 * real-time tasks.
 369 */
 370static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 371{
 372        const unsigned long available_memory = dtc->avail;
 373        struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 374        unsigned long bytes = vm_dirty_bytes;
 375        unsigned long bg_bytes = dirty_background_bytes;
 376        /* convert ratios to per-PAGE_SIZE for higher precision */
 377        unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 378        unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 379        unsigned long thresh;
 380        unsigned long bg_thresh;
 381        struct task_struct *tsk;
 382
 383        /* gdtc is !NULL iff @dtc is for memcg domain */
 384        if (gdtc) {
 385                unsigned long global_avail = gdtc->avail;
 386
 387                /*
 388                 * The byte settings can't be applied directly to memcg
 389                 * domains.  Convert them to ratios by scaling against
 390                 * globally available memory.  As the ratios are in
 391                 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 392                 * number of pages.
 393                 */
 394                if (bytes)
 395                        ratio = min(DIV_ROUND_UP(bytes, global_avail),
 396                                    PAGE_SIZE);
 397                if (bg_bytes)
 398                        bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 399                                       PAGE_SIZE);
 400                bytes = bg_bytes = 0;
 401        }
 402
 403        if (bytes)
 404                thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 405        else
 406                thresh = (ratio * available_memory) / PAGE_SIZE;
 407
 408        if (bg_bytes)
 409                bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 410        else
 411                bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 412
 413        if (bg_thresh >= thresh)
 414                bg_thresh = thresh / 2;
 415        tsk = current;
 416        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 417                bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 418                thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 419        }
 420        dtc->thresh = thresh;
 421        dtc->bg_thresh = bg_thresh;
 422
 423        /* we should eventually report the domain in the TP */
 424        if (!gdtc)
 425                trace_global_dirty_state(bg_thresh, thresh);
 426}
 427
 428/**
 429 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 430 * @pbackground: out parameter for bg_thresh
 431 * @pdirty: out parameter for thresh
 432 *
 433 * Calculate bg_thresh and thresh for global_wb_domain.  See
 434 * domain_dirty_limits() for details.
 435 */
 436void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 437{
 438        struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 439
 440        gdtc.avail = global_dirtyable_memory();
 441        domain_dirty_limits(&gdtc);
 442
 443        *pbackground = gdtc.bg_thresh;
 444        *pdirty = gdtc.thresh;
 445}
 446
 447/**
 448 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 449 * @zone: the zone
 450 *
 451 * Returns the maximum number of dirty pages allowed in a zone, based
 452 * on the zone's dirtyable memory.
 453 */
 454static unsigned long zone_dirty_limit(struct zone *zone)
 455{
 456        unsigned long zone_memory = zone_dirtyable_memory(zone);
 457        struct task_struct *tsk = current;
 458        unsigned long dirty;
 459
 460        if (vm_dirty_bytes)
 461                dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 462                        zone_memory / global_dirtyable_memory();
 463        else
 464                dirty = vm_dirty_ratio * zone_memory / 100;
 465
 466        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 467                dirty += dirty / 4;
 468
 469        return dirty;
 470}
 471
 472/**
 473 * zone_dirty_ok - tells whether a zone is within its dirty limits
 474 * @zone: the zone to check
 475 *
 476 * Returns %true when the dirty pages in @zone are within the zone's
 477 * dirty limit, %false if the limit is exceeded.
 478 */
 479bool zone_dirty_ok(struct zone *zone)
 480{
 481        unsigned long limit = zone_dirty_limit(zone);
 482
 483        return zone_page_state(zone, NR_FILE_DIRTY) +
 484               zone_page_state(zone, NR_UNSTABLE_NFS) +
 485               zone_page_state(zone, NR_WRITEBACK) <= limit;
 486}
 487
 488int dirty_background_ratio_handler(struct ctl_table *table, int write,
 489                void __user *buffer, size_t *lenp,
 490                loff_t *ppos)
 491{
 492        int ret;
 493
 494        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 495        if (ret == 0 && write)
 496                dirty_background_bytes = 0;
 497        return ret;
 498}
 499
 500int dirty_background_bytes_handler(struct ctl_table *table, int write,
 501                void __user *buffer, size_t *lenp,
 502                loff_t *ppos)
 503{
 504        int ret;
 505
 506        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 507        if (ret == 0 && write)
 508                dirty_background_ratio = 0;
 509        return ret;
 510}
 511
 512int dirty_ratio_handler(struct ctl_table *table, int write,
 513                void __user *buffer, size_t *lenp,
 514                loff_t *ppos)
 515{
 516        int old_ratio = vm_dirty_ratio;
 517        int ret;
 518
 519        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 520        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 521                writeback_set_ratelimit();
 522                vm_dirty_bytes = 0;
 523        }
 524        return ret;
 525}
 526
 527int dirty_bytes_handler(struct ctl_table *table, int write,
 528                void __user *buffer, size_t *lenp,
 529                loff_t *ppos)
 530{
 531        unsigned long old_bytes = vm_dirty_bytes;
 532        int ret;
 533
 534        ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 535        if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 536                writeback_set_ratelimit();
 537                vm_dirty_ratio = 0;
 538        }
 539        return ret;
 540}
 541
 542static unsigned long wp_next_time(unsigned long cur_time)
 543{
 544        cur_time += VM_COMPLETIONS_PERIOD_LEN;
 545        /* 0 has a special meaning... */
 546        if (!cur_time)
 547                return 1;
 548        return cur_time;
 549}
 550
 551static void wb_domain_writeout_inc(struct wb_domain *dom,
 552                                   struct fprop_local_percpu *completions,
 553                                   unsigned int max_prop_frac)
 554{
 555        __fprop_inc_percpu_max(&dom->completions, completions,
 556                               max_prop_frac);
 557        /* First event after period switching was turned off? */
 558        if (!unlikely(dom->period_time)) {
 559                /*
 560                 * We can race with other __bdi_writeout_inc calls here but
 561                 * it does not cause any harm since the resulting time when
 562                 * timer will fire and what is in writeout_period_time will be
 563                 * roughly the same.
 564                 */
 565                dom->period_time = wp_next_time(jiffies);
 566                mod_timer(&dom->period_timer, dom->period_time);
 567        }
 568}
 569
 570/*
 571 * Increment @wb's writeout completion count and the global writeout
 572 * completion count. Called from test_clear_page_writeback().
 573 */
 574static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 575{
 576        struct wb_domain *cgdom;
 577
 578        __inc_wb_stat(wb, WB_WRITTEN);
 579        wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 580                               wb->bdi->max_prop_frac);
 581
 582        cgdom = mem_cgroup_wb_domain(wb);
 583        if (cgdom)
 584                wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 585                                       wb->bdi->max_prop_frac);
 586}
 587
 588void wb_writeout_inc(struct bdi_writeback *wb)
 589{
 590        unsigned long flags;
 591
 592        local_irq_save(flags);
 593        __wb_writeout_inc(wb);
 594        local_irq_restore(flags);
 595}
 596EXPORT_SYMBOL_GPL(wb_writeout_inc);
 597
 598/*
 599 * On idle system, we can be called long after we scheduled because we use
 600 * deferred timers so count with missed periods.
 601 */
 602static void writeout_period(unsigned long t)
 603{
 604        struct wb_domain *dom = (void *)t;
 605        int miss_periods = (jiffies - dom->period_time) /
 606                                                 VM_COMPLETIONS_PERIOD_LEN;
 607
 608        if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 609                dom->period_time = wp_next_time(dom->period_time +
 610                                miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 611                mod_timer(&dom->period_timer, dom->period_time);
 612        } else {
 613                /*
 614                 * Aging has zeroed all fractions. Stop wasting CPU on period
 615                 * updates.
 616                 */
 617                dom->period_time = 0;
 618        }
 619}
 620
 621int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 622{
 623        memset(dom, 0, sizeof(*dom));
 624
 625        spin_lock_init(&dom->lock);
 626
 627        init_timer_deferrable(&dom->period_timer);
 628        dom->period_timer.function = writeout_period;
 629        dom->period_timer.data = (unsigned long)dom;
 630
 631        dom->dirty_limit_tstamp = jiffies;
 632
 633        return fprop_global_init(&dom->completions, gfp);
 634}
 635
 636#ifdef CONFIG_CGROUP_WRITEBACK
 637void wb_domain_exit(struct wb_domain *dom)
 638{
 639        del_timer_sync(&dom->period_timer);
 640        fprop_global_destroy(&dom->completions);
 641}
 642#endif
 643
 644/*
 645 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 646 * registered backing devices, which, for obvious reasons, can not
 647 * exceed 100%.
 648 */
 649static unsigned int bdi_min_ratio;
 650
 651int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 652{
 653        int ret = 0;
 654
 655        spin_lock_bh(&bdi_lock);
 656        if (min_ratio > bdi->max_ratio) {
 657                ret = -EINVAL;
 658        } else {
 659                min_ratio -= bdi->min_ratio;
 660                if (bdi_min_ratio + min_ratio < 100) {
 661                        bdi_min_ratio += min_ratio;
 662                        bdi->min_ratio += min_ratio;
 663                } else {
 664                        ret = -EINVAL;
 665                }
 666        }
 667        spin_unlock_bh(&bdi_lock);
 668
 669        return ret;
 670}
 671
 672int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 673{
 674        int ret = 0;
 675
 676        if (max_ratio > 100)
 677                return -EINVAL;
 678
 679        spin_lock_bh(&bdi_lock);
 680        if (bdi->min_ratio > max_ratio) {
 681                ret = -EINVAL;
 682        } else {
 683                bdi->max_ratio = max_ratio;
 684                bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 685        }
 686        spin_unlock_bh(&bdi_lock);
 687
 688        return ret;
 689}
 690EXPORT_SYMBOL(bdi_set_max_ratio);
 691
 692static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 693                                           unsigned long bg_thresh)
 694{
 695        return (thresh + bg_thresh) / 2;
 696}
 697
 698static unsigned long hard_dirty_limit(struct wb_domain *dom,
 699                                      unsigned long thresh)
 700{
 701        return max(thresh, dom->dirty_limit);
 702}
 703
 704/*
 705 * Memory which can be further allocated to a memcg domain is capped by
 706 * system-wide clean memory excluding the amount being used in the domain.
 707 */
 708static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 709                            unsigned long filepages, unsigned long headroom)
 710{
 711        struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 712        unsigned long clean = filepages - min(filepages, mdtc->dirty);
 713        unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 714        unsigned long other_clean = global_clean - min(global_clean, clean);
 715
 716        mdtc->avail = filepages + min(headroom, other_clean);
 717}
 718
 719/**
 720 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 721 * @dtc: dirty_throttle_context of interest
 722 *
 723 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
 724 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 725 *
 726 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 727 * when sleeping max_pause per page is not enough to keep the dirty pages under
 728 * control. For example, when the device is completely stalled due to some error
 729 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 730 * In the other normal situations, it acts more gently by throttling the tasks
 731 * more (rather than completely block them) when the wb dirty pages go high.
 732 *
 733 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 734 * - starving fast devices
 735 * - piling up dirty pages (that will take long time to sync) on slow devices
 736 *
 737 * The wb's share of dirty limit will be adapting to its throughput and
 738 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 739 */
 740static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 741{
 742        struct wb_domain *dom = dtc_dom(dtc);
 743        unsigned long thresh = dtc->thresh;
 744        u64 wb_thresh;
 745        long numerator, denominator;
 746        unsigned long wb_min_ratio, wb_max_ratio;
 747
 748        /*
 749         * Calculate this BDI's share of the thresh ratio.
 750         */
 751        fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 752                              &numerator, &denominator);
 753
 754        wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 755        wb_thresh *= numerator;
 756        do_div(wb_thresh, denominator);
 757
 758        wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 759
 760        wb_thresh += (thresh * wb_min_ratio) / 100;
 761        if (wb_thresh > (thresh * wb_max_ratio) / 100)
 762                wb_thresh = thresh * wb_max_ratio / 100;
 763
 764        return wb_thresh;
 765}
 766
 767unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 768{
 769        struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 770                                               .thresh = thresh };
 771        return __wb_calc_thresh(&gdtc);
 772}
 773
 774/*
 775 *                           setpoint - dirty 3
 776 *        f(dirty) := 1.0 + (----------------)
 777 *                           limit - setpoint
 778 *
 779 * it's a 3rd order polynomial that subjects to
 780 *
 781 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 782 * (2) f(setpoint) = 1.0 => the balance point
 783 * (3) f(limit)    = 0   => the hard limit
 784 * (4) df/dx      <= 0   => negative feedback control
 785 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 786 *     => fast response on large errors; small oscillation near setpoint
 787 */
 788static long long pos_ratio_polynom(unsigned long setpoint,
 789                                          unsigned long dirty,
 790                                          unsigned long limit)
 791{
 792        long long pos_ratio;
 793        long x;
 794
 795        x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 796                      (limit - setpoint) | 1);
 797        pos_ratio = x;
 798        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 799        pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 800        pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 801
 802        return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 803}
 804
 805/*
 806 * Dirty position control.
 807 *
 808 * (o) global/bdi setpoints
 809 *
 810 * We want the dirty pages be balanced around the global/wb setpoints.
 811 * When the number of dirty pages is higher/lower than the setpoint, the
 812 * dirty position control ratio (and hence task dirty ratelimit) will be
 813 * decreased/increased to bring the dirty pages back to the setpoint.
 814 *
 815 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 816 *
 817 *     if (dirty < setpoint) scale up   pos_ratio
 818 *     if (dirty > setpoint) scale down pos_ratio
 819 *
 820 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 821 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 822 *
 823 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 824 *
 825 * (o) global control line
 826 *
 827 *     ^ pos_ratio
 828 *     |
 829 *     |            |<===== global dirty control scope ======>|
 830 * 2.0 .............*
 831 *     |            .*
 832 *     |            . *
 833 *     |            .   *
 834 *     |            .     *
 835 *     |            .        *
 836 *     |            .            *
 837 * 1.0 ................................*
 838 *     |            .                  .     *
 839 *     |            .                  .          *
 840 *     |            .                  .              *
 841 *     |            .                  .                 *
 842 *     |            .                  .                    *
 843 *   0 +------------.------------------.----------------------*------------->
 844 *           freerun^          setpoint^                 limit^   dirty pages
 845 *
 846 * (o) wb control line
 847 *
 848 *     ^ pos_ratio
 849 *     |
 850 *     |            *
 851 *     |              *
 852 *     |                *
 853 *     |                  *
 854 *     |                    * |<=========== span ============>|
 855 * 1.0 .......................*
 856 *     |                      . *
 857 *     |                      .   *
 858 *     |                      .     *
 859 *     |                      .       *
 860 *     |                      .         *
 861 *     |                      .           *
 862 *     |                      .             *
 863 *     |                      .               *
 864 *     |                      .                 *
 865 *     |                      .                   *
 866 *     |                      .                     *
 867 * 1/4 ...............................................* * * * * * * * * * * *
 868 *     |                      .                         .
 869 *     |                      .                           .
 870 *     |                      .                             .
 871 *   0 +----------------------.-------------------------------.------------->
 872 *                wb_setpoint^                    x_intercept^
 873 *
 874 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 875 * be smoothly throttled down to normal if it starts high in situations like
 876 * - start writing to a slow SD card and a fast disk at the same time. The SD
 877 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 878 * - the wb dirty thresh drops quickly due to change of JBOD workload
 879 */
 880static void wb_position_ratio(struct dirty_throttle_control *dtc)
 881{
 882        struct bdi_writeback *wb = dtc->wb;
 883        unsigned long write_bw = wb->avg_write_bandwidth;
 884        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 885        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 886        unsigned long wb_thresh = dtc->wb_thresh;
 887        unsigned long x_intercept;
 888        unsigned long setpoint;         /* dirty pages' target balance point */
 889        unsigned long wb_setpoint;
 890        unsigned long span;
 891        long long pos_ratio;            /* for scaling up/down the rate limit */
 892        long x;
 893
 894        dtc->pos_ratio = 0;
 895
 896        if (unlikely(dtc->dirty >= limit))
 897                return;
 898
 899        /*
 900         * global setpoint
 901         *
 902         * See comment for pos_ratio_polynom().
 903         */
 904        setpoint = (freerun + limit) / 2;
 905        pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 906
 907        /*
 908         * The strictlimit feature is a tool preventing mistrusted filesystems
 909         * from growing a large number of dirty pages before throttling. For
 910         * such filesystems balance_dirty_pages always checks wb counters
 911         * against wb limits. Even if global "nr_dirty" is under "freerun".
 912         * This is especially important for fuse which sets bdi->max_ratio to
 913         * 1% by default. Without strictlimit feature, fuse writeback may
 914         * consume arbitrary amount of RAM because it is accounted in
 915         * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 916         *
 917         * Here, in wb_position_ratio(), we calculate pos_ratio based on
 918         * two values: wb_dirty and wb_thresh. Let's consider an example:
 919         * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 920         * limits are set by default to 10% and 20% (background and throttle).
 921         * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 922         * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 923         * about ~6K pages (as the average of background and throttle wb
 924         * limits). The 3rd order polynomial will provide positive feedback if
 925         * wb_dirty is under wb_setpoint and vice versa.
 926         *
 927         * Note, that we cannot use global counters in these calculations
 928         * because we want to throttle process writing to a strictlimit wb
 929         * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 930         * in the example above).
 931         */
 932        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 933                long long wb_pos_ratio;
 934
 935                if (dtc->wb_dirty < 8) {
 936                        dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 937                                           2 << RATELIMIT_CALC_SHIFT);
 938                        return;
 939                }
 940
 941                if (dtc->wb_dirty >= wb_thresh)
 942                        return;
 943
 944                wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 945                                                    dtc->wb_bg_thresh);
 946
 947                if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 948                        return;
 949
 950                wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 951                                                 wb_thresh);
 952
 953                /*
 954                 * Typically, for strictlimit case, wb_setpoint << setpoint
 955                 * and pos_ratio >> wb_pos_ratio. In the other words global
 956                 * state ("dirty") is not limiting factor and we have to
 957                 * make decision based on wb counters. But there is an
 958                 * important case when global pos_ratio should get precedence:
 959                 * global limits are exceeded (e.g. due to activities on other
 960                 * wb's) while given strictlimit wb is below limit.
 961                 *
 962                 * "pos_ratio * wb_pos_ratio" would work for the case above,
 963                 * but it would look too non-natural for the case of all
 964                 * activity in the system coming from a single strictlimit wb
 965                 * with bdi->max_ratio == 100%.
 966                 *
 967                 * Note that min() below somewhat changes the dynamics of the
 968                 * control system. Normally, pos_ratio value can be well over 3
 969                 * (when globally we are at freerun and wb is well below wb
 970                 * setpoint). Now the maximum pos_ratio in the same situation
 971                 * is 2. We might want to tweak this if we observe the control
 972                 * system is too slow to adapt.
 973                 */
 974                dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 975                return;
 976        }
 977
 978        /*
 979         * We have computed basic pos_ratio above based on global situation. If
 980         * the wb is over/under its share of dirty pages, we want to scale
 981         * pos_ratio further down/up. That is done by the following mechanism.
 982         */
 983
 984        /*
 985         * wb setpoint
 986         *
 987         *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
 988         *
 989         *                        x_intercept - wb_dirty
 990         *                     := --------------------------
 991         *                        x_intercept - wb_setpoint
 992         *
 993         * The main wb control line is a linear function that subjects to
 994         *
 995         * (1) f(wb_setpoint) = 1.0
 996         * (2) k = - 1 / (8 * write_bw)  (in single wb case)
 997         *     or equally: x_intercept = wb_setpoint + 8 * write_bw
 998         *
 999         * For single wb case, the dirty pages are observed to fluctuate
1000         * regularly within range
1001         *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1002         * for various filesystems, where (2) can yield in a reasonable 12.5%
1003         * fluctuation range for pos_ratio.
1004         *
1005         * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1006         * own size, so move the slope over accordingly and choose a slope that
1007         * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1008         */
1009        if (unlikely(wb_thresh > dtc->thresh))
1010                wb_thresh = dtc->thresh;
1011        /*
1012         * It's very possible that wb_thresh is close to 0 not because the
1013         * device is slow, but that it has remained inactive for long time.
1014         * Honour such devices a reasonable good (hopefully IO efficient)
1015         * threshold, so that the occasional writes won't be blocked and active
1016         * writes can rampup the threshold quickly.
1017         */
1018        wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1019        /*
1020         * scale global setpoint to wb's:
1021         *      wb_setpoint = setpoint * wb_thresh / thresh
1022         */
1023        x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1024        wb_setpoint = setpoint * (u64)x >> 16;
1025        /*
1026         * Use span=(8*write_bw) in single wb case as indicated by
1027         * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1028         *
1029         *        wb_thresh                    thresh - wb_thresh
1030         * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1031         *         thresh                           thresh
1032         */
1033        span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1034        x_intercept = wb_setpoint + span;
1035
1036        if (dtc->wb_dirty < x_intercept - span / 4) {
1037                pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1038                                      (x_intercept - wb_setpoint) | 1);
1039        } else
1040                pos_ratio /= 4;
1041
1042        /*
1043         * wb reserve area, safeguard against dirty pool underrun and disk idle
1044         * It may push the desired control point of global dirty pages higher
1045         * than setpoint.
1046         */
1047        x_intercept = wb_thresh / 2;
1048        if (dtc->wb_dirty < x_intercept) {
1049                if (dtc->wb_dirty > x_intercept / 8)
1050                        pos_ratio = div_u64(pos_ratio * x_intercept,
1051                                            dtc->wb_dirty);
1052                else
1053                        pos_ratio *= 8;
1054        }
1055
1056        dtc->pos_ratio = pos_ratio;
1057}
1058
1059static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1060                                      unsigned long elapsed,
1061                                      unsigned long written)
1062{
1063        const unsigned long period = roundup_pow_of_two(3 * HZ);
1064        unsigned long avg = wb->avg_write_bandwidth;
1065        unsigned long old = wb->write_bandwidth;
1066        u64 bw;
1067
1068        /*
1069         * bw = written * HZ / elapsed
1070         *
1071         *                   bw * elapsed + write_bandwidth * (period - elapsed)
1072         * write_bandwidth = ---------------------------------------------------
1073         *                                          period
1074         *
1075         * @written may have decreased due to account_page_redirty().
1076         * Avoid underflowing @bw calculation.
1077         */
1078        bw = written - min(written, wb->written_stamp);
1079        bw *= HZ;
1080        if (unlikely(elapsed > period)) {
1081                do_div(bw, elapsed);
1082                avg = bw;
1083                goto out;
1084        }
1085        bw += (u64)wb->write_bandwidth * (period - elapsed);
1086        bw >>= ilog2(period);
1087
1088        /*
1089         * one more level of smoothing, for filtering out sudden spikes
1090         */
1091        if (avg > old && old >= (unsigned long)bw)
1092                avg -= (avg - old) >> 3;
1093
1094        if (avg < old && old <= (unsigned long)bw)
1095                avg += (old - avg) >> 3;
1096
1097out:
1098        /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1099        avg = max(avg, 1LU);
1100        if (wb_has_dirty_io(wb)) {
1101                long delta = avg - wb->avg_write_bandwidth;
1102                WARN_ON_ONCE(atomic_long_add_return(delta,
1103                                        &wb->bdi->tot_write_bandwidth) <= 0);
1104        }
1105        wb->write_bandwidth = bw;
1106        wb->avg_write_bandwidth = avg;
1107}
1108
1109static void update_dirty_limit(struct dirty_throttle_control *dtc)
1110{
1111        struct wb_domain *dom = dtc_dom(dtc);
1112        unsigned long thresh = dtc->thresh;
1113        unsigned long limit = dom->dirty_limit;
1114
1115        /*
1116         * Follow up in one step.
1117         */
1118        if (limit < thresh) {
1119                limit = thresh;
1120                goto update;
1121        }
1122
1123        /*
1124         * Follow down slowly. Use the higher one as the target, because thresh
1125         * may drop below dirty. This is exactly the reason to introduce
1126         * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1127         */
1128        thresh = max(thresh, dtc->dirty);
1129        if (limit > thresh) {
1130                limit -= (limit - thresh) >> 5;
1131                goto update;
1132        }
1133        return;
1134update:
1135        dom->dirty_limit = limit;
1136}
1137
1138static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1139                                    unsigned long now)
1140{
1141        struct wb_domain *dom = dtc_dom(dtc);
1142
1143        /*
1144         * check locklessly first to optimize away locking for the most time
1145         */
1146        if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1147                return;
1148
1149        spin_lock(&dom->lock);
1150        if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1151                update_dirty_limit(dtc);
1152                dom->dirty_limit_tstamp = now;
1153        }
1154        spin_unlock(&dom->lock);
1155}
1156
1157/*
1158 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1159 *
1160 * Normal wb tasks will be curbed at or below it in long term.
1161 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1162 */
1163static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1164                                      unsigned long dirtied,
1165                                      unsigned long elapsed)
1166{
1167        struct bdi_writeback *wb = dtc->wb;
1168        unsigned long dirty = dtc->dirty;
1169        unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1170        unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1171        unsigned long setpoint = (freerun + limit) / 2;
1172        unsigned long write_bw = wb->avg_write_bandwidth;
1173        unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1174        unsigned long dirty_rate;
1175        unsigned long task_ratelimit;
1176        unsigned long balanced_dirty_ratelimit;
1177        unsigned long step;
1178        unsigned long x;
1179        unsigned long shift;
1180
1181        /*
1182         * The dirty rate will match the writeout rate in long term, except
1183         * when dirty pages are truncated by userspace or re-dirtied by FS.
1184         */
1185        dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1186
1187        /*
1188         * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1189         */
1190        task_ratelimit = (u64)dirty_ratelimit *
1191                                        dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1192        task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1193
1194        /*
1195         * A linear estimation of the "balanced" throttle rate. The theory is,
1196         * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1197         * dirty_rate will be measured to be (N * task_ratelimit). So the below
1198         * formula will yield the balanced rate limit (write_bw / N).
1199         *
1200         * Note that the expanded form is not a pure rate feedback:
1201         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1202         * but also takes pos_ratio into account:
1203         *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1204         *
1205         * (1) is not realistic because pos_ratio also takes part in balancing
1206         * the dirty rate.  Consider the state
1207         *      pos_ratio = 0.5                                              (3)
1208         *      rate = 2 * (write_bw / N)                                    (4)
1209         * If (1) is used, it will stuck in that state! Because each dd will
1210         * be throttled at
1211         *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1212         * yielding
1213         *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1214         * put (6) into (1) we get
1215         *      rate_(i+1) = rate_(i)                                        (7)
1216         *
1217         * So we end up using (2) to always keep
1218         *      rate_(i+1) ~= (write_bw / N)                                 (8)
1219         * regardless of the value of pos_ratio. As long as (8) is satisfied,
1220         * pos_ratio is able to drive itself to 1.0, which is not only where
1221         * the dirty count meet the setpoint, but also where the slope of
1222         * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1223         */
1224        balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1225                                           dirty_rate | 1);
1226        /*
1227         * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1228         */
1229        if (unlikely(balanced_dirty_ratelimit > write_bw))
1230                balanced_dirty_ratelimit = write_bw;
1231
1232        /*
1233         * We could safely do this and return immediately:
1234         *
1235         *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1236         *
1237         * However to get a more stable dirty_ratelimit, the below elaborated
1238         * code makes use of task_ratelimit to filter out singular points and
1239         * limit the step size.
1240         *
1241         * The below code essentially only uses the relative value of
1242         *
1243         *      task_ratelimit - dirty_ratelimit
1244         *      = (pos_ratio - 1) * dirty_ratelimit
1245         *
1246         * which reflects the direction and size of dirty position error.
1247         */
1248
1249        /*
1250         * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1251         * task_ratelimit is on the same side of dirty_ratelimit, too.
1252         * For example, when
1253         * - dirty_ratelimit > balanced_dirty_ratelimit
1254         * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1255         * lowering dirty_ratelimit will help meet both the position and rate
1256         * control targets. Otherwise, don't update dirty_ratelimit if it will
1257         * only help meet the rate target. After all, what the users ultimately
1258         * feel and care are stable dirty rate and small position error.
1259         *
1260         * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1261         * and filter out the singular points of balanced_dirty_ratelimit. Which
1262         * keeps jumping around randomly and can even leap far away at times
1263         * due to the small 200ms estimation period of dirty_rate (we want to
1264         * keep that period small to reduce time lags).
1265         */
1266        step = 0;
1267
1268        /*
1269         * For strictlimit case, calculations above were based on wb counters
1270         * and limits (starting from pos_ratio = wb_position_ratio() and up to
1271         * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1272         * Hence, to calculate "step" properly, we have to use wb_dirty as
1273         * "dirty" and wb_setpoint as "setpoint".
1274         *
1275         * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1276         * it's possible that wb_thresh is close to zero due to inactivity
1277         * of backing device.
1278         */
1279        if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1280                dirty = dtc->wb_dirty;
1281                if (dtc->wb_dirty < 8)
1282                        setpoint = dtc->wb_dirty + 1;
1283                else
1284                        setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1285        }
1286
1287        if (dirty < setpoint) {
1288                x = min3(wb->balanced_dirty_ratelimit,
1289                         balanced_dirty_ratelimit, task_ratelimit);
1290                if (dirty_ratelimit < x)
1291                        step = x - dirty_ratelimit;
1292        } else {
1293                x = max3(wb->balanced_dirty_ratelimit,
1294                         balanced_dirty_ratelimit, task_ratelimit);
1295                if (dirty_ratelimit > x)
1296                        step = dirty_ratelimit - x;
1297        }
1298
1299        /*
1300         * Don't pursue 100% rate matching. It's impossible since the balanced
1301         * rate itself is constantly fluctuating. So decrease the track speed
1302         * when it gets close to the target. Helps eliminate pointless tremors.
1303         */
1304        shift = dirty_ratelimit / (2 * step + 1);
1305        if (shift < BITS_PER_LONG)
1306                step = DIV_ROUND_UP(step >> shift, 8);
1307        else
1308                step = 0;
1309
1310        if (dirty_ratelimit < balanced_dirty_ratelimit)
1311                dirty_ratelimit += step;
1312        else
1313                dirty_ratelimit -= step;
1314
1315        wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1316        wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1317
1318        trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1319}
1320
1321static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1322                                  struct dirty_throttle_control *mdtc,
1323                                  unsigned long start_time,
1324                                  bool update_ratelimit)
1325{
1326        struct bdi_writeback *wb = gdtc->wb;
1327        unsigned long now = jiffies;
1328        unsigned long elapsed = now - wb->bw_time_stamp;
1329        unsigned long dirtied;
1330        unsigned long written;
1331
1332        lockdep_assert_held(&wb->list_lock);
1333
1334        /*
1335         * rate-limit, only update once every 200ms.
1336         */
1337        if (elapsed < BANDWIDTH_INTERVAL)
1338                return;
1339
1340        dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1341        written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1342
1343        /*
1344         * Skip quiet periods when disk bandwidth is under-utilized.
1345         * (at least 1s idle time between two flusher runs)
1346         */
1347        if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1348                goto snapshot;
1349
1350        if (update_ratelimit) {
1351                domain_update_bandwidth(gdtc, now);
1352                wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1353
1354                /*
1355                 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1356                 * compiler has no way to figure that out.  Help it.
1357                 */
1358                if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1359                        domain_update_bandwidth(mdtc, now);
1360                        wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1361                }
1362        }
1363        wb_update_write_bandwidth(wb, elapsed, written);
1364
1365snapshot:
1366        wb->dirtied_stamp = dirtied;
1367        wb->written_stamp = written;
1368        wb->bw_time_stamp = now;
1369}
1370
1371void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1372{
1373        struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1374
1375        __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1376}
1377
1378/*
1379 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1380 * will look to see if it needs to start dirty throttling.
1381 *
1382 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1383 * global_page_state() too often. So scale it near-sqrt to the safety margin
1384 * (the number of pages we may dirty without exceeding the dirty limits).
1385 */
1386static unsigned long dirty_poll_interval(unsigned long dirty,
1387                                         unsigned long thresh)
1388{
1389        if (thresh > dirty)
1390                return 1UL << (ilog2(thresh - dirty) >> 1);
1391
1392        return 1;
1393}
1394
1395static unsigned long wb_max_pause(struct bdi_writeback *wb,
1396                                  unsigned long wb_dirty)
1397{
1398        unsigned long bw = wb->avg_write_bandwidth;
1399        unsigned long t;
1400
1401        /*
1402         * Limit pause time for small memory systems. If sleeping for too long
1403         * time, a small pool of dirty/writeback pages may go empty and disk go
1404         * idle.
1405         *
1406         * 8 serves as the safety ratio.
1407         */
1408        t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1409        t++;
1410
1411        return min_t(unsigned long, t, MAX_PAUSE);
1412}
1413
1414static long wb_min_pause(struct bdi_writeback *wb,
1415                         long max_pause,
1416                         unsigned long task_ratelimit,
1417                         unsigned long dirty_ratelimit,
1418                         int *nr_dirtied_pause)
1419{
1420        long hi = ilog2(wb->avg_write_bandwidth);
1421        long lo = ilog2(wb->dirty_ratelimit);
1422        long t;         /* target pause */
1423        long pause;     /* estimated next pause */
1424        int pages;      /* target nr_dirtied_pause */
1425
1426        /* target for 10ms pause on 1-dd case */
1427        t = max(1, HZ / 100);
1428
1429        /*
1430         * Scale up pause time for concurrent dirtiers in order to reduce CPU
1431         * overheads.
1432         *
1433         * (N * 10ms) on 2^N concurrent tasks.
1434         */
1435        if (hi > lo)
1436                t += (hi - lo) * (10 * HZ) / 1024;
1437
1438        /*
1439         * This is a bit convoluted. We try to base the next nr_dirtied_pause
1440         * on the much more stable dirty_ratelimit. However the next pause time
1441         * will be computed based on task_ratelimit and the two rate limits may
1442         * depart considerably at some time. Especially if task_ratelimit goes
1443         * below dirty_ratelimit/2 and the target pause is max_pause, the next
1444         * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1445         * result task_ratelimit won't be executed faithfully, which could
1446         * eventually bring down dirty_ratelimit.
1447         *
1448         * We apply two rules to fix it up:
1449         * 1) try to estimate the next pause time and if necessary, use a lower
1450         *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1451         *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1452         * 2) limit the target pause time to max_pause/2, so that the normal
1453         *    small fluctuations of task_ratelimit won't trigger rule (1) and
1454         *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1455         */
1456        t = min(t, 1 + max_pause / 2);
1457        pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1458
1459        /*
1460         * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1461         * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1462         * When the 16 consecutive reads are often interrupted by some dirty
1463         * throttling pause during the async writes, cfq will go into idles
1464         * (deadline is fine). So push nr_dirtied_pause as high as possible
1465         * until reaches DIRTY_POLL_THRESH=32 pages.
1466         */
1467        if (pages < DIRTY_POLL_THRESH) {
1468                t = max_pause;
1469                pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1470                if (pages > DIRTY_POLL_THRESH) {
1471                        pages = DIRTY_POLL_THRESH;
1472                        t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1473                }
1474        }
1475
1476        pause = HZ * pages / (task_ratelimit + 1);
1477        if (pause > max_pause) {
1478                t = max_pause;
1479                pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1480        }
1481
1482        *nr_dirtied_pause = pages;
1483        /*
1484         * The minimal pause time will normally be half the target pause time.
1485         */
1486        return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1487}
1488
1489static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1490{
1491        struct bdi_writeback *wb = dtc->wb;
1492        unsigned long wb_reclaimable;
1493
1494        /*
1495         * wb_thresh is not treated as some limiting factor as
1496         * dirty_thresh, due to reasons
1497         * - in JBOD setup, wb_thresh can fluctuate a lot
1498         * - in a system with HDD and USB key, the USB key may somehow
1499         *   go into state (wb_dirty >> wb_thresh) either because
1500         *   wb_dirty starts high, or because wb_thresh drops low.
1501         *   In this case we don't want to hard throttle the USB key
1502         *   dirtiers for 100 seconds until wb_dirty drops under
1503         *   wb_thresh. Instead the auxiliary wb control line in
1504         *   wb_position_ratio() will let the dirtier task progress
1505         *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1506         */
1507        dtc->wb_thresh = __wb_calc_thresh(dtc);
1508        dtc->wb_bg_thresh = dtc->thresh ?
1509                div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1510
1511        /*
1512         * In order to avoid the stacked BDI deadlock we need
1513         * to ensure we accurately count the 'dirty' pages when
1514         * the threshold is low.
1515         *
1516         * Otherwise it would be possible to get thresh+n pages
1517         * reported dirty, even though there are thresh-m pages
1518         * actually dirty; with m+n sitting in the percpu
1519         * deltas.
1520         */
1521        if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1522                wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1523                dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1524        } else {
1525                wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1526                dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1527        }
1528}
1529
1530/*
1531 * balance_dirty_pages() must be called by processes which are generating dirty
1532 * data.  It looks at the number of dirty pages in the machine and will force
1533 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1534 * If we're over `background_thresh' then the writeback threads are woken to
1535 * perform some writeout.
1536 */
1537static void balance_dirty_pages(struct address_space *mapping,
1538                                struct bdi_writeback *wb,
1539                                unsigned long pages_dirtied)
1540{
1541        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1542        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1543        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1544        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1545                                                     &mdtc_stor : NULL;
1546        struct dirty_throttle_control *sdtc;
1547        unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1548        long period;
1549        long pause;
1550        long max_pause;
1551        long min_pause;
1552        int nr_dirtied_pause;
1553        bool dirty_exceeded = false;
1554        unsigned long task_ratelimit;
1555        unsigned long dirty_ratelimit;
1556        struct backing_dev_info *bdi = wb->bdi;
1557        bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1558        unsigned long start_time = jiffies;
1559
1560        for (;;) {
1561                unsigned long now = jiffies;
1562                unsigned long dirty, thresh, bg_thresh;
1563                unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1564                unsigned long m_thresh = 0;
1565                unsigned long m_bg_thresh = 0;
1566
1567                /*
1568                 * Unstable writes are a feature of certain networked
1569                 * filesystems (i.e. NFS) in which data may have been
1570                 * written to the server's write cache, but has not yet
1571                 * been flushed to permanent storage.
1572                 */
1573                nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1574                                        global_page_state(NR_UNSTABLE_NFS);
1575                gdtc->avail = global_dirtyable_memory();
1576                gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1577
1578                domain_dirty_limits(gdtc);
1579
1580                if (unlikely(strictlimit)) {
1581                        wb_dirty_limits(gdtc);
1582
1583                        dirty = gdtc->wb_dirty;
1584                        thresh = gdtc->wb_thresh;
1585                        bg_thresh = gdtc->wb_bg_thresh;
1586                } else {
1587                        dirty = gdtc->dirty;
1588                        thresh = gdtc->thresh;
1589                        bg_thresh = gdtc->bg_thresh;
1590                }
1591
1592                if (mdtc) {
1593                        unsigned long filepages, headroom, writeback;
1594
1595                        /*
1596                         * If @wb belongs to !root memcg, repeat the same
1597                         * basic calculations for the memcg domain.
1598                         */
1599                        mem_cgroup_wb_stats(wb, &filepages, &headroom,
1600                                            &mdtc->dirty, &writeback);
1601                        mdtc->dirty += writeback;
1602                        mdtc_calc_avail(mdtc, filepages, headroom);
1603
1604                        domain_dirty_limits(mdtc);
1605
1606                        if (unlikely(strictlimit)) {
1607                                wb_dirty_limits(mdtc);
1608                                m_dirty = mdtc->wb_dirty;
1609                                m_thresh = mdtc->wb_thresh;
1610                                m_bg_thresh = mdtc->wb_bg_thresh;
1611                        } else {
1612                                m_dirty = mdtc->dirty;
1613                                m_thresh = mdtc->thresh;
1614                                m_bg_thresh = mdtc->bg_thresh;
1615                        }
1616                }
1617
1618                /*
1619                 * Throttle it only when the background writeback cannot
1620                 * catch-up. This avoids (excessively) small writeouts
1621                 * when the wb limits are ramping up in case of !strictlimit.
1622                 *
1623                 * In strictlimit case make decision based on the wb counters
1624                 * and limits. Small writeouts when the wb limits are ramping
1625                 * up are the price we consciously pay for strictlimit-ing.
1626                 *
1627                 * If memcg domain is in effect, @dirty should be under
1628                 * both global and memcg freerun ceilings.
1629                 */
1630                if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1631                    (!mdtc ||
1632                     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1633                        unsigned long intv = dirty_poll_interval(dirty, thresh);
1634                        unsigned long m_intv = ULONG_MAX;
1635
1636                        current->dirty_paused_when = now;
1637                        current->nr_dirtied = 0;
1638                        if (mdtc)
1639                                m_intv = dirty_poll_interval(m_dirty, m_thresh);
1640                        current->nr_dirtied_pause = min(intv, m_intv);
1641                        break;
1642                }
1643
1644                if (unlikely(!writeback_in_progress(wb)))
1645                        wb_start_background_writeback(wb);
1646
1647                /*
1648                 * Calculate global domain's pos_ratio and select the
1649                 * global dtc by default.
1650                 */
1651                if (!strictlimit)
1652                        wb_dirty_limits(gdtc);
1653
1654                dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1655                        ((gdtc->dirty > gdtc->thresh) || strictlimit);
1656
1657                wb_position_ratio(gdtc);
1658                sdtc = gdtc;
1659
1660                if (mdtc) {
1661                        /*
1662                         * If memcg domain is in effect, calculate its
1663                         * pos_ratio.  @wb should satisfy constraints from
1664                         * both global and memcg domains.  Choose the one
1665                         * w/ lower pos_ratio.
1666                         */
1667                        if (!strictlimit)
1668                                wb_dirty_limits(mdtc);
1669
1670                        dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1671                                ((mdtc->dirty > mdtc->thresh) || strictlimit);
1672
1673                        wb_position_ratio(mdtc);
1674                        if (mdtc->pos_ratio < gdtc->pos_ratio)
1675                                sdtc = mdtc;
1676                }
1677
1678                if (dirty_exceeded && !wb->dirty_exceeded)
1679                        wb->dirty_exceeded = 1;
1680
1681                if (time_is_before_jiffies(wb->bw_time_stamp +
1682                                           BANDWIDTH_INTERVAL)) {
1683                        spin_lock(&wb->list_lock);
1684                        __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1685                        spin_unlock(&wb->list_lock);
1686                }
1687
1688                /* throttle according to the chosen dtc */
1689                dirty_ratelimit = wb->dirty_ratelimit;
1690                task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1691                                                        RATELIMIT_CALC_SHIFT;
1692                max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1693                min_pause = wb_min_pause(wb, max_pause,
1694                                         task_ratelimit, dirty_ratelimit,
1695                                         &nr_dirtied_pause);
1696
1697                if (unlikely(task_ratelimit == 0)) {
1698                        period = max_pause;
1699                        pause = max_pause;
1700                        goto pause;
1701                }
1702                period = HZ * pages_dirtied / task_ratelimit;
1703                pause = period;
1704                if (current->dirty_paused_when)
1705                        pause -= now - current->dirty_paused_when;
1706                /*
1707                 * For less than 1s think time (ext3/4 may block the dirtier
1708                 * for up to 800ms from time to time on 1-HDD; so does xfs,
1709                 * however at much less frequency), try to compensate it in
1710                 * future periods by updating the virtual time; otherwise just
1711                 * do a reset, as it may be a light dirtier.
1712                 */
1713                if (pause < min_pause) {
1714                        trace_balance_dirty_pages(wb,
1715                                                  sdtc->thresh,
1716                                                  sdtc->bg_thresh,
1717                                                  sdtc->dirty,
1718                                                  sdtc->wb_thresh,
1719                                                  sdtc->wb_dirty,
1720                                                  dirty_ratelimit,
1721                                                  task_ratelimit,
1722                                                  pages_dirtied,
1723                                                  period,
1724                                                  min(pause, 0L),
1725                                                  start_time);
1726                        if (pause < -HZ) {
1727                                current->dirty_paused_when = now;
1728                                current->nr_dirtied = 0;
1729                        } else if (period) {
1730                                current->dirty_paused_when += period;
1731                                current->nr_dirtied = 0;
1732                        } else if (current->nr_dirtied_pause <= pages_dirtied)
1733                                current->nr_dirtied_pause += pages_dirtied;
1734                        break;
1735                }
1736                if (unlikely(pause > max_pause)) {
1737                        /* for occasional dropped task_ratelimit */
1738                        now += min(pause - max_pause, max_pause);
1739                        pause = max_pause;
1740                }
1741
1742pause:
1743                trace_balance_dirty_pages(wb,
1744                                          sdtc->thresh,
1745                                          sdtc->bg_thresh,
1746                                          sdtc->dirty,
1747                                          sdtc->wb_thresh,
1748                                          sdtc->wb_dirty,
1749                                          dirty_ratelimit,
1750                                          task_ratelimit,
1751                                          pages_dirtied,
1752                                          period,
1753                                          pause,
1754                                          start_time);
1755                __set_current_state(TASK_KILLABLE);
1756                io_schedule_timeout(pause);
1757
1758                current->dirty_paused_when = now + pause;
1759                current->nr_dirtied = 0;
1760                current->nr_dirtied_pause = nr_dirtied_pause;
1761
1762                /*
1763                 * This is typically equal to (dirty < thresh) and can also
1764                 * keep "1000+ dd on a slow USB stick" under control.
1765                 */
1766                if (task_ratelimit)
1767                        break;
1768
1769                /*
1770                 * In the case of an unresponding NFS server and the NFS dirty
1771                 * pages exceeds dirty_thresh, give the other good wb's a pipe
1772                 * to go through, so that tasks on them still remain responsive.
1773                 *
1774                 * In theory 1 page is enough to keep the comsumer-producer
1775                 * pipe going: the flusher cleans 1 page => the task dirties 1
1776                 * more page. However wb_dirty has accounting errors.  So use
1777                 * the larger and more IO friendly wb_stat_error.
1778                 */
1779                if (sdtc->wb_dirty <= wb_stat_error(wb))
1780                        break;
1781
1782                if (fatal_signal_pending(current))
1783                        break;
1784        }
1785
1786        if (!dirty_exceeded && wb->dirty_exceeded)
1787                wb->dirty_exceeded = 0;
1788
1789        if (writeback_in_progress(wb))
1790                return;
1791
1792        /*
1793         * In laptop mode, we wait until hitting the higher threshold before
1794         * starting background writeout, and then write out all the way down
1795         * to the lower threshold.  So slow writers cause minimal disk activity.
1796         *
1797         * In normal mode, we start background writeout at the lower
1798         * background_thresh, to keep the amount of dirty memory low.
1799         */
1800        if (laptop_mode)
1801                return;
1802
1803        if (nr_reclaimable > gdtc->bg_thresh)
1804                wb_start_background_writeback(wb);
1805}
1806
1807static DEFINE_PER_CPU(int, bdp_ratelimits);
1808
1809/*
1810 * Normal tasks are throttled by
1811 *      loop {
1812 *              dirty tsk->nr_dirtied_pause pages;
1813 *              take a snap in balance_dirty_pages();
1814 *      }
1815 * However there is a worst case. If every task exit immediately when dirtied
1816 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1817 * called to throttle the page dirties. The solution is to save the not yet
1818 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1819 * randomly into the running tasks. This works well for the above worst case,
1820 * as the new task will pick up and accumulate the old task's leaked dirty
1821 * count and eventually get throttled.
1822 */
1823DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1824
1825/**
1826 * balance_dirty_pages_ratelimited - balance dirty memory state
1827 * @mapping: address_space which was dirtied
1828 *
1829 * Processes which are dirtying memory should call in here once for each page
1830 * which was newly dirtied.  The function will periodically check the system's
1831 * dirty state and will initiate writeback if needed.
1832 *
1833 * On really big machines, get_writeback_state is expensive, so try to avoid
1834 * calling it too often (ratelimiting).  But once we're over the dirty memory
1835 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1836 * from overshooting the limit by (ratelimit_pages) each.
1837 */
1838void balance_dirty_pages_ratelimited(struct address_space *mapping)
1839{
1840        struct inode *inode = mapping->host;
1841        struct backing_dev_info *bdi = inode_to_bdi(inode);
1842        struct bdi_writeback *wb = NULL;
1843        int ratelimit;
1844        int *p;
1845
1846        if (!bdi_cap_account_dirty(bdi))
1847                return;
1848
1849        if (inode_cgwb_enabled(inode))
1850                wb = wb_get_create_current(bdi, GFP_KERNEL);
1851        if (!wb)
1852                wb = &bdi->wb;
1853
1854        ratelimit = current->nr_dirtied_pause;
1855        if (wb->dirty_exceeded)
1856                ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1857
1858        preempt_disable();
1859        /*
1860         * This prevents one CPU to accumulate too many dirtied pages without
1861         * calling into balance_dirty_pages(), which can happen when there are
1862         * 1000+ tasks, all of them start dirtying pages at exactly the same
1863         * time, hence all honoured too large initial task->nr_dirtied_pause.
1864         */
1865        p =  this_cpu_ptr(&bdp_ratelimits);
1866        if (unlikely(current->nr_dirtied >= ratelimit))
1867                *p = 0;
1868        else if (unlikely(*p >= ratelimit_pages)) {
1869                *p = 0;
1870                ratelimit = 0;
1871        }
1872        /*
1873         * Pick up the dirtied pages by the exited tasks. This avoids lots of
1874         * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1875         * the dirty throttling and livelock other long-run dirtiers.
1876         */
1877        p = this_cpu_ptr(&dirty_throttle_leaks);
1878        if (*p > 0 && current->nr_dirtied < ratelimit) {
1879                unsigned long nr_pages_dirtied;
1880                nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1881                *p -= nr_pages_dirtied;
1882                current->nr_dirtied += nr_pages_dirtied;
1883        }
1884        preempt_enable();
1885
1886        if (unlikely(current->nr_dirtied >= ratelimit))
1887                balance_dirty_pages(mapping, wb, current->nr_dirtied);
1888
1889        wb_put(wb);
1890}
1891EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1892
1893/**
1894 * wb_over_bg_thresh - does @wb need to be written back?
1895 * @wb: bdi_writeback of interest
1896 *
1897 * Determines whether background writeback should keep writing @wb or it's
1898 * clean enough.  Returns %true if writeback should continue.
1899 */
1900bool wb_over_bg_thresh(struct bdi_writeback *wb)
1901{
1902        struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1903        struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1904        struct dirty_throttle_control * const gdtc = &gdtc_stor;
1905        struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1906                                                     &mdtc_stor : NULL;
1907
1908        /*
1909         * Similar to balance_dirty_pages() but ignores pages being written
1910         * as we're trying to decide whether to put more under writeback.
1911         */
1912        gdtc->avail = global_dirtyable_memory();
1913        gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1914                      global_page_state(NR_UNSTABLE_NFS);
1915        domain_dirty_limits(gdtc);
1916
1917        if (gdtc->dirty > gdtc->bg_thresh)
1918                return true;
1919
1920        if (wb_stat(wb, WB_RECLAIMABLE) >
1921            wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1922                return true;
1923
1924        if (mdtc) {
1925                unsigned long filepages, headroom, writeback;
1926
1927                mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1928                                    &writeback);
1929                mdtc_calc_avail(mdtc, filepages, headroom);
1930                domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
1931
1932                if (mdtc->dirty > mdtc->bg_thresh)
1933                        return true;
1934
1935                if (wb_stat(wb, WB_RECLAIMABLE) >
1936                    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1937                        return true;
1938        }
1939
1940        return false;
1941}
1942
1943void throttle_vm_writeout(gfp_t gfp_mask)
1944{
1945        unsigned long background_thresh;
1946        unsigned long dirty_thresh;
1947
1948        for ( ; ; ) {
1949                global_dirty_limits(&background_thresh, &dirty_thresh);
1950                dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1951
1952                /*
1953                 * Boost the allowable dirty threshold a bit for page
1954                 * allocators so they don't get DoS'ed by heavy writers
1955                 */
1956                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1957
1958                if (global_page_state(NR_UNSTABLE_NFS) +
1959                        global_page_state(NR_WRITEBACK) <= dirty_thresh)
1960                                break;
1961                congestion_wait(BLK_RW_ASYNC, HZ/10);
1962
1963                /*
1964                 * The caller might hold locks which can prevent IO completion
1965                 * or progress in the filesystem.  So we cannot just sit here
1966                 * waiting for IO to complete.
1967                 */
1968                if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1969                        break;
1970        }
1971}
1972
1973/*
1974 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1975 */
1976int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1977        void __user *buffer, size_t *length, loff_t *ppos)
1978{
1979        proc_dointvec(table, write, buffer, length, ppos);
1980        return 0;
1981}
1982
1983#ifdef CONFIG_BLOCK
1984void laptop_mode_timer_fn(unsigned long data)
1985{
1986        struct request_queue *q = (struct request_queue *)data;
1987        int nr_pages = global_page_state(NR_FILE_DIRTY) +
1988                global_page_state(NR_UNSTABLE_NFS);
1989        struct bdi_writeback *wb;
1990
1991        /*
1992         * We want to write everything out, not just down to the dirty
1993         * threshold
1994         */
1995        if (!bdi_has_dirty_io(&q->backing_dev_info))
1996                return;
1997
1998        rcu_read_lock();
1999        list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
2000                if (wb_has_dirty_io(wb))
2001                        wb_start_writeback(wb, nr_pages, true,
2002                                           WB_REASON_LAPTOP_TIMER);
2003        rcu_read_unlock();
2004}
2005
2006/*
2007 * We've spun up the disk and we're in laptop mode: schedule writeback
2008 * of all dirty data a few seconds from now.  If the flush is already scheduled
2009 * then push it back - the user is still using the disk.
2010 */
2011void laptop_io_completion(struct backing_dev_info *info)
2012{
2013        mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2014}
2015
2016/*
2017 * We're in laptop mode and we've just synced. The sync's writes will have
2018 * caused another writeback to be scheduled by laptop_io_completion.
2019 * Nothing needs to be written back anymore, so we unschedule the writeback.
2020 */
2021void laptop_sync_completion(void)
2022{
2023        struct backing_dev_info *bdi;
2024
2025        rcu_read_lock();
2026
2027        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2028                del_timer(&bdi->laptop_mode_wb_timer);
2029
2030        rcu_read_unlock();
2031}
2032#endif
2033
2034/*
2035 * If ratelimit_pages is too high then we can get into dirty-data overload
2036 * if a large number of processes all perform writes at the same time.
2037 * If it is too low then SMP machines will call the (expensive)
2038 * get_writeback_state too often.
2039 *
2040 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2041 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2042 * thresholds.
2043 */
2044
2045void writeback_set_ratelimit(void)
2046{
2047        struct wb_domain *dom = &global_wb_domain;
2048        unsigned long background_thresh;
2049        unsigned long dirty_thresh;
2050
2051        global_dirty_limits(&background_thresh, &dirty_thresh);
2052        dom->dirty_limit = dirty_thresh;
2053        ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2054        if (ratelimit_pages < 16)
2055                ratelimit_pages = 16;
2056}
2057
2058static int
2059ratelimit_handler(struct notifier_block *self, unsigned long action,
2060                  void *hcpu)
2061{
2062
2063        switch (action & ~CPU_TASKS_FROZEN) {
2064        case CPU_ONLINE:
2065        case CPU_DEAD:
2066                writeback_set_ratelimit();
2067                return NOTIFY_OK;
2068        default:
2069                return NOTIFY_DONE;
2070        }
2071}
2072
2073static struct notifier_block ratelimit_nb = {
2074        .notifier_call  = ratelimit_handler,
2075        .next           = NULL,
2076};
2077
2078/*
2079 * Called early on to tune the page writeback dirty limits.
2080 *
2081 * We used to scale dirty pages according to how total memory
2082 * related to pages that could be allocated for buffers (by
2083 * comparing nr_free_buffer_pages() to vm_total_pages.
2084 *
2085 * However, that was when we used "dirty_ratio" to scale with
2086 * all memory, and we don't do that any more. "dirty_ratio"
2087 * is now applied to total non-HIGHPAGE memory (by subtracting
2088 * totalhigh_pages from vm_total_pages), and as such we can't
2089 * get into the old insane situation any more where we had
2090 * large amounts of dirty pages compared to a small amount of
2091 * non-HIGHMEM memory.
2092 *
2093 * But we might still want to scale the dirty_ratio by how
2094 * much memory the box has..
2095 */
2096void __init page_writeback_init(void)
2097{
2098        BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2099
2100        writeback_set_ratelimit();
2101        register_cpu_notifier(&ratelimit_nb);
2102}
2103
2104/**
2105 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2106 * @mapping: address space structure to write
2107 * @start: starting page index
2108 * @end: ending page index (inclusive)
2109 *
2110 * This function scans the page range from @start to @end (inclusive) and tags
2111 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2112 * that write_cache_pages (or whoever calls this function) will then use
2113 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2114 * used to avoid livelocking of writeback by a process steadily creating new
2115 * dirty pages in the file (thus it is important for this function to be quick
2116 * so that it can tag pages faster than a dirtying process can create them).
2117 */
2118/*
2119 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2120 */
2121void tag_pages_for_writeback(struct address_space *mapping,
2122                             pgoff_t start, pgoff_t end)
2123{
2124#define WRITEBACK_TAG_BATCH 4096
2125        unsigned long tagged;
2126
2127        do {
2128                spin_lock_irq(&mapping->tree_lock);
2129                tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2130                                &start, end, WRITEBACK_TAG_BATCH,
2131                                PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2132                spin_unlock_irq(&mapping->tree_lock);
2133                WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2134                cond_resched();
2135                /* We check 'start' to handle wrapping when end == ~0UL */
2136        } while (tagged >= WRITEBACK_TAG_BATCH && start);
2137}
2138EXPORT_SYMBOL(tag_pages_for_writeback);
2139
2140/**
2141 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2142 * @mapping: address space structure to write
2143 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2144 * @writepage: function called for each page
2145 * @data: data passed to writepage function
2146 *
2147 * If a page is already under I/O, write_cache_pages() skips it, even
2148 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2149 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2150 * and msync() need to guarantee that all the data which was dirty at the time
2151 * the call was made get new I/O started against them.  If wbc->sync_mode is
2152 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2153 * existing IO to complete.
2154 *
2155 * To avoid livelocks (when other process dirties new pages), we first tag
2156 * pages which should be written back with TOWRITE tag and only then start
2157 * writing them. For data-integrity sync we have to be careful so that we do
2158 * not miss some pages (e.g., because some other process has cleared TOWRITE
2159 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2160 * by the process clearing the DIRTY tag (and submitting the page for IO).
2161 */
2162int write_cache_pages(struct address_space *mapping,
2163                      struct writeback_control *wbc, writepage_t writepage,
2164                      void *data)
2165{
2166        int ret = 0;
2167        int done = 0;
2168        struct pagevec pvec;
2169        int nr_pages;
2170        pgoff_t uninitialized_var(writeback_index);
2171        pgoff_t index;
2172        pgoff_t end;            /* Inclusive */
2173        pgoff_t done_index;
2174        int cycled;
2175        int range_whole = 0;
2176        int tag;
2177
2178        pagevec_init(&pvec, 0);
2179        if (wbc->range_cyclic) {
2180                writeback_index = mapping->writeback_index; /* prev offset */
2181                index = writeback_index;
2182                if (index == 0)
2183                        cycled = 1;
2184                else
2185                        cycled = 0;
2186                end = -1;
2187        } else {
2188                index = wbc->range_start >> PAGE_SHIFT;
2189                end = wbc->range_end >> PAGE_SHIFT;
2190                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2191                        range_whole = 1;
2192                cycled = 1; /* ignore range_cyclic tests */
2193        }
2194        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2195                tag = PAGECACHE_TAG_TOWRITE;
2196        else
2197                tag = PAGECACHE_TAG_DIRTY;
2198retry:
2199        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2200                tag_pages_for_writeback(mapping, index, end);
2201        done_index = index;
2202        while (!done && (index <= end)) {
2203                int i;
2204
2205                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2206                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2207                if (nr_pages == 0)
2208                        break;
2209
2210                for (i = 0; i < nr_pages; i++) {
2211                        struct page *page = pvec.pages[i];
2212
2213                        /*
2214                         * At this point, the page may be truncated or
2215                         * invalidated (changing page->mapping to NULL), or
2216                         * even swizzled back from swapper_space to tmpfs file
2217                         * mapping. However, page->index will not change
2218                         * because we have a reference on the page.
2219                         */
2220                        if (page->index > end) {
2221                                /*
2222                                 * can't be range_cyclic (1st pass) because
2223                                 * end == -1 in that case.
2224                                 */
2225                                done = 1;
2226                                break;
2227                        }
2228
2229                        done_index = page->index;
2230
2231                        lock_page(page);
2232
2233                        /*
2234                         * Page truncated or invalidated. We can freely skip it
2235                         * then, even for data integrity operations: the page
2236                         * has disappeared concurrently, so there could be no
2237                         * real expectation of this data interity operation
2238                         * even if there is now a new, dirty page at the same
2239                         * pagecache address.
2240                         */
2241                        if (unlikely(page->mapping != mapping)) {
2242continue_unlock:
2243                                unlock_page(page);
2244                                continue;
2245                        }
2246
2247                        if (!PageDirty(page)) {
2248                                /* someone wrote it for us */
2249                                goto continue_unlock;
2250                        }
2251
2252                        if (PageWriteback(page)) {
2253                                if (wbc->sync_mode != WB_SYNC_NONE)
2254                                        wait_on_page_writeback(page);
2255                                else
2256                                        goto continue_unlock;
2257                        }
2258
2259                        BUG_ON(PageWriteback(page));
2260                        if (!clear_page_dirty_for_io(page))
2261                                goto continue_unlock;
2262
2263                        trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2264                        ret = (*writepage)(page, wbc, data);
2265                        if (unlikely(ret)) {
2266                                if (ret == AOP_WRITEPAGE_ACTIVATE) {
2267                                        unlock_page(page);
2268                                        ret = 0;
2269                                } else {
2270                                        /*
2271                                         * done_index is set past this page,
2272                                         * so media errors will not choke
2273                                         * background writeout for the entire
2274                                         * file. This has consequences for
2275                                         * range_cyclic semantics (ie. it may
2276                                         * not be suitable for data integrity
2277                                         * writeout).
2278                                         */
2279                                        done_index = page->index + 1;
2280                                        done = 1;
2281                                        break;
2282                                }
2283                        }
2284
2285                        /*
2286                         * We stop writing back only if we are not doing
2287                         * integrity sync. In case of integrity sync we have to
2288                         * keep going until we have written all the pages
2289                         * we tagged for writeback prior to entering this loop.
2290                         */
2291                        if (--wbc->nr_to_write <= 0 &&
2292                            wbc->sync_mode == WB_SYNC_NONE) {
2293                                done = 1;
2294                                break;
2295                        }
2296                }
2297                pagevec_release(&pvec);
2298                cond_resched();
2299        }
2300        if (!cycled && !done) {
2301                /*
2302                 * range_cyclic:
2303                 * We hit the last page and there is more work to be done: wrap
2304                 * back to the start of the file
2305                 */
2306                cycled = 1;
2307                index = 0;
2308                end = writeback_index - 1;
2309                goto retry;
2310        }
2311        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2312                mapping->writeback_index = done_index;
2313
2314        return ret;
2315}
2316EXPORT_SYMBOL(write_cache_pages);
2317
2318/*
2319 * Function used by generic_writepages to call the real writepage
2320 * function and set the mapping flags on error
2321 */
2322static int __writepage(struct page *page, struct writeback_control *wbc,
2323                       void *data)
2324{
2325        struct address_space *mapping = data;
2326        int ret = mapping->a_ops->writepage(page, wbc);
2327        mapping_set_error(mapping, ret);
2328        return ret;
2329}
2330
2331/**
2332 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2333 * @mapping: address space structure to write
2334 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2335 *
2336 * This is a library function, which implements the writepages()
2337 * address_space_operation.
2338 */
2339int generic_writepages(struct address_space *mapping,
2340                       struct writeback_control *wbc)
2341{
2342        struct blk_plug plug;
2343        int ret;
2344
2345        /* deal with chardevs and other special file */
2346        if (!mapping->a_ops->writepage)
2347                return 0;
2348
2349        blk_start_plug(&plug);
2350        ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2351        blk_finish_plug(&plug);
2352        return ret;
2353}
2354
2355EXPORT_SYMBOL(generic_writepages);
2356
2357int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2358{
2359        int ret;
2360
2361        if (wbc->nr_to_write <= 0)
2362                return 0;
2363        if (mapping->a_ops->writepages)
2364                ret = mapping->a_ops->writepages(mapping, wbc);
2365        else
2366                ret = generic_writepages(mapping, wbc);
2367        return ret;
2368}
2369
2370/**
2371 * write_one_page - write out a single page and optionally wait on I/O
2372 * @page: the page to write
2373 * @wait: if true, wait on writeout
2374 *
2375 * The page must be locked by the caller and will be unlocked upon return.
2376 *
2377 * write_one_page() returns a negative error code if I/O failed.
2378 */
2379int write_one_page(struct page *page, int wait)
2380{
2381        struct address_space *mapping = page->mapping;
2382        int ret = 0;
2383        struct writeback_control wbc = {
2384                .sync_mode = WB_SYNC_ALL,
2385                .nr_to_write = 1,
2386        };
2387
2388        BUG_ON(!PageLocked(page));
2389
2390        if (wait)
2391                wait_on_page_writeback(page);
2392
2393        if (clear_page_dirty_for_io(page)) {
2394                get_page(page);
2395                ret = mapping->a_ops->writepage(page, &wbc);
2396                if (ret == 0 && wait) {
2397                        wait_on_page_writeback(page);
2398                        if (PageError(page))
2399                                ret = -EIO;
2400                }
2401                put_page(page);
2402        } else {
2403                unlock_page(page);
2404        }
2405        return ret;
2406}
2407EXPORT_SYMBOL(write_one_page);
2408
2409/*
2410 * For address_spaces which do not use buffers nor write back.
2411 */
2412int __set_page_dirty_no_writeback(struct page *page)
2413{
2414        if (!PageDirty(page))
2415                return !TestSetPageDirty(page);
2416        return 0;
2417}
2418
2419/*
2420 * Helper function for set_page_dirty family.
2421 *
2422 * Caller must hold lock_page_memcg().
2423 *
2424 * NOTE: This relies on being atomic wrt interrupts.
2425 */
2426void account_page_dirtied(struct page *page, struct address_space *mapping)
2427{
2428        struct inode *inode = mapping->host;
2429
2430        trace_writeback_dirty_page(page, mapping);
2431
2432        if (mapping_cap_account_dirty(mapping)) {
2433                struct bdi_writeback *wb;
2434
2435                inode_attach_wb(inode, page);
2436                wb = inode_to_wb(inode);
2437
2438                mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2439                __inc_zone_page_state(page, NR_FILE_DIRTY);
2440                __inc_zone_page_state(page, NR_DIRTIED);
2441                __inc_wb_stat(wb, WB_RECLAIMABLE);
2442                __inc_wb_stat(wb, WB_DIRTIED);
2443                task_io_account_write(PAGE_SIZE);
2444                current->nr_dirtied++;
2445                this_cpu_inc(bdp_ratelimits);
2446        }
2447}
2448EXPORT_SYMBOL(account_page_dirtied);
2449
2450/*
2451 * Helper function for deaccounting dirty page without writeback.
2452 *
2453 * Caller must hold lock_page_memcg().
2454 */
2455void account_page_cleaned(struct page *page, struct address_space *mapping,
2456                          struct bdi_writeback *wb)
2457{
2458        if (mapping_cap_account_dirty(mapping)) {
2459                mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2460                dec_zone_page_state(page, NR_FILE_DIRTY);
2461                dec_wb_stat(wb, WB_RECLAIMABLE);
2462                task_io_account_cancelled_write(PAGE_SIZE);
2463        }
2464}
2465
2466/*
2467 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2468 * its radix tree.
2469 *
2470 * This is also used when a single buffer is being dirtied: we want to set the
2471 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2472 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2473 *
2474 * The caller must ensure this doesn't race with truncation.  Most will simply
2475 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2476 * the pte lock held, which also locks out truncation.
2477 */
2478int __set_page_dirty_nobuffers(struct page *page)
2479{
2480        lock_page_memcg(page);
2481        if (!TestSetPageDirty(page)) {
2482                struct address_space *mapping = page_mapping(page);
2483                unsigned long flags;
2484
2485                if (!mapping) {
2486                        unlock_page_memcg(page);
2487                        return 1;
2488                }
2489
2490                spin_lock_irqsave(&mapping->tree_lock, flags);
2491                BUG_ON(page_mapping(page) != mapping);
2492                WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2493                account_page_dirtied(page, mapping);
2494                radix_tree_tag_set(&mapping->page_tree, page_index(page),
2495                                   PAGECACHE_TAG_DIRTY);
2496                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2497                unlock_page_memcg(page);
2498
2499                if (mapping->host) {
2500                        /* !PageAnon && !swapper_space */
2501                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2502                }
2503                return 1;
2504        }
2505        unlock_page_memcg(page);
2506        return 0;
2507}
2508EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2509
2510/*
2511 * Call this whenever redirtying a page, to de-account the dirty counters
2512 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2513 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2514 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2515 * control.
2516 */
2517void account_page_redirty(struct page *page)
2518{
2519        struct address_space *mapping = page->mapping;
2520
2521        if (mapping && mapping_cap_account_dirty(mapping)) {
2522                struct inode *inode = mapping->host;
2523                struct bdi_writeback *wb;
2524                bool locked;
2525
2526                wb = unlocked_inode_to_wb_begin(inode, &locked);
2527                current->nr_dirtied--;
2528                dec_zone_page_state(page, NR_DIRTIED);
2529                dec_wb_stat(wb, WB_DIRTIED);
2530                unlocked_inode_to_wb_end(inode, locked);
2531        }
2532}
2533EXPORT_SYMBOL(account_page_redirty);
2534
2535/*
2536 * When a writepage implementation decides that it doesn't want to write this
2537 * page for some reason, it should redirty the locked page via
2538 * redirty_page_for_writepage() and it should then unlock the page and return 0
2539 */
2540int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2541{
2542        int ret;
2543
2544        wbc->pages_skipped++;
2545        ret = __set_page_dirty_nobuffers(page);
2546        account_page_redirty(page);
2547        return ret;
2548}
2549EXPORT_SYMBOL(redirty_page_for_writepage);
2550
2551/*
2552 * Dirty a page.
2553 *
2554 * For pages with a mapping this should be done under the page lock
2555 * for the benefit of asynchronous memory errors who prefer a consistent
2556 * dirty state. This rule can be broken in some special cases,
2557 * but should be better not to.
2558 *
2559 * If the mapping doesn't provide a set_page_dirty a_op, then
2560 * just fall through and assume that it wants buffer_heads.
2561 */
2562int set_page_dirty(struct page *page)
2563{
2564        struct address_space *mapping = page_mapping(page);
2565
2566        if (likely(mapping)) {
2567                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2568                /*
2569                 * readahead/lru_deactivate_page could remain
2570                 * PG_readahead/PG_reclaim due to race with end_page_writeback
2571                 * About readahead, if the page is written, the flags would be
2572                 * reset. So no problem.
2573                 * About lru_deactivate_page, if the page is redirty, the flag
2574                 * will be reset. So no problem. but if the page is used by readahead
2575                 * it will confuse readahead and make it restart the size rampup
2576                 * process. But it's a trivial problem.
2577                 */
2578                if (PageReclaim(page))
2579                        ClearPageReclaim(page);
2580#ifdef CONFIG_BLOCK
2581                if (!spd)
2582                        spd = __set_page_dirty_buffers;
2583#endif
2584                return (*spd)(page);
2585        }
2586        if (!PageDirty(page)) {
2587                if (!TestSetPageDirty(page))
2588                        return 1;
2589        }
2590        return 0;
2591}
2592EXPORT_SYMBOL(set_page_dirty);
2593
2594/*
2595 * set_page_dirty() is racy if the caller has no reference against
2596 * page->mapping->host, and if the page is unlocked.  This is because another
2597 * CPU could truncate the page off the mapping and then free the mapping.
2598 *
2599 * Usually, the page _is_ locked, or the caller is a user-space process which
2600 * holds a reference on the inode by having an open file.
2601 *
2602 * In other cases, the page should be locked before running set_page_dirty().
2603 */
2604int set_page_dirty_lock(struct page *page)
2605{
2606        int ret;
2607
2608        lock_page(page);
2609        ret = set_page_dirty(page);
2610        unlock_page(page);
2611        return ret;
2612}
2613EXPORT_SYMBOL(set_page_dirty_lock);
2614
2615/*
2616 * This cancels just the dirty bit on the kernel page itself, it does NOT
2617 * actually remove dirty bits on any mmap's that may be around. It also
2618 * leaves the page tagged dirty, so any sync activity will still find it on
2619 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2620 * look at the dirty bits in the VM.
2621 *
2622 * Doing this should *normally* only ever be done when a page is truncated,
2623 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2624 * this when it notices that somebody has cleaned out all the buffers on a
2625 * page without actually doing it through the VM. Can you say "ext3 is
2626 * horribly ugly"? Thought you could.
2627 */
2628void cancel_dirty_page(struct page *page)
2629{
2630        struct address_space *mapping = page_mapping(page);
2631
2632        if (mapping_cap_account_dirty(mapping)) {
2633                struct inode *inode = mapping->host;
2634                struct bdi_writeback *wb;
2635                bool locked;
2636
2637                lock_page_memcg(page);
2638                wb = unlocked_inode_to_wb_begin(inode, &locked);
2639
2640                if (TestClearPageDirty(page))
2641                        account_page_cleaned(page, mapping, wb);
2642
2643                unlocked_inode_to_wb_end(inode, locked);
2644                unlock_page_memcg(page);
2645        } else {
2646                ClearPageDirty(page);
2647        }
2648}
2649EXPORT_SYMBOL(cancel_dirty_page);
2650
2651/*
2652 * Clear a page's dirty flag, while caring for dirty memory accounting.
2653 * Returns true if the page was previously dirty.
2654 *
2655 * This is for preparing to put the page under writeout.  We leave the page
2656 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2657 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2658 * implementation will run either set_page_writeback() or set_page_dirty(),
2659 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2660 * back into sync.
2661 *
2662 * This incoherency between the page's dirty flag and radix-tree tag is
2663 * unfortunate, but it only exists while the page is locked.
2664 */
2665int clear_page_dirty_for_io(struct page *page)
2666{
2667        struct address_space *mapping = page_mapping(page);
2668        int ret = 0;
2669
2670        BUG_ON(!PageLocked(page));
2671
2672        if (mapping && mapping_cap_account_dirty(mapping)) {
2673                struct inode *inode = mapping->host;
2674                struct bdi_writeback *wb;
2675                bool locked;
2676
2677                /*
2678                 * Yes, Virginia, this is indeed insane.
2679                 *
2680                 * We use this sequence to make sure that
2681                 *  (a) we account for dirty stats properly
2682                 *  (b) we tell the low-level filesystem to
2683                 *      mark the whole page dirty if it was
2684                 *      dirty in a pagetable. Only to then
2685                 *  (c) clean the page again and return 1 to
2686                 *      cause the writeback.
2687                 *
2688                 * This way we avoid all nasty races with the
2689                 * dirty bit in multiple places and clearing
2690                 * them concurrently from different threads.
2691                 *
2692                 * Note! Normally the "set_page_dirty(page)"
2693                 * has no effect on the actual dirty bit - since
2694                 * that will already usually be set. But we
2695                 * need the side effects, and it can help us
2696                 * avoid races.
2697                 *
2698                 * We basically use the page "master dirty bit"
2699                 * as a serialization point for all the different
2700                 * threads doing their things.
2701                 */
2702                if (page_mkclean(page))
2703                        set_page_dirty(page);
2704                /*
2705                 * We carefully synchronise fault handlers against
2706                 * installing a dirty pte and marking the page dirty
2707                 * at this point.  We do this by having them hold the
2708                 * page lock while dirtying the page, and pages are
2709                 * always locked coming in here, so we get the desired
2710                 * exclusion.
2711                 */
2712                wb = unlocked_inode_to_wb_begin(inode, &locked);
2713                if (TestClearPageDirty(page)) {
2714                        mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2715                        dec_zone_page_state(page, NR_FILE_DIRTY);
2716                        dec_wb_stat(wb, WB_RECLAIMABLE);
2717                        ret = 1;
2718                }
2719                unlocked_inode_to_wb_end(inode, locked);
2720                return ret;
2721        }
2722        return TestClearPageDirty(page);
2723}
2724EXPORT_SYMBOL(clear_page_dirty_for_io);
2725
2726int test_clear_page_writeback(struct page *page)
2727{
2728        struct address_space *mapping = page_mapping(page);
2729        int ret;
2730
2731        lock_page_memcg(page);
2732        if (mapping) {
2733                struct inode *inode = mapping->host;
2734                struct backing_dev_info *bdi = inode_to_bdi(inode);
2735                unsigned long flags;
2736
2737                spin_lock_irqsave(&mapping->tree_lock, flags);
2738                ret = TestClearPageWriteback(page);
2739                if (ret) {
2740                        radix_tree_tag_clear(&mapping->page_tree,
2741                                                page_index(page),
2742                                                PAGECACHE_TAG_WRITEBACK);
2743                        if (bdi_cap_account_writeback(bdi)) {
2744                                struct bdi_writeback *wb = inode_to_wb(inode);
2745
2746                                __dec_wb_stat(wb, WB_WRITEBACK);
2747                                __wb_writeout_inc(wb);
2748                        }
2749                }
2750                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2751        } else {
2752                ret = TestClearPageWriteback(page);
2753        }
2754        if (ret) {
2755                mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2756                dec_zone_page_state(page, NR_WRITEBACK);
2757                inc_zone_page_state(page, NR_WRITTEN);
2758        }
2759        unlock_page_memcg(page);
2760        return ret;
2761}
2762
2763int __test_set_page_writeback(struct page *page, bool keep_write)
2764{
2765        struct address_space *mapping = page_mapping(page);
2766        int ret;
2767
2768        lock_page_memcg(page);
2769        if (mapping) {
2770                struct inode *inode = mapping->host;
2771                struct backing_dev_info *bdi = inode_to_bdi(inode);
2772                unsigned long flags;
2773
2774                spin_lock_irqsave(&mapping->tree_lock, flags);
2775                ret = TestSetPageWriteback(page);
2776                if (!ret) {
2777                        radix_tree_tag_set(&mapping->page_tree,
2778                                                page_index(page),
2779                                                PAGECACHE_TAG_WRITEBACK);
2780                        if (bdi_cap_account_writeback(bdi))
2781                                __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2782                }
2783                if (!PageDirty(page))
2784                        radix_tree_tag_clear(&mapping->page_tree,
2785                                                page_index(page),
2786                                                PAGECACHE_TAG_DIRTY);
2787                if (!keep_write)
2788                        radix_tree_tag_clear(&mapping->page_tree,
2789                                                page_index(page),
2790                                                PAGECACHE_TAG_TOWRITE);
2791                spin_unlock_irqrestore(&mapping->tree_lock, flags);
2792        } else {
2793                ret = TestSetPageWriteback(page);
2794        }
2795        if (!ret) {
2796                mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2797                inc_zone_page_state(page, NR_WRITEBACK);
2798        }
2799        unlock_page_memcg(page);
2800        return ret;
2801
2802}
2803EXPORT_SYMBOL(__test_set_page_writeback);
2804
2805/*
2806 * Return true if any of the pages in the mapping are marked with the
2807 * passed tag.
2808 */
2809int mapping_tagged(struct address_space *mapping, int tag)
2810{
2811        return radix_tree_tagged(&mapping->page_tree, tag);
2812}
2813EXPORT_SYMBOL(mapping_tagged);
2814
2815/**
2816 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2817 * @page:       The page to wait on.
2818 *
2819 * This function determines if the given page is related to a backing device
2820 * that requires page contents to be held stable during writeback.  If so, then
2821 * it will wait for any pending writeback to complete.
2822 */
2823void wait_for_stable_page(struct page *page)
2824{
2825        if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2826                wait_on_page_writeback(page);
2827}
2828EXPORT_SYMBOL_GPL(wait_for_stable_page);
2829