linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           anon_vma->rwsem
  29 *             mm->page_table_lock or pte_lock
  30 *               zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  35 *                     mapping->tree_lock (widely used)
  36 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  37 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  39 *                   mapping->tree_lock (widely used, in set_page_dirty,
  40 *                             in arch-dependent flush_dcache_mmap_lock,
  41 *                             within bdi.wb->list_lock in __sync_single_inode)
  42 *
  43 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  44 *   ->tasklist_lock
  45 *     pte map lock
  46 */
  47
  48#include <linux/mm.h>
  49#include <linux/pagemap.h>
  50#include <linux/swap.h>
  51#include <linux/swapops.h>
  52#include <linux/slab.h>
  53#include <linux/init.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/rcupdate.h>
  57#include <linux/export.h>
  58#include <linux/memcontrol.h>
  59#include <linux/mmu_notifier.h>
  60#include <linux/migrate.h>
  61#include <linux/hugetlb.h>
  62#include <linux/backing-dev.h>
  63#include <linux/page_idle.h>
  64
  65#include <asm/tlbflush.h>
  66
  67#include <trace/events/tlb.h>
  68
  69#include "internal.h"
  70
  71static struct kmem_cache *anon_vma_cachep;
  72static struct kmem_cache *anon_vma_chain_cachep;
  73
  74static inline struct anon_vma *anon_vma_alloc(void)
  75{
  76        struct anon_vma *anon_vma;
  77
  78        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  79        if (anon_vma) {
  80                atomic_set(&anon_vma->refcount, 1);
  81                anon_vma->degree = 1;   /* Reference for first vma */
  82                anon_vma->parent = anon_vma;
  83                /*
  84                 * Initialise the anon_vma root to point to itself. If called
  85                 * from fork, the root will be reset to the parents anon_vma.
  86                 */
  87                anon_vma->root = anon_vma;
  88        }
  89
  90        return anon_vma;
  91}
  92
  93static inline void anon_vma_free(struct anon_vma *anon_vma)
  94{
  95        VM_BUG_ON(atomic_read(&anon_vma->refcount));
  96
  97        /*
  98         * Synchronize against page_lock_anon_vma_read() such that
  99         * we can safely hold the lock without the anon_vma getting
 100         * freed.
 101         *
 102         * Relies on the full mb implied by the atomic_dec_and_test() from
 103         * put_anon_vma() against the acquire barrier implied by
 104         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 105         *
 106         * page_lock_anon_vma_read()    VS      put_anon_vma()
 107         *   down_read_trylock()                  atomic_dec_and_test()
 108         *   LOCK                                 MB
 109         *   atomic_read()                        rwsem_is_locked()
 110         *
 111         * LOCK should suffice since the actual taking of the lock must
 112         * happen _before_ what follows.
 113         */
 114        might_sleep();
 115        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 116                anon_vma_lock_write(anon_vma);
 117                anon_vma_unlock_write(anon_vma);
 118        }
 119
 120        kmem_cache_free(anon_vma_cachep, anon_vma);
 121}
 122
 123static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 124{
 125        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 126}
 127
 128static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 129{
 130        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 131}
 132
 133static void anon_vma_chain_link(struct vm_area_struct *vma,
 134                                struct anon_vma_chain *avc,
 135                                struct anon_vma *anon_vma)
 136{
 137        avc->vma = vma;
 138        avc->anon_vma = anon_vma;
 139        list_add(&avc->same_vma, &vma->anon_vma_chain);
 140        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 141}
 142
 143/**
 144 * anon_vma_prepare - attach an anon_vma to a memory region
 145 * @vma: the memory region in question
 146 *
 147 * This makes sure the memory mapping described by 'vma' has
 148 * an 'anon_vma' attached to it, so that we can associate the
 149 * anonymous pages mapped into it with that anon_vma.
 150 *
 151 * The common case will be that we already have one, but if
 152 * not we either need to find an adjacent mapping that we
 153 * can re-use the anon_vma from (very common when the only
 154 * reason for splitting a vma has been mprotect()), or we
 155 * allocate a new one.
 156 *
 157 * Anon-vma allocations are very subtle, because we may have
 158 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 159 * and that may actually touch the spinlock even in the newly
 160 * allocated vma (it depends on RCU to make sure that the
 161 * anon_vma isn't actually destroyed).
 162 *
 163 * As a result, we need to do proper anon_vma locking even
 164 * for the new allocation. At the same time, we do not want
 165 * to do any locking for the common case of already having
 166 * an anon_vma.
 167 *
 168 * This must be called with the mmap_sem held for reading.
 169 */
 170int anon_vma_prepare(struct vm_area_struct *vma)
 171{
 172        struct anon_vma *anon_vma = vma->anon_vma;
 173        struct anon_vma_chain *avc;
 174
 175        might_sleep();
 176        if (unlikely(!anon_vma)) {
 177                struct mm_struct *mm = vma->vm_mm;
 178                struct anon_vma *allocated;
 179
 180                avc = anon_vma_chain_alloc(GFP_KERNEL);
 181                if (!avc)
 182                        goto out_enomem;
 183
 184                anon_vma = find_mergeable_anon_vma(vma);
 185                allocated = NULL;
 186                if (!anon_vma) {
 187                        anon_vma = anon_vma_alloc();
 188                        if (unlikely(!anon_vma))
 189                                goto out_enomem_free_avc;
 190                        allocated = anon_vma;
 191                }
 192
 193                anon_vma_lock_write(anon_vma);
 194                /* page_table_lock to protect against threads */
 195                spin_lock(&mm->page_table_lock);
 196                if (likely(!vma->anon_vma)) {
 197                        vma->anon_vma = anon_vma;
 198                        anon_vma_chain_link(vma, avc, anon_vma);
 199                        /* vma reference or self-parent link for new root */
 200                        anon_vma->degree++;
 201                        allocated = NULL;
 202                        avc = NULL;
 203                }
 204                spin_unlock(&mm->page_table_lock);
 205                anon_vma_unlock_write(anon_vma);
 206
 207                if (unlikely(allocated))
 208                        put_anon_vma(allocated);
 209                if (unlikely(avc))
 210                        anon_vma_chain_free(avc);
 211        }
 212        return 0;
 213
 214 out_enomem_free_avc:
 215        anon_vma_chain_free(avc);
 216 out_enomem:
 217        return -ENOMEM;
 218}
 219
 220/*
 221 * This is a useful helper function for locking the anon_vma root as
 222 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 223 * have the same vma.
 224 *
 225 * Such anon_vma's should have the same root, so you'd expect to see
 226 * just a single mutex_lock for the whole traversal.
 227 */
 228static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 229{
 230        struct anon_vma *new_root = anon_vma->root;
 231        if (new_root != root) {
 232                if (WARN_ON_ONCE(root))
 233                        up_write(&root->rwsem);
 234                root = new_root;
 235                down_write(&root->rwsem);
 236        }
 237        return root;
 238}
 239
 240static inline void unlock_anon_vma_root(struct anon_vma *root)
 241{
 242        if (root)
 243                up_write(&root->rwsem);
 244}
 245
 246/*
 247 * Attach the anon_vmas from src to dst.
 248 * Returns 0 on success, -ENOMEM on failure.
 249 *
 250 * If dst->anon_vma is NULL this function tries to find and reuse existing
 251 * anon_vma which has no vmas and only one child anon_vma. This prevents
 252 * degradation of anon_vma hierarchy to endless linear chain in case of
 253 * constantly forking task. On the other hand, an anon_vma with more than one
 254 * child isn't reused even if there was no alive vma, thus rmap walker has a
 255 * good chance of avoiding scanning the whole hierarchy when it searches where
 256 * page is mapped.
 257 */
 258int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 259{
 260        struct anon_vma_chain *avc, *pavc;
 261        struct anon_vma *root = NULL;
 262
 263        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 264                struct anon_vma *anon_vma;
 265
 266                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 267                if (unlikely(!avc)) {
 268                        unlock_anon_vma_root(root);
 269                        root = NULL;
 270                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 271                        if (!avc)
 272                                goto enomem_failure;
 273                }
 274                anon_vma = pavc->anon_vma;
 275                root = lock_anon_vma_root(root, anon_vma);
 276                anon_vma_chain_link(dst, avc, anon_vma);
 277
 278                /*
 279                 * Reuse existing anon_vma if its degree lower than two,
 280                 * that means it has no vma and only one anon_vma child.
 281                 *
 282                 * Do not chose parent anon_vma, otherwise first child
 283                 * will always reuse it. Root anon_vma is never reused:
 284                 * it has self-parent reference and at least one child.
 285                 */
 286                if (!dst->anon_vma && anon_vma != src->anon_vma &&
 287                                anon_vma->degree < 2)
 288                        dst->anon_vma = anon_vma;
 289        }
 290        if (dst->anon_vma)
 291                dst->anon_vma->degree++;
 292        unlock_anon_vma_root(root);
 293        return 0;
 294
 295 enomem_failure:
 296        /*
 297         * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 298         * decremented in unlink_anon_vmas().
 299         * We can safely do this because callers of anon_vma_clone() don't care
 300         * about dst->anon_vma if anon_vma_clone() failed.
 301         */
 302        dst->anon_vma = NULL;
 303        unlink_anon_vmas(dst);
 304        return -ENOMEM;
 305}
 306
 307/*
 308 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 309 * the corresponding VMA in the parent process is attached to.
 310 * Returns 0 on success, non-zero on failure.
 311 */
 312int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 313{
 314        struct anon_vma_chain *avc;
 315        struct anon_vma *anon_vma;
 316        int error;
 317
 318        /* Don't bother if the parent process has no anon_vma here. */
 319        if (!pvma->anon_vma)
 320                return 0;
 321
 322        /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 323        vma->anon_vma = NULL;
 324
 325        /*
 326         * First, attach the new VMA to the parent VMA's anon_vmas,
 327         * so rmap can find non-COWed pages in child processes.
 328         */
 329        error = anon_vma_clone(vma, pvma);
 330        if (error)
 331                return error;
 332
 333        /* An existing anon_vma has been reused, all done then. */
 334        if (vma->anon_vma)
 335                return 0;
 336
 337        /* Then add our own anon_vma. */
 338        anon_vma = anon_vma_alloc();
 339        if (!anon_vma)
 340                goto out_error;
 341        avc = anon_vma_chain_alloc(GFP_KERNEL);
 342        if (!avc)
 343                goto out_error_free_anon_vma;
 344
 345        /*
 346         * The root anon_vma's spinlock is the lock actually used when we
 347         * lock any of the anon_vmas in this anon_vma tree.
 348         */
 349        anon_vma->root = pvma->anon_vma->root;
 350        anon_vma->parent = pvma->anon_vma;
 351        /*
 352         * With refcounts, an anon_vma can stay around longer than the
 353         * process it belongs to. The root anon_vma needs to be pinned until
 354         * this anon_vma is freed, because the lock lives in the root.
 355         */
 356        get_anon_vma(anon_vma->root);
 357        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 358        vma->anon_vma = anon_vma;
 359        anon_vma_lock_write(anon_vma);
 360        anon_vma_chain_link(vma, avc, anon_vma);
 361        anon_vma->parent->degree++;
 362        anon_vma_unlock_write(anon_vma);
 363
 364        return 0;
 365
 366 out_error_free_anon_vma:
 367        put_anon_vma(anon_vma);
 368 out_error:
 369        unlink_anon_vmas(vma);
 370        return -ENOMEM;
 371}
 372
 373void unlink_anon_vmas(struct vm_area_struct *vma)
 374{
 375        struct anon_vma_chain *avc, *next;
 376        struct anon_vma *root = NULL;
 377
 378        /*
 379         * Unlink each anon_vma chained to the VMA.  This list is ordered
 380         * from newest to oldest, ensuring the root anon_vma gets freed last.
 381         */
 382        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 383                struct anon_vma *anon_vma = avc->anon_vma;
 384
 385                root = lock_anon_vma_root(root, anon_vma);
 386                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 387
 388                /*
 389                 * Leave empty anon_vmas on the list - we'll need
 390                 * to free them outside the lock.
 391                 */
 392                if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
 393                        anon_vma->parent->degree--;
 394                        continue;
 395                }
 396
 397                list_del(&avc->same_vma);
 398                anon_vma_chain_free(avc);
 399        }
 400        if (vma->anon_vma)
 401                vma->anon_vma->degree--;
 402        unlock_anon_vma_root(root);
 403
 404        /*
 405         * Iterate the list once more, it now only contains empty and unlinked
 406         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 407         * needing to write-acquire the anon_vma->root->rwsem.
 408         */
 409        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 410                struct anon_vma *anon_vma = avc->anon_vma;
 411
 412                VM_WARN_ON(anon_vma->degree);
 413                put_anon_vma(anon_vma);
 414
 415                list_del(&avc->same_vma);
 416                anon_vma_chain_free(avc);
 417        }
 418}
 419
 420static void anon_vma_ctor(void *data)
 421{
 422        struct anon_vma *anon_vma = data;
 423
 424        init_rwsem(&anon_vma->rwsem);
 425        atomic_set(&anon_vma->refcount, 0);
 426        anon_vma->rb_root = RB_ROOT;
 427}
 428
 429void __init anon_vma_init(void)
 430{
 431        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 432                        0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 433                        anon_vma_ctor);
 434        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 435                        SLAB_PANIC|SLAB_ACCOUNT);
 436}
 437
 438/*
 439 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 440 *
 441 * Since there is no serialization what so ever against page_remove_rmap()
 442 * the best this function can do is return a locked anon_vma that might
 443 * have been relevant to this page.
 444 *
 445 * The page might have been remapped to a different anon_vma or the anon_vma
 446 * returned may already be freed (and even reused).
 447 *
 448 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 449 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 450 * ensure that any anon_vma obtained from the page will still be valid for as
 451 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 452 *
 453 * All users of this function must be very careful when walking the anon_vma
 454 * chain and verify that the page in question is indeed mapped in it
 455 * [ something equivalent to page_mapped_in_vma() ].
 456 *
 457 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 458 * that the anon_vma pointer from page->mapping is valid if there is a
 459 * mapcount, we can dereference the anon_vma after observing those.
 460 */
 461struct anon_vma *page_get_anon_vma(struct page *page)
 462{
 463        struct anon_vma *anon_vma = NULL;
 464        unsigned long anon_mapping;
 465
 466        rcu_read_lock();
 467        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 468        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 469                goto out;
 470        if (!page_mapped(page))
 471                goto out;
 472
 473        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 474        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 475                anon_vma = NULL;
 476                goto out;
 477        }
 478
 479        /*
 480         * If this page is still mapped, then its anon_vma cannot have been
 481         * freed.  But if it has been unmapped, we have no security against the
 482         * anon_vma structure being freed and reused (for another anon_vma:
 483         * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
 484         * above cannot corrupt).
 485         */
 486        if (!page_mapped(page)) {
 487                rcu_read_unlock();
 488                put_anon_vma(anon_vma);
 489                return NULL;
 490        }
 491out:
 492        rcu_read_unlock();
 493
 494        return anon_vma;
 495}
 496
 497/*
 498 * Similar to page_get_anon_vma() except it locks the anon_vma.
 499 *
 500 * Its a little more complex as it tries to keep the fast path to a single
 501 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 502 * reference like with page_get_anon_vma() and then block on the mutex.
 503 */
 504struct anon_vma *page_lock_anon_vma_read(struct page *page)
 505{
 506        struct anon_vma *anon_vma = NULL;
 507        struct anon_vma *root_anon_vma;
 508        unsigned long anon_mapping;
 509
 510        rcu_read_lock();
 511        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 512        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 513                goto out;
 514        if (!page_mapped(page))
 515                goto out;
 516
 517        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 518        root_anon_vma = READ_ONCE(anon_vma->root);
 519        if (down_read_trylock(&root_anon_vma->rwsem)) {
 520                /*
 521                 * If the page is still mapped, then this anon_vma is still
 522                 * its anon_vma, and holding the mutex ensures that it will
 523                 * not go away, see anon_vma_free().
 524                 */
 525                if (!page_mapped(page)) {
 526                        up_read(&root_anon_vma->rwsem);
 527                        anon_vma = NULL;
 528                }
 529                goto out;
 530        }
 531
 532        /* trylock failed, we got to sleep */
 533        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 534                anon_vma = NULL;
 535                goto out;
 536        }
 537
 538        if (!page_mapped(page)) {
 539                rcu_read_unlock();
 540                put_anon_vma(anon_vma);
 541                return NULL;
 542        }
 543
 544        /* we pinned the anon_vma, its safe to sleep */
 545        rcu_read_unlock();
 546        anon_vma_lock_read(anon_vma);
 547
 548        if (atomic_dec_and_test(&anon_vma->refcount)) {
 549                /*
 550                 * Oops, we held the last refcount, release the lock
 551                 * and bail -- can't simply use put_anon_vma() because
 552                 * we'll deadlock on the anon_vma_lock_write() recursion.
 553                 */
 554                anon_vma_unlock_read(anon_vma);
 555                __put_anon_vma(anon_vma);
 556                anon_vma = NULL;
 557        }
 558
 559        return anon_vma;
 560
 561out:
 562        rcu_read_unlock();
 563        return anon_vma;
 564}
 565
 566void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 567{
 568        anon_vma_unlock_read(anon_vma);
 569}
 570
 571#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 572/*
 573 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 574 * important if a PTE was dirty when it was unmapped that it's flushed
 575 * before any IO is initiated on the page to prevent lost writes. Similarly,
 576 * it must be flushed before freeing to prevent data leakage.
 577 */
 578void try_to_unmap_flush(void)
 579{
 580        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 581        int cpu;
 582
 583        if (!tlb_ubc->flush_required)
 584                return;
 585
 586        cpu = get_cpu();
 587
 588        if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
 589                count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 590                local_flush_tlb();
 591                trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
 592        }
 593
 594        if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
 595                flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
 596        cpumask_clear(&tlb_ubc->cpumask);
 597        tlb_ubc->flush_required = false;
 598        tlb_ubc->writable = false;
 599        put_cpu();
 600}
 601
 602/* Flush iff there are potentially writable TLB entries that can race with IO */
 603void try_to_unmap_flush_dirty(void)
 604{
 605        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 606
 607        if (tlb_ubc->writable)
 608                try_to_unmap_flush();
 609}
 610
 611static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
 612                struct page *page, bool writable)
 613{
 614        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 615
 616        cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
 617        tlb_ubc->flush_required = true;
 618
 619        /*
 620         * If the PTE was dirty then it's best to assume it's writable. The
 621         * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 622         * before the page is queued for IO.
 623         */
 624        if (writable)
 625                tlb_ubc->writable = true;
 626}
 627
 628/*
 629 * Returns true if the TLB flush should be deferred to the end of a batch of
 630 * unmap operations to reduce IPIs.
 631 */
 632static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 633{
 634        bool should_defer = false;
 635
 636        if (!(flags & TTU_BATCH_FLUSH))
 637                return false;
 638
 639        /* If remote CPUs need to be flushed then defer batch the flush */
 640        if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 641                should_defer = true;
 642        put_cpu();
 643
 644        return should_defer;
 645}
 646#else
 647static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
 648                struct page *page, bool writable)
 649{
 650}
 651
 652static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 653{
 654        return false;
 655}
 656#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 657
 658/*
 659 * At what user virtual address is page expected in vma?
 660 * Caller should check the page is actually part of the vma.
 661 */
 662unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 663{
 664        unsigned long address;
 665        if (PageAnon(page)) {
 666                struct anon_vma *page__anon_vma = page_anon_vma(page);
 667                /*
 668                 * Note: swapoff's unuse_vma() is more efficient with this
 669                 * check, and needs it to match anon_vma when KSM is active.
 670                 */
 671                if (!vma->anon_vma || !page__anon_vma ||
 672                    vma->anon_vma->root != page__anon_vma->root)
 673                        return -EFAULT;
 674        } else if (page->mapping) {
 675                if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 676                        return -EFAULT;
 677        } else
 678                return -EFAULT;
 679        address = __vma_address(page, vma);
 680        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 681                return -EFAULT;
 682        return address;
 683}
 684
 685pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 686{
 687        pgd_t *pgd;
 688        pud_t *pud;
 689        pmd_t *pmd = NULL;
 690        pmd_t pmde;
 691
 692        pgd = pgd_offset(mm, address);
 693        if (!pgd_present(*pgd))
 694                goto out;
 695
 696        pud = pud_offset(pgd, address);
 697        if (!pud_present(*pud))
 698                goto out;
 699
 700        pmd = pmd_offset(pud, address);
 701        /*
 702         * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 703         * without holding anon_vma lock for write.  So when looking for a
 704         * genuine pmde (in which to find pte), test present and !THP together.
 705         */
 706        pmde = *pmd;
 707        barrier();
 708        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 709                pmd = NULL;
 710out:
 711        return pmd;
 712}
 713
 714/*
 715 * Check that @page is mapped at @address into @mm.
 716 *
 717 * If @sync is false, page_check_address may perform a racy check to avoid
 718 * the page table lock when the pte is not present (helpful when reclaiming
 719 * highly shared pages).
 720 *
 721 * On success returns with pte mapped and locked.
 722 */
 723pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
 724                          unsigned long address, spinlock_t **ptlp, int sync)
 725{
 726        pmd_t *pmd;
 727        pte_t *pte;
 728        spinlock_t *ptl;
 729
 730        if (unlikely(PageHuge(page))) {
 731                /* when pud is not present, pte will be NULL */
 732                pte = huge_pte_offset(mm, address);
 733                if (!pte)
 734                        return NULL;
 735
 736                ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
 737                goto check;
 738        }
 739
 740        pmd = mm_find_pmd(mm, address);
 741        if (!pmd)
 742                return NULL;
 743
 744        pte = pte_offset_map(pmd, address);
 745        /* Make a quick check before getting the lock */
 746        if (!sync && !pte_present(*pte)) {
 747                pte_unmap(pte);
 748                return NULL;
 749        }
 750
 751        ptl = pte_lockptr(mm, pmd);
 752check:
 753        spin_lock(ptl);
 754        if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
 755                *ptlp = ptl;
 756                return pte;
 757        }
 758        pte_unmap_unlock(pte, ptl);
 759        return NULL;
 760}
 761
 762/**
 763 * page_mapped_in_vma - check whether a page is really mapped in a VMA
 764 * @page: the page to test
 765 * @vma: the VMA to test
 766 *
 767 * Returns 1 if the page is mapped into the page tables of the VMA, 0
 768 * if the page is not mapped into the page tables of this VMA.  Only
 769 * valid for normal file or anonymous VMAs.
 770 */
 771int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
 772{
 773        unsigned long address;
 774        pte_t *pte;
 775        spinlock_t *ptl;
 776
 777        address = __vma_address(page, vma);
 778        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 779                return 0;
 780        pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
 781        if (!pte)                       /* the page is not in this mm */
 782                return 0;
 783        pte_unmap_unlock(pte, ptl);
 784
 785        return 1;
 786}
 787
 788#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 789/*
 790 * Check that @page is mapped at @address into @mm. In contrast to
 791 * page_check_address(), this function can handle transparent huge pages.
 792 *
 793 * On success returns true with pte mapped and locked. For PMD-mapped
 794 * transparent huge pages *@ptep is set to NULL.
 795 */
 796bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
 797                                  unsigned long address, pmd_t **pmdp,
 798                                  pte_t **ptep, spinlock_t **ptlp)
 799{
 800        pgd_t *pgd;
 801        pud_t *pud;
 802        pmd_t *pmd;
 803        pte_t *pte;
 804        spinlock_t *ptl;
 805
 806        if (unlikely(PageHuge(page))) {
 807                /* when pud is not present, pte will be NULL */
 808                pte = huge_pte_offset(mm, address);
 809                if (!pte)
 810                        return false;
 811
 812                ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
 813                pmd = NULL;
 814                goto check_pte;
 815        }
 816
 817        pgd = pgd_offset(mm, address);
 818        if (!pgd_present(*pgd))
 819                return false;
 820        pud = pud_offset(pgd, address);
 821        if (!pud_present(*pud))
 822                return false;
 823        pmd = pmd_offset(pud, address);
 824
 825        if (pmd_trans_huge(*pmd)) {
 826                ptl = pmd_lock(mm, pmd);
 827                if (!pmd_present(*pmd))
 828                        goto unlock_pmd;
 829                if (unlikely(!pmd_trans_huge(*pmd))) {
 830                        spin_unlock(ptl);
 831                        goto map_pte;
 832                }
 833
 834                if (pmd_page(*pmd) != page)
 835                        goto unlock_pmd;
 836
 837                pte = NULL;
 838                goto found;
 839unlock_pmd:
 840                spin_unlock(ptl);
 841                return false;
 842        } else {
 843                pmd_t pmde = *pmd;
 844
 845                barrier();
 846                if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 847                        return false;
 848        }
 849map_pte:
 850        pte = pte_offset_map(pmd, address);
 851        if (!pte_present(*pte)) {
 852                pte_unmap(pte);
 853                return false;
 854        }
 855
 856        ptl = pte_lockptr(mm, pmd);
 857check_pte:
 858        spin_lock(ptl);
 859
 860        if (!pte_present(*pte)) {
 861                pte_unmap_unlock(pte, ptl);
 862                return false;
 863        }
 864
 865        /* THP can be referenced by any subpage */
 866        if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
 867                pte_unmap_unlock(pte, ptl);
 868                return false;
 869        }
 870found:
 871        *ptep = pte;
 872        *pmdp = pmd;
 873        *ptlp = ptl;
 874        return true;
 875}
 876#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 877
 878struct page_referenced_arg {
 879        int mapcount;
 880        int referenced;
 881        unsigned long vm_flags;
 882        struct mem_cgroup *memcg;
 883};
 884/*
 885 * arg: page_referenced_arg will be passed
 886 */
 887static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
 888                        unsigned long address, void *arg)
 889{
 890        struct mm_struct *mm = vma->vm_mm;
 891        struct page_referenced_arg *pra = arg;
 892        pmd_t *pmd;
 893        pte_t *pte;
 894        spinlock_t *ptl;
 895        int referenced = 0;
 896
 897        if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
 898                return SWAP_AGAIN;
 899
 900        if (vma->vm_flags & VM_LOCKED) {
 901                if (pte)
 902                        pte_unmap(pte);
 903                spin_unlock(ptl);
 904                pra->vm_flags |= VM_LOCKED;
 905                return SWAP_FAIL; /* To break the loop */
 906        }
 907
 908        if (pte) {
 909                if (ptep_clear_flush_young_notify(vma, address, pte)) {
 910                        /*
 911                         * Don't treat a reference through a sequentially read
 912                         * mapping as such.  If the page has been used in
 913                         * another mapping, we will catch it; if this other
 914                         * mapping is already gone, the unmap path will have
 915                         * set PG_referenced or activated the page.
 916                         */
 917                        if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 918                                referenced++;
 919                }
 920                pte_unmap(pte);
 921        } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 922                if (pmdp_clear_flush_young_notify(vma, address, pmd))
 923                        referenced++;
 924        } else {
 925                /* unexpected pmd-mapped page? */
 926                WARN_ON_ONCE(1);
 927        }
 928        spin_unlock(ptl);
 929
 930        if (referenced)
 931                clear_page_idle(page);
 932        if (test_and_clear_page_young(page))
 933                referenced++;
 934
 935        if (referenced) {
 936                pra->referenced++;
 937                pra->vm_flags |= vma->vm_flags;
 938        }
 939
 940        pra->mapcount--;
 941        if (!pra->mapcount)
 942                return SWAP_SUCCESS; /* To break the loop */
 943
 944        return SWAP_AGAIN;
 945}
 946
 947static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 948{
 949        struct page_referenced_arg *pra = arg;
 950        struct mem_cgroup *memcg = pra->memcg;
 951
 952        if (!mm_match_cgroup(vma->vm_mm, memcg))
 953                return true;
 954
 955        return false;
 956}
 957
 958/**
 959 * page_referenced - test if the page was referenced
 960 * @page: the page to test
 961 * @is_locked: caller holds lock on the page
 962 * @memcg: target memory cgroup
 963 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 964 *
 965 * Quick test_and_clear_referenced for all mappings to a page,
 966 * returns the number of ptes which referenced the page.
 967 */
 968int page_referenced(struct page *page,
 969                    int is_locked,
 970                    struct mem_cgroup *memcg,
 971                    unsigned long *vm_flags)
 972{
 973        int ret;
 974        int we_locked = 0;
 975        struct page_referenced_arg pra = {
 976                .mapcount = total_mapcount(page),
 977                .memcg = memcg,
 978        };
 979        struct rmap_walk_control rwc = {
 980                .rmap_one = page_referenced_one,
 981                .arg = (void *)&pra,
 982                .anon_lock = page_lock_anon_vma_read,
 983        };
 984
 985        *vm_flags = 0;
 986        if (!page_mapped(page))
 987                return 0;
 988
 989        if (!page_rmapping(page))
 990                return 0;
 991
 992        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 993                we_locked = trylock_page(page);
 994                if (!we_locked)
 995                        return 1;
 996        }
 997
 998        /*
 999         * If we are reclaiming on behalf of a cgroup, skip
1000         * counting on behalf of references from different
1001         * cgroups
1002         */
1003        if (memcg) {
1004                rwc.invalid_vma = invalid_page_referenced_vma;
1005        }
1006
1007        ret = rmap_walk(page, &rwc);
1008        *vm_flags = pra.vm_flags;
1009
1010        if (we_locked)
1011                unlock_page(page);
1012
1013        return pra.referenced;
1014}
1015
1016static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1017                            unsigned long address, void *arg)
1018{
1019        struct mm_struct *mm = vma->vm_mm;
1020        pte_t *pte;
1021        spinlock_t *ptl;
1022        int ret = 0;
1023        int *cleaned = arg;
1024
1025        pte = page_check_address(page, mm, address, &ptl, 1);
1026        if (!pte)
1027                goto out;
1028
1029        if (pte_dirty(*pte) || pte_write(*pte)) {
1030                pte_t entry;
1031
1032                flush_cache_page(vma, address, pte_pfn(*pte));
1033                entry = ptep_clear_flush(vma, address, pte);
1034                entry = pte_wrprotect(entry);
1035                entry = pte_mkclean(entry);
1036                set_pte_at(mm, address, pte, entry);
1037                ret = 1;
1038        }
1039
1040        pte_unmap_unlock(pte, ptl);
1041
1042        if (ret) {
1043                mmu_notifier_invalidate_page(mm, address);
1044                (*cleaned)++;
1045        }
1046out:
1047        return SWAP_AGAIN;
1048}
1049
1050static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1051{
1052        if (vma->vm_flags & VM_SHARED)
1053                return false;
1054
1055        return true;
1056}
1057
1058int page_mkclean(struct page *page)
1059{
1060        int cleaned = 0;
1061        struct address_space *mapping;
1062        struct rmap_walk_control rwc = {
1063                .arg = (void *)&cleaned,
1064                .rmap_one = page_mkclean_one,
1065                .invalid_vma = invalid_mkclean_vma,
1066        };
1067
1068        BUG_ON(!PageLocked(page));
1069
1070        if (!page_mapped(page))
1071                return 0;
1072
1073        mapping = page_mapping(page);
1074        if (!mapping)
1075                return 0;
1076
1077        rmap_walk(page, &rwc);
1078
1079        return cleaned;
1080}
1081EXPORT_SYMBOL_GPL(page_mkclean);
1082
1083/**
1084 * page_move_anon_rmap - move a page to our anon_vma
1085 * @page:       the page to move to our anon_vma
1086 * @vma:        the vma the page belongs to
1087 *
1088 * When a page belongs exclusively to one process after a COW event,
1089 * that page can be moved into the anon_vma that belongs to just that
1090 * process, so the rmap code will not search the parent or sibling
1091 * processes.
1092 */
1093void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1094{
1095        struct anon_vma *anon_vma = vma->anon_vma;
1096
1097        page = compound_head(page);
1098
1099        VM_BUG_ON_PAGE(!PageLocked(page), page);
1100        VM_BUG_ON_VMA(!anon_vma, vma);
1101
1102        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1103        /*
1104         * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1105         * simultaneously, so a concurrent reader (eg page_referenced()'s
1106         * PageAnon()) will not see one without the other.
1107         */
1108        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1109}
1110
1111/**
1112 * __page_set_anon_rmap - set up new anonymous rmap
1113 * @page:       Page to add to rmap     
1114 * @vma:        VM area to add page to.
1115 * @address:    User virtual address of the mapping     
1116 * @exclusive:  the page is exclusively owned by the current process
1117 */
1118static void __page_set_anon_rmap(struct page *page,
1119        struct vm_area_struct *vma, unsigned long address, int exclusive)
1120{
1121        struct anon_vma *anon_vma = vma->anon_vma;
1122
1123        BUG_ON(!anon_vma);
1124
1125        if (PageAnon(page))
1126                return;
1127
1128        /*
1129         * If the page isn't exclusively mapped into this vma,
1130         * we must use the _oldest_ possible anon_vma for the
1131         * page mapping!
1132         */
1133        if (!exclusive)
1134                anon_vma = anon_vma->root;
1135
1136        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1137        page->mapping = (struct address_space *) anon_vma;
1138        page->index = linear_page_index(vma, address);
1139}
1140
1141/**
1142 * __page_check_anon_rmap - sanity check anonymous rmap addition
1143 * @page:       the page to add the mapping to
1144 * @vma:        the vm area in which the mapping is added
1145 * @address:    the user virtual address mapped
1146 */
1147static void __page_check_anon_rmap(struct page *page,
1148        struct vm_area_struct *vma, unsigned long address)
1149{
1150#ifdef CONFIG_DEBUG_VM
1151        /*
1152         * The page's anon-rmap details (mapping and index) are guaranteed to
1153         * be set up correctly at this point.
1154         *
1155         * We have exclusion against page_add_anon_rmap because the caller
1156         * always holds the page locked, except if called from page_dup_rmap,
1157         * in which case the page is already known to be setup.
1158         *
1159         * We have exclusion against page_add_new_anon_rmap because those pages
1160         * are initially only visible via the pagetables, and the pte is locked
1161         * over the call to page_add_new_anon_rmap.
1162         */
1163        BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1164        BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1165#endif
1166}
1167
1168/**
1169 * page_add_anon_rmap - add pte mapping to an anonymous page
1170 * @page:       the page to add the mapping to
1171 * @vma:        the vm area in which the mapping is added
1172 * @address:    the user virtual address mapped
1173 * @compound:   charge the page as compound or small page
1174 *
1175 * The caller needs to hold the pte lock, and the page must be locked in
1176 * the anon_vma case: to serialize mapping,index checking after setting,
1177 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1178 * (but PageKsm is never downgraded to PageAnon).
1179 */
1180void page_add_anon_rmap(struct page *page,
1181        struct vm_area_struct *vma, unsigned long address, bool compound)
1182{
1183        do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1184}
1185
1186/*
1187 * Special version of the above for do_swap_page, which often runs
1188 * into pages that are exclusively owned by the current process.
1189 * Everybody else should continue to use page_add_anon_rmap above.
1190 */
1191void do_page_add_anon_rmap(struct page *page,
1192        struct vm_area_struct *vma, unsigned long address, int flags)
1193{
1194        bool compound = flags & RMAP_COMPOUND;
1195        bool first;
1196
1197        if (compound) {
1198                atomic_t *mapcount;
1199                VM_BUG_ON_PAGE(!PageLocked(page), page);
1200                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1201                mapcount = compound_mapcount_ptr(page);
1202                first = atomic_inc_and_test(mapcount);
1203        } else {
1204                first = atomic_inc_and_test(&page->_mapcount);
1205        }
1206
1207        if (first) {
1208                int nr = compound ? hpage_nr_pages(page) : 1;
1209                /*
1210                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1211                 * these counters are not modified in interrupt context, and
1212                 * pte lock(a spinlock) is held, which implies preemption
1213                 * disabled.
1214                 */
1215                if (compound) {
1216                        __inc_zone_page_state(page,
1217                                              NR_ANON_TRANSPARENT_HUGEPAGES);
1218                }
1219                __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1220        }
1221        if (unlikely(PageKsm(page)))
1222                return;
1223
1224        VM_BUG_ON_PAGE(!PageLocked(page), page);
1225
1226        /* address might be in next vma when migration races vma_adjust */
1227        if (first)
1228                __page_set_anon_rmap(page, vma, address,
1229                                flags & RMAP_EXCLUSIVE);
1230        else
1231                __page_check_anon_rmap(page, vma, address);
1232}
1233
1234/**
1235 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1236 * @page:       the page to add the mapping to
1237 * @vma:        the vm area in which the mapping is added
1238 * @address:    the user virtual address mapped
1239 * @compound:   charge the page as compound or small page
1240 *
1241 * Same as page_add_anon_rmap but must only be called on *new* pages.
1242 * This means the inc-and-test can be bypassed.
1243 * Page does not have to be locked.
1244 */
1245void page_add_new_anon_rmap(struct page *page,
1246        struct vm_area_struct *vma, unsigned long address, bool compound)
1247{
1248        int nr = compound ? hpage_nr_pages(page) : 1;
1249
1250        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1251        __SetPageSwapBacked(page);
1252        if (compound) {
1253                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1254                /* increment count (starts at -1) */
1255                atomic_set(compound_mapcount_ptr(page), 0);
1256                __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1257        } else {
1258                /* Anon THP always mapped first with PMD */
1259                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1260                /* increment count (starts at -1) */
1261                atomic_set(&page->_mapcount, 0);
1262        }
1263        __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr);
1264        __page_set_anon_rmap(page, vma, address, 1);
1265}
1266
1267/**
1268 * page_add_file_rmap - add pte mapping to a file page
1269 * @page: the page to add the mapping to
1270 *
1271 * The caller needs to hold the pte lock.
1272 */
1273void page_add_file_rmap(struct page *page)
1274{
1275        lock_page_memcg(page);
1276        if (atomic_inc_and_test(&page->_mapcount)) {
1277                __inc_zone_page_state(page, NR_FILE_MAPPED);
1278                mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1279        }
1280        unlock_page_memcg(page);
1281}
1282
1283static void page_remove_file_rmap(struct page *page)
1284{
1285        lock_page_memcg(page);
1286
1287        /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1288        if (unlikely(PageHuge(page))) {
1289                /* hugetlb pages are always mapped with pmds */
1290                atomic_dec(compound_mapcount_ptr(page));
1291                goto out;
1292        }
1293
1294        /* page still mapped by someone else? */
1295        if (!atomic_add_negative(-1, &page->_mapcount))
1296                goto out;
1297
1298        /*
1299         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1300         * these counters are not modified in interrupt context, and
1301         * pte lock(a spinlock) is held, which implies preemption disabled.
1302         */
1303        __dec_zone_page_state(page, NR_FILE_MAPPED);
1304        mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1305
1306        if (unlikely(PageMlocked(page)))
1307                clear_page_mlock(page);
1308out:
1309        unlock_page_memcg(page);
1310}
1311
1312static void page_remove_anon_compound_rmap(struct page *page)
1313{
1314        int i, nr;
1315
1316        if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1317                return;
1318
1319        /* Hugepages are not counted in NR_ANON_PAGES for now. */
1320        if (unlikely(PageHuge(page)))
1321                return;
1322
1323        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1324                return;
1325
1326        __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1327
1328        if (TestClearPageDoubleMap(page)) {
1329                /*
1330                 * Subpages can be mapped with PTEs too. Check how many of
1331                 * themi are still mapped.
1332                 */
1333                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1334                        if (atomic_add_negative(-1, &page[i]._mapcount))
1335                                nr++;
1336                }
1337        } else {
1338                nr = HPAGE_PMD_NR;
1339        }
1340
1341        if (unlikely(PageMlocked(page)))
1342                clear_page_mlock(page);
1343
1344        if (nr) {
1345                __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr);
1346                deferred_split_huge_page(page);
1347        }
1348}
1349
1350/**
1351 * page_remove_rmap - take down pte mapping from a page
1352 * @page:       page to remove mapping from
1353 * @compound:   uncharge the page as compound or small page
1354 *
1355 * The caller needs to hold the pte lock.
1356 */
1357void page_remove_rmap(struct page *page, bool compound)
1358{
1359        if (!PageAnon(page)) {
1360                VM_BUG_ON_PAGE(compound && !PageHuge(page), page);
1361                page_remove_file_rmap(page);
1362                return;
1363        }
1364
1365        if (compound)
1366                return page_remove_anon_compound_rmap(page);
1367
1368        /* page still mapped by someone else? */
1369        if (!atomic_add_negative(-1, &page->_mapcount))
1370                return;
1371
1372        /*
1373         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1374         * these counters are not modified in interrupt context, and
1375         * pte lock(a spinlock) is held, which implies preemption disabled.
1376         */
1377        __dec_zone_page_state(page, NR_ANON_PAGES);
1378
1379        if (unlikely(PageMlocked(page)))
1380                clear_page_mlock(page);
1381
1382        if (PageTransCompound(page))
1383                deferred_split_huge_page(compound_head(page));
1384
1385        /*
1386         * It would be tidy to reset the PageAnon mapping here,
1387         * but that might overwrite a racing page_add_anon_rmap
1388         * which increments mapcount after us but sets mapping
1389         * before us: so leave the reset to free_hot_cold_page,
1390         * and remember that it's only reliable while mapped.
1391         * Leaving it set also helps swapoff to reinstate ptes
1392         * faster for those pages still in swapcache.
1393         */
1394}
1395
1396struct rmap_private {
1397        enum ttu_flags flags;
1398        int lazyfreed;
1399};
1400
1401/*
1402 * @arg: enum ttu_flags will be passed to this argument
1403 */
1404static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1405                     unsigned long address, void *arg)
1406{
1407        struct mm_struct *mm = vma->vm_mm;
1408        pte_t *pte;
1409        pte_t pteval;
1410        spinlock_t *ptl;
1411        int ret = SWAP_AGAIN;
1412        struct rmap_private *rp = arg;
1413        enum ttu_flags flags = rp->flags;
1414
1415        /* munlock has nothing to gain from examining un-locked vmas */
1416        if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1417                goto out;
1418
1419        if (flags & TTU_SPLIT_HUGE_PMD) {
1420                split_huge_pmd_address(vma, address,
1421                                flags & TTU_MIGRATION, page);
1422                /* check if we have anything to do after split */
1423                if (page_mapcount(page) == 0)
1424                        goto out;
1425        }
1426
1427        pte = page_check_address(page, mm, address, &ptl,
1428                                 PageTransCompound(page));
1429        if (!pte)
1430                goto out;
1431
1432        /*
1433         * If the page is mlock()d, we cannot swap it out.
1434         * If it's recently referenced (perhaps page_referenced
1435         * skipped over this mm) then we should reactivate it.
1436         */
1437        if (!(flags & TTU_IGNORE_MLOCK)) {
1438                if (vma->vm_flags & VM_LOCKED) {
1439                        /* Holding pte lock, we do *not* need mmap_sem here */
1440                        mlock_vma_page(page);
1441                        ret = SWAP_MLOCK;
1442                        goto out_unmap;
1443                }
1444                if (flags & TTU_MUNLOCK)
1445                        goto out_unmap;
1446        }
1447        if (!(flags & TTU_IGNORE_ACCESS)) {
1448                if (ptep_clear_flush_young_notify(vma, address, pte)) {
1449                        ret = SWAP_FAIL;
1450                        goto out_unmap;
1451                }
1452        }
1453
1454        /* Nuke the page table entry. */
1455        flush_cache_page(vma, address, page_to_pfn(page));
1456        if (should_defer_flush(mm, flags)) {
1457                /*
1458                 * We clear the PTE but do not flush so potentially a remote
1459                 * CPU could still be writing to the page. If the entry was
1460                 * previously clean then the architecture must guarantee that
1461                 * a clear->dirty transition on a cached TLB entry is written
1462                 * through and traps if the PTE is unmapped.
1463                 */
1464                pteval = ptep_get_and_clear(mm, address, pte);
1465
1466                set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1467        } else {
1468                pteval = ptep_clear_flush(vma, address, pte);
1469        }
1470
1471        /* Move the dirty bit to the physical page now the pte is gone. */
1472        if (pte_dirty(pteval))
1473                set_page_dirty(page);
1474
1475        /* Update high watermark before we lower rss */
1476        update_hiwater_rss(mm);
1477
1478        if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1479                if (PageHuge(page)) {
1480                        hugetlb_count_sub(1 << compound_order(page), mm);
1481                } else {
1482                        dec_mm_counter(mm, mm_counter(page));
1483                }
1484                set_pte_at(mm, address, pte,
1485                           swp_entry_to_pte(make_hwpoison_entry(page)));
1486        } else if (pte_unused(pteval)) {
1487                /*
1488                 * The guest indicated that the page content is of no
1489                 * interest anymore. Simply discard the pte, vmscan
1490                 * will take care of the rest.
1491                 */
1492                dec_mm_counter(mm, mm_counter(page));
1493        } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1494                swp_entry_t entry;
1495                pte_t swp_pte;
1496                /*
1497                 * Store the pfn of the page in a special migration
1498                 * pte. do_swap_page() will wait until the migration
1499                 * pte is removed and then restart fault handling.
1500                 */
1501                entry = make_migration_entry(page, pte_write(pteval));
1502                swp_pte = swp_entry_to_pte(entry);
1503                if (pte_soft_dirty(pteval))
1504                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
1505                set_pte_at(mm, address, pte, swp_pte);
1506        } else if (PageAnon(page)) {
1507                swp_entry_t entry = { .val = page_private(page) };
1508                pte_t swp_pte;
1509                /*
1510                 * Store the swap location in the pte.
1511                 * See handle_pte_fault() ...
1512                 */
1513                VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1514
1515                if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1516                        /* It's a freeable page by MADV_FREE */
1517                        dec_mm_counter(mm, MM_ANONPAGES);
1518                        rp->lazyfreed++;
1519                        goto discard;
1520                }
1521
1522                if (swap_duplicate(entry) < 0) {
1523                        set_pte_at(mm, address, pte, pteval);
1524                        ret = SWAP_FAIL;
1525                        goto out_unmap;
1526                }
1527                if (list_empty(&mm->mmlist)) {
1528                        spin_lock(&mmlist_lock);
1529                        if (list_empty(&mm->mmlist))
1530                                list_add(&mm->mmlist, &init_mm.mmlist);
1531                        spin_unlock(&mmlist_lock);
1532                }
1533                dec_mm_counter(mm, MM_ANONPAGES);
1534                inc_mm_counter(mm, MM_SWAPENTS);
1535                swp_pte = swp_entry_to_pte(entry);
1536                if (pte_soft_dirty(pteval))
1537                        swp_pte = pte_swp_mksoft_dirty(swp_pte);
1538                set_pte_at(mm, address, pte, swp_pte);
1539        } else
1540                dec_mm_counter(mm, mm_counter_file(page));
1541
1542discard:
1543        page_remove_rmap(page, PageHuge(page));
1544        put_page(page);
1545
1546out_unmap:
1547        pte_unmap_unlock(pte, ptl);
1548        if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1549                mmu_notifier_invalidate_page(mm, address);
1550out:
1551        return ret;
1552}
1553
1554bool is_vma_temporary_stack(struct vm_area_struct *vma)
1555{
1556        int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1557
1558        if (!maybe_stack)
1559                return false;
1560
1561        if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1562                                                VM_STACK_INCOMPLETE_SETUP)
1563                return true;
1564
1565        return false;
1566}
1567
1568static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1569{
1570        return is_vma_temporary_stack(vma);
1571}
1572
1573static int page_mapcount_is_zero(struct page *page)
1574{
1575        return !page_mapcount(page);
1576}
1577
1578/**
1579 * try_to_unmap - try to remove all page table mappings to a page
1580 * @page: the page to get unmapped
1581 * @flags: action and flags
1582 *
1583 * Tries to remove all the page table entries which are mapping this
1584 * page, used in the pageout path.  Caller must hold the page lock.
1585 * Return values are:
1586 *
1587 * SWAP_SUCCESS - we succeeded in removing all mappings
1588 * SWAP_AGAIN   - we missed a mapping, try again later
1589 * SWAP_FAIL    - the page is unswappable
1590 * SWAP_MLOCK   - page is mlocked.
1591 */
1592int try_to_unmap(struct page *page, enum ttu_flags flags)
1593{
1594        int ret;
1595        struct rmap_private rp = {
1596                .flags = flags,
1597                .lazyfreed = 0,
1598        };
1599
1600        struct rmap_walk_control rwc = {
1601                .rmap_one = try_to_unmap_one,
1602                .arg = &rp,
1603                .done = page_mapcount_is_zero,
1604                .anon_lock = page_lock_anon_vma_read,
1605        };
1606
1607        /*
1608         * During exec, a temporary VMA is setup and later moved.
1609         * The VMA is moved under the anon_vma lock but not the
1610         * page tables leading to a race where migration cannot
1611         * find the migration ptes. Rather than increasing the
1612         * locking requirements of exec(), migration skips
1613         * temporary VMAs until after exec() completes.
1614         */
1615        if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1616                rwc.invalid_vma = invalid_migration_vma;
1617
1618        if (flags & TTU_RMAP_LOCKED)
1619                ret = rmap_walk_locked(page, &rwc);
1620        else
1621                ret = rmap_walk(page, &rwc);
1622
1623        if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1624                ret = SWAP_SUCCESS;
1625                if (rp.lazyfreed && !PageDirty(page))
1626                        ret = SWAP_LZFREE;
1627        }
1628        return ret;
1629}
1630
1631static int page_not_mapped(struct page *page)
1632{
1633        return !page_mapped(page);
1634};
1635
1636/**
1637 * try_to_munlock - try to munlock a page
1638 * @page: the page to be munlocked
1639 *
1640 * Called from munlock code.  Checks all of the VMAs mapping the page
1641 * to make sure nobody else has this page mlocked. The page will be
1642 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1643 *
1644 * Return values are:
1645 *
1646 * SWAP_AGAIN   - no vma is holding page mlocked, or,
1647 * SWAP_AGAIN   - page mapped in mlocked vma -- couldn't acquire mmap sem
1648 * SWAP_FAIL    - page cannot be located at present
1649 * SWAP_MLOCK   - page is now mlocked.
1650 */
1651int try_to_munlock(struct page *page)
1652{
1653        int ret;
1654        struct rmap_private rp = {
1655                .flags = TTU_MUNLOCK,
1656                .lazyfreed = 0,
1657        };
1658
1659        struct rmap_walk_control rwc = {
1660                .rmap_one = try_to_unmap_one,
1661                .arg = &rp,
1662                .done = page_not_mapped,
1663                .anon_lock = page_lock_anon_vma_read,
1664
1665        };
1666
1667        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1668
1669        ret = rmap_walk(page, &rwc);
1670        return ret;
1671}
1672
1673void __put_anon_vma(struct anon_vma *anon_vma)
1674{
1675        struct anon_vma *root = anon_vma->root;
1676
1677        anon_vma_free(anon_vma);
1678        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1679                anon_vma_free(root);
1680}
1681
1682static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1683                                        struct rmap_walk_control *rwc)
1684{
1685        struct anon_vma *anon_vma;
1686
1687        if (rwc->anon_lock)
1688                return rwc->anon_lock(page);
1689
1690        /*
1691         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1692         * because that depends on page_mapped(); but not all its usages
1693         * are holding mmap_sem. Users without mmap_sem are required to
1694         * take a reference count to prevent the anon_vma disappearing
1695         */
1696        anon_vma = page_anon_vma(page);
1697        if (!anon_vma)
1698                return NULL;
1699
1700        anon_vma_lock_read(anon_vma);
1701        return anon_vma;
1702}
1703
1704/*
1705 * rmap_walk_anon - do something to anonymous page using the object-based
1706 * rmap method
1707 * @page: the page to be handled
1708 * @rwc: control variable according to each walk type
1709 *
1710 * Find all the mappings of a page using the mapping pointer and the vma chains
1711 * contained in the anon_vma struct it points to.
1712 *
1713 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1714 * where the page was found will be held for write.  So, we won't recheck
1715 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1716 * LOCKED.
1717 */
1718static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1719                bool locked)
1720{
1721        struct anon_vma *anon_vma;
1722        pgoff_t pgoff;
1723        struct anon_vma_chain *avc;
1724        int ret = SWAP_AGAIN;
1725
1726        if (locked) {
1727                anon_vma = page_anon_vma(page);
1728                /* anon_vma disappear under us? */
1729                VM_BUG_ON_PAGE(!anon_vma, page);
1730        } else {
1731                anon_vma = rmap_walk_anon_lock(page, rwc);
1732        }
1733        if (!anon_vma)
1734                return ret;
1735
1736        pgoff = page_to_pgoff(page);
1737        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1738                struct vm_area_struct *vma = avc->vma;
1739                unsigned long address = vma_address(page, vma);
1740
1741                cond_resched();
1742
1743                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1744                        continue;
1745
1746                ret = rwc->rmap_one(page, vma, address, rwc->arg);
1747                if (ret != SWAP_AGAIN)
1748                        break;
1749                if (rwc->done && rwc->done(page))
1750                        break;
1751        }
1752
1753        if (!locked)
1754                anon_vma_unlock_read(anon_vma);
1755        return ret;
1756}
1757
1758/*
1759 * rmap_walk_file - do something to file page using the object-based rmap method
1760 * @page: the page to be handled
1761 * @rwc: control variable according to each walk type
1762 *
1763 * Find all the mappings of a page using the mapping pointer and the vma chains
1764 * contained in the address_space struct it points to.
1765 *
1766 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1767 * where the page was found will be held for write.  So, we won't recheck
1768 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1769 * LOCKED.
1770 */
1771static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1772                bool locked)
1773{
1774        struct address_space *mapping = page_mapping(page);
1775        pgoff_t pgoff;
1776        struct vm_area_struct *vma;
1777        int ret = SWAP_AGAIN;
1778
1779        /*
1780         * The page lock not only makes sure that page->mapping cannot
1781         * suddenly be NULLified by truncation, it makes sure that the
1782         * structure at mapping cannot be freed and reused yet,
1783         * so we can safely take mapping->i_mmap_rwsem.
1784         */
1785        VM_BUG_ON_PAGE(!PageLocked(page), page);
1786
1787        if (!mapping)
1788                return ret;
1789
1790        pgoff = page_to_pgoff(page);
1791        if (!locked)
1792                i_mmap_lock_read(mapping);
1793        vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1794                unsigned long address = vma_address(page, vma);
1795
1796                cond_resched();
1797
1798                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1799                        continue;
1800
1801                ret = rwc->rmap_one(page, vma, address, rwc->arg);
1802                if (ret != SWAP_AGAIN)
1803                        goto done;
1804                if (rwc->done && rwc->done(page))
1805                        goto done;
1806        }
1807
1808done:
1809        if (!locked)
1810                i_mmap_unlock_read(mapping);
1811        return ret;
1812}
1813
1814int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1815{
1816        if (unlikely(PageKsm(page)))
1817                return rmap_walk_ksm(page, rwc);
1818        else if (PageAnon(page))
1819                return rmap_walk_anon(page, rwc, false);
1820        else
1821                return rmap_walk_file(page, rwc, false);
1822}
1823
1824/* Like rmap_walk, but caller holds relevant rmap lock */
1825int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1826{
1827        /* no ksm support for now */
1828        VM_BUG_ON_PAGE(PageKsm(page), page);
1829        if (PageAnon(page))
1830                return rmap_walk_anon(page, rwc, true);
1831        else
1832                return rmap_walk_file(page, rwc, true);
1833}
1834
1835#ifdef CONFIG_HUGETLB_PAGE
1836/*
1837 * The following three functions are for anonymous (private mapped) hugepages.
1838 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1839 * and no lru code, because we handle hugepages differently from common pages.
1840 */
1841static void __hugepage_set_anon_rmap(struct page *page,
1842        struct vm_area_struct *vma, unsigned long address, int exclusive)
1843{
1844        struct anon_vma *anon_vma = vma->anon_vma;
1845
1846        BUG_ON(!anon_vma);
1847
1848        if (PageAnon(page))
1849                return;
1850        if (!exclusive)
1851                anon_vma = anon_vma->root;
1852
1853        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1854        page->mapping = (struct address_space *) anon_vma;
1855        page->index = linear_page_index(vma, address);
1856}
1857
1858void hugepage_add_anon_rmap(struct page *page,
1859                            struct vm_area_struct *vma, unsigned long address)
1860{
1861        struct anon_vma *anon_vma = vma->anon_vma;
1862        int first;
1863
1864        BUG_ON(!PageLocked(page));
1865        BUG_ON(!anon_vma);
1866        /* address might be in next vma when migration races vma_adjust */
1867        first = atomic_inc_and_test(compound_mapcount_ptr(page));
1868        if (first)
1869                __hugepage_set_anon_rmap(page, vma, address, 0);
1870}
1871
1872void hugepage_add_new_anon_rmap(struct page *page,
1873                        struct vm_area_struct *vma, unsigned long address)
1874{
1875        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1876        atomic_set(compound_mapcount_ptr(page), 0);
1877        __hugepage_set_anon_rmap(page, vma, address, 1);
1878}
1879#endif /* CONFIG_HUGETLB_PAGE */
1880