linux/mm/vmstat.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmstat.c
   3 *
   4 *  Manages VM statistics
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  zoned VM statistics
   8 *  Copyright (C) 2006 Silicon Graphics, Inc.,
   9 *              Christoph Lameter <christoph@lameter.com>
  10 *  Copyright (C) 2008-2014 Christoph Lameter
  11 */
  12#include <linux/fs.h>
  13#include <linux/mm.h>
  14#include <linux/err.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/cpu.h>
  18#include <linux/cpumask.h>
  19#include <linux/vmstat.h>
  20#include <linux/proc_fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/debugfs.h>
  23#include <linux/sched.h>
  24#include <linux/math64.h>
  25#include <linux/writeback.h>
  26#include <linux/compaction.h>
  27#include <linux/mm_inline.h>
  28#include <linux/page_ext.h>
  29#include <linux/page_owner.h>
  30
  31#include "internal.h"
  32
  33#ifdef CONFIG_VM_EVENT_COUNTERS
  34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  35EXPORT_PER_CPU_SYMBOL(vm_event_states);
  36
  37static void sum_vm_events(unsigned long *ret)
  38{
  39        int cpu;
  40        int i;
  41
  42        memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  43
  44        for_each_online_cpu(cpu) {
  45                struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  46
  47                for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  48                        ret[i] += this->event[i];
  49        }
  50}
  51
  52/*
  53 * Accumulate the vm event counters across all CPUs.
  54 * The result is unavoidably approximate - it can change
  55 * during and after execution of this function.
  56*/
  57void all_vm_events(unsigned long *ret)
  58{
  59        get_online_cpus();
  60        sum_vm_events(ret);
  61        put_online_cpus();
  62}
  63EXPORT_SYMBOL_GPL(all_vm_events);
  64
  65/*
  66 * Fold the foreign cpu events into our own.
  67 *
  68 * This is adding to the events on one processor
  69 * but keeps the global counts constant.
  70 */
  71void vm_events_fold_cpu(int cpu)
  72{
  73        struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  74        int i;
  75
  76        for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  77                count_vm_events(i, fold_state->event[i]);
  78                fold_state->event[i] = 0;
  79        }
  80}
  81
  82#endif /* CONFIG_VM_EVENT_COUNTERS */
  83
  84/*
  85 * Manage combined zone based / global counters
  86 *
  87 * vm_stat contains the global counters
  88 */
  89atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
  90EXPORT_SYMBOL(vm_stat);
  91
  92#ifdef CONFIG_SMP
  93
  94int calculate_pressure_threshold(struct zone *zone)
  95{
  96        int threshold;
  97        int watermark_distance;
  98
  99        /*
 100         * As vmstats are not up to date, there is drift between the estimated
 101         * and real values. For high thresholds and a high number of CPUs, it
 102         * is possible for the min watermark to be breached while the estimated
 103         * value looks fine. The pressure threshold is a reduced value such
 104         * that even the maximum amount of drift will not accidentally breach
 105         * the min watermark
 106         */
 107        watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
 108        threshold = max(1, (int)(watermark_distance / num_online_cpus()));
 109
 110        /*
 111         * Maximum threshold is 125
 112         */
 113        threshold = min(125, threshold);
 114
 115        return threshold;
 116}
 117
 118int calculate_normal_threshold(struct zone *zone)
 119{
 120        int threshold;
 121        int mem;        /* memory in 128 MB units */
 122
 123        /*
 124         * The threshold scales with the number of processors and the amount
 125         * of memory per zone. More memory means that we can defer updates for
 126         * longer, more processors could lead to more contention.
 127         * fls() is used to have a cheap way of logarithmic scaling.
 128         *
 129         * Some sample thresholds:
 130         *
 131         * Threshold    Processors      (fls)   Zonesize        fls(mem+1)
 132         * ------------------------------------------------------------------
 133         * 8            1               1       0.9-1 GB        4
 134         * 16           2               2       0.9-1 GB        4
 135         * 20           2               2       1-2 GB          5
 136         * 24           2               2       2-4 GB          6
 137         * 28           2               2       4-8 GB          7
 138         * 32           2               2       8-16 GB         8
 139         * 4            2               2       <128M           1
 140         * 30           4               3       2-4 GB          5
 141         * 48           4               3       8-16 GB         8
 142         * 32           8               4       1-2 GB          4
 143         * 32           8               4       0.9-1GB         4
 144         * 10           16              5       <128M           1
 145         * 40           16              5       900M            4
 146         * 70           64              7       2-4 GB          5
 147         * 84           64              7       4-8 GB          6
 148         * 108          512             9       4-8 GB          6
 149         * 125          1024            10      8-16 GB         8
 150         * 125          1024            10      16-32 GB        9
 151         */
 152
 153        mem = zone->managed_pages >> (27 - PAGE_SHIFT);
 154
 155        threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
 156
 157        /*
 158         * Maximum threshold is 125
 159         */
 160        threshold = min(125, threshold);
 161
 162        return threshold;
 163}
 164
 165/*
 166 * Refresh the thresholds for each zone.
 167 */
 168void refresh_zone_stat_thresholds(void)
 169{
 170        struct zone *zone;
 171        int cpu;
 172        int threshold;
 173
 174        for_each_populated_zone(zone) {
 175                unsigned long max_drift, tolerate_drift;
 176
 177                threshold = calculate_normal_threshold(zone);
 178
 179                for_each_online_cpu(cpu)
 180                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 181                                                        = threshold;
 182
 183                /*
 184                 * Only set percpu_drift_mark if there is a danger that
 185                 * NR_FREE_PAGES reports the low watermark is ok when in fact
 186                 * the min watermark could be breached by an allocation
 187                 */
 188                tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
 189                max_drift = num_online_cpus() * threshold;
 190                if (max_drift > tolerate_drift)
 191                        zone->percpu_drift_mark = high_wmark_pages(zone) +
 192                                        max_drift;
 193        }
 194}
 195
 196void set_pgdat_percpu_threshold(pg_data_t *pgdat,
 197                                int (*calculate_pressure)(struct zone *))
 198{
 199        struct zone *zone;
 200        int cpu;
 201        int threshold;
 202        int i;
 203
 204        for (i = 0; i < pgdat->nr_zones; i++) {
 205                zone = &pgdat->node_zones[i];
 206                if (!zone->percpu_drift_mark)
 207                        continue;
 208
 209                threshold = (*calculate_pressure)(zone);
 210                for_each_online_cpu(cpu)
 211                        per_cpu_ptr(zone->pageset, cpu)->stat_threshold
 212                                                        = threshold;
 213        }
 214}
 215
 216/*
 217 * For use when we know that interrupts are disabled,
 218 * or when we know that preemption is disabled and that
 219 * particular counter cannot be updated from interrupt context.
 220 */
 221void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 222                           long delta)
 223{
 224        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 225        s8 __percpu *p = pcp->vm_stat_diff + item;
 226        long x;
 227        long t;
 228
 229        x = delta + __this_cpu_read(*p);
 230
 231        t = __this_cpu_read(pcp->stat_threshold);
 232
 233        if (unlikely(x > t || x < -t)) {
 234                zone_page_state_add(x, zone, item);
 235                x = 0;
 236        }
 237        __this_cpu_write(*p, x);
 238}
 239EXPORT_SYMBOL(__mod_zone_page_state);
 240
 241/*
 242 * Optimized increment and decrement functions.
 243 *
 244 * These are only for a single page and therefore can take a struct page *
 245 * argument instead of struct zone *. This allows the inclusion of the code
 246 * generated for page_zone(page) into the optimized functions.
 247 *
 248 * No overflow check is necessary and therefore the differential can be
 249 * incremented or decremented in place which may allow the compilers to
 250 * generate better code.
 251 * The increment or decrement is known and therefore one boundary check can
 252 * be omitted.
 253 *
 254 * NOTE: These functions are very performance sensitive. Change only
 255 * with care.
 256 *
 257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
 258 * However, the code must first determine the differential location in a zone
 259 * based on the processor number and then inc/dec the counter. There is no
 260 * guarantee without disabling preemption that the processor will not change
 261 * in between and therefore the atomicity vs. interrupt cannot be exploited
 262 * in a useful way here.
 263 */
 264void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
 265{
 266        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 267        s8 __percpu *p = pcp->vm_stat_diff + item;
 268        s8 v, t;
 269
 270        v = __this_cpu_inc_return(*p);
 271        t = __this_cpu_read(pcp->stat_threshold);
 272        if (unlikely(v > t)) {
 273                s8 overstep = t >> 1;
 274
 275                zone_page_state_add(v + overstep, zone, item);
 276                __this_cpu_write(*p, -overstep);
 277        }
 278}
 279
 280void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
 281{
 282        __inc_zone_state(page_zone(page), item);
 283}
 284EXPORT_SYMBOL(__inc_zone_page_state);
 285
 286void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
 287{
 288        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 289        s8 __percpu *p = pcp->vm_stat_diff + item;
 290        s8 v, t;
 291
 292        v = __this_cpu_dec_return(*p);
 293        t = __this_cpu_read(pcp->stat_threshold);
 294        if (unlikely(v < - t)) {
 295                s8 overstep = t >> 1;
 296
 297                zone_page_state_add(v - overstep, zone, item);
 298                __this_cpu_write(*p, overstep);
 299        }
 300}
 301
 302void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
 303{
 304        __dec_zone_state(page_zone(page), item);
 305}
 306EXPORT_SYMBOL(__dec_zone_page_state);
 307
 308#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
 309/*
 310 * If we have cmpxchg_local support then we do not need to incur the overhead
 311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
 312 *
 313 * mod_state() modifies the zone counter state through atomic per cpu
 314 * operations.
 315 *
 316 * Overstep mode specifies how overstep should handled:
 317 *     0       No overstepping
 318 *     1       Overstepping half of threshold
 319 *     -1      Overstepping minus half of threshold
 320*/
 321static inline void mod_state(struct zone *zone, enum zone_stat_item item,
 322                             long delta, int overstep_mode)
 323{
 324        struct per_cpu_pageset __percpu *pcp = zone->pageset;
 325        s8 __percpu *p = pcp->vm_stat_diff + item;
 326        long o, n, t, z;
 327
 328        do {
 329                z = 0;  /* overflow to zone counters */
 330
 331                /*
 332                 * The fetching of the stat_threshold is racy. We may apply
 333                 * a counter threshold to the wrong the cpu if we get
 334                 * rescheduled while executing here. However, the next
 335                 * counter update will apply the threshold again and
 336                 * therefore bring the counter under the threshold again.
 337                 *
 338                 * Most of the time the thresholds are the same anyways
 339                 * for all cpus in a zone.
 340                 */
 341                t = this_cpu_read(pcp->stat_threshold);
 342
 343                o = this_cpu_read(*p);
 344                n = delta + o;
 345
 346                if (n > t || n < -t) {
 347                        int os = overstep_mode * (t >> 1) ;
 348
 349                        /* Overflow must be added to zone counters */
 350                        z = n + os;
 351                        n = -os;
 352                }
 353        } while (this_cpu_cmpxchg(*p, o, n) != o);
 354
 355        if (z)
 356                zone_page_state_add(z, zone, item);
 357}
 358
 359void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 360                         long delta)
 361{
 362        mod_state(zone, item, delta, 0);
 363}
 364EXPORT_SYMBOL(mod_zone_page_state);
 365
 366void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 367{
 368        mod_state(zone, item, 1, 1);
 369}
 370
 371void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 372{
 373        mod_state(page_zone(page), item, 1, 1);
 374}
 375EXPORT_SYMBOL(inc_zone_page_state);
 376
 377void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 378{
 379        mod_state(page_zone(page), item, -1, -1);
 380}
 381EXPORT_SYMBOL(dec_zone_page_state);
 382#else
 383/*
 384 * Use interrupt disable to serialize counter updates
 385 */
 386void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
 387                         long delta)
 388{
 389        unsigned long flags;
 390
 391        local_irq_save(flags);
 392        __mod_zone_page_state(zone, item, delta);
 393        local_irq_restore(flags);
 394}
 395EXPORT_SYMBOL(mod_zone_page_state);
 396
 397void inc_zone_state(struct zone *zone, enum zone_stat_item item)
 398{
 399        unsigned long flags;
 400
 401        local_irq_save(flags);
 402        __inc_zone_state(zone, item);
 403        local_irq_restore(flags);
 404}
 405
 406void inc_zone_page_state(struct page *page, enum zone_stat_item item)
 407{
 408        unsigned long flags;
 409        struct zone *zone;
 410
 411        zone = page_zone(page);
 412        local_irq_save(flags);
 413        __inc_zone_state(zone, item);
 414        local_irq_restore(flags);
 415}
 416EXPORT_SYMBOL(inc_zone_page_state);
 417
 418void dec_zone_page_state(struct page *page, enum zone_stat_item item)
 419{
 420        unsigned long flags;
 421
 422        local_irq_save(flags);
 423        __dec_zone_page_state(page, item);
 424        local_irq_restore(flags);
 425}
 426EXPORT_SYMBOL(dec_zone_page_state);
 427#endif
 428
 429
 430/*
 431 * Fold a differential into the global counters.
 432 * Returns the number of counters updated.
 433 */
 434static int fold_diff(int *diff)
 435{
 436        int i;
 437        int changes = 0;
 438
 439        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 440                if (diff[i]) {
 441                        atomic_long_add(diff[i], &vm_stat[i]);
 442                        changes++;
 443        }
 444        return changes;
 445}
 446
 447/*
 448 * Update the zone counters for the current cpu.
 449 *
 450 * Note that refresh_cpu_vm_stats strives to only access
 451 * node local memory. The per cpu pagesets on remote zones are placed
 452 * in the memory local to the processor using that pageset. So the
 453 * loop over all zones will access a series of cachelines local to
 454 * the processor.
 455 *
 456 * The call to zone_page_state_add updates the cachelines with the
 457 * statistics in the remote zone struct as well as the global cachelines
 458 * with the global counters. These could cause remote node cache line
 459 * bouncing and will have to be only done when necessary.
 460 *
 461 * The function returns the number of global counters updated.
 462 */
 463static int refresh_cpu_vm_stats(bool do_pagesets)
 464{
 465        struct zone *zone;
 466        int i;
 467        int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 468        int changes = 0;
 469
 470        for_each_populated_zone(zone) {
 471                struct per_cpu_pageset __percpu *p = zone->pageset;
 472
 473                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
 474                        int v;
 475
 476                        v = this_cpu_xchg(p->vm_stat_diff[i], 0);
 477                        if (v) {
 478
 479                                atomic_long_add(v, &zone->vm_stat[i]);
 480                                global_diff[i] += v;
 481#ifdef CONFIG_NUMA
 482                                /* 3 seconds idle till flush */
 483                                __this_cpu_write(p->expire, 3);
 484#endif
 485                        }
 486                }
 487#ifdef CONFIG_NUMA
 488                if (do_pagesets) {
 489                        cond_resched();
 490                        /*
 491                         * Deal with draining the remote pageset of this
 492                         * processor
 493                         *
 494                         * Check if there are pages remaining in this pageset
 495                         * if not then there is nothing to expire.
 496                         */
 497                        if (!__this_cpu_read(p->expire) ||
 498                               !__this_cpu_read(p->pcp.count))
 499                                continue;
 500
 501                        /*
 502                         * We never drain zones local to this processor.
 503                         */
 504                        if (zone_to_nid(zone) == numa_node_id()) {
 505                                __this_cpu_write(p->expire, 0);
 506                                continue;
 507                        }
 508
 509                        if (__this_cpu_dec_return(p->expire))
 510                                continue;
 511
 512                        if (__this_cpu_read(p->pcp.count)) {
 513                                drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
 514                                changes++;
 515                        }
 516                }
 517#endif
 518        }
 519        changes += fold_diff(global_diff);
 520        return changes;
 521}
 522
 523/*
 524 * Fold the data for an offline cpu into the global array.
 525 * There cannot be any access by the offline cpu and therefore
 526 * synchronization is simplified.
 527 */
 528void cpu_vm_stats_fold(int cpu)
 529{
 530        struct zone *zone;
 531        int i;
 532        int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
 533
 534        for_each_populated_zone(zone) {
 535                struct per_cpu_pageset *p;
 536
 537                p = per_cpu_ptr(zone->pageset, cpu);
 538
 539                for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 540                        if (p->vm_stat_diff[i]) {
 541                                int v;
 542
 543                                v = p->vm_stat_diff[i];
 544                                p->vm_stat_diff[i] = 0;
 545                                atomic_long_add(v, &zone->vm_stat[i]);
 546                                global_diff[i] += v;
 547                        }
 548        }
 549
 550        fold_diff(global_diff);
 551}
 552
 553/*
 554 * this is only called if !populated_zone(zone), which implies no other users of
 555 * pset->vm_stat_diff[] exsist.
 556 */
 557void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
 558{
 559        int i;
 560
 561        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
 562                if (pset->vm_stat_diff[i]) {
 563                        int v = pset->vm_stat_diff[i];
 564                        pset->vm_stat_diff[i] = 0;
 565                        atomic_long_add(v, &zone->vm_stat[i]);
 566                        atomic_long_add(v, &vm_stat[i]);
 567                }
 568}
 569#endif
 570
 571#ifdef CONFIG_NUMA
 572/*
 573 * Determine the per node value of a stat item.
 574 */
 575unsigned long node_page_state(int node, enum zone_stat_item item)
 576{
 577        struct zone *zones = NODE_DATA(node)->node_zones;
 578        int i;
 579        unsigned long count = 0;
 580
 581        for (i = 0; i < MAX_NR_ZONES; i++)
 582                count += zone_page_state(zones + i, item);
 583
 584        return count;
 585}
 586
 587#endif
 588
 589#ifdef CONFIG_COMPACTION
 590
 591struct contig_page_info {
 592        unsigned long free_pages;
 593        unsigned long free_blocks_total;
 594        unsigned long free_blocks_suitable;
 595};
 596
 597/*
 598 * Calculate the number of free pages in a zone, how many contiguous
 599 * pages are free and how many are large enough to satisfy an allocation of
 600 * the target size. Note that this function makes no attempt to estimate
 601 * how many suitable free blocks there *might* be if MOVABLE pages were
 602 * migrated. Calculating that is possible, but expensive and can be
 603 * figured out from userspace
 604 */
 605static void fill_contig_page_info(struct zone *zone,
 606                                unsigned int suitable_order,
 607                                struct contig_page_info *info)
 608{
 609        unsigned int order;
 610
 611        info->free_pages = 0;
 612        info->free_blocks_total = 0;
 613        info->free_blocks_suitable = 0;
 614
 615        for (order = 0; order < MAX_ORDER; order++) {
 616                unsigned long blocks;
 617
 618                /* Count number of free blocks */
 619                blocks = zone->free_area[order].nr_free;
 620                info->free_blocks_total += blocks;
 621
 622                /* Count free base pages */
 623                info->free_pages += blocks << order;
 624
 625                /* Count the suitable free blocks */
 626                if (order >= suitable_order)
 627                        info->free_blocks_suitable += blocks <<
 628                                                (order - suitable_order);
 629        }
 630}
 631
 632/*
 633 * A fragmentation index only makes sense if an allocation of a requested
 634 * size would fail. If that is true, the fragmentation index indicates
 635 * whether external fragmentation or a lack of memory was the problem.
 636 * The value can be used to determine if page reclaim or compaction
 637 * should be used
 638 */
 639static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
 640{
 641        unsigned long requested = 1UL << order;
 642
 643        if (!info->free_blocks_total)
 644                return 0;
 645
 646        /* Fragmentation index only makes sense when a request would fail */
 647        if (info->free_blocks_suitable)
 648                return -1000;
 649
 650        /*
 651         * Index is between 0 and 1 so return within 3 decimal places
 652         *
 653         * 0 => allocation would fail due to lack of memory
 654         * 1 => allocation would fail due to fragmentation
 655         */
 656        return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
 657}
 658
 659/* Same as __fragmentation index but allocs contig_page_info on stack */
 660int fragmentation_index(struct zone *zone, unsigned int order)
 661{
 662        struct contig_page_info info;
 663
 664        fill_contig_page_info(zone, order, &info);
 665        return __fragmentation_index(order, &info);
 666}
 667#endif
 668
 669#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
 670#ifdef CONFIG_ZONE_DMA
 671#define TEXT_FOR_DMA(xx) xx "_dma",
 672#else
 673#define TEXT_FOR_DMA(xx)
 674#endif
 675
 676#ifdef CONFIG_ZONE_DMA32
 677#define TEXT_FOR_DMA32(xx) xx "_dma32",
 678#else
 679#define TEXT_FOR_DMA32(xx)
 680#endif
 681
 682#ifdef CONFIG_HIGHMEM
 683#define TEXT_FOR_HIGHMEM(xx) xx "_high",
 684#else
 685#define TEXT_FOR_HIGHMEM(xx)
 686#endif
 687
 688#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
 689                                        TEXT_FOR_HIGHMEM(xx) xx "_movable",
 690
 691const char * const vmstat_text[] = {
 692        /* enum zone_stat_item countes */
 693        "nr_free_pages",
 694        "nr_alloc_batch",
 695        "nr_inactive_anon",
 696        "nr_active_anon",
 697        "nr_inactive_file",
 698        "nr_active_file",
 699        "nr_unevictable",
 700        "nr_mlock",
 701        "nr_anon_pages",
 702        "nr_mapped",
 703        "nr_file_pages",
 704        "nr_dirty",
 705        "nr_writeback",
 706        "nr_slab_reclaimable",
 707        "nr_slab_unreclaimable",
 708        "nr_page_table_pages",
 709        "nr_kernel_stack",
 710        "nr_unstable",
 711        "nr_bounce",
 712        "nr_vmscan_write",
 713        "nr_vmscan_immediate_reclaim",
 714        "nr_writeback_temp",
 715        "nr_isolated_anon",
 716        "nr_isolated_file",
 717        "nr_shmem",
 718        "nr_dirtied",
 719        "nr_written",
 720        "nr_pages_scanned",
 721
 722#ifdef CONFIG_NUMA
 723        "numa_hit",
 724        "numa_miss",
 725        "numa_foreign",
 726        "numa_interleave",
 727        "numa_local",
 728        "numa_other",
 729#endif
 730        "workingset_refault",
 731        "workingset_activate",
 732        "workingset_nodereclaim",
 733        "nr_anon_transparent_hugepages",
 734        "nr_free_cma",
 735
 736        /* enum writeback_stat_item counters */
 737        "nr_dirty_threshold",
 738        "nr_dirty_background_threshold",
 739
 740#ifdef CONFIG_VM_EVENT_COUNTERS
 741        /* enum vm_event_item counters */
 742        "pgpgin",
 743        "pgpgout",
 744        "pswpin",
 745        "pswpout",
 746
 747        TEXTS_FOR_ZONES("pgalloc")
 748
 749        "pgfree",
 750        "pgactivate",
 751        "pgdeactivate",
 752
 753        "pgfault",
 754        "pgmajfault",
 755        "pglazyfreed",
 756
 757        TEXTS_FOR_ZONES("pgrefill")
 758        TEXTS_FOR_ZONES("pgsteal_kswapd")
 759        TEXTS_FOR_ZONES("pgsteal_direct")
 760        TEXTS_FOR_ZONES("pgscan_kswapd")
 761        TEXTS_FOR_ZONES("pgscan_direct")
 762        "pgscan_direct_throttle",
 763
 764#ifdef CONFIG_NUMA
 765        "zone_reclaim_failed",
 766#endif
 767        "pginodesteal",
 768        "slabs_scanned",
 769        "kswapd_inodesteal",
 770        "kswapd_low_wmark_hit_quickly",
 771        "kswapd_high_wmark_hit_quickly",
 772        "pageoutrun",
 773        "allocstall",
 774
 775        "pgrotated",
 776
 777        "drop_pagecache",
 778        "drop_slab",
 779
 780#ifdef CONFIG_NUMA_BALANCING
 781        "numa_pte_updates",
 782        "numa_huge_pte_updates",
 783        "numa_hint_faults",
 784        "numa_hint_faults_local",
 785        "numa_pages_migrated",
 786#endif
 787#ifdef CONFIG_MIGRATION
 788        "pgmigrate_success",
 789        "pgmigrate_fail",
 790#endif
 791#ifdef CONFIG_COMPACTION
 792        "compact_migrate_scanned",
 793        "compact_free_scanned",
 794        "compact_isolated",
 795        "compact_stall",
 796        "compact_fail",
 797        "compact_success",
 798        "compact_daemon_wake",
 799#endif
 800
 801#ifdef CONFIG_HUGETLB_PAGE
 802        "htlb_buddy_alloc_success",
 803        "htlb_buddy_alloc_fail",
 804#endif
 805        "unevictable_pgs_culled",
 806        "unevictable_pgs_scanned",
 807        "unevictable_pgs_rescued",
 808        "unevictable_pgs_mlocked",
 809        "unevictable_pgs_munlocked",
 810        "unevictable_pgs_cleared",
 811        "unevictable_pgs_stranded",
 812
 813#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 814        "thp_fault_alloc",
 815        "thp_fault_fallback",
 816        "thp_collapse_alloc",
 817        "thp_collapse_alloc_failed",
 818        "thp_split_page",
 819        "thp_split_page_failed",
 820        "thp_deferred_split_page",
 821        "thp_split_pmd",
 822        "thp_zero_page_alloc",
 823        "thp_zero_page_alloc_failed",
 824#endif
 825#ifdef CONFIG_MEMORY_BALLOON
 826        "balloon_inflate",
 827        "balloon_deflate",
 828#ifdef CONFIG_BALLOON_COMPACTION
 829        "balloon_migrate",
 830#endif
 831#endif /* CONFIG_MEMORY_BALLOON */
 832#ifdef CONFIG_DEBUG_TLBFLUSH
 833#ifdef CONFIG_SMP
 834        "nr_tlb_remote_flush",
 835        "nr_tlb_remote_flush_received",
 836#endif /* CONFIG_SMP */
 837        "nr_tlb_local_flush_all",
 838        "nr_tlb_local_flush_one",
 839#endif /* CONFIG_DEBUG_TLBFLUSH */
 840
 841#ifdef CONFIG_DEBUG_VM_VMACACHE
 842        "vmacache_find_calls",
 843        "vmacache_find_hits",
 844        "vmacache_full_flushes",
 845#endif
 846#endif /* CONFIG_VM_EVENTS_COUNTERS */
 847};
 848#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
 849
 850
 851#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
 852     defined(CONFIG_PROC_FS)
 853static void *frag_start(struct seq_file *m, loff_t *pos)
 854{
 855        pg_data_t *pgdat;
 856        loff_t node = *pos;
 857
 858        for (pgdat = first_online_pgdat();
 859             pgdat && node;
 860             pgdat = next_online_pgdat(pgdat))
 861                --node;
 862
 863        return pgdat;
 864}
 865
 866static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
 867{
 868        pg_data_t *pgdat = (pg_data_t *)arg;
 869
 870        (*pos)++;
 871        return next_online_pgdat(pgdat);
 872}
 873
 874static void frag_stop(struct seq_file *m, void *arg)
 875{
 876}
 877
 878/* Walk all the zones in a node and print using a callback */
 879static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
 880                void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
 881{
 882        struct zone *zone;
 883        struct zone *node_zones = pgdat->node_zones;
 884        unsigned long flags;
 885
 886        for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
 887                if (!populated_zone(zone))
 888                        continue;
 889
 890                spin_lock_irqsave(&zone->lock, flags);
 891                print(m, pgdat, zone);
 892                spin_unlock_irqrestore(&zone->lock, flags);
 893        }
 894}
 895#endif
 896
 897#ifdef CONFIG_PROC_FS
 898static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
 899                                                struct zone *zone)
 900{
 901        int order;
 902
 903        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 904        for (order = 0; order < MAX_ORDER; ++order)
 905                seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
 906        seq_putc(m, '\n');
 907}
 908
 909/*
 910 * This walks the free areas for each zone.
 911 */
 912static int frag_show(struct seq_file *m, void *arg)
 913{
 914        pg_data_t *pgdat = (pg_data_t *)arg;
 915        walk_zones_in_node(m, pgdat, frag_show_print);
 916        return 0;
 917}
 918
 919static void pagetypeinfo_showfree_print(struct seq_file *m,
 920                                        pg_data_t *pgdat, struct zone *zone)
 921{
 922        int order, mtype;
 923
 924        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
 925                seq_printf(m, "Node %4d, zone %8s, type %12s ",
 926                                        pgdat->node_id,
 927                                        zone->name,
 928                                        migratetype_names[mtype]);
 929                for (order = 0; order < MAX_ORDER; ++order) {
 930                        unsigned long freecount = 0;
 931                        struct free_area *area;
 932                        struct list_head *curr;
 933
 934                        area = &(zone->free_area[order]);
 935
 936                        list_for_each(curr, &area->free_list[mtype])
 937                                freecount++;
 938                        seq_printf(m, "%6lu ", freecount);
 939                }
 940                seq_putc(m, '\n');
 941        }
 942}
 943
 944/* Print out the free pages at each order for each migatetype */
 945static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
 946{
 947        int order;
 948        pg_data_t *pgdat = (pg_data_t *)arg;
 949
 950        /* Print header */
 951        seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
 952        for (order = 0; order < MAX_ORDER; ++order)
 953                seq_printf(m, "%6d ", order);
 954        seq_putc(m, '\n');
 955
 956        walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
 957
 958        return 0;
 959}
 960
 961static void pagetypeinfo_showblockcount_print(struct seq_file *m,
 962                                        pg_data_t *pgdat, struct zone *zone)
 963{
 964        int mtype;
 965        unsigned long pfn;
 966        unsigned long start_pfn = zone->zone_start_pfn;
 967        unsigned long end_pfn = zone_end_pfn(zone);
 968        unsigned long count[MIGRATE_TYPES] = { 0, };
 969
 970        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 971                struct page *page;
 972
 973                if (!pfn_valid(pfn))
 974                        continue;
 975
 976                page = pfn_to_page(pfn);
 977
 978                /* Watch for unexpected holes punched in the memmap */
 979                if (!memmap_valid_within(pfn, page, zone))
 980                        continue;
 981
 982                if (page_zone(page) != zone)
 983                        continue;
 984
 985                mtype = get_pageblock_migratetype(page);
 986
 987                if (mtype < MIGRATE_TYPES)
 988                        count[mtype]++;
 989        }
 990
 991        /* Print counts */
 992        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
 993        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
 994                seq_printf(m, "%12lu ", count[mtype]);
 995        seq_putc(m, '\n');
 996}
 997
 998/* Print out the free pages at each order for each migratetype */
 999static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1000{
1001        int mtype;
1002        pg_data_t *pgdat = (pg_data_t *)arg;
1003
1004        seq_printf(m, "\n%-23s", "Number of blocks type ");
1005        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1006                seq_printf(m, "%12s ", migratetype_names[mtype]);
1007        seq_putc(m, '\n');
1008        walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1009
1010        return 0;
1011}
1012
1013#ifdef CONFIG_PAGE_OWNER
1014static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1015                                                        pg_data_t *pgdat,
1016                                                        struct zone *zone)
1017{
1018        struct page *page;
1019        struct page_ext *page_ext;
1020        unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1021        unsigned long end_pfn = pfn + zone->spanned_pages;
1022        unsigned long count[MIGRATE_TYPES] = { 0, };
1023        int pageblock_mt, page_mt;
1024        int i;
1025
1026        /* Scan block by block. First and last block may be incomplete */
1027        pfn = zone->zone_start_pfn;
1028
1029        /*
1030         * Walk the zone in pageblock_nr_pages steps. If a page block spans
1031         * a zone boundary, it will be double counted between zones. This does
1032         * not matter as the mixed block count will still be correct
1033         */
1034        for (; pfn < end_pfn; ) {
1035                if (!pfn_valid(pfn)) {
1036                        pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1037                        continue;
1038                }
1039
1040                block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1041                block_end_pfn = min(block_end_pfn, end_pfn);
1042
1043                page = pfn_to_page(pfn);
1044                pageblock_mt = get_pageblock_migratetype(page);
1045
1046                for (; pfn < block_end_pfn; pfn++) {
1047                        if (!pfn_valid_within(pfn))
1048                                continue;
1049
1050                        page = pfn_to_page(pfn);
1051
1052                        if (page_zone(page) != zone)
1053                                continue;
1054
1055                        if (PageBuddy(page)) {
1056                                pfn += (1UL << page_order(page)) - 1;
1057                                continue;
1058                        }
1059
1060                        if (PageReserved(page))
1061                                continue;
1062
1063                        page_ext = lookup_page_ext(page);
1064                        if (unlikely(!page_ext))
1065                                continue;
1066
1067                        if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1068                                continue;
1069
1070                        page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1071                        if (pageblock_mt != page_mt) {
1072                                if (is_migrate_cma(pageblock_mt))
1073                                        count[MIGRATE_MOVABLE]++;
1074                                else
1075                                        count[pageblock_mt]++;
1076
1077                                pfn = block_end_pfn;
1078                                break;
1079                        }
1080                        pfn += (1UL << page_ext->order) - 1;
1081                }
1082        }
1083
1084        /* Print counts */
1085        seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1086        for (i = 0; i < MIGRATE_TYPES; i++)
1087                seq_printf(m, "%12lu ", count[i]);
1088        seq_putc(m, '\n');
1089}
1090#endif /* CONFIG_PAGE_OWNER */
1091
1092/*
1093 * Print out the number of pageblocks for each migratetype that contain pages
1094 * of other types. This gives an indication of how well fallbacks are being
1095 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1096 * to determine what is going on
1097 */
1098static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1099{
1100#ifdef CONFIG_PAGE_OWNER
1101        int mtype;
1102
1103        if (!static_branch_unlikely(&page_owner_inited))
1104                return;
1105
1106        drain_all_pages(NULL);
1107
1108        seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1109        for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1110                seq_printf(m, "%12s ", migratetype_names[mtype]);
1111        seq_putc(m, '\n');
1112
1113        walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1114#endif /* CONFIG_PAGE_OWNER */
1115}
1116
1117/*
1118 * This prints out statistics in relation to grouping pages by mobility.
1119 * It is expensive to collect so do not constantly read the file.
1120 */
1121static int pagetypeinfo_show(struct seq_file *m, void *arg)
1122{
1123        pg_data_t *pgdat = (pg_data_t *)arg;
1124
1125        /* check memoryless node */
1126        if (!node_state(pgdat->node_id, N_MEMORY))
1127                return 0;
1128
1129        seq_printf(m, "Page block order: %d\n", pageblock_order);
1130        seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
1131        seq_putc(m, '\n');
1132        pagetypeinfo_showfree(m, pgdat);
1133        pagetypeinfo_showblockcount(m, pgdat);
1134        pagetypeinfo_showmixedcount(m, pgdat);
1135
1136        return 0;
1137}
1138
1139static const struct seq_operations fragmentation_op = {
1140        .start  = frag_start,
1141        .next   = frag_next,
1142        .stop   = frag_stop,
1143        .show   = frag_show,
1144};
1145
1146static int fragmentation_open(struct inode *inode, struct file *file)
1147{
1148        return seq_open(file, &fragmentation_op);
1149}
1150
1151static const struct file_operations fragmentation_file_operations = {
1152        .open           = fragmentation_open,
1153        .read           = seq_read,
1154        .llseek         = seq_lseek,
1155        .release        = seq_release,
1156};
1157
1158static const struct seq_operations pagetypeinfo_op = {
1159        .start  = frag_start,
1160        .next   = frag_next,
1161        .stop   = frag_stop,
1162        .show   = pagetypeinfo_show,
1163};
1164
1165static int pagetypeinfo_open(struct inode *inode, struct file *file)
1166{
1167        return seq_open(file, &pagetypeinfo_op);
1168}
1169
1170static const struct file_operations pagetypeinfo_file_ops = {
1171        .open           = pagetypeinfo_open,
1172        .read           = seq_read,
1173        .llseek         = seq_lseek,
1174        .release        = seq_release,
1175};
1176
1177static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1178                                                        struct zone *zone)
1179{
1180        int i;
1181        seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1182        seq_printf(m,
1183                   "\n  pages free     %lu"
1184                   "\n        min      %lu"
1185                   "\n        low      %lu"
1186                   "\n        high     %lu"
1187                   "\n        scanned  %lu"
1188                   "\n        spanned  %lu"
1189                   "\n        present  %lu"
1190                   "\n        managed  %lu",
1191                   zone_page_state(zone, NR_FREE_PAGES),
1192                   min_wmark_pages(zone),
1193                   low_wmark_pages(zone),
1194                   high_wmark_pages(zone),
1195                   zone_page_state(zone, NR_PAGES_SCANNED),
1196                   zone->spanned_pages,
1197                   zone->present_pages,
1198                   zone->managed_pages);
1199
1200        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1201                seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
1202                                zone_page_state(zone, i));
1203
1204        seq_printf(m,
1205                   "\n        protection: (%ld",
1206                   zone->lowmem_reserve[0]);
1207        for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1208                seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1209        seq_printf(m,
1210                   ")"
1211                   "\n  pagesets");
1212        for_each_online_cpu(i) {
1213                struct per_cpu_pageset *pageset;
1214
1215                pageset = per_cpu_ptr(zone->pageset, i);
1216                seq_printf(m,
1217                           "\n    cpu: %i"
1218                           "\n              count: %i"
1219                           "\n              high:  %i"
1220                           "\n              batch: %i",
1221                           i,
1222                           pageset->pcp.count,
1223                           pageset->pcp.high,
1224                           pageset->pcp.batch);
1225#ifdef CONFIG_SMP
1226                seq_printf(m, "\n  vm stats threshold: %d",
1227                                pageset->stat_threshold);
1228#endif
1229        }
1230        seq_printf(m,
1231                   "\n  all_unreclaimable: %u"
1232                   "\n  start_pfn:         %lu"
1233                   "\n  inactive_ratio:    %u",
1234                   !zone_reclaimable(zone),
1235                   zone->zone_start_pfn,
1236                   zone->inactive_ratio);
1237        seq_putc(m, '\n');
1238}
1239
1240/*
1241 * Output information about zones in @pgdat.
1242 */
1243static int zoneinfo_show(struct seq_file *m, void *arg)
1244{
1245        pg_data_t *pgdat = (pg_data_t *)arg;
1246        walk_zones_in_node(m, pgdat, zoneinfo_show_print);
1247        return 0;
1248}
1249
1250static const struct seq_operations zoneinfo_op = {
1251        .start  = frag_start, /* iterate over all zones. The same as in
1252                               * fragmentation. */
1253        .next   = frag_next,
1254        .stop   = frag_stop,
1255        .show   = zoneinfo_show,
1256};
1257
1258static int zoneinfo_open(struct inode *inode, struct file *file)
1259{
1260        return seq_open(file, &zoneinfo_op);
1261}
1262
1263static const struct file_operations proc_zoneinfo_file_operations = {
1264        .open           = zoneinfo_open,
1265        .read           = seq_read,
1266        .llseek         = seq_lseek,
1267        .release        = seq_release,
1268};
1269
1270enum writeback_stat_item {
1271        NR_DIRTY_THRESHOLD,
1272        NR_DIRTY_BG_THRESHOLD,
1273        NR_VM_WRITEBACK_STAT_ITEMS,
1274};
1275
1276static void *vmstat_start(struct seq_file *m, loff_t *pos)
1277{
1278        unsigned long *v;
1279        int i, stat_items_size;
1280
1281        if (*pos >= ARRAY_SIZE(vmstat_text))
1282                return NULL;
1283        stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1284                          NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
1285
1286#ifdef CONFIG_VM_EVENT_COUNTERS
1287        stat_items_size += sizeof(struct vm_event_state);
1288#endif
1289
1290        v = kmalloc(stat_items_size, GFP_KERNEL);
1291        m->private = v;
1292        if (!v)
1293                return ERR_PTR(-ENOMEM);
1294        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1295                v[i] = global_page_state(i);
1296        v += NR_VM_ZONE_STAT_ITEMS;
1297
1298        global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1299                            v + NR_DIRTY_THRESHOLD);
1300        v += NR_VM_WRITEBACK_STAT_ITEMS;
1301
1302#ifdef CONFIG_VM_EVENT_COUNTERS
1303        all_vm_events(v);
1304        v[PGPGIN] /= 2;         /* sectors -> kbytes */
1305        v[PGPGOUT] /= 2;
1306#endif
1307        return (unsigned long *)m->private + *pos;
1308}
1309
1310static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1311{
1312        (*pos)++;
1313        if (*pos >= ARRAY_SIZE(vmstat_text))
1314                return NULL;
1315        return (unsigned long *)m->private + *pos;
1316}
1317
1318static int vmstat_show(struct seq_file *m, void *arg)
1319{
1320        unsigned long *l = arg;
1321        unsigned long off = l - (unsigned long *)m->private;
1322
1323        seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1324        return 0;
1325}
1326
1327static void vmstat_stop(struct seq_file *m, void *arg)
1328{
1329        kfree(m->private);
1330        m->private = NULL;
1331}
1332
1333static const struct seq_operations vmstat_op = {
1334        .start  = vmstat_start,
1335        .next   = vmstat_next,
1336        .stop   = vmstat_stop,
1337        .show   = vmstat_show,
1338};
1339
1340static int vmstat_open(struct inode *inode, struct file *file)
1341{
1342        return seq_open(file, &vmstat_op);
1343}
1344
1345static const struct file_operations proc_vmstat_file_operations = {
1346        .open           = vmstat_open,
1347        .read           = seq_read,
1348        .llseek         = seq_lseek,
1349        .release        = seq_release,
1350};
1351#endif /* CONFIG_PROC_FS */
1352
1353#ifdef CONFIG_SMP
1354static struct workqueue_struct *vmstat_wq;
1355static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1356int sysctl_stat_interval __read_mostly = HZ;
1357
1358#ifdef CONFIG_PROC_FS
1359static void refresh_vm_stats(struct work_struct *work)
1360{
1361        refresh_cpu_vm_stats(true);
1362}
1363
1364int vmstat_refresh(struct ctl_table *table, int write,
1365                   void __user *buffer, size_t *lenp, loff_t *ppos)
1366{
1367        long val;
1368        int err;
1369        int i;
1370
1371        /*
1372         * The regular update, every sysctl_stat_interval, may come later
1373         * than expected: leaving a significant amount in per_cpu buckets.
1374         * This is particularly misleading when checking a quantity of HUGE
1375         * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
1376         * which can equally be echo'ed to or cat'ted from (by root),
1377         * can be used to update the stats just before reading them.
1378         *
1379         * Oh, and since global_page_state() etc. are so careful to hide
1380         * transiently negative values, report an error here if any of
1381         * the stats is negative, so we know to go looking for imbalance.
1382         */
1383        err = schedule_on_each_cpu(refresh_vm_stats);
1384        if (err)
1385                return err;
1386        for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1387                val = atomic_long_read(&vm_stat[i]);
1388                if (val < 0) {
1389                        switch (i) {
1390                        case NR_ALLOC_BATCH:
1391                        case NR_PAGES_SCANNED:
1392                                /*
1393                                 * These are often seen to go negative in
1394                                 * recent kernels, but not to go permanently
1395                                 * negative.  Whilst it would be nicer not to
1396                                 * have exceptions, rooting them out would be
1397                                 * another task, of rather low priority.
1398                                 */
1399                                break;
1400                        default:
1401                                pr_warn("%s: %s %ld\n",
1402                                        __func__, vmstat_text[i], val);
1403                                err = -EINVAL;
1404                                break;
1405                        }
1406                }
1407        }
1408        if (err)
1409                return err;
1410        if (write)
1411                *ppos += *lenp;
1412        else
1413                *lenp = 0;
1414        return 0;
1415}
1416#endif /* CONFIG_PROC_FS */
1417
1418static void vmstat_update(struct work_struct *w)
1419{
1420        if (refresh_cpu_vm_stats(true)) {
1421                /*
1422                 * Counters were updated so we expect more updates
1423                 * to occur in the future. Keep on running the
1424                 * update worker thread.
1425                 */
1426                queue_delayed_work_on(smp_processor_id(), vmstat_wq,
1427                                this_cpu_ptr(&vmstat_work),
1428                                round_jiffies_relative(sysctl_stat_interval));
1429        }
1430}
1431
1432/*
1433 * Switch off vmstat processing and then fold all the remaining differentials
1434 * until the diffs stay at zero. The function is used by NOHZ and can only be
1435 * invoked when tick processing is not active.
1436 */
1437/*
1438 * Check if the diffs for a certain cpu indicate that
1439 * an update is needed.
1440 */
1441static bool need_update(int cpu)
1442{
1443        struct zone *zone;
1444
1445        for_each_populated_zone(zone) {
1446                struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1447
1448                BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1449                /*
1450                 * The fast way of checking if there are any vmstat diffs.
1451                 * This works because the diffs are byte sized items.
1452                 */
1453                if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1454                        return true;
1455
1456        }
1457        return false;
1458}
1459
1460/*
1461 * Switch off vmstat processing and then fold all the remaining differentials
1462 * until the diffs stay at zero. The function is used by NOHZ and can only be
1463 * invoked when tick processing is not active.
1464 */
1465void quiet_vmstat(void)
1466{
1467        if (system_state != SYSTEM_RUNNING)
1468                return;
1469
1470        if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1471                return;
1472
1473        if (!need_update(smp_processor_id()))
1474                return;
1475
1476        /*
1477         * Just refresh counters and do not care about the pending delayed
1478         * vmstat_update. It doesn't fire that often to matter and canceling
1479         * it would be too expensive from this path.
1480         * vmstat_shepherd will take care about that for us.
1481         */
1482        refresh_cpu_vm_stats(false);
1483}
1484
1485/*
1486 * Shepherd worker thread that checks the
1487 * differentials of processors that have their worker
1488 * threads for vm statistics updates disabled because of
1489 * inactivity.
1490 */
1491static void vmstat_shepherd(struct work_struct *w);
1492
1493static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1494
1495static void vmstat_shepherd(struct work_struct *w)
1496{
1497        int cpu;
1498
1499        get_online_cpus();
1500        /* Check processors whose vmstat worker threads have been disabled */
1501        for_each_online_cpu(cpu) {
1502                struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1503
1504                if (!delayed_work_pending(dw) && need_update(cpu))
1505                        queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
1506        }
1507        put_online_cpus();
1508
1509        schedule_delayed_work(&shepherd,
1510                round_jiffies_relative(sysctl_stat_interval));
1511}
1512
1513static void __init start_shepherd_timer(void)
1514{
1515        int cpu;
1516
1517        for_each_possible_cpu(cpu)
1518                INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1519                        vmstat_update);
1520
1521        vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
1522        schedule_delayed_work(&shepherd,
1523                round_jiffies_relative(sysctl_stat_interval));
1524}
1525
1526static void vmstat_cpu_dead(int node)
1527{
1528        int cpu;
1529
1530        get_online_cpus();
1531        for_each_online_cpu(cpu)
1532                if (cpu_to_node(cpu) == node)
1533                        goto end;
1534
1535        node_clear_state(node, N_CPU);
1536end:
1537        put_online_cpus();
1538}
1539
1540/*
1541 * Use the cpu notifier to insure that the thresholds are recalculated
1542 * when necessary.
1543 */
1544static int vmstat_cpuup_callback(struct notifier_block *nfb,
1545                unsigned long action,
1546                void *hcpu)
1547{
1548        long cpu = (long)hcpu;
1549
1550        switch (action) {
1551        case CPU_ONLINE:
1552        case CPU_ONLINE_FROZEN:
1553                refresh_zone_stat_thresholds();
1554                node_set_state(cpu_to_node(cpu), N_CPU);
1555                break;
1556        case CPU_DOWN_PREPARE:
1557        case CPU_DOWN_PREPARE_FROZEN:
1558                cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1559                break;
1560        case CPU_DOWN_FAILED:
1561        case CPU_DOWN_FAILED_FROZEN:
1562                break;
1563        case CPU_DEAD:
1564        case CPU_DEAD_FROZEN:
1565                refresh_zone_stat_thresholds();
1566                vmstat_cpu_dead(cpu_to_node(cpu));
1567                break;
1568        default:
1569                break;
1570        }
1571        return NOTIFY_OK;
1572}
1573
1574static struct notifier_block vmstat_notifier =
1575        { &vmstat_cpuup_callback, NULL, 0 };
1576#endif
1577
1578static int __init setup_vmstat(void)
1579{
1580#ifdef CONFIG_SMP
1581        cpu_notifier_register_begin();
1582        __register_cpu_notifier(&vmstat_notifier);
1583
1584        start_shepherd_timer();
1585        cpu_notifier_register_done();
1586#endif
1587#ifdef CONFIG_PROC_FS
1588        proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
1589        proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
1590        proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
1591        proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
1592#endif
1593        return 0;
1594}
1595module_init(setup_vmstat)
1596
1597#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
1598
1599/*
1600 * Return an index indicating how much of the available free memory is
1601 * unusable for an allocation of the requested size.
1602 */
1603static int unusable_free_index(unsigned int order,
1604                                struct contig_page_info *info)
1605{
1606        /* No free memory is interpreted as all free memory is unusable */
1607        if (info->free_pages == 0)
1608                return 1000;
1609
1610        /*
1611         * Index should be a value between 0 and 1. Return a value to 3
1612         * decimal places.
1613         *
1614         * 0 => no fragmentation
1615         * 1 => high fragmentation
1616         */
1617        return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1618
1619}
1620
1621static void unusable_show_print(struct seq_file *m,
1622                                        pg_data_t *pgdat, struct zone *zone)
1623{
1624        unsigned int order;
1625        int index;
1626        struct contig_page_info info;
1627
1628        seq_printf(m, "Node %d, zone %8s ",
1629                                pgdat->node_id,
1630                                zone->name);
1631        for (order = 0; order < MAX_ORDER; ++order) {
1632                fill_contig_page_info(zone, order, &info);
1633                index = unusable_free_index(order, &info);
1634                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1635        }
1636
1637        seq_putc(m, '\n');
1638}
1639
1640/*
1641 * Display unusable free space index
1642 *
1643 * The unusable free space index measures how much of the available free
1644 * memory cannot be used to satisfy an allocation of a given size and is a
1645 * value between 0 and 1. The higher the value, the more of free memory is
1646 * unusable and by implication, the worse the external fragmentation is. This
1647 * can be expressed as a percentage by multiplying by 100.
1648 */
1649static int unusable_show(struct seq_file *m, void *arg)
1650{
1651        pg_data_t *pgdat = (pg_data_t *)arg;
1652
1653        /* check memoryless node */
1654        if (!node_state(pgdat->node_id, N_MEMORY))
1655                return 0;
1656
1657        walk_zones_in_node(m, pgdat, unusable_show_print);
1658
1659        return 0;
1660}
1661
1662static const struct seq_operations unusable_op = {
1663        .start  = frag_start,
1664        .next   = frag_next,
1665        .stop   = frag_stop,
1666        .show   = unusable_show,
1667};
1668
1669static int unusable_open(struct inode *inode, struct file *file)
1670{
1671        return seq_open(file, &unusable_op);
1672}
1673
1674static const struct file_operations unusable_file_ops = {
1675        .open           = unusable_open,
1676        .read           = seq_read,
1677        .llseek         = seq_lseek,
1678        .release        = seq_release,
1679};
1680
1681static void extfrag_show_print(struct seq_file *m,
1682                                        pg_data_t *pgdat, struct zone *zone)
1683{
1684        unsigned int order;
1685        int index;
1686
1687        /* Alloc on stack as interrupts are disabled for zone walk */
1688        struct contig_page_info info;
1689
1690        seq_printf(m, "Node %d, zone %8s ",
1691                                pgdat->node_id,
1692                                zone->name);
1693        for (order = 0; order < MAX_ORDER; ++order) {
1694                fill_contig_page_info(zone, order, &info);
1695                index = __fragmentation_index(order, &info);
1696                seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1697        }
1698
1699        seq_putc(m, '\n');
1700}
1701
1702/*
1703 * Display fragmentation index for orders that allocations would fail for
1704 */
1705static int extfrag_show(struct seq_file *m, void *arg)
1706{
1707        pg_data_t *pgdat = (pg_data_t *)arg;
1708
1709        walk_zones_in_node(m, pgdat, extfrag_show_print);
1710
1711        return 0;
1712}
1713
1714static const struct seq_operations extfrag_op = {
1715        .start  = frag_start,
1716        .next   = frag_next,
1717        .stop   = frag_stop,
1718        .show   = extfrag_show,
1719};
1720
1721static int extfrag_open(struct inode *inode, struct file *file)
1722{
1723        return seq_open(file, &extfrag_op);
1724}
1725
1726static const struct file_operations extfrag_file_ops = {
1727        .open           = extfrag_open,
1728        .read           = seq_read,
1729        .llseek         = seq_lseek,
1730        .release        = seq_release,
1731};
1732
1733static int __init extfrag_debug_init(void)
1734{
1735        struct dentry *extfrag_debug_root;
1736
1737        extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1738        if (!extfrag_debug_root)
1739                return -ENOMEM;
1740
1741        if (!debugfs_create_file("unusable_index", 0444,
1742                        extfrag_debug_root, NULL, &unusable_file_ops))
1743                goto fail;
1744
1745        if (!debugfs_create_file("extfrag_index", 0444,
1746                        extfrag_debug_root, NULL, &extfrag_file_ops))
1747                goto fail;
1748
1749        return 0;
1750fail:
1751        debugfs_remove_recursive(extfrag_debug_root);
1752        return -ENOMEM;
1753}
1754
1755module_init(extfrag_debug_init);
1756#endif
1757