linux/mm/zsmalloc.c
<<
>>
Prefs
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *      page->private: points to the first component (0-order) page
  20 *      page->index (union with page->freelist): offset of the first object
  21 *              starting in this page. For the first page, this is
  22 *              always 0, so we use this field (aka freelist) to point
  23 *              to the first free object in zspage.
  24 *      page->lru: links together all component pages (except the first page)
  25 *              of a zspage
  26 *
  27 *      For _first_ page only:
  28 *
  29 *      page->private: refers to the component page after the first page
  30 *              If the page is first_page for huge object, it stores handle.
  31 *              Look at size_class->huge.
  32 *      page->freelist: points to the first free object in zspage.
  33 *              Free objects are linked together using in-place
  34 *              metadata.
  35 *      page->objects: maximum number of objects we can store in this
  36 *              zspage (class->zspage_order * PAGE_SIZE / class->size)
  37 *      page->lru: links together first pages of various zspages.
  38 *              Basically forming list of zspages in a fullness group.
  39 *      page->mapping: class index and fullness group of the zspage
  40 *      page->inuse: the number of objects that are used in this zspage
  41 *
  42 * Usage of struct page flags:
  43 *      PG_private: identifies the first component page
  44 *      PG_private2: identifies the last component page
  45 *
  46 */
  47
  48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  49
  50#include <linux/module.h>
  51#include <linux/kernel.h>
  52#include <linux/sched.h>
  53#include <linux/bitops.h>
  54#include <linux/errno.h>
  55#include <linux/highmem.h>
  56#include <linux/string.h>
  57#include <linux/slab.h>
  58#include <asm/tlbflush.h>
  59#include <asm/pgtable.h>
  60#include <linux/cpumask.h>
  61#include <linux/cpu.h>
  62#include <linux/vmalloc.h>
  63#include <linux/preempt.h>
  64#include <linux/spinlock.h>
  65#include <linux/types.h>
  66#include <linux/debugfs.h>
  67#include <linux/zsmalloc.h>
  68#include <linux/zpool.h>
  69
  70/*
  71 * This must be power of 2 and greater than of equal to sizeof(link_free).
  72 * These two conditions ensure that any 'struct link_free' itself doesn't
  73 * span more than 1 page which avoids complex case of mapping 2 pages simply
  74 * to restore link_free pointer values.
  75 */
  76#define ZS_ALIGN                8
  77
  78/*
  79 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  80 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  81 */
  82#define ZS_MAX_ZSPAGE_ORDER 2
  83#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  84
  85#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  86
  87/*
  88 * Object location (<PFN>, <obj_idx>) is encoded as
  89 * as single (unsigned long) handle value.
  90 *
  91 * Note that object index <obj_idx> is relative to system
  92 * page <PFN> it is stored in, so for each sub-page belonging
  93 * to a zspage, obj_idx starts with 0.
  94 *
  95 * This is made more complicated by various memory models and PAE.
  96 */
  97
  98#ifndef MAX_PHYSMEM_BITS
  99#ifdef CONFIG_HIGHMEM64G
 100#define MAX_PHYSMEM_BITS 36
 101#else /* !CONFIG_HIGHMEM64G */
 102/*
 103 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 104 * be PAGE_SHIFT
 105 */
 106#define MAX_PHYSMEM_BITS BITS_PER_LONG
 107#endif
 108#endif
 109#define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
 110
 111/*
 112 * Memory for allocating for handle keeps object position by
 113 * encoding <page, obj_idx> and the encoded value has a room
 114 * in least bit(ie, look at obj_to_location).
 115 * We use the bit to synchronize between object access by
 116 * user and migration.
 117 */
 118#define HANDLE_PIN_BIT  0
 119
 120/*
 121 * Head in allocated object should have OBJ_ALLOCATED_TAG
 122 * to identify the object was allocated or not.
 123 * It's okay to add the status bit in the least bit because
 124 * header keeps handle which is 4byte-aligned address so we
 125 * have room for two bit at least.
 126 */
 127#define OBJ_ALLOCATED_TAG 1
 128#define OBJ_TAG_BITS 1
 129#define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 130#define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 131
 132#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 133/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 134#define ZS_MIN_ALLOC_SIZE \
 135        MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 136/* each chunk includes extra space to keep handle */
 137#define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
 138
 139/*
 140 * On systems with 4K page size, this gives 255 size classes! There is a
 141 * trader-off here:
 142 *  - Large number of size classes is potentially wasteful as free page are
 143 *    spread across these classes
 144 *  - Small number of size classes causes large internal fragmentation
 145 *  - Probably its better to use specific size classes (empirically
 146 *    determined). NOTE: all those class sizes must be set as multiple of
 147 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 148 *
 149 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 150 *  (reason above)
 151 */
 152#define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> 8)
 153
 154/*
 155 * We do not maintain any list for completely empty or full pages
 156 */
 157enum fullness_group {
 158        ZS_ALMOST_FULL,
 159        ZS_ALMOST_EMPTY,
 160        _ZS_NR_FULLNESS_GROUPS,
 161
 162        ZS_EMPTY,
 163        ZS_FULL
 164};
 165
 166enum zs_stat_type {
 167        OBJ_ALLOCATED,
 168        OBJ_USED,
 169        CLASS_ALMOST_FULL,
 170        CLASS_ALMOST_EMPTY,
 171};
 172
 173#ifdef CONFIG_ZSMALLOC_STAT
 174#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
 175#else
 176#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
 177#endif
 178
 179struct zs_size_stat {
 180        unsigned long objs[NR_ZS_STAT_TYPE];
 181};
 182
 183#ifdef CONFIG_ZSMALLOC_STAT
 184static struct dentry *zs_stat_root;
 185#endif
 186
 187/*
 188 * number of size_classes
 189 */
 190static int zs_size_classes;
 191
 192/*
 193 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 194 *      n <= N / f, where
 195 * n = number of allocated objects
 196 * N = total number of objects zspage can store
 197 * f = fullness_threshold_frac
 198 *
 199 * Similarly, we assign zspage to:
 200 *      ZS_ALMOST_FULL  when n > N / f
 201 *      ZS_EMPTY        when n == 0
 202 *      ZS_FULL         when n == N
 203 *
 204 * (see: fix_fullness_group())
 205 */
 206static const int fullness_threshold_frac = 4;
 207
 208struct size_class {
 209        spinlock_t lock;
 210        struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
 211        /*
 212         * Size of objects stored in this class. Must be multiple
 213         * of ZS_ALIGN.
 214         */
 215        int size;
 216        unsigned int index;
 217
 218        struct zs_size_stat stats;
 219
 220        /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 221        int pages_per_zspage;
 222        /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 223        bool huge;
 224};
 225
 226/*
 227 * Placed within free objects to form a singly linked list.
 228 * For every zspage, first_page->freelist gives head of this list.
 229 *
 230 * This must be power of 2 and less than or equal to ZS_ALIGN
 231 */
 232struct link_free {
 233        union {
 234                /*
 235                 * Position of next free chunk (encodes <PFN, obj_idx>)
 236                 * It's valid for non-allocated object
 237                 */
 238                void *next;
 239                /*
 240                 * Handle of allocated object.
 241                 */
 242                unsigned long handle;
 243        };
 244};
 245
 246struct zs_pool {
 247        const char *name;
 248
 249        struct size_class **size_class;
 250        struct kmem_cache *handle_cachep;
 251
 252        atomic_long_t pages_allocated;
 253
 254        struct zs_pool_stats stats;
 255
 256        /* Compact classes */
 257        struct shrinker shrinker;
 258        /*
 259         * To signify that register_shrinker() was successful
 260         * and unregister_shrinker() will not Oops.
 261         */
 262        bool shrinker_enabled;
 263#ifdef CONFIG_ZSMALLOC_STAT
 264        struct dentry *stat_dentry;
 265#endif
 266};
 267
 268/*
 269 * A zspage's class index and fullness group
 270 * are encoded in its (first)page->mapping
 271 */
 272#define CLASS_IDX_BITS  28
 273#define FULLNESS_BITS   4
 274#define CLASS_IDX_MASK  ((1 << CLASS_IDX_BITS) - 1)
 275#define FULLNESS_MASK   ((1 << FULLNESS_BITS) - 1)
 276
 277struct mapping_area {
 278#ifdef CONFIG_PGTABLE_MAPPING
 279        struct vm_struct *vm; /* vm area for mapping object that span pages */
 280#else
 281        char *vm_buf; /* copy buffer for objects that span pages */
 282#endif
 283        char *vm_addr; /* address of kmap_atomic()'ed pages */
 284        enum zs_mapmode vm_mm; /* mapping mode */
 285};
 286
 287static int create_handle_cache(struct zs_pool *pool)
 288{
 289        pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 290                                        0, 0, NULL);
 291        return pool->handle_cachep ? 0 : 1;
 292}
 293
 294static void destroy_handle_cache(struct zs_pool *pool)
 295{
 296        kmem_cache_destroy(pool->handle_cachep);
 297}
 298
 299static unsigned long alloc_handle(struct zs_pool *pool, gfp_t gfp)
 300{
 301        return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 302                        gfp & ~__GFP_HIGHMEM);
 303}
 304
 305static void free_handle(struct zs_pool *pool, unsigned long handle)
 306{
 307        kmem_cache_free(pool->handle_cachep, (void *)handle);
 308}
 309
 310static void record_obj(unsigned long handle, unsigned long obj)
 311{
 312        /*
 313         * lsb of @obj represents handle lock while other bits
 314         * represent object value the handle is pointing so
 315         * updating shouldn't do store tearing.
 316         */
 317        WRITE_ONCE(*(unsigned long *)handle, obj);
 318}
 319
 320/* zpool driver */
 321
 322#ifdef CONFIG_ZPOOL
 323
 324static void *zs_zpool_create(const char *name, gfp_t gfp,
 325                             const struct zpool_ops *zpool_ops,
 326                             struct zpool *zpool)
 327{
 328        /*
 329         * Ignore global gfp flags: zs_malloc() may be invoked from
 330         * different contexts and its caller must provide a valid
 331         * gfp mask.
 332         */
 333        return zs_create_pool(name);
 334}
 335
 336static void zs_zpool_destroy(void *pool)
 337{
 338        zs_destroy_pool(pool);
 339}
 340
 341static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 342                        unsigned long *handle)
 343{
 344        *handle = zs_malloc(pool, size, gfp);
 345        return *handle ? 0 : -1;
 346}
 347static void zs_zpool_free(void *pool, unsigned long handle)
 348{
 349        zs_free(pool, handle);
 350}
 351
 352static int zs_zpool_shrink(void *pool, unsigned int pages,
 353                        unsigned int *reclaimed)
 354{
 355        return -EINVAL;
 356}
 357
 358static void *zs_zpool_map(void *pool, unsigned long handle,
 359                        enum zpool_mapmode mm)
 360{
 361        enum zs_mapmode zs_mm;
 362
 363        switch (mm) {
 364        case ZPOOL_MM_RO:
 365                zs_mm = ZS_MM_RO;
 366                break;
 367        case ZPOOL_MM_WO:
 368                zs_mm = ZS_MM_WO;
 369                break;
 370        case ZPOOL_MM_RW: /* fallthru */
 371        default:
 372                zs_mm = ZS_MM_RW;
 373                break;
 374        }
 375
 376        return zs_map_object(pool, handle, zs_mm);
 377}
 378static void zs_zpool_unmap(void *pool, unsigned long handle)
 379{
 380        zs_unmap_object(pool, handle);
 381}
 382
 383static u64 zs_zpool_total_size(void *pool)
 384{
 385        return zs_get_total_pages(pool) << PAGE_SHIFT;
 386}
 387
 388static struct zpool_driver zs_zpool_driver = {
 389        .type =         "zsmalloc",
 390        .owner =        THIS_MODULE,
 391        .create =       zs_zpool_create,
 392        .destroy =      zs_zpool_destroy,
 393        .malloc =       zs_zpool_malloc,
 394        .free =         zs_zpool_free,
 395        .shrink =       zs_zpool_shrink,
 396        .map =          zs_zpool_map,
 397        .unmap =        zs_zpool_unmap,
 398        .total_size =   zs_zpool_total_size,
 399};
 400
 401MODULE_ALIAS("zpool-zsmalloc");
 402#endif /* CONFIG_ZPOOL */
 403
 404static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
 405{
 406        return pages_per_zspage * PAGE_SIZE / size;
 407}
 408
 409/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 410static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 411
 412static int is_first_page(struct page *page)
 413{
 414        return PagePrivate(page);
 415}
 416
 417static int is_last_page(struct page *page)
 418{
 419        return PagePrivate2(page);
 420}
 421
 422static void get_zspage_mapping(struct page *first_page,
 423                                unsigned int *class_idx,
 424                                enum fullness_group *fullness)
 425{
 426        unsigned long m;
 427        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 428
 429        m = (unsigned long)first_page->mapping;
 430        *fullness = m & FULLNESS_MASK;
 431        *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
 432}
 433
 434static void set_zspage_mapping(struct page *first_page,
 435                                unsigned int class_idx,
 436                                enum fullness_group fullness)
 437{
 438        unsigned long m;
 439        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 440
 441        m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
 442                        (fullness & FULLNESS_MASK);
 443        first_page->mapping = (struct address_space *)m;
 444}
 445
 446/*
 447 * zsmalloc divides the pool into various size classes where each
 448 * class maintains a list of zspages where each zspage is divided
 449 * into equal sized chunks. Each allocation falls into one of these
 450 * classes depending on its size. This function returns index of the
 451 * size class which has chunk size big enough to hold the give size.
 452 */
 453static int get_size_class_index(int size)
 454{
 455        int idx = 0;
 456
 457        if (likely(size > ZS_MIN_ALLOC_SIZE))
 458                idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 459                                ZS_SIZE_CLASS_DELTA);
 460
 461        return min(zs_size_classes - 1, idx);
 462}
 463
 464static inline void zs_stat_inc(struct size_class *class,
 465                                enum zs_stat_type type, unsigned long cnt)
 466{
 467        if (type < NR_ZS_STAT_TYPE)
 468                class->stats.objs[type] += cnt;
 469}
 470
 471static inline void zs_stat_dec(struct size_class *class,
 472                                enum zs_stat_type type, unsigned long cnt)
 473{
 474        if (type < NR_ZS_STAT_TYPE)
 475                class->stats.objs[type] -= cnt;
 476}
 477
 478static inline unsigned long zs_stat_get(struct size_class *class,
 479                                enum zs_stat_type type)
 480{
 481        if (type < NR_ZS_STAT_TYPE)
 482                return class->stats.objs[type];
 483        return 0;
 484}
 485
 486#ifdef CONFIG_ZSMALLOC_STAT
 487
 488static void __init zs_stat_init(void)
 489{
 490        if (!debugfs_initialized()) {
 491                pr_warn("debugfs not available, stat dir not created\n");
 492                return;
 493        }
 494
 495        zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 496        if (!zs_stat_root)
 497                pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
 498}
 499
 500static void __exit zs_stat_exit(void)
 501{
 502        debugfs_remove_recursive(zs_stat_root);
 503}
 504
 505static unsigned long zs_can_compact(struct size_class *class);
 506
 507static int zs_stats_size_show(struct seq_file *s, void *v)
 508{
 509        int i;
 510        struct zs_pool *pool = s->private;
 511        struct size_class *class;
 512        int objs_per_zspage;
 513        unsigned long class_almost_full, class_almost_empty;
 514        unsigned long obj_allocated, obj_used, pages_used, freeable;
 515        unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 516        unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 517        unsigned long total_freeable = 0;
 518
 519        seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 520                        "class", "size", "almost_full", "almost_empty",
 521                        "obj_allocated", "obj_used", "pages_used",
 522                        "pages_per_zspage", "freeable");
 523
 524        for (i = 0; i < zs_size_classes; i++) {
 525                class = pool->size_class[i];
 526
 527                if (class->index != i)
 528                        continue;
 529
 530                spin_lock(&class->lock);
 531                class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 532                class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 533                obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 534                obj_used = zs_stat_get(class, OBJ_USED);
 535                freeable = zs_can_compact(class);
 536                spin_unlock(&class->lock);
 537
 538                objs_per_zspage = get_maxobj_per_zspage(class->size,
 539                                class->pages_per_zspage);
 540                pages_used = obj_allocated / objs_per_zspage *
 541                                class->pages_per_zspage;
 542
 543                seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 544                                " %10lu %10lu %16d %8lu\n",
 545                        i, class->size, class_almost_full, class_almost_empty,
 546                        obj_allocated, obj_used, pages_used,
 547                        class->pages_per_zspage, freeable);
 548
 549                total_class_almost_full += class_almost_full;
 550                total_class_almost_empty += class_almost_empty;
 551                total_objs += obj_allocated;
 552                total_used_objs += obj_used;
 553                total_pages += pages_used;
 554                total_freeable += freeable;
 555        }
 556
 557        seq_puts(s, "\n");
 558        seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 559                        "Total", "", total_class_almost_full,
 560                        total_class_almost_empty, total_objs,
 561                        total_used_objs, total_pages, "", total_freeable);
 562
 563        return 0;
 564}
 565
 566static int zs_stats_size_open(struct inode *inode, struct file *file)
 567{
 568        return single_open(file, zs_stats_size_show, inode->i_private);
 569}
 570
 571static const struct file_operations zs_stat_size_ops = {
 572        .open           = zs_stats_size_open,
 573        .read           = seq_read,
 574        .llseek         = seq_lseek,
 575        .release        = single_release,
 576};
 577
 578static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 579{
 580        struct dentry *entry;
 581
 582        if (!zs_stat_root) {
 583                pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 584                return;
 585        }
 586
 587        entry = debugfs_create_dir(name, zs_stat_root);
 588        if (!entry) {
 589                pr_warn("debugfs dir <%s> creation failed\n", name);
 590                return;
 591        }
 592        pool->stat_dentry = entry;
 593
 594        entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
 595                        pool->stat_dentry, pool, &zs_stat_size_ops);
 596        if (!entry) {
 597                pr_warn("%s: debugfs file entry <%s> creation failed\n",
 598                                name, "classes");
 599                debugfs_remove_recursive(pool->stat_dentry);
 600                pool->stat_dentry = NULL;
 601        }
 602}
 603
 604static void zs_pool_stat_destroy(struct zs_pool *pool)
 605{
 606        debugfs_remove_recursive(pool->stat_dentry);
 607}
 608
 609#else /* CONFIG_ZSMALLOC_STAT */
 610static void __init zs_stat_init(void)
 611{
 612}
 613
 614static void __exit zs_stat_exit(void)
 615{
 616}
 617
 618static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 619{
 620}
 621
 622static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 623{
 624}
 625#endif
 626
 627/*
 628 * For each size class, zspages are divided into different groups
 629 * depending on how "full" they are. This was done so that we could
 630 * easily find empty or nearly empty zspages when we try to shrink
 631 * the pool (not yet implemented). This function returns fullness
 632 * status of the given page.
 633 */
 634static enum fullness_group get_fullness_group(struct page *first_page)
 635{
 636        int inuse, max_objects;
 637        enum fullness_group fg;
 638
 639        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 640
 641        inuse = first_page->inuse;
 642        max_objects = first_page->objects;
 643
 644        if (inuse == 0)
 645                fg = ZS_EMPTY;
 646        else if (inuse == max_objects)
 647                fg = ZS_FULL;
 648        else if (inuse <= 3 * max_objects / fullness_threshold_frac)
 649                fg = ZS_ALMOST_EMPTY;
 650        else
 651                fg = ZS_ALMOST_FULL;
 652
 653        return fg;
 654}
 655
 656/*
 657 * Each size class maintains various freelists and zspages are assigned
 658 * to one of these freelists based on the number of live objects they
 659 * have. This functions inserts the given zspage into the freelist
 660 * identified by <class, fullness_group>.
 661 */
 662static void insert_zspage(struct size_class *class,
 663                                enum fullness_group fullness,
 664                                struct page *first_page)
 665{
 666        struct page **head;
 667
 668        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 669
 670        if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 671                return;
 672
 673        zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
 674                        CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
 675
 676        head = &class->fullness_list[fullness];
 677        if (!*head) {
 678                *head = first_page;
 679                return;
 680        }
 681
 682        /*
 683         * We want to see more ZS_FULL pages and less almost
 684         * empty/full. Put pages with higher ->inuse first.
 685         */
 686        list_add_tail(&first_page->lru, &(*head)->lru);
 687        if (first_page->inuse >= (*head)->inuse)
 688                *head = first_page;
 689}
 690
 691/*
 692 * This function removes the given zspage from the freelist identified
 693 * by <class, fullness_group>.
 694 */
 695static void remove_zspage(struct size_class *class,
 696                                enum fullness_group fullness,
 697                                struct page *first_page)
 698{
 699        struct page **head;
 700
 701        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 702
 703        if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 704                return;
 705
 706        head = &class->fullness_list[fullness];
 707        VM_BUG_ON_PAGE(!*head, first_page);
 708        if (list_empty(&(*head)->lru))
 709                *head = NULL;
 710        else if (*head == first_page)
 711                *head = (struct page *)list_entry((*head)->lru.next,
 712                                        struct page, lru);
 713
 714        list_del_init(&first_page->lru);
 715        zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
 716                        CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
 717}
 718
 719/*
 720 * Each size class maintains zspages in different fullness groups depending
 721 * on the number of live objects they contain. When allocating or freeing
 722 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 723 * to ALMOST_EMPTY when freeing an object. This function checks if such
 724 * a status change has occurred for the given page and accordingly moves the
 725 * page from the freelist of the old fullness group to that of the new
 726 * fullness group.
 727 */
 728static enum fullness_group fix_fullness_group(struct size_class *class,
 729                                                struct page *first_page)
 730{
 731        int class_idx;
 732        enum fullness_group currfg, newfg;
 733
 734        get_zspage_mapping(first_page, &class_idx, &currfg);
 735        newfg = get_fullness_group(first_page);
 736        if (newfg == currfg)
 737                goto out;
 738
 739        remove_zspage(class, currfg, first_page);
 740        insert_zspage(class, newfg, first_page);
 741        set_zspage_mapping(first_page, class_idx, newfg);
 742
 743out:
 744        return newfg;
 745}
 746
 747/*
 748 * We have to decide on how many pages to link together
 749 * to form a zspage for each size class. This is important
 750 * to reduce wastage due to unusable space left at end of
 751 * each zspage which is given as:
 752 *     wastage = Zp % class_size
 753 *     usage = Zp - wastage
 754 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 755 *
 756 * For example, for size class of 3/8 * PAGE_SIZE, we should
 757 * link together 3 PAGE_SIZE sized pages to form a zspage
 758 * since then we can perfectly fit in 8 such objects.
 759 */
 760static int get_pages_per_zspage(int class_size)
 761{
 762        int i, max_usedpc = 0;
 763        /* zspage order which gives maximum used size per KB */
 764        int max_usedpc_order = 1;
 765
 766        for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 767                int zspage_size;
 768                int waste, usedpc;
 769
 770                zspage_size = i * PAGE_SIZE;
 771                waste = zspage_size % class_size;
 772                usedpc = (zspage_size - waste) * 100 / zspage_size;
 773
 774                if (usedpc > max_usedpc) {
 775                        max_usedpc = usedpc;
 776                        max_usedpc_order = i;
 777                }
 778        }
 779
 780        return max_usedpc_order;
 781}
 782
 783/*
 784 * A single 'zspage' is composed of many system pages which are
 785 * linked together using fields in struct page. This function finds
 786 * the first/head page, given any component page of a zspage.
 787 */
 788static struct page *get_first_page(struct page *page)
 789{
 790        if (is_first_page(page))
 791                return page;
 792        else
 793                return (struct page *)page_private(page);
 794}
 795
 796static struct page *get_next_page(struct page *page)
 797{
 798        struct page *next;
 799
 800        if (is_last_page(page))
 801                next = NULL;
 802        else if (is_first_page(page))
 803                next = (struct page *)page_private(page);
 804        else
 805                next = list_entry(page->lru.next, struct page, lru);
 806
 807        return next;
 808}
 809
 810/*
 811 * Encode <page, obj_idx> as a single handle value.
 812 * We use the least bit of handle for tagging.
 813 */
 814static void *location_to_obj(struct page *page, unsigned long obj_idx)
 815{
 816        unsigned long obj;
 817
 818        if (!page) {
 819                VM_BUG_ON(obj_idx);
 820                return NULL;
 821        }
 822
 823        obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 824        obj |= ((obj_idx) & OBJ_INDEX_MASK);
 825        obj <<= OBJ_TAG_BITS;
 826
 827        return (void *)obj;
 828}
 829
 830/*
 831 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 832 * decoded obj_idx back to its original value since it was adjusted in
 833 * location_to_obj().
 834 */
 835static void obj_to_location(unsigned long obj, struct page **page,
 836                                unsigned long *obj_idx)
 837{
 838        obj >>= OBJ_TAG_BITS;
 839        *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 840        *obj_idx = (obj & OBJ_INDEX_MASK);
 841}
 842
 843static unsigned long handle_to_obj(unsigned long handle)
 844{
 845        return *(unsigned long *)handle;
 846}
 847
 848static unsigned long obj_to_head(struct size_class *class, struct page *page,
 849                        void *obj)
 850{
 851        if (class->huge) {
 852                VM_BUG_ON_PAGE(!is_first_page(page), page);
 853                return page_private(page);
 854        } else
 855                return *(unsigned long *)obj;
 856}
 857
 858static unsigned long obj_idx_to_offset(struct page *page,
 859                                unsigned long obj_idx, int class_size)
 860{
 861        unsigned long off = 0;
 862
 863        if (!is_first_page(page))
 864                off = page->index;
 865
 866        return off + obj_idx * class_size;
 867}
 868
 869static inline int trypin_tag(unsigned long handle)
 870{
 871        unsigned long *ptr = (unsigned long *)handle;
 872
 873        return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
 874}
 875
 876static void pin_tag(unsigned long handle)
 877{
 878        while (!trypin_tag(handle));
 879}
 880
 881static void unpin_tag(unsigned long handle)
 882{
 883        unsigned long *ptr = (unsigned long *)handle;
 884
 885        clear_bit_unlock(HANDLE_PIN_BIT, ptr);
 886}
 887
 888static void reset_page(struct page *page)
 889{
 890        clear_bit(PG_private, &page->flags);
 891        clear_bit(PG_private_2, &page->flags);
 892        set_page_private(page, 0);
 893        page->mapping = NULL;
 894        page->freelist = NULL;
 895        page_mapcount_reset(page);
 896}
 897
 898static void free_zspage(struct page *first_page)
 899{
 900        struct page *nextp, *tmp, *head_extra;
 901
 902        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 903        VM_BUG_ON_PAGE(first_page->inuse, first_page);
 904
 905        head_extra = (struct page *)page_private(first_page);
 906
 907        reset_page(first_page);
 908        __free_page(first_page);
 909
 910        /* zspage with only 1 system page */
 911        if (!head_extra)
 912                return;
 913
 914        list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
 915                list_del(&nextp->lru);
 916                reset_page(nextp);
 917                __free_page(nextp);
 918        }
 919        reset_page(head_extra);
 920        __free_page(head_extra);
 921}
 922
 923/* Initialize a newly allocated zspage */
 924static void init_zspage(struct size_class *class, struct page *first_page)
 925{
 926        unsigned long off = 0;
 927        struct page *page = first_page;
 928
 929        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 930
 931        while (page) {
 932                struct page *next_page;
 933                struct link_free *link;
 934                unsigned int i = 1;
 935                void *vaddr;
 936
 937                /*
 938                 * page->index stores offset of first object starting
 939                 * in the page. For the first page, this is always 0,
 940                 * so we use first_page->index (aka ->freelist) to store
 941                 * head of corresponding zspage's freelist.
 942                 */
 943                if (page != first_page)
 944                        page->index = off;
 945
 946                vaddr = kmap_atomic(page);
 947                link = (struct link_free *)vaddr + off / sizeof(*link);
 948
 949                while ((off += class->size) < PAGE_SIZE) {
 950                        link->next = location_to_obj(page, i++);
 951                        link += class->size / sizeof(*link);
 952                }
 953
 954                /*
 955                 * We now come to the last (full or partial) object on this
 956                 * page, which must point to the first object on the next
 957                 * page (if present)
 958                 */
 959                next_page = get_next_page(page);
 960                link->next = location_to_obj(next_page, 0);
 961                kunmap_atomic(vaddr);
 962                page = next_page;
 963                off %= PAGE_SIZE;
 964        }
 965}
 966
 967/*
 968 * Allocate a zspage for the given size class
 969 */
 970static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
 971{
 972        int i, error;
 973        struct page *first_page = NULL, *uninitialized_var(prev_page);
 974
 975        /*
 976         * Allocate individual pages and link them together as:
 977         * 1. first page->private = first sub-page
 978         * 2. all sub-pages are linked together using page->lru
 979         * 3. each sub-page is linked to the first page using page->private
 980         *
 981         * For each size class, First/Head pages are linked together using
 982         * page->lru. Also, we set PG_private to identify the first page
 983         * (i.e. no other sub-page has this flag set) and PG_private_2 to
 984         * identify the last page.
 985         */
 986        error = -ENOMEM;
 987        for (i = 0; i < class->pages_per_zspage; i++) {
 988                struct page *page;
 989
 990                page = alloc_page(flags);
 991                if (!page)
 992                        goto cleanup;
 993
 994                INIT_LIST_HEAD(&page->lru);
 995                if (i == 0) {   /* first page */
 996                        SetPagePrivate(page);
 997                        set_page_private(page, 0);
 998                        first_page = page;
 999                        first_page->inuse = 0;
1000                }
1001                if (i == 1)
1002                        set_page_private(first_page, (unsigned long)page);
1003                if (i >= 1)
1004                        set_page_private(page, (unsigned long)first_page);
1005                if (i >= 2)
1006                        list_add(&page->lru, &prev_page->lru);
1007                if (i == class->pages_per_zspage - 1)   /* last page */
1008                        SetPagePrivate2(page);
1009                prev_page = page;
1010        }
1011
1012        init_zspage(class, first_page);
1013
1014        first_page->freelist = location_to_obj(first_page, 0);
1015        /* Maximum number of objects we can store in this zspage */
1016        first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
1017
1018        error = 0; /* Success */
1019
1020cleanup:
1021        if (unlikely(error) && first_page) {
1022                free_zspage(first_page);
1023                first_page = NULL;
1024        }
1025
1026        return first_page;
1027}
1028
1029static struct page *find_get_zspage(struct size_class *class)
1030{
1031        int i;
1032        struct page *page;
1033
1034        for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1035                page = class->fullness_list[i];
1036                if (page)
1037                        break;
1038        }
1039
1040        return page;
1041}
1042
1043#ifdef CONFIG_PGTABLE_MAPPING
1044static inline int __zs_cpu_up(struct mapping_area *area)
1045{
1046        /*
1047         * Make sure we don't leak memory if a cpu UP notification
1048         * and zs_init() race and both call zs_cpu_up() on the same cpu
1049         */
1050        if (area->vm)
1051                return 0;
1052        area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1053        if (!area->vm)
1054                return -ENOMEM;
1055        return 0;
1056}
1057
1058static inline void __zs_cpu_down(struct mapping_area *area)
1059{
1060        if (area->vm)
1061                free_vm_area(area->vm);
1062        area->vm = NULL;
1063}
1064
1065static inline void *__zs_map_object(struct mapping_area *area,
1066                                struct page *pages[2], int off, int size)
1067{
1068        BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1069        area->vm_addr = area->vm->addr;
1070        return area->vm_addr + off;
1071}
1072
1073static inline void __zs_unmap_object(struct mapping_area *area,
1074                                struct page *pages[2], int off, int size)
1075{
1076        unsigned long addr = (unsigned long)area->vm_addr;
1077
1078        unmap_kernel_range(addr, PAGE_SIZE * 2);
1079}
1080
1081#else /* CONFIG_PGTABLE_MAPPING */
1082
1083static inline int __zs_cpu_up(struct mapping_area *area)
1084{
1085        /*
1086         * Make sure we don't leak memory if a cpu UP notification
1087         * and zs_init() race and both call zs_cpu_up() on the same cpu
1088         */
1089        if (area->vm_buf)
1090                return 0;
1091        area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1092        if (!area->vm_buf)
1093                return -ENOMEM;
1094        return 0;
1095}
1096
1097static inline void __zs_cpu_down(struct mapping_area *area)
1098{
1099        kfree(area->vm_buf);
1100        area->vm_buf = NULL;
1101}
1102
1103static void *__zs_map_object(struct mapping_area *area,
1104                        struct page *pages[2], int off, int size)
1105{
1106        int sizes[2];
1107        void *addr;
1108        char *buf = area->vm_buf;
1109
1110        /* disable page faults to match kmap_atomic() return conditions */
1111        pagefault_disable();
1112
1113        /* no read fastpath */
1114        if (area->vm_mm == ZS_MM_WO)
1115                goto out;
1116
1117        sizes[0] = PAGE_SIZE - off;
1118        sizes[1] = size - sizes[0];
1119
1120        /* copy object to per-cpu buffer */
1121        addr = kmap_atomic(pages[0]);
1122        memcpy(buf, addr + off, sizes[0]);
1123        kunmap_atomic(addr);
1124        addr = kmap_atomic(pages[1]);
1125        memcpy(buf + sizes[0], addr, sizes[1]);
1126        kunmap_atomic(addr);
1127out:
1128        return area->vm_buf;
1129}
1130
1131static void __zs_unmap_object(struct mapping_area *area,
1132                        struct page *pages[2], int off, int size)
1133{
1134        int sizes[2];
1135        void *addr;
1136        char *buf;
1137
1138        /* no write fastpath */
1139        if (area->vm_mm == ZS_MM_RO)
1140                goto out;
1141
1142        buf = area->vm_buf;
1143        buf = buf + ZS_HANDLE_SIZE;
1144        size -= ZS_HANDLE_SIZE;
1145        off += ZS_HANDLE_SIZE;
1146
1147        sizes[0] = PAGE_SIZE - off;
1148        sizes[1] = size - sizes[0];
1149
1150        /* copy per-cpu buffer to object */
1151        addr = kmap_atomic(pages[0]);
1152        memcpy(addr + off, buf, sizes[0]);
1153        kunmap_atomic(addr);
1154        addr = kmap_atomic(pages[1]);
1155        memcpy(addr, buf + sizes[0], sizes[1]);
1156        kunmap_atomic(addr);
1157
1158out:
1159        /* enable page faults to match kunmap_atomic() return conditions */
1160        pagefault_enable();
1161}
1162
1163#endif /* CONFIG_PGTABLE_MAPPING */
1164
1165static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1166                                void *pcpu)
1167{
1168        int ret, cpu = (long)pcpu;
1169        struct mapping_area *area;
1170
1171        switch (action) {
1172        case CPU_UP_PREPARE:
1173                area = &per_cpu(zs_map_area, cpu);
1174                ret = __zs_cpu_up(area);
1175                if (ret)
1176                        return notifier_from_errno(ret);
1177                break;
1178        case CPU_DEAD:
1179        case CPU_UP_CANCELED:
1180                area = &per_cpu(zs_map_area, cpu);
1181                __zs_cpu_down(area);
1182                break;
1183        }
1184
1185        return NOTIFY_OK;
1186}
1187
1188static struct notifier_block zs_cpu_nb = {
1189        .notifier_call = zs_cpu_notifier
1190};
1191
1192static int zs_register_cpu_notifier(void)
1193{
1194        int cpu, uninitialized_var(ret);
1195
1196        cpu_notifier_register_begin();
1197
1198        __register_cpu_notifier(&zs_cpu_nb);
1199        for_each_online_cpu(cpu) {
1200                ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1201                if (notifier_to_errno(ret))
1202                        break;
1203        }
1204
1205        cpu_notifier_register_done();
1206        return notifier_to_errno(ret);
1207}
1208
1209static void zs_unregister_cpu_notifier(void)
1210{
1211        int cpu;
1212
1213        cpu_notifier_register_begin();
1214
1215        for_each_online_cpu(cpu)
1216                zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1217        __unregister_cpu_notifier(&zs_cpu_nb);
1218
1219        cpu_notifier_register_done();
1220}
1221
1222static void init_zs_size_classes(void)
1223{
1224        int nr;
1225
1226        nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1227        if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1228                nr += 1;
1229
1230        zs_size_classes = nr;
1231}
1232
1233static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1234{
1235        if (prev->pages_per_zspage != pages_per_zspage)
1236                return false;
1237
1238        if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1239                != get_maxobj_per_zspage(size, pages_per_zspage))
1240                return false;
1241
1242        return true;
1243}
1244
1245static bool zspage_full(struct page *first_page)
1246{
1247        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
1248
1249        return first_page->inuse == first_page->objects;
1250}
1251
1252unsigned long zs_get_total_pages(struct zs_pool *pool)
1253{
1254        return atomic_long_read(&pool->pages_allocated);
1255}
1256EXPORT_SYMBOL_GPL(zs_get_total_pages);
1257
1258/**
1259 * zs_map_object - get address of allocated object from handle.
1260 * @pool: pool from which the object was allocated
1261 * @handle: handle returned from zs_malloc
1262 *
1263 * Before using an object allocated from zs_malloc, it must be mapped using
1264 * this function. When done with the object, it must be unmapped using
1265 * zs_unmap_object.
1266 *
1267 * Only one object can be mapped per cpu at a time. There is no protection
1268 * against nested mappings.
1269 *
1270 * This function returns with preemption and page faults disabled.
1271 */
1272void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1273                        enum zs_mapmode mm)
1274{
1275        struct page *page;
1276        unsigned long obj, obj_idx, off;
1277
1278        unsigned int class_idx;
1279        enum fullness_group fg;
1280        struct size_class *class;
1281        struct mapping_area *area;
1282        struct page *pages[2];
1283        void *ret;
1284
1285        /*
1286         * Because we use per-cpu mapping areas shared among the
1287         * pools/users, we can't allow mapping in interrupt context
1288         * because it can corrupt another users mappings.
1289         */
1290        WARN_ON_ONCE(in_interrupt());
1291
1292        /* From now on, migration cannot move the object */
1293        pin_tag(handle);
1294
1295        obj = handle_to_obj(handle);
1296        obj_to_location(obj, &page, &obj_idx);
1297        get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1298        class = pool->size_class[class_idx];
1299        off = obj_idx_to_offset(page, obj_idx, class->size);
1300
1301        area = &get_cpu_var(zs_map_area);
1302        area->vm_mm = mm;
1303        if (off + class->size <= PAGE_SIZE) {
1304                /* this object is contained entirely within a page */
1305                area->vm_addr = kmap_atomic(page);
1306                ret = area->vm_addr + off;
1307                goto out;
1308        }
1309
1310        /* this object spans two pages */
1311        pages[0] = page;
1312        pages[1] = get_next_page(page);
1313        BUG_ON(!pages[1]);
1314
1315        ret = __zs_map_object(area, pages, off, class->size);
1316out:
1317        if (!class->huge)
1318                ret += ZS_HANDLE_SIZE;
1319
1320        return ret;
1321}
1322EXPORT_SYMBOL_GPL(zs_map_object);
1323
1324void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1325{
1326        struct page *page;
1327        unsigned long obj, obj_idx, off;
1328
1329        unsigned int class_idx;
1330        enum fullness_group fg;
1331        struct size_class *class;
1332        struct mapping_area *area;
1333
1334        obj = handle_to_obj(handle);
1335        obj_to_location(obj, &page, &obj_idx);
1336        get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1337        class = pool->size_class[class_idx];
1338        off = obj_idx_to_offset(page, obj_idx, class->size);
1339
1340        area = this_cpu_ptr(&zs_map_area);
1341        if (off + class->size <= PAGE_SIZE)
1342                kunmap_atomic(area->vm_addr);
1343        else {
1344                struct page *pages[2];
1345
1346                pages[0] = page;
1347                pages[1] = get_next_page(page);
1348                BUG_ON(!pages[1]);
1349
1350                __zs_unmap_object(area, pages, off, class->size);
1351        }
1352        put_cpu_var(zs_map_area);
1353        unpin_tag(handle);
1354}
1355EXPORT_SYMBOL_GPL(zs_unmap_object);
1356
1357static unsigned long obj_malloc(struct size_class *class,
1358                                struct page *first_page, unsigned long handle)
1359{
1360        unsigned long obj;
1361        struct link_free *link;
1362
1363        struct page *m_page;
1364        unsigned long m_objidx, m_offset;
1365        void *vaddr;
1366
1367        handle |= OBJ_ALLOCATED_TAG;
1368        obj = (unsigned long)first_page->freelist;
1369        obj_to_location(obj, &m_page, &m_objidx);
1370        m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1371
1372        vaddr = kmap_atomic(m_page);
1373        link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1374        first_page->freelist = link->next;
1375        if (!class->huge)
1376                /* record handle in the header of allocated chunk */
1377                link->handle = handle;
1378        else
1379                /* record handle in first_page->private */
1380                set_page_private(first_page, handle);
1381        kunmap_atomic(vaddr);
1382        first_page->inuse++;
1383        zs_stat_inc(class, OBJ_USED, 1);
1384
1385        return obj;
1386}
1387
1388
1389/**
1390 * zs_malloc - Allocate block of given size from pool.
1391 * @pool: pool to allocate from
1392 * @size: size of block to allocate
1393 *
1394 * On success, handle to the allocated object is returned,
1395 * otherwise 0.
1396 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1397 */
1398unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1399{
1400        unsigned long handle, obj;
1401        struct size_class *class;
1402        struct page *first_page;
1403
1404        if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1405                return 0;
1406
1407        handle = alloc_handle(pool, gfp);
1408        if (!handle)
1409                return 0;
1410
1411        /* extra space in chunk to keep the handle */
1412        size += ZS_HANDLE_SIZE;
1413        class = pool->size_class[get_size_class_index(size)];
1414
1415        spin_lock(&class->lock);
1416        first_page = find_get_zspage(class);
1417
1418        if (!first_page) {
1419                spin_unlock(&class->lock);
1420                first_page = alloc_zspage(class, gfp);
1421                if (unlikely(!first_page)) {
1422                        free_handle(pool, handle);
1423                        return 0;
1424                }
1425
1426                set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1427                atomic_long_add(class->pages_per_zspage,
1428                                        &pool->pages_allocated);
1429
1430                spin_lock(&class->lock);
1431                zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1432                                class->size, class->pages_per_zspage));
1433        }
1434
1435        obj = obj_malloc(class, first_page, handle);
1436        /* Now move the zspage to another fullness group, if required */
1437        fix_fullness_group(class, first_page);
1438        record_obj(handle, obj);
1439        spin_unlock(&class->lock);
1440
1441        return handle;
1442}
1443EXPORT_SYMBOL_GPL(zs_malloc);
1444
1445static void obj_free(struct size_class *class, unsigned long obj)
1446{
1447        struct link_free *link;
1448        struct page *first_page, *f_page;
1449        unsigned long f_objidx, f_offset;
1450        void *vaddr;
1451
1452        obj &= ~OBJ_ALLOCATED_TAG;
1453        obj_to_location(obj, &f_page, &f_objidx);
1454        first_page = get_first_page(f_page);
1455
1456        f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1457
1458        vaddr = kmap_atomic(f_page);
1459
1460        /* Insert this object in containing zspage's freelist */
1461        link = (struct link_free *)(vaddr + f_offset);
1462        link->next = first_page->freelist;
1463        if (class->huge)
1464                set_page_private(first_page, 0);
1465        kunmap_atomic(vaddr);
1466        first_page->freelist = (void *)obj;
1467        first_page->inuse--;
1468        zs_stat_dec(class, OBJ_USED, 1);
1469}
1470
1471void zs_free(struct zs_pool *pool, unsigned long handle)
1472{
1473        struct page *first_page, *f_page;
1474        unsigned long obj, f_objidx;
1475        int class_idx;
1476        struct size_class *class;
1477        enum fullness_group fullness;
1478
1479        if (unlikely(!handle))
1480                return;
1481
1482        pin_tag(handle);
1483        obj = handle_to_obj(handle);
1484        obj_to_location(obj, &f_page, &f_objidx);
1485        first_page = get_first_page(f_page);
1486
1487        get_zspage_mapping(first_page, &class_idx, &fullness);
1488        class = pool->size_class[class_idx];
1489
1490        spin_lock(&class->lock);
1491        obj_free(class, obj);
1492        fullness = fix_fullness_group(class, first_page);
1493        if (fullness == ZS_EMPTY) {
1494                zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1495                                class->size, class->pages_per_zspage));
1496                atomic_long_sub(class->pages_per_zspage,
1497                                &pool->pages_allocated);
1498                free_zspage(first_page);
1499        }
1500        spin_unlock(&class->lock);
1501        unpin_tag(handle);
1502
1503        free_handle(pool, handle);
1504}
1505EXPORT_SYMBOL_GPL(zs_free);
1506
1507static void zs_object_copy(struct size_class *class, unsigned long dst,
1508                                unsigned long src)
1509{
1510        struct page *s_page, *d_page;
1511        unsigned long s_objidx, d_objidx;
1512        unsigned long s_off, d_off;
1513        void *s_addr, *d_addr;
1514        int s_size, d_size, size;
1515        int written = 0;
1516
1517        s_size = d_size = class->size;
1518
1519        obj_to_location(src, &s_page, &s_objidx);
1520        obj_to_location(dst, &d_page, &d_objidx);
1521
1522        s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1523        d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1524
1525        if (s_off + class->size > PAGE_SIZE)
1526                s_size = PAGE_SIZE - s_off;
1527
1528        if (d_off + class->size > PAGE_SIZE)
1529                d_size = PAGE_SIZE - d_off;
1530
1531        s_addr = kmap_atomic(s_page);
1532        d_addr = kmap_atomic(d_page);
1533
1534        while (1) {
1535                size = min(s_size, d_size);
1536                memcpy(d_addr + d_off, s_addr + s_off, size);
1537                written += size;
1538
1539                if (written == class->size)
1540                        break;
1541
1542                s_off += size;
1543                s_size -= size;
1544                d_off += size;
1545                d_size -= size;
1546
1547                if (s_off >= PAGE_SIZE) {
1548                        kunmap_atomic(d_addr);
1549                        kunmap_atomic(s_addr);
1550                        s_page = get_next_page(s_page);
1551                        s_addr = kmap_atomic(s_page);
1552                        d_addr = kmap_atomic(d_page);
1553                        s_size = class->size - written;
1554                        s_off = 0;
1555                }
1556
1557                if (d_off >= PAGE_SIZE) {
1558                        kunmap_atomic(d_addr);
1559                        d_page = get_next_page(d_page);
1560                        d_addr = kmap_atomic(d_page);
1561                        d_size = class->size - written;
1562                        d_off = 0;
1563                }
1564        }
1565
1566        kunmap_atomic(d_addr);
1567        kunmap_atomic(s_addr);
1568}
1569
1570/*
1571 * Find alloced object in zspage from index object and
1572 * return handle.
1573 */
1574static unsigned long find_alloced_obj(struct size_class *class,
1575                                        struct page *page, int index)
1576{
1577        unsigned long head;
1578        int offset = 0;
1579        unsigned long handle = 0;
1580        void *addr = kmap_atomic(page);
1581
1582        if (!is_first_page(page))
1583                offset = page->index;
1584        offset += class->size * index;
1585
1586        while (offset < PAGE_SIZE) {
1587                head = obj_to_head(class, page, addr + offset);
1588                if (head & OBJ_ALLOCATED_TAG) {
1589                        handle = head & ~OBJ_ALLOCATED_TAG;
1590                        if (trypin_tag(handle))
1591                                break;
1592                        handle = 0;
1593                }
1594
1595                offset += class->size;
1596                index++;
1597        }
1598
1599        kunmap_atomic(addr);
1600        return handle;
1601}
1602
1603struct zs_compact_control {
1604        /* Source page for migration which could be a subpage of zspage. */
1605        struct page *s_page;
1606        /* Destination page for migration which should be a first page
1607         * of zspage. */
1608        struct page *d_page;
1609         /* Starting object index within @s_page which used for live object
1610          * in the subpage. */
1611        int index;
1612};
1613
1614static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1615                                struct zs_compact_control *cc)
1616{
1617        unsigned long used_obj, free_obj;
1618        unsigned long handle;
1619        struct page *s_page = cc->s_page;
1620        struct page *d_page = cc->d_page;
1621        unsigned long index = cc->index;
1622        int ret = 0;
1623
1624        while (1) {
1625                handle = find_alloced_obj(class, s_page, index);
1626                if (!handle) {
1627                        s_page = get_next_page(s_page);
1628                        if (!s_page)
1629                                break;
1630                        index = 0;
1631                        continue;
1632                }
1633
1634                /* Stop if there is no more space */
1635                if (zspage_full(d_page)) {
1636                        unpin_tag(handle);
1637                        ret = -ENOMEM;
1638                        break;
1639                }
1640
1641                used_obj = handle_to_obj(handle);
1642                free_obj = obj_malloc(class, d_page, handle);
1643                zs_object_copy(class, free_obj, used_obj);
1644                index++;
1645                /*
1646                 * record_obj updates handle's value to free_obj and it will
1647                 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1648                 * breaks synchronization using pin_tag(e,g, zs_free) so
1649                 * let's keep the lock bit.
1650                 */
1651                free_obj |= BIT(HANDLE_PIN_BIT);
1652                record_obj(handle, free_obj);
1653                unpin_tag(handle);
1654                obj_free(class, used_obj);
1655        }
1656
1657        /* Remember last position in this iteration */
1658        cc->s_page = s_page;
1659        cc->index = index;
1660
1661        return ret;
1662}
1663
1664static struct page *isolate_target_page(struct size_class *class)
1665{
1666        int i;
1667        struct page *page;
1668
1669        for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1670                page = class->fullness_list[i];
1671                if (page) {
1672                        remove_zspage(class, i, page);
1673                        break;
1674                }
1675        }
1676
1677        return page;
1678}
1679
1680/*
1681 * putback_zspage - add @first_page into right class's fullness list
1682 * @pool: target pool
1683 * @class: destination class
1684 * @first_page: target page
1685 *
1686 * Return @fist_page's fullness_group
1687 */
1688static enum fullness_group putback_zspage(struct zs_pool *pool,
1689                        struct size_class *class,
1690                        struct page *first_page)
1691{
1692        enum fullness_group fullness;
1693
1694        fullness = get_fullness_group(first_page);
1695        insert_zspage(class, fullness, first_page);
1696        set_zspage_mapping(first_page, class->index, fullness);
1697
1698        if (fullness == ZS_EMPTY) {
1699                zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1700                        class->size, class->pages_per_zspage));
1701                atomic_long_sub(class->pages_per_zspage,
1702                                &pool->pages_allocated);
1703
1704                free_zspage(first_page);
1705        }
1706
1707        return fullness;
1708}
1709
1710static struct page *isolate_source_page(struct size_class *class)
1711{
1712        int i;
1713        struct page *page = NULL;
1714
1715        for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1716                page = class->fullness_list[i];
1717                if (!page)
1718                        continue;
1719
1720                remove_zspage(class, i, page);
1721                break;
1722        }
1723
1724        return page;
1725}
1726
1727/*
1728 *
1729 * Based on the number of unused allocated objects calculate
1730 * and return the number of pages that we can free.
1731 */
1732static unsigned long zs_can_compact(struct size_class *class)
1733{
1734        unsigned long obj_wasted;
1735        unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1736        unsigned long obj_used = zs_stat_get(class, OBJ_USED);
1737
1738        if (obj_allocated <= obj_used)
1739                return 0;
1740
1741        obj_wasted = obj_allocated - obj_used;
1742        obj_wasted /= get_maxobj_per_zspage(class->size,
1743                        class->pages_per_zspage);
1744
1745        return obj_wasted * class->pages_per_zspage;
1746}
1747
1748static void __zs_compact(struct zs_pool *pool, struct size_class *class)
1749{
1750        struct zs_compact_control cc;
1751        struct page *src_page;
1752        struct page *dst_page = NULL;
1753
1754        spin_lock(&class->lock);
1755        while ((src_page = isolate_source_page(class))) {
1756
1757                if (!zs_can_compact(class))
1758                        break;
1759
1760                cc.index = 0;
1761                cc.s_page = src_page;
1762
1763                while ((dst_page = isolate_target_page(class))) {
1764                        cc.d_page = dst_page;
1765                        /*
1766                         * If there is no more space in dst_page, resched
1767                         * and see if anyone had allocated another zspage.
1768                         */
1769                        if (!migrate_zspage(pool, class, &cc))
1770                                break;
1771
1772                        putback_zspage(pool, class, dst_page);
1773                }
1774
1775                /* Stop if we couldn't find slot */
1776                if (dst_page == NULL)
1777                        break;
1778
1779                putback_zspage(pool, class, dst_page);
1780                if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
1781                        pool->stats.pages_compacted += class->pages_per_zspage;
1782                spin_unlock(&class->lock);
1783                cond_resched();
1784                spin_lock(&class->lock);
1785        }
1786
1787        if (src_page)
1788                putback_zspage(pool, class, src_page);
1789
1790        spin_unlock(&class->lock);
1791}
1792
1793unsigned long zs_compact(struct zs_pool *pool)
1794{
1795        int i;
1796        struct size_class *class;
1797
1798        for (i = zs_size_classes - 1; i >= 0; i--) {
1799                class = pool->size_class[i];
1800                if (!class)
1801                        continue;
1802                if (class->index != i)
1803                        continue;
1804                __zs_compact(pool, class);
1805        }
1806
1807        return pool->stats.pages_compacted;
1808}
1809EXPORT_SYMBOL_GPL(zs_compact);
1810
1811void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1812{
1813        memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1814}
1815EXPORT_SYMBOL_GPL(zs_pool_stats);
1816
1817static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1818                struct shrink_control *sc)
1819{
1820        unsigned long pages_freed;
1821        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1822                        shrinker);
1823
1824        pages_freed = pool->stats.pages_compacted;
1825        /*
1826         * Compact classes and calculate compaction delta.
1827         * Can run concurrently with a manually triggered
1828         * (by user) compaction.
1829         */
1830        pages_freed = zs_compact(pool) - pages_freed;
1831
1832        return pages_freed ? pages_freed : SHRINK_STOP;
1833}
1834
1835static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1836                struct shrink_control *sc)
1837{
1838        int i;
1839        struct size_class *class;
1840        unsigned long pages_to_free = 0;
1841        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1842                        shrinker);
1843
1844        for (i = zs_size_classes - 1; i >= 0; i--) {
1845                class = pool->size_class[i];
1846                if (!class)
1847                        continue;
1848                if (class->index != i)
1849                        continue;
1850
1851                pages_to_free += zs_can_compact(class);
1852        }
1853
1854        return pages_to_free;
1855}
1856
1857static void zs_unregister_shrinker(struct zs_pool *pool)
1858{
1859        if (pool->shrinker_enabled) {
1860                unregister_shrinker(&pool->shrinker);
1861                pool->shrinker_enabled = false;
1862        }
1863}
1864
1865static int zs_register_shrinker(struct zs_pool *pool)
1866{
1867        pool->shrinker.scan_objects = zs_shrinker_scan;
1868        pool->shrinker.count_objects = zs_shrinker_count;
1869        pool->shrinker.batch = 0;
1870        pool->shrinker.seeks = DEFAULT_SEEKS;
1871
1872        return register_shrinker(&pool->shrinker);
1873}
1874
1875/**
1876 * zs_create_pool - Creates an allocation pool to work from.
1877 * @flags: allocation flags used to allocate pool metadata
1878 *
1879 * This function must be called before anything when using
1880 * the zsmalloc allocator.
1881 *
1882 * On success, a pointer to the newly created pool is returned,
1883 * otherwise NULL.
1884 */
1885struct zs_pool *zs_create_pool(const char *name)
1886{
1887        int i;
1888        struct zs_pool *pool;
1889        struct size_class *prev_class = NULL;
1890
1891        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1892        if (!pool)
1893                return NULL;
1894
1895        pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1896                        GFP_KERNEL);
1897        if (!pool->size_class) {
1898                kfree(pool);
1899                return NULL;
1900        }
1901
1902        pool->name = kstrdup(name, GFP_KERNEL);
1903        if (!pool->name)
1904                goto err;
1905
1906        if (create_handle_cache(pool))
1907                goto err;
1908
1909        /*
1910         * Iterate reversly, because, size of size_class that we want to use
1911         * for merging should be larger or equal to current size.
1912         */
1913        for (i = zs_size_classes - 1; i >= 0; i--) {
1914                int size;
1915                int pages_per_zspage;
1916                struct size_class *class;
1917
1918                size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1919                if (size > ZS_MAX_ALLOC_SIZE)
1920                        size = ZS_MAX_ALLOC_SIZE;
1921                pages_per_zspage = get_pages_per_zspage(size);
1922
1923                /*
1924                 * size_class is used for normal zsmalloc operation such
1925                 * as alloc/free for that size. Although it is natural that we
1926                 * have one size_class for each size, there is a chance that we
1927                 * can get more memory utilization if we use one size_class for
1928                 * many different sizes whose size_class have same
1929                 * characteristics. So, we makes size_class point to
1930                 * previous size_class if possible.
1931                 */
1932                if (prev_class) {
1933                        if (can_merge(prev_class, size, pages_per_zspage)) {
1934                                pool->size_class[i] = prev_class;
1935                                continue;
1936                        }
1937                }
1938
1939                class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1940                if (!class)
1941                        goto err;
1942
1943                class->size = size;
1944                class->index = i;
1945                class->pages_per_zspage = pages_per_zspage;
1946                if (pages_per_zspage == 1 &&
1947                        get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1948                        class->huge = true;
1949                spin_lock_init(&class->lock);
1950                pool->size_class[i] = class;
1951
1952                prev_class = class;
1953        }
1954
1955        /* debug only, don't abort if it fails */
1956        zs_pool_stat_create(pool, name);
1957
1958        /*
1959         * Not critical, we still can use the pool
1960         * and user can trigger compaction manually.
1961         */
1962        if (zs_register_shrinker(pool) == 0)
1963                pool->shrinker_enabled = true;
1964        return pool;
1965
1966err:
1967        zs_destroy_pool(pool);
1968        return NULL;
1969}
1970EXPORT_SYMBOL_GPL(zs_create_pool);
1971
1972void zs_destroy_pool(struct zs_pool *pool)
1973{
1974        int i;
1975
1976        zs_unregister_shrinker(pool);
1977        zs_pool_stat_destroy(pool);
1978
1979        for (i = 0; i < zs_size_classes; i++) {
1980                int fg;
1981                struct size_class *class = pool->size_class[i];
1982
1983                if (!class)
1984                        continue;
1985
1986                if (class->index != i)
1987                        continue;
1988
1989                for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1990                        if (class->fullness_list[fg]) {
1991                                pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1992                                        class->size, fg);
1993                        }
1994                }
1995                kfree(class);
1996        }
1997
1998        destroy_handle_cache(pool);
1999        kfree(pool->size_class);
2000        kfree(pool->name);
2001        kfree(pool);
2002}
2003EXPORT_SYMBOL_GPL(zs_destroy_pool);
2004
2005static int __init zs_init(void)
2006{
2007        int ret = zs_register_cpu_notifier();
2008
2009        if (ret)
2010                goto notifier_fail;
2011
2012        init_zs_size_classes();
2013
2014#ifdef CONFIG_ZPOOL
2015        zpool_register_driver(&zs_zpool_driver);
2016#endif
2017
2018        zs_stat_init();
2019
2020        return 0;
2021
2022notifier_fail:
2023        zs_unregister_cpu_notifier();
2024
2025        return ret;
2026}
2027
2028static void __exit zs_exit(void)
2029{
2030#ifdef CONFIG_ZPOOL
2031        zpool_unregister_driver(&zs_zpool_driver);
2032#endif
2033        zs_unregister_cpu_notifier();
2034
2035        zs_stat_exit();
2036}
2037
2038module_init(zs_init);
2039module_exit(zs_exit);
2040
2041MODULE_LICENSE("Dual BSD/GPL");
2042MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2043