linux/net/ceph/messenger.c
<<
>>
Prefs
   1#include <linux/ceph/ceph_debug.h>
   2
   3#include <linux/crc32c.h>
   4#include <linux/ctype.h>
   5#include <linux/highmem.h>
   6#include <linux/inet.h>
   7#include <linux/kthread.h>
   8#include <linux/net.h>
   9#include <linux/nsproxy.h>
  10#include <linux/slab.h>
  11#include <linux/socket.h>
  12#include <linux/string.h>
  13#ifdef  CONFIG_BLOCK
  14#include <linux/bio.h>
  15#endif  /* CONFIG_BLOCK */
  16#include <linux/dns_resolver.h>
  17#include <net/tcp.h>
  18
  19#include <linux/ceph/ceph_features.h>
  20#include <linux/ceph/libceph.h>
  21#include <linux/ceph/messenger.h>
  22#include <linux/ceph/decode.h>
  23#include <linux/ceph/pagelist.h>
  24#include <linux/export.h>
  25
  26/*
  27 * Ceph uses the messenger to exchange ceph_msg messages with other
  28 * hosts in the system.  The messenger provides ordered and reliable
  29 * delivery.  We tolerate TCP disconnects by reconnecting (with
  30 * exponential backoff) in the case of a fault (disconnection, bad
  31 * crc, protocol error).  Acks allow sent messages to be discarded by
  32 * the sender.
  33 */
  34
  35/*
  36 * We track the state of the socket on a given connection using
  37 * values defined below.  The transition to a new socket state is
  38 * handled by a function which verifies we aren't coming from an
  39 * unexpected state.
  40 *
  41 *      --------
  42 *      | NEW* |  transient initial state
  43 *      --------
  44 *          | con_sock_state_init()
  45 *          v
  46 *      ----------
  47 *      | CLOSED |  initialized, but no socket (and no
  48 *      ----------  TCP connection)
  49 *       ^      \
  50 *       |       \ con_sock_state_connecting()
  51 *       |        ----------------------
  52 *       |                              \
  53 *       + con_sock_state_closed()       \
  54 *       |+---------------------------    \
  55 *       | \                          \    \
  56 *       |  -----------                \    \
  57 *       |  | CLOSING |  socket event;  \    \
  58 *       |  -----------  await close     \    \
  59 *       |       ^                        \   |
  60 *       |       |                         \  |
  61 *       |       + con_sock_state_closing() \ |
  62 *       |      / \                         | |
  63 *       |     /   ---------------          | |
  64 *       |    /                   \         v v
  65 *       |   /                    --------------
  66 *       |  /    -----------------| CONNECTING |  socket created, TCP
  67 *       |  |   /                 --------------  connect initiated
  68 *       |  |   | con_sock_state_connected()
  69 *       |  |   v
  70 *      -------------
  71 *      | CONNECTED |  TCP connection established
  72 *      -------------
  73 *
  74 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
  75 */
  76
  77#define CON_SOCK_STATE_NEW              0       /* -> CLOSED */
  78#define CON_SOCK_STATE_CLOSED           1       /* -> CONNECTING */
  79#define CON_SOCK_STATE_CONNECTING       2       /* -> CONNECTED or -> CLOSING */
  80#define CON_SOCK_STATE_CONNECTED        3       /* -> CLOSING or -> CLOSED */
  81#define CON_SOCK_STATE_CLOSING          4       /* -> CLOSED */
  82
  83/*
  84 * connection states
  85 */
  86#define CON_STATE_CLOSED        1  /* -> PREOPEN */
  87#define CON_STATE_PREOPEN       2  /* -> CONNECTING, CLOSED */
  88#define CON_STATE_CONNECTING    3  /* -> NEGOTIATING, CLOSED */
  89#define CON_STATE_NEGOTIATING   4  /* -> OPEN, CLOSED */
  90#define CON_STATE_OPEN          5  /* -> STANDBY, CLOSED */
  91#define CON_STATE_STANDBY       6  /* -> PREOPEN, CLOSED */
  92
  93/*
  94 * ceph_connection flag bits
  95 */
  96#define CON_FLAG_LOSSYTX           0  /* we can close channel or drop
  97                                       * messages on errors */
  98#define CON_FLAG_KEEPALIVE_PENDING 1  /* we need to send a keepalive */
  99#define CON_FLAG_WRITE_PENDING     2  /* we have data ready to send */
 100#define CON_FLAG_SOCK_CLOSED       3  /* socket state changed to closed */
 101#define CON_FLAG_BACKOFF           4  /* need to retry queuing delayed work */
 102
 103static bool con_flag_valid(unsigned long con_flag)
 104{
 105        switch (con_flag) {
 106        case CON_FLAG_LOSSYTX:
 107        case CON_FLAG_KEEPALIVE_PENDING:
 108        case CON_FLAG_WRITE_PENDING:
 109        case CON_FLAG_SOCK_CLOSED:
 110        case CON_FLAG_BACKOFF:
 111                return true;
 112        default:
 113                return false;
 114        }
 115}
 116
 117static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
 118{
 119        BUG_ON(!con_flag_valid(con_flag));
 120
 121        clear_bit(con_flag, &con->flags);
 122}
 123
 124static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
 125{
 126        BUG_ON(!con_flag_valid(con_flag));
 127
 128        set_bit(con_flag, &con->flags);
 129}
 130
 131static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
 132{
 133        BUG_ON(!con_flag_valid(con_flag));
 134
 135        return test_bit(con_flag, &con->flags);
 136}
 137
 138static bool con_flag_test_and_clear(struct ceph_connection *con,
 139                                        unsigned long con_flag)
 140{
 141        BUG_ON(!con_flag_valid(con_flag));
 142
 143        return test_and_clear_bit(con_flag, &con->flags);
 144}
 145
 146static bool con_flag_test_and_set(struct ceph_connection *con,
 147                                        unsigned long con_flag)
 148{
 149        BUG_ON(!con_flag_valid(con_flag));
 150
 151        return test_and_set_bit(con_flag, &con->flags);
 152}
 153
 154/* Slab caches for frequently-allocated structures */
 155
 156static struct kmem_cache        *ceph_msg_cache;
 157static struct kmem_cache        *ceph_msg_data_cache;
 158
 159/* static tag bytes (protocol control messages) */
 160static char tag_msg = CEPH_MSGR_TAG_MSG;
 161static char tag_ack = CEPH_MSGR_TAG_ACK;
 162static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
 163static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
 164
 165#ifdef CONFIG_LOCKDEP
 166static struct lock_class_key socket_class;
 167#endif
 168
 169/*
 170 * When skipping (ignoring) a block of input we read it into a "skip
 171 * buffer," which is this many bytes in size.
 172 */
 173#define SKIP_BUF_SIZE   1024
 174
 175static void queue_con(struct ceph_connection *con);
 176static void cancel_con(struct ceph_connection *con);
 177static void ceph_con_workfn(struct work_struct *);
 178static void con_fault(struct ceph_connection *con);
 179
 180/*
 181 * Nicely render a sockaddr as a string.  An array of formatted
 182 * strings is used, to approximate reentrancy.
 183 */
 184#define ADDR_STR_COUNT_LOG      5       /* log2(# address strings in array) */
 185#define ADDR_STR_COUNT          (1 << ADDR_STR_COUNT_LOG)
 186#define ADDR_STR_COUNT_MASK     (ADDR_STR_COUNT - 1)
 187#define MAX_ADDR_STR_LEN        64      /* 54 is enough */
 188
 189static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
 190static atomic_t addr_str_seq = ATOMIC_INIT(0);
 191
 192static struct page *zero_page;          /* used in certain error cases */
 193
 194const char *ceph_pr_addr(const struct sockaddr_storage *ss)
 195{
 196        int i;
 197        char *s;
 198        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
 199        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
 200
 201        i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
 202        s = addr_str[i];
 203
 204        switch (ss->ss_family) {
 205        case AF_INET:
 206                snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
 207                         ntohs(in4->sin_port));
 208                break;
 209
 210        case AF_INET6:
 211                snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
 212                         ntohs(in6->sin6_port));
 213                break;
 214
 215        default:
 216                snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
 217                         ss->ss_family);
 218        }
 219
 220        return s;
 221}
 222EXPORT_SYMBOL(ceph_pr_addr);
 223
 224static void encode_my_addr(struct ceph_messenger *msgr)
 225{
 226        memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
 227        ceph_encode_addr(&msgr->my_enc_addr);
 228}
 229
 230/*
 231 * work queue for all reading and writing to/from the socket.
 232 */
 233static struct workqueue_struct *ceph_msgr_wq;
 234
 235static int ceph_msgr_slab_init(void)
 236{
 237        BUG_ON(ceph_msg_cache);
 238        ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
 239        if (!ceph_msg_cache)
 240                return -ENOMEM;
 241
 242        BUG_ON(ceph_msg_data_cache);
 243        ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
 244        if (ceph_msg_data_cache)
 245                return 0;
 246
 247        kmem_cache_destroy(ceph_msg_cache);
 248        ceph_msg_cache = NULL;
 249
 250        return -ENOMEM;
 251}
 252
 253static void ceph_msgr_slab_exit(void)
 254{
 255        BUG_ON(!ceph_msg_data_cache);
 256        kmem_cache_destroy(ceph_msg_data_cache);
 257        ceph_msg_data_cache = NULL;
 258
 259        BUG_ON(!ceph_msg_cache);
 260        kmem_cache_destroy(ceph_msg_cache);
 261        ceph_msg_cache = NULL;
 262}
 263
 264static void _ceph_msgr_exit(void)
 265{
 266        if (ceph_msgr_wq) {
 267                destroy_workqueue(ceph_msgr_wq);
 268                ceph_msgr_wq = NULL;
 269        }
 270
 271        BUG_ON(zero_page == NULL);
 272        put_page(zero_page);
 273        zero_page = NULL;
 274
 275        ceph_msgr_slab_exit();
 276}
 277
 278int ceph_msgr_init(void)
 279{
 280        if (ceph_msgr_slab_init())
 281                return -ENOMEM;
 282
 283        BUG_ON(zero_page != NULL);
 284        zero_page = ZERO_PAGE(0);
 285        get_page(zero_page);
 286
 287        /*
 288         * The number of active work items is limited by the number of
 289         * connections, so leave @max_active at default.
 290         */
 291        ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
 292        if (ceph_msgr_wq)
 293                return 0;
 294
 295        pr_err("msgr_init failed to create workqueue\n");
 296        _ceph_msgr_exit();
 297
 298        return -ENOMEM;
 299}
 300EXPORT_SYMBOL(ceph_msgr_init);
 301
 302void ceph_msgr_exit(void)
 303{
 304        BUG_ON(ceph_msgr_wq == NULL);
 305
 306        _ceph_msgr_exit();
 307}
 308EXPORT_SYMBOL(ceph_msgr_exit);
 309
 310void ceph_msgr_flush(void)
 311{
 312        flush_workqueue(ceph_msgr_wq);
 313}
 314EXPORT_SYMBOL(ceph_msgr_flush);
 315
 316/* Connection socket state transition functions */
 317
 318static void con_sock_state_init(struct ceph_connection *con)
 319{
 320        int old_state;
 321
 322        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 323        if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
 324                printk("%s: unexpected old state %d\n", __func__, old_state);
 325        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 326             CON_SOCK_STATE_CLOSED);
 327}
 328
 329static void con_sock_state_connecting(struct ceph_connection *con)
 330{
 331        int old_state;
 332
 333        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
 334        if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
 335                printk("%s: unexpected old state %d\n", __func__, old_state);
 336        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 337             CON_SOCK_STATE_CONNECTING);
 338}
 339
 340static void con_sock_state_connected(struct ceph_connection *con)
 341{
 342        int old_state;
 343
 344        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
 345        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
 346                printk("%s: unexpected old state %d\n", __func__, old_state);
 347        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 348             CON_SOCK_STATE_CONNECTED);
 349}
 350
 351static void con_sock_state_closing(struct ceph_connection *con)
 352{
 353        int old_state;
 354
 355        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
 356        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
 357                        old_state != CON_SOCK_STATE_CONNECTED &&
 358                        old_state != CON_SOCK_STATE_CLOSING))
 359                printk("%s: unexpected old state %d\n", __func__, old_state);
 360        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 361             CON_SOCK_STATE_CLOSING);
 362}
 363
 364static void con_sock_state_closed(struct ceph_connection *con)
 365{
 366        int old_state;
 367
 368        old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
 369        if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
 370                    old_state != CON_SOCK_STATE_CLOSING &&
 371                    old_state != CON_SOCK_STATE_CONNECTING &&
 372                    old_state != CON_SOCK_STATE_CLOSED))
 373                printk("%s: unexpected old state %d\n", __func__, old_state);
 374        dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
 375             CON_SOCK_STATE_CLOSED);
 376}
 377
 378/*
 379 * socket callback functions
 380 */
 381
 382/* data available on socket, or listen socket received a connect */
 383static void ceph_sock_data_ready(struct sock *sk)
 384{
 385        struct ceph_connection *con = sk->sk_user_data;
 386        if (atomic_read(&con->msgr->stopping)) {
 387                return;
 388        }
 389
 390        if (sk->sk_state != TCP_CLOSE_WAIT) {
 391                dout("%s on %p state = %lu, queueing work\n", __func__,
 392                     con, con->state);
 393                queue_con(con);
 394        }
 395}
 396
 397/* socket has buffer space for writing */
 398static void ceph_sock_write_space(struct sock *sk)
 399{
 400        struct ceph_connection *con = sk->sk_user_data;
 401
 402        /* only queue to workqueue if there is data we want to write,
 403         * and there is sufficient space in the socket buffer to accept
 404         * more data.  clear SOCK_NOSPACE so that ceph_sock_write_space()
 405         * doesn't get called again until try_write() fills the socket
 406         * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
 407         * and net/core/stream.c:sk_stream_write_space().
 408         */
 409        if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
 410                if (sk_stream_is_writeable(sk)) {
 411                        dout("%s %p queueing write work\n", __func__, con);
 412                        clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 413                        queue_con(con);
 414                }
 415        } else {
 416                dout("%s %p nothing to write\n", __func__, con);
 417        }
 418}
 419
 420/* socket's state has changed */
 421static void ceph_sock_state_change(struct sock *sk)
 422{
 423        struct ceph_connection *con = sk->sk_user_data;
 424
 425        dout("%s %p state = %lu sk_state = %u\n", __func__,
 426             con, con->state, sk->sk_state);
 427
 428        switch (sk->sk_state) {
 429        case TCP_CLOSE:
 430                dout("%s TCP_CLOSE\n", __func__);
 431        case TCP_CLOSE_WAIT:
 432                dout("%s TCP_CLOSE_WAIT\n", __func__);
 433                con_sock_state_closing(con);
 434                con_flag_set(con, CON_FLAG_SOCK_CLOSED);
 435                queue_con(con);
 436                break;
 437        case TCP_ESTABLISHED:
 438                dout("%s TCP_ESTABLISHED\n", __func__);
 439                con_sock_state_connected(con);
 440                queue_con(con);
 441                break;
 442        default:        /* Everything else is uninteresting */
 443                break;
 444        }
 445}
 446
 447/*
 448 * set up socket callbacks
 449 */
 450static void set_sock_callbacks(struct socket *sock,
 451                               struct ceph_connection *con)
 452{
 453        struct sock *sk = sock->sk;
 454        sk->sk_user_data = con;
 455        sk->sk_data_ready = ceph_sock_data_ready;
 456        sk->sk_write_space = ceph_sock_write_space;
 457        sk->sk_state_change = ceph_sock_state_change;
 458}
 459
 460
 461/*
 462 * socket helpers
 463 */
 464
 465/*
 466 * initiate connection to a remote socket.
 467 */
 468static int ceph_tcp_connect(struct ceph_connection *con)
 469{
 470        struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
 471        struct socket *sock;
 472        int ret;
 473
 474        BUG_ON(con->sock);
 475        ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
 476                               SOCK_STREAM, IPPROTO_TCP, &sock);
 477        if (ret)
 478                return ret;
 479        sock->sk->sk_allocation = GFP_NOFS;
 480
 481#ifdef CONFIG_LOCKDEP
 482        lockdep_set_class(&sock->sk->sk_lock, &socket_class);
 483#endif
 484
 485        set_sock_callbacks(sock, con);
 486
 487        dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
 488
 489        con_sock_state_connecting(con);
 490        ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
 491                                 O_NONBLOCK);
 492        if (ret == -EINPROGRESS) {
 493                dout("connect %s EINPROGRESS sk_state = %u\n",
 494                     ceph_pr_addr(&con->peer_addr.in_addr),
 495                     sock->sk->sk_state);
 496        } else if (ret < 0) {
 497                pr_err("connect %s error %d\n",
 498                       ceph_pr_addr(&con->peer_addr.in_addr), ret);
 499                sock_release(sock);
 500                return ret;
 501        }
 502
 503        if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
 504                int optval = 1;
 505
 506                ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
 507                                        (char *)&optval, sizeof(optval));
 508                if (ret)
 509                        pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
 510                               ret);
 511        }
 512
 513        con->sock = sock;
 514        return 0;
 515}
 516
 517static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
 518{
 519        struct kvec iov = {buf, len};
 520        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 521        int r;
 522
 523        r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
 524        if (r == -EAGAIN)
 525                r = 0;
 526        return r;
 527}
 528
 529static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
 530                     int page_offset, size_t length)
 531{
 532        void *kaddr;
 533        int ret;
 534
 535        BUG_ON(page_offset + length > PAGE_SIZE);
 536
 537        kaddr = kmap(page);
 538        BUG_ON(!kaddr);
 539        ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
 540        kunmap(page);
 541
 542        return ret;
 543}
 544
 545/*
 546 * write something.  @more is true if caller will be sending more data
 547 * shortly.
 548 */
 549static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
 550                     size_t kvlen, size_t len, int more)
 551{
 552        struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
 553        int r;
 554
 555        if (more)
 556                msg.msg_flags |= MSG_MORE;
 557        else
 558                msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
 559
 560        r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
 561        if (r == -EAGAIN)
 562                r = 0;
 563        return r;
 564}
 565
 566static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
 567                     int offset, size_t size, bool more)
 568{
 569        int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
 570        int ret;
 571
 572        ret = kernel_sendpage(sock, page, offset, size, flags);
 573        if (ret == -EAGAIN)
 574                ret = 0;
 575
 576        return ret;
 577}
 578
 579static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
 580                     int offset, size_t size, bool more)
 581{
 582        int ret;
 583        struct kvec iov;
 584
 585        /* sendpage cannot properly handle pages with page_count == 0,
 586         * we need to fallback to sendmsg if that's the case */
 587        if (page_count(page) >= 1)
 588                return __ceph_tcp_sendpage(sock, page, offset, size, more);
 589
 590        iov.iov_base = kmap(page) + offset;
 591        iov.iov_len = size;
 592        ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
 593        kunmap(page);
 594
 595        return ret;
 596}
 597
 598/*
 599 * Shutdown/close the socket for the given connection.
 600 */
 601static int con_close_socket(struct ceph_connection *con)
 602{
 603        int rc = 0;
 604
 605        dout("con_close_socket on %p sock %p\n", con, con->sock);
 606        if (con->sock) {
 607                rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
 608                sock_release(con->sock);
 609                con->sock = NULL;
 610        }
 611
 612        /*
 613         * Forcibly clear the SOCK_CLOSED flag.  It gets set
 614         * independent of the connection mutex, and we could have
 615         * received a socket close event before we had the chance to
 616         * shut the socket down.
 617         */
 618        con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
 619
 620        con_sock_state_closed(con);
 621        return rc;
 622}
 623
 624/*
 625 * Reset a connection.  Discard all incoming and outgoing messages
 626 * and clear *_seq state.
 627 */
 628static void ceph_msg_remove(struct ceph_msg *msg)
 629{
 630        list_del_init(&msg->list_head);
 631
 632        ceph_msg_put(msg);
 633}
 634static void ceph_msg_remove_list(struct list_head *head)
 635{
 636        while (!list_empty(head)) {
 637                struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
 638                                                        list_head);
 639                ceph_msg_remove(msg);
 640        }
 641}
 642
 643static void reset_connection(struct ceph_connection *con)
 644{
 645        /* reset connection, out_queue, msg_ and connect_seq */
 646        /* discard existing out_queue and msg_seq */
 647        dout("reset_connection %p\n", con);
 648        ceph_msg_remove_list(&con->out_queue);
 649        ceph_msg_remove_list(&con->out_sent);
 650
 651        if (con->in_msg) {
 652                BUG_ON(con->in_msg->con != con);
 653                ceph_msg_put(con->in_msg);
 654                con->in_msg = NULL;
 655        }
 656
 657        con->connect_seq = 0;
 658        con->out_seq = 0;
 659        if (con->out_msg) {
 660                BUG_ON(con->out_msg->con != con);
 661                ceph_msg_put(con->out_msg);
 662                con->out_msg = NULL;
 663        }
 664        con->in_seq = 0;
 665        con->in_seq_acked = 0;
 666
 667        con->out_skip = 0;
 668}
 669
 670/*
 671 * mark a peer down.  drop any open connections.
 672 */
 673void ceph_con_close(struct ceph_connection *con)
 674{
 675        mutex_lock(&con->mutex);
 676        dout("con_close %p peer %s\n", con,
 677             ceph_pr_addr(&con->peer_addr.in_addr));
 678        con->state = CON_STATE_CLOSED;
 679
 680        con_flag_clear(con, CON_FLAG_LOSSYTX);  /* so we retry next connect */
 681        con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
 682        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
 683        con_flag_clear(con, CON_FLAG_BACKOFF);
 684
 685        reset_connection(con);
 686        con->peer_global_seq = 0;
 687        cancel_con(con);
 688        con_close_socket(con);
 689        mutex_unlock(&con->mutex);
 690}
 691EXPORT_SYMBOL(ceph_con_close);
 692
 693/*
 694 * Reopen a closed connection, with a new peer address.
 695 */
 696void ceph_con_open(struct ceph_connection *con,
 697                   __u8 entity_type, __u64 entity_num,
 698                   struct ceph_entity_addr *addr)
 699{
 700        mutex_lock(&con->mutex);
 701        dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
 702
 703        WARN_ON(con->state != CON_STATE_CLOSED);
 704        con->state = CON_STATE_PREOPEN;
 705
 706        con->peer_name.type = (__u8) entity_type;
 707        con->peer_name.num = cpu_to_le64(entity_num);
 708
 709        memcpy(&con->peer_addr, addr, sizeof(*addr));
 710        con->delay = 0;      /* reset backoff memory */
 711        mutex_unlock(&con->mutex);
 712        queue_con(con);
 713}
 714EXPORT_SYMBOL(ceph_con_open);
 715
 716/*
 717 * return true if this connection ever successfully opened
 718 */
 719bool ceph_con_opened(struct ceph_connection *con)
 720{
 721        return con->connect_seq > 0;
 722}
 723
 724/*
 725 * initialize a new connection.
 726 */
 727void ceph_con_init(struct ceph_connection *con, void *private,
 728        const struct ceph_connection_operations *ops,
 729        struct ceph_messenger *msgr)
 730{
 731        dout("con_init %p\n", con);
 732        memset(con, 0, sizeof(*con));
 733        con->private = private;
 734        con->ops = ops;
 735        con->msgr = msgr;
 736
 737        con_sock_state_init(con);
 738
 739        mutex_init(&con->mutex);
 740        INIT_LIST_HEAD(&con->out_queue);
 741        INIT_LIST_HEAD(&con->out_sent);
 742        INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
 743
 744        con->state = CON_STATE_CLOSED;
 745}
 746EXPORT_SYMBOL(ceph_con_init);
 747
 748
 749/*
 750 * We maintain a global counter to order connection attempts.  Get
 751 * a unique seq greater than @gt.
 752 */
 753static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
 754{
 755        u32 ret;
 756
 757        spin_lock(&msgr->global_seq_lock);
 758        if (msgr->global_seq < gt)
 759                msgr->global_seq = gt;
 760        ret = ++msgr->global_seq;
 761        spin_unlock(&msgr->global_seq_lock);
 762        return ret;
 763}
 764
 765static void con_out_kvec_reset(struct ceph_connection *con)
 766{
 767        BUG_ON(con->out_skip);
 768
 769        con->out_kvec_left = 0;
 770        con->out_kvec_bytes = 0;
 771        con->out_kvec_cur = &con->out_kvec[0];
 772}
 773
 774static void con_out_kvec_add(struct ceph_connection *con,
 775                                size_t size, void *data)
 776{
 777        int index = con->out_kvec_left;
 778
 779        BUG_ON(con->out_skip);
 780        BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
 781
 782        con->out_kvec[index].iov_len = size;
 783        con->out_kvec[index].iov_base = data;
 784        con->out_kvec_left++;
 785        con->out_kvec_bytes += size;
 786}
 787
 788/*
 789 * Chop off a kvec from the end.  Return residual number of bytes for
 790 * that kvec, i.e. how many bytes would have been written if the kvec
 791 * hadn't been nuked.
 792 */
 793static int con_out_kvec_skip(struct ceph_connection *con)
 794{
 795        int off = con->out_kvec_cur - con->out_kvec;
 796        int skip = 0;
 797
 798        if (con->out_kvec_bytes > 0) {
 799                skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
 800                BUG_ON(con->out_kvec_bytes < skip);
 801                BUG_ON(!con->out_kvec_left);
 802                con->out_kvec_bytes -= skip;
 803                con->out_kvec_left--;
 804        }
 805
 806        return skip;
 807}
 808
 809#ifdef CONFIG_BLOCK
 810
 811/*
 812 * For a bio data item, a piece is whatever remains of the next
 813 * entry in the current bio iovec, or the first entry in the next
 814 * bio in the list.
 815 */
 816static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
 817                                        size_t length)
 818{
 819        struct ceph_msg_data *data = cursor->data;
 820        struct bio *bio;
 821
 822        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 823
 824        bio = data->bio;
 825        BUG_ON(!bio);
 826
 827        cursor->resid = min(length, data->bio_length);
 828        cursor->bio = bio;
 829        cursor->bvec_iter = bio->bi_iter;
 830        cursor->last_piece =
 831                cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
 832}
 833
 834static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
 835                                                size_t *page_offset,
 836                                                size_t *length)
 837{
 838        struct ceph_msg_data *data = cursor->data;
 839        struct bio *bio;
 840        struct bio_vec bio_vec;
 841
 842        BUG_ON(data->type != CEPH_MSG_DATA_BIO);
 843
 844        bio = cursor->bio;
 845        BUG_ON(!bio);
 846
 847        bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 848
 849        *page_offset = (size_t) bio_vec.bv_offset;
 850        BUG_ON(*page_offset >= PAGE_SIZE);
 851        if (cursor->last_piece) /* pagelist offset is always 0 */
 852                *length = cursor->resid;
 853        else
 854                *length = (size_t) bio_vec.bv_len;
 855        BUG_ON(*length > cursor->resid);
 856        BUG_ON(*page_offset + *length > PAGE_SIZE);
 857
 858        return bio_vec.bv_page;
 859}
 860
 861static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
 862                                        size_t bytes)
 863{
 864        struct bio *bio;
 865        struct bio_vec bio_vec;
 866
 867        BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
 868
 869        bio = cursor->bio;
 870        BUG_ON(!bio);
 871
 872        bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
 873
 874        /* Advance the cursor offset */
 875
 876        BUG_ON(cursor->resid < bytes);
 877        cursor->resid -= bytes;
 878
 879        bio_advance_iter(bio, &cursor->bvec_iter, bytes);
 880
 881        if (bytes < bio_vec.bv_len)
 882                return false;   /* more bytes to process in this segment */
 883
 884        /* Move on to the next segment, and possibly the next bio */
 885
 886        if (!cursor->bvec_iter.bi_size) {
 887                bio = bio->bi_next;
 888                cursor->bio = bio;
 889                if (bio)
 890                        cursor->bvec_iter = bio->bi_iter;
 891                else
 892                        memset(&cursor->bvec_iter, 0,
 893                               sizeof(cursor->bvec_iter));
 894        }
 895
 896        if (!cursor->last_piece) {
 897                BUG_ON(!cursor->resid);
 898                BUG_ON(!bio);
 899                /* A short read is OK, so use <= rather than == */
 900                if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
 901                        cursor->last_piece = true;
 902        }
 903
 904        return true;
 905}
 906#endif /* CONFIG_BLOCK */
 907
 908/*
 909 * For a page array, a piece comes from the first page in the array
 910 * that has not already been fully consumed.
 911 */
 912static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
 913                                        size_t length)
 914{
 915        struct ceph_msg_data *data = cursor->data;
 916        int page_count;
 917
 918        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 919
 920        BUG_ON(!data->pages);
 921        BUG_ON(!data->length);
 922
 923        cursor->resid = min(length, data->length);
 924        page_count = calc_pages_for(data->alignment, (u64)data->length);
 925        cursor->page_offset = data->alignment & ~PAGE_MASK;
 926        cursor->page_index = 0;
 927        BUG_ON(page_count > (int)USHRT_MAX);
 928        cursor->page_count = (unsigned short)page_count;
 929        BUG_ON(length > SIZE_MAX - cursor->page_offset);
 930        cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
 931}
 932
 933static struct page *
 934ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
 935                                        size_t *page_offset, size_t *length)
 936{
 937        struct ceph_msg_data *data = cursor->data;
 938
 939        BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
 940
 941        BUG_ON(cursor->page_index >= cursor->page_count);
 942        BUG_ON(cursor->page_offset >= PAGE_SIZE);
 943
 944        *page_offset = cursor->page_offset;
 945        if (cursor->last_piece)
 946                *length = cursor->resid;
 947        else
 948                *length = PAGE_SIZE - *page_offset;
 949
 950        return data->pages[cursor->page_index];
 951}
 952
 953static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
 954                                                size_t bytes)
 955{
 956        BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
 957
 958        BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
 959
 960        /* Advance the cursor page offset */
 961
 962        cursor->resid -= bytes;
 963        cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
 964        if (!bytes || cursor->page_offset)
 965                return false;   /* more bytes to process in the current page */
 966
 967        if (!cursor->resid)
 968                return false;   /* no more data */
 969
 970        /* Move on to the next page; offset is already at 0 */
 971
 972        BUG_ON(cursor->page_index >= cursor->page_count);
 973        cursor->page_index++;
 974        cursor->last_piece = cursor->resid <= PAGE_SIZE;
 975
 976        return true;
 977}
 978
 979/*
 980 * For a pagelist, a piece is whatever remains to be consumed in the
 981 * first page in the list, or the front of the next page.
 982 */
 983static void
 984ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
 985                                        size_t length)
 986{
 987        struct ceph_msg_data *data = cursor->data;
 988        struct ceph_pagelist *pagelist;
 989        struct page *page;
 990
 991        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
 992
 993        pagelist = data->pagelist;
 994        BUG_ON(!pagelist);
 995
 996        if (!length)
 997                return;         /* pagelist can be assigned but empty */
 998
 999        BUG_ON(list_empty(&pagelist->head));
1000        page = list_first_entry(&pagelist->head, struct page, lru);
1001
1002        cursor->resid = min(length, pagelist->length);
1003        cursor->page = page;
1004        cursor->offset = 0;
1005        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1006}
1007
1008static struct page *
1009ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1010                                size_t *page_offset, size_t *length)
1011{
1012        struct ceph_msg_data *data = cursor->data;
1013        struct ceph_pagelist *pagelist;
1014
1015        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1016
1017        pagelist = data->pagelist;
1018        BUG_ON(!pagelist);
1019
1020        BUG_ON(!cursor->page);
1021        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1022
1023        /* offset of first page in pagelist is always 0 */
1024        *page_offset = cursor->offset & ~PAGE_MASK;
1025        if (cursor->last_piece)
1026                *length = cursor->resid;
1027        else
1028                *length = PAGE_SIZE - *page_offset;
1029
1030        return cursor->page;
1031}
1032
1033static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1034                                                size_t bytes)
1035{
1036        struct ceph_msg_data *data = cursor->data;
1037        struct ceph_pagelist *pagelist;
1038
1039        BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1040
1041        pagelist = data->pagelist;
1042        BUG_ON(!pagelist);
1043
1044        BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1045        BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1046
1047        /* Advance the cursor offset */
1048
1049        cursor->resid -= bytes;
1050        cursor->offset += bytes;
1051        /* offset of first page in pagelist is always 0 */
1052        if (!bytes || cursor->offset & ~PAGE_MASK)
1053                return false;   /* more bytes to process in the current page */
1054
1055        if (!cursor->resid)
1056                return false;   /* no more data */
1057
1058        /* Move on to the next page */
1059
1060        BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1061        cursor->page = list_next_entry(cursor->page, lru);
1062        cursor->last_piece = cursor->resid <= PAGE_SIZE;
1063
1064        return true;
1065}
1066
1067/*
1068 * Message data is handled (sent or received) in pieces, where each
1069 * piece resides on a single page.  The network layer might not
1070 * consume an entire piece at once.  A data item's cursor keeps
1071 * track of which piece is next to process and how much remains to
1072 * be processed in that piece.  It also tracks whether the current
1073 * piece is the last one in the data item.
1074 */
1075static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1076{
1077        size_t length = cursor->total_resid;
1078
1079        switch (cursor->data->type) {
1080        case CEPH_MSG_DATA_PAGELIST:
1081                ceph_msg_data_pagelist_cursor_init(cursor, length);
1082                break;
1083        case CEPH_MSG_DATA_PAGES:
1084                ceph_msg_data_pages_cursor_init(cursor, length);
1085                break;
1086#ifdef CONFIG_BLOCK
1087        case CEPH_MSG_DATA_BIO:
1088                ceph_msg_data_bio_cursor_init(cursor, length);
1089                break;
1090#endif /* CONFIG_BLOCK */
1091        case CEPH_MSG_DATA_NONE:
1092        default:
1093                /* BUG(); */
1094                break;
1095        }
1096        cursor->need_crc = true;
1097}
1098
1099static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1100{
1101        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1102        struct ceph_msg_data *data;
1103
1104        BUG_ON(!length);
1105        BUG_ON(length > msg->data_length);
1106        BUG_ON(list_empty(&msg->data));
1107
1108        cursor->data_head = &msg->data;
1109        cursor->total_resid = length;
1110        data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1111        cursor->data = data;
1112
1113        __ceph_msg_data_cursor_init(cursor);
1114}
1115
1116/*
1117 * Return the page containing the next piece to process for a given
1118 * data item, and supply the page offset and length of that piece.
1119 * Indicate whether this is the last piece in this data item.
1120 */
1121static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1122                                        size_t *page_offset, size_t *length,
1123                                        bool *last_piece)
1124{
1125        struct page *page;
1126
1127        switch (cursor->data->type) {
1128        case CEPH_MSG_DATA_PAGELIST:
1129                page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1130                break;
1131        case CEPH_MSG_DATA_PAGES:
1132                page = ceph_msg_data_pages_next(cursor, page_offset, length);
1133                break;
1134#ifdef CONFIG_BLOCK
1135        case CEPH_MSG_DATA_BIO:
1136                page = ceph_msg_data_bio_next(cursor, page_offset, length);
1137                break;
1138#endif /* CONFIG_BLOCK */
1139        case CEPH_MSG_DATA_NONE:
1140        default:
1141                page = NULL;
1142                break;
1143        }
1144        BUG_ON(!page);
1145        BUG_ON(*page_offset + *length > PAGE_SIZE);
1146        BUG_ON(!*length);
1147        if (last_piece)
1148                *last_piece = cursor->last_piece;
1149
1150        return page;
1151}
1152
1153/*
1154 * Returns true if the result moves the cursor on to the next piece
1155 * of the data item.
1156 */
1157static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1158                                size_t bytes)
1159{
1160        bool new_piece;
1161
1162        BUG_ON(bytes > cursor->resid);
1163        switch (cursor->data->type) {
1164        case CEPH_MSG_DATA_PAGELIST:
1165                new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1166                break;
1167        case CEPH_MSG_DATA_PAGES:
1168                new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1169                break;
1170#ifdef CONFIG_BLOCK
1171        case CEPH_MSG_DATA_BIO:
1172                new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1173                break;
1174#endif /* CONFIG_BLOCK */
1175        case CEPH_MSG_DATA_NONE:
1176        default:
1177                BUG();
1178                break;
1179        }
1180        cursor->total_resid -= bytes;
1181
1182        if (!cursor->resid && cursor->total_resid) {
1183                WARN_ON(!cursor->last_piece);
1184                BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1185                cursor->data = list_next_entry(cursor->data, links);
1186                __ceph_msg_data_cursor_init(cursor);
1187                new_piece = true;
1188        }
1189        cursor->need_crc = new_piece;
1190
1191        return new_piece;
1192}
1193
1194static size_t sizeof_footer(struct ceph_connection *con)
1195{
1196        return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1197            sizeof(struct ceph_msg_footer) :
1198            sizeof(struct ceph_msg_footer_old);
1199}
1200
1201static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1202{
1203        BUG_ON(!msg);
1204        BUG_ON(!data_len);
1205
1206        /* Initialize data cursor */
1207
1208        ceph_msg_data_cursor_init(msg, (size_t)data_len);
1209}
1210
1211/*
1212 * Prepare footer for currently outgoing message, and finish things
1213 * off.  Assumes out_kvec* are already valid.. we just add on to the end.
1214 */
1215static void prepare_write_message_footer(struct ceph_connection *con)
1216{
1217        struct ceph_msg *m = con->out_msg;
1218
1219        m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1220
1221        dout("prepare_write_message_footer %p\n", con);
1222        con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1223        if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1224                if (con->ops->sign_message)
1225                        con->ops->sign_message(m);
1226                else
1227                        m->footer.sig = 0;
1228        } else {
1229                m->old_footer.flags = m->footer.flags;
1230        }
1231        con->out_more = m->more_to_follow;
1232        con->out_msg_done = true;
1233}
1234
1235/*
1236 * Prepare headers for the next outgoing message.
1237 */
1238static void prepare_write_message(struct ceph_connection *con)
1239{
1240        struct ceph_msg *m;
1241        u32 crc;
1242
1243        con_out_kvec_reset(con);
1244        con->out_msg_done = false;
1245
1246        /* Sneak an ack in there first?  If we can get it into the same
1247         * TCP packet that's a good thing. */
1248        if (con->in_seq > con->in_seq_acked) {
1249                con->in_seq_acked = con->in_seq;
1250                con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1251                con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1252                con_out_kvec_add(con, sizeof (con->out_temp_ack),
1253                        &con->out_temp_ack);
1254        }
1255
1256        BUG_ON(list_empty(&con->out_queue));
1257        m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1258        con->out_msg = m;
1259        BUG_ON(m->con != con);
1260
1261        /* put message on sent list */
1262        ceph_msg_get(m);
1263        list_move_tail(&m->list_head, &con->out_sent);
1264
1265        /*
1266         * only assign outgoing seq # if we haven't sent this message
1267         * yet.  if it is requeued, resend with it's original seq.
1268         */
1269        if (m->needs_out_seq) {
1270                m->hdr.seq = cpu_to_le64(++con->out_seq);
1271                m->needs_out_seq = false;
1272        }
1273        WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1274
1275        dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1276             m, con->out_seq, le16_to_cpu(m->hdr.type),
1277             le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1278             m->data_length);
1279        BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1280
1281        /* tag + hdr + front + middle */
1282        con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1283        con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1284        con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1285
1286        if (m->middle)
1287                con_out_kvec_add(con, m->middle->vec.iov_len,
1288                        m->middle->vec.iov_base);
1289
1290        /* fill in hdr crc and finalize hdr */
1291        crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1292        con->out_msg->hdr.crc = cpu_to_le32(crc);
1293        memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1294
1295        /* fill in front and middle crc, footer */
1296        crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1297        con->out_msg->footer.front_crc = cpu_to_le32(crc);
1298        if (m->middle) {
1299                crc = crc32c(0, m->middle->vec.iov_base,
1300                                m->middle->vec.iov_len);
1301                con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1302        } else
1303                con->out_msg->footer.middle_crc = 0;
1304        dout("%s front_crc %u middle_crc %u\n", __func__,
1305             le32_to_cpu(con->out_msg->footer.front_crc),
1306             le32_to_cpu(con->out_msg->footer.middle_crc));
1307        con->out_msg->footer.flags = 0;
1308
1309        /* is there a data payload? */
1310        con->out_msg->footer.data_crc = 0;
1311        if (m->data_length) {
1312                prepare_message_data(con->out_msg, m->data_length);
1313                con->out_more = 1;  /* data + footer will follow */
1314        } else {
1315                /* no, queue up footer too and be done */
1316                prepare_write_message_footer(con);
1317        }
1318
1319        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1320}
1321
1322/*
1323 * Prepare an ack.
1324 */
1325static void prepare_write_ack(struct ceph_connection *con)
1326{
1327        dout("prepare_write_ack %p %llu -> %llu\n", con,
1328             con->in_seq_acked, con->in_seq);
1329        con->in_seq_acked = con->in_seq;
1330
1331        con_out_kvec_reset(con);
1332
1333        con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1334
1335        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1336        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1337                                &con->out_temp_ack);
1338
1339        con->out_more = 1;  /* more will follow.. eventually.. */
1340        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1341}
1342
1343/*
1344 * Prepare to share the seq during handshake
1345 */
1346static void prepare_write_seq(struct ceph_connection *con)
1347{
1348        dout("prepare_write_seq %p %llu -> %llu\n", con,
1349             con->in_seq_acked, con->in_seq);
1350        con->in_seq_acked = con->in_seq;
1351
1352        con_out_kvec_reset(con);
1353
1354        con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1355        con_out_kvec_add(con, sizeof (con->out_temp_ack),
1356                         &con->out_temp_ack);
1357
1358        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1359}
1360
1361/*
1362 * Prepare to write keepalive byte.
1363 */
1364static void prepare_write_keepalive(struct ceph_connection *con)
1365{
1366        dout("prepare_write_keepalive %p\n", con);
1367        con_out_kvec_reset(con);
1368        if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1369                struct timespec now = CURRENT_TIME;
1370
1371                con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1372                ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1373                con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1374                                 &con->out_temp_keepalive2);
1375        } else {
1376                con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1377        }
1378        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379}
1380
1381/*
1382 * Connection negotiation.
1383 */
1384
1385static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1386                                                int *auth_proto)
1387{
1388        struct ceph_auth_handshake *auth;
1389
1390        if (!con->ops->get_authorizer) {
1391                con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1392                con->out_connect.authorizer_len = 0;
1393                return NULL;
1394        }
1395
1396        /* Can't hold the mutex while getting authorizer */
1397        mutex_unlock(&con->mutex);
1398        auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1399        mutex_lock(&con->mutex);
1400
1401        if (IS_ERR(auth))
1402                return auth;
1403        if (con->state != CON_STATE_NEGOTIATING)
1404                return ERR_PTR(-EAGAIN);
1405
1406        con->auth_reply_buf = auth->authorizer_reply_buf;
1407        con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1408        return auth;
1409}
1410
1411/*
1412 * We connected to a peer and are saying hello.
1413 */
1414static void prepare_write_banner(struct ceph_connection *con)
1415{
1416        con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1417        con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1418                                        &con->msgr->my_enc_addr);
1419
1420        con->out_more = 0;
1421        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1422}
1423
1424static int prepare_write_connect(struct ceph_connection *con)
1425{
1426        unsigned int global_seq = get_global_seq(con->msgr, 0);
1427        int proto;
1428        int auth_proto;
1429        struct ceph_auth_handshake *auth;
1430
1431        switch (con->peer_name.type) {
1432        case CEPH_ENTITY_TYPE_MON:
1433                proto = CEPH_MONC_PROTOCOL;
1434                break;
1435        case CEPH_ENTITY_TYPE_OSD:
1436                proto = CEPH_OSDC_PROTOCOL;
1437                break;
1438        case CEPH_ENTITY_TYPE_MDS:
1439                proto = CEPH_MDSC_PROTOCOL;
1440                break;
1441        default:
1442                BUG();
1443        }
1444
1445        dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1446             con->connect_seq, global_seq, proto);
1447
1448        con->out_connect.features =
1449            cpu_to_le64(from_msgr(con->msgr)->supported_features);
1450        con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1451        con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1452        con->out_connect.global_seq = cpu_to_le32(global_seq);
1453        con->out_connect.protocol_version = cpu_to_le32(proto);
1454        con->out_connect.flags = 0;
1455
1456        auth_proto = CEPH_AUTH_UNKNOWN;
1457        auth = get_connect_authorizer(con, &auth_proto);
1458        if (IS_ERR(auth))
1459                return PTR_ERR(auth);
1460
1461        con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1462        con->out_connect.authorizer_len = auth ?
1463                cpu_to_le32(auth->authorizer_buf_len) : 0;
1464
1465        con_out_kvec_add(con, sizeof (con->out_connect),
1466                                        &con->out_connect);
1467        if (auth && auth->authorizer_buf_len)
1468                con_out_kvec_add(con, auth->authorizer_buf_len,
1469                                        auth->authorizer_buf);
1470
1471        con->out_more = 0;
1472        con_flag_set(con, CON_FLAG_WRITE_PENDING);
1473
1474        return 0;
1475}
1476
1477/*
1478 * write as much of pending kvecs to the socket as we can.
1479 *  1 -> done
1480 *  0 -> socket full, but more to do
1481 * <0 -> error
1482 */
1483static int write_partial_kvec(struct ceph_connection *con)
1484{
1485        int ret;
1486
1487        dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1488        while (con->out_kvec_bytes > 0) {
1489                ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1490                                       con->out_kvec_left, con->out_kvec_bytes,
1491                                       con->out_more);
1492                if (ret <= 0)
1493                        goto out;
1494                con->out_kvec_bytes -= ret;
1495                if (con->out_kvec_bytes == 0)
1496                        break;            /* done */
1497
1498                /* account for full iov entries consumed */
1499                while (ret >= con->out_kvec_cur->iov_len) {
1500                        BUG_ON(!con->out_kvec_left);
1501                        ret -= con->out_kvec_cur->iov_len;
1502                        con->out_kvec_cur++;
1503                        con->out_kvec_left--;
1504                }
1505                /* and for a partially-consumed entry */
1506                if (ret) {
1507                        con->out_kvec_cur->iov_len -= ret;
1508                        con->out_kvec_cur->iov_base += ret;
1509                }
1510        }
1511        con->out_kvec_left = 0;
1512        ret = 1;
1513out:
1514        dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1515             con->out_kvec_bytes, con->out_kvec_left, ret);
1516        return ret;  /* done! */
1517}
1518
1519static u32 ceph_crc32c_page(u32 crc, struct page *page,
1520                                unsigned int page_offset,
1521                                unsigned int length)
1522{
1523        char *kaddr;
1524
1525        kaddr = kmap(page);
1526        BUG_ON(kaddr == NULL);
1527        crc = crc32c(crc, kaddr + page_offset, length);
1528        kunmap(page);
1529
1530        return crc;
1531}
1532/*
1533 * Write as much message data payload as we can.  If we finish, queue
1534 * up the footer.
1535 *  1 -> done, footer is now queued in out_kvec[].
1536 *  0 -> socket full, but more to do
1537 * <0 -> error
1538 */
1539static int write_partial_message_data(struct ceph_connection *con)
1540{
1541        struct ceph_msg *msg = con->out_msg;
1542        struct ceph_msg_data_cursor *cursor = &msg->cursor;
1543        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1544        u32 crc;
1545
1546        dout("%s %p msg %p\n", __func__, con, msg);
1547
1548        if (list_empty(&msg->data))
1549                return -EINVAL;
1550
1551        /*
1552         * Iterate through each page that contains data to be
1553         * written, and send as much as possible for each.
1554         *
1555         * If we are calculating the data crc (the default), we will
1556         * need to map the page.  If we have no pages, they have
1557         * been revoked, so use the zero page.
1558         */
1559        crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1560        while (cursor->resid) {
1561                struct page *page;
1562                size_t page_offset;
1563                size_t length;
1564                bool last_piece;
1565                bool need_crc;
1566                int ret;
1567
1568                page = ceph_msg_data_next(cursor, &page_offset, &length,
1569                                          &last_piece);
1570                ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1571                                        length, !last_piece);
1572                if (ret <= 0) {
1573                        if (do_datacrc)
1574                                msg->footer.data_crc = cpu_to_le32(crc);
1575
1576                        return ret;
1577                }
1578                if (do_datacrc && cursor->need_crc)
1579                        crc = ceph_crc32c_page(crc, page, page_offset, length);
1580                need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1581        }
1582
1583        dout("%s %p msg %p done\n", __func__, con, msg);
1584
1585        /* prepare and queue up footer, too */
1586        if (do_datacrc)
1587                msg->footer.data_crc = cpu_to_le32(crc);
1588        else
1589                msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1590        con_out_kvec_reset(con);
1591        prepare_write_message_footer(con);
1592
1593        return 1;       /* must return > 0 to indicate success */
1594}
1595
1596/*
1597 * write some zeros
1598 */
1599static int write_partial_skip(struct ceph_connection *con)
1600{
1601        int ret;
1602
1603        dout("%s %p %d left\n", __func__, con, con->out_skip);
1604        while (con->out_skip > 0) {
1605                size_t size = min(con->out_skip, (int) PAGE_SIZE);
1606
1607                ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1608                if (ret <= 0)
1609                        goto out;
1610                con->out_skip -= ret;
1611        }
1612        ret = 1;
1613out:
1614        return ret;
1615}
1616
1617/*
1618 * Prepare to read connection handshake, or an ack.
1619 */
1620static void prepare_read_banner(struct ceph_connection *con)
1621{
1622        dout("prepare_read_banner %p\n", con);
1623        con->in_base_pos = 0;
1624}
1625
1626static void prepare_read_connect(struct ceph_connection *con)
1627{
1628        dout("prepare_read_connect %p\n", con);
1629        con->in_base_pos = 0;
1630}
1631
1632static void prepare_read_ack(struct ceph_connection *con)
1633{
1634        dout("prepare_read_ack %p\n", con);
1635        con->in_base_pos = 0;
1636}
1637
1638static void prepare_read_seq(struct ceph_connection *con)
1639{
1640        dout("prepare_read_seq %p\n", con);
1641        con->in_base_pos = 0;
1642        con->in_tag = CEPH_MSGR_TAG_SEQ;
1643}
1644
1645static void prepare_read_tag(struct ceph_connection *con)
1646{
1647        dout("prepare_read_tag %p\n", con);
1648        con->in_base_pos = 0;
1649        con->in_tag = CEPH_MSGR_TAG_READY;
1650}
1651
1652static void prepare_read_keepalive_ack(struct ceph_connection *con)
1653{
1654        dout("prepare_read_keepalive_ack %p\n", con);
1655        con->in_base_pos = 0;
1656}
1657
1658/*
1659 * Prepare to read a message.
1660 */
1661static int prepare_read_message(struct ceph_connection *con)
1662{
1663        dout("prepare_read_message %p\n", con);
1664        BUG_ON(con->in_msg != NULL);
1665        con->in_base_pos = 0;
1666        con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1667        return 0;
1668}
1669
1670
1671static int read_partial(struct ceph_connection *con,
1672                        int end, int size, void *object)
1673{
1674        while (con->in_base_pos < end) {
1675                int left = end - con->in_base_pos;
1676                int have = size - left;
1677                int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1678                if (ret <= 0)
1679                        return ret;
1680                con->in_base_pos += ret;
1681        }
1682        return 1;
1683}
1684
1685
1686/*
1687 * Read all or part of the connect-side handshake on a new connection
1688 */
1689static int read_partial_banner(struct ceph_connection *con)
1690{
1691        int size;
1692        int end;
1693        int ret;
1694
1695        dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1696
1697        /* peer's banner */
1698        size = strlen(CEPH_BANNER);
1699        end = size;
1700        ret = read_partial(con, end, size, con->in_banner);
1701        if (ret <= 0)
1702                goto out;
1703
1704        size = sizeof (con->actual_peer_addr);
1705        end += size;
1706        ret = read_partial(con, end, size, &con->actual_peer_addr);
1707        if (ret <= 0)
1708                goto out;
1709
1710        size = sizeof (con->peer_addr_for_me);
1711        end += size;
1712        ret = read_partial(con, end, size, &con->peer_addr_for_me);
1713        if (ret <= 0)
1714                goto out;
1715
1716out:
1717        return ret;
1718}
1719
1720static int read_partial_connect(struct ceph_connection *con)
1721{
1722        int size;
1723        int end;
1724        int ret;
1725
1726        dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1727
1728        size = sizeof (con->in_reply);
1729        end = size;
1730        ret = read_partial(con, end, size, &con->in_reply);
1731        if (ret <= 0)
1732                goto out;
1733
1734        size = le32_to_cpu(con->in_reply.authorizer_len);
1735        end += size;
1736        ret = read_partial(con, end, size, con->auth_reply_buf);
1737        if (ret <= 0)
1738                goto out;
1739
1740        dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1741             con, (int)con->in_reply.tag,
1742             le32_to_cpu(con->in_reply.connect_seq),
1743             le32_to_cpu(con->in_reply.global_seq));
1744out:
1745        return ret;
1746
1747}
1748
1749/*
1750 * Verify the hello banner looks okay.
1751 */
1752static int verify_hello(struct ceph_connection *con)
1753{
1754        if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1755                pr_err("connect to %s got bad banner\n",
1756                       ceph_pr_addr(&con->peer_addr.in_addr));
1757                con->error_msg = "protocol error, bad banner";
1758                return -1;
1759        }
1760        return 0;
1761}
1762
1763static bool addr_is_blank(struct sockaddr_storage *ss)
1764{
1765        struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1766        struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1767
1768        switch (ss->ss_family) {
1769        case AF_INET:
1770                return addr->s_addr == htonl(INADDR_ANY);
1771        case AF_INET6:
1772                return ipv6_addr_any(addr6);
1773        default:
1774                return true;
1775        }
1776}
1777
1778static int addr_port(struct sockaddr_storage *ss)
1779{
1780        switch (ss->ss_family) {
1781        case AF_INET:
1782                return ntohs(((struct sockaddr_in *)ss)->sin_port);
1783        case AF_INET6:
1784                return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1785        }
1786        return 0;
1787}
1788
1789static void addr_set_port(struct sockaddr_storage *ss, int p)
1790{
1791        switch (ss->ss_family) {
1792        case AF_INET:
1793                ((struct sockaddr_in *)ss)->sin_port = htons(p);
1794                break;
1795        case AF_INET6:
1796                ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1797                break;
1798        }
1799}
1800
1801/*
1802 * Unlike other *_pton function semantics, zero indicates success.
1803 */
1804static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1805                char delim, const char **ipend)
1806{
1807        struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1808        struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1809
1810        memset(ss, 0, sizeof(*ss));
1811
1812        if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1813                ss->ss_family = AF_INET;
1814                return 0;
1815        }
1816
1817        if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1818                ss->ss_family = AF_INET6;
1819                return 0;
1820        }
1821
1822        return -EINVAL;
1823}
1824
1825/*
1826 * Extract hostname string and resolve using kernel DNS facility.
1827 */
1828#ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1829static int ceph_dns_resolve_name(const char *name, size_t namelen,
1830                struct sockaddr_storage *ss, char delim, const char **ipend)
1831{
1832        const char *end, *delim_p;
1833        char *colon_p, *ip_addr = NULL;
1834        int ip_len, ret;
1835
1836        /*
1837         * The end of the hostname occurs immediately preceding the delimiter or
1838         * the port marker (':') where the delimiter takes precedence.
1839         */
1840        delim_p = memchr(name, delim, namelen);
1841        colon_p = memchr(name, ':', namelen);
1842
1843        if (delim_p && colon_p)
1844                end = delim_p < colon_p ? delim_p : colon_p;
1845        else if (!delim_p && colon_p)
1846                end = colon_p;
1847        else {
1848                end = delim_p;
1849                if (!end) /* case: hostname:/ */
1850                        end = name + namelen;
1851        }
1852
1853        if (end <= name)
1854                return -EINVAL;
1855
1856        /* do dns_resolve upcall */
1857        ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1858        if (ip_len > 0)
1859                ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1860        else
1861                ret = -ESRCH;
1862
1863        kfree(ip_addr);
1864
1865        *ipend = end;
1866
1867        pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1868                        ret, ret ? "failed" : ceph_pr_addr(ss));
1869
1870        return ret;
1871}
1872#else
1873static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1874                struct sockaddr_storage *ss, char delim, const char **ipend)
1875{
1876        return -EINVAL;
1877}
1878#endif
1879
1880/*
1881 * Parse a server name (IP or hostname). If a valid IP address is not found
1882 * then try to extract a hostname to resolve using userspace DNS upcall.
1883 */
1884static int ceph_parse_server_name(const char *name, size_t namelen,
1885                        struct sockaddr_storage *ss, char delim, const char **ipend)
1886{
1887        int ret;
1888
1889        ret = ceph_pton(name, namelen, ss, delim, ipend);
1890        if (ret)
1891                ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1892
1893        return ret;
1894}
1895
1896/*
1897 * Parse an ip[:port] list into an addr array.  Use the default
1898 * monitor port if a port isn't specified.
1899 */
1900int ceph_parse_ips(const char *c, const char *end,
1901                   struct ceph_entity_addr *addr,
1902                   int max_count, int *count)
1903{
1904        int i, ret = -EINVAL;
1905        const char *p = c;
1906
1907        dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1908        for (i = 0; i < max_count; i++) {
1909                const char *ipend;
1910                struct sockaddr_storage *ss = &addr[i].in_addr;
1911                int port;
1912                char delim = ',';
1913
1914                if (*p == '[') {
1915                        delim = ']';
1916                        p++;
1917                }
1918
1919                ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1920                if (ret)
1921                        goto bad;
1922                ret = -EINVAL;
1923
1924                p = ipend;
1925
1926                if (delim == ']') {
1927                        if (*p != ']') {
1928                                dout("missing matching ']'\n");
1929                                goto bad;
1930                        }
1931                        p++;
1932                }
1933
1934                /* port? */
1935                if (p < end && *p == ':') {
1936                        port = 0;
1937                        p++;
1938                        while (p < end && *p >= '0' && *p <= '9') {
1939                                port = (port * 10) + (*p - '0');
1940                                p++;
1941                        }
1942                        if (port == 0)
1943                                port = CEPH_MON_PORT;
1944                        else if (port > 65535)
1945                                goto bad;
1946                } else {
1947                        port = CEPH_MON_PORT;
1948                }
1949
1950                addr_set_port(ss, port);
1951
1952                dout("parse_ips got %s\n", ceph_pr_addr(ss));
1953
1954                if (p == end)
1955                        break;
1956                if (*p != ',')
1957                        goto bad;
1958                p++;
1959        }
1960
1961        if (p != end)
1962                goto bad;
1963
1964        if (count)
1965                *count = i + 1;
1966        return 0;
1967
1968bad:
1969        pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1970        return ret;
1971}
1972EXPORT_SYMBOL(ceph_parse_ips);
1973
1974static int process_banner(struct ceph_connection *con)
1975{
1976        dout("process_banner on %p\n", con);
1977
1978        if (verify_hello(con) < 0)
1979                return -1;
1980
1981        ceph_decode_addr(&con->actual_peer_addr);
1982        ceph_decode_addr(&con->peer_addr_for_me);
1983
1984        /*
1985         * Make sure the other end is who we wanted.  note that the other
1986         * end may not yet know their ip address, so if it's 0.0.0.0, give
1987         * them the benefit of the doubt.
1988         */
1989        if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1990                   sizeof(con->peer_addr)) != 0 &&
1991            !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1992              con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1993                pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1994                        ceph_pr_addr(&con->peer_addr.in_addr),
1995                        (int)le32_to_cpu(con->peer_addr.nonce),
1996                        ceph_pr_addr(&con->actual_peer_addr.in_addr),
1997                        (int)le32_to_cpu(con->actual_peer_addr.nonce));
1998                con->error_msg = "wrong peer at address";
1999                return -1;
2000        }
2001
2002        /*
2003         * did we learn our address?
2004         */
2005        if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2006                int port = addr_port(&con->msgr->inst.addr.in_addr);
2007
2008                memcpy(&con->msgr->inst.addr.in_addr,
2009                       &con->peer_addr_for_me.in_addr,
2010                       sizeof(con->peer_addr_for_me.in_addr));
2011                addr_set_port(&con->msgr->inst.addr.in_addr, port);
2012                encode_my_addr(con->msgr);
2013                dout("process_banner learned my addr is %s\n",
2014                     ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2015        }
2016
2017        return 0;
2018}
2019
2020static int process_connect(struct ceph_connection *con)
2021{
2022        u64 sup_feat = from_msgr(con->msgr)->supported_features;
2023        u64 req_feat = from_msgr(con->msgr)->required_features;
2024        u64 server_feat = ceph_sanitize_features(
2025                                le64_to_cpu(con->in_reply.features));
2026        int ret;
2027
2028        dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2029
2030        switch (con->in_reply.tag) {
2031        case CEPH_MSGR_TAG_FEATURES:
2032                pr_err("%s%lld %s feature set mismatch,"
2033                       " my %llx < server's %llx, missing %llx\n",
2034                       ENTITY_NAME(con->peer_name),
2035                       ceph_pr_addr(&con->peer_addr.in_addr),
2036                       sup_feat, server_feat, server_feat & ~sup_feat);
2037                con->error_msg = "missing required protocol features";
2038                reset_connection(con);
2039                return -1;
2040
2041        case CEPH_MSGR_TAG_BADPROTOVER:
2042                pr_err("%s%lld %s protocol version mismatch,"
2043                       " my %d != server's %d\n",
2044                       ENTITY_NAME(con->peer_name),
2045                       ceph_pr_addr(&con->peer_addr.in_addr),
2046                       le32_to_cpu(con->out_connect.protocol_version),
2047                       le32_to_cpu(con->in_reply.protocol_version));
2048                con->error_msg = "protocol version mismatch";
2049                reset_connection(con);
2050                return -1;
2051
2052        case CEPH_MSGR_TAG_BADAUTHORIZER:
2053                con->auth_retry++;
2054                dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2055                     con->auth_retry);
2056                if (con->auth_retry == 2) {
2057                        con->error_msg = "connect authorization failure";
2058                        return -1;
2059                }
2060                con_out_kvec_reset(con);
2061                ret = prepare_write_connect(con);
2062                if (ret < 0)
2063                        return ret;
2064                prepare_read_connect(con);
2065                break;
2066
2067        case CEPH_MSGR_TAG_RESETSESSION:
2068                /*
2069                 * If we connected with a large connect_seq but the peer
2070                 * has no record of a session with us (no connection, or
2071                 * connect_seq == 0), they will send RESETSESION to indicate
2072                 * that they must have reset their session, and may have
2073                 * dropped messages.
2074                 */
2075                dout("process_connect got RESET peer seq %u\n",
2076                     le32_to_cpu(con->in_reply.connect_seq));
2077                pr_err("%s%lld %s connection reset\n",
2078                       ENTITY_NAME(con->peer_name),
2079                       ceph_pr_addr(&con->peer_addr.in_addr));
2080                reset_connection(con);
2081                con_out_kvec_reset(con);
2082                ret = prepare_write_connect(con);
2083                if (ret < 0)
2084                        return ret;
2085                prepare_read_connect(con);
2086
2087                /* Tell ceph about it. */
2088                mutex_unlock(&con->mutex);
2089                pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2090                if (con->ops->peer_reset)
2091                        con->ops->peer_reset(con);
2092                mutex_lock(&con->mutex);
2093                if (con->state != CON_STATE_NEGOTIATING)
2094                        return -EAGAIN;
2095                break;
2096
2097        case CEPH_MSGR_TAG_RETRY_SESSION:
2098                /*
2099                 * If we sent a smaller connect_seq than the peer has, try
2100                 * again with a larger value.
2101                 */
2102                dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2103                     le32_to_cpu(con->out_connect.connect_seq),
2104                     le32_to_cpu(con->in_reply.connect_seq));
2105                con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2106                con_out_kvec_reset(con);
2107                ret = prepare_write_connect(con);
2108                if (ret < 0)
2109                        return ret;
2110                prepare_read_connect(con);
2111                break;
2112
2113        case CEPH_MSGR_TAG_RETRY_GLOBAL:
2114                /*
2115                 * If we sent a smaller global_seq than the peer has, try
2116                 * again with a larger value.
2117                 */
2118                dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2119                     con->peer_global_seq,
2120                     le32_to_cpu(con->in_reply.global_seq));
2121                get_global_seq(con->msgr,
2122                               le32_to_cpu(con->in_reply.global_seq));
2123                con_out_kvec_reset(con);
2124                ret = prepare_write_connect(con);
2125                if (ret < 0)
2126                        return ret;
2127                prepare_read_connect(con);
2128                break;
2129
2130        case CEPH_MSGR_TAG_SEQ:
2131        case CEPH_MSGR_TAG_READY:
2132                if (req_feat & ~server_feat) {
2133                        pr_err("%s%lld %s protocol feature mismatch,"
2134                               " my required %llx > server's %llx, need %llx\n",
2135                               ENTITY_NAME(con->peer_name),
2136                               ceph_pr_addr(&con->peer_addr.in_addr),
2137                               req_feat, server_feat, req_feat & ~server_feat);
2138                        con->error_msg = "missing required protocol features";
2139                        reset_connection(con);
2140                        return -1;
2141                }
2142
2143                WARN_ON(con->state != CON_STATE_NEGOTIATING);
2144                con->state = CON_STATE_OPEN;
2145                con->auth_retry = 0;    /* we authenticated; clear flag */
2146                con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2147                con->connect_seq++;
2148                con->peer_features = server_feat;
2149                dout("process_connect got READY gseq %d cseq %d (%d)\n",
2150                     con->peer_global_seq,
2151                     le32_to_cpu(con->in_reply.connect_seq),
2152                     con->connect_seq);
2153                WARN_ON(con->connect_seq !=
2154                        le32_to_cpu(con->in_reply.connect_seq));
2155
2156                if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2157                        con_flag_set(con, CON_FLAG_LOSSYTX);
2158
2159                con->delay = 0;      /* reset backoff memory */
2160
2161                if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2162                        prepare_write_seq(con);
2163                        prepare_read_seq(con);
2164                } else {
2165                        prepare_read_tag(con);
2166                }
2167                break;
2168
2169        case CEPH_MSGR_TAG_WAIT:
2170                /*
2171                 * If there is a connection race (we are opening
2172                 * connections to each other), one of us may just have
2173                 * to WAIT.  This shouldn't happen if we are the
2174                 * client.
2175                 */
2176                con->error_msg = "protocol error, got WAIT as client";
2177                return -1;
2178
2179        default:
2180                con->error_msg = "protocol error, garbage tag during connect";
2181                return -1;
2182        }
2183        return 0;
2184}
2185
2186
2187/*
2188 * read (part of) an ack
2189 */
2190static int read_partial_ack(struct ceph_connection *con)
2191{
2192        int size = sizeof (con->in_temp_ack);
2193        int end = size;
2194
2195        return read_partial(con, end, size, &con->in_temp_ack);
2196}
2197
2198/*
2199 * We can finally discard anything that's been acked.
2200 */
2201static void process_ack(struct ceph_connection *con)
2202{
2203        struct ceph_msg *m;
2204        u64 ack = le64_to_cpu(con->in_temp_ack);
2205        u64 seq;
2206
2207        while (!list_empty(&con->out_sent)) {
2208                m = list_first_entry(&con->out_sent, struct ceph_msg,
2209                                     list_head);
2210                seq = le64_to_cpu(m->hdr.seq);
2211                if (seq > ack)
2212                        break;
2213                dout("got ack for seq %llu type %d at %p\n", seq,
2214                     le16_to_cpu(m->hdr.type), m);
2215                m->ack_stamp = jiffies;
2216                ceph_msg_remove(m);
2217        }
2218        prepare_read_tag(con);
2219}
2220
2221
2222static int read_partial_message_section(struct ceph_connection *con,
2223                                        struct kvec *section,
2224                                        unsigned int sec_len, u32 *crc)
2225{
2226        int ret, left;
2227
2228        BUG_ON(!section);
2229
2230        while (section->iov_len < sec_len) {
2231                BUG_ON(section->iov_base == NULL);
2232                left = sec_len - section->iov_len;
2233                ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2234                                       section->iov_len, left);
2235                if (ret <= 0)
2236                        return ret;
2237                section->iov_len += ret;
2238        }
2239        if (section->iov_len == sec_len)
2240                *crc = crc32c(0, section->iov_base, section->iov_len);
2241
2242        return 1;
2243}
2244
2245static int read_partial_msg_data(struct ceph_connection *con)
2246{
2247        struct ceph_msg *msg = con->in_msg;
2248        struct ceph_msg_data_cursor *cursor = &msg->cursor;
2249        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2250        struct page *page;
2251        size_t page_offset;
2252        size_t length;
2253        u32 crc = 0;
2254        int ret;
2255
2256        BUG_ON(!msg);
2257        if (list_empty(&msg->data))
2258                return -EIO;
2259
2260        if (do_datacrc)
2261                crc = con->in_data_crc;
2262        while (cursor->resid) {
2263                page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2264                ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2265                if (ret <= 0) {
2266                        if (do_datacrc)
2267                                con->in_data_crc = crc;
2268
2269                        return ret;
2270                }
2271
2272                if (do_datacrc)
2273                        crc = ceph_crc32c_page(crc, page, page_offset, ret);
2274                (void) ceph_msg_data_advance(cursor, (size_t)ret);
2275        }
2276        if (do_datacrc)
2277                con->in_data_crc = crc;
2278
2279        return 1;       /* must return > 0 to indicate success */
2280}
2281
2282/*
2283 * read (part of) a message.
2284 */
2285static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2286
2287static int read_partial_message(struct ceph_connection *con)
2288{
2289        struct ceph_msg *m = con->in_msg;
2290        int size;
2291        int end;
2292        int ret;
2293        unsigned int front_len, middle_len, data_len;
2294        bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2295        bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2296        u64 seq;
2297        u32 crc;
2298
2299        dout("read_partial_message con %p msg %p\n", con, m);
2300
2301        /* header */
2302        size = sizeof (con->in_hdr);
2303        end = size;
2304        ret = read_partial(con, end, size, &con->in_hdr);
2305        if (ret <= 0)
2306                return ret;
2307
2308        crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2309        if (cpu_to_le32(crc) != con->in_hdr.crc) {
2310                pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2311                       crc, con->in_hdr.crc);
2312                return -EBADMSG;
2313        }
2314
2315        front_len = le32_to_cpu(con->in_hdr.front_len);
2316        if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2317                return -EIO;
2318        middle_len = le32_to_cpu(con->in_hdr.middle_len);
2319        if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2320                return -EIO;
2321        data_len = le32_to_cpu(con->in_hdr.data_len);
2322        if (data_len > CEPH_MSG_MAX_DATA_LEN)
2323                return -EIO;
2324
2325        /* verify seq# */
2326        seq = le64_to_cpu(con->in_hdr.seq);
2327        if ((s64)seq - (s64)con->in_seq < 1) {
2328                pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2329                        ENTITY_NAME(con->peer_name),
2330                        ceph_pr_addr(&con->peer_addr.in_addr),
2331                        seq, con->in_seq + 1);
2332                con->in_base_pos = -front_len - middle_len - data_len -
2333                        sizeof_footer(con);
2334                con->in_tag = CEPH_MSGR_TAG_READY;
2335                return 1;
2336        } else if ((s64)seq - (s64)con->in_seq > 1) {
2337                pr_err("read_partial_message bad seq %lld expected %lld\n",
2338                       seq, con->in_seq + 1);
2339                con->error_msg = "bad message sequence # for incoming message";
2340                return -EBADE;
2341        }
2342
2343        /* allocate message? */
2344        if (!con->in_msg) {
2345                int skip = 0;
2346
2347                dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2348                     front_len, data_len);
2349                ret = ceph_con_in_msg_alloc(con, &skip);
2350                if (ret < 0)
2351                        return ret;
2352
2353                BUG_ON(!con->in_msg ^ skip);
2354                if (skip) {
2355                        /* skip this message */
2356                        dout("alloc_msg said skip message\n");
2357                        con->in_base_pos = -front_len - middle_len - data_len -
2358                                sizeof_footer(con);
2359                        con->in_tag = CEPH_MSGR_TAG_READY;
2360                        con->in_seq++;
2361                        return 1;
2362                }
2363
2364                BUG_ON(!con->in_msg);
2365                BUG_ON(con->in_msg->con != con);
2366                m = con->in_msg;
2367                m->front.iov_len = 0;    /* haven't read it yet */
2368                if (m->middle)
2369                        m->middle->vec.iov_len = 0;
2370
2371                /* prepare for data payload, if any */
2372
2373                if (data_len)
2374                        prepare_message_data(con->in_msg, data_len);
2375        }
2376
2377        /* front */
2378        ret = read_partial_message_section(con, &m->front, front_len,
2379                                           &con->in_front_crc);
2380        if (ret <= 0)
2381                return ret;
2382
2383        /* middle */
2384        if (m->middle) {
2385                ret = read_partial_message_section(con, &m->middle->vec,
2386                                                   middle_len,
2387                                                   &con->in_middle_crc);
2388                if (ret <= 0)
2389                        return ret;
2390        }
2391
2392        /* (page) data */
2393        if (data_len) {
2394                ret = read_partial_msg_data(con);
2395                if (ret <= 0)
2396                        return ret;
2397        }
2398
2399        /* footer */
2400        size = sizeof_footer(con);
2401        end += size;
2402        ret = read_partial(con, end, size, &m->footer);
2403        if (ret <= 0)
2404                return ret;
2405
2406        if (!need_sign) {
2407                m->footer.flags = m->old_footer.flags;
2408                m->footer.sig = 0;
2409        }
2410
2411        dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2412             m, front_len, m->footer.front_crc, middle_len,
2413             m->footer.middle_crc, data_len, m->footer.data_crc);
2414
2415        /* crc ok? */
2416        if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2417                pr_err("read_partial_message %p front crc %u != exp. %u\n",
2418                       m, con->in_front_crc, m->footer.front_crc);
2419                return -EBADMSG;
2420        }
2421        if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2422                pr_err("read_partial_message %p middle crc %u != exp %u\n",
2423                       m, con->in_middle_crc, m->footer.middle_crc);
2424                return -EBADMSG;
2425        }
2426        if (do_datacrc &&
2427            (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2428            con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2429                pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2430                       con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2431                return -EBADMSG;
2432        }
2433
2434        if (need_sign && con->ops->check_message_signature &&
2435            con->ops->check_message_signature(m)) {
2436                pr_err("read_partial_message %p signature check failed\n", m);
2437                return -EBADMSG;
2438        }
2439
2440        return 1; /* done! */
2441}
2442
2443/*
2444 * Process message.  This happens in the worker thread.  The callback should
2445 * be careful not to do anything that waits on other incoming messages or it
2446 * may deadlock.
2447 */
2448static void process_message(struct ceph_connection *con)
2449{
2450        struct ceph_msg *msg = con->in_msg;
2451
2452        BUG_ON(con->in_msg->con != con);
2453        con->in_msg = NULL;
2454
2455        /* if first message, set peer_name */
2456        if (con->peer_name.type == 0)
2457                con->peer_name = msg->hdr.src;
2458
2459        con->in_seq++;
2460        mutex_unlock(&con->mutex);
2461
2462        dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2463             msg, le64_to_cpu(msg->hdr.seq),
2464             ENTITY_NAME(msg->hdr.src),
2465             le16_to_cpu(msg->hdr.type),
2466             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2467             le32_to_cpu(msg->hdr.front_len),
2468             le32_to_cpu(msg->hdr.data_len),
2469             con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2470        con->ops->dispatch(con, msg);
2471
2472        mutex_lock(&con->mutex);
2473}
2474
2475static int read_keepalive_ack(struct ceph_connection *con)
2476{
2477        struct ceph_timespec ceph_ts;
2478        size_t size = sizeof(ceph_ts);
2479        int ret = read_partial(con, size, size, &ceph_ts);
2480        if (ret <= 0)
2481                return ret;
2482        ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2483        prepare_read_tag(con);
2484        return 1;
2485}
2486
2487/*
2488 * Write something to the socket.  Called in a worker thread when the
2489 * socket appears to be writeable and we have something ready to send.
2490 */
2491static int try_write(struct ceph_connection *con)
2492{
2493        int ret = 1;
2494
2495        dout("try_write start %p state %lu\n", con, con->state);
2496
2497more:
2498        dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2499
2500        /* open the socket first? */
2501        if (con->state == CON_STATE_PREOPEN) {
2502                BUG_ON(con->sock);
2503                con->state = CON_STATE_CONNECTING;
2504
2505                con_out_kvec_reset(con);
2506                prepare_write_banner(con);
2507                prepare_read_banner(con);
2508
2509                BUG_ON(con->in_msg);
2510                con->in_tag = CEPH_MSGR_TAG_READY;
2511                dout("try_write initiating connect on %p new state %lu\n",
2512                     con, con->state);
2513                ret = ceph_tcp_connect(con);
2514                if (ret < 0) {
2515                        con->error_msg = "connect error";
2516                        goto out;
2517                }
2518        }
2519
2520more_kvec:
2521        /* kvec data queued? */
2522        if (con->out_kvec_left) {
2523                ret = write_partial_kvec(con);
2524                if (ret <= 0)
2525                        goto out;
2526        }
2527        if (con->out_skip) {
2528                ret = write_partial_skip(con);
2529                if (ret <= 0)
2530                        goto out;
2531        }
2532
2533        /* msg pages? */
2534        if (con->out_msg) {
2535                if (con->out_msg_done) {
2536                        ceph_msg_put(con->out_msg);
2537                        con->out_msg = NULL;   /* we're done with this one */
2538                        goto do_next;
2539                }
2540
2541                ret = write_partial_message_data(con);
2542                if (ret == 1)
2543                        goto more_kvec;  /* we need to send the footer, too! */
2544                if (ret == 0)
2545                        goto out;
2546                if (ret < 0) {
2547                        dout("try_write write_partial_message_data err %d\n",
2548                             ret);
2549                        goto out;
2550                }
2551        }
2552
2553do_next:
2554        if (con->state == CON_STATE_OPEN) {
2555                if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2556                        prepare_write_keepalive(con);
2557                        goto more;
2558                }
2559                /* is anything else pending? */
2560                if (!list_empty(&con->out_queue)) {
2561                        prepare_write_message(con);
2562                        goto more;
2563                }
2564                if (con->in_seq > con->in_seq_acked) {
2565                        prepare_write_ack(con);
2566                        goto more;
2567                }
2568        }
2569
2570        /* Nothing to do! */
2571        con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2572        dout("try_write nothing else to write.\n");
2573        ret = 0;
2574out:
2575        dout("try_write done on %p ret %d\n", con, ret);
2576        return ret;
2577}
2578
2579
2580
2581/*
2582 * Read what we can from the socket.
2583 */
2584static int try_read(struct ceph_connection *con)
2585{
2586        int ret = -1;
2587
2588more:
2589        dout("try_read start on %p state %lu\n", con, con->state);
2590        if (con->state != CON_STATE_CONNECTING &&
2591            con->state != CON_STATE_NEGOTIATING &&
2592            con->state != CON_STATE_OPEN)
2593                return 0;
2594
2595        BUG_ON(!con->sock);
2596
2597        dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2598             con->in_base_pos);
2599
2600        if (con->state == CON_STATE_CONNECTING) {
2601                dout("try_read connecting\n");
2602                ret = read_partial_banner(con);
2603                if (ret <= 0)
2604                        goto out;
2605                ret = process_banner(con);
2606                if (ret < 0)
2607                        goto out;
2608
2609                con->state = CON_STATE_NEGOTIATING;
2610
2611                /*
2612                 * Received banner is good, exchange connection info.
2613                 * Do not reset out_kvec, as sending our banner raced
2614                 * with receiving peer banner after connect completed.
2615                 */
2616                ret = prepare_write_connect(con);
2617                if (ret < 0)
2618                        goto out;
2619                prepare_read_connect(con);
2620
2621                /* Send connection info before awaiting response */
2622                goto out;
2623        }
2624
2625        if (con->state == CON_STATE_NEGOTIATING) {
2626                dout("try_read negotiating\n");
2627                ret = read_partial_connect(con);
2628                if (ret <= 0)
2629                        goto out;
2630                ret = process_connect(con);
2631                if (ret < 0)
2632                        goto out;
2633                goto more;
2634        }
2635
2636        WARN_ON(con->state != CON_STATE_OPEN);
2637
2638        if (con->in_base_pos < 0) {
2639                /*
2640                 * skipping + discarding content.
2641                 *
2642                 * FIXME: there must be a better way to do this!
2643                 */
2644                static char buf[SKIP_BUF_SIZE];
2645                int skip = min((int) sizeof (buf), -con->in_base_pos);
2646
2647                dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2648                ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2649                if (ret <= 0)
2650                        goto out;
2651                con->in_base_pos += ret;
2652                if (con->in_base_pos)
2653                        goto more;
2654        }
2655        if (con->in_tag == CEPH_MSGR_TAG_READY) {
2656                /*
2657                 * what's next?
2658                 */
2659                ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2660                if (ret <= 0)
2661                        goto out;
2662                dout("try_read got tag %d\n", (int)con->in_tag);
2663                switch (con->in_tag) {
2664                case CEPH_MSGR_TAG_MSG:
2665                        prepare_read_message(con);
2666                        break;
2667                case CEPH_MSGR_TAG_ACK:
2668                        prepare_read_ack(con);
2669                        break;
2670                case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2671                        prepare_read_keepalive_ack(con);
2672                        break;
2673                case CEPH_MSGR_TAG_CLOSE:
2674                        con_close_socket(con);
2675                        con->state = CON_STATE_CLOSED;
2676                        goto out;
2677                default:
2678                        goto bad_tag;
2679                }
2680        }
2681        if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2682                ret = read_partial_message(con);
2683                if (ret <= 0) {
2684                        switch (ret) {
2685                        case -EBADMSG:
2686                                con->error_msg = "bad crc/signature";
2687                                /* fall through */
2688                        case -EBADE:
2689                                ret = -EIO;
2690                                break;
2691                        case -EIO:
2692                                con->error_msg = "io error";
2693                                break;
2694                        }
2695                        goto out;
2696                }
2697                if (con->in_tag == CEPH_MSGR_TAG_READY)
2698                        goto more;
2699                process_message(con);
2700                if (con->state == CON_STATE_OPEN)
2701                        prepare_read_tag(con);
2702                goto more;
2703        }
2704        if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2705            con->in_tag == CEPH_MSGR_TAG_SEQ) {
2706                /*
2707                 * the final handshake seq exchange is semantically
2708                 * equivalent to an ACK
2709                 */
2710                ret = read_partial_ack(con);
2711                if (ret <= 0)
2712                        goto out;
2713                process_ack(con);
2714                goto more;
2715        }
2716        if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2717                ret = read_keepalive_ack(con);
2718                if (ret <= 0)
2719                        goto out;
2720                goto more;
2721        }
2722
2723out:
2724        dout("try_read done on %p ret %d\n", con, ret);
2725        return ret;
2726
2727bad_tag:
2728        pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2729        con->error_msg = "protocol error, garbage tag";
2730        ret = -1;
2731        goto out;
2732}
2733
2734
2735/*
2736 * Atomically queue work on a connection after the specified delay.
2737 * Bump @con reference to avoid races with connection teardown.
2738 * Returns 0 if work was queued, or an error code otherwise.
2739 */
2740static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2741{
2742        if (!con->ops->get(con)) {
2743                dout("%s %p ref count 0\n", __func__, con);
2744                return -ENOENT;
2745        }
2746
2747        if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2748                dout("%s %p - already queued\n", __func__, con);
2749                con->ops->put(con);
2750                return -EBUSY;
2751        }
2752
2753        dout("%s %p %lu\n", __func__, con, delay);
2754        return 0;
2755}
2756
2757static void queue_con(struct ceph_connection *con)
2758{
2759        (void) queue_con_delay(con, 0);
2760}
2761
2762static void cancel_con(struct ceph_connection *con)
2763{
2764        if (cancel_delayed_work(&con->work)) {
2765                dout("%s %p\n", __func__, con);
2766                con->ops->put(con);
2767        }
2768}
2769
2770static bool con_sock_closed(struct ceph_connection *con)
2771{
2772        if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2773                return false;
2774
2775#define CASE(x)                                                         \
2776        case CON_STATE_ ## x:                                           \
2777                con->error_msg = "socket closed (con state " #x ")";    \
2778                break;
2779
2780        switch (con->state) {
2781        CASE(CLOSED);
2782        CASE(PREOPEN);
2783        CASE(CONNECTING);
2784        CASE(NEGOTIATING);
2785        CASE(OPEN);
2786        CASE(STANDBY);
2787        default:
2788                pr_warn("%s con %p unrecognized state %lu\n",
2789                        __func__, con, con->state);
2790                con->error_msg = "unrecognized con state";
2791                BUG();
2792                break;
2793        }
2794#undef CASE
2795
2796        return true;
2797}
2798
2799static bool con_backoff(struct ceph_connection *con)
2800{
2801        int ret;
2802
2803        if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2804                return false;
2805
2806        ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2807        if (ret) {
2808                dout("%s: con %p FAILED to back off %lu\n", __func__,
2809                        con, con->delay);
2810                BUG_ON(ret == -ENOENT);
2811                con_flag_set(con, CON_FLAG_BACKOFF);
2812        }
2813
2814        return true;
2815}
2816
2817/* Finish fault handling; con->mutex must *not* be held here */
2818
2819static void con_fault_finish(struct ceph_connection *con)
2820{
2821        dout("%s %p\n", __func__, con);
2822
2823        /*
2824         * in case we faulted due to authentication, invalidate our
2825         * current tickets so that we can get new ones.
2826         */
2827        if (con->auth_retry) {
2828                dout("auth_retry %d, invalidating\n", con->auth_retry);
2829                if (con->ops->invalidate_authorizer)
2830                        con->ops->invalidate_authorizer(con);
2831                con->auth_retry = 0;
2832        }
2833
2834        if (con->ops->fault)
2835                con->ops->fault(con);
2836}
2837
2838/*
2839 * Do some work on a connection.  Drop a connection ref when we're done.
2840 */
2841static void ceph_con_workfn(struct work_struct *work)
2842{
2843        struct ceph_connection *con = container_of(work, struct ceph_connection,
2844                                                   work.work);
2845        bool fault;
2846
2847        mutex_lock(&con->mutex);
2848        while (true) {
2849                int ret;
2850
2851                if ((fault = con_sock_closed(con))) {
2852                        dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2853                        break;
2854                }
2855                if (con_backoff(con)) {
2856                        dout("%s: con %p BACKOFF\n", __func__, con);
2857                        break;
2858                }
2859                if (con->state == CON_STATE_STANDBY) {
2860                        dout("%s: con %p STANDBY\n", __func__, con);
2861                        break;
2862                }
2863                if (con->state == CON_STATE_CLOSED) {
2864                        dout("%s: con %p CLOSED\n", __func__, con);
2865                        BUG_ON(con->sock);
2866                        break;
2867                }
2868                if (con->state == CON_STATE_PREOPEN) {
2869                        dout("%s: con %p PREOPEN\n", __func__, con);
2870                        BUG_ON(con->sock);
2871                }
2872
2873                ret = try_read(con);
2874                if (ret < 0) {
2875                        if (ret == -EAGAIN)
2876                                continue;
2877                        if (!con->error_msg)
2878                                con->error_msg = "socket error on read";
2879                        fault = true;
2880                        break;
2881                }
2882
2883                ret = try_write(con);
2884                if (ret < 0) {
2885                        if (ret == -EAGAIN)
2886                                continue;
2887                        if (!con->error_msg)
2888                                con->error_msg = "socket error on write";
2889                        fault = true;
2890                }
2891
2892                break;  /* If we make it to here, we're done */
2893        }
2894        if (fault)
2895                con_fault(con);
2896        mutex_unlock(&con->mutex);
2897
2898        if (fault)
2899                con_fault_finish(con);
2900
2901        con->ops->put(con);
2902}
2903
2904/*
2905 * Generic error/fault handler.  A retry mechanism is used with
2906 * exponential backoff
2907 */
2908static void con_fault(struct ceph_connection *con)
2909{
2910        dout("fault %p state %lu to peer %s\n",
2911             con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2912
2913        pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2914                ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2915        con->error_msg = NULL;
2916
2917        WARN_ON(con->state != CON_STATE_CONNECTING &&
2918               con->state != CON_STATE_NEGOTIATING &&
2919               con->state != CON_STATE_OPEN);
2920
2921        con_close_socket(con);
2922
2923        if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2924                dout("fault on LOSSYTX channel, marking CLOSED\n");
2925                con->state = CON_STATE_CLOSED;
2926                return;
2927        }
2928
2929        if (con->in_msg) {
2930                BUG_ON(con->in_msg->con != con);
2931                ceph_msg_put(con->in_msg);
2932                con->in_msg = NULL;
2933        }
2934
2935        /* Requeue anything that hasn't been acked */
2936        list_splice_init(&con->out_sent, &con->out_queue);
2937
2938        /* If there are no messages queued or keepalive pending, place
2939         * the connection in a STANDBY state */
2940        if (list_empty(&con->out_queue) &&
2941            !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2942                dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2943                con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2944                con->state = CON_STATE_STANDBY;
2945        } else {
2946                /* retry after a delay. */
2947                con->state = CON_STATE_PREOPEN;
2948                if (con->delay == 0)
2949                        con->delay = BASE_DELAY_INTERVAL;
2950                else if (con->delay < MAX_DELAY_INTERVAL)
2951                        con->delay *= 2;
2952                con_flag_set(con, CON_FLAG_BACKOFF);
2953                queue_con(con);
2954        }
2955}
2956
2957
2958
2959/*
2960 * initialize a new messenger instance
2961 */
2962void ceph_messenger_init(struct ceph_messenger *msgr,
2963                         struct ceph_entity_addr *myaddr)
2964{
2965        spin_lock_init(&msgr->global_seq_lock);
2966
2967        if (myaddr)
2968                msgr->inst.addr = *myaddr;
2969
2970        /* select a random nonce */
2971        msgr->inst.addr.type = 0;
2972        get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2973        encode_my_addr(msgr);
2974
2975        atomic_set(&msgr->stopping, 0);
2976        write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2977
2978        dout("%s %p\n", __func__, msgr);
2979}
2980EXPORT_SYMBOL(ceph_messenger_init);
2981
2982void ceph_messenger_fini(struct ceph_messenger *msgr)
2983{
2984        put_net(read_pnet(&msgr->net));
2985}
2986EXPORT_SYMBOL(ceph_messenger_fini);
2987
2988static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
2989{
2990        if (msg->con)
2991                msg->con->ops->put(msg->con);
2992
2993        msg->con = con ? con->ops->get(con) : NULL;
2994        BUG_ON(msg->con != con);
2995}
2996
2997static void clear_standby(struct ceph_connection *con)
2998{
2999        /* come back from STANDBY? */
3000        if (con->state == CON_STATE_STANDBY) {
3001                dout("clear_standby %p and ++connect_seq\n", con);
3002                con->state = CON_STATE_PREOPEN;
3003                con->connect_seq++;
3004                WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3005                WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3006        }
3007}
3008
3009/*
3010 * Queue up an outgoing message on the given connection.
3011 */
3012void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3013{
3014        /* set src+dst */
3015        msg->hdr.src = con->msgr->inst.name;
3016        BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3017        msg->needs_out_seq = true;
3018
3019        mutex_lock(&con->mutex);
3020
3021        if (con->state == CON_STATE_CLOSED) {
3022                dout("con_send %p closed, dropping %p\n", con, msg);
3023                ceph_msg_put(msg);
3024                mutex_unlock(&con->mutex);
3025                return;
3026        }
3027
3028        msg_con_set(msg, con);
3029
3030        BUG_ON(!list_empty(&msg->list_head));
3031        list_add_tail(&msg->list_head, &con->out_queue);
3032        dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3033             ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3034             ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3035             le32_to_cpu(msg->hdr.front_len),
3036             le32_to_cpu(msg->hdr.middle_len),
3037             le32_to_cpu(msg->hdr.data_len));
3038
3039        clear_standby(con);
3040        mutex_unlock(&con->mutex);
3041
3042        /* if there wasn't anything waiting to send before, queue
3043         * new work */
3044        if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3045                queue_con(con);
3046}
3047EXPORT_SYMBOL(ceph_con_send);
3048
3049/*
3050 * Revoke a message that was previously queued for send
3051 */
3052void ceph_msg_revoke(struct ceph_msg *msg)
3053{
3054        struct ceph_connection *con = msg->con;
3055
3056        if (!con) {
3057                dout("%s msg %p null con\n", __func__, msg);
3058                return;         /* Message not in our possession */
3059        }
3060
3061        mutex_lock(&con->mutex);
3062        if (!list_empty(&msg->list_head)) {
3063                dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3064                list_del_init(&msg->list_head);
3065                msg->hdr.seq = 0;
3066
3067                ceph_msg_put(msg);
3068        }
3069        if (con->out_msg == msg) {
3070                BUG_ON(con->out_skip);
3071                /* footer */
3072                if (con->out_msg_done) {
3073                        con->out_skip += con_out_kvec_skip(con);
3074                } else {
3075                        BUG_ON(!msg->data_length);
3076                        con->out_skip += sizeof_footer(con);
3077                }
3078                /* data, middle, front */
3079                if (msg->data_length)
3080                        con->out_skip += msg->cursor.total_resid;
3081                if (msg->middle)
3082                        con->out_skip += con_out_kvec_skip(con);
3083                con->out_skip += con_out_kvec_skip(con);
3084
3085                dout("%s %p msg %p - was sending, will write %d skip %d\n",
3086                     __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3087                msg->hdr.seq = 0;
3088                con->out_msg = NULL;
3089                ceph_msg_put(msg);
3090        }
3091
3092        mutex_unlock(&con->mutex);
3093}
3094
3095/*
3096 * Revoke a message that we may be reading data into
3097 */
3098void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3099{
3100        struct ceph_connection *con = msg->con;
3101
3102        if (!con) {
3103                dout("%s msg %p null con\n", __func__, msg);
3104                return;         /* Message not in our possession */
3105        }
3106
3107        mutex_lock(&con->mutex);
3108        if (con->in_msg == msg) {
3109                unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3110                unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3111                unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3112
3113                /* skip rest of message */
3114                dout("%s %p msg %p revoked\n", __func__, con, msg);
3115                con->in_base_pos = con->in_base_pos -
3116                                sizeof(struct ceph_msg_header) -
3117                                front_len -
3118                                middle_len -
3119                                data_len -
3120                                sizeof(struct ceph_msg_footer);
3121                ceph_msg_put(con->in_msg);
3122                con->in_msg = NULL;
3123                con->in_tag = CEPH_MSGR_TAG_READY;
3124                con->in_seq++;
3125        } else {
3126                dout("%s %p in_msg %p msg %p no-op\n",
3127                     __func__, con, con->in_msg, msg);
3128        }
3129        mutex_unlock(&con->mutex);
3130}
3131
3132/*
3133 * Queue a keepalive byte to ensure the tcp connection is alive.
3134 */
3135void ceph_con_keepalive(struct ceph_connection *con)
3136{
3137        dout("con_keepalive %p\n", con);
3138        mutex_lock(&con->mutex);
3139        clear_standby(con);
3140        mutex_unlock(&con->mutex);
3141        if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3142            con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3143                queue_con(con);
3144}
3145EXPORT_SYMBOL(ceph_con_keepalive);
3146
3147bool ceph_con_keepalive_expired(struct ceph_connection *con,
3148                               unsigned long interval)
3149{
3150        if (interval > 0 &&
3151            (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3152                struct timespec now = CURRENT_TIME;
3153                struct timespec ts;
3154                jiffies_to_timespec(interval, &ts);
3155                ts = timespec_add(con->last_keepalive_ack, ts);
3156                return timespec_compare(&now, &ts) >= 0;
3157        }
3158        return false;
3159}
3160
3161static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3162{
3163        struct ceph_msg_data *data;
3164
3165        if (WARN_ON(!ceph_msg_data_type_valid(type)))
3166                return NULL;
3167
3168        data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3169        if (data)
3170                data->type = type;
3171        INIT_LIST_HEAD(&data->links);
3172
3173        return data;
3174}
3175
3176static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3177{
3178        if (!data)
3179                return;
3180
3181        WARN_ON(!list_empty(&data->links));
3182        if (data->type == CEPH_MSG_DATA_PAGELIST)
3183                ceph_pagelist_release(data->pagelist);
3184        kmem_cache_free(ceph_msg_data_cache, data);
3185}
3186
3187void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3188                size_t length, size_t alignment)
3189{
3190        struct ceph_msg_data *data;
3191
3192        BUG_ON(!pages);
3193        BUG_ON(!length);
3194
3195        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3196        BUG_ON(!data);
3197        data->pages = pages;
3198        data->length = length;
3199        data->alignment = alignment & ~PAGE_MASK;
3200
3201        list_add_tail(&data->links, &msg->data);
3202        msg->data_length += length;
3203}
3204EXPORT_SYMBOL(ceph_msg_data_add_pages);
3205
3206void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3207                                struct ceph_pagelist *pagelist)
3208{
3209        struct ceph_msg_data *data;
3210
3211        BUG_ON(!pagelist);
3212        BUG_ON(!pagelist->length);
3213
3214        data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3215        BUG_ON(!data);
3216        data->pagelist = pagelist;
3217
3218        list_add_tail(&data->links, &msg->data);
3219        msg->data_length += pagelist->length;
3220}
3221EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3222
3223#ifdef  CONFIG_BLOCK
3224void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3225                size_t length)
3226{
3227        struct ceph_msg_data *data;
3228
3229        BUG_ON(!bio);
3230
3231        data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3232        BUG_ON(!data);
3233        data->bio = bio;
3234        data->bio_length = length;
3235
3236        list_add_tail(&data->links, &msg->data);
3237        msg->data_length += length;
3238}
3239EXPORT_SYMBOL(ceph_msg_data_add_bio);
3240#endif  /* CONFIG_BLOCK */
3241
3242/*
3243 * construct a new message with given type, size
3244 * the new msg has a ref count of 1.
3245 */
3246struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3247                              bool can_fail)
3248{
3249        struct ceph_msg *m;
3250
3251        m = kmem_cache_zalloc(ceph_msg_cache, flags);
3252        if (m == NULL)
3253                goto out;
3254
3255        m->hdr.type = cpu_to_le16(type);
3256        m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3257        m->hdr.front_len = cpu_to_le32(front_len);
3258
3259        INIT_LIST_HEAD(&m->list_head);
3260        kref_init(&m->kref);
3261        INIT_LIST_HEAD(&m->data);
3262
3263        /* front */
3264        if (front_len) {
3265                m->front.iov_base = ceph_kvmalloc(front_len, flags);
3266                if (m->front.iov_base == NULL) {
3267                        dout("ceph_msg_new can't allocate %d bytes\n",
3268                             front_len);
3269                        goto out2;
3270                }
3271        } else {
3272                m->front.iov_base = NULL;
3273        }
3274        m->front_alloc_len = m->front.iov_len = front_len;
3275
3276        dout("ceph_msg_new %p front %d\n", m, front_len);
3277        return m;
3278
3279out2:
3280        ceph_msg_put(m);
3281out:
3282        if (!can_fail) {
3283                pr_err("msg_new can't create type %d front %d\n", type,
3284                       front_len);
3285                WARN_ON(1);
3286        } else {
3287                dout("msg_new can't create type %d front %d\n", type,
3288                     front_len);
3289        }
3290        return NULL;
3291}
3292EXPORT_SYMBOL(ceph_msg_new);
3293
3294/*
3295 * Allocate "middle" portion of a message, if it is needed and wasn't
3296 * allocated by alloc_msg.  This allows us to read a small fixed-size
3297 * per-type header in the front and then gracefully fail (i.e.,
3298 * propagate the error to the caller based on info in the front) when
3299 * the middle is too large.
3300 */
3301static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3302{
3303        int type = le16_to_cpu(msg->hdr.type);
3304        int middle_len = le32_to_cpu(msg->hdr.middle_len);
3305
3306        dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3307             ceph_msg_type_name(type), middle_len);
3308        BUG_ON(!middle_len);
3309        BUG_ON(msg->middle);
3310
3311        msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3312        if (!msg->middle)
3313                return -ENOMEM;
3314        return 0;
3315}
3316
3317/*
3318 * Allocate a message for receiving an incoming message on a
3319 * connection, and save the result in con->in_msg.  Uses the
3320 * connection's private alloc_msg op if available.
3321 *
3322 * Returns 0 on success, or a negative error code.
3323 *
3324 * On success, if we set *skip = 1:
3325 *  - the next message should be skipped and ignored.
3326 *  - con->in_msg == NULL
3327 * or if we set *skip = 0:
3328 *  - con->in_msg is non-null.
3329 * On error (ENOMEM, EAGAIN, ...),
3330 *  - con->in_msg == NULL
3331 */
3332static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3333{
3334        struct ceph_msg_header *hdr = &con->in_hdr;
3335        int middle_len = le32_to_cpu(hdr->middle_len);
3336        struct ceph_msg *msg;
3337        int ret = 0;
3338
3339        BUG_ON(con->in_msg != NULL);
3340        BUG_ON(!con->ops->alloc_msg);
3341
3342        mutex_unlock(&con->mutex);
3343        msg = con->ops->alloc_msg(con, hdr, skip);
3344        mutex_lock(&con->mutex);
3345        if (con->state != CON_STATE_OPEN) {
3346                if (msg)
3347                        ceph_msg_put(msg);
3348                return -EAGAIN;
3349        }
3350        if (msg) {
3351                BUG_ON(*skip);
3352                msg_con_set(msg, con);
3353                con->in_msg = msg;
3354        } else {
3355                /*
3356                 * Null message pointer means either we should skip
3357                 * this message or we couldn't allocate memory.  The
3358                 * former is not an error.
3359                 */
3360                if (*skip)
3361                        return 0;
3362
3363                con->error_msg = "error allocating memory for incoming message";
3364                return -ENOMEM;
3365        }
3366        memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3367
3368        if (middle_len && !con->in_msg->middle) {
3369                ret = ceph_alloc_middle(con, con->in_msg);
3370                if (ret < 0) {
3371                        ceph_msg_put(con->in_msg);
3372                        con->in_msg = NULL;
3373                }
3374        }
3375
3376        return ret;
3377}
3378
3379
3380/*
3381 * Free a generically kmalloc'd message.
3382 */
3383static void ceph_msg_free(struct ceph_msg *m)
3384{
3385        dout("%s %p\n", __func__, m);
3386        kvfree(m->front.iov_base);
3387        kmem_cache_free(ceph_msg_cache, m);
3388}
3389
3390static void ceph_msg_release(struct kref *kref)
3391{
3392        struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3393        struct ceph_msg_data *data, *next;
3394
3395        dout("%s %p\n", __func__, m);
3396        WARN_ON(!list_empty(&m->list_head));
3397
3398        msg_con_set(m, NULL);
3399
3400        /* drop middle, data, if any */
3401        if (m->middle) {
3402                ceph_buffer_put(m->middle);
3403                m->middle = NULL;
3404        }
3405
3406        list_for_each_entry_safe(data, next, &m->data, links) {
3407                list_del_init(&data->links);
3408                ceph_msg_data_destroy(data);
3409        }
3410        m->data_length = 0;
3411
3412        if (m->pool)
3413                ceph_msgpool_put(m->pool, m);
3414        else
3415                ceph_msg_free(m);
3416}
3417
3418struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3419{
3420        dout("%s %p (was %d)\n", __func__, msg,
3421             atomic_read(&msg->kref.refcount));
3422        kref_get(&msg->kref);
3423        return msg;
3424}
3425EXPORT_SYMBOL(ceph_msg_get);
3426
3427void ceph_msg_put(struct ceph_msg *msg)
3428{
3429        dout("%s %p (was %d)\n", __func__, msg,
3430             atomic_read(&msg->kref.refcount));
3431        kref_put(&msg->kref, ceph_msg_release);
3432}
3433EXPORT_SYMBOL(ceph_msg_put);
3434
3435void ceph_msg_dump(struct ceph_msg *msg)
3436{
3437        pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3438                 msg->front_alloc_len, msg->data_length);
3439        print_hex_dump(KERN_DEBUG, "header: ",
3440                       DUMP_PREFIX_OFFSET, 16, 1,
3441                       &msg->hdr, sizeof(msg->hdr), true);
3442        print_hex_dump(KERN_DEBUG, " front: ",
3443                       DUMP_PREFIX_OFFSET, 16, 1,
3444                       msg->front.iov_base, msg->front.iov_len, true);
3445        if (msg->middle)
3446                print_hex_dump(KERN_DEBUG, "middle: ",
3447                               DUMP_PREFIX_OFFSET, 16, 1,
3448                               msg->middle->vec.iov_base,
3449                               msg->middle->vec.iov_len, true);
3450        print_hex_dump(KERN_DEBUG, "footer: ",
3451                       DUMP_PREFIX_OFFSET, 16, 1,
3452                       &msg->footer, sizeof(msg->footer), true);
3453}
3454EXPORT_SYMBOL(ceph_msg_dump);
3455