linux/net/core/skbuff.c
<<
>>
Prefs
   1/*
   2 *      Routines having to do with the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:        Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *                      Florian La Roche <rzsfl@rz.uni-sb.de>
   6 *
   7 *      Fixes:
   8 *              Alan Cox        :       Fixed the worst of the load
   9 *                                      balancer bugs.
  10 *              Dave Platt      :       Interrupt stacking fix.
  11 *      Richard Kooijman        :       Timestamp fixes.
  12 *              Alan Cox        :       Changed buffer format.
  13 *              Alan Cox        :       destructor hook for AF_UNIX etc.
  14 *              Linus Torvalds  :       Better skb_clone.
  15 *              Alan Cox        :       Added skb_copy.
  16 *              Alan Cox        :       Added all the changed routines Linus
  17 *                                      only put in the headers
  18 *              Ray VanTassle   :       Fixed --skb->lock in free
  19 *              Alan Cox        :       skb_copy copy arp field
  20 *              Andi Kleen      :       slabified it.
  21 *              Robert Olsson   :       Removed skb_head_pool
  22 *
  23 *      NOTE:
  24 *              The __skb_ routines should be called with interrupts
  25 *      disabled, or you better be *real* sure that the operation is atomic
  26 *      with respect to whatever list is being frobbed (e.g. via lock_sock()
  27 *      or via disabling bottom half handlers, etc).
  28 *
  29 *      This program is free software; you can redistribute it and/or
  30 *      modify it under the terms of the GNU General Public License
  31 *      as published by the Free Software Foundation; either version
  32 *      2 of the License, or (at your option) any later version.
  33 */
  34
  35/*
  36 *      The functions in this file will not compile correctly with gcc 2.4.x
  37 */
  38
  39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  40
  41#include <linux/module.h>
  42#include <linux/types.h>
  43#include <linux/kernel.h>
  44#include <linux/kmemcheck.h>
  45#include <linux/mm.h>
  46#include <linux/interrupt.h>
  47#include <linux/in.h>
  48#include <linux/inet.h>
  49#include <linux/slab.h>
  50#include <linux/tcp.h>
  51#include <linux/udp.h>
  52#include <linux/netdevice.h>
  53#ifdef CONFIG_NET_CLS_ACT
  54#include <net/pkt_sched.h>
  55#endif
  56#include <linux/string.h>
  57#include <linux/skbuff.h>
  58#include <linux/splice.h>
  59#include <linux/cache.h>
  60#include <linux/rtnetlink.h>
  61#include <linux/init.h>
  62#include <linux/scatterlist.h>
  63#include <linux/errqueue.h>
  64#include <linux/prefetch.h>
  65#include <linux/if_vlan.h>
  66
  67#include <net/protocol.h>
  68#include <net/dst.h>
  69#include <net/sock.h>
  70#include <net/checksum.h>
  71#include <net/ip6_checksum.h>
  72#include <net/xfrm.h>
  73
  74#include <asm/uaccess.h>
  75#include <trace/events/skb.h>
  76#include <linux/highmem.h>
  77#include <linux/capability.h>
  78#include <linux/user_namespace.h>
  79
  80struct kmem_cache *skbuff_head_cache __read_mostly;
  81static struct kmem_cache *skbuff_fclone_cache __read_mostly;
  82int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
  83EXPORT_SYMBOL(sysctl_max_skb_frags);
  84
  85/**
  86 *      skb_panic - private function for out-of-line support
  87 *      @skb:   buffer
  88 *      @sz:    size
  89 *      @addr:  address
  90 *      @msg:   skb_over_panic or skb_under_panic
  91 *
  92 *      Out-of-line support for skb_put() and skb_push().
  93 *      Called via the wrapper skb_over_panic() or skb_under_panic().
  94 *      Keep out of line to prevent kernel bloat.
  95 *      __builtin_return_address is not used because it is not always reliable.
  96 */
  97static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
  98                      const char msg[])
  99{
 100        pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
 101                 msg, addr, skb->len, sz, skb->head, skb->data,
 102                 (unsigned long)skb->tail, (unsigned long)skb->end,
 103                 skb->dev ? skb->dev->name : "<NULL>");
 104        BUG();
 105}
 106
 107static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 108{
 109        skb_panic(skb, sz, addr, __func__);
 110}
 111
 112static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
 113{
 114        skb_panic(skb, sz, addr, __func__);
 115}
 116
 117/*
 118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
 119 * the caller if emergency pfmemalloc reserves are being used. If it is and
 120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
 121 * may be used. Otherwise, the packet data may be discarded until enough
 122 * memory is free
 123 */
 124#define kmalloc_reserve(size, gfp, node, pfmemalloc) \
 125         __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
 126
 127static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
 128                               unsigned long ip, bool *pfmemalloc)
 129{
 130        void *obj;
 131        bool ret_pfmemalloc = false;
 132
 133        /*
 134         * Try a regular allocation, when that fails and we're not entitled
 135         * to the reserves, fail.
 136         */
 137        obj = kmalloc_node_track_caller(size,
 138                                        flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
 139                                        node);
 140        if (obj || !(gfp_pfmemalloc_allowed(flags)))
 141                goto out;
 142
 143        /* Try again but now we are using pfmemalloc reserves */
 144        ret_pfmemalloc = true;
 145        obj = kmalloc_node_track_caller(size, flags, node);
 146
 147out:
 148        if (pfmemalloc)
 149                *pfmemalloc = ret_pfmemalloc;
 150
 151        return obj;
 152}
 153
 154/*      Allocate a new skbuff. We do this ourselves so we can fill in a few
 155 *      'private' fields and also do memory statistics to find all the
 156 *      [BEEP] leaks.
 157 *
 158 */
 159
 160struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
 161{
 162        struct sk_buff *skb;
 163
 164        /* Get the HEAD */
 165        skb = kmem_cache_alloc_node(skbuff_head_cache,
 166                                    gfp_mask & ~__GFP_DMA, node);
 167        if (!skb)
 168                goto out;
 169
 170        /*
 171         * Only clear those fields we need to clear, not those that we will
 172         * actually initialise below. Hence, don't put any more fields after
 173         * the tail pointer in struct sk_buff!
 174         */
 175        memset(skb, 0, offsetof(struct sk_buff, tail));
 176        skb->head = NULL;
 177        skb->truesize = sizeof(struct sk_buff);
 178        atomic_set(&skb->users, 1);
 179
 180        skb->mac_header = (typeof(skb->mac_header))~0U;
 181out:
 182        return skb;
 183}
 184
 185/**
 186 *      __alloc_skb     -       allocate a network buffer
 187 *      @size: size to allocate
 188 *      @gfp_mask: allocation mask
 189 *      @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
 190 *              instead of head cache and allocate a cloned (child) skb.
 191 *              If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
 192 *              allocations in case the data is required for writeback
 193 *      @node: numa node to allocate memory on
 194 *
 195 *      Allocate a new &sk_buff. The returned buffer has no headroom and a
 196 *      tail room of at least size bytes. The object has a reference count
 197 *      of one. The return is the buffer. On a failure the return is %NULL.
 198 *
 199 *      Buffers may only be allocated from interrupts using a @gfp_mask of
 200 *      %GFP_ATOMIC.
 201 */
 202struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
 203                            int flags, int node)
 204{
 205        struct kmem_cache *cache;
 206        struct skb_shared_info *shinfo;
 207        struct sk_buff *skb;
 208        u8 *data;
 209        bool pfmemalloc;
 210
 211        cache = (flags & SKB_ALLOC_FCLONE)
 212                ? skbuff_fclone_cache : skbuff_head_cache;
 213
 214        if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
 215                gfp_mask |= __GFP_MEMALLOC;
 216
 217        /* Get the HEAD */
 218        skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
 219        if (!skb)
 220                goto out;
 221        prefetchw(skb);
 222
 223        /* We do our best to align skb_shared_info on a separate cache
 224         * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
 225         * aligned memory blocks, unless SLUB/SLAB debug is enabled.
 226         * Both skb->head and skb_shared_info are cache line aligned.
 227         */
 228        size = SKB_DATA_ALIGN(size);
 229        size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 230        data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
 231        if (!data)
 232                goto nodata;
 233        /* kmalloc(size) might give us more room than requested.
 234         * Put skb_shared_info exactly at the end of allocated zone,
 235         * to allow max possible filling before reallocation.
 236         */
 237        size = SKB_WITH_OVERHEAD(ksize(data));
 238        prefetchw(data + size);
 239
 240        /*
 241         * Only clear those fields we need to clear, not those that we will
 242         * actually initialise below. Hence, don't put any more fields after
 243         * the tail pointer in struct sk_buff!
 244         */
 245        memset(skb, 0, offsetof(struct sk_buff, tail));
 246        /* Account for allocated memory : skb + skb->head */
 247        skb->truesize = SKB_TRUESIZE(size);
 248        skb->pfmemalloc = pfmemalloc;
 249        atomic_set(&skb->users, 1);
 250        skb->head = data;
 251        skb->data = data;
 252        skb_reset_tail_pointer(skb);
 253        skb->end = skb->tail + size;
 254        skb->mac_header = (typeof(skb->mac_header))~0U;
 255        skb->transport_header = (typeof(skb->transport_header))~0U;
 256
 257        /* make sure we initialize shinfo sequentially */
 258        shinfo = skb_shinfo(skb);
 259        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 260        atomic_set(&shinfo->dataref, 1);
 261        kmemcheck_annotate_variable(shinfo->destructor_arg);
 262
 263        if (flags & SKB_ALLOC_FCLONE) {
 264                struct sk_buff_fclones *fclones;
 265
 266                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 267
 268                kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
 269                skb->fclone = SKB_FCLONE_ORIG;
 270                atomic_set(&fclones->fclone_ref, 1);
 271
 272                fclones->skb2.fclone = SKB_FCLONE_CLONE;
 273                fclones->skb2.pfmemalloc = pfmemalloc;
 274        }
 275out:
 276        return skb;
 277nodata:
 278        kmem_cache_free(cache, skb);
 279        skb = NULL;
 280        goto out;
 281}
 282EXPORT_SYMBOL(__alloc_skb);
 283
 284/**
 285 * __build_skb - build a network buffer
 286 * @data: data buffer provided by caller
 287 * @frag_size: size of data, or 0 if head was kmalloced
 288 *
 289 * Allocate a new &sk_buff. Caller provides space holding head and
 290 * skb_shared_info. @data must have been allocated by kmalloc() only if
 291 * @frag_size is 0, otherwise data should come from the page allocator
 292 *  or vmalloc()
 293 * The return is the new skb buffer.
 294 * On a failure the return is %NULL, and @data is not freed.
 295 * Notes :
 296 *  Before IO, driver allocates only data buffer where NIC put incoming frame
 297 *  Driver should add room at head (NET_SKB_PAD) and
 298 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
 299 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
 300 *  before giving packet to stack.
 301 *  RX rings only contains data buffers, not full skbs.
 302 */
 303struct sk_buff *__build_skb(void *data, unsigned int frag_size)
 304{
 305        struct skb_shared_info *shinfo;
 306        struct sk_buff *skb;
 307        unsigned int size = frag_size ? : ksize(data);
 308
 309        skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
 310        if (!skb)
 311                return NULL;
 312
 313        size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 314
 315        memset(skb, 0, offsetof(struct sk_buff, tail));
 316        skb->truesize = SKB_TRUESIZE(size);
 317        atomic_set(&skb->users, 1);
 318        skb->head = data;
 319        skb->data = data;
 320        skb_reset_tail_pointer(skb);
 321        skb->end = skb->tail + size;
 322        skb->mac_header = (typeof(skb->mac_header))~0U;
 323        skb->transport_header = (typeof(skb->transport_header))~0U;
 324
 325        /* make sure we initialize shinfo sequentially */
 326        shinfo = skb_shinfo(skb);
 327        memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
 328        atomic_set(&shinfo->dataref, 1);
 329        kmemcheck_annotate_variable(shinfo->destructor_arg);
 330
 331        return skb;
 332}
 333
 334/* build_skb() is wrapper over __build_skb(), that specifically
 335 * takes care of skb->head and skb->pfmemalloc
 336 * This means that if @frag_size is not zero, then @data must be backed
 337 * by a page fragment, not kmalloc() or vmalloc()
 338 */
 339struct sk_buff *build_skb(void *data, unsigned int frag_size)
 340{
 341        struct sk_buff *skb = __build_skb(data, frag_size);
 342
 343        if (skb && frag_size) {
 344                skb->head_frag = 1;
 345                if (page_is_pfmemalloc(virt_to_head_page(data)))
 346                        skb->pfmemalloc = 1;
 347        }
 348        return skb;
 349}
 350EXPORT_SYMBOL(build_skb);
 351
 352#define NAPI_SKB_CACHE_SIZE     64
 353
 354struct napi_alloc_cache {
 355        struct page_frag_cache page;
 356        size_t skb_count;
 357        void *skb_cache[NAPI_SKB_CACHE_SIZE];
 358};
 359
 360static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
 361static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
 362
 363static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 364{
 365        struct page_frag_cache *nc;
 366        unsigned long flags;
 367        void *data;
 368
 369        local_irq_save(flags);
 370        nc = this_cpu_ptr(&netdev_alloc_cache);
 371        data = __alloc_page_frag(nc, fragsz, gfp_mask);
 372        local_irq_restore(flags);
 373        return data;
 374}
 375
 376/**
 377 * netdev_alloc_frag - allocate a page fragment
 378 * @fragsz: fragment size
 379 *
 380 * Allocates a frag from a page for receive buffer.
 381 * Uses GFP_ATOMIC allocations.
 382 */
 383void *netdev_alloc_frag(unsigned int fragsz)
 384{
 385        return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 386}
 387EXPORT_SYMBOL(netdev_alloc_frag);
 388
 389static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
 390{
 391        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 392
 393        return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
 394}
 395
 396void *napi_alloc_frag(unsigned int fragsz)
 397{
 398        return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
 399}
 400EXPORT_SYMBOL(napi_alloc_frag);
 401
 402/**
 403 *      __netdev_alloc_skb - allocate an skbuff for rx on a specific device
 404 *      @dev: network device to receive on
 405 *      @len: length to allocate
 406 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
 407 *
 408 *      Allocate a new &sk_buff and assign it a usage count of one. The
 409 *      buffer has NET_SKB_PAD headroom built in. Users should allocate
 410 *      the headroom they think they need without accounting for the
 411 *      built in space. The built in space is used for optimisations.
 412 *
 413 *      %NULL is returned if there is no free memory.
 414 */
 415struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
 416                                   gfp_t gfp_mask)
 417{
 418        struct page_frag_cache *nc;
 419        unsigned long flags;
 420        struct sk_buff *skb;
 421        bool pfmemalloc;
 422        void *data;
 423
 424        len += NET_SKB_PAD;
 425
 426        if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 427            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 428                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 429                if (!skb)
 430                        goto skb_fail;
 431                goto skb_success;
 432        }
 433
 434        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 435        len = SKB_DATA_ALIGN(len);
 436
 437        if (sk_memalloc_socks())
 438                gfp_mask |= __GFP_MEMALLOC;
 439
 440        local_irq_save(flags);
 441
 442        nc = this_cpu_ptr(&netdev_alloc_cache);
 443        data = __alloc_page_frag(nc, len, gfp_mask);
 444        pfmemalloc = nc->pfmemalloc;
 445
 446        local_irq_restore(flags);
 447
 448        if (unlikely(!data))
 449                return NULL;
 450
 451        skb = __build_skb(data, len);
 452        if (unlikely(!skb)) {
 453                skb_free_frag(data);
 454                return NULL;
 455        }
 456
 457        /* use OR instead of assignment to avoid clearing of bits in mask */
 458        if (pfmemalloc)
 459                skb->pfmemalloc = 1;
 460        skb->head_frag = 1;
 461
 462skb_success:
 463        skb_reserve(skb, NET_SKB_PAD);
 464        skb->dev = dev;
 465
 466skb_fail:
 467        return skb;
 468}
 469EXPORT_SYMBOL(__netdev_alloc_skb);
 470
 471/**
 472 *      __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
 473 *      @napi: napi instance this buffer was allocated for
 474 *      @len: length to allocate
 475 *      @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
 476 *
 477 *      Allocate a new sk_buff for use in NAPI receive.  This buffer will
 478 *      attempt to allocate the head from a special reserved region used
 479 *      only for NAPI Rx allocation.  By doing this we can save several
 480 *      CPU cycles by avoiding having to disable and re-enable IRQs.
 481 *
 482 *      %NULL is returned if there is no free memory.
 483 */
 484struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
 485                                 gfp_t gfp_mask)
 486{
 487        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 488        struct sk_buff *skb;
 489        void *data;
 490
 491        len += NET_SKB_PAD + NET_IP_ALIGN;
 492
 493        if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
 494            (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
 495                skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
 496                if (!skb)
 497                        goto skb_fail;
 498                goto skb_success;
 499        }
 500
 501        len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 502        len = SKB_DATA_ALIGN(len);
 503
 504        if (sk_memalloc_socks())
 505                gfp_mask |= __GFP_MEMALLOC;
 506
 507        data = __alloc_page_frag(&nc->page, len, gfp_mask);
 508        if (unlikely(!data))
 509                return NULL;
 510
 511        skb = __build_skb(data, len);
 512        if (unlikely(!skb)) {
 513                skb_free_frag(data);
 514                return NULL;
 515        }
 516
 517        /* use OR instead of assignment to avoid clearing of bits in mask */
 518        if (nc->page.pfmemalloc)
 519                skb->pfmemalloc = 1;
 520        skb->head_frag = 1;
 521
 522skb_success:
 523        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
 524        skb->dev = napi->dev;
 525
 526skb_fail:
 527        return skb;
 528}
 529EXPORT_SYMBOL(__napi_alloc_skb);
 530
 531void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
 532                     int size, unsigned int truesize)
 533{
 534        skb_fill_page_desc(skb, i, page, off, size);
 535        skb->len += size;
 536        skb->data_len += size;
 537        skb->truesize += truesize;
 538}
 539EXPORT_SYMBOL(skb_add_rx_frag);
 540
 541void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
 542                          unsigned int truesize)
 543{
 544        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 545
 546        skb_frag_size_add(frag, size);
 547        skb->len += size;
 548        skb->data_len += size;
 549        skb->truesize += truesize;
 550}
 551EXPORT_SYMBOL(skb_coalesce_rx_frag);
 552
 553static void skb_drop_list(struct sk_buff **listp)
 554{
 555        kfree_skb_list(*listp);
 556        *listp = NULL;
 557}
 558
 559static inline void skb_drop_fraglist(struct sk_buff *skb)
 560{
 561        skb_drop_list(&skb_shinfo(skb)->frag_list);
 562}
 563
 564static void skb_clone_fraglist(struct sk_buff *skb)
 565{
 566        struct sk_buff *list;
 567
 568        skb_walk_frags(skb, list)
 569                skb_get(list);
 570}
 571
 572static void skb_free_head(struct sk_buff *skb)
 573{
 574        unsigned char *head = skb->head;
 575
 576        if (skb->head_frag)
 577                skb_free_frag(head);
 578        else
 579                kfree(head);
 580}
 581
 582static void skb_release_data(struct sk_buff *skb)
 583{
 584        struct skb_shared_info *shinfo = skb_shinfo(skb);
 585        int i;
 586
 587        if (skb->cloned &&
 588            atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
 589                              &shinfo->dataref))
 590                return;
 591
 592        for (i = 0; i < shinfo->nr_frags; i++)
 593                __skb_frag_unref(&shinfo->frags[i]);
 594
 595        /*
 596         * If skb buf is from userspace, we need to notify the caller
 597         * the lower device DMA has done;
 598         */
 599        if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
 600                struct ubuf_info *uarg;
 601
 602                uarg = shinfo->destructor_arg;
 603                if (uarg->callback)
 604                        uarg->callback(uarg, true);
 605        }
 606
 607        if (shinfo->frag_list)
 608                kfree_skb_list(shinfo->frag_list);
 609
 610        skb_free_head(skb);
 611}
 612
 613/*
 614 *      Free an skbuff by memory without cleaning the state.
 615 */
 616static void kfree_skbmem(struct sk_buff *skb)
 617{
 618        struct sk_buff_fclones *fclones;
 619
 620        switch (skb->fclone) {
 621        case SKB_FCLONE_UNAVAILABLE:
 622                kmem_cache_free(skbuff_head_cache, skb);
 623                return;
 624
 625        case SKB_FCLONE_ORIG:
 626                fclones = container_of(skb, struct sk_buff_fclones, skb1);
 627
 628                /* We usually free the clone (TX completion) before original skb
 629                 * This test would have no chance to be true for the clone,
 630                 * while here, branch prediction will be good.
 631                 */
 632                if (atomic_read(&fclones->fclone_ref) == 1)
 633                        goto fastpath;
 634                break;
 635
 636        default: /* SKB_FCLONE_CLONE */
 637                fclones = container_of(skb, struct sk_buff_fclones, skb2);
 638                break;
 639        }
 640        if (!atomic_dec_and_test(&fclones->fclone_ref))
 641                return;
 642fastpath:
 643        kmem_cache_free(skbuff_fclone_cache, fclones);
 644}
 645
 646static void skb_release_head_state(struct sk_buff *skb)
 647{
 648        skb_dst_drop(skb);
 649#ifdef CONFIG_XFRM
 650        secpath_put(skb->sp);
 651#endif
 652        if (skb->destructor) {
 653                WARN_ON(in_irq());
 654                skb->destructor(skb);
 655        }
 656#if IS_ENABLED(CONFIG_NF_CONNTRACK)
 657        nf_conntrack_put(skb->nfct);
 658#endif
 659#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
 660        nf_bridge_put(skb->nf_bridge);
 661#endif
 662}
 663
 664/* Free everything but the sk_buff shell. */
 665static void skb_release_all(struct sk_buff *skb)
 666{
 667        skb_release_head_state(skb);
 668        if (likely(skb->head))
 669                skb_release_data(skb);
 670}
 671
 672/**
 673 *      __kfree_skb - private function
 674 *      @skb: buffer
 675 *
 676 *      Free an sk_buff. Release anything attached to the buffer.
 677 *      Clean the state. This is an internal helper function. Users should
 678 *      always call kfree_skb
 679 */
 680
 681void __kfree_skb(struct sk_buff *skb)
 682{
 683        skb_release_all(skb);
 684        kfree_skbmem(skb);
 685}
 686EXPORT_SYMBOL(__kfree_skb);
 687
 688/**
 689 *      kfree_skb - free an sk_buff
 690 *      @skb: buffer to free
 691 *
 692 *      Drop a reference to the buffer and free it if the usage count has
 693 *      hit zero.
 694 */
 695void kfree_skb(struct sk_buff *skb)
 696{
 697        if (unlikely(!skb))
 698                return;
 699        if (likely(atomic_read(&skb->users) == 1))
 700                smp_rmb();
 701        else if (likely(!atomic_dec_and_test(&skb->users)))
 702                return;
 703        trace_kfree_skb(skb, __builtin_return_address(0));
 704        __kfree_skb(skb);
 705}
 706EXPORT_SYMBOL(kfree_skb);
 707
 708void kfree_skb_list(struct sk_buff *segs)
 709{
 710        while (segs) {
 711                struct sk_buff *next = segs->next;
 712
 713                kfree_skb(segs);
 714                segs = next;
 715        }
 716}
 717EXPORT_SYMBOL(kfree_skb_list);
 718
 719/**
 720 *      skb_tx_error - report an sk_buff xmit error
 721 *      @skb: buffer that triggered an error
 722 *
 723 *      Report xmit error if a device callback is tracking this skb.
 724 *      skb must be freed afterwards.
 725 */
 726void skb_tx_error(struct sk_buff *skb)
 727{
 728        if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
 729                struct ubuf_info *uarg;
 730
 731                uarg = skb_shinfo(skb)->destructor_arg;
 732                if (uarg->callback)
 733                        uarg->callback(uarg, false);
 734                skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 735        }
 736}
 737EXPORT_SYMBOL(skb_tx_error);
 738
 739/**
 740 *      consume_skb - free an skbuff
 741 *      @skb: buffer to free
 742 *
 743 *      Drop a ref to the buffer and free it if the usage count has hit zero
 744 *      Functions identically to kfree_skb, but kfree_skb assumes that the frame
 745 *      is being dropped after a failure and notes that
 746 */
 747void consume_skb(struct sk_buff *skb)
 748{
 749        if (unlikely(!skb))
 750                return;
 751        if (likely(atomic_read(&skb->users) == 1))
 752                smp_rmb();
 753        else if (likely(!atomic_dec_and_test(&skb->users)))
 754                return;
 755        trace_consume_skb(skb);
 756        __kfree_skb(skb);
 757}
 758EXPORT_SYMBOL(consume_skb);
 759
 760void __kfree_skb_flush(void)
 761{
 762        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 763
 764        /* flush skb_cache if containing objects */
 765        if (nc->skb_count) {
 766                kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
 767                                     nc->skb_cache);
 768                nc->skb_count = 0;
 769        }
 770}
 771
 772static inline void _kfree_skb_defer(struct sk_buff *skb)
 773{
 774        struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
 775
 776        /* drop skb->head and call any destructors for packet */
 777        skb_release_all(skb);
 778
 779        /* record skb to CPU local list */
 780        nc->skb_cache[nc->skb_count++] = skb;
 781
 782#ifdef CONFIG_SLUB
 783        /* SLUB writes into objects when freeing */
 784        prefetchw(skb);
 785#endif
 786
 787        /* flush skb_cache if it is filled */
 788        if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
 789                kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
 790                                     nc->skb_cache);
 791                nc->skb_count = 0;
 792        }
 793}
 794void __kfree_skb_defer(struct sk_buff *skb)
 795{
 796        _kfree_skb_defer(skb);
 797}
 798
 799void napi_consume_skb(struct sk_buff *skb, int budget)
 800{
 801        if (unlikely(!skb))
 802                return;
 803
 804        /* Zero budget indicate non-NAPI context called us, like netpoll */
 805        if (unlikely(!budget)) {
 806                dev_consume_skb_any(skb);
 807                return;
 808        }
 809
 810        if (likely(atomic_read(&skb->users) == 1))
 811                smp_rmb();
 812        else if (likely(!atomic_dec_and_test(&skb->users)))
 813                return;
 814        /* if reaching here SKB is ready to free */
 815        trace_consume_skb(skb);
 816
 817        /* if SKB is a clone, don't handle this case */
 818        if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
 819                __kfree_skb(skb);
 820                return;
 821        }
 822
 823        _kfree_skb_defer(skb);
 824}
 825EXPORT_SYMBOL(napi_consume_skb);
 826
 827/* Make sure a field is enclosed inside headers_start/headers_end section */
 828#define CHECK_SKB_FIELD(field) \
 829        BUILD_BUG_ON(offsetof(struct sk_buff, field) <          \
 830                     offsetof(struct sk_buff, headers_start));  \
 831        BUILD_BUG_ON(offsetof(struct sk_buff, field) >          \
 832                     offsetof(struct sk_buff, headers_end));    \
 833
 834static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
 835{
 836        new->tstamp             = old->tstamp;
 837        /* We do not copy old->sk */
 838        new->dev                = old->dev;
 839        memcpy(new->cb, old->cb, sizeof(old->cb));
 840        skb_dst_copy(new, old);
 841#ifdef CONFIG_XFRM
 842        new->sp                 = secpath_get(old->sp);
 843#endif
 844        __nf_copy(new, old, false);
 845
 846        /* Note : this field could be in headers_start/headers_end section
 847         * It is not yet because we do not want to have a 16 bit hole
 848         */
 849        new->queue_mapping = old->queue_mapping;
 850
 851        memcpy(&new->headers_start, &old->headers_start,
 852               offsetof(struct sk_buff, headers_end) -
 853               offsetof(struct sk_buff, headers_start));
 854        CHECK_SKB_FIELD(protocol);
 855        CHECK_SKB_FIELD(csum);
 856        CHECK_SKB_FIELD(hash);
 857        CHECK_SKB_FIELD(priority);
 858        CHECK_SKB_FIELD(skb_iif);
 859        CHECK_SKB_FIELD(vlan_proto);
 860        CHECK_SKB_FIELD(vlan_tci);
 861        CHECK_SKB_FIELD(transport_header);
 862        CHECK_SKB_FIELD(network_header);
 863        CHECK_SKB_FIELD(mac_header);
 864        CHECK_SKB_FIELD(inner_protocol);
 865        CHECK_SKB_FIELD(inner_transport_header);
 866        CHECK_SKB_FIELD(inner_network_header);
 867        CHECK_SKB_FIELD(inner_mac_header);
 868        CHECK_SKB_FIELD(mark);
 869#ifdef CONFIG_NETWORK_SECMARK
 870        CHECK_SKB_FIELD(secmark);
 871#endif
 872#ifdef CONFIG_NET_RX_BUSY_POLL
 873        CHECK_SKB_FIELD(napi_id);
 874#endif
 875#ifdef CONFIG_XPS
 876        CHECK_SKB_FIELD(sender_cpu);
 877#endif
 878#ifdef CONFIG_NET_SCHED
 879        CHECK_SKB_FIELD(tc_index);
 880#ifdef CONFIG_NET_CLS_ACT
 881        CHECK_SKB_FIELD(tc_verd);
 882#endif
 883#endif
 884
 885}
 886
 887/*
 888 * You should not add any new code to this function.  Add it to
 889 * __copy_skb_header above instead.
 890 */
 891static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
 892{
 893#define C(x) n->x = skb->x
 894
 895        n->next = n->prev = NULL;
 896        n->sk = NULL;
 897        __copy_skb_header(n, skb);
 898
 899        C(len);
 900        C(data_len);
 901        C(mac_len);
 902        n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
 903        n->cloned = 1;
 904        n->nohdr = 0;
 905        n->destructor = NULL;
 906        C(tail);
 907        C(end);
 908        C(head);
 909        C(head_frag);
 910        C(data);
 911        C(truesize);
 912        atomic_set(&n->users, 1);
 913
 914        atomic_inc(&(skb_shinfo(skb)->dataref));
 915        skb->cloned = 1;
 916
 917        return n;
 918#undef C
 919}
 920
 921/**
 922 *      skb_morph       -       morph one skb into another
 923 *      @dst: the skb to receive the contents
 924 *      @src: the skb to supply the contents
 925 *
 926 *      This is identical to skb_clone except that the target skb is
 927 *      supplied by the user.
 928 *
 929 *      The target skb is returned upon exit.
 930 */
 931struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
 932{
 933        skb_release_all(dst);
 934        return __skb_clone(dst, src);
 935}
 936EXPORT_SYMBOL_GPL(skb_morph);
 937
 938/**
 939 *      skb_copy_ubufs  -       copy userspace skb frags buffers to kernel
 940 *      @skb: the skb to modify
 941 *      @gfp_mask: allocation priority
 942 *
 943 *      This must be called on SKBTX_DEV_ZEROCOPY skb.
 944 *      It will copy all frags into kernel and drop the reference
 945 *      to userspace pages.
 946 *
 947 *      If this function is called from an interrupt gfp_mask() must be
 948 *      %GFP_ATOMIC.
 949 *
 950 *      Returns 0 on success or a negative error code on failure
 951 *      to allocate kernel memory to copy to.
 952 */
 953int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
 954{
 955        int i;
 956        int num_frags = skb_shinfo(skb)->nr_frags;
 957        struct page *page, *head = NULL;
 958        struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
 959
 960        for (i = 0; i < num_frags; i++) {
 961                u8 *vaddr;
 962                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
 963
 964                page = alloc_page(gfp_mask);
 965                if (!page) {
 966                        while (head) {
 967                                struct page *next = (struct page *)page_private(head);
 968                                put_page(head);
 969                                head = next;
 970                        }
 971                        return -ENOMEM;
 972                }
 973                vaddr = kmap_atomic(skb_frag_page(f));
 974                memcpy(page_address(page),
 975                       vaddr + f->page_offset, skb_frag_size(f));
 976                kunmap_atomic(vaddr);
 977                set_page_private(page, (unsigned long)head);
 978                head = page;
 979        }
 980
 981        /* skb frags release userspace buffers */
 982        for (i = 0; i < num_frags; i++)
 983                skb_frag_unref(skb, i);
 984
 985        uarg->callback(uarg, false);
 986
 987        /* skb frags point to kernel buffers */
 988        for (i = num_frags - 1; i >= 0; i--) {
 989                __skb_fill_page_desc(skb, i, head, 0,
 990                                     skb_shinfo(skb)->frags[i].size);
 991                head = (struct page *)page_private(head);
 992        }
 993
 994        skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
 995        return 0;
 996}
 997EXPORT_SYMBOL_GPL(skb_copy_ubufs);
 998
 999/**
1000 *      skb_clone       -       duplicate an sk_buff
1001 *      @skb: buffer to clone
1002 *      @gfp_mask: allocation priority
1003 *
1004 *      Duplicate an &sk_buff. The new one is not owned by a socket. Both
1005 *      copies share the same packet data but not structure. The new
1006 *      buffer has a reference count of 1. If the allocation fails the
1007 *      function returns %NULL otherwise the new buffer is returned.
1008 *
1009 *      If this function is called from an interrupt gfp_mask() must be
1010 *      %GFP_ATOMIC.
1011 */
1012
1013struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1014{
1015        struct sk_buff_fclones *fclones = container_of(skb,
1016                                                       struct sk_buff_fclones,
1017                                                       skb1);
1018        struct sk_buff *n;
1019
1020        if (skb_orphan_frags(skb, gfp_mask))
1021                return NULL;
1022
1023        if (skb->fclone == SKB_FCLONE_ORIG &&
1024            atomic_read(&fclones->fclone_ref) == 1) {
1025                n = &fclones->skb2;
1026                atomic_set(&fclones->fclone_ref, 2);
1027        } else {
1028                if (skb_pfmemalloc(skb))
1029                        gfp_mask |= __GFP_MEMALLOC;
1030
1031                n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1032                if (!n)
1033                        return NULL;
1034
1035                kmemcheck_annotate_bitfield(n, flags1);
1036                n->fclone = SKB_FCLONE_UNAVAILABLE;
1037        }
1038
1039        return __skb_clone(n, skb);
1040}
1041EXPORT_SYMBOL(skb_clone);
1042
1043static void skb_headers_offset_update(struct sk_buff *skb, int off)
1044{
1045        /* Only adjust this if it actually is csum_start rather than csum */
1046        if (skb->ip_summed == CHECKSUM_PARTIAL)
1047                skb->csum_start += off;
1048        /* {transport,network,mac}_header and tail are relative to skb->head */
1049        skb->transport_header += off;
1050        skb->network_header   += off;
1051        if (skb_mac_header_was_set(skb))
1052                skb->mac_header += off;
1053        skb->inner_transport_header += off;
1054        skb->inner_network_header += off;
1055        skb->inner_mac_header += off;
1056}
1057
1058static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1059{
1060        __copy_skb_header(new, old);
1061
1062        skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1063        skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1064        skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1065}
1066
1067static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1068{
1069        if (skb_pfmemalloc(skb))
1070                return SKB_ALLOC_RX;
1071        return 0;
1072}
1073
1074/**
1075 *      skb_copy        -       create private copy of an sk_buff
1076 *      @skb: buffer to copy
1077 *      @gfp_mask: allocation priority
1078 *
1079 *      Make a copy of both an &sk_buff and its data. This is used when the
1080 *      caller wishes to modify the data and needs a private copy of the
1081 *      data to alter. Returns %NULL on failure or the pointer to the buffer
1082 *      on success. The returned buffer has a reference count of 1.
1083 *
1084 *      As by-product this function converts non-linear &sk_buff to linear
1085 *      one, so that &sk_buff becomes completely private and caller is allowed
1086 *      to modify all the data of returned buffer. This means that this
1087 *      function is not recommended for use in circumstances when only
1088 *      header is going to be modified. Use pskb_copy() instead.
1089 */
1090
1091struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1092{
1093        int headerlen = skb_headroom(skb);
1094        unsigned int size = skb_end_offset(skb) + skb->data_len;
1095        struct sk_buff *n = __alloc_skb(size, gfp_mask,
1096                                        skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1097
1098        if (!n)
1099                return NULL;
1100
1101        /* Set the data pointer */
1102        skb_reserve(n, headerlen);
1103        /* Set the tail pointer and length */
1104        skb_put(n, skb->len);
1105
1106        if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1107                BUG();
1108
1109        copy_skb_header(n, skb);
1110        return n;
1111}
1112EXPORT_SYMBOL(skb_copy);
1113
1114/**
1115 *      __pskb_copy_fclone      -  create copy of an sk_buff with private head.
1116 *      @skb: buffer to copy
1117 *      @headroom: headroom of new skb
1118 *      @gfp_mask: allocation priority
1119 *      @fclone: if true allocate the copy of the skb from the fclone
1120 *      cache instead of the head cache; it is recommended to set this
1121 *      to true for the cases where the copy will likely be cloned
1122 *
1123 *      Make a copy of both an &sk_buff and part of its data, located
1124 *      in header. Fragmented data remain shared. This is used when
1125 *      the caller wishes to modify only header of &sk_buff and needs
1126 *      private copy of the header to alter. Returns %NULL on failure
1127 *      or the pointer to the buffer on success.
1128 *      The returned buffer has a reference count of 1.
1129 */
1130
1131struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1132                                   gfp_t gfp_mask, bool fclone)
1133{
1134        unsigned int size = skb_headlen(skb) + headroom;
1135        int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1136        struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1137
1138        if (!n)
1139                goto out;
1140
1141        /* Set the data pointer */
1142        skb_reserve(n, headroom);
1143        /* Set the tail pointer and length */
1144        skb_put(n, skb_headlen(skb));
1145        /* Copy the bytes */
1146        skb_copy_from_linear_data(skb, n->data, n->len);
1147
1148        n->truesize += skb->data_len;
1149        n->data_len  = skb->data_len;
1150        n->len       = skb->len;
1151
1152        if (skb_shinfo(skb)->nr_frags) {
1153                int i;
1154
1155                if (skb_orphan_frags(skb, gfp_mask)) {
1156                        kfree_skb(n);
1157                        n = NULL;
1158                        goto out;
1159                }
1160                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1161                        skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1162                        skb_frag_ref(skb, i);
1163                }
1164                skb_shinfo(n)->nr_frags = i;
1165        }
1166
1167        if (skb_has_frag_list(skb)) {
1168                skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1169                skb_clone_fraglist(n);
1170        }
1171
1172        copy_skb_header(n, skb);
1173out:
1174        return n;
1175}
1176EXPORT_SYMBOL(__pskb_copy_fclone);
1177
1178/**
1179 *      pskb_expand_head - reallocate header of &sk_buff
1180 *      @skb: buffer to reallocate
1181 *      @nhead: room to add at head
1182 *      @ntail: room to add at tail
1183 *      @gfp_mask: allocation priority
1184 *
1185 *      Expands (or creates identical copy, if @nhead and @ntail are zero)
1186 *      header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1187 *      reference count of 1. Returns zero in the case of success or error,
1188 *      if expansion failed. In the last case, &sk_buff is not changed.
1189 *
1190 *      All the pointers pointing into skb header may change and must be
1191 *      reloaded after call to this function.
1192 */
1193
1194int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1195                     gfp_t gfp_mask)
1196{
1197        int i;
1198        u8 *data;
1199        int size = nhead + skb_end_offset(skb) + ntail;
1200        long off;
1201
1202        BUG_ON(nhead < 0);
1203
1204        if (skb_shared(skb))
1205                BUG();
1206
1207        size = SKB_DATA_ALIGN(size);
1208
1209        if (skb_pfmemalloc(skb))
1210                gfp_mask |= __GFP_MEMALLOC;
1211        data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1212                               gfp_mask, NUMA_NO_NODE, NULL);
1213        if (!data)
1214                goto nodata;
1215        size = SKB_WITH_OVERHEAD(ksize(data));
1216
1217        /* Copy only real data... and, alas, header. This should be
1218         * optimized for the cases when header is void.
1219         */
1220        memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1221
1222        memcpy((struct skb_shared_info *)(data + size),
1223               skb_shinfo(skb),
1224               offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1225
1226        /*
1227         * if shinfo is shared we must drop the old head gracefully, but if it
1228         * is not we can just drop the old head and let the existing refcount
1229         * be since all we did is relocate the values
1230         */
1231        if (skb_cloned(skb)) {
1232                /* copy this zero copy skb frags */
1233                if (skb_orphan_frags(skb, gfp_mask))
1234                        goto nofrags;
1235                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1236                        skb_frag_ref(skb, i);
1237
1238                if (skb_has_frag_list(skb))
1239                        skb_clone_fraglist(skb);
1240
1241                skb_release_data(skb);
1242        } else {
1243                skb_free_head(skb);
1244        }
1245        off = (data + nhead) - skb->head;
1246
1247        skb->head     = data;
1248        skb->head_frag = 0;
1249        skb->data    += off;
1250#ifdef NET_SKBUFF_DATA_USES_OFFSET
1251        skb->end      = size;
1252        off           = nhead;
1253#else
1254        skb->end      = skb->head + size;
1255#endif
1256        skb->tail             += off;
1257        skb_headers_offset_update(skb, nhead);
1258        skb->cloned   = 0;
1259        skb->hdr_len  = 0;
1260        skb->nohdr    = 0;
1261        atomic_set(&skb_shinfo(skb)->dataref, 1);
1262        return 0;
1263
1264nofrags:
1265        kfree(data);
1266nodata:
1267        return -ENOMEM;
1268}
1269EXPORT_SYMBOL(pskb_expand_head);
1270
1271/* Make private copy of skb with writable head and some headroom */
1272
1273struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1274{
1275        struct sk_buff *skb2;
1276        int delta = headroom - skb_headroom(skb);
1277
1278        if (delta <= 0)
1279                skb2 = pskb_copy(skb, GFP_ATOMIC);
1280        else {
1281                skb2 = skb_clone(skb, GFP_ATOMIC);
1282                if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1283                                             GFP_ATOMIC)) {
1284                        kfree_skb(skb2);
1285                        skb2 = NULL;
1286                }
1287        }
1288        return skb2;
1289}
1290EXPORT_SYMBOL(skb_realloc_headroom);
1291
1292/**
1293 *      skb_copy_expand -       copy and expand sk_buff
1294 *      @skb: buffer to copy
1295 *      @newheadroom: new free bytes at head
1296 *      @newtailroom: new free bytes at tail
1297 *      @gfp_mask: allocation priority
1298 *
1299 *      Make a copy of both an &sk_buff and its data and while doing so
1300 *      allocate additional space.
1301 *
1302 *      This is used when the caller wishes to modify the data and needs a
1303 *      private copy of the data to alter as well as more space for new fields.
1304 *      Returns %NULL on failure or the pointer to the buffer
1305 *      on success. The returned buffer has a reference count of 1.
1306 *
1307 *      You must pass %GFP_ATOMIC as the allocation priority if this function
1308 *      is called from an interrupt.
1309 */
1310struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1311                                int newheadroom, int newtailroom,
1312                                gfp_t gfp_mask)
1313{
1314        /*
1315         *      Allocate the copy buffer
1316         */
1317        struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1318                                        gfp_mask, skb_alloc_rx_flag(skb),
1319                                        NUMA_NO_NODE);
1320        int oldheadroom = skb_headroom(skb);
1321        int head_copy_len, head_copy_off;
1322
1323        if (!n)
1324                return NULL;
1325
1326        skb_reserve(n, newheadroom);
1327
1328        /* Set the tail pointer and length */
1329        skb_put(n, skb->len);
1330
1331        head_copy_len = oldheadroom;
1332        head_copy_off = 0;
1333        if (newheadroom <= head_copy_len)
1334                head_copy_len = newheadroom;
1335        else
1336                head_copy_off = newheadroom - head_copy_len;
1337
1338        /* Copy the linear header and data. */
1339        if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1340                          skb->len + head_copy_len))
1341                BUG();
1342
1343        copy_skb_header(n, skb);
1344
1345        skb_headers_offset_update(n, newheadroom - oldheadroom);
1346
1347        return n;
1348}
1349EXPORT_SYMBOL(skb_copy_expand);
1350
1351/**
1352 *      skb_pad                 -       zero pad the tail of an skb
1353 *      @skb: buffer to pad
1354 *      @pad: space to pad
1355 *
1356 *      Ensure that a buffer is followed by a padding area that is zero
1357 *      filled. Used by network drivers which may DMA or transfer data
1358 *      beyond the buffer end onto the wire.
1359 *
1360 *      May return error in out of memory cases. The skb is freed on error.
1361 */
1362
1363int skb_pad(struct sk_buff *skb, int pad)
1364{
1365        int err;
1366        int ntail;
1367
1368        /* If the skbuff is non linear tailroom is always zero.. */
1369        if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1370                memset(skb->data+skb->len, 0, pad);
1371                return 0;
1372        }
1373
1374        ntail = skb->data_len + pad - (skb->end - skb->tail);
1375        if (likely(skb_cloned(skb) || ntail > 0)) {
1376                err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1377                if (unlikely(err))
1378                        goto free_skb;
1379        }
1380
1381        /* FIXME: The use of this function with non-linear skb's really needs
1382         * to be audited.
1383         */
1384        err = skb_linearize(skb);
1385        if (unlikely(err))
1386                goto free_skb;
1387
1388        memset(skb->data + skb->len, 0, pad);
1389        return 0;
1390
1391free_skb:
1392        kfree_skb(skb);
1393        return err;
1394}
1395EXPORT_SYMBOL(skb_pad);
1396
1397/**
1398 *      pskb_put - add data to the tail of a potentially fragmented buffer
1399 *      @skb: start of the buffer to use
1400 *      @tail: tail fragment of the buffer to use
1401 *      @len: amount of data to add
1402 *
1403 *      This function extends the used data area of the potentially
1404 *      fragmented buffer. @tail must be the last fragment of @skb -- or
1405 *      @skb itself. If this would exceed the total buffer size the kernel
1406 *      will panic. A pointer to the first byte of the extra data is
1407 *      returned.
1408 */
1409
1410unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1411{
1412        if (tail != skb) {
1413                skb->data_len += len;
1414                skb->len += len;
1415        }
1416        return skb_put(tail, len);
1417}
1418EXPORT_SYMBOL_GPL(pskb_put);
1419
1420/**
1421 *      skb_put - add data to a buffer
1422 *      @skb: buffer to use
1423 *      @len: amount of data to add
1424 *
1425 *      This function extends the used data area of the buffer. If this would
1426 *      exceed the total buffer size the kernel will panic. A pointer to the
1427 *      first byte of the extra data is returned.
1428 */
1429unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1430{
1431        unsigned char *tmp = skb_tail_pointer(skb);
1432        SKB_LINEAR_ASSERT(skb);
1433        skb->tail += len;
1434        skb->len  += len;
1435        if (unlikely(skb->tail > skb->end))
1436                skb_over_panic(skb, len, __builtin_return_address(0));
1437        return tmp;
1438}
1439EXPORT_SYMBOL(skb_put);
1440
1441/**
1442 *      skb_push - add data to the start of a buffer
1443 *      @skb: buffer to use
1444 *      @len: amount of data to add
1445 *
1446 *      This function extends the used data area of the buffer at the buffer
1447 *      start. If this would exceed the total buffer headroom the kernel will
1448 *      panic. A pointer to the first byte of the extra data is returned.
1449 */
1450unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1451{
1452        skb->data -= len;
1453        skb->len  += len;
1454        if (unlikely(skb->data<skb->head))
1455                skb_under_panic(skb, len, __builtin_return_address(0));
1456        return skb->data;
1457}
1458EXPORT_SYMBOL(skb_push);
1459
1460/**
1461 *      skb_pull - remove data from the start of a buffer
1462 *      @skb: buffer to use
1463 *      @len: amount of data to remove
1464 *
1465 *      This function removes data from the start of a buffer, returning
1466 *      the memory to the headroom. A pointer to the next data in the buffer
1467 *      is returned. Once the data has been pulled future pushes will overwrite
1468 *      the old data.
1469 */
1470unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1471{
1472        return skb_pull_inline(skb, len);
1473}
1474EXPORT_SYMBOL(skb_pull);
1475
1476/**
1477 *      skb_trim - remove end from a buffer
1478 *      @skb: buffer to alter
1479 *      @len: new length
1480 *
1481 *      Cut the length of a buffer down by removing data from the tail. If
1482 *      the buffer is already under the length specified it is not modified.
1483 *      The skb must be linear.
1484 */
1485void skb_trim(struct sk_buff *skb, unsigned int len)
1486{
1487        if (skb->len > len)
1488                __skb_trim(skb, len);
1489}
1490EXPORT_SYMBOL(skb_trim);
1491
1492/* Trims skb to length len. It can change skb pointers.
1493 */
1494
1495int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1496{
1497        struct sk_buff **fragp;
1498        struct sk_buff *frag;
1499        int offset = skb_headlen(skb);
1500        int nfrags = skb_shinfo(skb)->nr_frags;
1501        int i;
1502        int err;
1503
1504        if (skb_cloned(skb) &&
1505            unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1506                return err;
1507
1508        i = 0;
1509        if (offset >= len)
1510                goto drop_pages;
1511
1512        for (; i < nfrags; i++) {
1513                int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1514
1515                if (end < len) {
1516                        offset = end;
1517                        continue;
1518                }
1519
1520                skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1521
1522drop_pages:
1523                skb_shinfo(skb)->nr_frags = i;
1524
1525                for (; i < nfrags; i++)
1526                        skb_frag_unref(skb, i);
1527
1528                if (skb_has_frag_list(skb))
1529                        skb_drop_fraglist(skb);
1530                goto done;
1531        }
1532
1533        for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1534             fragp = &frag->next) {
1535                int end = offset + frag->len;
1536
1537                if (skb_shared(frag)) {
1538                        struct sk_buff *nfrag;
1539
1540                        nfrag = skb_clone(frag, GFP_ATOMIC);
1541                        if (unlikely(!nfrag))
1542                                return -ENOMEM;
1543
1544                        nfrag->next = frag->next;
1545                        consume_skb(frag);
1546                        frag = nfrag;
1547                        *fragp = frag;
1548                }
1549
1550                if (end < len) {
1551                        offset = end;
1552                        continue;
1553                }
1554
1555                if (end > len &&
1556                    unlikely((err = pskb_trim(frag, len - offset))))
1557                        return err;
1558
1559                if (frag->next)
1560                        skb_drop_list(&frag->next);
1561                break;
1562        }
1563
1564done:
1565        if (len > skb_headlen(skb)) {
1566                skb->data_len -= skb->len - len;
1567                skb->len       = len;
1568        } else {
1569                skb->len       = len;
1570                skb->data_len  = 0;
1571                skb_set_tail_pointer(skb, len);
1572        }
1573
1574        return 0;
1575}
1576EXPORT_SYMBOL(___pskb_trim);
1577
1578/**
1579 *      __pskb_pull_tail - advance tail of skb header
1580 *      @skb: buffer to reallocate
1581 *      @delta: number of bytes to advance tail
1582 *
1583 *      The function makes a sense only on a fragmented &sk_buff,
1584 *      it expands header moving its tail forward and copying necessary
1585 *      data from fragmented part.
1586 *
1587 *      &sk_buff MUST have reference count of 1.
1588 *
1589 *      Returns %NULL (and &sk_buff does not change) if pull failed
1590 *      or value of new tail of skb in the case of success.
1591 *
1592 *      All the pointers pointing into skb header may change and must be
1593 *      reloaded after call to this function.
1594 */
1595
1596/* Moves tail of skb head forward, copying data from fragmented part,
1597 * when it is necessary.
1598 * 1. It may fail due to malloc failure.
1599 * 2. It may change skb pointers.
1600 *
1601 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1602 */
1603unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1604{
1605        /* If skb has not enough free space at tail, get new one
1606         * plus 128 bytes for future expansions. If we have enough
1607         * room at tail, reallocate without expansion only if skb is cloned.
1608         */
1609        int i, k, eat = (skb->tail + delta) - skb->end;
1610
1611        if (eat > 0 || skb_cloned(skb)) {
1612                if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1613                                     GFP_ATOMIC))
1614                        return NULL;
1615        }
1616
1617        if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1618                BUG();
1619
1620        /* Optimization: no fragments, no reasons to preestimate
1621         * size of pulled pages. Superb.
1622         */
1623        if (!skb_has_frag_list(skb))
1624                goto pull_pages;
1625
1626        /* Estimate size of pulled pages. */
1627        eat = delta;
1628        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1629                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1630
1631                if (size >= eat)
1632                        goto pull_pages;
1633                eat -= size;
1634        }
1635
1636        /* If we need update frag list, we are in troubles.
1637         * Certainly, it possible to add an offset to skb data,
1638         * but taking into account that pulling is expected to
1639         * be very rare operation, it is worth to fight against
1640         * further bloating skb head and crucify ourselves here instead.
1641         * Pure masohism, indeed. 8)8)
1642         */
1643        if (eat) {
1644                struct sk_buff *list = skb_shinfo(skb)->frag_list;
1645                struct sk_buff *clone = NULL;
1646                struct sk_buff *insp = NULL;
1647
1648                do {
1649                        BUG_ON(!list);
1650
1651                        if (list->len <= eat) {
1652                                /* Eaten as whole. */
1653                                eat -= list->len;
1654                                list = list->next;
1655                                insp = list;
1656                        } else {
1657                                /* Eaten partially. */
1658
1659                                if (skb_shared(list)) {
1660                                        /* Sucks! We need to fork list. :-( */
1661                                        clone = skb_clone(list, GFP_ATOMIC);
1662                                        if (!clone)
1663                                                return NULL;
1664                                        insp = list->next;
1665                                        list = clone;
1666                                } else {
1667                                        /* This may be pulled without
1668                                         * problems. */
1669                                        insp = list;
1670                                }
1671                                if (!pskb_pull(list, eat)) {
1672                                        kfree_skb(clone);
1673                                        return NULL;
1674                                }
1675                                break;
1676                        }
1677                } while (eat);
1678
1679                /* Free pulled out fragments. */
1680                while ((list = skb_shinfo(skb)->frag_list) != insp) {
1681                        skb_shinfo(skb)->frag_list = list->next;
1682                        kfree_skb(list);
1683                }
1684                /* And insert new clone at head. */
1685                if (clone) {
1686                        clone->next = list;
1687                        skb_shinfo(skb)->frag_list = clone;
1688                }
1689        }
1690        /* Success! Now we may commit changes to skb data. */
1691
1692pull_pages:
1693        eat = delta;
1694        k = 0;
1695        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1696                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1697
1698                if (size <= eat) {
1699                        skb_frag_unref(skb, i);
1700                        eat -= size;
1701                } else {
1702                        skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1703                        if (eat) {
1704                                skb_shinfo(skb)->frags[k].page_offset += eat;
1705                                skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1706                                eat = 0;
1707                        }
1708                        k++;
1709                }
1710        }
1711        skb_shinfo(skb)->nr_frags = k;
1712
1713        skb->tail     += delta;
1714        skb->data_len -= delta;
1715
1716        return skb_tail_pointer(skb);
1717}
1718EXPORT_SYMBOL(__pskb_pull_tail);
1719
1720/**
1721 *      skb_copy_bits - copy bits from skb to kernel buffer
1722 *      @skb: source skb
1723 *      @offset: offset in source
1724 *      @to: destination buffer
1725 *      @len: number of bytes to copy
1726 *
1727 *      Copy the specified number of bytes from the source skb to the
1728 *      destination buffer.
1729 *
1730 *      CAUTION ! :
1731 *              If its prototype is ever changed,
1732 *              check arch/{*}/net/{*}.S files,
1733 *              since it is called from BPF assembly code.
1734 */
1735int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1736{
1737        int start = skb_headlen(skb);
1738        struct sk_buff *frag_iter;
1739        int i, copy;
1740
1741        if (offset > (int)skb->len - len)
1742                goto fault;
1743
1744        /* Copy header. */
1745        if ((copy = start - offset) > 0) {
1746                if (copy > len)
1747                        copy = len;
1748                skb_copy_from_linear_data_offset(skb, offset, to, copy);
1749                if ((len -= copy) == 0)
1750                        return 0;
1751                offset += copy;
1752                to     += copy;
1753        }
1754
1755        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1756                int end;
1757                skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1758
1759                WARN_ON(start > offset + len);
1760
1761                end = start + skb_frag_size(f);
1762                if ((copy = end - offset) > 0) {
1763                        u8 *vaddr;
1764
1765                        if (copy > len)
1766                                copy = len;
1767
1768                        vaddr = kmap_atomic(skb_frag_page(f));
1769                        memcpy(to,
1770                               vaddr + f->page_offset + offset - start,
1771                               copy);
1772                        kunmap_atomic(vaddr);
1773
1774                        if ((len -= copy) == 0)
1775                                return 0;
1776                        offset += copy;
1777                        to     += copy;
1778                }
1779                start = end;
1780        }
1781
1782        skb_walk_frags(skb, frag_iter) {
1783                int end;
1784
1785                WARN_ON(start > offset + len);
1786
1787                end = start + frag_iter->len;
1788                if ((copy = end - offset) > 0) {
1789                        if (copy > len)
1790                                copy = len;
1791                        if (skb_copy_bits(frag_iter, offset - start, to, copy))
1792                                goto fault;
1793                        if ((len -= copy) == 0)
1794                                return 0;
1795                        offset += copy;
1796                        to     += copy;
1797                }
1798                start = end;
1799        }
1800
1801        if (!len)
1802                return 0;
1803
1804fault:
1805        return -EFAULT;
1806}
1807EXPORT_SYMBOL(skb_copy_bits);
1808
1809/*
1810 * Callback from splice_to_pipe(), if we need to release some pages
1811 * at the end of the spd in case we error'ed out in filling the pipe.
1812 */
1813static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1814{
1815        put_page(spd->pages[i]);
1816}
1817
1818static struct page *linear_to_page(struct page *page, unsigned int *len,
1819                                   unsigned int *offset,
1820                                   struct sock *sk)
1821{
1822        struct page_frag *pfrag = sk_page_frag(sk);
1823
1824        if (!sk_page_frag_refill(sk, pfrag))
1825                return NULL;
1826
1827        *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1828
1829        memcpy(page_address(pfrag->page) + pfrag->offset,
1830               page_address(page) + *offset, *len);
1831        *offset = pfrag->offset;
1832        pfrag->offset += *len;
1833
1834        return pfrag->page;
1835}
1836
1837static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1838                             struct page *page,
1839                             unsigned int offset)
1840{
1841        return  spd->nr_pages &&
1842                spd->pages[spd->nr_pages - 1] == page &&
1843                (spd->partial[spd->nr_pages - 1].offset +
1844                 spd->partial[spd->nr_pages - 1].len == offset);
1845}
1846
1847/*
1848 * Fill page/offset/length into spd, if it can hold more pages.
1849 */
1850static bool spd_fill_page(struct splice_pipe_desc *spd,
1851                          struct pipe_inode_info *pipe, struct page *page,
1852                          unsigned int *len, unsigned int offset,
1853                          bool linear,
1854                          struct sock *sk)
1855{
1856        if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1857                return true;
1858
1859        if (linear) {
1860                page = linear_to_page(page, len, &offset, sk);
1861                if (!page)
1862                        return true;
1863        }
1864        if (spd_can_coalesce(spd, page, offset)) {
1865                spd->partial[spd->nr_pages - 1].len += *len;
1866                return false;
1867        }
1868        get_page(page);
1869        spd->pages[spd->nr_pages] = page;
1870        spd->partial[spd->nr_pages].len = *len;
1871        spd->partial[spd->nr_pages].offset = offset;
1872        spd->nr_pages++;
1873
1874        return false;
1875}
1876
1877static bool __splice_segment(struct page *page, unsigned int poff,
1878                             unsigned int plen, unsigned int *off,
1879                             unsigned int *len,
1880                             struct splice_pipe_desc *spd, bool linear,
1881                             struct sock *sk,
1882                             struct pipe_inode_info *pipe)
1883{
1884        if (!*len)
1885                return true;
1886
1887        /* skip this segment if already processed */
1888        if (*off >= plen) {
1889                *off -= plen;
1890                return false;
1891        }
1892
1893        /* ignore any bits we already processed */
1894        poff += *off;
1895        plen -= *off;
1896        *off = 0;
1897
1898        do {
1899                unsigned int flen = min(*len, plen);
1900
1901                if (spd_fill_page(spd, pipe, page, &flen, poff,
1902                                  linear, sk))
1903                        return true;
1904                poff += flen;
1905                plen -= flen;
1906                *len -= flen;
1907        } while (*len && plen);
1908
1909        return false;
1910}
1911
1912/*
1913 * Map linear and fragment data from the skb to spd. It reports true if the
1914 * pipe is full or if we already spliced the requested length.
1915 */
1916static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1917                              unsigned int *offset, unsigned int *len,
1918                              struct splice_pipe_desc *spd, struct sock *sk)
1919{
1920        int seg;
1921        struct sk_buff *iter;
1922
1923        /* map the linear part :
1924         * If skb->head_frag is set, this 'linear' part is backed by a
1925         * fragment, and if the head is not shared with any clones then
1926         * we can avoid a copy since we own the head portion of this page.
1927         */
1928        if (__splice_segment(virt_to_page(skb->data),
1929                             (unsigned long) skb->data & (PAGE_SIZE - 1),
1930                             skb_headlen(skb),
1931                             offset, len, spd,
1932                             skb_head_is_locked(skb),
1933                             sk, pipe))
1934                return true;
1935
1936        /*
1937         * then map the fragments
1938         */
1939        for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1940                const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1941
1942                if (__splice_segment(skb_frag_page(f),
1943                                     f->page_offset, skb_frag_size(f),
1944                                     offset, len, spd, false, sk, pipe))
1945                        return true;
1946        }
1947
1948        skb_walk_frags(skb, iter) {
1949                if (*offset >= iter->len) {
1950                        *offset -= iter->len;
1951                        continue;
1952                }
1953                /* __skb_splice_bits() only fails if the output has no room
1954                 * left, so no point in going over the frag_list for the error
1955                 * case.
1956                 */
1957                if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1958                        return true;
1959        }
1960
1961        return false;
1962}
1963
1964ssize_t skb_socket_splice(struct sock *sk,
1965                          struct pipe_inode_info *pipe,
1966                          struct splice_pipe_desc *spd)
1967{
1968        int ret;
1969
1970        /* Drop the socket lock, otherwise we have reverse
1971         * locking dependencies between sk_lock and i_mutex
1972         * here as compared to sendfile(). We enter here
1973         * with the socket lock held, and splice_to_pipe() will
1974         * grab the pipe inode lock. For sendfile() emulation,
1975         * we call into ->sendpage() with the i_mutex lock held
1976         * and networking will grab the socket lock.
1977         */
1978        release_sock(sk);
1979        ret = splice_to_pipe(pipe, spd);
1980        lock_sock(sk);
1981
1982        return ret;
1983}
1984
1985/*
1986 * Map data from the skb to a pipe. Should handle both the linear part,
1987 * the fragments, and the frag list.
1988 */
1989int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1990                    struct pipe_inode_info *pipe, unsigned int tlen,
1991                    unsigned int flags,
1992                    ssize_t (*splice_cb)(struct sock *,
1993                                         struct pipe_inode_info *,
1994                                         struct splice_pipe_desc *))
1995{
1996        struct partial_page partial[MAX_SKB_FRAGS];
1997        struct page *pages[MAX_SKB_FRAGS];
1998        struct splice_pipe_desc spd = {
1999                .pages = pages,
2000                .partial = partial,
2001                .nr_pages_max = MAX_SKB_FRAGS,
2002                .flags = flags,
2003                .ops = &nosteal_pipe_buf_ops,
2004                .spd_release = sock_spd_release,
2005        };
2006        int ret = 0;
2007
2008        __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2009
2010        if (spd.nr_pages)
2011                ret = splice_cb(sk, pipe, &spd);
2012
2013        return ret;
2014}
2015EXPORT_SYMBOL_GPL(skb_splice_bits);
2016
2017/**
2018 *      skb_store_bits - store bits from kernel buffer to skb
2019 *      @skb: destination buffer
2020 *      @offset: offset in destination
2021 *      @from: source buffer
2022 *      @len: number of bytes to copy
2023 *
2024 *      Copy the specified number of bytes from the source buffer to the
2025 *      destination skb.  This function handles all the messy bits of
2026 *      traversing fragment lists and such.
2027 */
2028
2029int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2030{
2031        int start = skb_headlen(skb);
2032        struct sk_buff *frag_iter;
2033        int i, copy;
2034
2035        if (offset > (int)skb->len - len)
2036                goto fault;
2037
2038        if ((copy = start - offset) > 0) {
2039                if (copy > len)
2040                        copy = len;
2041                skb_copy_to_linear_data_offset(skb, offset, from, copy);
2042                if ((len -= copy) == 0)
2043                        return 0;
2044                offset += copy;
2045                from += copy;
2046        }
2047
2048        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2049                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2050                int end;
2051
2052                WARN_ON(start > offset + len);
2053
2054                end = start + skb_frag_size(frag);
2055                if ((copy = end - offset) > 0) {
2056                        u8 *vaddr;
2057
2058                        if (copy > len)
2059                                copy = len;
2060
2061                        vaddr = kmap_atomic(skb_frag_page(frag));
2062                        memcpy(vaddr + frag->page_offset + offset - start,
2063                               from, copy);
2064                        kunmap_atomic(vaddr);
2065
2066                        if ((len -= copy) == 0)
2067                                return 0;
2068                        offset += copy;
2069                        from += copy;
2070                }
2071                start = end;
2072        }
2073
2074        skb_walk_frags(skb, frag_iter) {
2075                int end;
2076
2077                WARN_ON(start > offset + len);
2078
2079                end = start + frag_iter->len;
2080                if ((copy = end - offset) > 0) {
2081                        if (copy > len)
2082                                copy = len;
2083                        if (skb_store_bits(frag_iter, offset - start,
2084                                           from, copy))
2085                                goto fault;
2086                        if ((len -= copy) == 0)
2087                                return 0;
2088                        offset += copy;
2089                        from += copy;
2090                }
2091                start = end;
2092        }
2093        if (!len)
2094                return 0;
2095
2096fault:
2097        return -EFAULT;
2098}
2099EXPORT_SYMBOL(skb_store_bits);
2100
2101/* Checksum skb data. */
2102__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2103                      __wsum csum, const struct skb_checksum_ops *ops)
2104{
2105        int start = skb_headlen(skb);
2106        int i, copy = start - offset;
2107        struct sk_buff *frag_iter;
2108        int pos = 0;
2109
2110        /* Checksum header. */
2111        if (copy > 0) {
2112                if (copy > len)
2113                        copy = len;
2114                csum = ops->update(skb->data + offset, copy, csum);
2115                if ((len -= copy) == 0)
2116                        return csum;
2117                offset += copy;
2118                pos     = copy;
2119        }
2120
2121        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2122                int end;
2123                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2124
2125                WARN_ON(start > offset + len);
2126
2127                end = start + skb_frag_size(frag);
2128                if ((copy = end - offset) > 0) {
2129                        __wsum csum2;
2130                        u8 *vaddr;
2131
2132                        if (copy > len)
2133                                copy = len;
2134                        vaddr = kmap_atomic(skb_frag_page(frag));
2135                        csum2 = ops->update(vaddr + frag->page_offset +
2136                                            offset - start, copy, 0);
2137                        kunmap_atomic(vaddr);
2138                        csum = ops->combine(csum, csum2, pos, copy);
2139                        if (!(len -= copy))
2140                                return csum;
2141                        offset += copy;
2142                        pos    += copy;
2143                }
2144                start = end;
2145        }
2146
2147        skb_walk_frags(skb, frag_iter) {
2148                int end;
2149
2150                WARN_ON(start > offset + len);
2151
2152                end = start + frag_iter->len;
2153                if ((copy = end - offset) > 0) {
2154                        __wsum csum2;
2155                        if (copy > len)
2156                                copy = len;
2157                        csum2 = __skb_checksum(frag_iter, offset - start,
2158                                               copy, 0, ops);
2159                        csum = ops->combine(csum, csum2, pos, copy);
2160                        if ((len -= copy) == 0)
2161                                return csum;
2162                        offset += copy;
2163                        pos    += copy;
2164                }
2165                start = end;
2166        }
2167        BUG_ON(len);
2168
2169        return csum;
2170}
2171EXPORT_SYMBOL(__skb_checksum);
2172
2173__wsum skb_checksum(const struct sk_buff *skb, int offset,
2174                    int len, __wsum csum)
2175{
2176        const struct skb_checksum_ops ops = {
2177                .update  = csum_partial_ext,
2178                .combine = csum_block_add_ext,
2179        };
2180
2181        return __skb_checksum(skb, offset, len, csum, &ops);
2182}
2183EXPORT_SYMBOL(skb_checksum);
2184
2185/* Both of above in one bottle. */
2186
2187__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2188                                    u8 *to, int len, __wsum csum)
2189{
2190        int start = skb_headlen(skb);
2191        int i, copy = start - offset;
2192        struct sk_buff *frag_iter;
2193        int pos = 0;
2194
2195        /* Copy header. */
2196        if (copy > 0) {
2197                if (copy > len)
2198                        copy = len;
2199                csum = csum_partial_copy_nocheck(skb->data + offset, to,
2200                                                 copy, csum);
2201                if ((len -= copy) == 0)
2202                        return csum;
2203                offset += copy;
2204                to     += copy;
2205                pos     = copy;
2206        }
2207
2208        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2209                int end;
2210
2211                WARN_ON(start > offset + len);
2212
2213                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2214                if ((copy = end - offset) > 0) {
2215                        __wsum csum2;
2216                        u8 *vaddr;
2217                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2218
2219                        if (copy > len)
2220                                copy = len;
2221                        vaddr = kmap_atomic(skb_frag_page(frag));
2222                        csum2 = csum_partial_copy_nocheck(vaddr +
2223                                                          frag->page_offset +
2224                                                          offset - start, to,
2225                                                          copy, 0);
2226                        kunmap_atomic(vaddr);
2227                        csum = csum_block_add(csum, csum2, pos);
2228                        if (!(len -= copy))
2229                                return csum;
2230                        offset += copy;
2231                        to     += copy;
2232                        pos    += copy;
2233                }
2234                start = end;
2235        }
2236
2237        skb_walk_frags(skb, frag_iter) {
2238                __wsum csum2;
2239                int end;
2240
2241                WARN_ON(start > offset + len);
2242
2243                end = start + frag_iter->len;
2244                if ((copy = end - offset) > 0) {
2245                        if (copy > len)
2246                                copy = len;
2247                        csum2 = skb_copy_and_csum_bits(frag_iter,
2248                                                       offset - start,
2249                                                       to, copy, 0);
2250                        csum = csum_block_add(csum, csum2, pos);
2251                        if ((len -= copy) == 0)
2252                                return csum;
2253                        offset += copy;
2254                        to     += copy;
2255                        pos    += copy;
2256                }
2257                start = end;
2258        }
2259        BUG_ON(len);
2260        return csum;
2261}
2262EXPORT_SYMBOL(skb_copy_and_csum_bits);
2263
2264 /**
2265 *      skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2266 *      @from: source buffer
2267 *
2268 *      Calculates the amount of linear headroom needed in the 'to' skb passed
2269 *      into skb_zerocopy().
2270 */
2271unsigned int
2272skb_zerocopy_headlen(const struct sk_buff *from)
2273{
2274        unsigned int hlen = 0;
2275
2276        if (!from->head_frag ||
2277            skb_headlen(from) < L1_CACHE_BYTES ||
2278            skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2279                hlen = skb_headlen(from);
2280
2281        if (skb_has_frag_list(from))
2282                hlen = from->len;
2283
2284        return hlen;
2285}
2286EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2287
2288/**
2289 *      skb_zerocopy - Zero copy skb to skb
2290 *      @to: destination buffer
2291 *      @from: source buffer
2292 *      @len: number of bytes to copy from source buffer
2293 *      @hlen: size of linear headroom in destination buffer
2294 *
2295 *      Copies up to `len` bytes from `from` to `to` by creating references
2296 *      to the frags in the source buffer.
2297 *
2298 *      The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2299 *      headroom in the `to` buffer.
2300 *
2301 *      Return value:
2302 *      0: everything is OK
2303 *      -ENOMEM: couldn't orphan frags of @from due to lack of memory
2304 *      -EFAULT: skb_copy_bits() found some problem with skb geometry
2305 */
2306int
2307skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2308{
2309        int i, j = 0;
2310        int plen = 0; /* length of skb->head fragment */
2311        int ret;
2312        struct page *page;
2313        unsigned int offset;
2314
2315        BUG_ON(!from->head_frag && !hlen);
2316
2317        /* dont bother with small payloads */
2318        if (len <= skb_tailroom(to))
2319                return skb_copy_bits(from, 0, skb_put(to, len), len);
2320
2321        if (hlen) {
2322                ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2323                if (unlikely(ret))
2324                        return ret;
2325                len -= hlen;
2326        } else {
2327                plen = min_t(int, skb_headlen(from), len);
2328                if (plen) {
2329                        page = virt_to_head_page(from->head);
2330                        offset = from->data - (unsigned char *)page_address(page);
2331                        __skb_fill_page_desc(to, 0, page, offset, plen);
2332                        get_page(page);
2333                        j = 1;
2334                        len -= plen;
2335                }
2336        }
2337
2338        to->truesize += len + plen;
2339        to->len += len + plen;
2340        to->data_len += len + plen;
2341
2342        if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2343                skb_tx_error(from);
2344                return -ENOMEM;
2345        }
2346
2347        for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2348                if (!len)
2349                        break;
2350                skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2351                skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2352                len -= skb_shinfo(to)->frags[j].size;
2353                skb_frag_ref(to, j);
2354                j++;
2355        }
2356        skb_shinfo(to)->nr_frags = j;
2357
2358        return 0;
2359}
2360EXPORT_SYMBOL_GPL(skb_zerocopy);
2361
2362void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2363{
2364        __wsum csum;
2365        long csstart;
2366
2367        if (skb->ip_summed == CHECKSUM_PARTIAL)
2368                csstart = skb_checksum_start_offset(skb);
2369        else
2370                csstart = skb_headlen(skb);
2371
2372        BUG_ON(csstart > skb_headlen(skb));
2373
2374        skb_copy_from_linear_data(skb, to, csstart);
2375
2376        csum = 0;
2377        if (csstart != skb->len)
2378                csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2379                                              skb->len - csstart, 0);
2380
2381        if (skb->ip_summed == CHECKSUM_PARTIAL) {
2382                long csstuff = csstart + skb->csum_offset;
2383
2384                *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2385        }
2386}
2387EXPORT_SYMBOL(skb_copy_and_csum_dev);
2388
2389/**
2390 *      skb_dequeue - remove from the head of the queue
2391 *      @list: list to dequeue from
2392 *
2393 *      Remove the head of the list. The list lock is taken so the function
2394 *      may be used safely with other locking list functions. The head item is
2395 *      returned or %NULL if the list is empty.
2396 */
2397
2398struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2399{
2400        unsigned long flags;
2401        struct sk_buff *result;
2402
2403        spin_lock_irqsave(&list->lock, flags);
2404        result = __skb_dequeue(list);
2405        spin_unlock_irqrestore(&list->lock, flags);
2406        return result;
2407}
2408EXPORT_SYMBOL(skb_dequeue);
2409
2410/**
2411 *      skb_dequeue_tail - remove from the tail of the queue
2412 *      @list: list to dequeue from
2413 *
2414 *      Remove the tail of the list. The list lock is taken so the function
2415 *      may be used safely with other locking list functions. The tail item is
2416 *      returned or %NULL if the list is empty.
2417 */
2418struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2419{
2420        unsigned long flags;
2421        struct sk_buff *result;
2422
2423        spin_lock_irqsave(&list->lock, flags);
2424        result = __skb_dequeue_tail(list);
2425        spin_unlock_irqrestore(&list->lock, flags);
2426        return result;
2427}
2428EXPORT_SYMBOL(skb_dequeue_tail);
2429
2430/**
2431 *      skb_queue_purge - empty a list
2432 *      @list: list to empty
2433 *
2434 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
2435 *      the list and one reference dropped. This function takes the list
2436 *      lock and is atomic with respect to other list locking functions.
2437 */
2438void skb_queue_purge(struct sk_buff_head *list)
2439{
2440        struct sk_buff *skb;
2441        while ((skb = skb_dequeue(list)) != NULL)
2442                kfree_skb(skb);
2443}
2444EXPORT_SYMBOL(skb_queue_purge);
2445
2446/**
2447 *      skb_queue_head - queue a buffer at the list head
2448 *      @list: list to use
2449 *      @newsk: buffer to queue
2450 *
2451 *      Queue a buffer at the start of the list. This function takes the
2452 *      list lock and can be used safely with other locking &sk_buff functions
2453 *      safely.
2454 *
2455 *      A buffer cannot be placed on two lists at the same time.
2456 */
2457void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2458{
2459        unsigned long flags;
2460
2461        spin_lock_irqsave(&list->lock, flags);
2462        __skb_queue_head(list, newsk);
2463        spin_unlock_irqrestore(&list->lock, flags);
2464}
2465EXPORT_SYMBOL(skb_queue_head);
2466
2467/**
2468 *      skb_queue_tail - queue a buffer at the list tail
2469 *      @list: list to use
2470 *      @newsk: buffer to queue
2471 *
2472 *      Queue a buffer at the tail of the list. This function takes the
2473 *      list lock and can be used safely with other locking &sk_buff functions
2474 *      safely.
2475 *
2476 *      A buffer cannot be placed on two lists at the same time.
2477 */
2478void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2479{
2480        unsigned long flags;
2481
2482        spin_lock_irqsave(&list->lock, flags);
2483        __skb_queue_tail(list, newsk);
2484        spin_unlock_irqrestore(&list->lock, flags);
2485}
2486EXPORT_SYMBOL(skb_queue_tail);
2487
2488/**
2489 *      skb_unlink      -       remove a buffer from a list
2490 *      @skb: buffer to remove
2491 *      @list: list to use
2492 *
2493 *      Remove a packet from a list. The list locks are taken and this
2494 *      function is atomic with respect to other list locked calls
2495 *
2496 *      You must know what list the SKB is on.
2497 */
2498void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2499{
2500        unsigned long flags;
2501
2502        spin_lock_irqsave(&list->lock, flags);
2503        __skb_unlink(skb, list);
2504        spin_unlock_irqrestore(&list->lock, flags);
2505}
2506EXPORT_SYMBOL(skb_unlink);
2507
2508/**
2509 *      skb_append      -       append a buffer
2510 *      @old: buffer to insert after
2511 *      @newsk: buffer to insert
2512 *      @list: list to use
2513 *
2514 *      Place a packet after a given packet in a list. The list locks are taken
2515 *      and this function is atomic with respect to other list locked calls.
2516 *      A buffer cannot be placed on two lists at the same time.
2517 */
2518void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2519{
2520        unsigned long flags;
2521
2522        spin_lock_irqsave(&list->lock, flags);
2523        __skb_queue_after(list, old, newsk);
2524        spin_unlock_irqrestore(&list->lock, flags);
2525}
2526EXPORT_SYMBOL(skb_append);
2527
2528/**
2529 *      skb_insert      -       insert a buffer
2530 *      @old: buffer to insert before
2531 *      @newsk: buffer to insert
2532 *      @list: list to use
2533 *
2534 *      Place a packet before a given packet in a list. The list locks are
2535 *      taken and this function is atomic with respect to other list locked
2536 *      calls.
2537 *
2538 *      A buffer cannot be placed on two lists at the same time.
2539 */
2540void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2541{
2542        unsigned long flags;
2543
2544        spin_lock_irqsave(&list->lock, flags);
2545        __skb_insert(newsk, old->prev, old, list);
2546        spin_unlock_irqrestore(&list->lock, flags);
2547}
2548EXPORT_SYMBOL(skb_insert);
2549
2550static inline void skb_split_inside_header(struct sk_buff *skb,
2551                                           struct sk_buff* skb1,
2552                                           const u32 len, const int pos)
2553{
2554        int i;
2555
2556        skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2557                                         pos - len);
2558        /* And move data appendix as is. */
2559        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2560                skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2561
2562        skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2563        skb_shinfo(skb)->nr_frags  = 0;
2564        skb1->data_len             = skb->data_len;
2565        skb1->len                  += skb1->data_len;
2566        skb->data_len              = 0;
2567        skb->len                   = len;
2568        skb_set_tail_pointer(skb, len);
2569}
2570
2571static inline void skb_split_no_header(struct sk_buff *skb,
2572                                       struct sk_buff* skb1,
2573                                       const u32 len, int pos)
2574{
2575        int i, k = 0;
2576        const int nfrags = skb_shinfo(skb)->nr_frags;
2577
2578        skb_shinfo(skb)->nr_frags = 0;
2579        skb1->len                 = skb1->data_len = skb->len - len;
2580        skb->len                  = len;
2581        skb->data_len             = len - pos;
2582
2583        for (i = 0; i < nfrags; i++) {
2584                int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2585
2586                if (pos + size > len) {
2587                        skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2588
2589                        if (pos < len) {
2590                                /* Split frag.
2591                                 * We have two variants in this case:
2592                                 * 1. Move all the frag to the second
2593                                 *    part, if it is possible. F.e.
2594                                 *    this approach is mandatory for TUX,
2595                                 *    where splitting is expensive.
2596                                 * 2. Split is accurately. We make this.
2597                                 */
2598                                skb_frag_ref(skb, i);
2599                                skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2600                                skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2601                                skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2602                                skb_shinfo(skb)->nr_frags++;
2603                        }
2604                        k++;
2605                } else
2606                        skb_shinfo(skb)->nr_frags++;
2607                pos += size;
2608        }
2609        skb_shinfo(skb1)->nr_frags = k;
2610}
2611
2612/**
2613 * skb_split - Split fragmented skb to two parts at length len.
2614 * @skb: the buffer to split
2615 * @skb1: the buffer to receive the second part
2616 * @len: new length for skb
2617 */
2618void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2619{
2620        int pos = skb_headlen(skb);
2621
2622        skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2623        if (len < pos)  /* Split line is inside header. */
2624                skb_split_inside_header(skb, skb1, len, pos);
2625        else            /* Second chunk has no header, nothing to copy. */
2626                skb_split_no_header(skb, skb1, len, pos);
2627}
2628EXPORT_SYMBOL(skb_split);
2629
2630/* Shifting from/to a cloned skb is a no-go.
2631 *
2632 * Caller cannot keep skb_shinfo related pointers past calling here!
2633 */
2634static int skb_prepare_for_shift(struct sk_buff *skb)
2635{
2636        return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2637}
2638
2639/**
2640 * skb_shift - Shifts paged data partially from skb to another
2641 * @tgt: buffer into which tail data gets added
2642 * @skb: buffer from which the paged data comes from
2643 * @shiftlen: shift up to this many bytes
2644 *
2645 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2646 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2647 * It's up to caller to free skb if everything was shifted.
2648 *
2649 * If @tgt runs out of frags, the whole operation is aborted.
2650 *
2651 * Skb cannot include anything else but paged data while tgt is allowed
2652 * to have non-paged data as well.
2653 *
2654 * TODO: full sized shift could be optimized but that would need
2655 * specialized skb free'er to handle frags without up-to-date nr_frags.
2656 */
2657int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2658{
2659        int from, to, merge, todo;
2660        struct skb_frag_struct *fragfrom, *fragto;
2661
2662        BUG_ON(shiftlen > skb->len);
2663        BUG_ON(skb_headlen(skb));       /* Would corrupt stream */
2664
2665        todo = shiftlen;
2666        from = 0;
2667        to = skb_shinfo(tgt)->nr_frags;
2668        fragfrom = &skb_shinfo(skb)->frags[from];
2669
2670        /* Actual merge is delayed until the point when we know we can
2671         * commit all, so that we don't have to undo partial changes
2672         */
2673        if (!to ||
2674            !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2675                              fragfrom->page_offset)) {
2676                merge = -1;
2677        } else {
2678                merge = to - 1;
2679
2680                todo -= skb_frag_size(fragfrom);
2681                if (todo < 0) {
2682                        if (skb_prepare_for_shift(skb) ||
2683                            skb_prepare_for_shift(tgt))
2684                                return 0;
2685
2686                        /* All previous frag pointers might be stale! */
2687                        fragfrom = &skb_shinfo(skb)->frags[from];
2688                        fragto = &skb_shinfo(tgt)->frags[merge];
2689
2690                        skb_frag_size_add(fragto, shiftlen);
2691                        skb_frag_size_sub(fragfrom, shiftlen);
2692                        fragfrom->page_offset += shiftlen;
2693
2694                        goto onlymerged;
2695                }
2696
2697                from++;
2698        }
2699
2700        /* Skip full, not-fitting skb to avoid expensive operations */
2701        if ((shiftlen == skb->len) &&
2702            (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2703                return 0;
2704
2705        if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2706                return 0;
2707
2708        while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2709                if (to == MAX_SKB_FRAGS)
2710                        return 0;
2711
2712                fragfrom = &skb_shinfo(skb)->frags[from];
2713                fragto = &skb_shinfo(tgt)->frags[to];
2714
2715                if (todo >= skb_frag_size(fragfrom)) {
2716                        *fragto = *fragfrom;
2717                        todo -= skb_frag_size(fragfrom);
2718                        from++;
2719                        to++;
2720
2721                } else {
2722                        __skb_frag_ref(fragfrom);
2723                        fragto->page = fragfrom->page;
2724                        fragto->page_offset = fragfrom->page_offset;
2725                        skb_frag_size_set(fragto, todo);
2726
2727                        fragfrom->page_offset += todo;
2728                        skb_frag_size_sub(fragfrom, todo);
2729                        todo = 0;
2730
2731                        to++;
2732                        break;
2733                }
2734        }
2735
2736        /* Ready to "commit" this state change to tgt */
2737        skb_shinfo(tgt)->nr_frags = to;
2738
2739        if (merge >= 0) {
2740                fragfrom = &skb_shinfo(skb)->frags[0];
2741                fragto = &skb_shinfo(tgt)->frags[merge];
2742
2743                skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2744                __skb_frag_unref(fragfrom);
2745        }
2746
2747        /* Reposition in the original skb */
2748        to = 0;
2749        while (from < skb_shinfo(skb)->nr_frags)
2750                skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2751        skb_shinfo(skb)->nr_frags = to;
2752
2753        BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2754
2755onlymerged:
2756        /* Most likely the tgt won't ever need its checksum anymore, skb on
2757         * the other hand might need it if it needs to be resent
2758         */
2759        tgt->ip_summed = CHECKSUM_PARTIAL;
2760        skb->ip_summed = CHECKSUM_PARTIAL;
2761
2762        /* Yak, is it really working this way? Some helper please? */
2763        skb->len -= shiftlen;
2764        skb->data_len -= shiftlen;
2765        skb->truesize -= shiftlen;
2766        tgt->len += shiftlen;
2767        tgt->data_len += shiftlen;
2768        tgt->truesize += shiftlen;
2769
2770        return shiftlen;
2771}
2772
2773/**
2774 * skb_prepare_seq_read - Prepare a sequential read of skb data
2775 * @skb: the buffer to read
2776 * @from: lower offset of data to be read
2777 * @to: upper offset of data to be read
2778 * @st: state variable
2779 *
2780 * Initializes the specified state variable. Must be called before
2781 * invoking skb_seq_read() for the first time.
2782 */
2783void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2784                          unsigned int to, struct skb_seq_state *st)
2785{
2786        st->lower_offset = from;
2787        st->upper_offset = to;
2788        st->root_skb = st->cur_skb = skb;
2789        st->frag_idx = st->stepped_offset = 0;
2790        st->frag_data = NULL;
2791}
2792EXPORT_SYMBOL(skb_prepare_seq_read);
2793
2794/**
2795 * skb_seq_read - Sequentially read skb data
2796 * @consumed: number of bytes consumed by the caller so far
2797 * @data: destination pointer for data to be returned
2798 * @st: state variable
2799 *
2800 * Reads a block of skb data at @consumed relative to the
2801 * lower offset specified to skb_prepare_seq_read(). Assigns
2802 * the head of the data block to @data and returns the length
2803 * of the block or 0 if the end of the skb data or the upper
2804 * offset has been reached.
2805 *
2806 * The caller is not required to consume all of the data
2807 * returned, i.e. @consumed is typically set to the number
2808 * of bytes already consumed and the next call to
2809 * skb_seq_read() will return the remaining part of the block.
2810 *
2811 * Note 1: The size of each block of data returned can be arbitrary,
2812 *       this limitation is the cost for zerocopy sequential
2813 *       reads of potentially non linear data.
2814 *
2815 * Note 2: Fragment lists within fragments are not implemented
2816 *       at the moment, state->root_skb could be replaced with
2817 *       a stack for this purpose.
2818 */
2819unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2820                          struct skb_seq_state *st)
2821{
2822        unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2823        skb_frag_t *frag;
2824
2825        if (unlikely(abs_offset >= st->upper_offset)) {
2826                if (st->frag_data) {
2827                        kunmap_atomic(st->frag_data);
2828                        st->frag_data = NULL;
2829                }
2830                return 0;
2831        }
2832
2833next_skb:
2834        block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2835
2836        if (abs_offset < block_limit && !st->frag_data) {
2837                *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2838                return block_limit - abs_offset;
2839        }
2840
2841        if (st->frag_idx == 0 && !st->frag_data)
2842                st->stepped_offset += skb_headlen(st->cur_skb);
2843
2844        while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2845                frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2846                block_limit = skb_frag_size(frag) + st->stepped_offset;
2847
2848                if (abs_offset < block_limit) {
2849                        if (!st->frag_data)
2850                                st->frag_data = kmap_atomic(skb_frag_page(frag));
2851
2852                        *data = (u8 *) st->frag_data + frag->page_offset +
2853                                (abs_offset - st->stepped_offset);
2854
2855                        return block_limit - abs_offset;
2856                }
2857
2858                if (st->frag_data) {
2859                        kunmap_atomic(st->frag_data);
2860                        st->frag_data = NULL;
2861                }
2862
2863                st->frag_idx++;
2864                st->stepped_offset += skb_frag_size(frag);
2865        }
2866
2867        if (st->frag_data) {
2868                kunmap_atomic(st->frag_data);
2869                st->frag_data = NULL;
2870        }
2871
2872        if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2873                st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2874                st->frag_idx = 0;
2875                goto next_skb;
2876        } else if (st->cur_skb->next) {
2877                st->cur_skb = st->cur_skb->next;
2878                st->frag_idx = 0;
2879                goto next_skb;
2880        }
2881
2882        return 0;
2883}
2884EXPORT_SYMBOL(skb_seq_read);
2885
2886/**
2887 * skb_abort_seq_read - Abort a sequential read of skb data
2888 * @st: state variable
2889 *
2890 * Must be called if skb_seq_read() was not called until it
2891 * returned 0.
2892 */
2893void skb_abort_seq_read(struct skb_seq_state *st)
2894{
2895        if (st->frag_data)
2896                kunmap_atomic(st->frag_data);
2897}
2898EXPORT_SYMBOL(skb_abort_seq_read);
2899
2900#define TS_SKB_CB(state)        ((struct skb_seq_state *) &((state)->cb))
2901
2902static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2903                                          struct ts_config *conf,
2904                                          struct ts_state *state)
2905{
2906        return skb_seq_read(offset, text, TS_SKB_CB(state));
2907}
2908
2909static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2910{
2911        skb_abort_seq_read(TS_SKB_CB(state));
2912}
2913
2914/**
2915 * skb_find_text - Find a text pattern in skb data
2916 * @skb: the buffer to look in
2917 * @from: search offset
2918 * @to: search limit
2919 * @config: textsearch configuration
2920 *
2921 * Finds a pattern in the skb data according to the specified
2922 * textsearch configuration. Use textsearch_next() to retrieve
2923 * subsequent occurrences of the pattern. Returns the offset
2924 * to the first occurrence or UINT_MAX if no match was found.
2925 */
2926unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2927                           unsigned int to, struct ts_config *config)
2928{
2929        struct ts_state state;
2930        unsigned int ret;
2931
2932        config->get_next_block = skb_ts_get_next_block;
2933        config->finish = skb_ts_finish;
2934
2935        skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2936
2937        ret = textsearch_find(config, &state);
2938        return (ret <= to - from ? ret : UINT_MAX);
2939}
2940EXPORT_SYMBOL(skb_find_text);
2941
2942/**
2943 * skb_append_datato_frags - append the user data to a skb
2944 * @sk: sock  structure
2945 * @skb: skb structure to be appended with user data.
2946 * @getfrag: call back function to be used for getting the user data
2947 * @from: pointer to user message iov
2948 * @length: length of the iov message
2949 *
2950 * Description: This procedure append the user data in the fragment part
2951 * of the skb if any page alloc fails user this procedure returns  -ENOMEM
2952 */
2953int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2954                        int (*getfrag)(void *from, char *to, int offset,
2955                                        int len, int odd, struct sk_buff *skb),
2956                        void *from, int length)
2957{
2958        int frg_cnt = skb_shinfo(skb)->nr_frags;
2959        int copy;
2960        int offset = 0;
2961        int ret;
2962        struct page_frag *pfrag = &current->task_frag;
2963
2964        do {
2965                /* Return error if we don't have space for new frag */
2966                if (frg_cnt >= MAX_SKB_FRAGS)
2967                        return -EMSGSIZE;
2968
2969                if (!sk_page_frag_refill(sk, pfrag))
2970                        return -ENOMEM;
2971
2972                /* copy the user data to page */
2973                copy = min_t(int, length, pfrag->size - pfrag->offset);
2974
2975                ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2976                              offset, copy, 0, skb);
2977                if (ret < 0)
2978                        return -EFAULT;
2979
2980                /* copy was successful so update the size parameters */
2981                skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2982                                   copy);
2983                frg_cnt++;
2984                pfrag->offset += copy;
2985                get_page(pfrag->page);
2986
2987                skb->truesize += copy;
2988                atomic_add(copy, &sk->sk_wmem_alloc);
2989                skb->len += copy;
2990                skb->data_len += copy;
2991                offset += copy;
2992                length -= copy;
2993
2994        } while (length > 0);
2995
2996        return 0;
2997}
2998EXPORT_SYMBOL(skb_append_datato_frags);
2999
3000int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3001                         int offset, size_t size)
3002{
3003        int i = skb_shinfo(skb)->nr_frags;
3004
3005        if (skb_can_coalesce(skb, i, page, offset)) {
3006                skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3007        } else if (i < MAX_SKB_FRAGS) {
3008                get_page(page);
3009                skb_fill_page_desc(skb, i, page, offset, size);
3010        } else {
3011                return -EMSGSIZE;
3012        }
3013
3014        return 0;
3015}
3016EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3017
3018/**
3019 *      skb_pull_rcsum - pull skb and update receive checksum
3020 *      @skb: buffer to update
3021 *      @len: length of data pulled
3022 *
3023 *      This function performs an skb_pull on the packet and updates
3024 *      the CHECKSUM_COMPLETE checksum.  It should be used on
3025 *      receive path processing instead of skb_pull unless you know
3026 *      that the checksum difference is zero (e.g., a valid IP header)
3027 *      or you are setting ip_summed to CHECKSUM_NONE.
3028 */
3029unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3030{
3031        unsigned char *data = skb->data;
3032
3033        BUG_ON(len > skb->len);
3034        __skb_pull(skb, len);
3035        skb_postpull_rcsum(skb, data, len);
3036        return skb->data;
3037}
3038EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3039
3040/**
3041 *      skb_segment - Perform protocol segmentation on skb.
3042 *      @head_skb: buffer to segment
3043 *      @features: features for the output path (see dev->features)
3044 *
3045 *      This function performs segmentation on the given skb.  It returns
3046 *      a pointer to the first in a list of new skbs for the segments.
3047 *      In case of error it returns ERR_PTR(err).
3048 */
3049struct sk_buff *skb_segment(struct sk_buff *head_skb,
3050                            netdev_features_t features)
3051{
3052        struct sk_buff *segs = NULL;
3053        struct sk_buff *tail = NULL;
3054        struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3055        skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3056        unsigned int mss = skb_shinfo(head_skb)->gso_size;
3057        unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3058        struct sk_buff *frag_skb = head_skb;
3059        unsigned int offset = doffset;
3060        unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3061        unsigned int partial_segs = 0;
3062        unsigned int headroom;
3063        unsigned int len = head_skb->len;
3064        __be16 proto;
3065        bool csum, sg;
3066        int nfrags = skb_shinfo(head_skb)->nr_frags;
3067        int err = -ENOMEM;
3068        int i = 0;
3069        int pos;
3070        int dummy;
3071
3072        __skb_push(head_skb, doffset);
3073        proto = skb_network_protocol(head_skb, &dummy);
3074        if (unlikely(!proto))
3075                return ERR_PTR(-EINVAL);
3076
3077        sg = !!(features & NETIF_F_SG);
3078        csum = !!can_checksum_protocol(features, proto);
3079
3080        /* GSO partial only requires that we trim off any excess that
3081         * doesn't fit into an MSS sized block, so take care of that
3082         * now.
3083         */
3084        if (sg && csum && (features & NETIF_F_GSO_PARTIAL)) {
3085                partial_segs = len / mss;
3086                if (partial_segs > 1)
3087                        mss *= partial_segs;
3088                else
3089                        partial_segs = 0;
3090        }
3091
3092        headroom = skb_headroom(head_skb);
3093        pos = skb_headlen(head_skb);
3094
3095        do {
3096                struct sk_buff *nskb;
3097                skb_frag_t *nskb_frag;
3098                int hsize;
3099                int size;
3100
3101                len = head_skb->len - offset;
3102                if (len > mss)
3103                        len = mss;
3104
3105                hsize = skb_headlen(head_skb) - offset;
3106                if (hsize < 0)
3107                        hsize = 0;
3108                if (hsize > len || !sg)
3109                        hsize = len;
3110
3111                if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3112                    (skb_headlen(list_skb) == len || sg)) {
3113                        BUG_ON(skb_headlen(list_skb) > len);
3114
3115                        i = 0;
3116                        nfrags = skb_shinfo(list_skb)->nr_frags;
3117                        frag = skb_shinfo(list_skb)->frags;
3118                        frag_skb = list_skb;
3119                        pos += skb_headlen(list_skb);
3120
3121                        while (pos < offset + len) {
3122                                BUG_ON(i >= nfrags);
3123
3124                                size = skb_frag_size(frag);
3125                                if (pos + size > offset + len)
3126                                        break;
3127
3128                                i++;
3129                                pos += size;
3130                                frag++;
3131                        }
3132
3133                        nskb = skb_clone(list_skb, GFP_ATOMIC);
3134                        list_skb = list_skb->next;
3135
3136                        if (unlikely(!nskb))
3137                                goto err;
3138
3139                        if (unlikely(pskb_trim(nskb, len))) {
3140                                kfree_skb(nskb);
3141                                goto err;
3142                        }
3143
3144                        hsize = skb_end_offset(nskb);
3145                        if (skb_cow_head(nskb, doffset + headroom)) {
3146                                kfree_skb(nskb);
3147                                goto err;
3148                        }
3149
3150                        nskb->truesize += skb_end_offset(nskb) - hsize;
3151                        skb_release_head_state(nskb);
3152                        __skb_push(nskb, doffset);
3153                } else {
3154                        nskb = __alloc_skb(hsize + doffset + headroom,
3155                                           GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3156                                           NUMA_NO_NODE);
3157
3158                        if (unlikely(!nskb))
3159                                goto err;
3160
3161                        skb_reserve(nskb, headroom);
3162                        __skb_put(nskb, doffset);
3163                }
3164
3165                if (segs)
3166                        tail->next = nskb;
3167                else
3168                        segs = nskb;
3169                tail = nskb;
3170
3171                __copy_skb_header(nskb, head_skb);
3172
3173                skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3174                skb_reset_mac_len(nskb);
3175
3176                skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3177                                                 nskb->data - tnl_hlen,
3178                                                 doffset + tnl_hlen);
3179
3180                if (nskb->len == len + doffset)
3181                        goto perform_csum_check;
3182
3183                if (!sg) {
3184                        if (!nskb->remcsum_offload)
3185                                nskb->ip_summed = CHECKSUM_NONE;
3186                        SKB_GSO_CB(nskb)->csum =
3187                                skb_copy_and_csum_bits(head_skb, offset,
3188                                                       skb_put(nskb, len),
3189                                                       len, 0);
3190                        SKB_GSO_CB(nskb)->csum_start =
3191                                skb_headroom(nskb) + doffset;
3192                        continue;
3193                }
3194
3195                nskb_frag = skb_shinfo(nskb)->frags;
3196
3197                skb_copy_from_linear_data_offset(head_skb, offset,
3198                                                 skb_put(nskb, hsize), hsize);
3199
3200                skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags &
3201                        SKBTX_SHARED_FRAG;
3202
3203                while (pos < offset + len) {
3204                        if (i >= nfrags) {
3205                                BUG_ON(skb_headlen(list_skb));
3206
3207                                i = 0;
3208                                nfrags = skb_shinfo(list_skb)->nr_frags;
3209                                frag = skb_shinfo(list_skb)->frags;
3210                                frag_skb = list_skb;
3211
3212                                BUG_ON(!nfrags);
3213
3214                                list_skb = list_skb->next;
3215                        }
3216
3217                        if (unlikely(skb_shinfo(nskb)->nr_frags >=
3218                                     MAX_SKB_FRAGS)) {
3219                                net_warn_ratelimited(
3220                                        "skb_segment: too many frags: %u %u\n",
3221                                        pos, mss);
3222                                goto err;
3223                        }
3224
3225                        if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3226                                goto err;
3227
3228                        *nskb_frag = *frag;
3229                        __skb_frag_ref(nskb_frag);
3230                        size = skb_frag_size(nskb_frag);
3231
3232                        if (pos < offset) {
3233                                nskb_frag->page_offset += offset - pos;
3234                                skb_frag_size_sub(nskb_frag, offset - pos);
3235                        }
3236
3237                        skb_shinfo(nskb)->nr_frags++;
3238
3239                        if (pos + size <= offset + len) {
3240                                i++;
3241                                frag++;
3242                                pos += size;
3243                        } else {
3244                                skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3245                                goto skip_fraglist;
3246                        }
3247
3248                        nskb_frag++;
3249                }
3250
3251skip_fraglist:
3252                nskb->data_len = len - hsize;
3253                nskb->len += nskb->data_len;
3254                nskb->truesize += nskb->data_len;
3255
3256perform_csum_check:
3257                if (!csum) {
3258                        if (skb_has_shared_frag(nskb)) {
3259                                err = __skb_linearize(nskb);
3260                                if (err)
3261                                        goto err;
3262                        }
3263                        if (!nskb->remcsum_offload)
3264                                nskb->ip_summed = CHECKSUM_NONE;
3265                        SKB_GSO_CB(nskb)->csum =
3266                                skb_checksum(nskb, doffset,
3267                                             nskb->len - doffset, 0);
3268                        SKB_GSO_CB(nskb)->csum_start =
3269                                skb_headroom(nskb) + doffset;
3270                }
3271        } while ((offset += len) < head_skb->len);
3272
3273        /* Some callers want to get the end of the list.
3274         * Put it in segs->prev to avoid walking the list.
3275         * (see validate_xmit_skb_list() for example)
3276         */
3277        segs->prev = tail;
3278
3279        /* Update GSO info on first skb in partial sequence. */
3280        if (partial_segs) {
3281                int type = skb_shinfo(head_skb)->gso_type;
3282
3283                /* Update type to add partial and then remove dodgy if set */
3284                type |= SKB_GSO_PARTIAL;
3285                type &= ~SKB_GSO_DODGY;
3286
3287                /* Update GSO info and prepare to start updating headers on
3288                 * our way back down the stack of protocols.
3289                 */
3290                skb_shinfo(segs)->gso_size = skb_shinfo(head_skb)->gso_size;
3291                skb_shinfo(segs)->gso_segs = partial_segs;
3292                skb_shinfo(segs)->gso_type = type;
3293                SKB_GSO_CB(segs)->data_offset = skb_headroom(segs) + doffset;
3294        }
3295
3296        /* Following permits correct backpressure, for protocols
3297         * using skb_set_owner_w().
3298         * Idea is to tranfert ownership from head_skb to last segment.
3299         */
3300        if (head_skb->destructor == sock_wfree) {
3301                swap(tail->truesize, head_skb->truesize);
3302                swap(tail->destructor, head_skb->destructor);
3303                swap(tail->sk, head_skb->sk);
3304        }
3305        return segs;
3306
3307err:
3308        kfree_skb_list(segs);
3309        return ERR_PTR(err);
3310}
3311EXPORT_SYMBOL_GPL(skb_segment);
3312
3313int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3314{
3315        struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3316        unsigned int offset = skb_gro_offset(skb);
3317        unsigned int headlen = skb_headlen(skb);
3318        unsigned int len = skb_gro_len(skb);
3319        struct sk_buff *lp, *p = *head;
3320        unsigned int delta_truesize;
3321
3322        if (unlikely(p->len + len >= 65536))
3323                return -E2BIG;
3324
3325        lp = NAPI_GRO_CB(p)->last;
3326        pinfo = skb_shinfo(lp);
3327
3328        if (headlen <= offset) {
3329                skb_frag_t *frag;
3330                skb_frag_t *frag2;
3331                int i = skbinfo->nr_frags;
3332                int nr_frags = pinfo->nr_frags + i;
3333
3334                if (nr_frags > MAX_SKB_FRAGS)
3335                        goto merge;
3336
3337                offset -= headlen;
3338                pinfo->nr_frags = nr_frags;
3339                skbinfo->nr_frags = 0;
3340
3341                frag = pinfo->frags + nr_frags;
3342                frag2 = skbinfo->frags + i;
3343                do {
3344                        *--frag = *--frag2;
3345                } while (--i);
3346
3347                frag->page_offset += offset;
3348                skb_frag_size_sub(frag, offset);
3349
3350                /* all fragments truesize : remove (head size + sk_buff) */
3351                delta_truesize = skb->truesize -
3352                                 SKB_TRUESIZE(skb_end_offset(skb));
3353
3354                skb->truesize -= skb->data_len;
3355                skb->len -= skb->data_len;
3356                skb->data_len = 0;
3357
3358                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3359                goto done;
3360        } else if (skb->head_frag) {
3361                int nr_frags = pinfo->nr_frags;
3362                skb_frag_t *frag = pinfo->frags + nr_frags;
3363                struct page *page = virt_to_head_page(skb->head);
3364                unsigned int first_size = headlen - offset;
3365                unsigned int first_offset;
3366
3367                if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3368                        goto merge;
3369
3370                first_offset = skb->data -
3371                               (unsigned char *)page_address(page) +
3372                               offset;
3373
3374                pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3375
3376                frag->page.p      = page;
3377                frag->page_offset = first_offset;
3378                skb_frag_size_set(frag, first_size);
3379
3380                memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3381                /* We dont need to clear skbinfo->nr_frags here */
3382
3383                delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3384                NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3385                goto done;
3386        }
3387
3388merge:
3389        delta_truesize = skb->truesize;
3390        if (offset > headlen) {
3391                unsigned int eat = offset - headlen;
3392
3393                skbinfo->frags[0].page_offset += eat;
3394                skb_frag_size_sub(&skbinfo->frags[0], eat);
3395                skb->data_len -= eat;
3396                skb->len -= eat;
3397                offset = headlen;
3398        }
3399
3400        __skb_pull(skb, offset);
3401
3402        if (NAPI_GRO_CB(p)->last == p)
3403                skb_shinfo(p)->frag_list = skb;
3404        else
3405                NAPI_GRO_CB(p)->last->next = skb;
3406        NAPI_GRO_CB(p)->last = skb;
3407        __skb_header_release(skb);
3408        lp = p;
3409
3410done:
3411        NAPI_GRO_CB(p)->count++;
3412        p->data_len += len;
3413        p->truesize += delta_truesize;
3414        p->len += len;
3415        if (lp != p) {
3416                lp->data_len += len;
3417                lp->truesize += delta_truesize;
3418                lp->len += len;
3419        }
3420        NAPI_GRO_CB(skb)->same_flow = 1;
3421        return 0;
3422}
3423
3424void __init skb_init(void)
3425{
3426        skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3427                                              sizeof(struct sk_buff),
3428                                              0,
3429                                              SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3430                                              NULL);
3431        skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3432                                                sizeof(struct sk_buff_fclones),
3433                                                0,
3434                                                SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3435                                                NULL);
3436}
3437
3438/**
3439 *      skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3440 *      @skb: Socket buffer containing the buffers to be mapped
3441 *      @sg: The scatter-gather list to map into
3442 *      @offset: The offset into the buffer's contents to start mapping
3443 *      @len: Length of buffer space to be mapped
3444 *
3445 *      Fill the specified scatter-gather list with mappings/pointers into a
3446 *      region of the buffer space attached to a socket buffer.
3447 */
3448static int
3449__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3450{
3451        int start = skb_headlen(skb);
3452        int i, copy = start - offset;
3453        struct sk_buff *frag_iter;
3454        int elt = 0;
3455
3456        if (copy > 0) {
3457                if (copy > len)
3458                        copy = len;
3459                sg_set_buf(sg, skb->data + offset, copy);
3460                elt++;
3461                if ((len -= copy) == 0)
3462                        return elt;
3463                offset += copy;
3464        }
3465
3466        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3467                int end;
3468
3469                WARN_ON(start > offset + len);
3470
3471                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3472                if ((copy = end - offset) > 0) {
3473                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3474
3475                        if (copy > len)
3476                                copy = len;
3477                        sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3478                                        frag->page_offset+offset-start);
3479                        elt++;
3480                        if (!(len -= copy))
3481                                return elt;
3482                        offset += copy;
3483                }
3484                start = end;
3485        }
3486
3487        skb_walk_frags(skb, frag_iter) {
3488                int end;
3489
3490                WARN_ON(start > offset + len);
3491
3492                end = start + frag_iter->len;
3493                if ((copy = end - offset) > 0) {
3494                        if (copy > len)
3495                                copy = len;
3496                        elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3497                                              copy);
3498                        if ((len -= copy) == 0)
3499                                return elt;
3500                        offset += copy;
3501                }
3502                start = end;
3503        }
3504        BUG_ON(len);
3505        return elt;
3506}
3507
3508/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3509 * sglist without mark the sg which contain last skb data as the end.
3510 * So the caller can mannipulate sg list as will when padding new data after
3511 * the first call without calling sg_unmark_end to expend sg list.
3512 *
3513 * Scenario to use skb_to_sgvec_nomark:
3514 * 1. sg_init_table
3515 * 2. skb_to_sgvec_nomark(payload1)
3516 * 3. skb_to_sgvec_nomark(payload2)
3517 *
3518 * This is equivalent to:
3519 * 1. sg_init_table
3520 * 2. skb_to_sgvec(payload1)
3521 * 3. sg_unmark_end
3522 * 4. skb_to_sgvec(payload2)
3523 *
3524 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3525 * is more preferable.
3526 */
3527int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3528                        int offset, int len)
3529{
3530        return __skb_to_sgvec(skb, sg, offset, len);
3531}
3532EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3533
3534int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3535{
3536        int nsg = __skb_to_sgvec(skb, sg, offset, len);
3537
3538        sg_mark_end(&sg[nsg - 1]);
3539
3540        return nsg;
3541}
3542EXPORT_SYMBOL_GPL(skb_to_sgvec);
3543
3544/**
3545 *      skb_cow_data - Check that a socket buffer's data buffers are writable
3546 *      @skb: The socket buffer to check.
3547 *      @tailbits: Amount of trailing space to be added
3548 *      @trailer: Returned pointer to the skb where the @tailbits space begins
3549 *
3550 *      Make sure that the data buffers attached to a socket buffer are
3551 *      writable. If they are not, private copies are made of the data buffers
3552 *      and the socket buffer is set to use these instead.
3553 *
3554 *      If @tailbits is given, make sure that there is space to write @tailbits
3555 *      bytes of data beyond current end of socket buffer.  @trailer will be
3556 *      set to point to the skb in which this space begins.
3557 *
3558 *      The number of scatterlist elements required to completely map the
3559 *      COW'd and extended socket buffer will be returned.
3560 */
3561int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3562{
3563        int copyflag;
3564        int elt;
3565        struct sk_buff *skb1, **skb_p;
3566
3567        /* If skb is cloned or its head is paged, reallocate
3568         * head pulling out all the pages (pages are considered not writable
3569         * at the moment even if they are anonymous).
3570         */
3571        if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3572            __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3573                return -ENOMEM;
3574
3575        /* Easy case. Most of packets will go this way. */
3576        if (!skb_has_frag_list(skb)) {
3577                /* A little of trouble, not enough of space for trailer.
3578                 * This should not happen, when stack is tuned to generate
3579                 * good frames. OK, on miss we reallocate and reserve even more
3580                 * space, 128 bytes is fair. */
3581
3582                if (skb_tailroom(skb) < tailbits &&
3583                    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3584                        return -ENOMEM;
3585
3586                /* Voila! */
3587                *trailer = skb;
3588                return 1;
3589        }
3590
3591        /* Misery. We are in troubles, going to mincer fragments... */
3592
3593        elt = 1;
3594        skb_p = &skb_shinfo(skb)->frag_list;
3595        copyflag = 0;
3596
3597        while ((skb1 = *skb_p) != NULL) {
3598                int ntail = 0;
3599
3600                /* The fragment is partially pulled by someone,
3601                 * this can happen on input. Copy it and everything
3602                 * after it. */
3603
3604                if (skb_shared(skb1))
3605                        copyflag = 1;
3606
3607                /* If the skb is the last, worry about trailer. */
3608
3609                if (skb1->next == NULL && tailbits) {
3610                        if (skb_shinfo(skb1)->nr_frags ||
3611                            skb_has_frag_list(skb1) ||
3612                            skb_tailroom(skb1) < tailbits)
3613                                ntail = tailbits + 128;
3614                }
3615
3616                if (copyflag ||
3617                    skb_cloned(skb1) ||
3618                    ntail ||
3619                    skb_shinfo(skb1)->nr_frags ||
3620                    skb_has_frag_list(skb1)) {
3621                        struct sk_buff *skb2;
3622
3623                        /* Fuck, we are miserable poor guys... */
3624                        if (ntail == 0)
3625                                skb2 = skb_copy(skb1, GFP_ATOMIC);
3626                        else
3627                                skb2 = skb_copy_expand(skb1,
3628                                                       skb_headroom(skb1),
3629                                                       ntail,
3630                                                       GFP_ATOMIC);
3631                        if (unlikely(skb2 == NULL))
3632                                return -ENOMEM;
3633
3634                        if (skb1->sk)
3635                                skb_set_owner_w(skb2, skb1->sk);
3636
3637                        /* Looking around. Are we still alive?
3638                         * OK, link new skb, drop old one */
3639
3640                        skb2->next = skb1->next;
3641                        *skb_p = skb2;
3642                        kfree_skb(skb1);
3643                        skb1 = skb2;
3644                }
3645                elt++;
3646                *trailer = skb1;
3647                skb_p = &skb1->next;
3648        }
3649
3650        return elt;
3651}
3652EXPORT_SYMBOL_GPL(skb_cow_data);
3653
3654static void sock_rmem_free(struct sk_buff *skb)
3655{
3656        struct sock *sk = skb->sk;
3657
3658        atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3659}
3660
3661/*
3662 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3663 */
3664int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3665{
3666        if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3667            (unsigned int)sk->sk_rcvbuf)
3668                return -ENOMEM;
3669
3670        skb_orphan(skb);
3671        skb->sk = sk;
3672        skb->destructor = sock_rmem_free;
3673        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3674
3675        /* before exiting rcu section, make sure dst is refcounted */
3676        skb_dst_force(skb);
3677
3678        skb_queue_tail(&sk->sk_error_queue, skb);
3679        if (!sock_flag(sk, SOCK_DEAD))
3680                sk->sk_data_ready(sk);
3681        return 0;
3682}
3683EXPORT_SYMBOL(sock_queue_err_skb);
3684
3685struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3686{
3687        struct sk_buff_head *q = &sk->sk_error_queue;
3688        struct sk_buff *skb, *skb_next;
3689        unsigned long flags;
3690        int err = 0;
3691
3692        spin_lock_irqsave(&q->lock, flags);
3693        skb = __skb_dequeue(q);
3694        if (skb && (skb_next = skb_peek(q)))
3695                err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3696        spin_unlock_irqrestore(&q->lock, flags);
3697
3698        sk->sk_err = err;
3699        if (err)
3700                sk->sk_error_report(sk);
3701
3702        return skb;
3703}
3704EXPORT_SYMBOL(sock_dequeue_err_skb);
3705
3706/**
3707 * skb_clone_sk - create clone of skb, and take reference to socket
3708 * @skb: the skb to clone
3709 *
3710 * This function creates a clone of a buffer that holds a reference on
3711 * sk_refcnt.  Buffers created via this function are meant to be
3712 * returned using sock_queue_err_skb, or free via kfree_skb.
3713 *
3714 * When passing buffers allocated with this function to sock_queue_err_skb
3715 * it is necessary to wrap the call with sock_hold/sock_put in order to
3716 * prevent the socket from being released prior to being enqueued on
3717 * the sk_error_queue.
3718 */
3719struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3720{
3721        struct sock *sk = skb->sk;
3722        struct sk_buff *clone;
3723
3724        if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3725                return NULL;
3726
3727        clone = skb_clone(skb, GFP_ATOMIC);
3728        if (!clone) {
3729                sock_put(sk);
3730                return NULL;
3731        }
3732
3733        clone->sk = sk;
3734        clone->destructor = sock_efree;
3735
3736        return clone;
3737}
3738EXPORT_SYMBOL(skb_clone_sk);
3739
3740static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3741                                        struct sock *sk,
3742                                        int tstype)
3743{
3744        struct sock_exterr_skb *serr;
3745        int err;
3746
3747        serr = SKB_EXT_ERR(skb);
3748        memset(serr, 0, sizeof(*serr));
3749        serr->ee.ee_errno = ENOMSG;
3750        serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3751        serr->ee.ee_info = tstype;
3752        if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3753                serr->ee.ee_data = skb_shinfo(skb)->tskey;
3754                if (sk->sk_protocol == IPPROTO_TCP &&
3755                    sk->sk_type == SOCK_STREAM)
3756                        serr->ee.ee_data -= sk->sk_tskey;
3757        }
3758
3759        err = sock_queue_err_skb(sk, skb);
3760
3761        if (err)
3762                kfree_skb(skb);
3763}
3764
3765static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3766{
3767        bool ret;
3768
3769        if (likely(sysctl_tstamp_allow_data || tsonly))
3770                return true;
3771
3772        read_lock_bh(&sk->sk_callback_lock);
3773        ret = sk->sk_socket && sk->sk_socket->file &&
3774              file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3775        read_unlock_bh(&sk->sk_callback_lock);
3776        return ret;
3777}
3778
3779void skb_complete_tx_timestamp(struct sk_buff *skb,
3780                               struct skb_shared_hwtstamps *hwtstamps)
3781{
3782        struct sock *sk = skb->sk;
3783
3784        if (!skb_may_tx_timestamp(sk, false))
3785                return;
3786
3787        /* take a reference to prevent skb_orphan() from freeing the socket */
3788        sock_hold(sk);
3789
3790        *skb_hwtstamps(skb) = *hwtstamps;
3791        __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3792
3793        sock_put(sk);
3794}
3795EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3796
3797void __skb_tstamp_tx(struct sk_buff *orig_skb,
3798                     struct skb_shared_hwtstamps *hwtstamps,
3799                     struct sock *sk, int tstype)
3800{
3801        struct sk_buff *skb;
3802        bool tsonly;
3803
3804        if (!sk)
3805                return;
3806
3807        tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3808        if (!skb_may_tx_timestamp(sk, tsonly))
3809                return;
3810
3811        if (tsonly)
3812                skb = alloc_skb(0, GFP_ATOMIC);
3813        else
3814                skb = skb_clone(orig_skb, GFP_ATOMIC);
3815        if (!skb)
3816                return;
3817
3818        if (tsonly) {
3819                skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags;
3820                skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3821        }
3822
3823        if (hwtstamps)
3824                *skb_hwtstamps(skb) = *hwtstamps;
3825        else
3826                skb->tstamp = ktime_get_real();
3827
3828        __skb_complete_tx_timestamp(skb, sk, tstype);
3829}
3830EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3831
3832void skb_tstamp_tx(struct sk_buff *orig_skb,
3833                   struct skb_shared_hwtstamps *hwtstamps)
3834{
3835        return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3836                               SCM_TSTAMP_SND);
3837}
3838EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3839
3840void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3841{
3842        struct sock *sk = skb->sk;
3843        struct sock_exterr_skb *serr;
3844        int err;
3845
3846        skb->wifi_acked_valid = 1;
3847        skb->wifi_acked = acked;
3848
3849        serr = SKB_EXT_ERR(skb);
3850        memset(serr, 0, sizeof(*serr));
3851        serr->ee.ee_errno = ENOMSG;
3852        serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3853
3854        /* take a reference to prevent skb_orphan() from freeing the socket */
3855        sock_hold(sk);
3856
3857        err = sock_queue_err_skb(sk, skb);
3858        if (err)
3859                kfree_skb(skb);
3860
3861        sock_put(sk);
3862}
3863EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3864
3865/**
3866 * skb_partial_csum_set - set up and verify partial csum values for packet
3867 * @skb: the skb to set
3868 * @start: the number of bytes after skb->data to start checksumming.
3869 * @off: the offset from start to place the checksum.
3870 *
3871 * For untrusted partially-checksummed packets, we need to make sure the values
3872 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3873 *
3874 * This function checks and sets those values and skb->ip_summed: if this
3875 * returns false you should drop the packet.
3876 */
3877bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3878{
3879        if (unlikely(start > skb_headlen(skb)) ||
3880            unlikely((int)start + off > skb_headlen(skb) - 2)) {
3881                net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3882                                     start, off, skb_headlen(skb));
3883                return false;
3884        }
3885        skb->ip_summed = CHECKSUM_PARTIAL;
3886        skb->csum_start = skb_headroom(skb) + start;
3887        skb->csum_offset = off;
3888        skb_set_transport_header(skb, start);
3889        return true;
3890}
3891EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3892
3893static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3894                               unsigned int max)
3895{
3896        if (skb_headlen(skb) >= len)
3897                return 0;
3898
3899        /* If we need to pullup then pullup to the max, so we
3900         * won't need to do it again.
3901         */
3902        if (max > skb->len)
3903                max = skb->len;
3904
3905        if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3906                return -ENOMEM;
3907
3908        if (skb_headlen(skb) < len)
3909                return -EPROTO;
3910
3911        return 0;
3912}
3913
3914#define MAX_TCP_HDR_LEN (15 * 4)
3915
3916static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3917                                      typeof(IPPROTO_IP) proto,
3918                                      unsigned int off)
3919{
3920        switch (proto) {
3921                int err;
3922
3923        case IPPROTO_TCP:
3924                err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3925                                          off + MAX_TCP_HDR_LEN);
3926                if (!err && !skb_partial_csum_set(skb, off,
3927                                                  offsetof(struct tcphdr,
3928                                                           check)))
3929                        err = -EPROTO;
3930                return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3931
3932        case IPPROTO_UDP:
3933                err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
3934                                          off + sizeof(struct udphdr));
3935                if (!err && !skb_partial_csum_set(skb, off,
3936                                                  offsetof(struct udphdr,
3937                                                           check)))
3938                        err = -EPROTO;
3939                return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
3940        }
3941
3942        return ERR_PTR(-EPROTO);
3943}
3944
3945/* This value should be large enough to cover a tagged ethernet header plus
3946 * maximally sized IP and TCP or UDP headers.
3947 */
3948#define MAX_IP_HDR_LEN 128
3949
3950static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
3951{
3952        unsigned int off;
3953        bool fragment;
3954        __sum16 *csum;
3955        int err;
3956
3957        fragment = false;
3958
3959        err = skb_maybe_pull_tail(skb,
3960                                  sizeof(struct iphdr),
3961                                  MAX_IP_HDR_LEN);
3962        if (err < 0)
3963                goto out;
3964
3965        if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
3966                fragment = true;
3967
3968        off = ip_hdrlen(skb);
3969
3970        err = -EPROTO;
3971
3972        if (fragment)
3973                goto out;
3974
3975        csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
3976        if (IS_ERR(csum))
3977                return PTR_ERR(csum);
3978
3979        if (recalculate)
3980                *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3981                                           ip_hdr(skb)->daddr,
3982                                           skb->len - off,
3983                                           ip_hdr(skb)->protocol, 0);
3984        err = 0;
3985
3986out:
3987        return err;
3988}
3989
3990/* This value should be large enough to cover a tagged ethernet header plus
3991 * an IPv6 header, all options, and a maximal TCP or UDP header.
3992 */
3993#define MAX_IPV6_HDR_LEN 256
3994
3995#define OPT_HDR(type, skb, off) \
3996        (type *)(skb_network_header(skb) + (off))
3997
3998static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
3999{
4000        int err;
4001        u8 nexthdr;
4002        unsigned int off;
4003        unsigned int len;
4004        bool fragment;
4005        bool done;
4006        __sum16 *csum;
4007
4008        fragment = false;
4009        done = false;
4010
4011        off = sizeof(struct ipv6hdr);
4012
4013        err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4014        if (err < 0)
4015                goto out;
4016
4017        nexthdr = ipv6_hdr(skb)->nexthdr;
4018
4019        len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4020        while (off <= len && !done) {
4021                switch (nexthdr) {
4022                case IPPROTO_DSTOPTS:
4023                case IPPROTO_HOPOPTS:
4024                case IPPROTO_ROUTING: {
4025                        struct ipv6_opt_hdr *hp;
4026
4027                        err = skb_maybe_pull_tail(skb,
4028                                                  off +
4029                                                  sizeof(struct ipv6_opt_hdr),
4030                                                  MAX_IPV6_HDR_LEN);
4031                        if (err < 0)
4032                                goto out;
4033
4034                        hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4035                        nexthdr = hp->nexthdr;
4036                        off += ipv6_optlen(hp);
4037                        break;
4038                }
4039                case IPPROTO_AH: {
4040                        struct ip_auth_hdr *hp;
4041
4042                        err = skb_maybe_pull_tail(skb,
4043                                                  off +
4044                                                  sizeof(struct ip_auth_hdr),
4045                                                  MAX_IPV6_HDR_LEN);
4046                        if (err < 0)
4047                                goto out;
4048
4049                        hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4050                        nexthdr = hp->nexthdr;
4051                        off += ipv6_authlen(hp);
4052                        break;
4053                }
4054                case IPPROTO_FRAGMENT: {
4055                        struct frag_hdr *hp;
4056
4057                        err = skb_maybe_pull_tail(skb,
4058                                                  off +
4059                                                  sizeof(struct frag_hdr),
4060                                                  MAX_IPV6_HDR_LEN);
4061                        if (err < 0)
4062                                goto out;
4063
4064                        hp = OPT_HDR(struct frag_hdr, skb, off);
4065
4066                        if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4067                                fragment = true;
4068
4069                        nexthdr = hp->nexthdr;
4070                        off += sizeof(struct frag_hdr);
4071                        break;
4072                }
4073                default:
4074                        done = true;
4075                        break;
4076                }
4077        }
4078
4079        err = -EPROTO;
4080
4081        if (!done || fragment)
4082                goto out;
4083
4084        csum = skb_checksum_setup_ip(skb, nexthdr, off);
4085        if (IS_ERR(csum))
4086                return PTR_ERR(csum);
4087
4088        if (recalculate)
4089                *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4090                                         &ipv6_hdr(skb)->daddr,
4091                                         skb->len - off, nexthdr, 0);
4092        err = 0;
4093
4094out:
4095        return err;
4096}
4097
4098/**
4099 * skb_checksum_setup - set up partial checksum offset
4100 * @skb: the skb to set up
4101 * @recalculate: if true the pseudo-header checksum will be recalculated
4102 */
4103int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4104{
4105        int err;
4106
4107        switch (skb->protocol) {
4108        case htons(ETH_P_IP):
4109                err = skb_checksum_setup_ipv4(skb, recalculate);
4110                break;
4111
4112        case htons(ETH_P_IPV6):
4113                err = skb_checksum_setup_ipv6(skb, recalculate);
4114                break;
4115
4116        default:
4117                err = -EPROTO;
4118                break;
4119        }
4120
4121        return err;
4122}
4123EXPORT_SYMBOL(skb_checksum_setup);
4124
4125/**
4126 * skb_checksum_maybe_trim - maybe trims the given skb
4127 * @skb: the skb to check
4128 * @transport_len: the data length beyond the network header
4129 *
4130 * Checks whether the given skb has data beyond the given transport length.
4131 * If so, returns a cloned skb trimmed to this transport length.
4132 * Otherwise returns the provided skb. Returns NULL in error cases
4133 * (e.g. transport_len exceeds skb length or out-of-memory).
4134 *
4135 * Caller needs to set the skb transport header and free any returned skb if it
4136 * differs from the provided skb.
4137 */
4138static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4139                                               unsigned int transport_len)
4140{
4141        struct sk_buff *skb_chk;
4142        unsigned int len = skb_transport_offset(skb) + transport_len;
4143        int ret;
4144
4145        if (skb->len < len)
4146                return NULL;
4147        else if (skb->len == len)
4148                return skb;
4149
4150        skb_chk = skb_clone(skb, GFP_ATOMIC);
4151        if (!skb_chk)
4152                return NULL;
4153
4154        ret = pskb_trim_rcsum(skb_chk, len);
4155        if (ret) {
4156                kfree_skb(skb_chk);
4157                return NULL;
4158        }
4159
4160        return skb_chk;
4161}
4162
4163/**
4164 * skb_checksum_trimmed - validate checksum of an skb
4165 * @skb: the skb to check
4166 * @transport_len: the data length beyond the network header
4167 * @skb_chkf: checksum function to use
4168 *
4169 * Applies the given checksum function skb_chkf to the provided skb.
4170 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4171 *
4172 * If the skb has data beyond the given transport length, then a
4173 * trimmed & cloned skb is checked and returned.
4174 *
4175 * Caller needs to set the skb transport header and free any returned skb if it
4176 * differs from the provided skb.
4177 */
4178struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4179                                     unsigned int transport_len,
4180                                     __sum16(*skb_chkf)(struct sk_buff *skb))
4181{
4182        struct sk_buff *skb_chk;
4183        unsigned int offset = skb_transport_offset(skb);
4184        __sum16 ret;
4185
4186        skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4187        if (!skb_chk)
4188                goto err;
4189
4190        if (!pskb_may_pull(skb_chk, offset))
4191                goto err;
4192
4193        skb_pull_rcsum(skb_chk, offset);
4194        ret = skb_chkf(skb_chk);
4195        skb_push_rcsum(skb_chk, offset);
4196
4197        if (ret)
4198                goto err;
4199
4200        return skb_chk;
4201
4202err:
4203        if (skb_chk && skb_chk != skb)
4204                kfree_skb(skb_chk);
4205
4206        return NULL;
4207
4208}
4209EXPORT_SYMBOL(skb_checksum_trimmed);
4210
4211void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4212{
4213        net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4214                             skb->dev->name);
4215}
4216EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4217
4218void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4219{
4220        if (head_stolen) {
4221                skb_release_head_state(skb);
4222                kmem_cache_free(skbuff_head_cache, skb);
4223        } else {
4224                __kfree_skb(skb);
4225        }
4226}
4227EXPORT_SYMBOL(kfree_skb_partial);
4228
4229/**
4230 * skb_try_coalesce - try to merge skb to prior one
4231 * @to: prior buffer
4232 * @from: buffer to add
4233 * @fragstolen: pointer to boolean
4234 * @delta_truesize: how much more was allocated than was requested
4235 */
4236bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4237                      bool *fragstolen, int *delta_truesize)
4238{
4239        int i, delta, len = from->len;
4240
4241        *fragstolen = false;
4242
4243        if (skb_cloned(to))
4244                return false;
4245
4246        if (len <= skb_tailroom(to)) {
4247                if (len)
4248                        BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4249                *delta_truesize = 0;
4250                return true;
4251        }
4252
4253        if (skb_has_frag_list(to) || skb_has_frag_list(from))
4254                return false;
4255
4256        if (skb_headlen(from) != 0) {
4257                struct page *page;
4258                unsigned int offset;
4259
4260                if (skb_shinfo(to)->nr_frags +
4261                    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4262                        return false;
4263
4264                if (skb_head_is_locked(from))
4265                        return false;
4266
4267                delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4268
4269                page = virt_to_head_page(from->head);
4270                offset = from->data - (unsigned char *)page_address(page);
4271
4272                skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4273                                   page, offset, skb_headlen(from));
4274                *fragstolen = true;
4275        } else {
4276                if (skb_shinfo(to)->nr_frags +
4277                    skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4278                        return false;
4279
4280                delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4281        }
4282
4283        WARN_ON_ONCE(delta < len);
4284
4285        memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4286               skb_shinfo(from)->frags,
4287               skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4288        skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4289
4290        if (!skb_cloned(from))
4291                skb_shinfo(from)->nr_frags = 0;
4292
4293        /* if the skb is not cloned this does nothing
4294         * since we set nr_frags to 0.
4295         */
4296        for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4297                skb_frag_ref(from, i);
4298
4299        to->truesize += delta;
4300        to->len += len;
4301        to->data_len += len;
4302
4303        *delta_truesize = delta;
4304        return true;
4305}
4306EXPORT_SYMBOL(skb_try_coalesce);
4307
4308/**
4309 * skb_scrub_packet - scrub an skb
4310 *
4311 * @skb: buffer to clean
4312 * @xnet: packet is crossing netns
4313 *
4314 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4315 * into/from a tunnel. Some information have to be cleared during these
4316 * operations.
4317 * skb_scrub_packet can also be used to clean a skb before injecting it in
4318 * another namespace (@xnet == true). We have to clear all information in the
4319 * skb that could impact namespace isolation.
4320 */
4321void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4322{
4323        skb->tstamp.tv64 = 0;
4324        skb->pkt_type = PACKET_HOST;
4325        skb->skb_iif = 0;
4326        skb->ignore_df = 0;
4327        skb_dst_drop(skb);
4328        secpath_reset(skb);
4329        nf_reset(skb);
4330        nf_reset_trace(skb);
4331
4332        if (!xnet)
4333                return;
4334
4335        skb_orphan(skb);
4336        skb->mark = 0;
4337}
4338EXPORT_SYMBOL_GPL(skb_scrub_packet);
4339
4340/**
4341 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4342 *
4343 * @skb: GSO skb
4344 *
4345 * skb_gso_transport_seglen is used to determine the real size of the
4346 * individual segments, including Layer4 headers (TCP/UDP).
4347 *
4348 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4349 */
4350unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4351{
4352        const struct skb_shared_info *shinfo = skb_shinfo(skb);
4353        unsigned int thlen = 0;
4354
4355        if (skb->encapsulation) {
4356                thlen = skb_inner_transport_header(skb) -
4357                        skb_transport_header(skb);
4358
4359                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4360                        thlen += inner_tcp_hdrlen(skb);
4361        } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4362                thlen = tcp_hdrlen(skb);
4363        }
4364        /* UFO sets gso_size to the size of the fragmentation
4365         * payload, i.e. the size of the L4 (UDP) header is already
4366         * accounted for.
4367         */
4368        return thlen + shinfo->gso_size;
4369}
4370EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4371
4372static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4373{
4374        if (skb_cow(skb, skb_headroom(skb)) < 0) {
4375                kfree_skb(skb);
4376                return NULL;
4377        }
4378
4379        memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4380                2 * ETH_ALEN);
4381        skb->mac_header += VLAN_HLEN;
4382        return skb;
4383}
4384
4385struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4386{
4387        struct vlan_hdr *vhdr;
4388        u16 vlan_tci;
4389
4390        if (unlikely(skb_vlan_tag_present(skb))) {
4391                /* vlan_tci is already set-up so leave this for another time */
4392                return skb;
4393        }
4394
4395        skb = skb_share_check(skb, GFP_ATOMIC);
4396        if (unlikely(!skb))
4397                goto err_free;
4398
4399        if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4400                goto err_free;
4401
4402        vhdr = (struct vlan_hdr *)skb->data;
4403        vlan_tci = ntohs(vhdr->h_vlan_TCI);
4404        __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4405
4406        skb_pull_rcsum(skb, VLAN_HLEN);
4407        vlan_set_encap_proto(skb, vhdr);
4408
4409        skb = skb_reorder_vlan_header(skb);
4410        if (unlikely(!skb))
4411                goto err_free;
4412
4413        skb_reset_network_header(skb);
4414        skb_reset_transport_header(skb);
4415        skb_reset_mac_len(skb);
4416
4417        return skb;
4418
4419err_free:
4420        kfree_skb(skb);
4421        return NULL;
4422}
4423EXPORT_SYMBOL(skb_vlan_untag);
4424
4425int skb_ensure_writable(struct sk_buff *skb, int write_len)
4426{
4427        if (!pskb_may_pull(skb, write_len))
4428                return -ENOMEM;
4429
4430        if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4431                return 0;
4432
4433        return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4434}
4435EXPORT_SYMBOL(skb_ensure_writable);
4436
4437/* remove VLAN header from packet and update csum accordingly. */
4438static int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4439{
4440        struct vlan_hdr *vhdr;
4441        unsigned int offset = skb->data - skb_mac_header(skb);
4442        int err;
4443
4444        __skb_push(skb, offset);
4445        err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4446        if (unlikely(err))
4447                goto pull;
4448
4449        skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4450
4451        vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4452        *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4453
4454        memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4455        __skb_pull(skb, VLAN_HLEN);
4456
4457        vlan_set_encap_proto(skb, vhdr);
4458        skb->mac_header += VLAN_HLEN;
4459
4460        if (skb_network_offset(skb) < ETH_HLEN)
4461                skb_set_network_header(skb, ETH_HLEN);
4462
4463        skb_reset_mac_len(skb);
4464pull:
4465        __skb_pull(skb, offset);
4466
4467        return err;
4468}
4469
4470int skb_vlan_pop(struct sk_buff *skb)
4471{
4472        u16 vlan_tci;
4473        __be16 vlan_proto;
4474        int err;
4475
4476        if (likely(skb_vlan_tag_present(skb))) {
4477                skb->vlan_tci = 0;
4478        } else {
4479                if (unlikely((skb->protocol != htons(ETH_P_8021Q) &&
4480                              skb->protocol != htons(ETH_P_8021AD)) ||
4481                             skb->len < VLAN_ETH_HLEN))
4482                        return 0;
4483
4484                err = __skb_vlan_pop(skb, &vlan_tci);
4485                if (err)
4486                        return err;
4487        }
4488        /* move next vlan tag to hw accel tag */
4489        if (likely((skb->protocol != htons(ETH_P_8021Q) &&
4490                    skb->protocol != htons(ETH_P_8021AD)) ||
4491                   skb->len < VLAN_ETH_HLEN))
4492                return 0;
4493
4494        vlan_proto = skb->protocol;
4495        err = __skb_vlan_pop(skb, &vlan_tci);
4496        if (unlikely(err))
4497                return err;
4498
4499        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4500        return 0;
4501}
4502EXPORT_SYMBOL(skb_vlan_pop);
4503
4504int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4505{
4506        if (skb_vlan_tag_present(skb)) {
4507                unsigned int offset = skb->data - skb_mac_header(skb);
4508                int err;
4509
4510                /* __vlan_insert_tag expect skb->data pointing to mac header.
4511                 * So change skb->data before calling it and change back to
4512                 * original position later
4513                 */
4514                __skb_push(skb, offset);
4515                err = __vlan_insert_tag(skb, skb->vlan_proto,
4516                                        skb_vlan_tag_get(skb));
4517                if (err) {
4518                        __skb_pull(skb, offset);
4519                        return err;
4520                }
4521
4522                skb->protocol = skb->vlan_proto;
4523                skb->mac_len += VLAN_HLEN;
4524
4525                skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4526                __skb_pull(skb, offset);
4527        }
4528        __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4529        return 0;
4530}
4531EXPORT_SYMBOL(skb_vlan_push);
4532
4533/**
4534 * alloc_skb_with_frags - allocate skb with page frags
4535 *
4536 * @header_len: size of linear part
4537 * @data_len: needed length in frags
4538 * @max_page_order: max page order desired.
4539 * @errcode: pointer to error code if any
4540 * @gfp_mask: allocation mask
4541 *
4542 * This can be used to allocate a paged skb, given a maximal order for frags.
4543 */
4544struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4545                                     unsigned long data_len,
4546                                     int max_page_order,
4547                                     int *errcode,
4548                                     gfp_t gfp_mask)
4549{
4550        int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4551        unsigned long chunk;
4552        struct sk_buff *skb;
4553        struct page *page;
4554        gfp_t gfp_head;
4555        int i;
4556
4557        *errcode = -EMSGSIZE;
4558        /* Note this test could be relaxed, if we succeed to allocate
4559         * high order pages...
4560         */
4561        if (npages > MAX_SKB_FRAGS)
4562                return NULL;
4563
4564        gfp_head = gfp_mask;
4565        if (gfp_head & __GFP_DIRECT_RECLAIM)
4566                gfp_head |= __GFP_REPEAT;
4567
4568        *errcode = -ENOBUFS;
4569        skb = alloc_skb(header_len, gfp_head);
4570        if (!skb)
4571                return NULL;
4572
4573        skb->truesize += npages << PAGE_SHIFT;
4574
4575        for (i = 0; npages > 0; i++) {
4576                int order = max_page_order;
4577
4578                while (order) {
4579                        if (npages >= 1 << order) {
4580                                page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4581                                                   __GFP_COMP |
4582                                                   __GFP_NOWARN |
4583                                                   __GFP_NORETRY,
4584                                                   order);
4585                                if (page)
4586                                        goto fill_page;
4587                                /* Do not retry other high order allocations */
4588                                order = 1;
4589                                max_page_order = 0;
4590                        }
4591                        order--;
4592                }
4593                page = alloc_page(gfp_mask);
4594                if (!page)
4595                        goto failure;
4596fill_page:
4597                chunk = min_t(unsigned long, data_len,
4598                              PAGE_SIZE << order);
4599                skb_fill_page_desc(skb, i, page, 0, chunk);
4600                data_len -= chunk;
4601                npages -= 1 << order;
4602        }
4603        return skb;
4604
4605failure:
4606        kfree_skb(skb);
4607        return NULL;
4608}
4609EXPORT_SYMBOL(alloc_skb_with_frags);
4610
4611/* carve out the first off bytes from skb when off < headlen */
4612static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4613                                    const int headlen, gfp_t gfp_mask)
4614{
4615        int i;
4616        int size = skb_end_offset(skb);
4617        int new_hlen = headlen - off;
4618        u8 *data;
4619
4620        size = SKB_DATA_ALIGN(size);
4621
4622        if (skb_pfmemalloc(skb))
4623                gfp_mask |= __GFP_MEMALLOC;
4624        data = kmalloc_reserve(size +
4625                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4626                               gfp_mask, NUMA_NO_NODE, NULL);
4627        if (!data)
4628                return -ENOMEM;
4629
4630        size = SKB_WITH_OVERHEAD(ksize(data));
4631
4632        /* Copy real data, and all frags */
4633        skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4634        skb->len -= off;
4635
4636        memcpy((struct skb_shared_info *)(data + size),
4637               skb_shinfo(skb),
4638               offsetof(struct skb_shared_info,
4639                        frags[skb_shinfo(skb)->nr_frags]));
4640        if (skb_cloned(skb)) {
4641                /* drop the old head gracefully */
4642                if (skb_orphan_frags(skb, gfp_mask)) {
4643                        kfree(data);
4644                        return -ENOMEM;
4645                }
4646                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4647                        skb_frag_ref(skb, i);
4648                if (skb_has_frag_list(skb))
4649                        skb_clone_fraglist(skb);
4650                skb_release_data(skb);
4651        } else {
4652                /* we can reuse existing recount- all we did was
4653                 * relocate values
4654                 */
4655                skb_free_head(skb);
4656        }
4657
4658        skb->head = data;
4659        skb->data = data;
4660        skb->head_frag = 0;
4661#ifdef NET_SKBUFF_DATA_USES_OFFSET
4662        skb->end = size;
4663#else
4664        skb->end = skb->head + size;
4665#endif
4666        skb_set_tail_pointer(skb, skb_headlen(skb));
4667        skb_headers_offset_update(skb, 0);
4668        skb->cloned = 0;
4669        skb->hdr_len = 0;
4670        skb->nohdr = 0;
4671        atomic_set(&skb_shinfo(skb)->dataref, 1);
4672
4673        return 0;
4674}
4675
4676static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4677
4678/* carve out the first eat bytes from skb's frag_list. May recurse into
4679 * pskb_carve()
4680 */
4681static int pskb_carve_frag_list(struct sk_buff *skb,
4682                                struct skb_shared_info *shinfo, int eat,
4683                                gfp_t gfp_mask)
4684{
4685        struct sk_buff *list = shinfo->frag_list;
4686        struct sk_buff *clone = NULL;
4687        struct sk_buff *insp = NULL;
4688
4689        do {
4690                if (!list) {
4691                        pr_err("Not enough bytes to eat. Want %d\n", eat);
4692                        return -EFAULT;
4693                }
4694                if (list->len <= eat) {
4695                        /* Eaten as whole. */
4696                        eat -= list->len;
4697                        list = list->next;
4698                        insp = list;
4699                } else {
4700                        /* Eaten partially. */
4701                        if (skb_shared(list)) {
4702                                clone = skb_clone(list, gfp_mask);
4703                                if (!clone)
4704                                        return -ENOMEM;
4705                                insp = list->next;
4706                                list = clone;
4707                        } else {
4708                                /* This may be pulled without problems. */
4709                                insp = list;
4710                        }
4711                        if (pskb_carve(list, eat, gfp_mask) < 0) {
4712                                kfree_skb(clone);
4713                                return -ENOMEM;
4714                        }
4715                        break;
4716                }
4717        } while (eat);
4718
4719        /* Free pulled out fragments. */
4720        while ((list = shinfo->frag_list) != insp) {
4721                shinfo->frag_list = list->next;
4722                kfree_skb(list);
4723        }
4724        /* And insert new clone at head. */
4725        if (clone) {
4726                clone->next = list;
4727                shinfo->frag_list = clone;
4728        }
4729        return 0;
4730}
4731
4732/* carve off first len bytes from skb. Split line (off) is in the
4733 * non-linear part of skb
4734 */
4735static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4736                                       int pos, gfp_t gfp_mask)
4737{
4738        int i, k = 0;
4739        int size = skb_end_offset(skb);
4740        u8 *data;
4741        const int nfrags = skb_shinfo(skb)->nr_frags;
4742        struct skb_shared_info *shinfo;
4743
4744        size = SKB_DATA_ALIGN(size);
4745
4746        if (skb_pfmemalloc(skb))
4747                gfp_mask |= __GFP_MEMALLOC;
4748        data = kmalloc_reserve(size +
4749                               SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4750                               gfp_mask, NUMA_NO_NODE, NULL);
4751        if (!data)
4752                return -ENOMEM;
4753
4754        size = SKB_WITH_OVERHEAD(ksize(data));
4755
4756        memcpy((struct skb_shared_info *)(data + size),
4757               skb_shinfo(skb), offsetof(struct skb_shared_info,
4758                                         frags[skb_shinfo(skb)->nr_frags]));
4759        if (skb_orphan_frags(skb, gfp_mask)) {
4760                kfree(data);
4761                return -ENOMEM;
4762        }
4763        shinfo = (struct skb_shared_info *)(data + size);
4764        for (i = 0; i < nfrags; i++) {
4765                int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4766
4767                if (pos + fsize > off) {
4768                        shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4769
4770                        if (pos < off) {
4771                                /* Split frag.
4772                                 * We have two variants in this case:
4773                                 * 1. Move all the frag to the second
4774                                 *    part, if it is possible. F.e.
4775                                 *    this approach is mandatory for TUX,
4776                                 *    where splitting is expensive.
4777                                 * 2. Split is accurately. We make this.
4778                                 */
4779                                shinfo->frags[0].page_offset += off - pos;
4780                                skb_frag_size_sub(&shinfo->frags[0], off - pos);
4781                        }
4782                        skb_frag_ref(skb, i);
4783                        k++;
4784                }
4785                pos += fsize;
4786        }
4787        shinfo->nr_frags = k;
4788        if (skb_has_frag_list(skb))
4789                skb_clone_fraglist(skb);
4790
4791        if (k == 0) {
4792                /* split line is in frag list */
4793                pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4794        }
4795        skb_release_data(skb);
4796
4797        skb->head = data;
4798        skb->head_frag = 0;
4799        skb->data = data;
4800#ifdef NET_SKBUFF_DATA_USES_OFFSET
4801        skb->end = size;
4802#else
4803        skb->end = skb->head + size;
4804#endif
4805        skb_reset_tail_pointer(skb);
4806        skb_headers_offset_update(skb, 0);
4807        skb->cloned   = 0;
4808        skb->hdr_len  = 0;
4809        skb->nohdr    = 0;
4810        skb->len -= off;
4811        skb->data_len = skb->len;
4812        atomic_set(&skb_shinfo(skb)->dataref, 1);
4813        return 0;
4814}
4815
4816/* remove len bytes from the beginning of the skb */
4817static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4818{
4819        int headlen = skb_headlen(skb);
4820
4821        if (len < headlen)
4822                return pskb_carve_inside_header(skb, len, headlen, gfp);
4823        else
4824                return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4825}
4826
4827/* Extract to_copy bytes starting at off from skb, and return this in
4828 * a new skb
4829 */
4830struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4831                             int to_copy, gfp_t gfp)
4832{
4833        struct sk_buff  *clone = skb_clone(skb, gfp);
4834
4835        if (!clone)
4836                return NULL;
4837
4838        if (pskb_carve(clone, off, gfp) < 0 ||
4839            pskb_trim(clone, to_copy)) {
4840                kfree_skb(clone);
4841                return NULL;
4842        }
4843        return clone;
4844}
4845EXPORT_SYMBOL(pskb_extract);
4846